
�

Hunter�Gatherer�

Applying Constraint Satisfaction� Branch�and�Bound
and Solution Synthesis to Computational Semantics

Stephen Beale
� May ����

CMU�LTI����XXX

Language Technologies Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh� PA �����

Submitted to Carnegie Mellon University in partial ful�llment of the requirements for the
degree of Doctor of Philosophy in Computer Science�

Committee�
Sergei Nirenburg 	advisor

Jaime Carbonell
Robert Frederking
Victor Raskin

Copyright c����� by Stephen Beale

�

Abstract

This work� integrates three related AI search techniques and applies the result to
processing computational semantics� both in the analysis of source text to discover
underlying semantics� as well as in the planning of target text from an input semantic
representation� We summarize the approach as �Hunter�Gatherer� �HG��

� Branch�and�Bound and Constraint Satisfaction allow us to �hunt down� non�
optimal and impossible solutions and prune them from the search space�

� Solution Synthesis methods then �gather together� all optimal solutions while
avoiding exponential complexity�

Each of these three general AI techniques will be described� We will look at how
how they have been used to solve a variety of problems� These general techniques were
extended and used in novel ways in this project� We describe these extensions in detail
and give examples of how they were applied to computational semantic processing� A
major contribution of this work will also be in showing how and why Natural Language
is a prime candidate for applying these methods� and how they can enable near�linear
time processing� As part of this discussion� we demonstrate the important result that
by converting Text Planning to a constraint satisfaction problem� Means�End type
planning can be replaced by an e�cient constraint�based search through a complex
tree� We examine the results in the light of the Mikrokosmos Machine Translation
project� This project is a large�scale Spanish�English MT system implemented at
New Mexico State University� We will be able to evaluate the control mechanism
presented here against a large corpus of sample texts� In particular� we will show that
a search space in the billions or more can be reduced to a few thousand or less� with
a corresponding decrease in run�time�

Finally� we try to explicitly uncover the bene	ts of the Hunter�Gatherer system�
We apply HG to several di
erent types of graph coloring constraint problems and
examine its behavior� We discuss several properties of HG� including the important
notions of soundness and completeness� Finally� we show how� in its most basic sense�
HG operates by reducing the dimensionality of a problem� and why this produces near
linear�time processing for the kinds of topologies found in problems of computational
semantics�

�Research reported in this paper was supported in part by Contract MDA�������C����� from the U�S�
Department of Defense�

CONTENTS �

Contents

�� Introduction �

���� Section Overviews �

���� Hunters and Gatherers in AI� An introduction to constraint�based AI techniques �

���� The Hunter�Gatherer Control Architecture ��

��
� The Mikrokosmos Machine Translation System � � � � � � � � � � � � � � � � � ��

���� Using Hunter�Gatherer in Semantic Analysis � � � � � � � � � � � � � � � � � � ��

���� Hunter�Gatherer in Natural Language Generation � � � � � � � � � � � � � � � ��

���� Natural�Language � a �Natural� Constraint Satisfaction Problem � � � � � � � ��

���� Other Applications for the Hunter�Gatherer Technology � � � � � � � � � � � � ��

���� Discussion ��

�� Hunters and Gatherers in AI ��

���� Constraint Satisfaction Problems ��

���� Solution Synthesis ��

������ General Algorithm �

������ Freuder�s Algorithm ��

������ Tsang�s Algorithm ��

���� Branch�and�Bound ��

��
� Other Strategies for CSPs �
�

���� Using Linear Programming for Constraint Satisfaction Problems � � � � � � �
�

���� Nonserial Dynamic Programming �
�

CONTENTS

���� Minton�s Work on Heuristic Repair ��

���� Scheduling at CMU�s Robotic Institute ��

�� The Hunter�Gatherer Control Architecture ��

���� The Hunter�Gatherer Algorithm ��

���� Subgraph Construction ��

�� The Mikrokosmos Machine Translation System 	�

��� Text Meaning Representations ��

��� Ontology ��

��� Semantic Lexicon ��

�
� The Semantic Analyzer ��

��� Using Hunter�Gatherer in Semantic Analysis � The Results � � � � � � � � � � ��

�� Using Hunter�Gatherer in Semantic Analysis

���� Identifying Subgraphs of Dependency ��

���� Solution Synthesis for Semantic Analysis �

���� Using Branch�and�Bound in the Uncertain World of Semantic Analysis � � � ��

������ An Example Application ���

������ Results of Using Hunter�Gatherer for Semantic Analysis � � � � � � � ��

�� Hunter�Gatherer in Natural Language Generation ��

���� Text Planning for Machine Translation ���

���� Using Constraint Satisfaction to Enable Abstractions � � � � � � � � � � � � � ��

CONTENTS �

	� Natural Language � a �Natural
 CSP ��

���� Local Dependency in Computational Semantics � � � � � � � � � � � � � � � � ���

���� Classes of Problems for which HUNTER�GATHERER is Bene�cial � � � � � ���

� Other Applications for the Hunter�Gatherer Technology ���

���� Graph Coloring ���

�� Discussion ���

���� Novel Contributions to the State of the Art � � � � � � � � � � � � � � � � � � ���

���� Formal Properties of HUNTER�GATHER� Soundness and Completeness � � ���

������ Soundness ���

������ Completeness ���

���� Planning and Island Processing ���

��
� Exploiting Graph Topology for Optimization Problems � � � � � � � � � � � � ���

���Conclusion ���

Acknowledgments ���

�� INTRODUCTION �

�� Introduction

Fifty six million� six hundred eighty seven thousand� and forty� A big number� to be sure�

This is the number of possible semantic analyses for an average sized sentence in the

Mikrokosmos Machine Translation project� Complex sentences have gone past the trillions�

If every combination could be accurately judged in one thousandth of a second� it would still

take almost a day to analyze the average sentence� And you can forget about the hard ones�

And yet� understanding natural language sentences is intuitively not an exponential a�air�

Not every word in a sentence is dependent on every other word� Sentences can generally be

broken up into relatively independent areas of self�contained meaning which then interact

on a higher level to produce the meaning of the whole� This research aims to recognize that

fact� analyze it� and apply appropriate AI techniques to take advantage of it�

This work integrates three related AI search techniques and applies the result to processing

computational semantics� both in the analysis of source text to discover underlying semantics�

as well as in the planning of target text using input semantics� We summarize the approach

as �Hunter�Gatherer� 	HG
�

� Branch�and�Bound and Constraint Satisfaction allow us to �hunt down� non�optimal

and impossible solutions and prune them from the search space�

� Solution Synthesis methods then �gather together� all optimal solutions while avoiding

exponential complexity�

We will describe each of these general AI techniques and look at how how they have been

used to solve a variety of problems� These general techniques were then extended or used

in novel ways in this project� We will describe these extensions in detail and give examples

of how they were applied to computational semantic processing� A major contribution of

this work will also be in showing how and why Natural Language is a prime candidate for

applying these methods� and how they can enable near�linear time processing� As part of this

discussion� we will demonstrate the important result that by converting Text Planning to

a constraint satisfaction problem� Means�End type planning can be replaced by an e�cient

constraint�based search through a complex tree� We will examine the results in the light of

the Mikrokosmos Machine Translation project� This project is a large�scale Spanish�English

�� INTRODUCTION �

{0,1,2}

 A

 B

{1,2,3}

 C

A=B A<C

{1,2}

domain

Figure �� Basic Constraint Satisfaction Problem

MT system implemented at New Mexico State University� We will be able to evaluate the

control mechanism presented here against a large corpus of sample texts� In particular� we

will show that a search space in the billions or more can be reduced to hundreds� with a

corresponding decrease in run�time�

Finally� we try to explicitly uncover the bene�ts of the Hunter�Gatherer system� We

apply HG to several di�erent types of graph coloring constraint problems and examine its

behavior� We discuss several properties of HG� including the important notions of soundness

and completeness� Finally� we show how� in its most basic sense� HG operates by reducing

the dimensionality of a problem� and why this produces near linear�time processing for the

kinds of topologies found in problems of computational semantics�

���� Section Overviews

This introduction will give brief descriptions of each of the main points to be covered in

detail below� The interested reader will then be able to judge which sections of the report

are of immediate interest� The text is divided into main sections as follows�

���� Hunters and Gatherers in AI� An introduction to constraint�based AI tech�

niques

In recent years� Constraint Satisfaction Problems 	CSP
 have received a good deal of

attention in the computer science world 	see 	Tsang� ��
 for a detailed look at CSP
� Con�

�� INTRODUCTION �

A = 0

 B = 1

 C = 1

 C = 2

 B = 2

 C = 1

 C = 2

 B = 3

 C = 1

 C = 2

A = 1

 B = 1

 C = 1

 C = 2 OK

all answers? -> exhaustive search

{0,1,2} A <> B
{0,1,1} A <> B

{0,2,1} A <> B
{0,2,2} A <> B

{0,3,1} A <> B
{0,3,2} A <> B

{1,1,1} A >= C

BT!

BT!

BT!

Figure �� Backtracking in Constraint Satisfaction

straint satisfaction techniques enable search procedures to prune o� substantial portions of

the search tree by identifying solution sets�subsets that cannot meet input constraints� For

example� in Figure �� three variables� A� B and C� with the domains given� are to have values

chosen subject to the two constraints� �A � B� and �A � C��

A naive parser would try every combination of A� B and C until it found one that met the

constraints 	Figure �
� If all correct answers are desired� an exhaustive search is required�

Notice that certain combinations that always lead to failure 	A��� B�x
 are tried again

and again� Constraint satisfaction programming techniques can eliminate this unnecessary

processing� For instance� it can reduce A�s domain to f���g� since � as a value for A can

never satisfy the �A � B� constraint 	� is not in B�s domain
� Actually� A�s domain can be

reduced to f�g� since � as a value for A can never satisfy the �A � C� constraint� Once A is

reduced to f�g� then B can be reduced by similar reasoning to f�g� and C can be reduced to

f�g� Only one choice for each variable is left� thus� the answer is achieved without search�

In section ���� we will overview the algorithms used to achieve constraint �consistency� in a

search�

Solution synthesis 	section ���
 is a method of generating all valid answers to a search

problem� Instead of working from the top of the tree down�� solution synthesis attempts

�CSP does not assume tree shaped search spaces� Neither do we	 for that matter	 although computational
semantics generally present as tangled trees	 a fact we take advantage of
see below��

�� INTRODUCTION �

 (0,0,4,8),(2,2,4,8)}

{(0,0,2,4),(0,0,2,8),

SYNTHESIS

[A,B,C,D]

CONSTRAINTS: [A = B], [C < D], [A < C]

A Variable-name B

{0,1,2} {0,2,4}possible values

[A,B] {(0,0),(2,2)}

DC

{0,4,8}{0,2,4}

{(0,4),(0,8),(2,4)
 (2,8),(4,8)}

[C,D]
{(0,0),(0,2),(0,4)
 (2,0),(2,2),(2,4)
 (4,0),(4,2),(4,4)}

[B,C]

{(0,0,2),(0,0,4),(2,2,4)}[A,B,C] {(0,0,4),(0,0,8),(0,2,4),(0,2,8)
 (0,4,8),(2,0,4),(2,0,8),(2,2,4),
 (2,2,8),(2,4,8),(4,0,4),(4,0,8),
 (4,2,4),(4,2,8),(4,4,8)}

[B,C,D]

Figure �� Basic Solution Synthesis Technique

to combine legal combinations of nodes from the bottom up� Figure � gives a graphical

overview of the process� Used in conjunction with constraint satisfaction techniques� solution

synthesis is a powerful method for avoiding exponential time requirements associated with

conventional tree search�

Branch�and�bound techniques 	section ���
 can be used to �nd the optimal solution with�

out resorting to heuristics�� The basic idea is displayed in Figure
� In that Figure� a graph

is displayed with the cost of each arc listed� The order of arc traversal used in a branch�

and�bound algorithm is marked by circled numbers� The shortest total path accumulated

at any point is always expanded next� If there is a tie� as is the case at the start node when

no paths have been chosen yet� then the shortest next arc is taken� Arcs without circled

numbers in Figure
 were not tested� because they were extensions of paths of length greater

than the length of a valid solution� Branch�and�bound identi�es and eliminates paths which

can be guaranteed to have more costly solutions than some valid solution�

Each of these AI methods � constraint satisfaction� solution synthesis and branch�and�

bound � will be described and the appropriate literature reviewed� In addition� we will take

a look at some related techniques useful in processing constraint satisfaction problems� An

attempt is made to place Hunter�Gatherer in its proper relation to linear programming and

nonserial dynamic programming methods� We will also compare HG with the well�known

�They can be used with heuristics as well	 if desired�

�� INTRODUCTION ��

START END

2

2 2

2

5 4 3

7 5

1

2

3

4

5

6

Figure
� Branch�and�Bound Example

work of Steven Minton 	Minton� et al ����
� who was able to solve certain types of complex

constraint satisfaction problems in linear time� And �nally� we overview the scheduling

techniques used at the Robotics Institute of Carnegie Mellon University�

���� The Hunter�Gatherer Control Architecture

In this section� we will discuss how constraint satisfaction� solution synthesis and branch�

and�bound techniques were modi�ed and adapted in creating the Hunter�Gatherer control

architecture� We will demonstrate how constraint satisfaction information allows us to iden�

tify �circuits� of inter�dependence in the input� Solutions for each circuit are synthesized

apart from the rest of the problem�

Branch�and�bound techniques were re�ned for use with the solution synthesis and con�

straint satisfaction methods� As each of the �circuits� mentioned above are synthesized�

certain variables will no longer be dependent on nodes outside of the circuit� These vari�

ables can be optimized� with non�optimal solutions �bound� and eliminated� This particular

merging of techniques accounts for the majority of savings produced by our system�

���� The Mikrokosmos Machine Translation System

Here we attempt to give the reader the background necessary to understand the application

of HG to problems in computational semantics� In particular� we present an outline of the

Mikrokosmos Machine Translation project� Topics discussed include knowledge sources such

as ontologies 	semantic models of the world
 and computational lexicons� and the principles

�� INTRODUCTION ��

used in extracting and using semantic 	and syntactic
 constraints to determine the correct

meaning of an input text�

���� Using Hunter�Gatherer in Semantic Analysis

In this section� we present the Hunter�Gatherer algorithm in the light of Computational Se�

mantic problems� We exemplify the steps of the algorithm using semantic analysis problems

taken from the Mikrokosmos corpus� Results from processing a wide variety of inputs are

given�

���� Hunter�Gatherer in Natural Language Generation

The HG principles were capitalized on to change means�end text planning into a simpler and

faster type of Constraint Satisfaction Problem 	CSP
� which can be solved using optimized

CSP algorithms� Means�End planners typically are ine�cient� We demonstrate in this

section how we can set up our planner as a Constraint Satisfaction Problem� and then let

HG techniques automatically identify macro�plans which can then be e�ciently �searched�

to �nd the optimal plan�

��	� Natural�Language � a �Natural
 Constraint Satisfaction Problem

Implicit in the work above is the idea that computational semantics naturally �ts into the

class of problems for which these types of constraint satisfaction techniques apply� We will

introduce and discuss the notion of �local inter�dependence�� We will show that natural

language semantics �ts this notion well� We will examine the e�ect of �long�distance de�

pendencies� on this type of processing� We will look at the class of problems for which the

methods described above do not work well and show that computational semantics typically

does not conform to such problems�

�� INTRODUCTION ��

��
� Other Applications for the Hunter�Gatherer Technology

Hunter�Gatherer is a general purpose algorithm that can be applied to many types of prob�

lems� While it is not the intent of this report to describe such applications in detail� nor to

assert that HG is superior to other methods for those applications 	although this may be a

topic for further research
� we thought it was important to give a brief overview of at least

one other application� namely� graph coloring�

Graph coloring is an interesting application to look at for several reasons� First� it is

in the class of problems known as NP�Complete� even for planar graphs 	see for example�

	Even� ����

� In addition� a large number of practical problems can be formulated in terms

of coloring a graph� including many scheduling problems 	Gondran � Minoux� ���

� It is

quite easy to make up a large range of problems� from simple to complex� single dimensional

to multi�dimensional� This fact allows us to compare HG to other techniques for a variety

of problems� And �nally� graph coloring examples provide a more suitable framework for

discussing the concepts of graph topology� taken up in the next section�

���� Discussion

The �nal section of this work seeks to collect in one place several of the most important

features of the Hunter�Gatherer control architecture� We begin by stating outright what we

believe are the novel contributions made to the state of the art� We discuss the formal char�

acteristics of HG� including the important notions of soundness and completeness� Finally�

we point out some of the interesting aspects behind the success of HG� Included in this is a

discussion on how HG implements island processing� and how the notion of graph topology

can be used to explain the bene�ts 	and limitations
 of Hunter�Gatherer�

�� HUNTERS AND GATHERERS IN AI ��

�� Hunters and Gatherers in AI

Search is the most common tool for �nding solutions in arti�cial intelligence� That being

true� the most common work in the AI smithery is aimed at re�ning that tool� Such work

can be classi�ed into two main areas�

�� Reducing the search space� Looking for sub�optimal or impossible solutions� Removing

them� Killing them� �Hunting�

�� E�ciently extracting answer	s
 from the search space� Collecting satisfactory an�

swer	s
� �Gathering�

The hunter is savage� She kills without mercy to serve the needs of the clan� The gatherer

is gentle� He takes in all that supply the needs of the group��

Much work has been done with regard to the hunters� Finding and using �heuristics�

to guide search intelligently has been a major focus� Heuristics are necessary when other

techniques cannot reduce the size of the search space to reasonable proportions� Under

such circumstances� �guesses� have to be made to guide the search engine to the area of the

search space most likely to contain acceptable answers� �Best��rst� search 	see� among many

others� 	Charniak� et al� ����

 is an example of how to use heuristics� Such a methodology

is almost always combined with some concept of �satis�cing� 	Newell � Simon� ����
� a

determination of whether a given answer is �good enough�� regardless of the fact that other

�better� solutions may still be present in the search space�

Discovering appropriate heuristics for any given problem is another matter� Often

�experts� in the �eld must be consulted� their methods for �nding solutions analyzed� and

means of implementing those methods computationally invented� MYCIN 	Buchanan �

Shortli�e� ���

 is a typical �expert system� whose search is based upon heuristic medical

knowledge�

This research does not address heuristic search� Heuristics� by de�nition� are guesses� and

thus can only lead to the most probable answers� In contrast� this work claims that by using

�This �hunter�gatherer
 business is undoubtedly politically�incorrect� Be advised that we are in no way
denigrating pre�industrialist cultures�

�� HUNTERS AND GATHERERS IN AI �

the modi�ed CSP techniques presented below� the most optimal solution can be guaranteed

for computational semantic problems� even under reasonable time constraints� This is not

to say that heuristics cannot be valuable in computational semantics� and in fact� heuristics

could be easily added to the methods described here�

Some further clari�cations regarding heuristics must be made� Heuristics can be used

more conservatively as a method to order the search� without resorting to �satis�cing� de�

terminations which may leave optimal solutions undiscovered� Combined with other methods

	namely branch�and�bound and solution synthesis
� these ordering heuristics may potentially

provide substantial pruning of the search space� There are several general ordering heuristics

that are common in constraint satisfaction algorithms� These heuristics are discussed below

in the �Other Strategies for CSPs� section� In addition� knowledge sources which evalu�

ate solutions can also be seen as heuristics� For example� the fact that the Mikrokosmos

lexicon constrains the AGENT of a SPEAK event to be a HUMAN is simply a heuris�

tic� Metonymic speech� such as The White House said today ��� often overrides the basic

constraint� In all that follows� we assume a given knowledge source with all of its inherent

heuristics� The control mechanisms developed here then �nd the best solution� given that

knowledge�

The �hunting� techniques applied in this research are most closely related to the �eld

of CSPs� a detailed summary of this work is given below� �Branch�and�bound� methods

have been modi�ed and adapted for work with CSPs� and are thus also described below�

The recent work of Steve Minton and colleagues also provides an interesting comparison

and will be summarized� along with techniques in linear programming and the related �eld

of nonserial dynamic programming� An overview with scheduling techniques used at the

Robotics Institute of Carnegie Mellon University is also presented�

�Gathering� has been studied much less in AI� Most AI problems are content with a single

�acceptable� answer� Heuristic search methods generally are su�cient� Certain classes of

problems� however� demand all correct answers� Optimization problems� for instance� either

need to examine all correct answers and select the most optimal� or they must utilize certain

techniques such as branch�and�bound which allow them to ignore certain sections of the

search space which can be guaranteed not to contain optimal answers� �Solution synthesis�

addresses the need to determine all correct answers to a constraint satisfaction problem�

Solution Synthesis techniques 	Freuder� ����� Tsang � Foster� ����
 iteratively combine

�� HUNTERS AND GATHERERS IN AI ��

	gather
 partial answers together to arrive at a complete list of all correct answers� Often�

this list is then rated according to some separate criteria in order to pick the most suitable

answer� Solution synthesis methods will be described below�

In sections � and following� the modi�cations and interactions of these �hunter�gatherers�

utilized in this project will be developed� In particular� it will be shown that by combining

branch�and�bound techniques with a novel solution synthesis method� the best solution for

a computational semantic problem can be found in near�linear time� Also� the conversion of

a means�end type text planner to a CSP will be described�

���� Constraint Satisfaction Problems

The seminal paper on CSP is 	Mackworth� ����
� In this paper he describes the central

concepts of CSP and gives the basic consistency algorithms described below� 	Mackworth �

Freuder� ����
 and� later� 	Mohr and Henderson� ����
 improved on the basic algorithms�

	Freuder� ����
 introduces solution synthesis and 	Tsang and Foster� ����
 present improved

methods� 	Tsang� ����
 is an indispensable resource for anyone interested in CSP�

The simple Constraint Satisfaction Problem presented in the introduction is a good exam�

ple of the pitfalls of uninformed backtracking� Figure � displays the ever�present fact�of�life

inherent in uninformed search� In that problem� seven combinations of A�B and C were

tested before one was found that met the input constraints� If all answers to the problem

were required� an exhaustive search 	�� combinations in this case
 would be required� All

of this despite the fact that no search was required at all� By applying the basic princi�

ples of CSPs� the single correct answer falls out without search� This is not to say that

search is never required� in most problems it is� But for many types of problems� using CSP

techniques can drastically reduce the amount of processing needed�

DEFINITIONS

The following terminology will be used throughout this report� A CSP consists of a set

of variables� also called nodes� or� in connection with discussions about graphs� vertices�

Each variable can take on a value taken from a set of values� called its domain� A variable�s

domain will always be presented between curly braces f g� An assignment of a value to a

variable will be written �A���� meaning variable A has value �� There are two types of

�� HUNTERS AND GATHERERS IN AI ��

constraints� Unary constraints restrict the domain of a variable without reference to any

other variable� For instance� �A � �� is a unary constraint for variable A� It will be assumed

that there is one 	or zero
 unary constraint per variable��

Binary constraints� restrict the values a variable can take by comparing it to another

variable� For instance� �A � B� is a binary constraint between A and B� Actual constraints

will always be presented between straight brackets � �� They will also be represented as

follows� CA is a unary constraint for A� CAB is a binary constraint between the arc AB� An

arc is de�ned to be any pair of variables for which there is a binary constraint� It is assumed

there is only one binary constraint per arc� In general� capital letters at the beginning of the

alphabet 	A�B�C ���
 will represent variables� while those at the end 	X�Y�Z
 will represent

unknown values�

A solution to a CSP is an assignment to each variable of a value taken from that variable�s

domain� such that all the unary and binary constraints are satis�ed� A complete solution is

the set of all such solutions for a CSP� A solution will be represented as a set of values enclosed

within parentheses� such as 	����
��
� where � is the value of the �rst variable 	generally A

in these abstract examples
� � is the value of the second variable� etc�� Alternatively� a

solution sometimes is represented more explicitly as a set of variable�value assignments such

as 	�A�����B�����C�
���D���
� A set of solutions will be a list of solutions enclosed in

curly brackets� f	����
��
�	����
��
� ��� g� Partial solutions will be represented similarly� with

the assignment of values to variables determined by context� The fact that a partial solution

satis�es a given constraint will be represented 	X�Y
 SAT CAB for binary constraints�� and

X SAT CA for unary constraints��

Figure �A is a slightly more complex CSP� A few more possible values have been added to

the domains of each variable to more clearly demonstrate the types of consistency discussed

below� Unary constraints are also included� The three central �consistency� checks used for

CSPs are node consistency� arc consistency and path consistency�

�If there is more than one	 they can always be combined into one with ANDS� �A � � AND A � ���

�Higher order constraints are also possible	 but since they currently not used in Mikrokosmos	 they will
not be discussed here� Higher order constraints can be used by HG with no problems�

�Meaning that the partial solution which assigns value X to variable A and Y to B satis�es the binary
constraint CAB�

�The assignment of value X to variable A satis�es the unary constraint CA�

�� HUNTERS AND GATHERERS IN AI ��

B < C C

C < 10

A < 4
{0,1,2,3,4,...}

A

A < CA > B

B

B > -1

B < C B < C

A < C A < CA > B A > B

B C CB
{0,1,3,4} {0,1}

{1,2,3}
A

{0,1,2,3}
A

A. Unconstrained Graph. B. Node-consistent Graph.

{0,1,2,3,4,11,15} {0,1,2,3,4} {2,3,4}{-6,-2,0,1,3,4}

C. Arc-Consistent Graph.

Figure �� Constraint Satisfaction Problem � Consistency

�� Node Consistency�

Node consistency 	NC
 is simply a state where the domains of each variable have

been reduced to the set of all possible values that satisfy the unary constraints� In

Figure �A�B� the results of node consistency processing are displayed� For instance�

the values �� and �� are removed from the domain of C since they do not satisfy C�s

unary constraint that C � ���

Node consistency can often be assumed� either because there are no unary constraints�

or because the unary constraints were used in setting up the problem� For instance� in

the Mikrokosmos semantic analyzer� the unary constraints correspond to picking the

correct lexicon entries based on the root word and surrounding syntax�

A simple algorithm for enforcing node consistency is as follows�

� PROCEDURE NC��
� FOR each variable� V

 CV �� unary constraint for V
� IF CV is null �� no unary constraints
� THEN do nothing
� ELSE
� FOR each value in V�s domain� X

�� HUNTERS AND GATHERERS IN AI ��

� IF X SAT CV
� THEN do nothing
�� ELSE remove X from the domain of V

This algorithm has time�complexityO�an�� where a is the maximumsize of the domains

and n is the number of variables to be examined� In all that follows� our primary goal

will be to reduce the time complexity with respect to n� the number of variables��

Thus� in this respect� NC�� is linear in time�

�� Arc Consistency�

Arc consistency 	AC
 ensures that the binary constraints connecting any two nodes

are satis�ed� There have been various implementations of AC� AC��� AC�� and AC��

are presented in 	Mackworth� ����
� 	Mohr � Henderson� ����
 present the optimal

AC�
 algorithm� The naive approach� AC��� is given below�

� PROCEDURE AC��
� NC�� �� ensure NC 	rst

 REPEAT
� Changed �� false
� FOR each arc� AB
� CAB �� binary constraint between A and B
� FOR each value in the domain of A� X
� IF there is a value in the domain of B� Y

such that �X�Y� SAT CAB
� THEN do nothing
�� ELSE
�� REMOVE X from the domain of A
�� Changed �� true
�
 UNTIL NOT Changed

This algorithm cycles through each potential arc�	 to determine if for each value in the

domain of the �rst variable there exists a value in the domain of the second variable

that can satisfy the binary constraint on that arc� If a value is found for which this is

not true� it is removed from the domain of the �rst variable� If any values are removed�

�In computational semantics	 the maximumsize of any domain is probably around ��	 with rare exceptions

�� word senses for a single lexical item�� However	 the average case domain size is less than �� Thus	 terms
which involve domain size will be insigni�cant compared to the number of variables
actual words� in a
problem	 which can get to �� or higher in long sentences� Later	 time and space complexity terms involving
the maximum number of constraints per variable will be used� A similar argument applies�

�	Note� the arcs must be identi�ed before using this procedure� This can be accomplished by examining
each constraint once� The algorithm above assumes separate arcs for both directions	 i�e� AB and BA�

�� HUNTERS AND GATHERERS IN AI ��

the process must be started again from the beginning� since the removal might cause

some arc�inconsistency in an arc that was already tested�

In Figure �B�C� the arc�consistency results are shown� For example� in Figure �B� the

domain of B is f������
g� When the arc AB is tested with the binary constraint �A �

B� and the value � for variable A is tested� it is discovered that no values of B remain

such that �� � B�� Thus � must be removed from the domain of A� Note that this will

impact on the testing of arc CA� When the value � is tested for C� no values for A

remain in its revised domain f�����g such that �A � ��� Thus � will need to be removed

from the domain of C� This demonstrates the necessity of testing all arcs again after

any value is removed� since if arc CA is tested before AB� the value of � for C is still

consistent�

If a is the maximum size of the domains� e is the number of arcs and n is the number

of variables� then there will be at most na values to be checked� If� in the worst case�

one value is deleted for each iteration in the UNTIL loop� then the loop will be run

na times� The �rst FOR loop 	line �
 can be run a maximum e times per iteration

of the REPEAT loop� The second FOR loop 	line �
 can be called a maximum of a

times per iteration of the �rst FOR loop� and the IF statement in line � may involve

a maximum of a searches through the domain of B per each iteration of the second

FOR loop� Thus� the complexity of the second FOR loop is O�a��� the complexity of

the �rst FOR loop is O�ea��� and the complexity of the entire procedure is O�nea���

In unconstrained graphs� e can be at most n�� However� in computational semantics�

typically� e is proportional to linear n 	the reasons for this will be discussed below
�

Thus AC�� typically has time�complexity O�n�a��� which is not linear with respect to

the number of variables�

Various improvements to AC�� have been o�ered� AC�
 	Mohr and Henderson� ����

is the optimal worst�case algorithm� o�ering time complexity of O�ea��� In AC���

whenever a value is removed from a variable�s domain� every arc has to be rechecked�

AC�
 recognizes the fact that a value in a variable�s domain �supports� an identi�able

list of values in other variables� For instance� in Figure �C� the value � in B �supports�

the value � in A� The constraint �A � B� is enabled by this support� Remove the value

� from B�s domain and the value � in A is no longer supported� Therefore� if a value

is deleted in one variable� only the values in other variables that are supported by the

�� HUNTERS AND GATHERERS IN AI ��

deleted value must be checked� Furthermore� the number of �supports� for a certain

value can be tracked� Examining Figure �C again� the two values in B� � and ��

both support the value � in A� This will be represented by saying SUPPORTS	B��

� f	A���CAB
����g�� and SUPPORTS	B��
 � f	A���CAB
����g� The fact that the value

� in A has two values in B supporting CAB is represented as SUPPORT�A���CAB�

� ���� If one of the supporting values in B was removed� SUPPORT�A���CAB� � �

would still be supported by one value� Thus� by recording how many supports each

value�constraint pair has initially� and by subtracting one from that total each time

a supporting value is removed� it can be determined when a value�constraint pair no

longer can be supported� Whenever a value�constraint pair has no supports� the value

must be deleted� An algorithm for AC�
 follows�

� PROCEDURE AC��
� NC�� �� ensure node consistency 	rst

�� Step I� INITIALIZATION

 INITIALIZE array SUPPORT�V�X�AB� � �
� INITIALIZE SUPPORTS�V�X� � nil
� INITIALIZE FAIL�LIST � nil

�� Step II� SETTING UP SUPPORT VARIABLES
� FOR each arc� AB
� FOR each value X in variable A
� FOR each value Y in variable B
� IF �A�B� SAT CAB
�� THEN
�� INCREMENT�SUPPORT�A�X�CAB��

�� increment the number of supporters for X
�� APPEND�SUPPORTS�B�Y���A�X�CAB��

�� record that Y supports X
�
 IF �SUPPORT�A�X�CAB� � ��

�� X has no supports for this arc
�� THEN
�� APPEND�FAIL�LIST��A�X��
�� REMOVE X from the domain of A

�� Step III� REMOVING UNSUPPORTED VALUES
�� WHILE FAIL�LIST �� f g

�� PICK 	rst label �A�X� from FAIL�LIST

��That is	 the assignment of value � to variable B supports the assignment of value � to variable A with
respect to CAB	 along with any other supports�

��That is	 the assignment of the value � to A has two supports for the CAB constraint�

�� HUNTERS AND GATHERERS IN AI ��

�� FAIL�LIST � FAIL�LIST � �A�X�
�� LABELS�SUPPORTED �� SUPPORTS�A�X�
�� FOR each label �B�Y�CBA� in LABELS�SUPPORTED

�� determine if the supported value has any other supports left
�� DECREMENT�SUPPORT�B�Y�CBA��
�
 IF ��SUPPORT�B�Y�CBA� � ��

AND NOT�MEMBER��B�Y��FAIL�LIST� �� not pending failure already
AND MEMBER�Y�DOMAIN�B��� �� not already failed

