Thursday, July 16, 2020 - 9:00am to 10:00am

Location:

https://cmu.zoom.us/j/96306773691

Event Website:

https://lti.cs.cmu.edu/content/lti-summer-seminar

For More Information, Contact:

Kate Schaich, kschaich@cs.cmu.edu

Improving Medical Entity Linking with Semantic Type Prediction

Medical entity linking is the task of identifying and standardizing medical concepts referred to in an unstructured text. Most of the existing methods adopt a three-step approach of (1) detecting mentions, (2) generating a list of candidate concepts, and finally (3) picking the best concept among them. In this paper, we probe into alleviating the problem of overgeneration of candidate concepts in the candidate generation module, the most under-studied component of medical entity linking. For this, we present MedType, a fully modular system that prunes out irrelevant candidate concepts based on the predicted semantic type of an entity mention. We incorporate MedType into five off-the-shelf toolkits for medical entity linking and demonstrate that it consistently improves entity linking performance across several benchmark datasets. To address the dearth of annotated training data for medical entity linking, we present WikiMed and PubMedDS, two large-scale medical entity linking datasets, and demonstrate that pre-training MedType on these datasets further improves entity linking performance. We make our source code and datasets publicly available for medical entity linking research.

Keywords:

LTI Summer Seminar Talk