�� APPEND�FAIL�LIST��B�Y��
�� REMOVE Y from the domain of B

The INITIALIZATION stage is trivial� and� practically speaking� can be combined

with step II� In step II� if the number of arcs is e� the maximum number of values in a

variable is a� then it is easy to see that the inner�most IF statement 	line �
 is executed

a�e times� In step III� in the worst case� the WHILE loop will be executed once for

each value� If the number of variables is n� then there can be at most an values to

be deleted� Finally� there can be at most a labels to be examined in the inner FOR

loop 	line ��
� so that the total complexity of step III is O�a�n���� Note that n� while

proportional to e� is always less than or equal to it in connected graphs� Therefore�

the total complexity of AC�
 is O�a�n � a�e� � O�a�e�� Again� in computational

semantics e is typically proportional to n� thus� thus the time complexity for AC�
 is

typically O�a�n��

Because space becomes an issue in AC�
� the space complexity will also be analyzed�

The space complexity is dominated by the SUPPORTS array� There can be at most

one entry in SUPPORTS for every variable�value pair� or an entries� Each entry can

support every other variable�value pair� again an� Since there can be an entries� each

of can hold up to an bits of information� the total complexity is O�a�n��� Since e is

equivalent to n�� this is the same as O�a�e�� which is what is reported in the literature�

Again� it should be pointed out that in computational semantics� instead of every

variable�value pair supporting every other variable�value pair 	an
� typically it is more

on the line of ca� where c is a constant� Thus� implementations of AC�
 for natural

��Note that
Tsang	 ����� as well as
Mohr and Henderson	 ����� give the complexity of step � as O�a�e��
They assume each arc can add a items to the FAIL�LIST	 so that the WHILE loop can be executed ae times�
It is easy to see	 though	 that this is excessive� A value can only be deleted once from its domain� The
APPEND
FAIL�LIST	���� statements
lines �� and ��� can be implemented so that duplicate variable�value
pairs are not added	 and the MEMBER
Y	DOMAIN
B�� statement
in line ��� prevents any variable�value
pair that has been deleted from being re�added to FAIL�LIST� Thus	 an is the correct limit for the WHILE
loop�

�� HUNTERS AND GATHERERS IN AI ��

language semantics typically have a space complexity of O�a�n�� which is linear with

respect to the number of variables�

It should be noted for completeness that Bessiere and Cordier 	����
 present another

algorithm� AC��� which improves upon AC�
 in two important ways� First� although it

retains the same worst�case complexity of O�a�e�� it has better average�case complexity

for many problems� More importantly� AC�� reduces the space complexity to O�ae��

Hunter�Gatherer� at present� employs an algorithm similar to AC�
� Upgrading to

AC�� may produce signi�cant improvements� especially in the more constraint�oriented

problems of graph coloring� Semantic analysis problems actually do not make use of

constraints 	for pruning� via an AC�
 algorithm
 very heavily� for reasons discussed

below� therefore� this improvement would not a�ect these types of problems�

�� Path Consistency�

Note that Figure �C still contains some value combinations that theoretically could

be removed ahead of time� For instance� the partial solution 	B�C
 � 	���
 is never

possible� When B � � is assigned� A must be constrained to f���g to meet the �A � B�

constraint� However� with C � �� the �A � C� constraint could no longer be satis�ed�

Path consistency is an attempt to eliminate impossible partial solutions�

Path consistency requires that for any path�� 	A�B�C����M
� then for any value assign�

ment A � X and M � Y� there must exist a value assignment for each of the variables

B�C�����L such that all binary constraints on adjacent variables are satis�ed� In Figure

�C� the path in question is 	B A C
� When we assign B � � and C � �� there is no

value X for A left such that 	X�B
 SAT CAB AND 	X�C
 SAT CAC �

Path consistency 	PC
 algorithms can be found in 	Tsang� ����
 and 	Mohr and Hen�

dersen� ����
� The optimal algorithm runs with time complexity O�a�n�� and space

complexity O�a�n��� Obviously� these complexities are much higher than those for

AC�
 and NC���

Fortunately� PC algorithms are not necessary� A dynamic application of AC algorithms

performs the same function� To illustrate� assume that a pre�processor performs AC�

on Figure �A� yielding the CSP in Figure �C� Next� submit the CSP to a AC�enabled

search algorithm� Such an algorithm would choose one value for B� say B � �� This�

��A path is a set of variables	 each variable of which has an arc between itself and its adjacent variables�

�� HUNTERS AND GATHERERS IN AI ��

in e�ect� creates an �arti�cial island���� with the domain of B � f�g� Since we have

removed the value � from the domain of B� the AC�enabled search can dynamically

eliminate values in A and C which are supported only by B � �� This would remove A

� �� After removing A � �� the AC�enabled search would also eliminate C � �� Thus�

a dynamic AC�enabled search algorithm performs the same function as PC algorithms�

The algorithm for an AC�enabled algorithm will be given below�

���� Solution Synthesis

Solution synthesis is a method used to generate all solutions to a CSP� That is� all as�

signments of values to variables that satisfy the problem�s constraints are produced by a

solution synthesis algorithm� Often� this set of solutions can be further judged according to

some separate criteria to obtain the optimal answer� For instance� in a modi�ed traveling

salesperson problem in which all cities must be visited� but in an order subject to certain

constraints��� solution synthesis can generate the list of all possible answers that meet the

constraints� from which the most optimal answer 	presumably the one with the least total

mileage
 could be picked�

It is important to realize that solution synthesis� in itself� is simply a way to organize

search that happens to be useful when all solutions are required� One could just as well

perform a depth �rst search and� when a solution is found� backtrack and continue searching

for more answers� Solution synthesis techniques remove the need for backtracking since

all possible answers are calculated at each synthesis level� Furthermore� solution synthesis

can be used to focus the e�ects of other methods� most notably constraint satisfaction�

	Freuder� ����
 introduced solution synthesis and 	Tsang � Foster� ����
 re�ned it� Both

of their research will be described below� We extend the work of Tsang and Foster and

combine it with branch�and�bound techniques� all of which will be described in the section

��

��Discussion on �islands
 follows below�

��For example	 Baltimore must come �rst because the supplies need to be picked up	 then the cities where
the perishable goods are sold must be next	 etc�

�� HUNTERS AND GATHERERS IN AI �

������ General Algorithm

Solution synthesis constructs the set of all possible solutions by iteratively combining smaller

solutions while propagating constraints� A simpli�ed algorithm�� which implements solution

synthesis follows�

� PROCEDURE SS��
�� initialize SOLUTION SET to set of order�� solutions

� SOLUTION�SET �� nil

 FOR each variable� V
� FOR each value� X in the domain of V that meets unary constraint CV
� SOLUTION�SET � SOLUTION�SET � �� V�X ��

� FOR I � � to n� where n � number of variables
��Create all partial solutions of length I
��At this point� SOLUTION�SET contains all solutions of
�� length I��

� SOLUTION�SET �� SYNTHESIZE�SOLUTION�SET�I�

� PROCEDURE SYNTHESIZE�SOLUTION�SET�I�
� SOLUTION�SET�TEMP �� nil
�� FOR each SOLUTION�A in SOLUTION�SET
�� FOR each SOLUTION�B in SOLUTION�SET
�� IF SOLUTION�A and SOLUTION�B have I distinct variables
b AND all like�variable assignments are the same THEN
�
 POSSIBLE�SOLUTION �� UNION�SOLUTION�A�SOLUTION�B�
�� IF POSSIBLE�SOLUTION meets all I�ARY CONSTRAINTS
b AND NOT�MEMBER�POSSIBLE�SOLUTION�SOLUTION�SET�TEMP�
c AND SYNTHESIZED��POSSIBLE�SOLUTION�SOLUTION�SET�I� THEN
�� SOLUTION�SET�TEMP �� SOLUTION�SET�TEMP � POSSIBLE�SOLUTION
�� RETURN SOLUTION�SET�TEMP

�� PROCEDURE SYNTHESIZED��POSSIBLE�SOLUTION�SOLUTION�SET�I�
�� Make sure all sub�solutions of length I�� of the new solution
�� are in SOLUTION�SET �which contains all valid solutions of order I����

�� OK �� true
�� FOR all COMBOs of I�� � V�X � pairs in POSSIBLE�SOLUTION
�� IF NOT�MEMBER�COMBO�SOLUTION�SET� THEN
�� OK �� false
�� RETURN OK

��Note that this is simpli�ed� Freuder�s algorithm will be described below�

�� HUNTERS AND GATHERERS IN AI ��

Before giving an example� a walk�through of the algorithm would be instructive� At the

most abstract level� SS�� creates partial solution sets of order k�� by combining solution sets

of order k��� The initial solution set of order � is created in lines ���� a solution is added

for each value of each variable� From there� solution sets of higher order are created using

SYNTHESIZE 	lines ����
�

In SYNTHESIZE� solution sets of order I are created� The input SOLUTION�SET con�

tains all solutions of order I��� POSSIBLE�SOLUTIONs are created by combining com�

patible solutions of order I�� that di�er only in one variable��� For example� a solution

of variables 	A�B�C
 combined with a solution of variables 	A�B�D
 would combine to cre�

ate a solution of variables 	A�B�C�D
��	 �Compatible� combinations are those which have

like�variables assigned similarly� For example� 	� A� � ��� B� � �
 can combine with

	� A� � ��� C� � �
 to create a POSSIBLE�SOLUTION 	� A� � ��� B� � ��� C� � �
�

but 	� A� � ��� B� � �
 cannot combine with 	� A�
 ��� C� � �
 because the assignments

� A� � � and � A�
 � are not compatible 	line ��b checks for compatibility
�

Each POSSIBLE�SOLUTION must meet three tests 	lines �
a�c
� First� all I�ary con�

straints must be met� For instance� for an order � POSSIBLE�SOLUTION involving vari�

ables A and B� the constraints CAB and CBA must be met� Order � possible solutions

must meet ��ary constraints� and so on� In computational semantics� there are only binary

constraints� so order � solutions and above will always pass this test� Second� line �
b sim�

ply ensures that duplicate solutions are not added� For instance� when adding variable C

onto a partial solution 	A�B
� solutions for 	A�B�C
 are obtained� Later� when adding on

variable B to 	A�C
� the same solutions would be obtained� Line �
b prevents this� Line

�
c ensures that solutions of length I meet the constraints already calculated for solutions

of length I��� This is the synthesizing step� A simple example will illustrate� In order to

allow a POSSIBLE�SOLUTION � 	� A� � ��� B� � ��� C� � �
� a solution of order �� the

following order�� solutions must exist�

f	� A� � ��� B� � �
� 	� A� � ��� C� � �
� 	� B� � ��� C� � �
g

��A solution of order k is an assignment of values to k variables� a solution set of order k is the set of all
solutions of order k�

��Two solutions	 each of order I��	 which di�er in only one variable	 will combine to give a solution of
order I�

�	Line ��a guarantees SOLUTION�A and SOLUTION�B di�er by one variable� Line �� performs the
combination�

�� HUNTERS AND GATHERERS IN AI ��

In other words� an order�N solution cannot have any sub�solutions of order N�� that were

not already identi�ed� Because of the way order I�� solutions are combined� most of these

sub�solutions will be present� For instance� in the example above a solution of variables 	A�B

was combined with a solution of variables 	B�C
 to create a solution of variables 	A�B�C
�

Thus� we do not need to check the 	A�B
 or 	B�C
 sub�solutions� However� the sub�solution

involving variables 	A�C
 was synthesized and must be checked� If� for this example� an

order I�� solution 	� A� � ��� C� � �
 does not exist� then this combination of values is

unacceptable� The SYNTHESIZED� procedure in lines ����� performs this check� Again�

this step ensures that any new order�I solution only contains order�	I��
 sub�solutions that

had already been deemed legitimate�

In order to start moving this discussion towards natural language semantics� the solution

synthesis algorithms will be exempli�ed using a simple computational semantic problem�

Consider the following sentence�

	�
 IBM acquired Jacob�Smith for ten�million�dollars�

For simplicity� assume that Jacob�Smith�� and ten�million�dollars are phrasal entries in

the lexicon� Also assume that we have an ontology��� or model of the world� that maps each

of these words into the concepts�� as shown in Figure �� IBM 	referred to below as I
 maps

into a single concept� ORG� acquired 	referred to as A
 maps into two possible concepts�

The �rst� TAKE�OVER� constrains IBM to be an ORG and Jacob	Smith to be an ORG�

Refer to Figure � for the rest of the possible assignments and constraints�

The SS�� algorithm would proceed as follows� First� it would initialize SOLUTION�SET

to the set of all order�� nodes in lines ���� For convenience� we will present SOLUTION�SET

as a group of subsets arranged according to the variables involved���

��An imaginary company name	 as well as a person�s name�

��See Section � for a discussion of ontologies and their place in computational semantics

��Concepts will be in CAPS� We use very simple concepts symbolized with English words	 and simply list
the constraints that would be speci�ed in an ontology� We also assume an inheritance hierarchy
HUMAN IS�
A ANIMATE�	 and a mechanism for identifying metonymy� for instance
ORG IS�A ANIMATE� because an
ORG has MEMBERS that are HUMAN	 and
ORG IS�A INANIMATE�	 because an ORG has a BUILDING
that is an INANIMATE� Metonymy will be discussed in more depth below�

��Here	 for clarity	 we present each solution as a set of variable�value pairs	 i�e NI � f
� I�ORG ��g�
After this	 we generally will present only the values	 with the assignment to variables obvious in context	 i�e
NI � f
ORG�g�

�� HUNTERS AND GATHERERS IN AI ��

WORD CONCEPT CONSTRAINTS EXAMPLE

IBM �I� ORG

acquired �A� TAKE�OVER �T�O� �I�ORG TAKE�OVER J�ORG�

OBTAIN �OBT� �I�ANIMATE OBTAIN J�INANIMATE�

Jacob�Smith �J� HUMAN �HUM�

ORG

for �F� COST �A�EVENT FOR T�MONEY� I bought it for ���

BENEFIC �BEN� �A�EVENT FOR T�ANIMAL� I bought it for Sam

PURPOSE �PUR� �T�EVENT FOR T�EVENT� I bought it for

mowing the lawn	

DURATION �DUR� �T�EVENT FOR T�TIME� I hid for �� hours	

ten�million� MONEY �MON�

dollars �T�

Figure �� Concept assignments for SS example�

NI � f�� I�ORG��g
NA � f�� A� T � O ��� �� A�OBT ��g
NJ � f�� J�HUM ��� �� J�ORG ��g
NF � f�� F�COST ��� �� F�BEN ��� �� F� PUR ��� �� F�DUR ��g
NT � f�� T�MON ��g

For example� NA has two possible solutions� the �rst of which assigns the concept TAKE�

OVER 	T�O
 to A 	aquired
�

If necessary� unary constraints would be applied in line �� In computational semantics�

unary constraints correspond to selecting the appropriate word�senses from the lexicon based

on the word used and the surrounding syntax� In this case� those constraints were applied

before beginning the algorithm�

Before line � is executed� then�

SOLUTION�SET � APPEND	NI � NA� NJ � NF � NT

Next� all higher order nodes� including the �nal solution� are created in steps � and ��

First� order�� nodes are constructed� When SYNTHESIZE is called with I��� SOLUTION�

�� HUNTERS AND GATHERERS IN AI ��

SET contains all the solutions of order��� In SYNTHESIZE� these order�� solutions are

combined into order�� solutions� For instance� if� in lines �� and ���

SOLUTION�A � �� I�ORG ��
SOLUTION�B � �� A� T �O ��

Then� together� A and B have two distinct variables 	I and A
� checked in line ��� there

are no like�variables� so line �� is true� so in line ���

POSSIBLE�SOLUTION � 	� I�ORG ��� A� T �O �

Line �
a is important only when I��� as in this case� because computational semantic

problems only have binary constraints� Two binary constraints must be examined� CIA and

CAI � As shown in Figure �� I does not constraint A for any value of A� but � A�T � O �

constrains I to be of type ORG� Since � I�ORG � obviously meets this constraint� line �
a

is true� No other solutions have been added for order�� solutions� so line �
b is also true�

Finally� since the only two sub�solutions of POSSIBLE�SOLUTION of order �� 	� I�ORG �

and 	� A�T �O �
� came directly from SOLUTION�SET� SYNTHESIZED� will obviously

return true� In fact� SYNTHESIZED� will always be true for POSSIBLE�SOLUTIONS of

order��� It only becomes relevant for order�� and higher nodes� when previously non�existent

lower order sub�solutions are possible�

An example of when the binary constraint in line �
a rejects a POSSIBLE�SOLUTION

occurs for

SOLUTION�A � �� A� T �O ��
SOLUTION�B � �� J�HUM ��

which yields

POSSIBLE�SOLUTION � 	� A�T �O ��� J�HUM �

The binary constraint� CAJ � speci�es that for the assignment � A�T � O �� J must

be an ORG� However� the assignment � J�HUM � does not meet this constraint� so this

POSSIBLE�SOLUTION is rejected� Note that using literal constraints to reject solutions

leads to problems in semantic analysis� HG overcomes these problems using branch�and�

bound techniques as the primary vehicle for search pruning instead of constraint satisfaction�

�� HUNTERS AND GATHERERS IN AI ��

See below for details� both on the problems created by using literal constraints� and how HG

overcomes it�

A complete listing of order�� solutions for this example is shown below� with solutions

rejected by binary constraints identi�ed�

NIA � f�ORG�T�O���ORG�OBT�g
NIJ � f�ORG�HUM���ORG�ORG�g
NIF � f�ORG�COST���ORG�BEN���ORG�PUR���ORG�DUR�g
NIT � f�ORG�MON�g
NAJ � f�T�O�ORG���OBT�ORG�g �� eliminate �T�O�HUM���OBT�HUM�
NAF � f�T�O�COST���T�O�BEN���T�O�PUR���T�O�DUR��

�OBT�COST���OBT�BEN���OBT�PUR���OBT�DUR�g
NAT � f�T�O�MON���OBT�MON�g
NJF � f�HUM�COST���HUM�BEN���HUM�PUR���HUM�DUR��

�ORG�COST���ORG�BEN���ORG�PUR���ORG�DUR�g
NJT � f�HUM�MON���ORG�MON�g
NFT � f�COST�MON�g �� eliminate �BEN�MON���PUR�MON���DUR�MON�

Order�� nodes are then synthesized by combining order�� solutions� Note that from this

point on� no reference needs to be made to constraints� because all the binary constraints

information is implicit in the order�� solution set� An example of synthesisizing an order��

solution follows�

SOLUTION�A �from NIA� � �ORG�T�O�
SOLUTION�B �from NAJ � � �T�O�ORG�

Together� A and B have three distinct variables 	I� A and J
� and the only like�variable�

A� has the same value assignment in both� so�

POSSIBLE�SOLUTION � 	� I�ORG ��� A� T �O ��� J�ORG �

Because there are no n�ary constraints for n � �� line �
a will be true from here on�

It will also be assumed� starting now� that line �
b will prevent duplicate solutions from

being added� Thus� the SYNTHESIZED� procedure called in line �
c is the only part left

needing comment� In this case� the following sub�solutions of order�� taken from POSSIBLE�

SOLUTION are�

�� I�ORG ��� A� T � O ��
�� A� T �O ��� J�ORG ��
�� I�ORG ��� J�ORG ��

�� HUNTERS AND GATHERERS IN AI ��

The �rst two come directly from SOLUTION�A and B� The third� however� was a result

of the synthesis� therefore� it must be checked to see if it is a valid order�� solution� A quick

look at the list of order�� solutions shows that this solution is present in NIJ � Therefore�

POSSIBLE�SOLUTION is a valid synthesis�

An example of a POSSIBLE�SOLUTION that does not meet the SYNTHESIZED� cri�

terion occurs for�

SOLUTION�A �from NJF � � �HUM�BEN�
SOLUTION�B �from NJT � � �HUM�MON�

This gives�

POSSIBLE�SOLUTION � 	� J�HUM ��� F�BEN ��� T�MON �

Three sub�solutions of order�� can be extracted from POSSIBLE�SOLUTION�

�� J�HUM ��� F�BEN ��
�� J�HUM ��� T�MON ��
�� F�BEN ��� T�MON ��

Again� the �rst two come directly from SOLUTION�A and B� The third� however� was

synthesized� This time� though� the synthesized sub�solution cannot be found in the list of

order�� solutions� thus it cannot be allowed�

A complete list of order�� solutions follows�

NIAJ � f�ORG�T�O�ORG���ORG�OBT�ORG�g
NIAF � f�ORG�T�O�COST���ORG�T�O�BEN���ORG�T�O�PUR���ORG�T�O�DUR��

�ORG�OBT�COST���ORG�OBT�BEN���ORG�OBT�PUR���ORG�OBT�DUR�g
NIAT � f�ORG�T�O�MON���ORG�OBT�MON�g
NIJF � f�ORG�HUM�COST���ORG�HUM�BEN���ORG�HUM�PUR���ORG�HUM�DUR��

�ORG�ORG�COST���ORG�ORG�BEN���ORG�ORG�PUR���ORG�ORG�DUR�g
NIJT � f�ORG�HUM�MON���ORG�ORG�MON�g
NIFT � f�ORG�COST�MON�g
NAJF � f�T�O�ORG�COST���T�O�ORG�BEN���T�O�ORG�PUR���T�O�ORG�DUR��

�OBT�ORG�COST���OBT�ORG�BEN���OBT�ORG�PUR���OBT�ORG�DUR�g
NAJT � f�T�O�ORG�MON���OBT�ORG�MON�g
NAFT � f�T�O�COST�MON���OBT�COST�MON�g
NJFT � f�HUM�COST�MON���ORG�COST�MON�g

�� HUNTERS AND GATHERERS IN AI ��

It is interesting to note that the solution sets NIAF � NIJF and NAJF all carry along

values for F that� with a little bit of thought� could be eliminated� In NIJF � NIJT and NJFT �

inconsistent values for J are also kept� Freuder�s algorithm� as well as Tsang�s and our own�

eliminate this�

Order�
 solutions are formed similarly�

NIAJF � f�ORG�T�O�ORG�COST���ORG�T�O�ORG�BEN���ORG�T�O�ORG�PUR��
�ORG�T�O�ORG�DUR���ORG�OBT�ORG�COST���ORG�OBT�ORG�BEN��
�ORG�OBT�ORG�PUR���ORG�OBT�ORG�DUR�g

NIAJT � f�ORG�T�O�ORG�MON���ORG�OBT�ORG�MON�g
NIAFT � f�ORG�T�O�COST�MON���ORG�OBT�COST�MON�g
NIJFT � f�ORG�HUM�COST�MON���ORG�ORG�COST�MON�g
NAJFT � f�T�O�ORG�COST�MON���OBT�ORG�COST�MON�g

Finally� the order�� solutions are synthesized�

NIAJFT � f	ORG�T�O�ORG�COST�MON
�	ORG�OBT�ORG�COST�MON
g

At each stage� higher order solutions are created by combining lower order solutions� while

ensuring no unacceptable lower�order sub�solutions are introduced� The order�n solution set

contains all of the valid answers for the problem�

Although various improvements to this algorithm will be o�ered� all solution synthesis

algorithms will have the same worst�case time complexity of O�an�� Assume a CSP for which

all combinations of values for every variable meet all constraints� Furthermore� assume

each variable has a values in its domain� For such a CSP� there exist an solutions� It is

easy to see� therefore� that line �� must be executed an times when the SYNTHESIZE

procedure is called the last� nth time� It is the nature of CSPs that worst�case 	algorithmic

time behavior is always exponential because the number of possible solutions is always�

theoretically� exponential� However� �worst�case� can be rede�ned non�algorithmically� and

with respect to a certain class of problems� to mean the �typical� worst class complexity

as measured experimentally� Such measurements will be described below� It should also be

noted the complexity of HG�s solution synthesis mechanism� combined with its branch�and�

bound pruning� can be measured analytically 	see section �
� This gives us the important

ability to determine a given problem�s actual complexity before processing�

�� HUNTERS AND GATHERERS IN AI ��

������ Freuder�s Algorithm

Freuder�s algorithm 	Freuder� ����
 eliminates some of the waste present in SS��� Instead of

only propagating constraints upward from lower�order nodes to higher order nodes� Freuder

also propagates constraints downward� from higher order nodes to lower order nodes�

An example would clarify best� Suppose the following order�� solutions were found for a

simple CSP�

NA � f�������g
NB � f�
�����g
NC � f�������g
ND � f���g

Assume binary constraints were then used to acquire the following order�� solutions�

NAB � f���
�����
�g
NAC � f�����������������g
NAD � f�����������g
NBC � f�
���������������g
NBD � f�
���������g
NCD � f�����������g

At this point� it can be deduced that an assignment � B�
 � will never be compatible

with any assignment for A� SS��� however� blindly constructs the order�� solutions�

NABC � f���
�������
�������
���g
NABD � f���
�������
���g
NBCD � f�
���������������������g

Clearly� 	
����
 and 	
����
 in NBCD are impossible� SS�� eventually gets the correct

answer because it cannot construct any order�
 solutions with the assignment � B�
 �� but

it wastes much e�ort in doing it�

Freuder suggests allowing multiple downward propagation of constraints� For instance�

once it can be determined that a solution set of order I contains no instances of a particular

sub�solution of order I � �� that sub�solution can be eliminated from the order I � � solutions�

Above� since the sub�solution 	� B�
 �
 does not occur in NAB� 	� B�
 �
 can be removed

from the order�� solutions�

�� HUNTERS AND GATHERERS IN AI ��

NB � f	�
g �� removed 	

Whenever a solution is removed� all higher order solutions involving that solution must

also be removed 	upward propagation
� In addition� whenever a solution is removed� down�

ward propagation can occur again� possibly resulting in the removal of more solutions� In

the example above� solutions of order�� involving � B�
 � must be removed� giving�

NBC � f�
���g �� removed ����� and �����
NBD � f�
���g �� removed �����

Before creating new order�� solutions� downward propagation can be repeated� since the

assignment � C� � � no longer is compatible with any assignment of B� Therefore� removing

	�
 from NC yields�

NC � f	�
g

which can be re�propagated upward to form the level�� solutions�

NAC � f�����������g �� removed �����
NCD � f�����g �� removed �����

The resulting complete list of order�� solutions is�

NAB � f���
�����
�g
NAC � f�����������g
NAD � f�����������g
NBC � f�
���g
NBD � f�
���g
NCD � f�����g

Creating order�� solutions from this yields the smaller set�

NABC � f���
�������
���g
NABD � f���
�������
���g
NBCD � f�
�����g

from which the order�
 solutions can be calculated easily�

NABCD � f	�������
�	�������
g

�� HUNTERS AND GATHERERS IN AI �

SS�� needs to be modi�ed to include this downward propagation� One major change

is that SOLUTION�SETs for all the previous levels need to be stored� Also� after a so�

lution set is formed� it needs to be analyzed to see if it excludes any sub�solutions of the

next lower order� If it does� these sub�solutions will need to be removed from the lower

order SOLUTION�SET� Whenever a solution is removed from a SOLUTION�SET� higher

order solutions utilizing it must also be removed� and the SOLUTION�SET it was removed

from needs to be re�checked for downward propagation possibilities� We refer the reader to

	Freuder� ����
 for implementation details�

To conclude the description of SS�FREUDER� the computational semantic example pre�

sented above will be re�worked� The order�� solutions would be calculated the same as

before� and are repeated here for convenience�

NI � f�� I�ORG��g
NA � f�� A� T � O ��� �� A�OBT ��g
NJ � f�� J�HUM ��� �� J�ORG ��g
NF � f�� F�COST ��� �� F�BEN ��� �� F� PUR ��� �� F�DUR ��g
NT � f�� T�MON ��g

The order�� nodes are then calculated�

NIA � f�ORG�T�O���ORG�OBT�g
NIJ � f�ORG�HUM���ORG�ORG�g
NIF � f�ORG�COST���ORG�BEN���ORG�PUR���ORG�DUR�g
NIT � f�ORG�MON�g
NAJ � f�T�O�ORG���OBT�ORG�g NAF � f�T�O�COST���T�O�BEN���T�O�PUR���T�O�DUR��

�OBT�COST���OBT�BEN���OBT�PUR���OBT�DUR�g
NAT � f�T�O�MON���OBT�MON�g
NJF � f�HUM�COST���HUM�BEN���HUM�PUR���HUM�DUR��

�ORG�COST���ORG�BEN���ORG�PUR���ORG�DUR�g
NJT � f�HUM�MON���ORG�MON�g
NFT � f�COST�MON�g

In the DOWNWARD�PROPAGATE step� it will be determined that all assignments

� F�BEN ��� F�PUR � and � F�DUR � can never be combined with any values for T�

and that the assignment � J�HUM � is incompatible with any value of A� These facts will

be propagated downward to the order�� constraints�

NI � f�� I�ORG��g

�� HUNTERS AND GATHERERS IN AI ��

NA � f�� A� T � O ��� �� A�OBT ��g
NJ � f�� J�ORG ��g �� removed �� J�HUM ��
NF � f�� F�COST ��g �� removed �� F�BEN ��� �� F� PUR ��� �� F�DUR ��
NT � f�� T�MON ��g

The removals can then be upward�propagated to order�� nodes again�

NIA � f�ORG�T�O���ORG�OBT�g
NIJ � f�ORG�ORG�g �� removed �ORG�HUM�
NIF � f�ORG�COST�g �� removed �ORG�BEN���ORG�PUR���ORG�DUR�
NIT � f�ORG�MON�g
NAJ � f�T�O�ORG���OBT�ORG�g
NAF � f�T�O�COST���OBT�COST�g

�� removed�T�O�BEN���T�O�PUR���T�O�DUR���OBT�BEN���OBT�PUR���OBT�DUR�
NAT � f�T�O�MON���OBT�MON�g
NJF � f�ORG�COST�g �� removed �HUM�COST���HUM�BEN���HUM�PUR���HUM�DUR��

�ORG�BEN���ORG�PUR���ORG�DUR�g
NJT � f�ORG�MON�g �� removed �HUM�MON�
NFT � f�COST�MON�g

No further downward propagation is possible� so the order�� solutions are synthesized�

NIAJ � f�ORG�T�O�ORG���ORG�OBT�ORG�g
NIAF � f�ORG�T�O�COST���ORG�OBT�COST�g
NIAT � f�ORG�T�O�MON���ORG�OBT�MON�g
NIJF � f�ORG�ORG�COST�g
NIJT � f�ORG�ORG�MON�g
NIFT � f�ORG�COST�MON�g
NAJF � f�T�O�ORG�COST���OBT�ORG�COSTg
NAJT � f�T�O�ORG�MON���OBT�ORG�MON�g
NAFT � f�T�O�COST�MON���OBT�COST�MON�g
NJFT � f�ORG�COST�MON�g

From here� order�
 and order�� solutions are simple�

NIAJF � f�ORG�T�O�ORG�COST���ORG�OBT�ORG�COST�g
NIAJT � f�ORG�T�O�ORG�MON���ORG�OBT�ORG�MON�g
NIAFT � f�ORG�T�O�COST�MON���ORG�OBT�COST�MON�g
NIJFT � f�ORG�ORG�COST�MON�g
NAJFT � f�T�O�ORG�COST�MON���OBT�ORG�COST�MON�g

NIAJFT � f	ORG�T�O�ORG�COST�MON
�	ORG�OBT�ORG�COST�MON
g

�� HUNTERS AND GATHERERS IN AI ��

""IBM" "acquired" "Jacob-Smith" "for" "ten-million-dollars"

A FI J T

IA FTJFAJ

JFTAJFIAJ

IAJF AJFT

IAJFT

first order solution sets

second-order solution sets

third-order solution sets

fourth-order solution sets

fifth-order solution sets

Figure �� SS�TSANG Solution Set Construction�

������ Tsang�s Algorithm

Tsang�s algorithms� de�ned in 	Tsang and Foster� ����
� also known as the Essex algorithms�

improve upon SS�FREUDER by limiting the number of second�order solutions 	and thus

limiting the number of higher order solutions as well
� SS�TSANG sets up an arbitrarily

ordered list of the variables� and then constructs second�order solutions only for variable pairs

that are adjacent in that list� Third�order solutions are then synthesized from �adjacent�

second�order solution sets� etc�� Figure � displays the process for the computational semantic

example�

SS�TSANG is exactly the same as SS��� except that the number of order�� solutions is

restricted��� This restriction could be easily added by constructing a list of the variables�

then only allowing order�� solutions that involve adjacent variables in the list� Synthesizing

higher�order solutions will proceed exactly as in SS����� Because they are so similar� with

the changes fairly obvious� the algorithm will not be presented here�

��SS�TSANG can also be built upon SS�FREUDER if
limited� propagation is desired�

��Because synthesizing order�� solutions occurs only between order�� solutions with � distinct variables

SS�� line ��a�	 this will only occur between �adjacent

as shown in Figure �� order�� solutions	 as all other
combinations would lead to � distinct variables� Likewise	 higher order solutions only are synthesized from
adjacent solutions of the next lower order�

�� HUNTERS AND GATHERERS IN AI ��

The computational semantic example solutions would be synthesized in the following

manner� Order�� nodes would be constructed �rst� exactly the same as before�

NI � f�� I�ORG��g
NA � f�� A� T � O ��� �� A�OBT ��g
NJ � f�� J�HUM ��� �� J�ORG ��g
NF � f�� F�COST ��� �� F�BEN ��� �� F� PUR ��� �� F�DUR ��g
NT � f�� T�MON ��g

Assuming a list of the variables as in Figure ���� the order�� solution set is constructed

the same as for SS��� except only solutions which utilize adjacent variables are allowed�

NIA � f�ORG�T�O���ORG�OBT�g
NAJ � f�T�O�ORG���OBT�ORG�g �� eliminate �T�O�HUM���OBT�HUM�
NJF � f�HUM�COST���HUM�BEN���HUM�PUR���HUM�DUR��

�ORG�COST���ORG�BEN���ORG�PUR���ORG�DUR�g
NFT � f�COST�MON�g �� eliminate �BEN�MON���PUR�MON���DUR�MON�

Level � solutions are then synthesized from these�

NIAJ � f�ORG�T�O�ORG���ORG�OBT�ORG�g
NAJF � f�T�O�ORG�COST���T�O�ORG�BEN���T�O�ORG�PUR���T�O�ORG�DUR��

�OBT�ORG�COST���OBT�ORG�BEN���OBT�ORG�PUR���OBT�ORG�DUR�g
NJFT � f�HUM�COST�MON���ORG�COST�MON�g

Level
 solutions follow�

NIAJF � f�ORG�T�O�ORG�COST���ORG�T�O�ORG�BEN���ORG�T�O�ORG�PUR��
�ORG�T�O�ORG�DUR���ORG�OBT�ORG�COST���ORG�OBT�ORG�BEN��
�ORG�OBT�ORG�PUR���ORG�OBT�ORG�DUR�g

NAJFT � f�T�O�ORG�COST�MON���OBT�ORG�COST�MON�g

Finally� the correct solution set is generated�

NIAJFT � f	ORG�T�O�ORG�COST�MON
�	ORG�OBT�ORG�COST�MON
g

Propagation� as in SS�FREUDER� can be added� For example� once the order�� solutions

are calculated above� it can be deduced that the assignment � J�HUM � is incompatible

��This ordering is arbitrary� The e�ciency of SS�TSANG is greatly a�ected by the ordering chosen� This
fact is recognized and expanded upon in our work�

�� HUNTERS AND GATHERERS IN AI ��

with all assignments to variable A� and the assignments � F�BEN ��� F�PUR � and �

F�DUR � are incompatible with variable T� This information can be propagated downward

to order�� solutions to give�

NI � f�� I�ORG��g
NA � f�� A� T � O ��� �� A�OBT ��g
NJ � f�� J�ORG ��g
NF � f�� F�COST ��g
NT � f�� T�MON ��g

This can then be upward propagated to order�� solutions to give�

NIA � f�ORG�T�O���ORG�OBT�g
NAJ � f�T�O�ORG���OBT�ORG�g NJF � f�ORG�COST�g
NFT � f�COST�MON�g

Higher order solutions follow�

NIAJ � f�ORG�T�O�ORG���ORG�OBT�ORG�g
NAJF � f�T�O�ORG�COST���OBT�ORG�COST�g
NJFT � f�ORG�COST�MON�g

NIAJF � f�ORG�T�O�ORG�COST���ORG�OBT�ORG�COST�g
NAJFT � f�T�O�ORG�COST�MON���OBT�ORG�COST�MON�g

NIAJFT � f	ORG�T�O�ORG�COST�MON
�	ORG�OBT�ORG�COST�MON
g

The major bene�t of SS�TSANG is that the number of solution sets at each level is

minimized� Also important is the fact that this algorithm is ideal for parallel implementations

	see 	Tsang and Foster� ����

� There are two disadvantages�

�� Full downward propagation is impossible� Downward propagation in SS�FREUDER

relies on having information about allowable combinations of sub�solutions� However�

SS�TSANG only determines allowable combinations of adjacent nodes� therefore� prop�

agation can only proceed from these nodes� A limited amount of propagation between

adjacent nodes is possible� This drawback is related to the next problem�

�� HUNTERS AND GATHERERS IN AI ��

�� Ambiguity is carried forward needlessly if two constrained variables are far apart in list�

Consider what would happen in the computational semantic example if the ordering

of variables was changed to 	T I A J F
� The following order�� solutions would be

obtained�

NTI � f�MON�ORG�g NIA � f�ORG�T�O���ORG�OBT�g
NAJ � f�T�O�ORG���OBT�ORG�g �� eliminate �T�O�HUM���OBT�HUM�
NJF � f�HUM�COST���HUM�BEN���HUM�PUR���HUM�DUR��

�ORG�COST���ORG�BEN���ORG�PUR���ORG�DUR�g

Because the variable T is no longer adjacent to F� it will not be able to disambiguate it�

Propagation will be of no help either� since it is dependent on discovering that certain

values of F are not compatible with T� Thus� the ambiguity� under this ordering� will

be carried all the way up until the �nal solution� the order�� solutions� are synthesized�

Tsang 	����
 states that the e�ciency of his algorithm can be improved by giving the

nodes a certain order� Preferred orderings� he suggests� can be obtained by applying

some of the general variable ordering techniques discussed below in section ��
� Specif�

ically� he suggests using a Minimal Bandwidth Ordering 	MBO
� This idea is adopted

and expanded upon in our work�

���� Branch�and�Bound

Branch�and�bound 	BB
 techniques can be used to reduce the amount of search needed to

�nd the optimal solution� BB is based on a common�sense principle� do not keep trying

a path that you already know is worse than the best answer��� One of the �rst articles

on branch�and�bound was 	Lawler and Wood� ����
� A more readable introduction is in

	Winston� ���

� A simple algorithm describes the method 	mostly from 	Winston� ���

�

�� Form a queue of partial paths� Let the initial queue consist of the zero�length� zero�step path
from the root node to nowhere� Let the optimal�path be an in	nite�length path�

�� Until the queue is empty or the 	rst path in the queue has length longer than the optimal�
path�

�a� Remove the 	rst path from the queue�

��AKA The �hit�your�head�against�the�wall phenomena

�� HUNTERS AND GATHERERS IN AI
�

START END

2

2 2

2

5 4 3

7 5

1

2

3

4

5

6

Figure �� Branch�and�Bound Example

�b� Form new paths by extending the removed path one step� if possible�

�c� If any of the new paths reach the goal� and the shortest of these is shorter than the
optimal path� set the optimal path to it� Remove all paths in the queue with length
greater than this new optimal�path�

�d� add all the new paths �except any that reach the goal� with length less than the optimal�
path length to the queue� sorting the queue with the smallest length paths in the front�

� return optimal path

The example given in the introduction will be repeated and explained here� Figure
 is

repeated as Figure �� Paths would be created for each of the initial arcs from the start�

The path with the arc labeled with the circled � would be expanded �rst� since it has the

shortest total length� Arc � is added to it� giving a total length of
� Because this is still

shorter than any other path� it is extended again by adding arc � to it� yielding a total path

length of �� At this point� the path with arc
� with a length of �� is shorter than the �����

path� It is expanded to give a path of length �� The �rst path is again the shortest� so it is

extended to give path �������� which reaches the goal in a length of �� Optimal�path would�

at this point� be set to this path� The path including arc
 would be discarded now� since it

already has length greater than the optimal�path� The path with arc �� however� only has

length �� It is extended� yielding a path of length ��� Because there are no more paths with

lengths less than �� the process is terminated and optimal�path is returned�

This� of course� is a simpli�ed example� Most search problems do not have all possible

paths ending up at the goal� Most nodes have multiple branches� Nevertheless� the BB

procedure can be used to �nd the optimal solution� despite these complications� Various

other techniques� with constraint satisfaction being the most relevant here� can be used to

�� HUNTERS AND GATHERERS IN AI
�

further optimize� Heuristics which estimate the distance from a node to the goal state can

also be used��� if one is willing to risk non�optimal solutions�

BB is useful for searches where the optimal solution is needed� If any valid solution is

desired� a depth��rst search is indicated� If a solution with the smallest number of arcs is

desired� a breadth��rst search would be more advantageous� Below� we will demonstrate how

BB techniques can be used in combination with solution synthesis and constraint satisfaction

to produce an extremely e�cient computational semantic problem solver�

���� Other Strategies for CSPs

CSP techniques can be used in conjunction with many other AI search strategies� The

most basic of these strategies is called �lookahead�� In fact� lookahead is not an additional

strategy� but simply a full� dynamic application of consistency checking� At each decision

point in a search� a value is assigned to a variable� This implicitly removes the other possible

values of that variable� thus� other variables that depend on those values can be a�ected� By

applying the consistency algorithm� these e�ects can be automatically propagated at each

decision point�

There are various strategies used to handle backtracking� The most advantageous of these�

used in conjunction with constraint analysis� is called �dependency�directed backtracking��

When the need for backtracking arises� constraint analyses can help indicate what the source

of the current con�ict is� The search can then be backtracked directly to the source of the

problem� This can potentially eliminate large areas of search that will not ��x� the current

bottleneck� Because backtracking is eliminated in solution synthesis methods� the various

backtracking strategies are not relevant to this research�

Heuristics can be used to great advantage in search� At any branching point� each choice

can be analyzed using heuristic knowledge to estimate how much closer to a solution the

choice brings the search� Choices with higher heuristic value can be followed �rst� a tech�

nique generally referred to as �best��rst� search� Optimal solutions cannot be guaranteed

with heuristic search� however� because local optima can obscure longer�term solutions� For

��For example	 a potential path with a high estimated distance to goal can be excluded even though its
total current distance is lower than the optimal path�

�� HUNTERS AND GATHERERS IN AI
�

instance� turning south seems like a bad choice when your goal is north� unless there is a

freeway one block to the south that can speedily take you on your way� Some types of

problems require heuristic search to make them tractable� Prior to the current research� the

Mikrokosmos project relied on heuristic search in its analysis of natural language semantics�

It is the thesis of this report� however� that CSP techniques in combination with branch�

and�bound and solution synthesis can deliver guaranteed optimal solutions in near�linear

time for computational semantic problems� Therefore� heuristic search is not necessary� On

the other hand� even with near�linear time speed� large problems� especially those involving

discourse� cannot be considered �real�time�� Best��rst techniques can be added to those

described below to improve this situation�

A di�erent kind of heuristic can be used to optimally order the instantiations of variables

and their values� These heuristics can be labeled more accurately as �strategies�� because

they involve general principles rather than world knowledge� These types of strategies are

closely connected to constraint analysis� a good discussion of them can be found in 	Tsang�

����
� The �rst is called �minimal width ordering� 	MWO
� In general terms� this strategy

seeks to instantiate more highly constrained variables �rst� in hopes that backtracking will

be reduced� For example� if variable A constrains variable B to value X and variable C to

Y� it would be advantageous to instantiate variable A �rst� This would reduce the number

of choices in B and C� which in turn might restrict choices elsewhere� If variable C was

instantiated �rst� values for it might be tried that con�ict with variable A�

Alternatively� a �minimal bandwidth ordering� 	MBO
 can be used� This ordering seeks

to place constrained variables close together so that when backtracking is necessary� only

a small distance will have to be backtracked� minimizing the amount of work that might

have to be repeated� For example� if variable A constrains B to X� but B is instantiated

�rst� followed by C� D� E and F� then when A is �nally instantiated� the search will need

to backtrack to B and then recalculate values for C� D� E and F as well� If� on the other

hand� A was instantiated directly after B� backtracking would proceed directly to B� with

no intervening variables a�ected�

Of course� a dynamic implementation of arc consistency reduces the importance of these

types of orderings� First of all� before search even begins� con�icting values will be removed

from any variables domain� In addition� during search� when a value for a variable is chosen�

all variables a�ected by the choice can be dynamically processed� with all those e�ects

�� HUNTERS AND GATHERERS IN AI
�

recursively propagated� etc� Thus� a dynamic implementation of arc�consistency inherently

gives the bene�ts of MWO and MBO� This notwithstanding� these techniques can still give

some advantage� If two or more variable instantiations work together to eliminate certain

values of other variables��	 it would be advantageous to process these �partners� early� Since

ordering more constrained variables �rst maximizes this potential� a minimal width ordering

would be helpful�

Solution synthesis� however� alters the picture somewhat� Solution synthesis combines

small sub�solutions together to form larger and larger solutions� Interactions outside of the

subsets being combined are not noticed� Because of this� it would be helpful to group vari�

ables together in such a way as to minimize the amount of interaction across sub�solutions�

By grouping variables 	and later sub�solutions
 together that constrain each other maxi�

mally� ambiguity can be eliminated as early as possible� This type of variable grouping is

an outgrowth of MBO� This project uses MBO concepts to group variables and synthesized

solutions together in order to minimize ambiguity within the sub�solution� This goes well

beyond a simple linear ordering of variables on which an SS�TSANG�like algorithm would

work�

MWO and MBO help determine which order to instantiate variables� There are also

techniques which help decide� given a variable� which values to try �rst� While variable

ordering techniques seek to maximally constrain so that backtracking can be identi�ed early�

value ordering techniques seek to eliminate backtracking by trying the most likely values

�rst� For problems in which all possible solutions are required 	or the most optimal
� these

techniques are not helpful� All values that result in solutions must be attempted 	unless it

can be proved they will result in non�optimal solutions using� for instance� the branch�and�

bound techniques described below
� it does not matter which order they are found�

���� Using Linear Programming for Constraint Satisfaction Problems

Linear programming 	LP
 techniques have been around since the ��
��s when G�B� Dantzig

designed the so�called �simplex method� for solving linear planning problems for the U�S�

Air Force� When such techniques work� they provide extremely fast answers to optimization

�	Which is not detected by arc consistency until those variables are instantiated�

�� HUNTERS AND GATHERERS IN AI

problems� It is tempting to try and apply such methods to computational semantics� Before

discussing why LP cannot provide reliable answers for computational semantics 	and similar

problems
� it will be instructive to give a short� elementary overview of the techniques used�

	Chv�atal� ����
 is an excellent introduction to linear programming�

The central idea used in LP stems from the algebra technique known as �Gaussian elim�

ination�� used for solving systems of equations� Given the following two equations�

�x ��y � ��

x y � �

we can easily solve for the value of x in the second equation and then substitute it back

into the �rst equation� which will then allow us to solve for y� By substituting this value for

y back into one of the original equations� we can then solve for x�

x � �� y

� � 	�� y
 ��y � ��

�
 � �y ��y � ��

��y � �

y � ����

x � �� ����

x � �����

The simplex method for optimizing an equation subject to constraints extends the basic

Gaussian elimination method� A short example follows� We make no attempt to explain the

rationale behind the methodology here� the interested reader may refer to 	Chv�atal� ����
�

Given the following problem�

maximize � �x� �x�
subject� to � x� �x� �

�x� x� � �
x�� x� � �

�� HUNTERS AND GATHERERS IN AI
�

The simplex method starts by creating �slack� variables for each of the inequalities such that

the slack variable must be � �� The variable z is then set to the equation to be maximized�

x� �
� x� � �x� � � 	�

x� � �� �x� � x� � � 	�

z � �x� �x� 	�

The simplex method works by starting out with a feasible solution� and then successively

improving that solution� A feasible �rst solution in this case is x�� x� � �� Substituting this

in for z� x� and x� gives�

x� � �� x� � �� x� �
� x� � �� z � �

The key to the simplex method� then� is to pick one of the variables in equation � to

increase so that z will increase� In this case� increasing either x� or x� will increase z� so we

will pick x�� Since we will keep x� � �� equations � and � can give us an upper bound on

how much we can increase x�� Equation � gives us x� �
� since
� x� � �� and equation �

gives us x� � �� since � � �x� � �� The latter is more constraining� so we will adopt it as

the starting point for the next intermediate solution� Substituting x� � � into equations ��

� and � gives us�

x� � �� x� � �� x� � �� x� � �� z � �

The fact that the value of z increased con�rms that this solution is better than the last

one� We now wish to �nd an even better solution� The �trick� of the simplex method is

to� after each intermediate solution� express the equations for variables with positive values

in terms of those variables with � values� We can express x� in terms of x� and x� 	the

variables with � values
 by solving equation � for x�� We can then express x� and z in terms

of x� and x� by substituting this equation for x� into equations � and ��

x� � ��
x�
�
�
x�
�
� � 	

x� �
� x� � �x� � �

�
� 	��
x�
�
�
x�
�

� �x� � �

�� HUNTERS AND GATHERERS IN AI
�

� �
x�
�
�
�x�
�

� � 	�

z � �x� �x�

� �	� �
x�
�
�
x�
�

 �x�

� �� x� x� 	�

Again� we try to pick one of the variables in �� which always will have values of � in the

current solution� to increase so that the value of z will increase� In this case� increasing x�

decreases z� so we don�t want to try that� Increasing x�� though� will increase z� Again� by

holding x� � �� we can read o� the possible values for x� from equations
 and �� Equation

gives us x� � � and equation � gives x� �
�

�
� The former is more restrictive� so we substitute

it into the equations giving�

x� � �� x� � �� x� � �� x� � �� z �

To start another iteration� we again need to express the non�zero variables in terms of

the zero�valued variables� x� in terms of x� and x� can be obtained from equation
� and

then we can substitute this into equation ��

x� � �� x� � �x� 	�

z � �� x� 	� � x� � �x�

�
� �x� � �x� 	�

At this point� we again try to pick a variable from equation � that� when increased� will

increase the value of z� In this case� however� increasing either x� or x� will decrease the

value of z� This is when we know that we are �nished� The correct solution to the original

problem� then� is�

x� � �� x� � �

The simplex method for optimizing systems of linear equations is extremely powerful�

There are� however� several problems�

�� Theory�internal problems�

�� HUNTERS AND GATHERERS IN AI
�

	a
 Initialization� The process described above assumed a feasible initialization 	x�� x� �

�
� in practice� the initialization values may be di�cult or impossible to �nd�

	b
 Looping� It is possible to create a set of iterations that loop�

	c
 Termination� Because of the looping problem� the simplexmethod may not termi�

nate for some problems� In addition� some problems� although the answer might

be found eventually� may require an exponential number of iterations�

�� Theory�external problems�

	a
 Non�linear� The simplex method requires linear mathematical formulas� Many

interesting real�world problems� including problems in computational semantics�

are not linear�

	b
 Non�decomposable� For complex problems� it is advantageous to break the origi�

nal problem into small subproblems� Typically� only a subset of these subproblems

has will have excessive complexity� An attractive paradigm for solving such prob�

lems would be to have a heuristic problem�solver work on the subproblems that

are too complex for non�heuristic methods� and then integrate those solutions

into the overall problem solution� LP methods do not �t well into this paradigm�

	c
 Non�dynamic� If� after spending �� minutes optimizing a complex series of linear

equations� a single coe�cient on one of the equations was changed� the whole

process would have to be repeated� LP methods are not dynamic� and minimum

perturbation re�planning is not possible�

The theory�internal problems will not be expounded upon further here� Various tech�

niques have been created to minimize� or in some cases� eliminate their e�ects 	Chv�atal�

����
�

The problem of non�linear inputs is severe� Many real�world problems cannot be expressed

by a system of linear equations� Many problems cannot be expressed with mathematical

formulas at all� Semantic selectional constraints 	see section

 �t into this category� Fig�

ure ��� the example semantic analysis problem solved by Hunter�Gatherer in section � is

previewed here in Figure ��

The constraints between adquirir and Dr	Andreu� for this simpli�ed example� can be

represented as Table ��

�� HUNTERS AND GATHERERS IN AI
�

Grupo-Roche Dr-Andrew

Adquirir

a-traves-de
compania

su
en Espana

(org, acq) -> 0.9
(org, learn) -> 0.8

(acq, org) -> 1.0

(learn, org) -> 0.2
(learn, hum) -> 0.2

(acq, hum) -> 0.4

(acq, loc) -> 1.0
(acq, inst) -> 1.0
(learn, loc) -> 1.0
(learn, inst) -> 1.0

(acq, corp) -> 1.0
(acq, soc-ev) -> 0.3
(learn, corp) -> 0.3
(learn, soc-ev) -> 0.3

(instr, corp) -> 0.9
(instr, soc-ev) -> 0.9

(own, corp) -> 1.0
(own, soc-ev) -> 0.3

(corp, loc) -> 1.0
(corp, temp) -> 0.3
(soc-ev, loc) -> 1.0
(soc-ev, temp) -> 1.0

(loc, nat) -> 1.0
(temp, nat) -> 0.3

(corp, nat) -> 1.0
(soc-ev, nat) -> 1.0

(org, hum) -> 1.0
(org, org) -> 1.0 (loc, corp) -> 0.8

(loc, soc-ev) -> 0.8

Figure �� Constraint Dependencies in Sample Sentence

adquirir Dr�Andreu f�
acq human ��

acq org ���
learn human ���
learn org ���

Table �� Semantic constraints

The function� f�� which maps from word sense combinations into an evaluation score is

not linear� In the case of semantic selection restrictions� the scores correspond to a numerical

rating of the ability of the one sense to �ll a semantic role of the other 	see section
 for more

details
� The example in Figure � is very simpli�ed� Typically� the function table contains

two variables� each of which may contain up to � possible values 	word senses
� Furthermore�

semantic constraints do not have to be binary� Tables with three or more variables might

be used in certain cases� LP methods simply cannot handle these types of input functions�

The Hunter�Gatherer control architecture is based� in part� on decomposing the input

problem into simpler subproblems which can be solved separately and then �synthesized�

together to obtain the answer for the whole problem� As discussed in section �� this method�

ology takes advantage of the topology of the input problem� separating �easier� sections of

�� HUNTERS AND GATHERERS IN AI
�

the problem from potentially �harder� ones� One of the great strengths of HG is its abil�

ity to accept solutions to any subproblem from any source� If the particular subproblem

has a complexity that is too high for non�heuristic methods such as HG to solve� it can

be �sub�contracted� to other problem solvers� Furthermore� HG can identify these �hard�

areas ahead of time� enabling a collaborative approach between heuristic and non�heuristic

methods� Unfortunately� this problem solving approach does not even make sense for LP�

It is possible for LP techniques to be used as one of the sub�contractors for a particular

subpart of the problem� but LP cannot divide up a problem for itself� Neither can it decide

ahead of time whether a given problem can be solved in a given amount of time� Assuming

a problem is even of the type that can be solved using LP� these are the greatest drawbacks

of the approach� one cannot determine ahead of time if the problem can be solved� nor can

LP avail itself of other problem solvers to help with di�cult parts of the problem�

The other serious limitation of LP is that it is a static problem solver� The methods solve

a given system of equations� Change any of the inputs and the whole problem needs to be

solved again� Hunter�Gatherer� on the other hand� is a constraint�based control architecture�

Interactions between variables are tracked� and problem decomposition is based on these

interactions� If any inputs are changed� the extent of their impact can determined� Minimal

perturbation re�planning can then be accomplished by re�examining only those parts of the

problem that are a�ected� In fact� future research is aimed at making Hunter�Gatherer

functionally equivalent to a blackboard architecture� HG will be able to dynamically add

values to the domain of a variable 	for semantic analysis this is equivalent to adding new

word senses on the �y in order to� for example� process �gurative language
� add in new

constraint links between two variables 	for instance� if two words are found to be coreferent�

their meanings will be constrained to be equivalent
 and�or change constraint valuations

between two variables�

���� Nonserial Dynamic Programming

In the course of presenting this research at various conferences� it has come to our attention

that previous work in nonserial dynamic programming 	nonserial DP
 has many parallels

with our own that might be fruitfully investigated� An excellent introduction to this �eld

can be found in 	Bertel�e � Brioschi� ����
� Another more recent article relating the work

�� HUNTERS AND GATHERERS IN AI ��

in nonserial DP to partial k�trees is 	Anborg � Proskurowski� ����
�

Nonserial DP is very similar to the Gaussian elimination procedures examined in the

previous section� It operates by eliminating variables one by one�� by� in essence� creating

new functions that eliminate the variable� The added bene�t nonserial DP gives is that it

works on nonlinear systems in which no mathematical functions can be formulated�

The properties of nonserial DP are most concisely explained with an example taken from

	but expanded upon here
 	Bertel�e � Brioschi� ����
� Consider a problem involving �ve

variables� x� through x�� each of which has a domain of two values� f���g� The goal of the

problem is to minimize the total f� f� f�� where the functions have nonlinear evaluations

as shown in Table ��

x� x� x� f� x� x� f� x� x� x� f�
� � � � � �
 � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � �

� � �
 � � � �

Table �� Input evaluation functions

It should be pointed out that these evaluation functions are very similar to those found in

semantic analysis� as discussed in the section on Linear Programming above�

To eliminate x�� we need to create a new evaluation function� h�� which combines all

evaluation functions in which x� takes part� In this case� only f� and f� need to be considered�

The new evaluation function in Table � is created by making a new table including all the

variables present in f� and f��

The values for h� are calculated by combining scores 	in this case� just adding them

together
 from the original functions� For instance� for the �rst entry� x� � �� x� � � and

x� � �� so the score 	from Table �
 for f� is �� Additionally� x� � � and x� � �� so the

evaluation of f� is
� This gives a total score for the �rst entry in Table � of �� The other

��Actually nonserial DP introduces methods for eliminating groups of variables � see below

�� HUNTERS AND GATHERERS IN AI ��

x� x� x� x� h�
� � � � �
� � � � � !
� � � � �
� � � � � !
� � � � �
� � � � � !
� � � � ��
� � � �
 !
� � � � �
� � � � � !
� � � � �� !
� � � � ��
� � � � ��
� � � � � !
� � � � ��
� � � � � !

Table �� A New Evaluation Function

values for h� are calculated similarly�

At this point� x� can be eliminated from h� by selecting the optimal value for x� for each

combination of the other variables� h� will then be a function that maps from the remaining

variables� into an evaluation value and the optimal value for x�� The resulting table is shown

in Table
�

x� x� x� h� x�
�

� � � � �
� � � � �
� � � � �
� � �
 �
� � � � �
� � � �� �
� � � � �
� � � � �

Table
� h� optimized

At this point� h� replaces f� and f�� x� can be eliminated by a similar process� combining

h� and f� 	which x� takes part in but was not replaced by h�
 to produce h�� as shown in

�� HUNTERS AND GATHERERS IN AI ��

Table ��

x� x� x� h� x�
�

� � � � �
� � � �� �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Table �� h� optimized

h� now replaces h� and f�� and is the sole remaining evaluation function� x� can be

eliminated next� creating a new evaluation function h�� as shown in Table ��

x� x� h� x�
�

� � � �
� � � �
� � � �
� � � �

Table �� h� optimized

h� replaces h�� and is then used to eliminate x�� as shown in Table ��

x� h� x�
�

� � �
� � �

Table �� h� optimized

x� is then eliminated from h� to produce the function h� shown in Table ��

The optimal answer to the problem is then obtained iteratively substituting into the

equations� With x� � �� the optimal value for x� � �� which can be read o� h�� With the

values of x� and x� determined� the optimal value for x� can be read o� h�� and so on� The

optimal answer for the problem turns out to be� x� � �� x� � �� x� � �� x� � � and x� � ��

�� HUNTERS AND GATHERERS IN AI ��

h� x�
�

� �

Table �� h� optimized

x1 x2

x4x3

x5
subgraph 1

subgraph 2

Figure ��� HG used to solve the nonserial DP example

This process required
� functional evaluations and �� table look�ups� as reported by

Bertel�e and Brioschi� �Functional evaluations� refer to the total number of combinations

evaluated in creating the hx functions� For example� in Table �� �� combinations had to be

created and evaluated� �table look�ups� refers to the total number of times the tables had

to be consulted� For instance� in creating each entry h� in Table �� a value had to be looked

up in both f� and f�� for a total of �� table look�ups� A di�erent order of elimination� for

instance x��x��x��x� and x� was more e�cient� requiring only �� functional evaluations and

� table look�ups�

As will be seen below� the general idea behind this technique is quite similar to the Hunter�

Gatherer methodology� The following comments will undoubtedly make more sense once the

remainder of this work is read� HG can be used to eliminate one variable at a time in a

similar fashion to what was just reported� HG could start o� with a subgraph that contains

all variables that constrain x�� namely subgraph � � 	x�� x�� x�� x�
� as shown in Figure ���

All combinations of values for these variables� �� in all� would need to be calculated� In

subgraph �� only x� and x� are constrained outside the subgraph� so the branch�and�bound

reduction phase would optimize x� and x� for each of the four combinations of x� and x��

In subgraph �� the two values for x� would then be combined with the four outputs of

�� HUNTERS AND GATHERERS IN AI �

subgraph �� yielding eight combinations� Since subgraph � contains the whole problem� the

best answer would then be picked� A total of �
 combinations were created� which compares

directly to the
� 	or ��
 �functional evaluations� in the nonserial DP method�

In this case� HG outperforms the nonserial DP method primarily because HG eliminated

� variables in the �rst subgraph and then the remaining three in the second subgraph 	as

opposed to one variable at a time for the DP method
� To be fair� nonserial DP has tech�

niques for eliminating blocks of variables which would yield the same number of functional

evaluations as HG� HG has signi�cant advantages� however� due to its use of solution syn�

thesis rather than a Gaussian�like substitution� By utilizing solution synthesis techniques�

we are able to not only eliminate blocks of variables� but can more naturally decompose the

problem into subgraphs� each of which can be analyzed separately� Additionally� intermedi�

ate functions do not have to be calculated in HG� All evaluation functions that can apply to

a particular subgraph are simply used and deleted� Evaluations that require variables not

in the subgraph are simply delayed� with the optimal values for those variables determined

in later subgraphs� Most importantly� Intermediate evaluations are associated with each

subgraph� removing the need to recalculate intermediate functions� This results in far less

reliance on the table look�ups� HG will refer to a given entry in the input function tables

once and only one� In addition� no new tables are constructed� Thus� for the example prob�

lem above� HG will only need �� table look�ups� as opposed to the �� 	or
�
 needed by the

non�serial DP methods�

Nonserial DP removes the problem of nonlinear inputs that prevented us from utilizing

linear programming techniques on many problems of interest� Unfortunately� in addition

to the e�ciency issues discussed above� it does not remove the other problems associated

with linear programming� In particular� a large advantage HG has over nonserial DP is its

ability to seamlessly integrate heuristic solutions to subproblems with excessive complexity

	see section ��

� Since HG does not require a chain of intermediate functions� which may

be di�cult or impossible to create at certain points of a complex problem� it is able to

accept and integrate sub�answers from di�erent sources� Furthermore� HG can estimate the

computational complexity for processing any given subgraph before processing begins� This

allows collaboration with other heuristic problem solvers�

Perhaps the most important advantage of all is HG�s ability to react dynamically to

changing preconditions� goals or constraints� Despite its name� �dynamic� programming�

�� HUNTERS AND GATHERERS IN AI ��

DP 	like its �sister� linear programming
 is not very �exible� Change one input or add one

extra constraint and all of the intermediate functions will have to be redone� Because HG

is constraint�based� all interactions of a certain change can be tracked down and minimal

perturbation re�planning can be accomplished� This aspect of HG is a primary goal of our

future research�

The body of work associated with nonserial DP may be of great value in further re�

search directed at HG� In particular� Bertel�e and Brioschi discuss heuristic methods for the

�secondary optimization problem� � that of �nding the correct order of elimination of the

variables� HG has developed its own set of heuristics 	see section ���
� but does not make

any claims about their optimality�

In summary� nonserial DP uses linear programming�like techniques to solve nonlinear

problems� HG then improves on these techniques by generalizing them with the use of

solution synthesis and branch�and�bound� HG�s constraint�based organization also a�ords

it a greater �exibility for handling dynamically changing problems�

��	� Minton�s Work on Heuristic Repair

	Minton� et al� ����
 presents a method for using heuristic repair to �nd solutions to certain

types of constraint satisfaction problems� His approach is to generate a reasonable �rst guess

at an answer� determine which variables in that answer participate in constraint violations�

and then use repair heuristics to �x the problems� The basic heuristic used in 	Minton� et

al� ����
 is to reassign a variable that is in a con�ict to a value that minimizes the number

of con�icts�

Minton applies this simple heuristic to the N�Queens problem and reports the staggering

result that the million�Queens program can be processed in minutes� Prior to his work�

the �����Queens problem was practically unsolvable� Furthermore� Minton claims that the

number of repairs made was a constant� that is� approximately the same number of repairs

were necessary for the ����Queens as the million�Queens�

Despite these encouraging results� the heuristic repair method has certain drawbacks�

The �rst and foremost is that such methods only are able to return a solution that meets all

the constraints� It is not able to return the most optimal answer that meets the constraints�

�� HUNTERS AND GATHERERS IN AI ��

in fact� it is quite possible that it could return the worst such answer� Nor can it be used

to generate a list of all answers to a CSP� If it could do that� then some optimizing criteria

could be used to pick the best answer�

For the types of problems we are concerned with� this drawback is fatal� To begin with�

the idea of constraints itself is blurred in computational semantics� As discussed below�

semantic constraints are only tendencies� not �rm yes or no restrictions� Thus� almost any

answer can be �correct�� that is� it will receive a non�zero score� Finding a �correct� answer

� one that meets all constraints � is therefore trivial� The goal of our work is to �nd the

solution with the best score� which corresponds to the most probable meaning in the given

context� Even if constraints were not �fuzzy�� Minton�s work 	as it stands
 could not be

applied to optimization problems� Again� these repair methods only seek to �nd a single

solution that meets constraints� Optimization problems of all kinds need to �nd the best

such answer�

There are other problems with Minton�s work which we will not delve into deeply here�

His methods work best on uniform problems like the N�Queens� If certain constraints are

more important� or lead to more breakdowns in the constraint network� the heuristic repair

methods tend to work less e�ciently 	or not at all
� Furthermore� the search space of the

N�Queens problem lends itself to this type of analysis� As N increases� the probability that

a given value assignment will con�ict with another given value assignment decreases� even

for variables �close� to one another� For instance� for the
�Queens problem� the probability

that adjacent variables 	corresponding to adjacent columns
 will con�ict is greater than � in

�� For the million�Queens problem� the probability is � in a million� This local disjointedness

is not a feature of most real life optimization problems�

The preceding should not be taken to mean that Minton�s work does not hold promise for

optimization problems in general� or computational semantics in particular� Repair methods

that increase a solutions overall score could be adopted� Along with an adequate measure

of �satis�cing� 	Newell � Simon� ����
� this could lead to a promising methodology for

estimating near�optimal solutions�

�� HUNTERS AND GATHERERS IN AI ��

��
� Scheduling at CMU�s Robotic Institute

Scheduling is an area related to the generic work on optimized planning presented here� In

general� scheduling problems are much more di�cult to process because of their multiple

sources of costs 	personnel� inventory� costs of delays� machinery� etc�
� the interaction of

these costs� multiple sources of priorities� and most importantly� the dynamic nature of the

problems 	new orders received� machinery malfunctions� resources delivered late� etc�
� The

Robotics Institute at Carnegie Mellon University has been central in formulating schedul�

ing problems and developing methodologies to solve them� The �rst research to recognize

scheduling problems as heuristic� constraint�directed search was the ISIS project 	Fox� ���

�

ISIS utilized a hierarchical scheduler which created levels of abstractions in the scheduling

problem� The main problem encountered was �bottlenecks�� or certain resources being

needed 	but unavailable
 at certain critical stages of planning�

OPIS 	Smith� ���

 was developed in response to the bottleneck problem� OPIS used

a constraint�based control mechanism that identi�ed and prioritized possible bottlenecks�

OPIS also recognized the dynamic nature of scheduling� It was a reactive scheduler in the

sense that it was able to respond to changes in requirements or resource availability� as well

as recognize the appearance of new bottlenecks as they arose in the scheduling process� This

ability to recognize and handle new situations automatically was termed opportunistic

scheduling�

Opportunistic scheduling in OPIS was limited� it was required to �nish scheduling all

	or most of
 an entire bottleneck before switching to another� Micro�Boss 	Sadeh� ���

overcame this limitation� Micro�Boss stops scheduling operations on a resource as soon as

another resource is identi�ed as more constraining� This ability is referred to as micro�

opportunistic scheduling� Mikro�Boss utilizes a blackboard architecture which is able to

support multiple control regimes� including highly user�interactive modes� Mikro�Boss also

makes use of prede�ned scripts which specify a sequence of knowledge source activations

and�or goals known to accomplish a speci�c task�

A slightly di�erent area of work was undertaken by Muscettola 	���

 in his attempt to

integrate planning and scheduling� Historically� planning 	i�e� which products to make and

when
 was separated from scheduling 	which resources to use and when
� This separation can

cause problems� For instance� if two sequential operations require a di�erent size drill bit� it

�� HUNTERS AND GATHERERS IN AI ��

is necessary to spend time changing the bit in between the operations� It might be better to

modify the schedule to allow interaction between plans such that resources can be optimally

used with a minimum of setup activities� The major obstacle to this type of integration is

the lack of a uni�ed framework for planning and scheduling� Planning generally utilizes the

typical STRIPS�type formalism which assumes instantaneous transitions from one state to

another� Scheduling� on the other hand� exploits stronger structuring assumptions in that it

explicitly represents resource utilization over extended periods� The HSTS system attempts

to unify planning and scheduling� HSTS views plans as envelopes of behavior within which

the scheduler is free to react to unexpected events�

All of the above use heuristic search techniques as the basis for implementing their respec�

tive systems� Hunter�Gatherer� in contrast� relies on problem decomposition and branch�

and�bound pruning to minimize problem complexity� Hunter�Gatherer is uniquely prepared

to handle many of the di�cult problems facing schedulers� Future work is planned to give

HG full dynamic re�planning capabilities� Combined with its ability to partition problems�

identify particularly hard sub�problems which can be solved heuristically 	see section ��

�

and its use of island constraints to help process bottlenecks 	section ���
� we intend for HG

to become a signi�cant tool in solving scheduling problems�

�� THE HUNTER�GATHERER CONTROL ARCHITECTURE ��

A

B D

C

{r,y,g,b}

{r,y,g,b}

{r,y,g,b}

{r,y,g,b}

A

B

C

D

Figure ��� Graph Coloring Subproblem� maximize the number of reds�

�� The Hunter�Gatherer Control Architecture

The weakness of previous solution synthesis algorithms is that they do not directly

decrease problem complexity� Constraint satisfaction methods used in combination with

solution synthesis indirectly aid in decreasing complexity� and variable ordering techniques

such as MBO try to direct this aid� but complexity is still driven by the number of exhaustive

solutions available at each synthesis� In e�ect� solution synthesis has been used simply as

a way to maximize the disambiguating power of constraint satisfaction for optimization

problems�

Instead of concentrating on constraints� HG focuses on the optimization aspect and uses

that to guide solution synthesis� The key technique used for optimization is branch�and�

bound� Consider the subgraph of a coloring problem shown on the left side of Figure ���

Coloring problems are constraint satisfaction problems with the simple constraint that no

two adjacent nodes can have the same value 	adjacent nodes are connected by arcs in this

graph format
� For our purposes� we can turn this type of problem into an optimization

problem by requiring the solution to contain as many reds as possible� In this subgraph�

only vertex A has constraints outside the subgraph� What this tells us is that by examining

only this subgraph� we cannot determine the correct value for vertex A� since there are

constraints we are not taking into account� However� given a value for vertex A� we can

optimize each of the other vertices with respect to that value� Hunter�Gatherer� then� will

partition a graph into subgraphs 	see below for details
� process and optimize each subgraph

independently� and then use solution synthesis techniques to combine the results from the

�� THE HUNTER�GATHERER CONTROL ARCHITECTURE ��

Step 2

(A,B,C,D)

(r,y,r,y)
(r,y,g,y)
(r,y,b,y)

(y,r,y,r)

(y,r,y,b)

(y,g,y,g)

(y,r,y,g)

(b,r,y,g)
(b,r,y,r)

(b,r,g,y)

(g,y,g,y)

(g,r,g,r)
(g,y,g,y)

...

...

...

...

...

total: ??

Step 3

(A,B,C,D)

(r,y,r,y)

(y,r,y,r)

(b,r,y,r)

(g,r,g,r)

total: 4

b&b reduction

A=r

A=y

A=b

A=g

Step 1

(A,B,C,D)
(r,r,r,r)
(r,r,r,y)
...
(r,y,r,y)
(r,y,g,y)
(r,y,b,y)

...
(y,r,r,r)
(y,r,r,y)
(y,r,y,r)
(y,r,y,g)
(y,r,y,b)
(y,g,y,y)
(y,g,y,g)
...
(b,r,y,g)
(b,r,y,r)
(b,r,r,g)
(b,r,g,g)
(b,r,g,y)
...
(g,y,g,y)
(g,r,r,r)
(g,r,g,r)
(g,y,g,y)
...

(r,y,b,b)

total: 256

exhaustive const sat

Figure ��� Three steps for subgraph optimization�

subgraphs�

The optimization stage is done in three steps� First� exhaustively determine all of the

combinations of values for the vertices in the subgraph� Next� use constraint satisfaction

to eliminate impossible combinations� Finally� for each possible value of the vertex with

constraints outside the subgraph� determine the optimal assignments for the other vertices�

Figure �� illustrates this process� Step one exhaustively combined all of the possible values

for each node in the subgraph� Notice that many of these combinations� such as 	r�r�r�r
� are

not legal sub�answers since adjacent nodes have the same value� Step two used constraint

satisfaction techniques to remove these illegal combinations 	and possibly others� via a dy�

�� THE HUNTER�GATHERER CONTROL ARCHITECTURE ��

A

B D

C

{r,y,g,b}

{r,y,g,b}

{r,y,g,b}

{r,y,g,b}

Figure ��� Subgraph� maximize the number of reds�

namic application of AC�

� Step � then retained a combination for each possible value of

vertex A� each optimized so that the maximum number of reds appear� Now� no matter

what value node A is assigned in the end� we know the optimal values for nodes B� C and

D that correspond to it� After step �� we say that the subgraph has been reduced to its

optimal set of partial answers�

Now consider what happens if� instead of having a single vertex constrained outside the

subgraph� two vertices are constrained outside the subgraph� as in Figure ��� In this case�

the assignment of correct values for both Vertices A and D must be deferred until later�

In the branch�and�bound reduction phase� all possible combinations of values for vertices A

and D must be retained� each of which can be optimized with respect to the other vertices�

Phase three for this subgraph would yield
!
��� combinations 	actually less� since
 of the

�� combinations assign the same value to A and D� violating the coloring constraint
�

Solution synthesis is used to combine results from subgraphs or to add individual vertices

onto subgraphs 	we postpone the discussion of graph decomposition to section ���
� Figure �

shows an example of combining the subgraph from Figure �� with two additional vertices�

E and F� Step � in the combination process is to take all of the outputs from the input

subgraph� �� in this case� and combine them exhaustively with all the possible values of

the input vertices� or
 each� This gives a total complexity for step � of �� !
 !
 � ����

Constraint satisfaction can then be applied as usual� In the resulting synthesized subgraph�

only vertex A has constraints outside the subgraph 	assuming vertices E and F have no other

constraints� as shown
� The output of step �� therefore� will contain
 optimized answers�

�� THE HUNTER�GATHERER CONTROL ARCHITECTURE ��

A

B

C

D

A

B

C

D

F

E

+
E

F

=

256 16
Step 1 ... Step 3 Step 1 Step 3

416 * 4 * 4 = 256

Figure �
� Using Solution Synthesis to Combine Subgraph with Vertices

one for each of the possible values of A�

Synthesis of two 	or more
 subgraphs into one proceeds similarly� All of the step � outputs

of each input subgraph are exhaustively combined� After constraint satisfaction� step �

reduction occurs� yielding the output of the synthesis� Figure �� illustrates how subgraphs

are created and processed by the solution synthesis algorithms� The smallest subgraphs� ��

� and �� are processed �rst� Each is optimized as described above� Next� smaller subgraphs

are combined� or synthesized into larger and larger subgraphs� In Figure ��� subgraphs �

and � are combined to create subgraph
� After each combination� the resulting subgraph

typically has one or more additional vertices that are no longer constrained outside the new

subgraph� Therefore� the subgraph can be re�optimized� with its fully reduced set of sub�

answers being the input to the next higher level of synthesis� This process continues until

two or more subgraphs are combined to yield the entire graph� In Figure ��� subgraphs �

and
 are combined to yield subgraph �� which contains the entire problem�

Note that the complexity�� of the processing described up to this point is dominated by the

exhaustive listing of combinations in step �� With this in mind� subgraphs are constructed

to minimize this complexity 	see below for a discussion of how this is accomplished in non�

exponential time
� For this reason� our solution synthesis will be directed at combining

subgraphs created to minimize the total e�ect of all the step ��s� This involves limiting the

number of inputs to the subgraph as well as maximizing the branch�and�bound reductions

	which in turn will help minimize the inputs to the next higher subgraph
� This outlook is

��The complexity of the algorithm will be discussed in the next section�

�� THE HUNTER�GATHERER CONTROL ARCHITECTURE ��

1 2

3

4

5

Figure ��� Subgraph Construction

the central di�erence between this methodology and previous e�orts at solution synthesis�

all of which attempted to maximize the e�ects of early constraint disambiguation� The

pruning driven by this branch�and�bound method typically overwhelms the contribution of

constraint satisfaction 	see below for actual results
�

The other di�erence between this approach and previous solution synthesis applications

is the arrangements of inputs at each synthesis level� Tsang and Freuder both combine pairs

of variables at the lowest levels� These are then combined with adjacent variable pairs at

the second level of synthesis� and so on� HG removes this arti�cial limitation� Subgraphs

are created which maximize branch�and�bound reductions� Two or more subgraphs are then

synthesized with the same goal � to maximize branch�and�bound reductions� In fact� single

variables are often added to previously analyzed subgraphs to produce a new subgraph�

���� The Hunter�Gatherer Algorithm

A simple algorithm for HG is shown below� It accepts a list of subgraphs� ordered from

smallest to largest� so that all input subgraphs are guaranteed to have been processed when

needed in PROCESS�SUBGRAPH� For example� for Figure ��� HG would be input the

subgraphs in the order 	������
��
� Each subgraph is identi�ed by a list of input vertices� a list

of input subgraphs� and a list of vertices that are constrained outside the subgraph� Subgraph

� would have three input�vertices� no input subgraphs� and a single vertex constrained outside

the subgraph� Subgraph
� on the other hand� has subgraphs � and � as input subgraphs�

a single input vertex� and one vertex constrained outside the subgraph� SS�HG simply calls

PROCESS�SUBGRAPH for each of the input subgraphs� The last input subgraph is the

�� THE HUNTER�GATHERER CONTROL ARCHITECTURE �

� PROCEDURE SS�HG�Subgraphs�
� FOR each Subgraph in Subgraphs

 PROCESS�SUBGRAPH�Subgraph�
� RETURN last value returnd by

� PROCEDURE PROCESS�SUBGRAPH�Subgraph�
�� assume Subgraph in form
�� �In�Vertices In�Subgraphs Constrained�Vertices�

� Output�Combos � �� nil
�� STEP �

� Combos � ��
COMBINE�INPUTS�In�Vertices In�Subgraphs�

� FOR each Combo in Combos
�� STEP �

� IF ARC�CONSISTENT�Combo� THEN
�� Output�Combos � ��

Output�Combos � Combo
�� STEP

�� REDUCE�COMBOS�Output�Combos Constrained�Vertices�
�� RECORD�COMBOS�Subgraph Output�Combos�
�
 RETURN Output�Combos

Figure ��� HG Algorithm

graph containing the whole problem� The answer returned by PROCESS�SUBGRAPH for

that input will be the answer to the whole problem�

The COMBINE�INPUTS procedure 	line �
 simply produces all combinations of value

assignments for the input vertices and subgraphs� The following three cases are possible���

�� The input subgraph contains no lower�level input�subgraphs� In this case� COMBINE�

INPUTS returns all of the possible combinations of values for each of the In�Vertices�

For instance� if two variables� A and B� each had domains f���g� COMBINE�INPUTS

would return f	���
�	���
�	���
�	���
g� where each combination is in the form 	A�B
�

�� The input subgraph contains one lower�level subgraph and one or more In�Vertices�

This� in practice� is the most common way to extend a subgraph � simply by adding on

extra vertices� COMBINE�INPUTS adds on the possible combination of In�Vertices

��Technically	 there could be more possibilities	 such as multiple In�Vertices combining with multiple
lower�level subgraphs	 but practically speaking	 the Input�Complexity
see below� of these combinations is
excessive�

�� THE HUNTER�GATHERER CONTROL ARCHITECTURE ��

to the combinations present in the lower�level subgraph� It must be stressed that

this lower�level subgraph has already been optimized by a previous call to PROCESS�

SUBGRAPH� For example� if the lower�level subgraph had two variables� C and D� each

with the domain f���g� and had been reduced to the following combinations� f	���
�

	���
g� where each combination is in the form 	C�D
� and two In�Vertices� A and B 	as

above
 were being added� then COMBINE�INPUTS would return the following com�

binations� f	�������
�	�������
�	�������
�	�������
�	�������
�	�������
� 	�������
�	�������
g�

where each combination is in the form 	A�B�C�D
�

�� There are two lower�level subgraphs and no In�Vertices� For this case� there are two

separate sub�cases�

	a
 The two lower level subgraphs do not have any vertices in common� In this case�

COMBINE�INPUTS simply produces all of the combinations� If the �rst lower

level subgraph had the two variables C and D as shown above� and the second

lower level subgraph had two variables E and F� with domains f
��g� and had been

reduced to the following combinations� f	
��
�	���
g� then COMBINE�INPUTS

would return the following combinations� f	����
��
�	�������
�	����
��
�	�������
g�

where each combination is in the form 	C�D�E�F
�

	b
 The two lower level subgraphs share one or more vertices� This is where the

synthesis techniques come in� In this case� only compatible combinations are

combined� For instance� if the �rst lower level subgraph had the variables C and

D as shown above� and the second lower level subgraph had the variables C and

G� each with the domain f���g� and had been reduced to f	���
�	���
g� with each

combination in the form 	C�G
� then COMBINE�INPUTS would return only the

following two combinations� f	�����
�	�����
g� where each combination is of the

form 	C�D�G
� Notice that the output combinations only contain three variables�

Also notice that the combination 	���
 from the second lower level subgraph�

where C is assigned to �� was not used� since none of the input combinations of

the �rst lower level subgraph used that assignment�

The COMBINE�INPUTS procedure has complexityO�s��s�� ����a
x�� where x is the number

of vertices in In�Vertices� a is the maximum number of values in the domain of a vertex� and

si is the number of combinations in the lower level subgraph 	which was already processed

�� THE HUNTER�GATHERER CONTROL ARCHITECTURE ��

and reduced to a minimumby a previous call to PROCESS�SUBGRAPH
� In the worst case�

x will be n� the number of vertices� this is the case when the initial subgraph contains all

the vertices and no subgraphs� Of course� this is simply an exhaustive search� not Solution

Synthesis� In practice� In�Vertices contains no more than two or three vertices� In short� the

complexity of Step � is the product of the complexity of the reduced outputs for the input

subgraphs times the number of exhaustive combinations of input vertices� This complexity

dominates the algorithm and will be what we seek to minimize below in the discussion of

creating the input subgraphs�

Lines ���� will obviously be executed the same number of times as the complexity for line

�� An arc consistency 	line �
 routine similar to AC�
 is used� It has complexity O�ea���

where e is the number of edges in the graph� In the worst case� when the graph is a clique�

e equals n
 because every vertex a�ects every other vertex��� Fortunately� SS�HG is aimed

at problems of lesser dimensionality� Cliques are going to have exponential complexity no

matter how they are processed� For us� the only vertices that will have edges outside the

subgraph are those in Constrained�Vertices� Propagation of constraint failures by the AC�

algorithm is limited to these vertices� and� indirectly� beyond them by the degree of inter�

connectedness of the graph� It should be stressed that this arc�consistency mechanism is

not responsible for the bulk of the search space pruning� and� for certain types of problems

with �fuzzy� constraints 	such as semantic analysis
� it is not even used� The pruning

associated with the branch�and�bound optimization typically overwhelms any contribution

by the constraint satisfaction techniques� See section ��� for data comparing the e�ciency

of HG with and without arc�consistency�

The REDUCE�COMBOS procedure in line �� simply goes through each Combos that

passed arc consistency� and keeps track of the best one for each combination of values of

Constrained�Vertices� The �best� is de�ned as the combination with the highest overall

score� We discuss scoring� and how scores are tracked� in sections
 and �� If there are two

Constrained�Vertices� each of which has four possible values� REDUCE�COMBOS should

return �� combinations 	unless one or more combinations are impossible due to constraints
�

one for each of the possible combination of values of Constrained�Vertices� each optimized

with respect to every other vertex in the subgraph� This process is pictured in Figure ���

The complexity of line �� is therefore the same as the complexity of COMBINE�INPUTS�

��For a graph with fan�out � k	 e � nk�

�� THE HUNTER�GATHERER CONTROL ARCHITECTURE ��

Combinations of

Constrained-Vertices

with optimal values for

non Constrained-Vertices

A D B C score

0 0 1 0 .4

0 1 0 1 .8

1 0 1 0 1.0

1 1 1 0 .95

B

C

D

A

input combinations

A B C D score

0 0 0 0 .2

0 0 0 1 .4

0 0 1 0 .3

0 0 1 1 .8

0 1 0 0 .4

0 1 0 1 .5

0 1 1 0 .35

0 1 1 1 .7

1 0 0 0 .8

1 0 0 1 .75

1 0 1 0 .9

1 0 1 1 .65

1 1 0 0 1.0

1 1 0 1 .95

Constrained-Vertices = {A,D}

Constrained-Variables

A D

0 0

0 1

1 0

1 1

combinations of

1 1 1 1 .85
1 1 1 0 .5

Figure ��� Processing in REDUCE�COMBOS

We refer to this complexity as the �input complexity� for the subgraph� whereas the �output

complexity� is the number of combinations returned by REDUCE�COMBOS� which is equal

to O�ac�� where c is the number of vertices in Constrained�Vertices�

With this in mind� we can re��gure the complexity of COMBINE�INPUTS� The output

complexity of a subgraph is O�ac�� which becomes a factor in the input complexity of the

next higher subgraph� The input complexity of COMBINE�INPUTS is the product of O�ax�

times the complexity of the input lower�level subgraphs� Taken together� the complete

input complexity of COMBINE�INPUTS� and thus the overall complexity of PROCESS�

SUBGRAPH� is O�ax
ctotal�� where ctotal is the total number of Constrained�Vertices in all

of the input lower�level subgraphs� In simple terms� the exponent is the number of vertices

in In�Vertices plus the total number of Constrained�Vertices in each of the input subgraphs�

To simplify matters later� we will refer to input complexity as the exponent value x ctotal

and the output complexity as the number of vertices in Constrained�Vertices�

The complexity of SS�HG will be dominated by the PROCESS�SUBGRAPH procedure

�� THE HUNTER�GATHERER CONTROL ARCHITECTURE ��

call with the highest input complexity� Thus� when creating the progression of subgraphs

	details below
 input to SS�HG� we will seek to minimize the highest input complexity� which

we will refer to as Maximum�Input�Complexity� To be precise� Maximum�Input�Complexity

� x ctotal for the subgraph with highest input complexity� As will be shown� some fairly

simple heuristics can simplify this subgraph creation process�

For completion� it should be noted that PROCESS�SUBGRAPH is called X times in SS�

HG� where X is the number of subgraphs in Subgraphs� A Subgraph with input complexity

less than Maximum�Input�Complexity will run in time negligible compared to those with

Maximum�Input�Complexity� Thus� Number�At�Maximum�Input�Complexity is an impor�

tant measure� and the overall complexity of SS�HG will be�

O�Number	At	Maximum	Input	Complexity � aMaximum�Input�Complexity�

Theoretically� one could create Subgraphs in such a way that there would be an exponential

number of subgraphs� However� our algorithm below guarantees that there will be n or less

subgraphs� Typically� only a portion of these have Maximum�Input�Complexity� thus the

overall complexity is less than

O�n � aMaximum�Input�Complexity�� We will demonstrate below that� for problems in compu�

tational semantics� aMaximum�Input�Complexity is �nearly� a constant� and thus the complexity

of HG will be linear with respect to the number of inputs� n�

Space complexity is actually more limiting than time complexity for solution synthesis

approaches� Although one can theoretically wait ten years for an answer� no answer is possi�

ble if the computer runs out of memory� The space complexity of SS�HG is dominated by the

need to store results for subgraphs that will be used as inputs later� This need is minimized

by carefully deleting all information once it is no longer needed� however� the storage re�

quirements can still be quite high� The signi�cant measurement in this area is the maximum

output complexity� because it determines the amount of output combinations stored by the

subgraph with the highest output complexity� The highest output complexity is bounded by

the highest input complexity� and thus is proportional to O�n � aMaximum�Input�Complexity��

Again� it must be noted that this approach attempts to directly minimize the space com�

plexity� Previous solution synthesis methods only reduced space 	and time
 complexity as

an accidental by�product of the constraint satisfaction process� As will be shown below�

their space complexity becomes unmanageable even for relatively small problems�

Please refer to section � for a detailed example of applying the HG algorithm to a semantic

�� THE HUNTER�GATHERER CONTROL ARCHITECTURE ��

analysis problem�

���� Subgraph Construction

Subgraph decomposition is a �eld in itself 	see� for instance� 	Bos�ak� ����

� and we make

no claims regarding the optimality of our approach� In fact� further research in this area

can potentially improve the results reported below by an order of magnitude or more� The

novelty of our approach is that we use the complexity of the HG algorithm as the driving

force behind the decomposition technique� The overall complexity of HG is bounded by the

maximum input complexity� as de�ned above� We attempt to minimize this feature in the

algorithm given below�

�� Find �seed� subgraphs in various sections of the graph� These �seed� subgraphs are the
smallest subgraphs in a region that �cover� at least one vertex� �Covering� a vertex with a
subgraph� in this context� means that the vertex has no edges outside the subgraph�

�a� Order the input vertices from those with the smallest number of vertices adjacent to
those with the largest number of vertices adjacent� Set Vertices�Covered to nil� Set
Subgraphs to nil�

�b� For each vertex in the ordered list of vertices�

� Set Subgraph to the vertex plus all its adjacent vertices�

� Set Region to the Subgraph plus the set of all vertices adjacent to any vertex in
Subgraph�

� If the intersection of Region and Vertices�Covered is nil� then this is the smallest
set of vertices that cover at least one vertex in this region of the graph�

� add Subgraph to Subgraphs

� append Region to Vertices�Covered

�� For each Subgraph in Subgraphs� determine the best action to take to expand the Subgraph�
The �best� action is the one that requires the minimal input complexity� See below for a
description of how to determine potential actions�

� Order these �best� actions �one per subgraph� from minimal input complexity to maximum
input complexity�

�� Take the 	rst action� which results in the creation of a new subgraph� If this subgraph
contains the entire input graph� exit� Else remove any other actions from the ordered list of
actions that contain input subgraphs or vertices adjacent to vertices involved in the action
�potentially� there is a better action now that we have created this new subgraph��

�� Compute a �best� action for the new subgraph�
If its input complexity is not greater than the maximum input complexity used in any action
thus far�

�� THE HUNTER�GATHERER CONTROL ARCHITECTURE ��

1 2 3

4 5 6

Figure ��� Overview of Subgraph Creation process

� then place the action at the front of the action list and repeat step ��

� else determine new �best� actions for all of the subgraphs that have had actions removed
since the last time this �else� was evaluated� Add these new best actions plus the action
for the newly created subgraph to the action list and re�order it� Repeat step ��

� Remove any subgraphs from this list of subgraphs created above that are not involved
in creating the 	nal subgraph which contains the entire input problem�

To 	nd a list of potential actions to take on a subgraph�

�� Set Potential�Actions to nil�

�� For each Vertex in the subgraph that has an edge outside the subgraph� determine the list
of vertices needed to be added to cover it� Make an action that adds these vertices and add
it to Potential�Actions�

� For each subgraph adjacent to any vertex in this subgraph� if combining the subgraphs results
in more vertices covered than by the two subgraphs separately� create an action that combines
the subgraphs and add it to Potential�Actions�

Figure �� illustrates the process of subgraph creation� In step � of the algorithm� �seed�

subgraphs are formed in various regions of the graph� These seeds are simply the smallest

subgraphs in a region that cover at least one vertex� Seeds can be calculated in time O�n��

From there� we try to expand subgraphs until one of them contains the entire input graph�

First� possible expansions for each seed are calculated� and for each seed� the one that requires

the minimum input complexity is kept� The seed with the lowest input complexity is then

�� THE HUNTER�GATHERER CONTROL ARCHITECTURE ��

allowed to expand� A type of �iterative deepening� approach is then used� The last created

subgraph is allowed to expand as long as it can do so without increasing the maximum input

complexity required so far� Once the current subgraph can no longer expand� new actions

are calculated for any of the subgraphs that might have been a�ected by the expansion of

previous subgraphs� These actions are then sorted with the remaining actions and the best

one is taken� The process then repeats�

Several measures are taken to reduce complexity� First� once a subgraph is expanded� it

can no longer be used in other subgraph expansions� This keeps the number of subgraphs

under consideration to a minimum� Second� we only recalculate actions for subgraphs di�

rectly a�ected by previous expansions� If subgraph expansion has been occurring in one

portion of the graph� only subgraphs in that portion need to have actions recalculated�

Finally� as stated above� we allow the subgraph created last to expand as long as it can

do so without increasing the maximum input complexity� In practice� we �nd that� after

some subgraph combinations in the early stages� expansion occurs almost entirely by adding

individual vertices onto existing subgraphs� This occurs because the input complexity of

combining subgraphs is usually high� Because expansion generally occurs in this manner� it

makes sense to allow the last created subgraph to continue expanding� if possible�

One major bene�t of the overall approach used by HG is that� by examining the factors

which in�uence the complexity of the main search� we can seek to minimize those factors

in a secondary search� This secondary search can be carried out heuristically because the

optimal answer� although bene�cial� is not required� because it simply partitions the primary

search space� Optimal answers to the primary search are guaranteed even if the search space

was partitioned such that the actual search was not quite as e�cient as it could be�

We also will demonstrate below that for any given problem� this subgraph creation process

might be simpli�ed� Problems in computational semantics� for instance� typically present

as tangled trees 	limited constraints between siblings and cousins superimposed on a basic

tree structure
� We can take advantage of this to create very simple algorithms that can

partition the graph� sometimes better than this more complex version�

This section has been kept brief intentionally� Subgraph decomposition is not the focus

of this research� although improvements can dramatically reduce the complexity of HG� In

practice� the simple algorithm presented above produces excellent results� in all but the

�� THE HUNTER�GATHERER CONTROL ARCHITECTURE ��

two smaller problems the optimal maximum input complexity was found in time negligible

compared to the actual HG processing� Other approaches might be able to deliver better

overall performance� but these results were deemed acceptable for now� In the next sections�

these principles of subgraph creation� along with the Hunter�Gatherer algorithm� will be

exempli�ed using problems from semantic analysis�

�� THE MIKROKOSMOS MACHINE TRANSLATION SYSTEM ��

�� The Mikrokosmos Machine Translation System

Implied information� background knowledge� ellipsis� coreference� �gurative speech� ambi�

guity� these are a few of the immense challenges a natural language semantic system faces�

And yet� humans process language in real time every day with very little misunderstanding�

How can a computer do the same�

By constraining the problem� Fifty six million and some odd amount of thousands is�

indeed� a large number� Two hundred and thirty �ve billion is much larger� These two

numbers represent the number of choices an computational semantic system faces for a

medium size and a slightly larger size problem� Come across a truly long sentence and

the numbers soar past ����� And that only to determine basic semantic dependencies�

add in ellipsis and coreference resolution possibilities and they increase even faster� Such

exponential growth in the size of the problem must be constrained if serious work is to be

accomplished�

In a �blocks� world� CSP techniques and solution synthesis are powerful mechanisms�

Many �real�world� problems� however� have a more complex semantics� constraints are

not �yes� or �no� but �maybe� and �sometimes�� In computational semantics� certain

word�sense combinations might make sense in one context but not in another� We need a

method as powerful as CSP for this more complex environment� Our proposal in presenting

HG is to �
 use constraint dependency information to partition problems into appropriate

sub�problems� �
 combine 	gather
 results from these sub�problems using a new solution

synthesis technique� and �
 prune 	hunt
 these results using� not constraint satisfaction� but

branch�and�bound techniques�

This section provides the background information necessary to understand how HG ap�

plies these principles to semantic analysis� We begin by summarizing the Mikrokosmos

Machine Translation system� Kavi Mahesh� Evelyne Viegas and Sergei Nirenburg are joint

collaborators in this project and have contributed to this section�

In the Mikrokosmos 	�K
 project being developed by researchers at the Computing Re�

search Laboratory 	CRL
 of New Mexico State University��� a comprehensive study of a

��Please see the CRL WWW home page for a more complete overview of the �K Project at
http���crl�nmsu�edu�index�html

�� THE MIKROKOSMOS MACHINE TRANSLATION SYSTEM �

INPUT TEXT
SYNTACTIC
 PARSER

INSTANTIATION

 PROCESS

 CONSTRAINT
SATISFACTION

COMBINATION
 PROCESS

ONTOLOGY

LEXICON

 TMR
FRAGMENTS

LARGER TMR
 FRAGMENTS

 Lexical
 Syntactic
Specification

 Lexical
 Semantic
Specification

Ontology
Concepts

SYNTACTIC
 PARSE
 FOREST

Semantic Dependency
 Structure Builder

Forest of TMR
 Structures

 MICRO-

THEORIES

FINISHED TMRs

Ontology
Concepts

Figure ��� The Mikrokosmos NLP Architecture

variety of microtheories central to the support of KBMT systems is being carried out with

the ultimate objective of de�ning a methodology for representing the meaning of natural lan�

guage texts in a language�neutral interlingual format called a text meaning representation

	TMR
� The TMR represents the result of analysis of a given input text in any one of the

languages supported by the KBMT system� and serves as input to the generation process�

The meaning of the input text is represented in the TMR as elements of an independently

motivated model of the world 	or ontology
� The link between the ontology and the TMR is

provided by the lexicon� where the meanings of most open class lexical items are de�ned in

terms of their mappings into ontological concepts and their resulting contributions to TMR

structure� Information about the non�propositional components of text meaning such as

speech acts� speaker attitudes and intentions� relations among text units� deictic references�

etc� is also derived from the lexicon with inputs from other microtheories� and becomes part

of the TMR� Figure �� illustrates the �K architecture for analyzing input texts�

Initially� the project is concentrating on the microtheory of lexical�semantic dependency�

the core microtheory underlying our approach to a comprehensive analysis of the meaning of

texts� and the one in which the basic structure of events or states and their properties is spec�

�� THE MIKROKOSMOS MACHINE TRANSLATION SYSTEM ��

i�ed� Additional microtheories are being developed for aspect� time� modalities� discourse

relations� reference� event ellipsis and style���

���� Text Meaning Representations

A TMR is a language�neutral description 	an interlingua
 of the meaning conveyed in a

natural language text� and is derived by syntactic� semantic� and pragmatic analysis of the

text� Because the TMR is intended to be language neutral� it is also deliberately syntax

neutral� and avoids using terminology like clause� proposition� tense� etc�� which are asso�

ciated more closely with the syntactic structure of a particular language� In addition to

providing information about the lexical�semantic dependencies in the text� the TMR rep�

resents stylistic factors� discourse relations� speaker attitudes� and other pragmatic factors

present in the discourse structure� In doing so� the TMR captures not only the meaning of

individual elements in the text� but also the relations between those elements� and captures

both propositional and non�propositional components of textual meaning�

The results of analysis of an input text are represented in a formal� frame�based language�

The meanings of most open�class lexical units are represented by instantiating� combining

and constraining concepts available in the ontology� However� the intent of a text cannot

fully be captured by instantiating ontological concepts alone� information about pragmatic

and discourse related phenomena must be represented� and relations between components

of meaning must also be expressed� To facilitate this� the TMR language contains special

notation for representing attitudes� relations� speech acts� time� quantities� rates� and sets�

Figure �� displays a portion of the TMR output for sentence ��

�a� El grupo Roche� a trav�es de su compan�ia en Espana� adquiri�o Doctor Andreu� se

inform�o hoy aqu�i�

�b� The Roche group� through its company in Spain� acquired Doctor Andreu� it was

announced today�

The central concept for the �acquire� clause is ACQUIRE����� This maps various con�

cepts into the AGENT� THEME and INSTRUMENT slots� The signi�cance of these map�

��For example	 see
Viegas and Nirenburg	 ����� for a treatment of verbal ellipsis�

�� THE MIKROKOSMOS MACHINE TRANSLATION SYSTEM ��

Figure ��� Partial Text Meaning Representation of Example Sentence�

pings and how they were selected will be detailed below�

���� Ontology

An ontology for NLP purposes 	Mahesh and Nirenburg� ����� Nirenburg� et al� ����
 is a

body of knowledge about the world 	or a domain
 that a
 is a repository of primitive sym�

bols used in meaning representation� b
 organizes these symbols in a tangled subsumption

hierarchy� and c
 further interconnects these symbols using a rich system of semantic rela�

tions de�ned among the concepts� In order for such an ontology to become a computational

resource for solving problems such as ambiguity and reference resolution� it must be actually

constructed� not merely de�ned formally� The ontology must be put into well�de�ned rela�

tions with other knowledge sources in the system� In this application� the ontology supplies

world knowledge to lexical� syntactic and semantic processes� and other microtheories�

We have �nished the initial acquisition of events and properties related to the domain of

company mergers and acquisitions 	Mahesh and Nirenburg� ����
� The �K ontology consists

of over ���� concepts organized in a tangled hierarchy with ample interconnection across

the branches� The ontology emphasizes depth in organizing concepts and reaches depth ��

or more along a number of paths� The branching factor is kept much less than �� at most

�� THE MIKROKOSMOS MACHINE TRANSLATION SYSTEM ��

ALL EVENT

OBJECT

PROPERTY

PHYSICAL-OBJECT

MENTAL-OBJECT

SOCIAL-OBJECT

PHYSICAL-EVENT

MENTAL-EVENT

SOCIAL-EVENT

RELATION

ATTRIBUTE

SCALAR-ATTRIBUTE

LITERAL-ATTRIBUTE

PERCEPTUAL-EVENT

COMMUNICATIVE-EVENT

COGNITIVE-EVENT

EMOTIONAL-EVENT

EVENT-RELATION

OBJECT-RELATION

EVENT-OBJECT-RELATION

MATERIAL

SEPARABLE-ENTITY

PLACE

REPRESENTATIONAL-OBJECT

ABSTRACT-OBJECT

ORGANIZATION

GEOPOLITICAL-ENTITY

Figure ��� Top�Level Hierarchy of the Mikrokosmos Ontology Showing the First Three Levels
of the Object� Event� and Property Taxonomies�

points� Each concept has� on average� � to �� slots linking it to other concepts or literal

constants� The top levels of the hierarchy 	Figure ��
 have proved very stable as we are

continuing to acquire new concepts at the lower levels�

Unlike many other ontologies with a narrow focus� our ontology must cover a wide variety

of concepts in the world� In particular� our ontology cannot stop at organizing terminological

nouns into a taxonomy of objects and their properties� it must also represent a taxonomy of

	possibly� complex
 events and include many interconnections between objects and events to

support a variety of disambiguation tasks� For example� in the sample text above� the ana�

lyzer must distinguish between two meanings of �adquirir�� �
 ACQUIRE� and �
 LEARN�

where ACQUIRE and LEARN are concepts in the ontology de�ned in Figure ���

In our example sentence� the fact that the THEME of LEARN is constrained to be

INFORMATION will be enough to eliminate it from consideration� Additional examples of

disambiguation will be given below�

The ontology aids natural language processing in the following ways�

� It represents selectional preferences for relations between concepts� This knowledge is

invaluable for resolving ambiguities by means of the constraint satisfaction process�

�� THE MIKROKOSMOS MACHINE TRANSLATION SYSTEM ��

Figure ��� Ontological De�nition of ACQUIRE and LEARN�

� It enables inferences to be made from the input text using knowledge contained in the

concepts� This can help resolve ambiguities as well as �ll gaps in the text meaning� A

default value from the ontological concept can be �lled in a slot� for example� when a

text does not provide a speci�c value�

� It enables inferences to be made using the topology of the network� as in searching

for the shortest path between two concepts� Such search�based inferences can support

metonymy and metaphor processing� �guring out the meaning of a complex nominal

or be used in constraint relaxation when the input cannot be treated with the available

knowledge�

���� Semantic Lexicon

In the model of NLP adopted in a KBMT paradigm� the lexicon becomes the key locus and

source of knowledge� Compared to many other computational lexicons� in our approach a

�� THE MIKROKOSMOS MACHINE TRANSLATION SYSTEM ��

Figure ��� Lexicon Entries for �adquirir��

substantial amount of information is either directly located in the lexicon� or is indexed or

referenced through the lexicon� Figure �� depicts the lexicon entries for the Spanish word

�adquirir�� There are two entries corresponding to the two word�senses we currently identify�

Sense � maps into an ACQUIRE concept while sense � maps into a LEARN concept�

An entry in the lexicon is comprised of a number of zones� integrating various levels of

lexical information� from phonological and morphological to lexical�semantic and pragmatic

information� Of particular interest to us here are the SYN�STRUC and SEM zones�

SYN�STRUC Zone� The content of the SYN�STRUC zone of a lexicon entry is an in�

dication of where the lexeme may �t into the syntactic parse of a sentence� In addition�

this zone provides the basis of the syntax�semantics interface� The information contained

in this zone essentially amounts to an underspeci�ed piece of a syntactic parse of a typi�

cal sentence using the lexeme� this piece contains the lexeme in question� and may include

information from any number of embedded levels 	but typically not more than two
 above

�� THE MIKROKOSMOS MACHINE TRANSLATION SYSTEM ��

or below the current lexeme� The information included re�ects those levels and elements of

the syntactic parse which the current lexeme syntactically selects for� in the current model�

verbs select for all their arguments� modi�ers select for their heads� prepositions select for

their objects as well as for their node of attachment� etc� The SYN�STRUC zone thus de�

termine such things as subcategorization 	optionality is indicated� otherwise obligatoriness

assumed
� complements allowed� etc�

In the SYN�STRUC zone� we place variables at the ROOT positions selected for by the

lexeme in question� which is identi�ed by the variable var�� Subsequently numbered variables

	var�� var�� ���
 identify other syntactic nodes with which the current lexeme has syntactic

or semantic dependencies� For example� the pattern below is appropriate for any regular

mono�transitive verb���

��root var��

�subj ��root var�� �cat n���

�obj ��root var�� �cat n����

For instance� in our example sentence� while processing the �adquirir� lexicon entry�

�Grupo Roche� will be bound to var� as the SUBJ� while �Dr� Andreu� will be bound to

var�� If a SYN�STRUC requires a syntactic pattern not found in the current sentence� then

that word sense is not used���

The variable bindings introduced in the SYN�STRUC provide an interaction with the

meaning pattern from the SEM zone in that certain portions of the meaning pattern for

a phrase or clause are regularly and compositionally determined by the semantics of the

components 	Principle of Compositionality
� the structure of the resulting meaning pattern

is determined not only by the semantic meaning patterns of each of the components� but

also by their syntactic relationship in the SYN�STRUC zone�

SEM Zone� The SEM zone provides the mapping to the output semantics� Each SEM

zone is basically an underspeci�ed TMR fragment which includes as much meaning as can

��An LFG�like syntactic description is used�

��Except possibly in failure recovery situations	 not discussed here�

�� THE MIKROKOSMOS MACHINE TRANSLATION SYSTEM ��

be extracted from the word being processed� The interaction of SEM zones from all the

words in the sentence�� result in the �nal TMR outputs�

Referring to Figure �� again� the adquirir�v� SEM zone creates an ACQUIRE concept

with AGENT and THEME slots that will be �lled by the TMR names that are produced by

�grupo Roche� 	var�
 and �Dr� Andreu� 	var�
� respectively� Other words in the sentence

can �ll in additional information in the ACQUIRE TMR� One of the meanings of �a trav�es

de�� treated as a phrasal entry� will add an INSTRUMENT slot�

In addition to specifying TMR fragments� the SEM zone can add in language�speci�c

semantic constraints which add to or override the language�neutral constraints provided by

the ontology��	 For example� the English verb �to taxi�� as in �the jet taxied to the gate�

maps into a GROUND�CONTACT�MOTION� but further speci�es that its INSTRUMENT

must have AIRCRAFT semantics� These �constrained mappings� from language�speci�c

de�nitions to language�neutral concepts arise because the ontology does not attempt to

provide concepts for every conceivable event��� nor is its goal to predict all of the idiosyncratic

constraints found in di�erent natural languages���

���� The Semantic Analyzer

The semantic analyzer is charged with the task of combining the knowledge contained in the

ontology and lexicon and applying it to the current input to produce output TMRs� The

central tasks involved in this endeavor are to retrieve the appropriate semantic constraints

for each possible word sense� test each in context� and construct the output TMRs by

instantiating the SEM zones of the word senses which� taken together� best satisfy the

combination of constraints� Below� we will examine the steps taken to choose the ACQUIRE

meaning of �adquirir� over the LEARN meaning� We will then brie�y trace out the other

decisions made and provide a summary of the computational methods applied in the analysis

process�

��along with information added by other microtheories

�	The next section describes how the analyzer retrieves and applies constraints from the ontology

��For example	 a South�American Indian language has a single word for �she carries water down to the
river
	 but our ontology sadly cannot map directly into such an event�

��For example	 one word for a human drinking	 another word for animals drinking�

�� THE MIKROKOSMOS MACHINE TRANSLATION SYSTEM ��

 INSTRUMENT SOCIAL-EVENT TEMPORAL LEARN ORGANIZATION

ORGANIZATION LOCATION OWNER CORPORATION LOCATION NATION ACQUIRE HUMAN

Grupo-Roche a-traves-de su compania en espana adquirir Dr. Andrew

Figure �
� Possible Word Senses for Example Sentence�

Generating Constraints� Step � in the semantic analysis process is acquiring the syn�

tactic analysis of the input sentence� To avoid duplication of e�ort� �K uses the output of

the Pangloss MT 	Frederking� et al� ���

 syntactic analysis module 	or Panglyzer 	Farwell�

et al� ���

� also developed at NMSU��� Since� at the present time� the Panglyzer makes all

attachment decisions� �K is limited to deciding between word sense meanings���

The �rst real step for �K is to gather up all of the possible lexicon entries for each

of the words� Figure �
 gives a simpli�ed list of word�sense mapping possibilities for the

example sentence� For �adquirir�� the two lexicon entries shown in Figure �� are retrieved�

with mappings into ACQUIRE and LEARN word senses� For each word sense� the SYN�

STRUC zone must be examined to see if it �ts the current sentence� If it does� then the

VARs must be bound to their corresponding word instances in the current input sentence�

For �adquirir�� both word senses have identical SYN�STRUC zones� so the variable binding

process displayed in Figure �� applies to both�

After variable binding� the semantic analyzer examines the SEM zone of each word sense in

order to construct a list of constraints that must be satis�ed for that word sense� Constraints

can arise from �ve sources�

�� The ontological de�nition of the current word�sense restricts the semantics of its slot

�llers� The de�nitions for ACQUIRE and LEARN are shown in Figure ��� ACQUIRE

and LEARN both require a HUMAN AGENT� ACQUIRE requires a non�HUMAN

OBJECT for its THEME� while LEARN requires an INFORMATION THEME�

��We would prefer to interleave semantics in the syntactic analysis process� Currently	 we are investigating
ways to modify the Pangloss��K interface to provide a level of interleaving	 especially with regards to PP
attachments�

��Again	 this limitation will be removed shortly� Choosing between attachments will proceed in the same
constraint�satisfaction paradigm as described for word senses	 with some possible inputs from attachment
microtheories such as �minimal attachment
	 etc��

�� THE MIKROKOSMOS MACHINE TRANSLATION SYSTEM ��

((root $VAR0) ((root ADQUIRIR-1)

 (subj ((root $VAR1) (subj ((root GRUPO-ROCHE-2)

 (cat n))) (cat n)))

 (obj ((root $VAR2) (obj ((root DR-ANDREW-3)

 (cat n))) (cat n)))

 (obj ((root COMPANIA-5)

 (mod ((root SU-6)))

 (pp-adjunct ((root EN-7)

 (obj ((root ESPANA-8)))))))))

)

"adquirir" SYN-STRUC Input Syntax

 (cat v) (cat v)

) (pp-adjunct ((root A-TRAVES-DE-4)

Figure ��� Variable binding for �adquirir��

�� The ontological de�nition of the word�sense that will �ll the slot restricts the kind

of slots it may be the �ller of� Type � constraints ask �What kind of �llers do I al�

low�� Type � constraints ask about the �llers� �What kind of concepts can this �ller

modify with the given slot�� For instance� HAMMER� when used as the �ller for an

INSTRUMENT slot usually modi�es some sort of BUILD event� In the example� OR�

GANIZATION 	from Grupo�Roche��
 as an AGENT �ller currently�� does not select

for any speci�c type of event� nor do ORGANIZATION 	Dr�Andrew��
 or HUMAN

	Dr�Andrew��
 as THEMEs select for a speci�c event�

�� The ontological de�nition of the slot 	the property name that is being added
 restricts

what its DOMAIN and RANGE can be� Sometimes� in the absence of more speci�c

constraints from � and � above� �K can �nd default values by looking up the slot

itself in the ontology� An AGENT slot requires its DOMAIN 	adquirir� in this case

to be an EVENT and its RANGE 	Grupo�Roche
 to be HUMAN��� A THEME slot

REQUIRES an EVENT for the DOMAIN 	adquirir
 and any OBJECT or EVENT

for its RANGE 	Dr�Andrew
� These constraints are always very general� but still can

help eliminate wrong attachments and word meanings�

� The lexicon entry explicitly includes constraints that override or add to the above

ontological constraints� In our example� however� the two word�senses for �adquirir�

have no explicit constraints in their lexicon entries�

��It is clear that ORGANIZATION as AGENT or THEME should select di�erent types of EVENTS than	
say	 HUMAN� As the �K ontology is re�ned	 such knowledge will be added�

��Please see the discussion of metonymy in the next section to understand how ORGANIZATION
grupo�
roche�s meaning� can meet a HUMAN constraint�

�� THE MIKROKOSMOS MACHINE TRANSLATION SYSTEM �

�� Other structures in the sentence that are not explicitly speci�ed by the lexicon entry

can nonetheless modify the word in question� For instance� adjectives and PPs typically

add slots to the TMR corresponding to the word they modify� even though they rarely

are included in its lexicon entry explicitly� In this case� �adquirir� is modi�ed by �a�

traves�de�� which� depending on the meaning used� will either add a LOCATION slot

or an INSTRUMENT slot to the TMR resulting from adquirir�s analysis� In both cases�

the slot will be �lled by the TMR that results from �compania���� which maps into

either a CORPORATION or a SOCIAL�EVENT 	as in �companionship�
� The only

interesting constraints that arise out of these combinations is that for the LOCATION

meaning of �a�traves�de�� the DOMAIN 	adquirir
 must be a PHYSICAL�OBJECT

	which it is not
� whereas the INSTRUMENT meaning requires an EVENT� Although

the LOCATION meaning of �a�traves�de� can be eliminated using these constraints�

it does not help to further disambiguate �adquirir��

Applying Constraints� �K employs an ontological graph search function 	Onyshkevych�

����
 to check constraints� This function determines relevant paths between two con�

cepts and returns a score based on their degree of closeness� For example� check�onto�

con	ACQUIRE EVENT
�� returns a score of ��� 	out of ���
 since ACQUIRE is a type

of EVENT� However� check�onto�con	ORGANIZATION HUMAN
 returns a score of ���

along with the path 	ORGANIZATIONHAS�MEMBER HUMAN
� This indicates that OR�

GANIZATION can stand in the place of HUMAN because it has HUMAN members� This

and other types of metonymy are frequent in natural language and are detected automatically

by �K�

Determining the Best Combination of Word Senses� The early versions of the �K

analyzer at this point simply tried all of the possible combinations of word senses� Each

combination activates the applicable constraints� which are combined into a total score for

the combination� The combination with the best total score is chosen as the basic Semantic

Dependency Analysis� the core TMRs to which other microtheories 	such as aspect and

coreference
 can be applied� In the example sentence� the following choices were made�

��The lexicon entries for �a�traves�de
 needs to be consulted to determine these facts�

��Which asks �Is ACQUIRE an EVENT�

�� THE MIKROKOSMOS MACHINE TRANSLATION SYSTEM ��

�� �a�traves�de� is INSTRUMENT� since its LOCATION meaning would require �adquirir� to
be a PHYSICAL�OBJECT�

�� �en� is LOCATION� since its TEMPORAL meaning requires �espana� to be a TEMPORAL�
OBJECT�

� �adquirir� maps into ACQUIRE� since its LEARN sense requires �Dr�Andrew� to be IN�
FORMATION�

�� �Dr�Andrew� is an ORGANIZATION� since its HUMAN meaning cannot be the THEME of
an ACQUIRE concept�

�� �K currently has trouble choosing between the CORPORATION and SOCIAL�EVENT
meaning of �compania�� the object of the �a�traves�de� PP� Both can have locations in
Spain� and both can be INSTRUMENTS of EVENTs� At this point� �K needs to add infor�
mation into the ontology that ORGANIZATIONS can typically 	ll the INSTRUMENT slot
of ACQUIRE acts� but SOCIAL�EVENTS cannot�

It must be stressed that all of these choices resulted from the fact that the combination of

all scores from all the semantic constraints for this combination of word senses was judged

superior to any other combination of word senses�

The Mikrokosmos Project at NMSU is one of the �rst� large�scale attempts at a knowledge�

based machine translation system� We have successfully implemented the �rst and central

stage of Semantic�Dependency�Structure building� This involved the creation of a large�

language independent ontology which interacts with the Spanish semantic lexicon� The �K

analyzer extracts semantic constraints from these two sources� analyzes them using a sophis�

ticated graph search function� and determines the combination of choices that leads to the

best overall score�

Previous to the work on Hunter�Gatherer� the semantic analyzer performed its search

through an exhaustive listing of combinations of word senses� This approach worked for

many inputs� but the process was tedious� and� for some longer sentences� the processing

could consume several days� For two or three sentences� no results could be obtained at all�

���� Using Hunter�Gatherer in Semantic Analysis � The Results

Table � shows the latest disambiguation results from Mikrokosmos� These are results from

analyzing four real�world texts which had� on the average� �� sentences with over �� words per

�� THE MIKROKOSMOS MACHINE TRANSLATION SYSTEM ��

sentence� Constraints were drawn from the �K ontology� consisting of about ���� concepts�

and lexicon� with about ���� entries�

It can be seen that� on an average� we get ��" correct disambiguation of open class words�

counting only ambiguous words� That is� of all the ambiguous open�class words in the texts�

Mikrokosmos selects the right sense ��" of the time� If we count all open class words� the

percentage correct goes up to about ��"�

Text� �� Roche �� R�R
� Matra �� Comercio Bras Avg

� words
��
��
��
�

��

� sentences �� �� �� �� ��

words�sentence ���� ���� ���� ���� ����

� open�class ��
 ��� ��� ��� ���

� ambiguous �� �� ��
� ��

� resolved by syntax �� �� �� �� ��

� ambiguous after syntax
� �

� �

�

� correctly resolved
� �� �� �� ��

� ambiguous correct ��� ��� ��� ��� ���

� correct overall ��� ��� �
� ��� ���

Table �� Mikrokosmos Word Sense Disambiguation Results

It is obvious from the Table that the performance on the �rst and third texts 	Roche

and Matra�Hachette
 was worse than the performance on the other two texts� The �rst and

third texts had longer sentences� many more ambiguous words� and constructs that make

disambiguation hard 	e�g�� ambiguous words embedded in appositions
� Moreover� just a

handful of di�cult words led to signi�cantly worse performance in these texts� For example�

the word operacion occurred several times in these texts and was hard to disambiguate

between its WORK�ACTIVITY� MILITARY�OPERATION� SURGERY� and FINANCIAL�

TRANSACTION senses�

It can also be noted from Table � that syntactic information contributed to about ��" of

word sense disambiguation 	�� of
�� on an average� were disambiguated by syntax
� Often�

syntactic binding eliminates word senses and makes an ambiguous word unambiguous in its

syntactic context�

One potential �aw with these tests was that the four texts were the same ones used in

lexicon and ontology acquisition� This �aw is not as great as it may seem� though� In

�� THE MIKROKOSMOS MACHINE TRANSLATION SYSTEM ��

research such as statistical modeling� when the data is used to actually train the statistical

weights in order to obtain the best coverage� testing on the training data does not make

any sense� In our work� however� we do not �tweak� parameters in order to obtain more

favorable results� Revisions occur almost exclusively when some lexicon or ontology entry

is found to be incorrect� For instance� in the lexicon� an incorrect or incomplete syntactic

speci�cation could be eliminating one or more senses of a word� or a mapping to an incorrect

concept might be causing unnecessarily low constraint scores� These are the kinds of errors

the Mikrokosmos team focused on when developing the knowledge sources�

In order to con�rm that our revision techniques were not unduly a�ecting the results� we

tested the Mikrokosmos analyzer on a new text� previously unseen by us� The results are

very promising and quite comparable to the ones above�

total number of open class words� ���

number of words with only one sense� ��

number of words with only one senses after syntax� ��

number ambiguous words after syntax� ��

number ambiguous words correctly disambiguated� ��

number ambiguous words incorrectly disambiguated� 	

i�e�� ����" correct counting only ambiguous open class words and ����" correct counting

all open class words� These numbers are almost the same as the numbers for training texts

shown earlier in Table ��

With regards to the Hunter�Gatherer system� these results are presented as evidence that

this research can be used pro�tably in real�life problems� Before HG was implemented� the

testing�revision cycle in the project was extremely tedious� Analyzing even small sentences

or phrases often took several minutes� and some of the sentences could not be analyzed in

whole at all� After HG was implemented� the testing cycle was improved greatly� Not only

did the speed increase� but �what�if� experiments were then simpli�ed� and to a large extent�

made practical� Furthermore� a ��" success rate in disambiguating open�class words can be

taken as strong proof of the reliability of the Hunter�Gatherer system�

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS ��

*
* * *

*
ORGANIZATION LOCATION OWNER CORPORATION LOCATION NATION ACQUIRE HUMAN
 INSTRUMENT SOCIAL-EVENT DURING LEARN ORGANIZATION

Grupo Roche a traves de su compania en espana adquirir Dr. Andreu

Figure ��� Possible Word Senses for Example Sentence

a-traves-de

su

compania

en

Dr-Andrew

adquirir

Grupo-Roche

own

Espana
nation

acquire

human

org

loc instr

ownown

social-evsocial-ev corpcorp

locloclocloc temptemptemptemp

nationnationnationnationnationnationnationnation

acquireacquireacquireacquireacquireacquireacquire

orgorgorgorgorgorgorgorgorgorgorgorgorgorgorgorg humhumhumhumhumhumhumhumhumhumhumhumhumhumhumhum

temporal

social-event

instrument
location

organization

organization

corporation

location

learn
learn learn learn learn learn learn learn learnacquire

Figure ��� Decision Tree for Example Sentence

�� Using Hunter�Gatherer in Semantic Analysis

This section will examine Hunter�Gatherer�s use in computational semantic problems� As

will be argued in section �� these types of problems typically consist of bundles of tightly

constrained sub�problems� each of which combine at higher� relatively constraint�free levels

to produce the complete solution� The algorithms that identify these bundles� or subgraphs�

along with their constraint dependencies� will be demonstrated here� A simple� �literal��

semantic problem will be solved using CSP consistency algorithms� The problem of non�

literal meanings will be presented� with the solution to this problem to be presented in the

�Using Branch�and�Bound in an Uncertain World� section�

Consider Figure ��� an example of a very simple Spanish sentence analyzed by the

Mikrokosmos semantic analyzer� The Spanish sentence along with possible word senses are

shown� Figure �� shows the decision tree for this sentence� The paths leading to leaves at

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS ��

the bottom of the tree represent possible solutions� In this case� there are �� such solutions�

When some fairly obvious �literal� constraints are imposed� most of these paths can be

eliminated� Obviously� CSP techniques can help immensely in this literal�interpretation

paradigm� Some of the constraints that could be used to eliminate sub�trees in Figure ��

are as follows�

� the location sense for a traves de is ruled out because neither of the two senses of compania

� fcorporation�social�eventg � are descendants of place in the ontology�

� adquirir is not used in its learn sense because learn requires an object of type knowledge�
which Dr� Andreu � fhuman� organizationg is not�

� Dr� Andreu is not human because only organizations can be acquired in our ontology�

Unfortunately� a literal imposition of constraints does not work in computational seman�

tics� For example� a	traves	de could very well be location� because corporation names are

often used metonymically to stand for �the place of the location��

I walked to IBM�

I walked to where IBM
s building is�

Therefore� the fact that compania is not literally a place only biases the result towards a

di�erent interpretation� In fact� under certain contexts� the location interpretation might

be preferred� certainly it cannot be ruled out completely� Constraint satisfaction techniques

such as arc�consistency� therefore� will be of limited value� This will be true of any problem

whose constraints cannot be stated in terms of yes�no answers� HG overcomes this limitation

by using branch�and�bound as the primary mechanism for pruning the search space�

Figure �� gives a di�erent view of this same problem by graphically displaying the con�

straint dependencies present in Figure ��� These constraint dependencies can be identi�ed

simply by iterating through the list of constraints��

Figure �� clearly shows three sub�problems� or subgraphs� that are relatively indepen�

dent� If these subgraphs could be identi�ed� the processing involved in �nding a complete

solution could be decomposed into three sub�problems� Figure �� displays the results of

such a decomposition� The three subgraphs represent sub�problems with
� � and
 possible

��The semantic constraints are drawn from the lexicon and ontology as described in the previous section�

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS ��

Grupo-Roche

Adquirir

a-traves-de
compania

su
en Espana

Dr-Andreu

Figure ��� Constraint Dependencies in Sample Sentence

solutions� respectively� Notice that there are still dependencies between the subgraphs� The

�rst two subgraphs are connected because each contains the word adquirir� the second two

are connected because they both contain the word compania�

Section ��� will describe how the solution synthesis algorithms can be used to combine

results from subgraphs to form larger and larger solutions� the largest of which will be

the solution to the whole problem� Section ��� then goes through the branch�and�bound

optimization stages for this example� But �rst� section ��� is devoted to the decomposition

of the original problem into subgraphs which are the inputs to the later stages of processing�

���� Identifying Subgraphs of Dependency

Section ��� presented an e�cient algorithm for partitioning a graph into subgraphs for use

by HG� This partitioning algorithm tries to create subgraphs that minimize the complexity

of the main HG algorithms� The algorithm began by creating �seed� subgraphs in various

regions of the graph� A potential seed is created for each vertex� or variable� in the input

simply by listing all of the vertices that are adjacent to it� For instance� for Grupo	Roche

	G
� adquirir 	A
 and Dr	Andreu 	D
 are adjacent� This gives one potential seed 	A�D�G
�

Potential seeds are generated for each variable� with the results as follows�

G �Grupo�Roche�
 �A�D�G�

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS ��

adquirir

a-traves-de

compania

compania

en

espana

adquirir

grupo-roche

dr-andreu

Figure ��� Problem Decomposition in Sample Sentence

D �Dr�Andreu�
 �A�D�G�

A �adquirir�
 �A�D�G�ATD�C�

ATD �a�traves�de�
 �A�ATD�C�

C �compania�
 �A�ATD�C�E�ESP�S�

S �su�
 �C�S�

E �en�
 �C�E�ESP�

ESP �Espana�
 �C�E�ESP�

These seeds are then ordered with the smallest �rst 	and duplicates removed
�

�C�S�

�A�D�G�

�C�E�ESP�

�A�ATD�C�

�A�D�G�ATD�C�

�A�ATD�C�E�ESP�S�

Our goal now is to keep only one seed for a given region of the graph� So we simply go

through this list in order� and delete any that are in a region included by a previously

accepted seed� We de�ne the region of a seed to be the variables in the seed� plus any

variables adjacent to the seed� The regions for each seed are given below�

�C�S�
 �C�S�A�ATD�E�ESP�

�A�D�G�
 �A�D�G�ATD�C�

�C�E�ESP�
 �C�E�ESP�S�ATD�A�

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS ��

�A�ATD�C�
 �A�ATD�C�G�D�S�E�ESP�

�A�D�G�ATD�C�
 �A�ATD�C�G�D�S�E�ESP�

�A�ATD�C�E�ESP�S�
 �A�ATD�C�G�D�S�E�ESP�

We always accept the �rst seed on the list� Having done this� for this example� all of the

other seeds are rejected because they all contain ATD in their region� which is included in the

	C�S
 seed� This makes sense because this is a simpli�ed example with a small input graph�

Larger inputs result in more than one seed� but the process is identical� This concludes step

� of the algorithm in section ����

HG requires subgraphs to identify the following information� its input variables 	that are

not involved in any input subgraphs
� its input subgraphs� and all of its variables that are

constrained outside the subgraph� For our seed� 	C�S
� this information can be represented

as 		C�S
� nil� 	C

�

Now� for each seed 	in this case only one
� we determine the best possible action to take

to expand the seed� Possible actions to extend a subgraph are either�

�� The addition of variables onto the subgraph so that at least one additional variable in

the seed is now covered 	has no constraints outside the new subgraph
�

�� The combination of two subgraphs so that at least one new variable that wasn�t covered

in either of the two subgraphs alone is now covered�

The best possible action is the action that requires the lowest input�complexity� As de�ned in

section ���� the input complexity is the sum of all the output complexities of input subgraphs�

plus the number of individual variables added�

Since� in this case� there are no other subgraphs� only option � is possible� There is only �

variable in the 	C�S
 seed that is not already covered� namely C� Therefore� the only action

possible is to add on all the variables necessary to cover C� This results in the subgraph

described by� 		A�ATD�E�ESP
� 	C�S
� 	A

� In other words� by adding on the variables

A� ATD� E and ESP to the input subgraph 	C�S
� we create a new subgraph whose only

variable constrained outside the subgraph is A� To keep track of this subgraph� we name it

	A�ATD�E�ESP�	C�S

� Since this is the only possible action� we take it� �o�cially� producing

the subgraph 	A�ATD�E�ESP�	C�S

�

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS ��

Grupo-Roche

Adquirir

a-traves-de
compania

su
en Espana

Dr-Andreu

1

2

3

Figure ��� Subgraph Construction � Method �

Next we try to expand this subgraph� Similar to our �rst expansion� there is only one

variable constrained outside� namely A� Again� there are no other subgraphs available to

combine with� so we simply need to add on variables to cover A� This results in the sub�

graph 		G�D
� 	A�ATD�E�ESP�	C�S

� nil
� That is� by adding on the variables G and D to

the subgraph 	A�ATD�E�ESP�	C�S

� we produce a subgraph that has no variables a�ected

outside the subgraph� Since this is the only action possible� we take it� producing a subgraph

that contains the entire problem� Thus� we are done�

Figure �� graphically displays the subgraphs created by this process� The input com�

plexity of subgraph � is �� since it contains two input variables� Its output complexity is �

because only one of its variables are constrained outside the subgraph� The input complexity

of subgraph � is the output complexity of subgraph � 	�
� plus the number of variables added

	

� for a total of �� Its output complexity is again �� The input complexity of subgraph �

is the output complexity of subgraph � 	�
� plus the number of variables added 	�
� for a

total of �� The maximum input complexity� which will dominate the complexity of HG for

this problem� is therefore �� Assuming each variable had two values in its domain for this

simpli�ed problem� we can therefore expect to examine on the order of �� � �� combinations

it�

It is easy to see that this is not the best way to partition this particular graph� This

emphasizes the point made earlier that the algorithm in section ��� is a heuristic algorithm

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS �

Grupo-Roche

Adquirir

a-traves-de
compania

su
en Espana

Dr-Andreu

1 2

3

4

5

Figure ��� Subgraph Construction � Method � For Tree�like Inputs

that is designed to quickly partition a graph in a reasonable manner with respect to the

needs of the main HG algorithm� Even though the optimal partitioning was not achieved�

HG still guarantees the optimal answer� even if it does take longer�

We have developed additional algorithms to partition speci�c types of problems� In partic�

ular� we can take advantage of the tree�shaped bias in computational semantics 	see section

�
 to produce� even more easily� the partition in Figure ��� The maximum input complexity

for this partitioning is
� Actually� partitions with maximum input complexity of � can be

found for this input� however� since partitioning is not the focus of our research� we will not

present these additional algorithms� The point is that the graph partitioning methodology�

although certainly general enough to apply to many problems using the algorithm in section

���� can be further optimized for speci�c problem types� See section ��
 for further discussion

on graph partitioning� its relation to the input graph topology� and how it can be used to

more simply describe how and why HG works�

���� Solution Synthesis for Semantic Analysis

Once the input subgraphs are determined� Hunter�Gatherer begins processing� We will

assume the input subgraphs of Figure ��� Below we outline how our solution synthesis

mechanism is used to combine results from previous subgraphs in this example� Following

this is a detailed example of how the branch�and�bound optimization stage is carried out�

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS ��

As described above� Freuder introduced solution synthesis as a means to �gather up� all

solutions for a CSP without resorting to traditional search methods� Freuder�s algorithm

created a set of two�variable nodes that contained combinations of every two variables�

These two variable nodes were then combined into three variable nodes� and so on� until a

node containing all the variables� i�e� the solution� was synthesized� At each step� constraints

were propagated down and then back up the �tree� of synthesized nodes�

Tsang improved greatly on this scheme with the Essex Algorithms� These algorithms

assumed that a list of the variables could be made� after which two�variable nodes were

created only between adjacent variables in the list� Higher order nodes were then synthesized

as usual� starting from the two�variable nodes� Tsang noted that some orderings of the

original list would prove more e�cient than others� most notably a Minimal Bandwidth

Ordering� 	MBO
� which seeks to minimize the distance between constrained variables�

HG extends the concept of MBO and carries it to a higher level� The whole concept of

synthesizing solution sets one order higher than their immediate ancestors is thrown out�

Synthesis� here� is aimed at maximally interacting groupings of variables� of any order�

Furthermore� this process of using maximally interacting groupings� or subgraphs� extends

to the highest levels of synthesizing� Tsang only creates second order nodes from adjacent

variables in a list� with the list possibly ordered to maximize second order interactions� After

that� third and higher order nodes are blindly created from combinations of second order

nodes� In this work� in a sense� MBO is continued on to the higher levels� The subgraphs of

co�constrained variables described in the previous section guide the synthesis process from

beginning to end�

One of the main improvement of this approach comes from a recognition that much of the

work in SS�FREUDER and SS�TSANG was wasted on �nding valid combinations of variables

which were not related� For example� in the example worked out in section ���� the words

�IBM� 	I
� �Jacob�Smith� 	J
 and �ten�million�dollars� 	T
 	among others
 are not directly

related by any constraints� Despite this� valid combinations for NIJ � NIT � NJTandNIJT are

calculated by SS�FREUDER and� depending on the ordering used� could also be calculated

by SS�TSANG� Furthermore� the SS�TSANG algorithm tends to carry along unneeded am�

biguity� As shown above� if two related variables are not adjacent in the original list� their

disambiguating power will not be applied until they happen to co�occur in a higher�order

synthesis� It should be noted that Freuder�s algorithm does not have this disadvantage� be�

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS ��

cause all combinations of variables are created��	 The current work combines the e�ciency

of Tsang�s algorithms with the early�disambiguation power of Freuder�

For our example� the Tsang algorithm would �rst use an MBO ordering of the input

variables� 	G D A ATD C E ESP S
� Second order combinations variables adjacent in

this list would then be synthesized� G�D� D�A� A�ATD� etc�� would be generated at this

step� Third order combinations� G�D�A� D�A�ATD� etc�� would then be synthesized� and

so on� until the eighth order solution containing the entire problem was synthesized� Even

if our constraints were of the yes�no variety� enabling a certain amount of pruning at each

synthesis� there would still be wasted processing because some constraint interactions would

not be addressed until the higher�order syntheses� See section ��� for a direct comparison of

Tsang�s solution synthesis algorithm with our own in contexts where constraints are of this

type� The fact is� however� that constraints in semantic analysis are more complex so that

straightforward constraint satisfaction and solution synthesis techniques such as those used

by Tsang are useless�

In Figure ��� there are only �ve input subgraphs which guide the synthesis process� The

smaller subgraphs� �� � and �� are processed �rst� Each is optimized 	see section ��� for

examples
 based on the principles in section ���� Next� subgraphs � and � are synthesized

into subgraph
� This involves combining all pairs of plans in subgraphs � and �� as long as

those plans are consistent 	for instance� if the subgraph � plan assigns a value to a variable�

the subgraph � plan� if it assigns a value to that variable at all� must assign the same value
�

Subgraph
 is then optimized� before being combined with subgraph � to produce the answer

for the whole problem� The bulk of the optimization occurs in the lower order subgraphs

which were chosen to maximize this phenomena� Focusing the synthesizer on subgraphs that

will maximally optimize produces large savings while still guaranteeing the correct solution�

���� Using Branch�and�Bound in the Uncertain World of Semantic Analysis

So far� for this example we have simply modi�ed solution synthesis algorithms to use maxi�

mally interacting subgraphs of variables in order to exploit their optimization power as early

as possible� Combined with CSP techniques� this give fast and completely reliable answers

�	But only at great expense�

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS ��

Grupo-Roche Dr-Andrew

Adquirir

a-traves-de
compania

su
en Espana

(org, acq) -> 0.9
(org, learn) -> 0.8

(acq, org) -> 1.0

(learn, org) -> 0.2
(learn, hum) -> 0.2

(acq, hum) -> 0.4

(acq, loc) -> 1.0
(acq, inst) -> 1.0
(learn, loc) -> 1.0
(learn, inst) -> 1.0

(acq, corp) -> 1.0
(acq, soc-ev) -> 0.3
(learn, corp) -> 0.3
(learn, soc-ev) -> 0.3

(instr, corp) -> 0.9
(instr, soc-ev) -> 0.9

(own, corp) -> 1.0
(own, soc-ev) -> 0.3

(corp, loc) -> 1.0
(corp, temp) -> 0.3
(soc-ev, loc) -> 1.0
(soc-ev, temp) -> 1.0

(loc, nat) -> 1.0
(temp, nat) -> 0.3

(corp, nat) -> 1.0
(soc-ev, nat) -> 1.0

(org, hum) -> 1.0
(org, org) -> 1.0 (loc, corp) -> 0.8

(loc, soc-ev) -> 0.8

Figure ��� Constraint Scores

to simpli�ed computational semantic problems� The di�culty is that the problems CSP

techniques work well on are simpli�ed� They require yes�no evaluations� In computational

semantics� however� semantic constraints must be used only as tendencies� or preferences�

not sure�and�fast answers� Therefore� for computational semantics� bare CSP techniques are

not that helpful� In this section� we will demonstrate that branch�and�bound techniques can

be combined with solution synthesis to overcome this problem�

A more complex version of Figure �� is repeated here as Figure ��� In this �gure�

constraint �tendencies� are given for each possible combination of value assignments on

an arc� Each tendency is rated on a scale of � to �� with � being a perfect 	literal
 semantic

match� Some of the values assigned in Figure �� are explained below���

� Grupo�Roche � Adquirir� Grupo�Roche has only one meaning� ORGANIZATION� As the
AGENT of an ACQUIRE event �the �org� acq� arc�� it is given a rating of ���� This re ects
the fact that ORG is not literally a HUMAN �the expected AGENT of an ACQUIRE event��
but through metonymy processing� it can be matched� As the AGENT of a LEARN event
�the �org� learn� arc�� it receives a slightly lower score� re ecting a slightly less promising
metonymic relationship in that context�

��The main point here is not why the scores given were assigned� See section � for a discussion of
constraints and how scores are determined� These scores are only a fairly intuitive assignment of values that
will be used to demonstrate the algorithms below�

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS ��

Grupo-Roche

Adquirir

a-traves-de
compania

su
en Espana

(org, acq) -> 0.9
(org, learn) -> 0.8

(acq, org) -> 1.0

(learn, org) -> 0.2
(learn, hum) -> 0.2

(acq, hum) -> 0.4

(acq, loc) -> 1.0
(acq, inst) -> 1.0
(learn, loc) -> 1.0
(learn, inst) -> 1.0

(acq, corp) -> 1.0
(acq, soc-ev) -> 0.3
(learn, corp) -> 0.3
(learn, soc-ev) -> 0.3

(instr, corp) -> 0.9
(instr, soc-ev) -> 0.9

(own, corp) -> 1.0
(own, soc-ev) -> 0.3

(corp, loc) -> 1.0
(corp, temp) -> 0.3
(soc-ev, loc) -> 1.0
(soc-ev, temp) -> 1.0

(loc, nat) -> 1.0
(temp, nat) -> 0.3

(corp, nat) -> 1.0
(soc-ev, nat) -> 1.0

(org, hum) -> 1.0
(org, org) -> 1.0 (loc, corp) -> 0.8

(loc, soc-ev) -> 0.8

4

5

2

3

1

Dr-Andreu

Figure ��� Constraint Subgraphs in Sample Sentence

� Grupo�Roche � Dr�Andrew� These two nouns do not� in this case� constrain each other� They
are both given a score of ���� In some cases� the grammatical subject and grammatical object
of a clause could constrain each other through collocational constraints�

� Adquirir � Dr�Andrew� Each of these words have two meanings� yielding the four possible
combinations given� LEARN usually takes some sort of INFORMATION as its THEME�
neither HUMAN nor ORG 	t this very well� resulting in low scores� ACQUIRE generally
takes an OBJECT for its THEME� which ORG is� ACQUIRE generally does not take
HUMAN as its THEME� which results in a lower score for the �acq� hum� arc�

� Compania � En� Again� each word can have two meanings� The CORP meaning of Compa�
nia can have a LOC speci	ed� but not usually a time �TEMPORAL�� On the other hand�
SOCIAL�EVENT can easily have either a LOC or a time speci	ed�

The key observation that enables the application of branch�and�bound to solution syn�

thesis problems is that some variables in a synthesis group� or subgraph� are una�ected by

variables outside the subgraph� For example� in Subgraph � of Figure ��� 	Adquirir� Grupo�

Roche� Dr�Andrew
� both Grupo	Roche and Dr	Andrew are not connected 	by constraints

to any other variables outside the subgraph� This will allow us to optimize� or reduce� Sub�

graph � with respect to these two variables� Branch�and�bound techniques are used in this

reduction�

Recall that when creating subgraphs� all nodes constrained outside the subgraph were

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS ��

identi�ed� To implement HG with branch�and�bound� we add this list of constrained vari�

ables to the inputs� That is� HG accepts as input a list of Subgraphs� Each subgraph is in

the form�

	In�Vertices In�Subgraphs Constrained�Vertices

This list is ordered from smaller subgraphs to larger subgraphs� For the example sentence�

the following would be the list of input subgraphs�

�
�subgraph�name� A

In�Vertices� �adquirir grupo�roche dr�andrew�
In�Subgraphs� NIL
Constrained�Vertices� �adquirir��

�subgraph�name� B
In�Vertices� �adquirir a�traves�de compania�
In�Subgraphs� NIL
Constrained�Vertices� �adquirir compania��

�subgraph�name� C
In�Vertices� �en compania espana�
In�Subgraphs� NIL
Constrained�Vertices� �compania��

�subgraph�name� D
In�Vertices� �su�
In�Subgraphs� �B C�
Constrained�Vertices� �adquirir��

�subgraph�name� E
In�Vertices� NIL
In�Subgraphs� �A D�
Constrained�Vertices� NIL�

�

In the last subgraph� no variables are identi�ed in the List�of�Constrained�Vars� This last

subgraph contains the entire problem and thus has no variables outside of it� The result

of processing it will be the optimal solution for all variables� The second to last subgraph

identi�es only adquirir in the List�of�Constrained�Vars� Its solution set will contain plans

for each possible value of adquirir� with each plan being optimized with respect to all its

other variables�

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS ���

������ An Example Application

This is how HG works for the example sentence� Refer to Figure �� for references to variable

and function names� The �rst Subgraph input to PROCESS�SUBGRAPH is

��adquirir grupo�roche dr�andrew�
NIL
�adquirir��

That is� the In�Vertices are 	adquirir grupo�roche dr�andrew
� there are no In�Subgraphs�

and the list of Constrained�Vertices is 	adquirir
� The COMBINE�INPUTS function has no

input subgraphs to combine� so it simply creates an exhaustive list of possible combinations

of the In�Vertices�

���A�acq
��G�org
��D�hum
�

��A�acq
��G�org
��D�org
�

��A�learn
��G�org
��D�hum
�

��A�learn
��G�org
��D�org
��

We will refer in what follows to any possible combination of values as a plan� For each

plan� all of the constraints relevant to it are extracted and evaluated� For instance� in Figure

��� we can see there is a constraint between adquirir and Dr	Andreu� When the assignments

� A� acq � 	the ACQUIRE meaning of adquirir
 and � D�hum � 	the HUMAN meaning

of Dr	Andreu
 are made� the score is ��
� Again� this re�ects the fact that HUMANs are not

usually the THEME of ACQUIRE events� Each of the scores for each plan are combined��

with the results shown below�

��A�acq
��G�org
��D�hum
� ��	� � �	� � �	� � �	���

��A�acq
��G�org
��D�org
� ��	� � �	� � �	� � �	��

��A�learn
��G�org
��D�hum
� ��	� � �	� � �	� � �	���

��A�learn
��G�org
��D�org
� ��	� � �	� � �	� � �	���

Arc consistency functions are run at this point� For semantic analysis� however� con�

straints give rise to scores between � and �� These �fuzzy� constraint values cannot be used

��Combining scores for a list of constraints is complicated� To simplify	 we assume here that all individual
constraint scores are multiplied together�

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS ���

by traditional arc consistency routines� however� a threshold could be set to some reasonable

value 	possibly ���
� below which a constraint score is considered a de�nite violation� Arc

consistency routines could then be used to propagate these failures� For this example we

will assume that arc consistency is not used�

Because adquirir is the only Constrained�Vertices� only combinations of value assignments

involving it will be returned by REDUCE�COMBOS� Only two such possible assignments

exist� � A� acq � and � A� learn �� The plan 	� A� acq ��� G� org ��� D� org �
 maxi�

mizes � A� acq � with a score of ���� The two possible plans for � A� learn � have identical

scores� Both could be kept� the algorithm above simply chooses the �rst��� Therefore� the

list of Output�Plans for the �rst subgraph is�

���A�acq
��G�org
��D�org
�

��A�learn
��G�org
��D�hum
��

The other plans are discarded� It must be stressed here that discarding the other plans

in no way incurs risk of �nding sub�optimal solutions� The only variable that could be

e�ected further outside this subgraph is adquirir� so plans that maximize each of its possible

assignments were chosen� Nothing can happen later on to cause� for instance� the 	� A� acq �

�� G� org ��� D� hum �
 plan to become better than the 	� A� acq ��� G� org ���

D� org �
 plan� since all interactions involving G and D have been accounted for�

The other subgraphs proceed along the same lines� The 	adquirir a�traves�de compania

subgraph produces the following list of Output�Combos 	in this case� adquirir and compania

are both e�ected outside the subgraph� so we need to �nd optimal plans for all combinations

of their possible values
�

���A�acq
��ATD�instr
��C�corp
�

��A�acq
��ATD�instr
��C�soc�ev
�

��A�learn
��ATD�instr
��C�corp
�

��A�learn
��ATD�instr
��C�soc�ev
��

The 	en compania espana
 subgraph produces�

��The best way to handle identical scores is to keep the �rst plan and save the second in a list of �syn�
onyms�
 In practice	 identical scores only seem to occur when all constraints are met literally
a total score
of �����

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS ���

���E�loc
��C�corp
��ESP�nat
�

��E�loc
��C�soc�ev
��ESP�nat
��

It becomes more interesting when smaller subgraphs are synthesized into larger ones� For

the following subgraph�

��su�

��adquirir a�traves�de compania� �en compania espana��

�adquirir��

there are two In�Subgraphs� 	adquirir a�traves�de compania
 and 	en compania espana
�

and one In�Vertices� su� COMBINE�INPUTS synthesizes compatible plans for the smaller

subgraphs into larger subgraphs� Recall that the Output�Combos for the two subgraphs

were�

���A�acq
��ATD�instr
��C�corp
� and ���E�loc
��C�corp
��ESP�nat
�

��A�acq
��ATD�instr
��C�soc�ev
� ��E�loc
��C�soc�ev
��ESP�nat
��

��A�learn
��ATD�instr
��C�corp
�

��A�learn
��ATD�instr
��C�soc�ev
��

�Compatible� plans are then synthesized� �Compatible� plans include all those for which

like�variables have the same assignment� For instance� 	� A� acq ��� ATD� instr ���

C� corp �
 and 	� E� loc ��� C� soc� ev ��� ESP� nat �
 are not compatible because a

di�erent value is assigned for C� The result is showed below�

���A�acq
��ATD�instr
��C�corp
��E�loc
��ESP�nat
�

��A�acq
��ATD�instr
��C�soc�ev
��E�loc
��ESP�nat
�

��A�learn
��ATD�instr
��C�corp
��E�loc
��ESP�nat
�

��A�learn
��ATD�instr
��C�soc�ev
��E�loc
��ESP�nat
��

Each of these combinations is then combined with the single In�Vertices� This will� in

e�ect� add the assignment � S� own � onto each of the combinations�

���A�acq
��ATD�instr
��C�corp
��E�loc
��ESP�nat
��S�own
�

��A�acq
��ATD�instr
��C�soc�ev
��E�loc
��ESP�nat
��S�own
�

��A�learn
��ATD�instr
��C�corp
��E�loc
��ESP�nat
��S�own
�

��A�learn
��ATD�instr
��C�soc�ev
��E�loc
��ESP�nat
��S�own
��

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS ���

For the input subgraph 	� A� acq ��� ATD� instr ��� C� corp �
 only ATD was not in

Constrained�Vertices� while for 	� E� loc ��� C� soc�ev ��� ESP� nat �
 both E and ESP

were not Constrained�Vertices� In the plans input to REDUCE�COMBOS for this synthesis�

those NON Constrained�Vertices are already reduced to optimal values for the plans they

are in� For the output of this synthesis� only A 	adquirir
 is identi�ed in the input Subgraph

description as a member of Constrained�Vertices� Therefore� REDUCE�COMBOS should

return only two plans� corresponding to the two possible values of A� each of which will have

all the other variables optimized with respect to the value of A chosen�

REDUCE�COMBOS calculates the combined score for each of the constraints in the

subgraph� In practice� a list of scores for input Subgraphs should be maintained so that

each test is not repeated for each Plan� Only the constraints involving In�Vertices and con�

straints between input subgraphs should have to be calculated� In this case� all constraints

involving S 	su
 need to be calculated since it was not involved in any input subgraphs�

If there were any cross�constraints between subgraphs� such as between A 	adquirir
 and

E 	en
� those constraints would need to be added� In summary� PROCESS�SUBGRAPH�

and thus REDUCE�COMBOS� should only need to calculate constraint scores for constraint

interactions new to the subgraph�

The score for the �rst plan is calculated as�

��A�acq
��ATD�instr
��C�corp
��E�loc
��ESP�nat
��S�own
�

� ��	� � �	� � �	�� � �	�

where ��� is the score for the 	� A� acq ��� ATD� instr ��� C� corp �
 subgraph

	calculated above
� the �rst ��� is the score for the 	� C� corp ��� E� loc ��� ESP� nat �

subgraph� and the second ��� is the score of the constraint added by S 	su
�

The second input plan to REDUCE�COMBOS is 	� A� acq ��� ATD� instr ���

C� soc � ev ��� E� loc ��� ESP� nat ��� S� own �
� The score for this plan is calcu�

lated as

��A�acq
��ATD�instr
��C�soc�ev
��E�loc
��ESP�nat
��S�own
�

� ��	�� � �	� � �	�� � �	��

where the score ���� is the score of the 	� A� acq ��� ATD� instr ��� C� soc � ev �

subgraph� the �rst ��� is the score of the 	� C� soc � ev ��� E� loc ��� ESP� nat �

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS ��

subgraph� and� again� the second ��� is the score of the constraint added by S 	su
� Because

this plan has the same value assignment for A as the previous plan� and it has a lower score�

it is discarded�

The third input plan� 	� A� learn ��� ATD� instr ��� C� corp ��� E� loc ���

ESP� nat ��� S� own �
� receives a total score of �����

The last input plan� 	� A� learn ��� ATD� instr ��� C� soc � ev ��� E� loc ���

ESP� nat ��� S� own �
� has the same value assignment for A as the third plan� and

receives a total score of ������ It is� therefore� discarded� since it has a lower score than the

previous plan with the same assignment of A�

The output of REDUCE�COMBOS� and therefore the output of PROCESS�SUBGRAPH

for this subgraph� is�

���A�acq
��ATD�instr
��C�corp
��E�loc
��ESP�nat
��S�own
�

��A�learn
��ATD�instr
��C�corp
��E�loc
��ESP�nat
��S�own
��

The only variable that was not explicitlymaximized in these plans is adquirir� This makes

sense because adquirir is the only variable that interacts outside the subgraph�

The �nal subgraph� the solution to the whole problem� is then synthesized from Sub�

graph � and Subgraph
� the subgraph just created� PROCESS�SUBGRAPH� in this case�

combines all the compatible plans from Subgraph � and Subgraph
� then� because the

arc consistency will do nothing� sends them on to REDUCE�COMBOS� Because all of the

variables except adquirir were optimized for the plans they were in� only adquirir must be

reduced here� This produces a single optimal plan�

��A�acq
��G�org
��D�org
��ATD�instr
��C�corp
��E�loc
��ESP�nat
��S�own
�

������ Results of Using Hunter�Gatherer for Semantic Analysis

To illustrate how branch�and�bound dramatically reduces the search space� consider the

results of applying it to the sample sentence�

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS ���

1 2 3

4 5

a

b

A

B

C

6

D

Figure �
� Cross Dependencies

��

Subgraph Input�Subgraphs Input�Combos Reduced�Combos

��

� none ����� � � �

��

� none ����� � � �

��

� none ����� � � �

��

� � and � synth only �

��

� � and � synth only �

��

The total number of combinations examined is the sum of the input combos� in this case

 �
���� Compare this to an exhaustive search� which would examine 	�!�!�!�!�!�!�!�

� �� combinations� As the input problem size increases� the savings are even more dra�

matic� This happens because the problem is broken up into manageable sub�parts� the total

complexity of the problem is the addition of the individual complexities� Without these

techniques� the overall complexity is the product of the individual complexities�

The only way multiplicative growth can occur is when there are constraints across trees�

as in Figure �
� In that Figure� several of the subgraphs cannot be fully reduced due to

interactions outside the subgraph� Variable A in Subgraph � cannot be fully reduced��

because of Arc a� Note� however� that when Subgraph
 is synthesized� Variable A can be

reduced because� at that point� it does not interact outside the larger subgraph� In Subgraph

� Variable B cannot be reduced because it interacts with Variable C� Likewise� Variable C

��By �fully reduced
 we mean all child variables maximized with respect to a single parent	 which cannot
be reduced because it connects higher up in the tree�

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS ���

Number word senses

exhaustive combos

HG combos

9579 119

7,864,320 56,687,040 235,092,492,288

179 254 327

Problem 2 Problem 3Problem 1

Near-Linear Processing for Computational Semantics

Figure ��� Results of Semantic Analysis of Various Sized Problems

cannot be reduced in Subgraph � because of its interaction with Variable B� In all of these

cases� ambiguity must be carried along until no interactions outside the subgraph exist� For

Variables B and C� that does not occur until Subgraph �� the entire problem� is processed�

As is argued below� in computational semantic problems interactions such as Arc a and

Arc b generally do not occur��� �Governed� interactions such as Variable D directly con�

straining Variable A can occasionally occur� but these only delay reduction to the next higher

subgraph� Thus� some local multiplicative e�ects can occur� but over the whole problem�

the complexity is additive�

To illustrate this point� consider what happens as the size of the problem increases� The

table in Figure �� shows actual results of analyses of various sized problems�

It is interesting to note that a ��" increase in the number of total plans�� 	�� to ��
 results

in a ���" increase 	���M to ��M
 in the number of exhaustive combinations possible� but

only a
�" increase 	��� to ��

 in the number of combinations considered by HG� As one

moves on to even more complex problems� a ��" increase 	�� to ���
 in the number of plans

catapults the exhaustive complexity
�
����" 	��M to ���B
 and yet only increases the

HG complexity ��" 	��
 to ���
� As the problem size increases� the minor e�ects of �local

multiplicative� in�uences diminishes with respect to the size of the problem� We expect�

therefore� the behavior of this algorithm to move even closer to linear with larger problems

	i�e� discourse
� And� again� it is important to note that HG is guaranteed to produce the

same results as an exhaustive search�

���Long distance
 dependencies do exist	 but are relatively rare�

��The total number of plans corresponds to the total number of words senses for all the words in the
sentence�

�� USING HUNTER�GATHERER IN SEMANTIC ANALYSIS ���

Although time measurements are often misleading� it is important to state the practical

outcome of this type of control advancement� Prior to implementing HG� all computational

attempts to process larger sentences failed� The largest sentence above was analyzed for

more than a day with no results� This is the nature of exponential search space� Using HG�

on the other hand� the same problem was �nished in �� seconds��� It must be pointed out as

well that this is not an arti�cially in�ated example� It is a real sentence occurring in natural

text� and not an overly large sentence at that� Techniques such as HG must be employed to

process real�life problems� Knowledge�based semantics has been severely limited until now�

subject to arguments that it only works in �toy� environments� HG will enable large�scale

investigations in the knowledge�based paradigm�

��Using a SPARC �� with ���MB memory	 implemented in compiled Allegro Common Lisp�

�� HUNTER�GATHERER IN NATURAL LANGUAGE GENERATION ���

�� Hunter�Gatherer in Natural Language Generation

Many text planning systems are being used quite successfully today� Their success� however�

has come about as a result of several compromises� Constraining the domain and text types

are the most obvious� Related to this� however� are several control issues that have been

hidden by the simpli�ed nature of previous systems but are now becoming important as

those simpli�cations are lifted�

� Most current discourse planners ��� rely on customized planning algorithms with
procedural semantics for the purpose of solving speci	c text�planning problems� ���
careful analysis of these programs show that there is nothing in their semantics to pre�
vent them from generating incorrect plans� generating plans with redundant steps� or
failing to 	nd plans in situations where they exist� To the extent that these planners
have been able to avoid these problems� they have done so by severely limiting the
expressive power of action descriptions and�or requiring the designer of action descrip�
tions to hand�craft each description to 	t correctly into the ad hoc semantics of the
speci	c plan for which the action is intended�� �Young ! Moore� �����

�With simple state�based representations� complete search strategies will generally be
exponential as a function of solution length� With more expressive representations ���
determining if solutions to arbitrary problems exist is an undecidable problem� Such
disconcerting results have led several researchers to abandon the use of explicit or
declarative problem representations� However� it appears that doing so requires that
the goals of the agent be within a narrow range that are hard�coded into the problem
representation�� �Tenenberg� ������

�Time to impact�� �Captain J�L� Picard�

The last quote above graphically illustrates what the �rst two quotes are talking about�

When Capt� Picard asks how long his spacecraft has until it is obliterated by alien �re� he

needs to know NOW� Furthermore� he needs to know CORRECTLY� Unfortunately� the

current generation of text planners are not able to process real�life problems quickly� nor are

they guaranteed to process them correctly�

Tenenberg states the obvious problem for all AI applications� basic search strategies

have exponential time complexity� Young and Moore point out that most text planning

systems currently are neither sound 	guaranteed to give correct answers
 nor complete

	guaranteed to �nd correct answers
� Both citations agree that current approaches sidestep

these problems by abandoning declarative knowledge in favor of ad hoc procedures� Young

�� HUNTER�GATHERER IN NATURAL LANGUAGE GENERATION ���

ORGANIZATION ORGANIZATION CORPORATION

ACQUIRE

GRUPO-ROCHE

agent theme instrument

SPAIN

locationnamename
owned-by

DR-ANDREU

Figure ��� Example Semantic Representation

and Moore go on to argue that the proliferation of procedural knowledge leads to unsoundness

and incompleteness� and both papers conclude that such an approach can only be successful

on a narrow range of limited problems�

Young and Moore� in their paper� go on to introduce the DPOCL text planning system�

The main goal of that research was to ensure soundness and completeness� In this they

no doubt succeeded� however� no claims were made concerning the e�ciency of their work�

Tenenberg� on the other hand� addressed e�ciency in his discussion of abstraction in plan�

ning� We agree with Young and Moore�s conclusion that ad hoc procedures contribute to

unsoundness and incompleteness� Declarative knowledge which clearly marks preconditions

and e�ects must be used� along with a control mechanism that ensures soundness and com�

pleteness� PICARD� the Mikrokosmos Text Planner� can be viewed as an attempt to add

e�ciency to this type of control paradigm by applying techniques similar to Tenenberg�s ab�

straction� The work builds on the HUNTER�GATHERER analysis system described above�

That system employs constraint satisfaction� branch�and�bound and solution synthesis tech�

niques to produce near linear�time processing for knowledge�based semantic analysis in the

Mikrokosmos Machine Translation Project� PICARD enables similar results for text plan�

ning by recasting localized means�end planning instances into abstractions�� connected by

usage constraints that allow HUNTER�GATHERER to process the global problem as a

simple constraint satisfaction problem�

���� Text Planning for Machine Translation

Figure �� is a representation of the semantic content of a simple natural language sentence�

��Or macros	 or subgraphs	 or sub�groups	 depending on your background�

�� HUNTER�GATHERER IN NATURAL LANGUAGE GENERATION ���

ACQUIRE

agent theme

VAR1 VAR2

SUBJ: <VAR1>

OBJ: <VAR2>

"acquire"

Figure ��� Lexicon Entry for acquire

In English the sentence could be rendered �Grupo Roche acquired Dr� Andreu through

a subsidiary in Spain�� The node names are semantic concepts taken from a language�

independent ontology� Arc labels correspond to relations between concepts� The ontology

de�nes for each concept the set of arcs that are allowed�expected� as well as the appropriate

�ller concepts� For simplicity� additional semantic information such as temporal relationships

are not shown� Please consult 	Beale� Nirenburg �Mahesh� ����� Onyshkevych� Nirenburg�

���
 and Mahesh � Nirenburg� ����
 for more information about semantic representation in

the Mikrokosmos system� For our purposes� the details of the semantic representation and

generation lexicon entries to follow are unimportant� they serve only as simple examples of

control concepts that will apply to more complex problems�

Generation lexicon entries attempt to match parts of the input semantic structures and

map them into target language surface structures� For instance� a lexicon entry for the

concept ACQUIRE might look like Figure ��� The VARs in the entry will be bound to the

corresponding semantic structures in the input� and their target realization will be planned

separately and inserted into the output structure as shown� Typically� lexicon entries also

contain semantic and pragmatic constraints� For instance� VAR� might be constrained to

be HUMAN� The entry could also be constrained to apply only to texts with certain stylistic

characteristics� Collocational constraints are also important in generation� Any of these

constraints can apply locally or can be propagated down to the VARs� The interplay of

constraints is a major factor in determining the best overall plan�

Planning for Machine Translation comes in when we try to combine information in various

lexicon entries to best match the input semantics with as little redundancy as possible and

maximal adherence to the constraints� Figures ��� �� and
� represent some possible lexicon

�� HUNTER�GATHERER IN NATURAL LANGUAGE GENERATION ���

VAR1

ACQUIRE

obj: VAR2

subj: VAR1

VAR2

ACQUIRE

theme

VAR1 VAR2 VAR3

agent

instrumentagent theme

subj: VAR1

obj: VAR2

ACQUIRE

VAR1 VAR3VAR2

agent theme price obj: VAR2

pp

 obj: VAR3

pp

 obj: VAR3

subj: VAR1

"acquire"

"procure"

 "with"

"buy"

"for"

ACQUIRE-1

ACQUIRE-2

ACQUIRE-3

Figure ��� Three entries for ACQUIRE

VAR1

instrument

VAR2

VAR1

pp

 obj: VAR2

 "through"

INSTRUMENT-1

Figure ��� An entry for INSTRUMENT

entries that might be used in planning target English sentences for the structure in Figure

���

A typical means�end� hierarchical planner�� uses the following algorithm�

PROC PLAN�SEMANTIC�CONTENT�
� Pick one PLAN that implements base

meaning in SEMANTIC�CONTENT
� FOR each PRECONDITION in PLAN not

already satis	ed

 PLAN�PRECONDITION�
� FOR each unrealized VAR in PLAN
� PLAN�VAR�

��A similar algorithm can be used for non�hierarchical inputs� PICARD does not require hierarchical
semantic inputs�

�� HUNTER�GATHERER IN NATURAL LANGUAGE GENERATION ���

CORPORATION

CORPORATION

"corporation"

CORPORATION-1

CORPORATION-2

"subsidiary"

ORGANIZATION

owned-by

Figure
�� Two entries for CORPORATION

� FOR each unplanned RELATION in
SEMANTIC�CONTENT

� PLAN�RELATION�
� IF FAILURE THEN BACKTRACK

For example� to generate text for Figure ��� the ACQUIRE concept would be passed

to PLAN� Three possible entries exist for ACQUIRE 	Figure ��
� The �rst� ACQUIRE	��

expects a semantic environment with agent and theme relations� both of which are in the

input semantics� There are no preconditions in these simpli�ed entries� so the procedure skips

to line
� There are two VARs that are not realized in the �rst entry� These VARs are bound

to the input semantics� VAR� to a GRUPO�ROCHE instance of an ORGANIZATION

concept� VAR� to a DR�ANDREU instance of ORGANIZATION� and PLAN is called

recursively for each� leading eventually to surface strings like Grupo Roche and Dr� Andreu�

There is still an unplanned relation of the input ACQUIRE node� namely the instrument

link to a CORPORATION concept� This relation is therefore recursively planned in line

�� �FAILURE� in line � can refer to a number of possible outcomes� such as over�generation

of semantic content or an inability to plan one of the VARs or RELATIONs� This type of

planner can be made to �nd all possible solutions by storing successful overall plans and

then backtracking�

Depending on which lexicon entries are used� plans will be more or less complex� The

second entry that realizes an ACQUIRE concept� ACQUIRE	�� has a �built�in� instru	

ment relation� Because of this� there will be no unplanned RELATIONs in line �� Similarly�

the second CORPORATION entry incorporates the ownership relation� The �rst en�

tries for both ACQUIRE and CORPORATION need to speci�cally plan for those links�

ACQUIRE	� is an example of over�generation� It expects a price relation in the input se�

�� HUNTER�GATHERER IN NATURAL LANGUAGE GENERATION ���

mantics� This can either be made to cause FAILURE 	line �
 or simply penalize any plans

that utilize it�

The optimal overall plan can be determined by scoring all of the constraints present in

each of the sub�plans� adding in penalties for over�generation� and adding in rewards for

shorter plans� The best English sentence using the entries given on the example semantic

input would combine ACQUIRE	� and CORPORATION	� to give something like �Grupo

Roche procured Dr� Andreu with a subsidiary in Spain�� �	 This would be better than

using ACQUIRE	�� which requires the extra INSTRUMENT	� plan and CORPORATION	

�� which requires an extra plan for the ownership link� ACQUIRE	� contains unwanted

semantics 	a price relation
 and would thus be penalized�

There are two problems with PLAN� First� it cannot be guaranteed to be sound� Precon�

ditions satis�ed at a higher level of processing can be undone by side e�ects at lower levels�

This is the problem that Young and Moore tackled with DPOCL� Second� PLAN is horri�

bly ine�cient� Local solutions are planned again and again as backtracking moves up and

down the input semantic tree� Preconditions and constraints must be continually rechecked

because each combination of sub�plans may be di�erent� This is the problem tackled by

Tenenberg with abstractions� PICARD identi�es local areas of dependency and plans them

separately� It uses constraint satisfaction techniques to ensure soundness� It recasts the

means�end planning paradigm into an abstract system of independent sub�plans connected

by usage constraints� so that e�cient solution synthesis procedures can combine them� It is

this last concept that is explored in the remainder of this section�

It must be noted that text planning for machine translation is somewhat easier than for

many Natural Language text planning problems� primarily because the semantic content

is given� The main goals of an MT text planner are lexical choice and word and sentence

ordering� In general� communicative goals are inherent in the input semantic content� al�

though pragmatic features must be taken into account to a greater or lesser degree� In

addition� appropriate generation of discourse structure� �gurative language� anaphora and

ellipsis serve to complicate matters� Text planners for question�answering systems have the

added complexity of starting from communicative goals� This makes for more complex plan�

ning� nevertheless� the PICARD principles to be explained below can be applied in exactly

�	We emphasize that this is the best computationally	 given the lexicon and semantic inputs in this
simpli�ed example�

�� HUNTER�GATHERER IN NATURAL LANGUAGE GENERATION ��

the same manner�

���� Using Constraint Satisfaction to Enable Abstractions

It would be useful if we could divide text planning problems into relatively independent

sub�problems and use HUNTER�GATHERER�s solution synthesis to e�ciently combine the

smaller solutions� The problem is that solution synthesis requires an unchanging� orderly

set of variables to start with� In the introduction to Solution Synthesis� Figure � shows

variables� A� B� C and D� Each one of these variables has a set of possible solutions� Three

second order nodes are created� AB� BC and CD� From these� the ABC and BCD third order

nodes are created and� �nally� the answer� ABCD� is synthesized�

In text planning� as in all types of means�end planning systems� there is no �xed number

of variables� �Variable�� in this context� refers to a set of possible plans from which onemust

be chosen� A variable can be set up for ACQUIRE� which has three possible plans� One of

them must be chosen� On the other hand� sometimes a plan for instrument is needed� and

sometimes not� For instance� if ACQUIRE	� 	Figure ��
 is used� a separate sub�plan must

be made for the instrument relation� Two �variables� would be needed� one for ACQUIRE

and one for instrument� If the ACQUIRE	� is used� the instrument plan and variable are

unnecessary� Lexicon entries which have di�erent set of VARS� di�erent preconditions and�or

contain more or fewer relations all create di�ering amounts of sub�plans� These di�erences

are compounded as di�erent paths through the space of possible plans are taken�

PICARD solves this problem in a simple way� Means�end planning is carried out locally

to determine� for each lexicon entry� the additional sub�plans that are needed� Again� these

sub�plans correspond to VARs and missing relations or preconditions in the lexicon entry� For

instance� the ACQUIRE	� entry requires a sub�plan for the missing instrument relation� For

each needed sub�plan� a �usage constraint� is added to the lexicon entry that will �request�

some �non�dummy��� sub�plan to be used that ful�lls the need� The ACQUIRE	� entry� for

example� would receive a usage constraint that requires it to use one of the sub�plans for

instrument� In addition� for each of the sub�plans that can �ll the need� a usage constraint

is added such that those entries can only be used if �requested� by some other plan�

���Dummy
 plans are explained next�

�� HUNTER�GATHERER IN NATURAL LANGUAGE GENERATION ���

For each semantic concept and relation that is included in the lexicon entry� a dummy

sub�plan is created� For instance� in the ACQUIRE	� entry� a dummy instrument sub�plan

is created and added to the list of other instrument sub�plans� The ACQUIRE	� entry then

receives a usage constraint that �requests� the use of the dummy sub�plan� The dummy

sub�plan receives a usage constraint that it be used only if �requested�� The fact that

ACQUIRE�� does not �request� one of the non�dummy instrument plans will prevent them

from being used�

The main bene�t this gives is that a stable set of �variables� can be created� There will be

an ACQUIRE variable� from which one of the three lexicon entries must be selected� There

will be an instrument variable� from which either the entry shown in Figure �� will be used

or the newly created dummy entry� These variables can then be processed by a solution

synthesis algorithm� Whenever a choice is made� for instance selecting ACQUIRE	� for

AQUIRE� the constraint satisfaction mechanism in HUNTER�GATHERER will eliminate

all con�icting sub�plans� Picking entry ACQUIRE	� will eliminate the dummy entry for

instrument� Choosing entry ACQUIRE	� will eliminate all of the non�dummy instrument

plans� as well as all the sub�plans that are created by the instrument plans� In this way� local

means�end plans can be linked together� but can be processed globally by an e�cient solution

synthesis control� Figure
� graphically displays the usage constraints for a portion of the

example problem� The dotted lines connecting plans indicate compatible usage constraints�

Usage constraints are implemented by adding a series of preconditions and e�ects to each

lexicon entry� For instance� for ACQUIRE	� to �request� that an instrument slot be �lled�

the following e�ect is added to it�

EFFECT� 	FILL 	ACQUIRE instrument

Each of the non�dummy plans for instrument � only one in this case � then receive a

precondition�

PRECONDITION� 	FILL 	ACQUIRE instrument

This precondition cannot be ful�lled unless another plan with the corresponding e�ect is

used�

�� HUNTER�GATHERER IN NATURAL LANGUAGE GENERATION ���

SUB-PLANS

ACQUIREVARIABLES: CORPORinstrument

ACQUIRE

ACQUIRE

ACQUIRE

V1 V2

V1 V2

V1 V2

V3

V3

agent

agent
theme

instrument

V1

V2

DUMMY DUMMY

theme

agent price
theme

instrument
OWNED-BY-2

OWNED-BY-1

ORG

owned-by

owned-by

CORP

CORP

Figure
�� Usage Constraints Indicate Locally Optimal Combinations

To request a dummy �ller� an e�ect like this is added�

EFFECT� 	FILL 	ACQUIRE instrument	dummy

The dummy instrument then is given this precondition�

PRECONDITION� 	FILL 	ACQUIRE instrument	dummy

Each concept 	likeACQUIRE
 and relation 	like instrument
 is linked to actual� uniquely�

named structures in the input semantic representation� For example� 	FILL 	ACQUIRE

instrument

 would actually look like 	FILL 	ACQUIRE��� instrument	��

� This prevents

confusion when more than one of the same concepts or relations is present�

E�ects and preconditions can also be added to prevent redundant planning� For instance�

if there was a CORPORATION lexicon entry that had a �built in� instrument link�

combining this with ACQUIRE	� would over�generate the instrument meaning� Constraints

can be added to ensure no input relation or concept is used twice�

�� HUNTER�GATHERER IN NATURAL LANGUAGE GENERATION ���

To summarize� a means�end planner is used locally to set up possible sub�plans� The sub�

plans are connected with a system of usage constraints that inhibit or allow usage depending

on the other sub�plans being used� The HUNTER�GATHERER system can then e�ciently

process the collection of sub�plans to �nd the best overall plan� Constraint satisfaction

techniques automatically control the combination of sub�plans� Constraint satisfaction also

ensures the soundness of all preconditions used in the lexicon entries� including those which

are not related to the ideas presented above� E�ciency is gained by restricting the means�

end planning component to local sub�problems� Solutions to these sub�problems are then

combined� utilizing solution synthesis� branch�and�bound and constraint satisfaction� by

HUNTER�GATHERER�

Generation in the Mikrokosmos project is a relatively new development� Currently we

are developing methods to reverse multilingual analysis lexicons 	Viegas � Beale� ����
�

PICARD has been used to back�translate the semantic analyses of the Mikrokosmos analyzer

using these reversed lexicons� E�ciency results similar to those reported for HUNTER�

GATHERER above were obtained�

The HUNTER�GATHERER algorithms are complete with respect to the set of monotonic

solutions� Currently� solutions with plans that temporarily violate preconditions of other

plans 	with the �violation� corrected by a later plan
 will not be allowed��� Other than this

limitation� HUNTER�GATHERER is guaranteed to �nd the same solution	s
 as an exhaus�

tive search� In addition� the constraint satisfaction component of HUNTER�GATHERER

ensures soundness� By converting means�end planners into a format that can be used by

HUNTER�GATHER� PICARD achieves e�cient processing with guaranteed soundness and

completeness without sacri�cing the generality of means�end planning�

��Problems in semantic analysis and generation do not require such plans� Other types of planning related
to Natural Language	 such as planning the content of a reply to a database query	 might require them�

�� NATURAL LANGUAGE � A 	NATURAL
 CSP ���

?

Figure
�� The ��Queens Problem

	� Natural Language � a �Natural
 CSP

There are two kinds of problems in the AI world��� the naughty and the nice� The naughty

problems are those where everything depends on everything else� The N�Queens problem in

Figure
� is a good example� Even if some poor unfortunate is able to place N�� Queens

legally��� placement of the N th Queen can be foiled by any of the N�� already placed� These

naughty problems typically are what people have in mind when they think about CSPs�

Massive amounts of constraints going every which way� Look at just about any CSP reference

	for example� 	Tsang� ����

 and you will see a preponderance of problems for which there

will be no presents under the tree�

Fortunately 	or perhaps unfortunately � see below
� real world problems are not naughty�

but nice� Often a real world problem gains its complexity not from dense interconnections

of constraints� but simply from the large number of possible solutions� Natural Language is

a perfect example of the latter� Given a sentence of length �� 	an average�looking sentence
�

and assuming each word can have two meanings� this yields ��� possible combinations of

word senses� or over eight million�

As strange as it may seem� though� in the CSP world �naughty� problems are actually

�nice�� and �nice� problems can be extremely �naughty�� Figure
� reproduces a table from

��As in Santa�s�

��The object of N�Queens is to place N Queens on an N X N chessboard such that no Queen attacks any
other Queen�

�� NATURAL LANGUAGE � A 	NATURAL
 CSP ���

Solutions

Required

Single

Solution

Required

All

Solutions

Required

Problem reduction helps to

nature.

Tightness of the Problem

Tightly ConstrainedLoosely Constrained

Problem is easy by nature; Problem reduction (i.e. CSP)
helps to prune off search brute force search (e.g.

simple backtracking) would
be sufficient

large, the problem is hard by
When the search space is

prune off search space;
solution synthesis has greater
potential in these problems
than in loosely constrained.

space, hence could be used to
improve search efficiency

Figure
�� CSP Problem Types

	Tsang� ����
� �Naughty� problems are those on the right�hand side� tightly constrained�

For a human� keeping track of a large number of interacting constraints makes the problem

di�cult� that is why we tend to think of them as �naughty�� For a computer� though� the

constraints actually help� using CSP� to make the problem easier� The loosely constrained

problems on the left side for which all solutions are required from among a large set of

possible solutions are described in the table as �hard by nature��

The �rst major point of this chapter is to show that computational semantic problems

are� in fact �naughty�� and thus are �nice� in the CSP world� More precisely� we will

demonstrate that computational semantic problems are tightly constrained locally� and

CSP techniques can be used to great advantage in identifying these local interactions and

determining their solutions� Perhaps even more important� we can use the fact that certain

parts of the problem are not constrained�� to guide solution synthesis most e�ciently�

Another aspect of computational semantics that can cause problems with regard to apply�

ing CSP techniques is the fact that the constraints often do not have �yes� or �no� answers�

CSP relies on de�nite answers to prune away inconsistent solutions� In natural language se�

mantics� however� nothing is ever straightforward� Is the �White House� a HUMAN� No� it

is a building� and yet we can say �The White House said today that ���� without even think�

ing about calling the Ghost Busters� Does this eliminate computational semantics from the

domain of CSP problems� In one sense� it does� A straightforward application of CSP con�

sistency algorithms would yield little� since constraints in computational semantics are only

��Determining �unconstrainedness
 is a peculiar	 but potentially powerful outcome of constraint analysis�

�� NATURAL LANGUAGE � A 	NATURAL
 CSP ���

Grupo-Roche

Adquirir

a-traves-de
compania

su
en Espana

Dr-Andreu

Figure

� Constraint Dependencies in Sample Sentence

tendencies� metonymy and �gurative language often override these tendencies� However�

branch�and�bound techniques combined with solution synthesis can be used to e�ciently

drive a computational semantic search engine� The e�ciency� though� as shown above� is

derived from information gained by analyzing constraint dependencies� This is the second

major point of this chapter� that the branch�and�bound � solution synthesis paradigm is a

type of constraint analysis problem� with its e�ciency coming from analysis of dependencies

within the problem�

Finally� we demonstrated that one of the central tools in Natural Language Generation�

the means�end planner� can be more e�ciently implemented by framing the planning process

in terms of a CSP� and then using straightforward CSP consistency algorithms to determine

possible solutions� This is the third� and last� major point� Thus� the computational semantic

problem itself� as well as one of the major tools used in solving it� can best be seen as being

a type of CSP� It�s a �natural� �t�

	��� Local Dependency in Computational Semantics

It is evident from a quick look at Figure ��� repeated here as Figure

� that constraints

in that sentence are locally bundled� Grupo	Roche has nothing to do with Espana� The

meaning of the one can be determined independently of the other� That is not to say

that they cannot in�uence each other� For instance� Espana helps the analyzer choose the

locationmeaning of en� which through a series of other interactions� could possibly in�uence

the choice of meaning for adquirir� which� �nally� could in�uence Grupo	Roche� However�

this chain of dependencies is exactly what constraint�based mechanisms handles� As far as

direct dependencies� though� the two words are not linked�

�� NATURAL LANGUAGE � A 	NATURAL
 CSP ���

This is the general state of a�airs in Natural Language� Government and Binding theory

	Haegeman� ����
 is built on the assumption that one part of a text governs another� and

interactions can only occur under this relationship� Government is restricted� among other

things� to nodes that syntactically command other nodes� A node commands another node

	again� among other things
� if it is higher in the syntactic tree� and both are on the same

path to the topmost node� This constraining property of syntax excludes non�governing re�

lationships� which� in e�ect� partitions sentences into independent bundles� Smaller bundles

can be combined into larger bundles as one moves higher up in the syntactic tree� where gov�

ernment domains become larger� This fact will be used to great advantage when constructing

the subgraphs for solution synthesis� as described above�

It is fairly obvious that� at the sentence level� computational semantics tends to bundle

dependencies into these subgraphs� What about larger sections of text� This research

claims to be a step toward implementation of practical� large�scale� �real� computational

semantic systems� Such systems eventually will address discourse issues� Can the claim that

dependencies are locally bundled be maintained�

Yes� and no� 	Grosz and Sidner� ����
 identify three aspects of discourse� the linguistic

structure� the intentional structure and the attentional state� The �rst two seek to identify

segments of text and give their purpose� In function� they are very similar to Rhetorical

Structures 	Mann and Thompson� ����
� The attentional state� on the other hand� is an

abstraction of the participants� focus of attention� This can be either global� or local 	Grosz�

����
� Knowledge of the attentional state is needed in reference resolution 	and generation
�

The rhetorical structure of a text links together chunks of text and identi�es the function

of the composition� In Rhetorical Structure Theory 	RST
� a nuclear section of text is

joined to a satellite� Constraints between the nucleus and satellite are typically constraints

between the main events of the main clauses of the sub�texts involved� For a constraint�

based analyzer�planner� this simply adds an extra constraint link between the two sub�texts�

In practice� this may cause �nal decisions at the sentence level to be delayed�� until later

in the discourse� This� of course� is a desirable situation� Often decisions cannot be made

until the global purpose of a text or sub�text has been determined� In fact� this discourse

oriented processing is a main driving force behind a constraint�based approach� If a �� word

��Unless all other decisions can be ruled out locally using the techniques described above�

�� NATURAL LANGUAGE � A 	NATURAL
 CSP ���

sentence produces millions of combinations� how many combinations would a thousand word

text produce� Constraints must be used to intelligently prune the space of possibilities to a

minimum� limiting interaction between sentences only to the bare minimum�

Attempts at processing the attentional state have concentrated on local focus� �Cen�

tering� theory 	Grosz� et al� ����
 is an attempt to constrain reference resolution to the

immediate context� Such e�orts have proven to be e�ective for many texts� however� it is

recognized that local focus alone cannot solve all reference problems�

	Elhadad� ����
 claims that conversations are locally constrained� He uses a constraint�

based�� paradigm to generate turns in a conversation� Each turn is linked to the previous

turn by �ve types of local constraints� He argues that the most important characteristic of

dialog is that it is locally managed�

In practice� local focus and local dialog constraints can be tracked independently of the

main analyzer�planner� Before each sentence is processed� the focus and dialog constraints

can be calculated for that sentence� These constraints can then be added to the local

processing of each sentence� Tracking global focus can also be added to this independent

mechanism� Thus� these phenomena do not pose a problem for CSP techniques�

On the other hand� certain aspects of Text Generation such as planning sentence length

are heavily in�uenced by global considerations� What has come before and what comes next�

the complexity of the preceding text� the surface length of the realizations of sub�parts of

the current sentence� as well as global considerations of style� all these impact on sentence

boundary decisions� Some of these factors can be tracked independently� similar to focus

and local dialog constraints� The complexity and surface length of the current text� and

of the text yet to be processed� however� are di�cult to measure until the surface forms

have been generated� For instance� a precondition such as �Sentence length � ��� cannot

be satis�ed by a single e�ect� but only from the combination of many e�ects� E�ects could

be created that increment a global variable� which is then referenced by the precondition�

however� this creates a situation where one sub�plan is constrained by every other sub�plan�

which destroys the computational e�ciency of HUNTER�GATHERER 	see the �Classes of

Problems� section below�
 In these cases� constraint�based planners hold little advantage�

��Elhadad uses functional uni�cation to enforce constraint satisfaction� Although this certainly works	 it
has none of the e�ciency advantages presented here�

�� NATURAL LANGUAGE � A 	NATURAL
 CSP ���

The best solution to this problem probably lies in a post�processor that can examine

the output text and suggest revisions based on measures of global surface features 	Robin�

���
� Inui et al�� ����
� Another possible solution would be to eliminate decisions based on

surface features� such as the number of words planned� and replace these constraints with

semantically based ones� such as the number of concepts� Or� perhaps� with a little more

thought� using the global variable approach described above might be implemented in a way

that does not impact e�ciency� We leave these matters of handling surface constraints for

future research�

	��� Classes of Problems for which HUNTER�GATHERER is Bene�cial

Several di�erent features must come together to produce a problem for which HUNTER�

GATHERER is the preferred processing methodology�

� Constraint�based� HUNTER�GATHERER gains its e�ciency by identifying and pro�

cessing independently parts of the problem that are tightly constrained� A knowledge

of constraints between various parts of the problem is therefore essential�

� Constraints are tendencies or preferences� Traditional CSP techniques can be used for

problems whose constraints are of the straightforward yes�no variety 	although HG

is still more e�cient � see section ���
� The N�Queens problem is a good example of

such a problem� Many �real�world� problems� however� do not have such a simple

semantics� Context often decides whether a certain decision is preferred 	or even rele�

vant
 or not� The branch�and�bound methods used by HUNTER�GATHERER can be

viewed as constraint satisfaction for �fuzzy� constraints� Constraints are combined in

context� with value assignment combinations that are guaranteed to be sub�optimal re�

moved� Solution synthesis provides for e�cient combination of partial solutions� while

knowledge of constraint dependencies recorded in the subgraphs guides the synthesis�

� Relatively independent subgraphs� Imagine a new N�Queens� problem where the con�

straints were �fuzzy�� For instance� consider setting up constraints such that queens

in odd�numbered columns attacking queens in other odd�numbered columns was rela�

tively bad 	possibly a score of ���
� odd�numbered attacking even�numbered was not

quite so bad 	���
� even�numbered combatants were not bad at all 	a score of ���
�

�� NATURAL LANGUAGE � A 	NATURAL
 CSP ��

and queens not attacking any other queens 	paci�sts
 were given a score of ���� This

violent version of N�Queens could then have the goal of �nding the highest scored

placement of queens� Obviously� straight�forward CSP techniques would be useless

in this problem� HUNTER�GATHERER� although able to �nd the solution� cannot

take advantage of its solution synthesis mechanism� A simple branch�and�bound algo�

rithm would be enough to handle this� but it might take several centuries to process a

���Queens� problem�

The key reason the new N�Queens� problem is so di�cult is because it is impossible

to divide it into relatively independent sub�problems� HUNTER�GATHERER gains

its e�ciency in its ability� at each level of synthesis� to �nd at least one variable that

is not e�ected outside the current synthesis subgraph� This variable can be optimized

in all the possible combinations of variables that are e�ected outside the subgraph�

In the new N�Queens� problem� every variable a�ects every other variable� making it

impossible to perform this optimization�

In terms of constraint graphs� the prototypical form of suitable problems will be tree�

shaped� Subgraphs are formed from the leaves up� by combining all children with

their parent into a subgraph� At each synthesis� then� all of the children nodes will be

optimized� since only the parent node is e�ected outside the subgraph�

The prototypical form of unsuitable constraint graphs is the clique� In a clique� each

variable a�ects every other variable� Subgraphs cannot be constructed in this situation

which will enable optimization at any level of synthesis�

Of course� there is a wide spectrum of problems in between these two extremes� The

next section brie�y reports on our work applying HG to graph coloring problems�

These types of problems are halfway between the mostly tree�shaped inputs found in

computational semantics and the clique of the N�Queens problem� Section ��
 goes

even further� examining how the input topology of a problem a�ects HG�s partitioning

and� consequently� its overall complexity�

In summary� constraint satisfaction �nds the subgraphs� branch�and�bound optimizes

�fuzzy� constraints� and solution synthesis combines together partial solutions� These func�

tions� in turn� depend on� or take advantage of� the availability of constraints� the �fuzzy�

nature of the constraints� and the localized nature of the interactions�

�� OTHER APPLICATIONS FOR THE HUNTER�GATHERER TECHNOLOGY ���

1

2

3
4

5

6
7

8 9
10

11

y

r
g

r

y

r

g

r b r

y

Figure
�� Graph Coloring Example

� Other Applications for the Hunter�Gatherer Technology

��� Graph Coloring

Graph coloring is an interesting application to look at for several reasons� First� it is

in the class of problems known as NP�Complete� even for planar graphs 	see for example�

	Even� ����

� In addition� a large number of practical problems can be formulated in terms

of coloring a graph� including many scheduling problems 	Gondran � Minoux� ���

� Quite

a bit of research has been extended in this area� including the well�known theorem that every

planar graph can be
�colored 	Appel � Haken� ����
� Finally� it is quite easy to make up

a large range of problems� from simple to complex� single dimensional to multi�dimensional�

Figure
� is a simple variant 	with solution
 of the �rst graph coloring problem in the

introduction� �nd a graph coloring that uses four colors such that red is used as often

as possible� It should be noted that even this �simple� problem produces
�� exhaustive

combinations� or over
 million�

Figure
� shows the list of input subgraphs given to SS�HG and follows the processing�

The subgraphs input to SS�HG along with their composition are given in the �rst three

columns� The vertices covered by the subgraph are in column
� The vertices constrained

outside of the subgraph are listed in column �� and the input and output complexities of

processing are given in the last two columns� Figure
� shows steps �� � and � for subgraph

A�

The most important column in Figure
� is the input complexity� The largest value in

this column� � for subgraph E� de�nes the complexity for the whole problem� Because there

�� OTHER APPLICATIONS FOR THE HUNTER�GATHERER TECHNOLOGY ���

SUBGRAPH INPUT

VERTICES

INPUT

SUBGRAPHS

VERTICES CONSTRAINED

VERTICES

INPUT

COMPLEXITY

OUTPUT

COMPLEXITY

A none 3 2

B

C

D

E

F

none 3 2

none A B 4 3

4 C 4 2

D 5 3

10 E none 4 0

1,2,3

5,6,7

8,9,11

1,2,3

5,6,7

1,2,3,5,6,7

1,2,3,4,5,6,7

1,2,3,4,5,6,7,8,9,11

1,2,3,4,5,6,7,8,9,10,11

2,3

5,7

3,5,7

5,7

5,9,11

Figure
�� HG Subgraph Processing

is only one subgraph with the maximum input complexity� this problem will be solved in

time proportional to � �
�� where
 is the number of values possible for each vertex 	red�

yellow� green and blue
� and � is the maximum input complexity� This complexity compares

very favorably to an exhaustive search� and to other types of algorithms� as shown below�

It must be noted again that the partitioning algorithm presented earlier is not guaranteed

to give the optimal set of subgraphs� It is designed to give near�optimal results quickly 	near

optimal with respect to the eventual complexity of SS�HG� SS�HG is guaranteed to give the

optimal result no matter what the subgraphs are� as long as they legally combine to cover

the whole input problem
� In this example� if subgraph E had added only vertices � and ��

it would have had input complexity
 and output complexity �� We could have then created

an intermediate subgraph to which vertex �� was added to E� with an input complexity of

 and an output complexity of �� from which the �nal subgraph could be created by adding

vertex ��� with an input complexity of
� In that case� the maximum input complexity

would be
� Since there would be � subgraphs with that complexity� the total complexity

would be to � �
�� which happens to be greater than the complexity of the solution actually

used� The fact that it turns out like that in this case is irrelevant� the algorithm for creating

the input subgraphs can lead to slightly higher complexities than theoretically possible�

This tradeo� was chosen to simplify the subgraph creation 	which is not the focus of this

research
� ensuring that the subgraph creation complexity doesn�t overwhelm the complexity

of SS�HG� yet still providing SS�HG with reasonable inputs�

�� OTHER APPLICATIONS FOR THE HUNTER�GATHERER TECHNOLOGY ���

(r,b,y) (r,b,g)

(y,r,g) (y,r,b)

(y,g,r) (y,g,b)

(y,b,r) (y,b,g)

(g,r,y) (g,r,b)

(g,b,r) (g,b,y)

(b,r,y) (b,r,g)

(b,g,r) (b,g,y)

(r,y,g) (r,y,b)

(r,g,y) (r,g,b)

(b,y,r) (b,y,g)

(g,y,r) (g,y,b)

STEP 2:
const sat

(r,b,y) (r,b,g)

(y,r,g) (y,r,b)

(r,y,g) (r,y,b)

(r,g,y) (r,g,b)

(y,g,r)

(y,b,r)

(g,r,y)

(g,y,r)

STEP 3:
B&B reduction

(r,r,r) (r,r,y) (r,r,g) (r,r,b)

(r,g,r) (r,g,y) (r,g,g) (r,g,b)

(r,b,r) (r,b,y) (r,b,g) (r,b,b)

(y,r,r) (y,r,y) (y,r,g) (y,r,b)

(y,b,r) (y,b,y) (y,b,g) (y,b,b)

(y,g,r) (y,g,y) (y,g,g) (y,g,b)

(g,r,r) (g,r,y) (g,r,g) (g,r,b)

(g,g,r) (g,g,y) (g,g,g) (g,g,b)

(g,b,r) (g,b,y) (g,b,g) (g,b,b)

(b,r,r) (b,r,y) (b,r,g) (b,r,b)

(b,g,r) (b,g,y) (b,g,g) (b,g,b)

(b,y,t) (b,y,y) (b,y,g) (b,y,b)

(b,b,r) (b,b,y) (b,b,g) (b,b,b)

(r,y,r) (r,y,y) (r,y,g) (r,y,b)

(y,y,r) (y,y,y) (y,y,g) (y,y,b)

(g,y,r) (g,y,y) (g,y,g) (g,y,b)

STEP 1:
exahustive combos

Figure
�� Subgraph A Processing

It is interesting to experiment with SS�HG using several di�erent�sized 	and di�erent

dimensionality � see below
 problems and compare the results to other approaches� Figure

� presents the results of such experiments� Six di�erent problems are solved� The last two�

the ����tree and the ���square� are included in anticipation of the discussion below on graph

topology� Each of the six problems are run 	when possible
 using four di�erent algorithms�

�� The full HUNTER�GATHERER algorithm� with constraint satisfaction and branch�

and�bound�

�� HG minus constraint satisfaction� This� in combination with the next� gives an indica�

tion of the relative contributions of branch�and�bound versus constraint satisfaction�

�� HG minus branch and bound� In addition to comparisons with the above� this result

can be compared to other solution synthesis algorithms to give an idea of the merits

of our subgraph inputs to solution synthesis�

�� OTHER APPLICATIONS FOR THE HUNTER�GATHERER TECHNOLOGY ���

full HG

HG - CS

HG - BB

8327115

DNF

848 286080272

272

784

1232

16592

9248

23824 1394496

vertices

DNF

Tsang

exhaustive 10**6 10**16 10**501024

460 18748 DNF DNF

10**21

DNF

DNF

287616

137904

36-square100-tree

2528

10**60

DNF

DNF

2416

Figure
�� HG Graph Coloring Results

� Tsang and Foster�s 	����
 solution synthesis algorithm with minimal bandwidth or�

dering 	MBO
�

A number of comments are in order� The numbers given in the graph represent the number

of intermediate combinations produced by the algorithms� This measure is consistent with

that used by Tsang and Foster 	����
 when they report that their algorithm outperforms

several others� including backtracking� full and partial lookahead and forward checking�

�DNF� is listed for those instances when the program was not able to run to completion

because of memory limitations 	more than ���MB were available
�

The �rst fact� although obvious� is worth stating� HG was able to process all of the

problems� This� in itself� is a signi�cant step forward� as problems of such complexity have

been intractable up until now� HG performed signi�cantly better than Tsang�s algorithm

for every problem considered� Especially noteworthy is the ����tree problem 	a binary tree

with ��� nodes
� HG�s branch�and�bound optimization rendered this problem 	as all trees

simple� while Tsang�s technique was unable to solve it�

Comparing HG without constraint satisfaction to HG without branch�and�bound is sig�

ni�cant� Removing constraint satisfaction degrades performance fairly severely� especially

in the higher complexity problems� Disabling branch�and�bound� though� has a much worse

�� OTHER APPLICATIONS FOR THE HUNTER�GATHERER TECHNOLOGY ���

5

vertices

11 27 83

Combos
HG - CS 272 1232

Max Input
Complexity

4 5

23824 1394496

1 4

4*(4**6)

1

6

1*(4**4)
256

1*(4**5)
1024 16384

12*(4**8)
786432

12

8

64-cube

DNF

7

7*(4**15)
7516192000262144

16*(4**7)

16

287616

3 7 15

10

10*(4**3)

2528

36-square

640

100-tree

Max Input
Number at

Complexity

Predicted
Combos

Figure
�� Actual vs� Predicted Complexity

e�ect� Problem complexity soars without branch�and�bound� This con�rms that our ap�

proach� aimed at optimization rather than constraints� is e�ective�

HG without branch�and�bound is very similar to previous solution synthesis algorithms�

including Tsang� Tsang 	as well as Freuder 	����

 require a linear ordering of vertices which

are then combined into two�vertex solutions� then three� etc�� HG� on the other hand� uses the

subgraphs to guide the synthesis process� an extension to the minimal bandwidth ordering

principle used by Tsang� We expected this extension to bene�t even without branch�and�

bound� and our expectations were con�rmed� Tsang�s algorithm outperformed HG without

branch�and�bound only for the simplest problem� for which an MBO ordering turned out to

be a superior way to partition the problem� When the number of vertices was raised even a

small amount� the subgraph approach became better� We therefore propose that a subgraph

decomposition approach such as used in HG is superior to the linear ordering approach used

by Tsang�

We can also compare the actual performance of these algorithms with the predicted be�

havior� Figure
� shows the actual number of combinations built by HG without constraint

satisfaction� Obviously the actual behavior aligns closely with the complexity predicted by

max�input�complexity� as described above� The relatively small di�erences are due almost

entirely to subgraphs with input complexity one less than the maximum input complexity�

For example� the �� vertex problem had �
 subgraphs with input complexity of �� If added

to the combinations for only subgraphs of input complexity �� the total is within �" of the

actual total� Programs are available that can give the exact number of combinations that

�� OTHER APPLICATIONS FOR THE HUNTER�GATHERER TECHNOLOGY ���

will be required 	without constraint satisfaction
 for any problem�

We have added a seventh problem to the chart in Figure
� � a cube with �
 vertices� The

subgraph construction algorithm described below was able to suggest input subgraphs with

a maximum input complexity of ��� The HG algorithm was unable to solve this problem�

since over a billion combinations would need to be computed 	and stored
� This underlines

the point that� although HG can substantially reduce complexity� higher dimensional prob�

lems are still intractable� Nevertheless� we expect that many practical problems will become

solvable using these techniques� Furthermore� we can easily estimate a problem�s dimension�

ality� as discussed in section ��
� This can lead us to a new measure of complexity which

can be used evaluate problems before solutions are sought and may help in formulating the

problem in the �rst place�

�� DISCUSSION ���

�� Discussion

In this section we try to sum up some of the important characteristics of the Hunter�Gatherer

control architecture� First we set out the novel contributions HG brings to the state of the

art� Next� we consider some of the formal properties of HG� namely the soundness and

completeness of its planning capabilities� The third section discusses the notion of island

processing� and how HG implements it� We conclude by discussing graph topology� and how

it can be used to explain how and why 	and when
 HG works�

���� Novel Contributions to the State of the Art

In summary� this research provides the machinery for a fast� complete and sound search

through many types of constraint problems� including natural language semantics� Previ�

ously in computational semantics work� researchers needed to make one or more of three

simpli�cations�

�� Reduce the size of the inputs and�or knowledge base 	i�e� one�to�one mappings
�

�� Use 	possibly faulty
 heuristics to speed up search�

�� Make 	possibly faulty
 assumptions about the constraint interactions in the search

space�

Each of these simpli�cations often leads to non�optimal solutions� In addition� general�

ized problems such as graph�coloring do not allow� or severely limit� such simpli�cations�

HUNTER�GATHERER removes the need for them by providing a method for organizing

and processing search using minimally interacting sub�problems�

This research advances three central theoretical contributions� First is the recognition

that solution synthesis methods should not be limited to combining� at the lowest level�

pairs of variables� as in Freuder and Tsang� nor need it be content to blindly synthesize com�

binations of these pairs� HUNTER�GATHERER organizes the search space into maximally

independent subgroups of any size� and then guides the synthesis process as it combines

results from these subgroups� A related contribution is the process by which HUNTER�

GATHERER produces these input subgraphs and synthesis plans in non�exponential time�

�� DISCUSSION ���

The second major theoretical contribution is the use of branch�and�bound optimization

techniques to prune the results of synthesis� Previously� only constraint satisfaction tech�

niques were used in this role� The use of branch�and�bound techniques was precipitated

by the fact that natural language semantics often does not allow straightforward yes�or�

no constraints of the type needed by previous solution synthesis methods� It turns out

that� even in more general problems such as graph coloring in which yes�or�no constraints

can be used� branch�and�bound pruning signi�cantly outperforms constraint�based pruning�

HUNTER�GATHERER� in fact� uses both�

The �nal major theoretical contribution combines aspects from the �rst two� Tsang sug�

gests using a �minimal bandwidth ordering� 	MBO
 algorithm to order the input variables in

such a way as to maximize the bene�ts of early constraint pruning� HUNTER�GATHERER

extends the concept of MBO to its branch�and�bound optimization� Input subgroups are

constructed in such a way as to minimize the interaction outside of the subgraphs� which in

turn allow maximal pruning based on branch�and�bound techniques�

A peripheral contribution of this work is the recognition that solution synthesis techniques

could be applied to these types of problems� Previously� solution synthesis was used exclu�

sively for constraint satisfaction problems� By substituting branch�and�bound techniques for

constraint satisfaction� a whole new set of problems can utilize solution synthesis techniques�

���� Formal Properties of HUNTER�GATHER� Soundness and Completeness

The PICARD Natural Language Text Planner is an example of a planning system that

utilizes HG� In a sense� though� HG is� at its core� a planner� Even for applications such

as semantic analysis� HG can be seen as a processor planning the best combination of word

senses to describe the input text� When discussing planners� two important concepts arise�

soundness and completeness� The following sections discuss these important topics�

������ Soundness

	Chapman ��
 discusses precondition �clobbering�� the state where a rule that had been

instantiated previously on the basis of some precondition� later had that precondition re�

moved� invalidating the rule� Many previous text planners were not �sound�� in that they

�� DISCUSSION ���

did not detect this kind of situation� To prove more formally that this system is sound� let

me state the soundness criterion which it claims to adhere to�

Soundness Criterion� At all times� every rule that is not marked as currently failed must�

for each of its preconditions� have at least one active� non�failed plan that has an e�ect

that satis�es the precondition if it is a positive constraint 	i�e� some state must exist

for the precondition to be satis�ed� identi�ed by a �check�con� in the precondition

�eld
� or have no plans active that have an e�ect equal to the precondition if it is a

negative constraint 	i�e� the state may not exist� identi�ed by a �check�not�con�
�

Thus� if plan � has a precondition that states that constraint A must be true� then

whenever plan � is not marked failed� there must be at least one other active plan that has

an e�ect that produces A� On the other hand� if plan � has a precondition that states that

precondition B must not be true� then there can be no plans active that produce B while

rule � is not failed�

Note that this is slightly stronger than a general soundness condition� which might allow

a planner to go through unsound states as long as the �nal result is sound� These �non�

monotonic� plans� though valid� are currently excluded by HUNTER�GATHERER� We do

not feel that this is a big drawback� since� in practice� a planner that is guaranteed to

be sound at the end most likely will be sound throughout� This is all the more true for

computational semantic planners which do not have complex preconditions and e�ects�

This system meets the soundness criterion given above as follows� After some basic

precondition application� which removes any rules that do not meet unary constraints 	for

example� �only apply this rule in formal contexts�
� the dependencies between all the re�

maining rules are analyzed� The following information is recorded�

�� for each precondition of each plan� the plans are recorded that� if instantiated� would

produce constraints that con�ict with the precondition ��

�� the inverse of the above� for each plan� if it were instantiated� record all the precondi�

tions that con�ict with it�

��A constraint A is considered con�icting when the precondition requires that constraint A not be set�
Also judged as con�icting is the plan that sets constraint A when the precondition requires constraint �A

�� DISCUSSION ��

�� for each precondition that requires a constraint A� record all of the plans that� if

instantiated� would set constraint A�

� the inverse of the above� for every plan� if it were instantiated� record all the precon�

ditions that would be satis�ed by it�

Before solution synthesis is initiated� every plan that has a precondition for which there

were no plans found in number � above is failed� Every time a plan is failed� both during this

initial process and during the subsequent syntheses� all of the preconditions it can satisfy

	from number
 above
 are retrieved� For each of these preconditions� all of the plans that

could satisfy the precondition 	from number � above
 are retrieved� and it is checked that

at least one of these plans is still active� If none are� then the plan corresponding to the

precondition is failed� This process ensures that no plans are ever deleted that are the sole

suppliers of preconditions of other active plans 	or more accurately� that any such active

plans are failed if their sole supplier is failed
�

This does not yet fail preconditions that con�ict with constraints� Whenever a variable

has only one valid plan left��� all of the preconditions that con�ict with the plan 	from

number � above
 are retrieved and the corresponding plan	s
 are failed� The plans a�ected

by these failures are then checked as described above�

During the solution synthesis� valid combinations of plans are chosen for each variable

in the synthesis� In a combination� each variable has one plan chosen and the others are

failed� The e�ects of failing the other plans are checked� and the e�ects of instantiating the

plan that is used are checked� In general� whenever a plan is failed� the plans for which it

supplied preconditions are checked� Whenever an island is created� the plans that con�ict

with the island are failed�

The fact that the system is sound is good in itself� But this is not where the bene�ts end�

The whole process of ensuring soundness as described above� combined with island processing

	see below
� creates a very e�cient text planner� All con�icting rules and impossible rules are

eliminated at the earliest point possible� Subgraphs are created for the solution synthesizer

��This can happen because there was only one plan to start with	 or because the soundness procedure
above eliminated one or more plans in a node	 or the process being described here eliminated one or more
plans in a node	 or a combination of the last two processes left only one valid plan	 or	 �nally	 the solution
synthesis mechanism chose one plan and �failed
 all the others�

�� DISCUSSION ���

that will maximize this e�ect� A plan is not ever failed� and then� after further processing� a

di�erent plan found to be invalid as a result� As soon as a plan is failed or an island created�

all the other plans that can no longer be valid are removed immediately� Removing these

plans then may lead to further removals by the same process� This process feeds on itself to

remove as many of the possible plans as possible�

������ Completeness

HUNTER�GATHERER is complete�	 because it guarantees the same results as an exhaustive

planner� The solution synthesizer� at every step� exhaustively calculates all of the valid

combinations of plans for that synthesis� The only combinations that are removed are�

�� Combinations that can be guaranteed� by branch�and�bound techniques� to produce

complete solutions that are not optimal�

�� Combinations that contain constraint con�icts�

Exhaustive planners are obviously complete� so HUNTER�GATHERER must be as well�

Two exceptions exist� however� The �rst has to do with the types of constraints allowed

by HUNTER�GATHERER� One of the drawbacks inherent in a text generator like Penman

	Mann� ����
 is the inability of the modules to communicate with each other� One of the

main characteristics driving this project is the inter�action of choices available at di�erent

levels� HUNTER�GATHERER speci�cally allows for these inter�actions� There is� however�

a class of constraints that this system cannot at present address� It is not able to use

constraints that arise from the combination of plan e�ects� Thus a constraint such as �if

the clause is already �� words long� make a sentence boundary� cannot be used� This

limitation exists because simple precondition�e�ect pairs cannot be set up� A precondition

like �sentence �� words long�� is satis�ed by combining the e�ects of many plans together�

Section � addressed this problem and suggested a number of possible alternative methods

for handling it�

The second limitation with regards to completeness has already been mentioned� Non�

monotonic plans are not allowed� Non�monotonic plans are those which at intermediate

�	Except for the non�monotonic plans and surface constraint types described below�

�� DISCUSSION ���

stages contain constraint con�icts which are later resolved in the overall plan� While we

recognize that this may be a severe limitation in generalized AI planning� we do not feel it

presents much of a problem for computational semantics� where preconditions and e�ects are

generally fairly simple� As we look into using HUNTER�GATHERER in other applications�

we plan on investigating this limitation further�

���� Planning and Island Processing

One of the central characteristics of almost any natural� complex problem is that parts of

its solution are �xed by available resources� while other parts may have a wide variability

in possible solutions� For instance� in planning a cross�country trip� a traveler might have

some general goals such as �visit as many places as possible�� �enjoy the vacation�� etc�

There may be some speci�c goals such as �see the Grand Canyon�� Unfortunately� there

will be some general constraints as well� �spend less than ���� dollars�� �get back home in

two weeks�� There probably will be some very speci�c constraints as well� For example� �go

to the meeting in Phoenix on Monday�
���� at �� AM 	so you can write�o� the vacation
�

and �visit Aunt Millie on her birthday�� Some other constraints are fairly restrictive when

combined with other constraints� �visit Cousin Fred while I am in Phoenix��

When planning� the smart traveler will �rst determine the areas where he has no choices�

The other decisions will then be made in relation to the �xed islands of certainty in the

schedule� Upon making an initial assessment of the island constraints� other islands may

appear� such as �visit Fred while in Phoenix� in the context of �go to the meeting in Phoenix

on
�������� Islands constraints can pop up at even with the most general of constraints� For

instance� if the piggy bank is empty after the Grand Canyon� there is only one place to go�

Considering that island driving is such a central component of human planning� it is sur�

prising that it receives so little emphasis in the planning literature� This project seeks to rem�

edy that situation with respect to computational semantic systems� HUNTER�GATHERER

automatically uses its constraint satisfaction engine to take advantage of islands� Whenever

a variable�s plan� or value� is failed for any reason� constraint satisfaction will fail any other

plans that critically�� depend on e�ects from the failed plan� If a variable has all of its

��No other non�failed plans exist that could also satisfy its constraints�

�� DISCUSSION ���

possible plans failed except one� forming an island� then only plans that do not critically

rely on those failed plans will remain� In addition� when the non�failed plan that forms

the island is processed� all plans that con�ict with it will also be failed� Thus� by dynam�

ically implementing constraint satisfaction techniques� islands are automatically identi�ed

and their e�ects propagated�

The second aspect to island driving in this project concerns the arti�cial creation of

islands by the solution synthesis processor� In the solution synthesizer� valid combinations

of plans are created and tested� For each combination� one of the plans� or values� is chosen

and instantiated for each variable in the combination� This� in e�ect� creates arti�cial islands

at each of these variables� The �island e�ects� can then be propagated out for each� Again�

this might cause other plans to fail� creating other islands that are also arti�cial� in the sense

that they were created by a combination of constraints imposed by planning choices rather

than by the problem itself�

An interesting side�point in this discussion is that we treat text generation and seman�

tic analysis equivalently� that is� they are both instances of planning� The �variables� in

analysis are words� the �plans� are word senses� The analyzer then tries to plan the com�

bination of word senses that best describes the semantics of the input� In generation� the

�variables� are semantic concepts or relations that need to be realized� the �plans� are tex�

tual directions for implementing those �variables�� and the generator plans the combination

of textual directions that best implements the input semantics� With the exception of the

�usage constraints� introduced by PICARD which enable HUNTER�GATHERER�s solution

synthesis mechanism in the slightly more ��uid� world of generation� analysis and generation

are processed equivalently�

���� Exploiting Graph Topology for Optimization Problems

One of the most interesting aspects of this work is the topological view it gives to problem

spaces� The dimension of a problem becomes very important when determining its complex�

ity� The last three columns of Figure
� gave the complexity information for problems of

three di�erent dimensions� a one dimensional tree� a two dimensional square� and a three

dimensional cube� The maximum input complexity of these problems in terms of the number

of vertices� n� is 	at worst
�

�� DISCUSSION ���

4

4

4+1=5

4
Complexity
Output

Complexity
Input

4+1=5

4

3+1=4

4+1=5

4

4+1=5

0

2+1=3

2

4+1=5

4

4+1=5

4

4+1=5

3

4+1=5

4

4+1=5

4+1=5

44 4

Figure ��� Partitioning a Square�

� a constant for the tree� Any tree can be partitioned with a maximum input complexity

of � 	our simpli�ed subgraph creation algorithm uses �
� A ���� node binary tree

would still have a maximum input complexity of �� Furthermore� any tree of arbitrary

branching factor can be partitioned such that it will have a maximum input complexity

of ��

� approximately n��� � for squares�

� approximately n��� � for cubes�

� approximately n��� � for perfect
�dimensional problems� etc��

To understand why this is true� refer to Figure ��� This Figure shows a very simple way

to partition a square for input to HG 	The subgraph creation algorithm above actually does

a much better job� reducing the number of subgraphs with maximum input complexity of �

to a minimum�
� The �rst step is to create a subgraph using all of the vertices in the top

row� This has input complexity
 and output complexity
� The next subgraph will be a

combination of that subgraph and the �rst vertex in the second row� The input complexity

of this subgraph is � 	the output complexity of the last subgraph plus one vertex
� and the

�� DISCUSSION ���

Figure ��� Topology of a Tree�

output complexity is
� because the top�left�hand vertex no longer has an edge outside this

subgraph� Subgraph creation continues� adding one vertex each time while maintaining a

maximum input complexity of �� until the entire graph is covered�

Thus� to solve this problem� HG will require complexity proportional to O�a��� In essence�

the problem was reduced from a
�by�
 square with exhaustive complexity of �� to a �line�

of length
 	plus a constant �
� A ����by���� square would be reduced to a line of length ���

The input complexity is the square root of the number of vertices� There will be 	n�n���

such subgraphs giving a total HG complexity of 	n�n���
!an
���
	for this simpli�ed method�

our results are better
�

Cubes perform similarly� The �rst step in the decomposition of a ��by���by�� cube is to

make a subgraph of the �rst ��by�� square� giving an input complexity of �� Then larger

subgraphs can be constructed by adding a single vertex� The input complexity of a x�by�x�

by�x cube is x�by�x 	plus a constant �
� or n���� since n�x�� There will be 	n�n���
 of these

subgraphs 	for this simpli�ed method
� yielding a total complexity of 	n�n���
!an
���
�

Trees are basically one�dimensional objects� as shown in Figure ��� By starting at the

ends� subgraphs can always be created by joining a leaf with its parent� giving an input

complexity of � and output complexity �� At each branching point� these subgraphs can be

combined one at a time� each time with input complexity � and output complexity �� This

continues from the endpoints in until the whole graph is covered� There will be n�� such

subgraphs� giving the HG complexity for any tree to be 	n��
!a��

Figure �� summarizes these results� HG can be seen as a process that �squeezes� down

the dimensionality of a problem� Trees are squeezed into a point� squares into a line and

cubes into a square�

�� DISCUSSION �
�

Window
 HG

Figure ��� HG Operates on Graph Topology�

Typically� real problems do not present as perfect trees� squares or cubes 	or higher�

dimensional objects
� Natural language semantic analysis� for instance� is tree�shaped for

the most part with scattered two�dimensional portions� Figure �� represents a problem with

one� two and three dimensional aspects� Using HG�s �window�� we can reduce the complexity

to zero� one and two dimensions� Unless they are very small� the overall complexity� even

with HG� will be dominated by the higher dimensional subproblems� This suggests the

following approach to generalized problem solving�

� Analyze the problem topology�

� Solve higher dimensional portions heuristically 	if their input complexity is prohibitive
�

� Use HG to combine the heuristic answers for the higher dimensionality portions with

the rest of the problem� This relegates possibly non�optimal heuristic processing only

to the most di�cult sections of the problem� while allowing e�cient� yet optimal�

processing of the rest�

This discussion raises the possibility of a new measure of complexity that might be useful�

�� DISCUSSION �
�

HG Window

Figure ��� HG�s E�ect on a Typical Problem�

Theoretically� the exponents �� ��� and ��� for the tree� square and cube� up to � for a

clique� would be good measures� Unfortunately� these are hard to calculate for problems

with di�erent dimensionalities� An easy alternative measure would be to use the maximum�

input�complexity� This gives a direct indication of how long it will take to solve a given

problem� Functions are available that can determine this measure quickly� In addition� the

topology of a problem can be analyzed using this complexity measure� with the most di�cult

subsections identi�ed� Sections with maximum�input�complexity over a given value can be

treated with heuristic search methods�

�
� CONCLUSION �
�

��� Conclusion

We have presented a new control environment for processing computational semantics� By

combining and extending the AI techniques known as constraint satisfaction� solution syn�

thesis and branch�and�bound� we have reduced the search space from billions or more to

thousands or less� We have argued that the search problems encountered in computational

semantics �t nicely into the class of problems that this control paradigm handle well�

In the past� the utility of knowledge�based semantics has been limited� subject to argu�

ments that it only works in �toy� environments� Recent e�orts at increasing the size of

knowledge bases� however� have created an imbalance with existing control techniques which

are unable to handle the explosion of information� We believe that this methodology will

enable such work� Furthermore� we believe that it is applicable to a wide variety of real�life

problems� Our work in graph coloring is a beginning step towards using this research in

other areas�

Acknowledgments

I would like to thank Sergei Nirenburg for his continual encouragement and contributions

to this work� He is the most patient man on the face of this earth and has put up with

my foibles� along with several batches of ill health� in a most understanding way� I am also

indebted to the other members of my committee� Jaime Carbonell� Robert Frederking and

Victor Raskin� They have been remarkably �exible with this long�distance dissertation� in

addition to o�ering much encouragement and advice� Also appreciated are Kavi Mahesh

and Evelyne Viegas for their work on the Mikrokosmos project as well as their helpful

suggestions with regards to this research� And �nally� I would also like to acknowledge and

thank David Evans and Barbara DiEugenio� who� along with Sergei Nirenburg� were my

advisors at Carnegie Mellon where research on an earlier version of this work was done�

�
� CONCLUSION �
�

References

��� K� Appel and W� Haken� ����� Every Planar Map is Four Colorable� Bulletin American

Math Society� Vol ��� pp� ��������

��� S� Arnborg and A� Proskurowski� ����� Characterization and Recognition of Partial

k�trees� SIAM Journal on Algebraic and Discrete Mathematics� �� ������
�

��� Stephen Beale� ����� Using Branch�and�Bound with Constraint Satisfaction in Opti�

mization Problems� In Proc� Fourteenth National Conference on Arti�cial Intelligence

�AAAI���� Providence� Rhode Island�

�
� Stephen Beale� ���
� Dependency�Directed Text Generation� Technical Report� MCCS�

�
����� Computing Research Lab� New Mexico State Univ�

��� Stephen Beale and Sergei Nirenburg� ����� Dependency�Directed Text Planning� In

Proc� of the ���� International Joint Conference on Arti�cial Intelligence� Workshop on

Multilingual Text Generation� ������ Montreal� Quebec�

��� Stephen Beale� Sergei Nirenburg and Kavi Mahesh� ����� HUNTER�GATHERER�

Three Search Techniques Integrated for Natural Language Semantics� In Proc� Thirteenth

National Conference on Arti�cial Intelligence �AAAI���� Portland� Oregon�

��� Stephen Beale� Sergei Nirenburg and Kavi Mahesh� ����� Semantic Analysis in the

Mikrokosmos Machine Translation Project� In Proc� of the �nd Symposium on Natural

Language Processing� �������� Bangkok� Thailand�

��� U� Bertel�e and F� Brioschi� ����� Nonserial Dynamic Programming� Academic Press�

New York�

��� Christian Bessiere and Marie�Odile Cordier� ����� Arc�Consistency and Arc�Consistency

Again� In Proc� Tenth National Conference on Arti�cial Intelligence �AAAI���� Wash�

ington� D�C�

���� J� Bos�ak ����� Decomposition of Graphs� Kluwer� Norwell� MA�

���� B�G� Buchanan and E�H� Shortli�e� eds� ���
� Rule�based Expert Systems� The

MYCIN Experiments of the Stanford Heuristic Programming Project� Addison�Wesley�

Reading� MA�

�
� CONCLUSION �

���� D� Chapman� ����� Planning for Conjunctive Goals� Arti�cial Intelligence ���

���� E� Charniak� C�K� Riesbeck� D�V McDermott and J�R� Meehan� ����� Arti�cial Intel	

ligence Programming� Erlbaum� Hillsdale� NJ�

��
� V� Chv�atal ����� Linear Programming� W�H� Freeman and Company� New York�

���� Michael Elhadad� ����� Constraint�based Text Generation� Technical Report� CUCS�

������� Dept� of Computer Science� Columbia Univ�

���� Shimon Even� ����� Graph Algorithms� Computer Science Press� Maryland�

���� David Farwell� S� Helmreich� W� Jin� M� Casper� J� Hargrave� H� Molina� F� Weng�

���
� PANGLYZER� Spanish Language Analysis System� In Proc� First Conference of

the Association for Machine Translation in the Americas� Columbia� Maryland�

���� Mark Fox� ���
� ISIS� A Retrospective� In Intelligent Scheduling� M� Zweben and M�

Fox� Eds�� Morgan Kaufmann Publishers� San Francisco�

���� Robert Frederking� S� Nirenburg� D� Farwell� S� Helmreich� E� Hovy� K� Knight� S� Beale�

C� Domashnev� D� Attardo� D� Grannes and R� Brown� ���
� Integrating Translations

from Multiple Sources within the Pangloss Mark III Machine Translation System� In Proc�

First Conference of the Association for Machine Translation in the Americas� Columbia�

Maryland�

���� E�C� Freuder� ����� Synthesizing Constraint Expressions� Communications ACM

��	��
� ��������

���� M� Gondran and M� Minoux� ���
� Graphs and Algorithms� Wiley� Chichester�

���� Barbara J� Grosz and Candace L� Sidner� ����� Attentions� Intentions� and the Struc�

ture of Discourse� Computational Linguistics ��	�
� ������
�

���� Barbara J� Grosz� A� Joshi and S� Weinstein� ����� Towards a Computational Theory

of Discourse Interpretation� Unpublished manuscript�

��
� Liliane Haegeman� ����� An Introduction to Government and Binding Theory� Black�

well Publishers� Oxford� U�K�

�
� CONCLUSION �
�

���� K� Inui� T� Tokunaga and H� Tanaka� ����� Text Revision� a Model and its Imple�

mentation� In Aspects of Automated Natural Language Generation� R� Dale� E� Hovy� D�

Roesner and O� Stock� editors� Springler�Verlag�

���� E�W� Lawler and D�E� Wood� ����� Branch�and�Bound Methods� a Survey� Operations

Research �
� ��������

���� A�K� Mackworth� ����� Consistency in Networks of Relations� Arti�cial Intelligence

�	�
� �������

���� A�K� Mackworth and E�C� Freuder� ����� The Complexity of Some Polynomial Consis�

tency Algorithms for Constraint Satisfaction Problems� Arti�cial Intelligence ��� ����
�

���� Kavi Mahesh and Sergei Nirenburg� ����� A situated ontology for practical NLP� In

Proceedings of the Workshop on Basic Ontological Issues in Knowledge Sharing� Interna	

tional Joint Conference on Arti�cial Intelligence �IJCAI	���� Montreal� Canada�

���� W�C� Mann� ����� An Overview of the Penman Text Generation System� In Proc� of

the National Conference on Arti�cial Intelligence� pp� ��������

���� W�C� Mann and S�A� Thompson� ����� Rhetorical Structure Theory� Description

and Construction of Text Structures� In Natural Language Generation� New Results in

Arti�cial Intelligence� Psychology� and Linguistics�� G� Kempen� Ed�� Kluwer Academic

Publishers� Boston�

���� S� Minton� M� Johnston� A� Philips and P� Laird� ����� Solving Large�scale Constraint

Satisfaction and Scheduling Problems Using a Heuristic Repair Method� In Proc� Seventh

National Conference on Arti�cial Intelligence �AAAI���� Boston�

���� R� Mohr and T�C� Henderson� ����� Arc and Path Consistency Revisited� Arti�cial

Intelligence ��� ��������

��
� Allen Newell and Herbert Simon� ����� Human Problem Solving� Prentice�Hall� Engle�

wood Cli�s� N�J�

���� S� Nirenburg� V� Raskin and B� Onyshkevych� ����� Apologiae Ontologiae� In Proc

of the Conference on Theoretical and Methodical Issues in Machine Translation� Leuven�

Belgium�

�
� CONCLUSION �
�

���� B� Onyshkevych� 	����
� An Ontological�Semantic Framework for Text Analysis� Ph�D�

Diss�� Program in Language and Information Technologies� School of Computer Science�

Carnegie Mellon University�

���� Boyan Onyshkevych and Sergei Nirenburg� ���
� The Lexicon in the Scheme of KBMT

Things� Technical Report MCCS��
����� Computing Research Lab� New Mexico State

University�

���� Jacques Robin� ���
� Revision�Based Generation of Natural Language Summaries

Providing Historical Background� Technical Report CUCS���
��
� Columbia University�

���� Norman Sadeh� ���
� Micro�opportunistic Scheduling� The Mikro�Boss Factory Sched�

uler� In Intelligent Scheduling� M� Zweben and M� Fox� Eds�� Morgan Kaufmann Publish�

ers� San Francisco�

�
�� Stephen Smith� ���
� OPIS� A Methodology and Architecture for Reactive Scheduling�

In Intelligent Scheduling� M� Zweben and M� Fox� Eds�� Morgan Kaufmann Publishers�

San Francisco�

�
�� Josh D� Tenenberg� ����� Abstraction in Planning� In Reasoning about Plans� James

A� Allen� Henry A� Kautz� Richard N� Pelavin and Josh D� Tenenberg� eds� Morgan

Kaufmann Publishers� San Mateo� Ca�

�
�� Edward Tsang� ����� Foundations of Constraint Satisfaction� Academic Press� London�

�
�� Edward Tsang and Nigel Foster� ����� Solution Synthesis in the Constraint Satisfaction

Problem� Technical Report� CSM��
�� Dept� of Computer Science� Univ� of Essex�

�

� Evelyne Viegas and Stephen Beale� ����� Multilinguality and Reversibility in Com�

putational Semantic Lexicons� In Proc� to the �th International Workshop on Natural

Language Generation� Poster Session� Sussex� UK�

�
�� E� Viegas and S� Nirenburg� ����� The Semantic Recovery of Event Ellipsis� its Compu�

tational Treatment� In Proc� IJCAI	�� Workshop on Context in NLP� Montreal� Canada�

�
�� P�H� Winston� ���
� Arti�cial Intelligence Addison�Wesley� Readig� MA�

�
�� R� Michael Young and Johanna D� Moore� ���
� DPOCL� A Principled Approach to

Discourse Planning� In Proceedings of the Seventh International Workshop on Natural

Language Generation� Kennebunkport� ME�

