
Probabilistic Approaches

for Answer Selection

in Multilingual Question Answering

Jeongwoo Ko

Aug 27 2007

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Eric Nyberg (Chair)
Teruko Mitamura
Jaime Carbonell

Luo Si (Purdue University)

Copyright c© 2007 Jeongwoo Ko

This work was supported in part by ARDA/DTO Advanced Question Answering for Intelligence
(AQUAINT) program award number NBCHC040164 and used the NTCIR 5-6 corpus.

Keywords: Answer ranking, answer selection, probabilistic framework, graphi-
cal model, multilingual question answering

To my family for love and support.

iv

Abstract

Question answering (QA) aims at finding exact answers to a user’s
natural language question from a large collection of documents. Most QA
systems combine information retrieval with extraction techniques to iden-
tify a set of likely candidates and then utilize some selection strategy to
generate the final answers. This selection process can be very challenging,
as it often entails ranking the relevant answers to the top positions. To
address this challenge, many QA systems have incorporated semantic re-
sources for answer ranking in a single language. However, there has been
little research on a generalized probabilistic framework that models the
correctness and correlation of answer candidates for multiple languages.

In this thesis, we propose two probabilistic models for answer ranking:
independent prediction and joint prediction. The independent prediction
model directly estimates the probability of an individual answer candi-
date given the degree of answer relevance and the amount of supporting
evidence provided in a set of answer candidates. The joint prediction
model uses an undirected graph to estimate the joint probability of all
answer candidates, from which the probability of an individual candidate
is inferred. The models consider both the relevance of individual answers
as well as their correlation in order to rank the answer candidates.

As a general probabilistic framework, the models support answer se-
lection (1) in monolingual QA as well as (2) cross-lingual QA (3) on an-
swer candidates returned by multiple extraction techniques (4) provided
by different question answering systems.

An extensive set of experiments was done for monolingual QA (En-
glish, Chinese and Japanese) as well as cross-lingual QA (English-to-
Chinese and English-to-Japanese) using TREC and NTCIR questions.
The empirical results demonstrate the effectiveness of the independent
prediction model and the joint prediction model for answer selection in
multilingual QA and the joint prediction model is useful to generate a
set of unique and comprehensive answers.

vi

Acknowledgments

One of my favorite movies is “Forrest Gump”. The first scene of the movie starts
with Forrest sitting on a bench and saying to someone passing a chocolate, “My
momma always said, ’Life is like a box of chocolates. You never know what you’re
gonna get.”’ It is a good metaphor for life. In my life, whenever I have chosen a
path, I have been fortunate in having someone who believed me and could guide me
to find out a good path. While studying at Carnegie Mellon University in particular,
I have met many people who have provided me with priceless guidance and support.

First and foremost, I would like to thank my advisers, Eric Nyberg and Teruko
Mitamura for their invaluable guidance, advice and encouragement. Eric gave me
the opportunity to participate in this amazing research and inspired me to actively
investigate many interesting and challenging problems in language and information
technologies. Teruko guided me to look at the broader world by helping me to
extend my research beyond one specific language and to explore difficult problems
using multiple languages. In addition, when I had a hard time balancing research
and family, Eric and Teruko always helped me to go through it and choose the best
path. Their advice, support and encouragement helped me to finish this dissertation.

I would also like to thank my other thesis committee members, Jaime Carbonell
and Luo Si. I was fortunate to have them as committee members. Jaime always
gave me inspiring advice and wonderful suggestions. Especially, his guidance helped
me to define the scope of this research. Luo always encouraged me and guided me
to model probabilistic frameworks. His inspiring advice and research guidance made
this thesis more thorough.

This work would not have been possible without the support and interest of many
individuals at CMU. I would like to thank Jamie Callan and Eric Xing for their valu-
able discussion and suggestions. I would also like to thank the JAVELIN team mem-
bers for their valuable comments and contribution: Shilpa Arora, Justin Betteridge,
Matthew Bilotti, Kevyn Collins-Thompson, Krzysztof Czuba, Laurie Hiyakumoto,

vii

Yi-Fen Huang, Frank Lin, Lucian Lita, Vasco Pedro, James Rankin, Eric Riebling,
Nico Schlaefer, Andrew Schlaikjer, Hideki Shima, Dave Svoboda and Mengqiu Wang.
I also would like to thank Abhaya Agarwal, Bano Banerjee, Kethy Baker, Ulas Bar-
dak, Kevin Chang, Betty Cheng, Shay Cohen, Ariadna Font-Llitjos, Kevin Gimpel,
Fan Guo, Brooke Hyatt, Peter Jansen, Chun Jin, Chan Woo Kim, Jae Dong Kim,
John Kominek, Anagha Kulkarni, Yan Liu, Thuy Linh Nguyen, Jean Oh, Radha
Rao, Antoine Raux, Yanjun Qi, Wilson Tam, Stacey Young, Shinjae Yoo, Yi-Chia
Wang, Bing Zhao and many others for their encouragement, freindship and support.

Finally, my most sincere gratitude to my parents who always had faith in me
and gave me endless love and support, my sister Jungmin Ko who gave me insightful
suggestions whenever I made a decision, and has been my role model in life, and
my brother Junghoon Ko. Most importantly, throughout my Ph.D., my husband
Chando Park encouraged me at all times with his love, patience, and understanding.
My last thanks to God who blessed me with my lovely son Jonathan Park while I
was at CMU.

viii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Approach . 6

1.3 Hypothesis . 8

1.4 Contributions . 9

1.5 Outline . 10

2 Related Work 11

2.1 Previous Research . 11

2.2 QA Evaluation . 16

2.2.1 TREC . 16

2.2.2 NTCIR . 18

3 System Overview 21

3.1 The JAVELIN System . 21

3.1.1 System for English QA . 22

3.1.2 System for Multilingual QA 24

3.2 The EPHYRA System . 25

4 Answer Ranking Models 27

4.1 Independent Prediction Model (IP) 27

4.2 Joint Prediction Model (JP) . 30

ix

4.3 Comparison of IP and JP . 36

5 Feature Representation 41

5.1 Answer Relevance Features . 41

5.1.1 Knowledge-based Features . 42

5.1.2 Data-driven Features . 45

5.2 Answer Similarity Features . 48

5.2.1 String Distance Metrics . 48

5.2.2 Synonyms . 49

6 Model Extensions 51

6.1 Extension to Multi-strategy QA . 51

6.2 Extension to Different Monolingual QA 53

6.3 Extension to Cross-lingual QA . 57

7 Evaluation Methodology 63

7.1 Data sets and Corpora . 63

7.1.1 English . 63

7.1.2 Japanese . 64

7.1.3 Chinese . 64

7.2 Evaluation Metrics . 65

8 Evaluation 67

8.1 Experimental Setup . 67

8.2 Monolingual QA . 70

8.2.1 English . 71

8.2.2 Chinese . 94

8.2.3 Japanese . 99

8.2.4 Utility of Data-driven Features 104

8.3 Cross-lingual QA . 105

x

8.3.1 English-to-Chinese . 105

8.3.2 English-to-Japanese . 109

8.4 Multi-strategy QA . 113

8.4.1 JAVELIN . 113

8.4.2 EPHYRA . 114

8.5 Comparison with State-of-the-art Systems 118

8.6 Summary . 120

9 Conclusions and Future Research 123

9.1 Conclusions . 123

9.2 Future Research . 130

Bibliography 139

xi

xii

List of Figures

1.1 A traditional QA pipeline architecture 3

2.1 Example question from TREC-2004 17

4.1 Example of directed graph (C:cloudy, S:sprinkler, R:rain, W:wet grass).
The graph is extracted from (Russell and Norvig, 95) [82] 31

4.2 Example of undirected graph . 32

4.3 Algorithm to rank answers with the joint prediction model. 35

4.4 Marginal probability of individual answers 38

4.5 Conditional probability given that “William J. Clinton” is correct . . 39

4.6 Score calculation using marginal and conditional probability. 39

5.1 Algorithm to generate an answer relevance score from gazetteers. . . . 43

5.2 Algorithm to generate an answer relevance score from WordNet ontology. 44

5.3 Algorithm to generate an answer relevance score from Wikipedia (tf:
term frequency, idf: inverse document frequency obtained from a large
corpus) . 46

5.4 Algorithm to generate an answer relevance score from Google. 47

6.1 Example of normalized answer strings 57

6.2 Algorithm to generate an answer relevance score from Google for cross-
lingual QA. 61

xiii

8.1 Performance of the baseline systems and the independent prediction
model (C+F: combination of Clustering and Filtering, C+W: com-
bination of Clustering and Web validation, C+F+W: combination of
Clustering, Filtering and Web validation). 76

8.2 Average top answer accuracy of the independent prediction model
(IX: performance of extractors, Similarity: merging similarity features,
Relevance: merging relevance features, ALL: combination of all features) 77

8.3 Average top answer accuracy of individual answer relevance features
(GZ: gazetteers, WN: WordNet, WIKI: Wikipedia, GL: Google, ALL:
combination of all relevance features). 77

8.4 Algorithm to generate the joint table using the top 10 answers 79

8.5 Performance of the answer ranking models for the EPHYRA QA system. 92

8.6 Average top answer accuracy when using individual relevance features
and similarity features . 93

8.7 Performance of the answer ranking models for Chinese answer selection 95

8.8 Average top answer accuracy in Chinese QA when using (a) individual
relevance features and (b) similarity features. 98

8.9 Performance of the answer ranking models for Japanese QA 100

8.10 Answer type distribution in Chinese and Japanese data set 101

8.11 Average top answer accuracy in Japanese QA when using (a) individ-
ual relevance features (“G+G+W”: combination of Google, Gazetteers
and Wikipedia) and (b) similarity features. 103

8.12 Performance of the answer ranking models in English-to-Chinese QA. 106

8.13 Average top answer accuracy in English-to-Chinese QA when using
(a) individual relevance features and (b) similarity features. 108

8.14 Performance of baseline, IP and JP for English-to-Japanese QA . . . 110

8.15 Average top answer accuracy in English-to-Japanese QA when using
(a) individual relevance features and (b) similarity features. 112

8.16 Answer merging in JAVELIN. (a),(b) and (c) show the coverage of
IP on FST, LIGHT and SVM, respectively. (d) shows the coverage
of IP when merging answers from the three extractors. (e) shows the
coverage of JP when merging answers from the three extractors. . . . 116

xiv

8.17 Answer merging in EPHYRA. (a) and (b) show the coverage of IP
on Extractor1 and Extractor2, respectively. (c) shows the coverage
of IP when merging answers from the two extractors. (d) shows the
coverage of JP when merging answers from the two extractors. 117

9.1 Answer candidates extracted from multiple document corpora for the
question “What missiles does Egypt have?’ 134

9.2 Normalized answers for English (left), Japanese (middle) and Chinese
(right). 135

9.3 Answer clustering for interactive QA. 135

xv

xvi

List of Tables

1.1 Hypothesis dimensions . 8

3.1 Performance of EPHYRA in TREC-2006 26

6.1 Articles in Wikipedia for different languages 55

8.1 Performance characteristics of individual answer extractors: LEX (lex-
icon), LOC (location), OBJ (object), PER (person-name), ORG (organization-
name), PROP (proper-name). ’Macro’: precision at question-level.
’Micro’: precision at answer-level. 72

8.2 Average top answer accuracy of individual similarity features under
different thresholds: 0.3 and 0.5. 78

8.3 Performance of IP and JP when using the top 10 answer candidates
produced by each individual extractor. 81

8.4 Average precision of IP and JP. 81

8.5 Performance of IP and JP when using the top 10 answers produced
by IP. 82

8.6 Average precision of IP and JP when using the top 10 answers pro-
duced by IP. 83

8.7 Performance of JP when using Gibbs sampling 85

8.8 Performance characteristics of the LIGHT and SVM extractors 87

8.9 Average precision of the answer ranking models when there are more
than three correct answers per question (“Diff”: difference between
IP and JP at each rank). 88

8.10 Performance characteristics of EPHYRA extractors 90

xvii

8.11 Performance characteristics of the Chinese extractor 94

8.12 Average precision of the answer ranking models for Chinese answer
selection . 95

8.13 Performance characteristics of the Japanese extractor 99

8.14 Average precision of the answer ranking models for Japanese QA. . . 100

8.15 Average top answer accuracy when using data-driven features v.s.
when using all features. 104

8.16 Performance characteristics of the extractor 105

8.17 Average precision of the answer ranking models in English-to-Chinese
QA. 106

8.18 Performance characteristics of the extractor 109

8.19 Average precision of IP and JP for English-to-Japanese QA. 110

8.20 Performance comparison with the latest TREC-2006 (English) and
NTCIR-6 (Chinese and Japanese) systems. 119

8.21 Performance gain of IP over baselines and characteristics of testbed
systems. (* means the difference is statistically significant (p=0.05)). 121

xviii

Chapter 1

Introduction

Question Answering (QA) aims at finding exact answers to natural language ques-

tions from a large collection of documents. Typical QA systems [45, 80, 28, 34, 46, 15]

combine document retrieval with question analysis and extraction techniques to iden-

tify a set of likely candidates, from which the final answer(s) are selected.

Questions can be classified into two categories: factoid questions and complex

questions. Factoid questions ask for simple facts as answers (e.g. a person’s name,

a country name, an organization name). Complex questions require longer answers

representing facts, relations or processes (e.g. “What is a quasar?”, “What is the

relationship between Alan Greenspan and Robert Rubin?”, “How did Egypt acquire

nuclear weapons?”). To answer many factoid questions, QA systems use several

external resources such as ontologies and apply shallow parsing on questions and

documents. In addition, many systems exploit external corpora (e.g. the Web and

Wikipedia) as an additional source of answers [20, 51, 104, 2] and incorporate rea-

soning to verify the relationship between an answer candidate and the question [61].

1

Statistical machine learning techniques are also widely used for QA subtasks such as

answer type classification, document retrieval and answer extraction, etc. Recently,

deeper semantic analysis has been incorporated into several QA systems to increase

performance on factoid questions and answer complex questions [33, 13, 26, 74].

1.1 Motivation

Most QA systems [15, 34, 63, 80] adopt a pipeline architecture that incorporates four

major processes: (1) question analysis, (2) document retrieval, (3) answer extraction

and (4) answer selection. Question analysis is a process which analyzes a question

and produces a list of keywords. Document retrieval is a step that searches for rele-

vant documents or passages. Answer extraction extracts a list of answer candidates

from the retrieved documents. Answer selection is a process which pinpoints correct

answer(s) from the extracted candidate answers. Since the first three processes in

the QA pipeline may produce erroneous outputs, the final answer selection process

often entails identifying correct answer(s) amongst many incorrect ones.

Figure 1.1 shows a traditional QA architecture with an example question. Given

the question “Which city in China has the largest number of foreign financial compa-

nies?”, the answer extraction component produced a list of five answer candidates.

Due to imprecision in answer extraction, an incorrect answer (“Beijing”) was ranked

at the top position. The correct answer (“Shanghai”) was extracted from two docu-

ments with different confidence scores and ranked at the third and the fifth positions.

In order to rank “Shanghai” in the top position, we have to address two interesting

challenges:

• Answer Relevance. How do we identify relevant answer(s) amongst irrele-

2

Question

Question
Analysis

Query

Document
Retrieval

Corpus

Docs

Answer
Extraction

Answer
candidates

Answer
Selection

Answer

Shanghai

FT942-20160.5Taiwan

FBIS3-453200.4Shanghai

FBIS3-580.64Shanghai

WSJ920110-00130.65Hong Kong

AP880603-02680.7Beijing

Document
extracted

ScoreAnswer
candidates

Which city in China has the
largest number of foreign
financial companies?

Figure 1.1: A traditional QA pipeline architecture

vant ones? This task may involve searching for evidence of a relationship

between the answer and the answer type or a question keyword. For exam-

ple, we might wish to query a knowledge base to determine if “Shanghai”

is a city (IS-A(Shanghai, city)), or to determine if Shanghai is in China

(IS-IN(Shanghai, China)).

• Answer Similarity. How do we exploit similarity among answer candidates? For

example, when the candidate list contains redundant answers (e.g., “Shanghai”

as above) or several answers which represent a single instance (e.g. “U.S.A.”

and “the United States”), to what extent should we boost the rank of the

redundant answers? Note also that effective handling of redundancy is partic-

ularly important when identifying a set of novel answers for list or definition

3

questions.

To address the answer relevance question, several answer selection approaches

have been developed that make use of external semantic resources. One of the most

common approaches relies on precompiled lists or ontologies such as WordNet, CYC

and gazetteers for answer validation or answer reranking. In this approach, answer

candidates are either removed or discounted if they are not found within the portion

of the resource’s hierarchy corresponding to the expected answer type of the question

(e.g. location, proper-name, or one of several predefined subtypes) [71, 103]. The

Web also has been employed in answer reranking by exploiting search engine results

produced by queries containing the answer candidate and question keywords [54].

This approach has also been found useful when using various languages for answer

validation.

Even though each of these approaches uses one or more semantic resource to

independently support an answer candidate, few have considered the potential ben-

efits of combining resources together as evidence. As research that does combine

resources, Schlobach et al. [86] combined geographical databases with WordNet in

order to use more than one resource for answer type checking of location questions.

However, in their experiments the combination actually hurt performance because

of the increased semantic ambiguity that accompanies broader coverage of location

names. This demonstrates that the method used to combine potential answers may

matter as much as the choice of resources.

The second challenge is to exploit redundancy in the set of answer candidates.

As answer candidates are extracted from different documents, they may contain

identical, similar or complementary text snippets. For example, the United States

may be represented by the strings “U.S.”, “United States” or “USA” in different

4

documents. It is important to detect similarity in answer candidates and exploit

similarity to boost answer confidence, especially for list questions that require a

set of unique answers. However, this task raises the following issues [52]. When a

partial overlap occurs between answer candidates, a decision must be made regarding

whether or not to boost answer confidence (e.g. “April 1912”, “14 Apr 1912”, “14

April”). Granularity is another problem. For example, assume that there are two

answer candidates “April” and “Spring” for a temporal question. Should we boost

the confidence of one answer candidate (“Spring”) by considering another (“April”)

as additional support?

One approach to address these challenges is to incorporate answer clustering [46,

72, 38]. For example, we might merge “April 1912” and “14 Apr 1912” into a

cluster and then choose one answer as the cluster head. However, clustering raises

new issues: how to choose the cluster label and how to calculate the scores of the

clustered answers.

Exploiting redundancy is even more important in multi-strategy QA, in which

multiple answering agents are used [14, 12, 21, 37, 2, 74]. The basic idea of this ap-

proach is that a combination of similar answers extracted from different sources using

different strategies performs better than any individual answering strategy alone. As

answer candidates come from different agents with different score distributions, ex-

ploiting answer redundancy plays an important role in answer ranking.

Although previous work has utilized evidence from similar answer candidates

for a specific answer candidate, the algorithms only modeled each answer candidate

separately and did not consider both answer relevance and answer correlation to

prevent the biased influence of incorrect similar answers. As far as we know, no

previous work has jointly modeled the correctness of available answer candidates in

5

a formal probabilistic framework, which is very important for generating an accurate

and comprehensive answer list.

Extensibility is another important consideration in answer selection: how easy is

it to extend answer selection to multilingual QA? As most answer selection processes

are language-dependent and require language-specific external resources, it is not

easy to extend answer ranking to multilingual QA. Although many QA systems have

incorporated individual features and/or resources for answer selection in a single

language, little previous research has examined a generalized probabilistic framework

that supports answer selection in multiple languages using answer relevance and

answer similarity features appropriate for the language in question. A generalized

probabilistic framework will help QA systems to easily add new resources and easily

support different languages.

1.2 Approach

In the previous section, we raised two challenges for answer selection: how to identify

relevant answers and how to exploit answer redundancy to boost the rank of relevant

answers. In order to address the two issues, the answer selection process should

be able to conduct two subtasks. One task is to estimate the probability that an

answer is relevant to the question. This task can be estimated by the probability

P(correct(Ai) |Ai, Q), where Q is a question and Ai is an answer candidate. The

other task is to exploit answer redundancy in the set of answer candidates. This task

can be done by estimating the probability P (correct(Ai) |Ai, Aj), where Aj is similar

to Ai. Since both tasks influence answer selection performance, it is important to

combine the two tasks in a unified framework and estimate the probability of an

6

answer candidate P (correct(Ai)|Q,A1, ..., An).

In this thesis, we propose two probabilistic models that conduct the two subtasks

in a statistical framework: independent prediction and joint prediction. The inde-

pendent prediction model directly estimates P (correct(Ai)|Q,A1, ..., An) from the

probability that an answer candidate is correct given multiple answer similarity fea-

tures and answer relevance features (Equation 1.1). This model is implemented with

logistic regression, which is a statistical machine learning technique used to predict

the probability of a binary variable from the input variables.

P (correct(Ai)|Q,A1, ..., An) (1.1)

≈ P (correct(Ai)|rel1(Ai), ..., relK1(Ai), sim1(Ai), ..., simK2(Ai))

Instead of addressing each answer candidate separately, the joint prediction model

estimates the joint probability of available answer candidates. In particular, the

joint model estimates the probability of P (correct(A1),..., correct(An)|Q, A1, ..., An),

where n is the number of answer candidates in consideration. From the joint proba-

bility, we can derive the marginal probability of P (correct(Ai)|Q,A1, ..., An) for each

individual answer as well as the conditional probability P (correct(Ai)|correct(Aj)

, Q,A1, ..., An).

The joint prediction model uses an undirected graph to estimate the joint prob-

ability of all answer candidates. Each node Si in the graph has a binary value to

represent answer correctness: 1 represents a correct answer and 0 represents an in-

correct answer. The weights on the edges represent the similarity between answer

candidates. This model estimates the joint probability of all answer candidates, from

which the probability of an answer candidate is inferred as shown in Equation 1.2.

7

P (correct(Ai)|Q,A1, ..., An) (1.2)

≈
∑
S1

...
∑
Si−1

∑
Si+1

...
∑
Sn

P (Si = 1, S1, ..., S i−1, Si+1, ..., Sn)

1.3 Hypothesis

The hypothesis is that our probabilistic answer ranking models significantly improve

performance of a QA system and provide a general framework that allows any rele-

vance and similarity features to be easily incorporated.

Table 1.1: Hypothesis dimensions

Source language Target language Extraction QA System

(for question) (for documents) techniques

English English FST, SVM, Heuristics JAVELIN

English English Answer type matching, EPHYRA

Pattern matching

Chinese Chinese MaxEnt JAVELIN

Japanese Japanese MaxEnt JAVELIN

English Chinese MaxEnt JAVELIN

English Japanese MaxEnt JAVELIN

Specifically, the probabilistic answer ranking models provide a generalized prob-

abilistic framework that supports answer selection (1) in monolingual QA as well as

(2) cross-lingual QA (3) on answer candidates returned by multiple extraction tech-

niques (4) provided by different question answering systems (Table 1.1), and perform

8

better than state-of-the-art answer selection algorithms.

1.4 Contributions

In this research, we propose probabilistic answer ranking models for multilingual

question answering. This work will contribute to research in question answering and

answer selection by incorporating the following strategies:

• Generalized probabilistic framework. The models provide a general prob-

abilistic framework which considers both the relevance of individual answers as

well as their correlation; additionally, the models allow any answer relevance

and similarity features to be easily incorporated in order to boost the rank of

correct answers.

• Support of multiple languages. As the models are language independent,

they can be easily extended to other languages with re-training for each indi-

vidual language. New features and resources for other languages can be easily

incorporated into the models.

• Support of multi-strategy QA. Architectures of recent QA systems typ-

ically employ multiple strategies and techniques to answer questions, thus

requiring answers be merged to combine the results proposed by alternative

approaches. The models described here can be easily extended to merge alter-

native approaches by using a score from each individual answering strategy as

one feature and by learning their associated weights from the training data.

• Combination of knowledge-driven and data-driven approaches. An-

swer relevance scores and answer similarity scores can be calculated with knowledge-

9

based approaches (e.g. using WordNet and gazetteers) as well as data-driven

approaches (e.g exploiting the Web and Wikipedia). The models can easily

learn how to combine them using different weights.

1.5 Outline

This thesis is organized as follows. Section 2 describes related work. Section 3

introduces the JAVELIN QA system and the EPHYRA QA system, both of which

were used as testbeds to evaluate the answer ranking models. Section 4 describes the

answer ranking models: the independent prediction model and the joint prediction

model. Section 5 lists the features that generate similarity and relevance scores for

factoid questions. In Section 6, we explain how the models were extended to support

multiple languages. Section 7 describes the evaluation methodology used to measure

the performance of the models. Section 8 summarizes the experimental setup and

results. Finally, Section 9 concludes with potential future research.

10

Chapter 2

Related Work

This chapter describes previous research for answer selection in question answering.

2.1 Previous Research

To select the most probable answer(s) from the answer candidate list, QA systems

have applied several different answer selection approaches. One of the common ap-

proaches is filtering. Due to errors or imprecision in earlier modules of the QA

pipeline, extracted answer candidates sometimes contain irrelevant answers, lead-

ing to answer candidates that do not match the question. For example, given the

question, “What continent is Egypt on?”, the candidate list might include “Middle

East”, “Arab”, “Islam”, and “Africa”. As the expected answer type is LOCATION

(more specifically CONTINENT), if we know that “Middle East”, “Arab” and “Islam”

are not continent names, we can filter them out from the candidate list. This pro-

cess is called type checking and used to filter out invalid answers. Ontologies such

11

as WordNet and gazetteers are commonly-used resources to assess whether or not an

answer candidate matches the expected answer type [10, 103, 86].

For numeric questions, filtering can be done using range checking [14]. Some

resources such as CYC [48] and the CIA World Factbook1 provide the latest geo-

graphic information about countries. For example, given the question “What is the

population of Iceland?”, an answer candidate is “300”. As the CIA World Factbook

contains “299,388” as the population of Iceland, the answer candidate “300” is sig-

nificantly different from the number in the resource and can be filtered out from the

answer list.

Filtering is also important in QA systems that apply n-gram techniques to extract

answer candidates [7, 2]. As the n-gram approach tends to produce many noisy

answer candidates, the system requires filtering out invalid answer candidates using

manually written or data-driven filters (e.g. a web hit counter filter to remove answer

candidates without any hits from Google [2], and surface string filters to assess

whether answer candidates are capitalized for proper name questions or whether

numbers exist for numeric questions [7]).

Answer reranking is another popular approach for answer selection. This ap-

proach applies several different validation strategies in order to rerank answer can-

didates. Xu et al. [103] applied several type-specific constraints (e.g. constraint

to check the sub type for location questions or constraint to check verb argument

matching between an answer text and the question), and moved to the top position

those answer candidates that best satisfied the constraints.

Moldovan et al. [61] converted question and answer candidates into logic repre-

sentation, and used a logic prover to prove answer correctness using axioms obtained

1https://www.cia.gov/redirects/factbookredirect.html

12

from WordNet. This answer correctness assessment was then used to rerank answer

candidates.

Prager et al. [81] extended CYC-based filtering to enable answer reranking. When

CYC contained information about a numeric question, answer candidates for the

question were categorized into five different groups: “answer is known to be correct”,

“answer is known to be incorrect”, “answer is in range”, “answer is out of range”,

and “unknown”. Then, this information was used for answer reranking by removing

answer candidates that were classified into “answer is known to be incorrect” and

increasing the confidence scores of the answer candidates categorized into correct or

in-range answers.

Magnini et al. [54] proposed two answer reranking approaches: a statistical ap-

proach and a content-based approach. The statistical approach creates a query from

question keywords and an answer candidate using the proximity operator (NEAR), and

then sends it to AltaVista (http://www.altavista.com). Then, it counts the number

of hits from the question keywords, the number of hits from the answer candidate and

the number of hits from the combination of the question keywords and the answer

candidate. These hits are used to compute answer relevance scores. Finally, answer

candidates are reranked according to their relevance scores. On the other hand, the

content-based approach analyzes the co-occurrence of question keywords and an an-

swer candidate in text snippets returned from Google (http://www.google.com). It

counts the word distance between an answer candidate and a question keyword in

each text snippet, then calculates an answer relevance score using the distance. The

answer whose score is highest is chosen as a final answer for factoid questions.

Ravichandran et al. [18] used maximum entropy to rerank answer candidates.

They used four simple features such as a feature to count the frequency of an answer

13

in the retrieved documents, a feature to check whether or not an answer matches the

expected answer type, and a feature to calculate inverse term frequency of question

keywords in the answer sentence. The scores from maximum entropy were used to

rerank answer candidates. The LCC’s Chaucer QA system [30] also used maximum

entropy to merge answers returned from six answer extractors2. Chaucer answer

selection consists of two steps. The first step was to rerank answer candidates using

maximum entropy similar to Ravichandran et al. The second step used text entail-

ment to select the final answer. It first took the top 25 answer candidates in the

list provided by the first step, calculated a text entailment score between the ques-

tion and each individual answer, and reranked answer candidates according to the

entailment scores. In addition, Chaucer calculated a text entailment score between

the original question and the predictive questions generated for the original question.

If the original question entailed a predictive question, the answer of the predictive

question was considered as the answer of the original question.

Buscaldi et al. [9] used Wikipedia for answer reranking by exploiting Wikipedia

structured information such as category, definition and title. For example, for the

question “Which fruit contains vitamin C?”, a list of fruits was obtained from the

Wikipedia article3, and then the list was compared with answer candidates.

Even though each of these approaches uses one or more semantic resources to inde-

pendently support an answer, few have considered the potential benefits of combining

resources and using the result as evidence for answer reranking. Recently, Schlobach

et al. [86] combined geographical databases with WordNet in a type checker for loca-

tion questions. However, in their experiments the combination actually hurt perfor-

2Chaucer was the second best QA system for factoid questions in the TREC-2006 evaluation.
3http://en.wikipedia.org/wiki/Category:Fruit

14

mance, a result they attribute to the increased semantic ambiguity that accompanied

broader coverage of location names.

Collecting evidence from similar answer candidates to boost the confidence of a

specific answer candidate is also important for answer selection. As answer candi-

dates are extracted from different documents, they may contain identical, similar or

complementary text snippets. One of the most popular approaches is to cluster iden-

tical or complementary answers. The score of each cluster is calculated by counting

the number of answers in the cluster [15], summing the scores of all answers in the

cluster [72, 46] or selecting the best score among the individual answer scores in the

cluster [50]. Recently, Jijkoun et al. [38] used type checking scores when merging

similar answers in Dutch monolingual QA. They multiplied each answer score with

a probability calculated by their type checker. They also used a graph to consider

non-transitiveness in similarity.

Similarity detection is more important in list questions that require a set of unique

answers (e.g. “Which countries produce coffee?”). In many systems, a cutoff thresh-

old was used to select the most probable top N answers [27, 43]. An exhaustive search

to find all possible candidates was applied to find answers for list questions [106].

Recently, several QA systems have employed a multi-strategy architecture that

allows multiple answering agents to answer a question [14, 12, 21, 37, 2, 74]. This

architecture requires answer merging to combine the similar answers proposed by

alternative approaches. This merging process is challenging, as it requires combining

ranked answer lists with independent score distributions. To exploit this type of

redundancy, simple confidence-based voting has been used to merge the top five

answers returned by competing QA agents [14]. As a more advanced approach, a

maximum-entropy model has been used to rerank the top 50 answer candidates from

15

three different answering strategies [21]. This maximum-entropy reranking model

contained more than 30 features generated from the internal QA components (e.g.

the rank of answer candidates, the answer type, source document scores, and the

count of each answer in the document corpus) and improved the performance of

answer selection by combining complementary results provided by different answering

strategies.

2.2 QA Evaluation

QA has been actively researched and evaluated in many different languages. TREC

(Text REtrieval Conference) provides the infrastructure to evaluate QA systems for

English. NTCIR (NII Test Collection for IR Systems) and CLEF (Cross-Language

Evaluation Forum) focus on evaluating QA systems for Asian languages and Eu-

ropean languages, respectively. We used TREC and NTCIR data to evaluate our

answer ranking models for English, Chinese and Japanese QA. This section provides

brief introduction to TREC and NTCIR.

2.2.1 TREC

TREC (http://trec.nist.gov) provides the infrastructure to evaluate various retrieval

tasks such as document retrieval, filtering, novelty detection, question answering,

etc. In 1992, NIST (National Institute of Standards and Technology) organized

TREC under the support from Information Technology Laboratory’s (ITL) Retrieval

Group of the Information Access Division (IAD) and the Advanced Research and

Development Activity (ARDA) of the U.S. Department of Defense.

16

<target id = "4" text = "James Dean">
<qa>

<q id = "4.1" type="FACTOID"> When was James Dean born?</q>
</qa>
<qa>

<q id = "4.2" type="FACTOID">When did James Dean die? </q>
</qa>
<qa>

<q id = "4.3" type="FACTOID">How did he die?</q>
</qa>
<qa>

<q id = "4.4" type="LIST"> What movies did he appear in?</q>
</qa>
<qa>

<q id = "4.5" type="FACTOID">Which was the first movie that he was in?</q>
</qa>
<qa>

<q id = "4.6" type="OTHER"> Other</q>
</qa>

</target>

Figure 2.1: Example question from TREC-2004

The TREC QA track [95, 96, 97, 98, 99, 100] has been offered every year since

1999 to evaluate the performance of English QA systems. The first two QA tracks

focused on pinpointing small text snippets (either 50 or 250 bytes) from a newspaper

document corpus to answer 200 factoid questions. MRR (Mean Reciprocal Rank)

was used to evaluate system performance by calculating the average reciprocal rank

of the top five answers.

The third QA track in TREC-2001 introduced “NIL” answer questions. When a

system cannot find answers from the given document collection, the system should

return ’NIL’. In addition, the answer should be a short text snippet whose length is

less than 50 bytes. This track also incorporated list questions in order to evaluate

the ability to extract a list of answers from multiple documents.

17

The TREC-2002 QA track added more constraints on answer: the participants

should return exact answer strings (instead of text snippets) as well as provide infor-

mation on the document where the answer was extracted. Even though an answer

was correct for a question, the score of the answer would still be 0 if the answer was

not extracted from the supporting documents.

In TREC-2003, the QA track introduced 30 definition questions that asked for

information about person, organization and entity (e.g. feng shui, TB).

The latest TREC QA evaluations in TREC-2004, TREC-2005 and TREC-2006

have focused on answering series of questions for one topic. Each topic has several

sub-questions, and the last sub-question requires the novel information which had

not previously been mentioned in the earlier questions and answers for the topic (Fig-

ure 2.1) . In this task, natural language processing including coreference resolution

is important to address anaphora resolution.

To evaluate performance on complex questions, TREC-2005 introduced the re-

lationship track which included questions about eight different relations such finan-

cial, movement of goods, family ties, communication pathways, organizational ties,

co-location, common interests, and temporal (e.g. “The analyst is concerned with

arms tracking to Colombian insurgents. Specifically, the analyst would like to know

of the different routes used for arms entering Colombia and the entities involved.”)

2.2.2 NTCIR

More recently, QA systems have been extended to cover various Asian languages.

NTCIR (http://research.nii.ac.jp/ntcir) focuses on evaluating information retrieval,

question answering, text summarization and information extraction for Chinese,

18

Japanese, Korean and English [41, 42].

In 2001, the NTCIR QA task started to search for answers from Japanese news-

paper articles and has been extended to cover more complex questions (e.g. why

and definition questions). Recent two NTCIR evaluations (NTCIR-5 and NTCIR-

6) have incorporated cross-lingual question answering tasks for English-to-Chinese

(E-C), English-to-Japanese (E-J), Chinese-to-English (C-E) and Japanese-to-English

(J-E). Because NTCIR also provides translation of English questions into Chinese

and Japanese, the translated questions can be used to measure the performance of

Chinese-to-Chinese (C-C) and Japanese-to-Japanese (J-J). This allows a comparison

to be made between monolingual QA (C-C and J-J) and cross-lingual QA (E-C and

E-J) for the same question. For example, in the NTCIR-5 evaluation, the perfor-

mance of C-C was three times better than that of E-C, and the performance of J-J

was 5-10% better than E-J [83]. As they were evaluated using the same questions

and the same document collection, the difference in the performance can be consid-

ered as the effect of question translation. When comparing Chinese and Japanese,

less performance degradation occurred in Japanese because Chinese questions were

generated by translating E-J questions and the translation occasionally caused vo-

cabulary mismatch between the translated questions and Chinese documents.

Currently the cross-lingual QA tasks include only factoid questions and partici-

pants submit an exact answer string and document pairs for each question. Perfor-

mance has been measured with the average top answer accuracy.

19

20

Chapter 3

System Overview

The primary testbed for our research is the JAVELIN QA system. This chapter

describes the JAVELIN architecture, and its application for supporting multiple

languages. The EPHYRA QA system is used as the secondary testbed to evaluate

the extensibility of the answer ranking models.

3.1 The JAVELIN System

JAVELIN is an open-domain QA system to support a flexible and modular QA ar-

chitecture [71, 72, 73]. To embody the QA pipeline architecture shown in Figure 1.1,

JAVELIN defines abstract interfaces for each of the following modules:

• Question Analyzer: takes a question as an input and analyzes the question text

to generate a request object containing a list of keywords, alternative terms for

query expansion, the question type, and the expected answer type.

• Retrieval Strategist: takes the request object as an input and produces a list of

21

relevant documents retrieved from the corpus.

• Information Extractor: takes the request object and the retrieved documents

as an input and produces a list of answer candidates extracted from the docu-

ments.

• Answer Generator: takes the request object and the extracted answer candidates

as an input and generates a list of ranked answers as an output. Our answer

ranking models are tested using this module.

The Execution Manager coordinates the processing of QA modules to imitate a

QA pipeline architecture. It also stores process history to a centralized repository

for information reuse [78].

In practice, the JAVELIN architectural design has been implemented in three

different languages, each of which exploits the modularity of the architecture.

3.1.1 System for English QA

During ARDA’s AQUAINT Phase I & II programs, JAVELIN was applied to English

factoid questions and was evaluated in three TREC QA evaluations [71, 72, 73].

To handle English factoid questions, the four QA modules were implemented to

incorporate multiple English resources and tools.

The Question Analyzer used the RASP parser [8], WordNet and a set of hand-

coded rules for answer type classification. For factoid questions, each question was

classified into one of eight answer types (LOCATION, PROPER-NAME, PERSON-NAME,

ORGANIZATION-NAME, TEMPORAL, NUMERIC-EXPRESSION, OBJECT,

22

or LEXICON). To extract keywords from a question, named entity detectors and

syntactic information were utilized.

The Retrieval Strategist used the Lemur search engine1 to execute queries and

retrieve documents. For the TREC evaluation, the Retrieval Strategist supported

answer justification to find supporting documents for answer candidates that were

extracted from external corpora (e.g. the Web, Wikipedia). This process is called

“answer projection” [57] and uses an answer candidate as a part of a query to retrieve

additional documents that contain the answer candidate.

The Information Extractor was implemented with five different answer extraction

techniques.

• EXPERT: an extractor that draws answers from a set of semantic resources

including gazetteers and WordNet

• FST: an answer extractor based on finite state transducers that incorporate a

set of extraction patterns (both manually created and generalized patterns)

• LIGHT: an extractor that selects answer candidates using a non-linear distance

heuristic between the keywords and an answer candidate

• LIGHTv2: another extractor based on a different distance heuristic

• SVM: an extractor that uses Support Vector Machines [93, 94] to discriminate

between correct and incorrect answers based on local semantic and syntactic

context

As the extractors vary in accuracy, the types of questions they can answer, and

the average number of answers returned for each question, the Answer Generator

1http://www.lemurproject.org/

23

should be robust and generalizable to handle different outputs returned from different

extractors.

3.1.2 System for Multilingual QA

JAVELIN has been extended to support multiple languages: Japanese and Chinese

monolingual QA as well as cross-lingual QA which searches for Chinese or Japanese

answers to English questions. As JAVELIN supports a language-independent mod-

ular architecture, the system was customized to use multilingual resources and Uni-

code characters. Recently, JAVELIN was evaluated in the NTCIR-5 and NTCIR-

6 [50, 59, 87, 58].

For cross-lingual QA, JAVELIN incorporates a new component called the Trans-

lation Module (TM). To find answers for cross-lingual QA, JAVELIN first extracts

keyterms from the English question and then passes the extracted keyterms along

with their associated properties (such as its named entity type or part-of-speech) on

to the TM. For each English term, the TM returns a list of Chinese or Japanese

translation candidates, in ranked order of their translation score.

The TM uses many different sources including Machine Readable Dictionaries

(MRDs), Machine Translation systems (MTs) and web-mining-based translators

(WBMTs) [67, 49]. Different resources and different types of resources have ad-

vantages and disadvantages. For example, MRDs are usually better for translating

common nouns and verbs but have poor coverage of named entities, and web-mining-

based translators are good for translating popular named entites but do a poor job

of translating common nouns and verbs. Taking advantage of this, the TM uses

different combinations of these resources based on the keyterm properties.

24

To rank the keyterm translation candidates, the TM assigns each translation

candidate a score using co-occurrence statistics of the source keyterm (in this case

English) and the target candidate translation (in this case Chinese or Japanese) on

web pages. The co-occurrence information is obtained by counting the number of

search results from a search engine, and the correlation statistics are calculated using

chi-square. Then the set of translation candidates is ranked order from highest to

the lowest score.

The translated keyterm candidates, along with their ranking, are used to retrieve

Chinese or Japanese documents using Indri2, a language model and inference network

based search engine. The ranking assigned to each translation candidate is used to

boost its confidence score when formulating the query.

Then the Chinese and Japanese answer extraction components extract answer

candidates from the retrieved documents. Both the Chinese and Japanese answer

extractors use maximum-entropy [25] to extract answer candidates based on mul-

tiple features such as answer type matching, dependency structure matching, and

similarity score of predicate argument structures, etc. Finally answer candidates are

reranked by our answer ranking models.

3.2 The EPHYRA System

EPHYRA is an open-domain question answering system which is based on a flexible

pipeline architecture for combining multiple techniques [85]. It consists of three

major components for query generation, search and answer selection.

2http://www.lemurproject.org/indri/

25

For factoid questions, EPHYRA first analyzes the question to generate a query

and retrieves text snippets from Yahoo. The retrieved snippets are used then to

extract answer candidates. EPHYRA supports two extraction techniques: one uses

answer type to extract associated named entities and the other uses patterns which

are automatically obtained from question-answer pairs in training data. As the recent

TREC evaluations require that answers are extracted from documents in the given

corpus, answer projection is required to find the documents in the given corpus.

Finally, EPHYRA applies simple filters to select the final answer to the question

(e.g., a Stopword Filter is used to remove malformed candidates, and a Duplicate

Filter is used to merge similar answers by summing their scores).

Table 3.1: Performance of EPHYRA in TREC-2006

Score Run1 Run2 Run3 Median of 59 runs

Factoid 0.196 0.196 0.196 0.186

List 0.092 0.096 0.097 0.087

Other 0.143 0.150 0.145 0.125

Average 0.139 0.143 0.141 0.134

EPHYRA was evaluated in TREC-2006 for the first time, and performed better

than the median (Table 3.1). In this thesis, we apply our answer ranking models

to answer candidates extracted by the two EPHYRA extractors. Application of the

models to EPHYRA will show the extensibility of the answer ranking models to

another QA system.

26

Chapter 4

Answer Ranking Models

In this chapter, we describe two probabilistic models for answer ranking: an inde-

pendent prediction model and a joint prediction model.

4.1 Independent Prediction Model (IP)

The independent prediction model directly estimates the probability of an individual

answer candidate using multiple answer relevance and similarity features. The model

is implemented with logistic regression, which is a statistical machine learning tech-

nique used to estimate the probability of an output variable (Y) from input variables

(X) [60]. Logistic regression is a discriminative method that directly models P(Y|X)

by learning parameters from training data (Equation 4.1 and Equation 4.2).

P (Y = 1|X) =
exp(w0 +

∑n
i=1wiXi)

1 + exp(w0 +
∑n

i=1wiXi)
(4.1)

27

P (Y = 0|X) =
1

1 + exp(w0 +
∑n

i=1wiXi)
(4.2)

where X is a set of input variables (X=<X1,...,Xn>) and Xi is a single input variable.

Logistic regression has been successfully employed in many applications including

multilingual document merging [84, 90]. We used logistic regression to predict the

probability that an answer candidate is correct given the degree of answer correct-

ness and the amount of supporting evidence provided in a set of answer candidates

(Equation 4.3).

P (correct(Ai)|Q,A1, ..., An) (4.3)

≈ P (correct(Ai)|rel1(Ai), ..., relK1(Ai), sim1(Ai), ..., simK2(Ai))

=

exp(α0 +
K1∑
k=1

βkrelk(Ai) +
K2∑
k=1

λksimk(Ai))

1 + exp(α0 +
K1∑
k=1

βkrelk(Ai) +
K2∑
k=1

λksimk(Ai))

where, simk(Ai) =
N∑

j=1(j 6=i)

sim′
k(Ai, Aj).

In Equation 4.3, K1 and K2 are the number of feature functions for answer

relevance and answer similarity scores, respectively. N is the number of answer

candidates. Each relk(Ai) is a feature function used to produce an answer relevance

score for an individual answer candidate Ai. Each sim′
k(Ai, Aj) is a scoring function

used to calculate an answer similarity between Ai and Aj.

Each simk(Ai) represents one similarity feature for an answer candidate Ai and

28

is obtained by summing N-1 answer similarity scores to represent the similarity of

one answer candidate to all other candidates. As some string similarity metrics (e.g.

Levenshtein distance) produce a number between 0 and 1 (where a 1 means that

two strings are identical, and a 0 means that they are different), similarity scores

less than some threshold value can be ignored. In Chapter 5, we describe the answer

relevance and similarity features in detail.

~α, ~β,~λ = argmax
~α,~β,~λ

R∑
j=1

Nj∑
i=1

logP (correct(Ai)|rel1(Ai), ..., relK1(Ai), sim1(Ai), ..., simK2(Ai))

(4.4)

The parameters ~α, ~β,~λ were estimated from training data by maximizing the log

likelihood as shown in Equation 4.4, where R is the number of training questions

and Nj is the number of answer candidates for each question Qj. For parameter

estimation, we used the Quasi-Newton algorithm [56].

After applying the independent prediction model, answer candidates are reranked

according to their estimated probability. For factoid questions, the top answer is

selected as the final answer to the question. As logistic regression can be used for a

binary classification task with a default threshold of 0.5, we may use the model to

identify incorrect answers: if the probability of an answer candidate is lower than

0.5, it may be considered wrong and is filtered out of the answer list. This is useful

in deciding whether or not a valid answer exists in the corpus [97]. The estimated

probability can also be used in conjunction with a cutoff threshold when selecting

multiple answers to list questions.

29

4.2 Joint Prediction Model (JP)

The joint prediction model estimates the joint probability of all answer candidates,

from which the probability of an individual candidate is inferred. This estimation is

performed using a graphical model.

Graphical models have been used to represent and solve problems in many differ-

ent domains such as artificial intelligence, computational biology, image processing,

computer vision, information retrieval and natural language processing. A graphical

model is either directed or undirected. Directed graphs can be used to model causal

relationships between variables [76]. Undirected graphs can be used to model cor-

relations between variables [16]. We used an undirected graphical model for joint

prediction. In this section, we first introduce graphical models and explain how we

use an undirected graph model for answer selection.

Graphical Models

Jordan [39] describes graphical models as follows:

“Graphical models are a marriage between probability theory and

graph theory. They provide a natural tool for dealing with two problems

that occur throughout applied mathematics and engineering - uncertainty

and complexity - and in particular they are playing an increasingly im-

portant role in the design and analysis of machine learning algorithms.

Fundamental to the idea of a graphical model is the notion of modularity

- a complex system is built by combining simpler parts. Probability the-

ory provides the glue whereby the parts are combined, ensuring that the

30

C

S R

W

Figure 4.1: Example of directed graph (C:cloudy, S:sprinkler, R:rain, W:wet grass).

The graph is extracted from (Russell and Norvig, 95) [82]

system as a whole is consistent, and providing ways to interface models to

data. The graph theoretic side of graphical models provides both an intu-

itively appealing interface by which humans can model highly-interacting

sets of variables as well as a data structure that lends itself naturally to

the design of efficient general-purpose algorithms.”

Graphical models can be directed or undirected. Figure 4.1 shows an example of

a directed graph extracted from (Russell and Norvig, 95) [82]. The graph has four

nodes and four directed edges. Nodes C and R represent whether the weather is

cloudy or rainy, respectively. Node S represents whether or not the sprinkler is on,

and node W represents whether or not the grass is wet. The graph has two edges

on the node W (one from S to W and another from R to W), but does not have any

direct edge between C and W. This representation indicates that the grass can be

wet only when it rains or the sprinkler is on, but it does not depend on the cloudy

event. This illustrates conditional independence in directed graphical models: given

its parents, a node does not depend on its non-descendants. Therefore, the joint

31

1

2

3

4

Figure 4.2: Example of undirected graph

distribution can be simplified by using conditional independence:

P (C, S,R,W) = P (C)P (S|C)P (R|C)P (W |S,R) (4.5)

Figure 4.2 shows an example of an undirected graph. It has four random variables

x1, x2, x3, x4 and each node in the graph represents a variable. The graph has two

maximal cliques 1: a clique with nodes 1,2,3 and a clique with nodes 1,3,4. The joint

probability can be represented using a product over two cliques.

P (x1, x2, x3, x4) =
1

Z
ψ123(x123)× ψ134(x134) (4.6)

where Z=
∑

x1,x2,x3,x4
ψ123(x123)×ψ134(x134) and ψC is a potential function associated

with a clique C.

A Boltzmann machine [32, 40] is a special undirected graphical model whose

nodes have a binary value. Each node Si can be either {0,1} or {-1,1}. The joint

1A clique is a complete subgraph whose nodes are fully connected.

32

probability of this graph is represented in Equation 4.7:

P (S) =
1

Z
exp(

∑
i<j

θijSiSj +
∑

i

θi0Si) (4.7)

where Z is a normalization constant and θij=0 if nodes Si and Sj are not neighbors

in the graph.

Joint Prediction Model

We adapted a Boltzmann machine for the answer selection process. Each node Si in

the graph represents an answer candidate Ai and its binary value represents answer

correctness. The weights on the edges represent answer similarity between two nodes.

If two answers are not similar, the weight between them is 0.

Si =

 1, if Ai is correct

0, otherwise
(4.8)

The joint probability of the model can be calculated with Equation 4.9. Each

relk(Ai) is a feature function used to produce an answer relevance score for an in-

dividual answer candidate, and each simk(Ai, AN(i)) is a feature function used to

calculate the similarity between an answer candidate Ai and its neighbor answer

AN(i). If simk(Ai, AN(i)) is zero, or less than some threshold, two nodes Si and SN(i)

are not neighbors in the graph.

P (S1, ..., Sn) =
1

Z
exp

 n∑
i=1

(
K1∑
k=1

βkrelk(Ai))Si +
∑
N(i)

(
K2∑
k=1

λksimk(Ai, AN(i)))SiSN(i))


(4.9)

33

The parameters ~β,~λ are estimated from training data by maximizing the joint

probability (Equation 4.10). As the normalization constant Z is calculated by sum-

ming all configurations, logZ does not decompose. In Chapter 8, we explain our

implementation to address this issue by limiting the number of answers or applying

approximate inference with the contrastive divergence learning method [31, 11].

~β,~λ = argmax
~β,~λ

R∑
j=1

log
1

Z
exp

 n∑
i=1

(
K1∑
k=1

βkrelk(Ai))Si +
∑
N(i)

(
K2∑
k=1

λksimk(Ai, AN(i)))SiSN(i))


(4.10)

As each node has a binary value (either 0 or 1), this model uses the answer

relevance scores only when an answer candidate is correct (Si=1) and uses the answer

similarity scores only when two answer candidates are correct (Si=1 and SN(i)=1).

If Si=0, then the relevance and similarity scores are ignored. If SN(i)=0, the answer

similarity scores are ignored. This prevents the biased influence of incorrect similar

answers.

As the joint prediction model is based on a probabilistic graphical model, it

can support probabilistic inference to identify a set of accurate and comprehensive

answers. Fig 4.3 shows the algorithm for selecting answers using the joint prediction

model. After estimating the marginal and conditional probabilities, we calculate the

score of each answer candidate Aj by subtracting the conditional probability from

the marginal probability. In our algorithm, we have different weights (λ1 and λ2) for

the marginal and conditional probability, respectively. The weights can be learned

from the training data. In our initial experiments described in Chapter 8, we set

λ1 and λ2 with the value of 1 to make the marginal and conditional probabilities

equally important. Future work includes learning the weights from the training data

34

1. Create an empty answer pool.

2. Estimate the joint probability of all answer candidates: P (S1, ..., Sn)

3. Calculate the marginal probability that an individual answer candidate is

correct.

P (correct(Ai)|Q,A1, ..., An)

≈
∑
S1

...
∑
Si−1

∑
Si+1

...
∑
Sn

P (Si = 1, S1, ..., Si−1, Si+1 , ..., Sn)

4. Choose the answer candidate whose marginal probability is highest, and

move it to the answer pool.

5. For the remaining answer candidates, repeat the following steps.

5.1. Calculate the conditional probability of the remaining answers (Aj)

given an answer in the answer pool. For example, if Ai is an answer

in the answer pool, calculate P (correct(Aj)|correct(Ai), Q,A1, ..., An).

5.2. Calculate the score of each answer candidate (Aj) from the marginal

and conditional probability.

Score(Aj) = λ1P (correct(Aj)|Q,A1, ..., An)

−max
i
λ2P (correct(Aj)|correct(Ai), Q,A1, ..., An)

5.3. Choose the answer whose Score(Aj) is maximum, and move it to the

answer pool.

Figure 4.3: Algorithm to rank answers with the joint prediction model.

35

and evaluating their effect on answer selection performance.

Keeping consistent with the independent prediction model, answer candidates

whose marginal probability is lower than 0.5 are removed from the answer list. If

only one answer should be provided for any factoid question, the answer whose

marginal probability is highest is selected as the final answer to the question.

We chose an undirected graphical model instead of a directed graphical model

because it is difficult to learn the dependencies between answer candidates. However,

we can measure answer dependency in an undirected graphical model with similarity

scores. For example, assume that there are two answer candidates: “April 1912”

and “14 Apr. 1912”. If we have simple rules to convert temporal expressions into

the ISO date format (YYYY:MM:DD), “April 1912” is converted into “1912:04:xx”

and “14 Apr. 1912” is converted into “1912:04:14”. Then, we can derive entailment

information (“April 1912” entails “14 Apr. 1912”). This can be used as another

similarity feature in the undirected graphical model 2.

4.3 Comparison of IP and JP

Both the independent prediction model and the joint prediction model provide a

general probabilistic framework to estimate the probability of an individual answer

candidate from answer relevance and similarity features. But the independent pre-

diction model directly estimates the probability of an individual answer and the joint

prediction model estimates the joint probability of all answers, from which the prob-

ability of correctness of an individual candidate is inferred. This section compares

the two models and lists their advantages and disadvantages.

2Implementation of the entailment feature is left to future work.

36

Answer Ranking

The independent prediction model estimates the probability of correctness of each

answer candidate. It considers two factors. The first factor is to identify relevant

answers by estimating the probability P (correct(Ai)|Ai, Q), where Q is a question

and Ai is an answer candidate. The second factor is to exploit answer similarity

by estimating the probability P (correct(Ai) |Ai, Aj), where Aj is similar to Ai. By

combining these two factors together, the independent prediction model estimates

the probability of an answer as: P (correct(Ai)|Q,A1, ..., An), where n is the number

of answer candidates in consideration.

Instead of addressing each answer candidate separately, the joint prediction model

estimates the joint probability of available answer candidates. In particular, the joint

model estimates the probability of P (correct(A1),..., correct(An)| Q,A1, ..., An). The

marginal probability of P (correct(Ai)|Q,A1, ..., An) for each individual answer as well

as the conditional probability P (correct(Ai)|correct(Aj), Q,A1, ..., An) can be natu-

rally derived from the joint probability to identify a set of distinct and comprehensive

answers.

Advantages/disadvantages of Independent Prediction

The independent prediction model is simpler and more efficient than the joint pre-

diction model. However, this model does not provide a formal framework to identify

a list of distinct answers. In addition, it might have biased influence of incorrect

similar answers. The next section describes how the joint prediction model address

these issues.

37

Advantages/disadvantages of Joint Prediction

One advantage of the joint prediction model is that it provides formal framework to

identify a distinct set of answers which is useful for list questions. For example, the

question “Who have been the U.S. presidents since 1993?” requires a list of person

names as the answer. As person names can be represented in several different ways

(e.g., “Bill Clinton”, “William J. Clinton”, “Clinton, Bill”), it is important to find

unique names as the final answers. This task can be done by using the conditional

probability inferred from the joint prediction model. For example, assume that we

have three answer candidates for this question: “William J. Clinton”, “Bill Clinton”

and “George W. Bush”. The probability of correctness of each answer has been

calculated by marginalizing the joint probability of all answer candidates. Figure 4.4

shows the marginal probability of individual answers.

P(correct(William J. Clinton))= 0.758

P(correct(Bill Clinton)) = 0.755

P(correct(George W. Bush) = 0.617

Figure 4.4: Marginal probability of individual answers

In this example, the marginal probability P(correct(Bill Clinton)) and P(correct(

William J. Clinton)) are high because “Bill Clinton” and “William J. Clinton” are

supporting each other. Based on the marginal probabilities, we first choose the

answer candidate Ai whose marginal probability is the highest. In this example,

“William J. Clinton” is chosen and added to the answer pool. Then we calculate the

conditional probability of the remaining answer candidates given the chosen answer

38

“William J. Clinton”.

P(correct(Bill Clinton)|correct(William J. Clinton)) = 0.803

P(correct(George W. Bush)|correct(William J. Clinton)) = 0.617

Figure 4.5: Conditional probability given that “William J. Clinton” is correct

Fig 4.5 shows the conditional probability given “William J. Clinton”. The con-

ditional probability of “Bill Clinton” is higher than the marginal probability of “Bill

Clinton”, which indicates that “Bill Clinton” depends on “William J. Clinton”. On

the other hand, P(correct(George W. Bush) | correct(William J. Clinton)) is the

same as P(correct(George W. Bush)) because the fact that “William J. Clinton” is

correct does give any information on “George W. Bush”. Next, we calculate a score

for the remaining answers as shown in Fig 4.6. For simplicity, we set λ1 and λ2 with

1.

Score(Bill Clinton) = 0.755 - 0.803 = -0.048

Score(George W. Bush) = 0.617 - 0.617 = 0

Figure 4.6: Score calculation using marginal and conditional probability.

As the score of “George W. Bush” is higher than the score of “Bill Clinton”,

“George W. Bush” is chosen as the second answer even though its marginal proba-

bility is lower than “Bill Clinton”. In this way we can select the best unique answers

from a list of answer candidates.

However, The joint prediction model is less efficient than the independent pre-

39

diction model. For example, when the graph is fully connected, the joint prediction

model requires O(2N) time to calculate the joint probability, where N is the size of the

graph. This is the worst case in terms of algorithmic efficiency. If we ignore similarity

scores less than some threshold value similarly to the independent prediction model

case, the graph is partially connected and we can use conditional independence to

make calculation simpler. Even so, undirected graphical models need approximate

approaches (e.g. Markov chain Monte Carlo sampling or variational inference) to

estimate marginal and conditional probabilities when N is big (i.e. there are many

answer candidates).

40

Chapter 5

Feature Representation

In the previous chapter, we introduced the notion of feature functions used to pro-

duce answer relevance scores and answer similarity scores. This chapter presents

details of the feature functions and explains how answer relevance scores and answer

similarity scores are generated for the answer ranking models. We will use a short

word “features” instead of “feature functions”.

5.1 Answer Relevance Features

Each answer relevance feature produces a relevance score to predict whether or not an

answer candidate is correct given the question. This task can be done by exploiting

internal and external QA resources. One important internal resource is the answer

confidence score produced by an answer extractor. When extracting answer candi-

dates from the retrieved documents, each answer extractor estimates a confidence

score for an individual answer candidate based on the score of the retrieved document

41

and its answering strategy. The rank of an individual answer candidate provided by

an answer extractor can be used as another internal resource. As external resources,

several semantic resources, such as the Web, databases, and ontologies have been

used. For factoid questions, we used gazetteers and WordNet in a knowledge-based

approach; we also used Wikipedia and Google in a data-driven approach. These two

approaches are described below.

5.1.1 Knowledge-based Features

This section describes how knowledge-bases such as gazetteers and WordNet can be

used to generate answer relevance scores.

a) Gazetteers

Electronic gazetteers provide geographic information, such as a country’s population,

languages, cities, continent and capital. As previously shown by Lita et al. [53],

gazetteers such as the CIA World Factbook can answer specific types of TREC

questions with high precision.

For answer ranking, we used three gazetteer resources: the Tipster Gazetteer,

information about the US states provided by 50states.com 1 and the CIA World

Factbook2. These resources were used to assign an answer relevance score between

-1 and 1 to each candidate, following the algorithm in Figure 5.1. Effectively, a score

of 0 means the gazetteers did not contribute to the answer ranking process for that

candidate.

1http://www.50states.com
2https://www.cia.gov/library/publications/the-world-factbook/index.html

42

1) If the answer candidate directly matches the gazetteer answer for the

question, its gazetteer score is 1.0 (e.g., given the question “What continent

is Togo on?”, the candidate “Africa” receives a score of 1.0).

2) If the answer candidate occurs in the gazetteer within the subcategory of

the expected answer type, its score is 0.5 (e.g., given the question “Which

city in China has the largest number of foreign financial companies?”, the

candidates “Shanghai” and “Boston” receive a score of 0.5 because they

are both cities).

3) If the answer candidate is not the correct semantic type, its score is -1.0.

(e.g., given the question “Which city in China has the largest number

of foreign financial companies?”, the candidate “Taiwan” receives a score

of -1.0 because it is not a city).

4) Otherwise, the score is 0.0.

Figure 5.1: Algorithm to generate an answer relevance score from gazetteers.

For some numeric questions, range checking was added to validate numeric ques-

tions in a manner similar to the approach reported in Prager et al. [81]. For example,

given the question “How many people live in Chile?”, if an answer candidate is within

± 10% of the population stated in the CIA World Factbook, it receives a score of

1.0. If it is in the range of 20%, its score is 0.5. If it significantly differs by more

than 20%, it receives a score of -1.0. The threshold may vary based on when the

document was written and when the census was taken3.

3The ranges used here were found to work effectively, but were not explicitly validated or tuned.

43

1) If the answer candidate directly matches WordNet, its WordNet score is 1.0

(e.g., given the question “What is the capital of Uruguay?”, the

candidate “Montevideo” receives a score of 1.0).

2) If the answer candidate’s hypernyms include a subcategory of the expected

answer type, its score is 0.5 (e.g., given the question “Who wrote the

book Song of Solomon?”, the candidate “Mark Twain” receives a score of

0.5 because its hypernyms include writer).

3) If the answer candidate is not the correct semantic type, this candidate

receives a score of -1.0 (e.g., given the question “What state is Niagara

Falls located in?”, the candidate “Toronto” gets a score of -1.0 because

it is not a state).

4) Otherwise, the score is 0.0.

Figure 5.2: Algorithm to generate an answer relevance score from WordNet ontology.

b) Ontologies

Ontologies such as WordNet contain information about relationships between words

and general meaning types (synsets, semantic categories, etc.). The WordNet lexi-

cal database includes English words organized in synonym sets, called synsets [23].

WordNet has been extensively used for different QA tasks, including construction of

an answer type taxonomy [75] and as a source of axioms for reasoning about answer

correctness [61].

We used WordNet in a manner analogous to gazetteers to produce an answer

relevance score between -1 and 1. This score was computed for each candidate using

44

the algorithm in Figure 5.2. As with the gazetteer score, a score of 0 means that

WordNet did not contribute to the answer ranking process for a candidate.

5.1.2 Data-driven Features

Wikipedia and Google were used in a data-driven approach to generate answer rele-

vance scores. Each resource is described below.

a) Wikipedia

Wikipedia (http://www.wikipedia.org) is a multilingual on-line encyclopedia. As

it provides approximately 7.9 million articles in 253 languages (as of Aug 2007),

Wikipedia has been used in many QA systems to answer definition questions [53,

3, 65]. For instance, to answer the question “What is Friends of the Earth?”, the

Wikipedia article whose title is “Friends of the Earth” is retrieved and mined to

extract answers. Wikipedia has also been used for answer validation by exploiting

title, definition and category fields [9]. One issue with this approach is that it used

only structured information, and could not address the vocabulary mismatch between

answer candidates and the structured data. For example, if an answer string did not

appear in the title or the definition fields, it was not considered to be a correct

answer.

To address this issue, we used the Wikipedia documents in a data-driven approach

using term frequency (TF) and inverse document frequency (IDF). TF and IDF have

been widely used in information retrieval to compare the similarity between a query

and a document as well as to measure the importance of a term in a document. We

used TF and IDF to generate an answer relevance score from Wikipedia. Figure 5.3

45

For each answer candidate Ai,

Initialize the Wikipedia score: ws(Ai) = 0

Search for a Wikipedia document whose title is Ai

1. If a document is found,

1.1. Calculate tf.idf score of Ai in the retrieved Wikipedia document

ws(Ai) += (1+log(tf)) × (1+log(idf))

2. If not, for each question keyword Kj,

2.1. Search for a Wikipedia document that includes Kj

2.2. Calculate tf.idf score of Ai in the retrieved Wikipedia document

ws(Ai) += (1+log(tf)) × (1+log(idf))

Figure 5.3: Algorithm to generate an answer relevance score from Wikipedia (tf:

term frequency, idf: inverse document frequency obtained from a large corpus)

shows the algorithm to generate an answer relevance score from Wikipedia. First, a

query consisting of an answer candidate is sent to Wikipedia. If there is a document

whose title matches the query, the document is analyzed to obtain TF and IDF of the

answer candidate, from which a tf.idf score is calculated. When there is no matching

document, each question keyword is sent to Wikipedia as a back-off strategy, and

the answer relevance score is calculated by summing the tf.idf scores of the answer

candidate. To obtain word frequency information, the TREC Web Corpus was used

as a large background corpus4.

4The TREC Web Corpus is a corpus of web pages crawled by the Internet archive. It can be

found at http://ir.dcs.gla.ac.uk/test collections/wt10g.html

46

For each snippet si:

1. Initialize the snippet co-occurrence score: cs(si) = 1

2. For each question keyword kj in si:

2.1. Compute distance d, the minimum number of words between kj and

the answer candidate, excluding stopwords and other keywords

2.2. Update the snippet co-occurrence score:

cs(si) = cs(si) × 2(1+d)

3. Add the snippet score to the web score

Normalize the web score by dividing by the constant C

Figure 5.4: Algorithm to generate an answer relevance score from Google.

b) Google

The Web has been used for many different QA tasks, including query expansion [105]

and as a direct source of answers [15, 20, 51]. It also has been used to validate answer

candidates [54] and to filter out answers [47].

Following Magnini et al [54], we used the Web to generate a numeric score for

each answer candidate. A query consisting of an answer candidate and question

keywords was sent to the Google search engine. To calculate a score, the top 10 text

snippets returned by Google were then analyzed using the algorithm in Figure 5.4.

In our experiments, we used 100 as the constant C in Figure 5.4.

47

5.2 Answer Similarity Features

As factoid questions require short text phrases as answer(s), the similarity between

two answer candidates can be calculated with string distance metrics. We calculate

the similarity between two answer candidates using multiple string distance metrics

and a list of synonyms.

5.2.1 String Distance Metrics

There are several different string distance metrics which calculate the similarity of

two strings. Each of them can be used as an individual similarity feature to calculate

answer similarity scores.

• Levenshtein distance: this is a simple distance metric calculated by the min-

imum number of insertions, substitutions or deletions required to change one

string into another.

• Cosine similarity: this is widely used in information retrieval to measure the

distance between two documents or the distance between a document and a

query. Each string is represented as a term vector where each term can be

defined with term frequency and inverse document frequency (tf.idf) of a word.

If si and sj represent each term in two strings, cosine similarity is defined asP
sisj√P

s2
i

√P
s2
j

.

• Jaccard similarity: this is calculated by dividing the size of the intersection

between two strings by the size of the union of two strings. If S1 and S2 rep-

resent two strings, then the Jaccard similarity is |S1∩S2|
|S1|+|S2|−|S1∩S2| . The Jaccard

similarity penalizes the case when there is low overlap between two strings.

48

• Jaro and Jaro-Winkler: The NIST Dictionary of Algorithms and Data Struc-

tures defines this as “Jaro is the weighted sum of the percentage of matched

characters from each file and transposed characters. Winkler increased this

measure for matching initial characters, then rescaled it by a piecewise func-

tion, whose intervals and weights depend on the type of string (first name, last

name, street, etc.)”. More details can be found in [35, 36, 102]

To measure string similarity mentioned above, we used the SimMetrics library5,

which provides many string similarity metrics.

5.2.2 Synonyms

Synonym information can be used as another metric to measure answer similarity.

We defined a binary similarity score for synonyms as following:

sim(Ai, Aj) =

 1, if Ai is a synonym of Aj

0, otherwise
(5.1)

To obtain a list of synonyms, we used three knowledge-bases: WordNet, Wikipedia

and the CIA World Factbook. WordNet includes synonyms for English words. For

example, “U.S.” has a synonym set containing “United States”, “United States of

America”, “America”, “US”, “USA” and “U.S.A”.

Wikipedia redirection is used to obtain another set of synonyms. For example,

“Calif.” is redirected to “California” in English Wikipedia. “Clinton, Bill” and

“William Jefferson Clinton” are redirected to “Bill Clinton”. As Wikipedia supports

more than 200 language editions, this approach can be used for many languages.

5http://sourceforge.net/projects/simmetrics/

49

The CIA World Factbook is used to find synonyms for a country name. The

Factbook includes five different names for a country: a conventional long form, a

conventional short form, a local long form, a local short form and a former name.

For example, the conventional long form of “Egypt” is “Arab Republic of Egypt”,

the conventional short form is “Egypt”, the local short form is “Misr”, the local

long form is “Jumhuriyat Misr al-Arabiyah” and the former name is “United Arab

Republic (with Syria)”. All are considered to be synonyms of “Egypt”.

In addition, manually generated rules are used to obtain synonyms for different

types of answer candidates [72]:

• Date: Dates are converted into the ISO 8601 format (YYYY-MM-DD) (e.g.,

“April 12 1914” and “12th Apr. 1914” are converted into “1914-04-12” and are

considered synonyms). Unspecified fields are left as “xx” (e.g., “April 1914” is

converted into “1914-04-xx”).

• Time: Temporal expressions are converted into the HH:MM:SS format (e.g.,

“six thirty five p.m.” and “6:35 pm” are converted into “18:35:xx” and are

considered synonyms).

• Numeric expression: Numeric expressions are converted into numbers (e.g,

“one million” and “1,000,000” are converted into “1e+06” and are considered

synonyms).

• Location: A representative entity is associated with a specific entity when the

expected answer type is COUNTRY (e.g., “the Egyptian government” is consid-

ered “Egypt” and “Clinton administration” is considered “U.S.”).

50

Chapter 6

Model Extensions

The answer ranking models have been extended to merge results from multiple ex-

tractors and to support multiple languages. As our models are based on a language-

independent probabilistic framework, they do not need to be changed to support

other languages. We just incorporated language-specific resources and retrained the

models for individual languages. For answer merging, we combined the confidence

scores returned from individual extractors with the answer relevance and answer sim-

ilarity features. This chapter describes the extension of the answer ranking models

to multi-strategy QA and multilingual QA.

6.1 Extension to Multi-strategy QA

Many QA systems utilize multiple strategies to extract answer candidates, and then

merge the candidates to find the most probable answer [14, 12, 21, 37, 2, 74]. This

multi-strategy approach assumes that a combination of similar answers extracted

51

from different sources with different strategies performs better than any individual

answering strategy alone. As answer candidates come from different agents with

different score distributions, it is important to consider how the results proposed by

alternative approaches can be combined. This merging process is challenging, as it

requires combining ranked answer lists with independent score distributions.

Our answer ranking models can be extended to support multi-strategy QA by

combining the confidence scores returned from individual extractors with the answer

relevance and answer similarity features. Equation 6.1 shows the extended indepen-

dent prediction model for answer merging, where m is the number of extractors, n is

the number of answers returned from one extractor, and confk is the confidence score

extracted from the kth extractor whose answer is same as Ai. When an extractor

extracts more than one answer from different documents with different confidence

scores, the maximum confidence score is used as confk. For example, the JAVELIN

LIGHT extractor returns two answers of “Bill Clinton” in the candidate list: one has

a score of 0.7 and the other has score of 0.5. In this case, we ignore 0.5 and use 0.7

as confk. This is to prevent double counting of redundant answers because simk(Ai)

already considers this similarity information.

P (correct(Ai)|Q,A1, ..., Am∗n) (6.1)

=

exp(α0 +
K1∑
k=1

βkrelk(Ai) +
K2∑
k=1

λksimk(Ai) +
m∑

k=1

γkconfk)

1 + exp(α0 +
K1∑
k=1

βkrelk(Ai) +
K2∑
k=1

λksimk(Ai) +
m∑

k=1

γkconfk)

Similarly, the joint prediction model can be extended to incorporate multiple

confidence scores, as shown in Equation 6.2.

52

P (S1, ..., Sm∗n) (6.2)

=
1

Z
exp

m∗n∑
i=1

(
K1∑
k=1

βkrelk(Ai) +
m∑

k=1

γkconfk)Si +
∑
N(i)

(
K2∑
k=1

λksimk(Ai, AN(i)))SiSN(i)



6.2 Extension to Different Monolingual QA

We extended the answer ranking models to Chinese and Japanese monolingual QA

by incorporating language-specific features into the framework. These extensions are

described below.

6.2.1 Answer Relevance Features

We replaced the English gazetteers and WordNet with language-specific resources for

Japanese and Chinese. As Wikipedia and the Web support multiple languages, the

same algorithm was used in searching language-specific corpora for the two languages.

1) Knowledge-based Features

The knowledge-based features involve searching for facts in a knowledge base such as

gazetteers and WordNet. We utilized comparable resources for Chinese and Japanese

to generate an answer relevance score between -1 and 1.

a) Gazetteers

There are few available gazetteers for Chinese and Japanese. Therefore, we extracted

location data from language-specific resources. For Japanese, we extracted Japanese

53

location information from Yahoo1, which contains many location names in Japan and

the relationships among them. We also used Gengo GoiTaikei2, a Japanese lexicon

containing 300,000 Japanese words with their associated 3,000 semantic classes. We

utilized the GoiTaikei semantic hierarchy for type checking of location questions.

For Chinese, we extracted location names from the Web. In addition, we translated

country names provided by the CIA World Factbook and the Tipster gazetteers into

Chinese and Japanese using the JAVELIN Translation Module (described in Section

3.1). As there is more than one translation per candidate, the top 3 translations

were used. This gazetteer information was used to assign an answer relevance score

between -1 and 1 using the algorithm described in Figure 5.1.

b) Ontologies

For Chinese, we used HowNet [19], which is a Chinese version of WordNet. It contains

65,000 Chinese concepts and 75,000 corresponding English equivalents. For Japanese,

we used semantic classes provided by Gengo GoiTaikei. The semantic information

provided by HowNet and Gengo GoiTaikei was used to assign an answer relevance

score between -1 and 1 using the algorithm described in Figure 5.2.

2) Data-driven Features

This section describes how we used Wikipedia and Google to generate answer rele-

vance scores.

1http://map.yahoo.co.jp/
2http://www.kecl.ntt.co.jp/mtg/resources/GoiTaikei

54

#Articles

Language Nov. 2005 Aug. 2006

English 1,811,554 3,583,699

Japanese 201,703 446,122

Chinese 69,936 197,447

Table 6.1: Articles in Wikipedia for different languages

a) Wikipedia

As Wikipedia supports more than 200 language editions, the approach used in En-

glish can be used for different languages without any modification. Table 6.1 shows

the number of text articles in the three languages. Wikipedia’s coverage in Japanese

and Chinese does not match its coverage in English, but coverage in these languages

continues to improve.

To supplement the small corpus of Chinese documents available, we used Baidu3,

which is similar to Wikipedia but contains more articles written in Chinese. We first

search in Chinese Wikipedia documents. When there is no matching document in

Wikipedia, we search in Baidu as a backoff strategy: each answer candidate is sent to

Baidu and the retrieved document is analyzed in the same way to analyze Wikipedia

documents.

The idf score was calculated using word statistics from the Japanese Yomiuri

newspaper corpus and the NTCIR Chinese corpus [83].

3http://baike.baidu.com

55

b) Google

The algorithm described in Figure 5.4 was applied to analyze Japanese and Chinese

snippets returned from Google by restricting the language to Chinese or Japanese so

that Google returned only Chinese or Japanese documents. To calculate the word

distance between an answer candidate and the question keywords, segmentation was

done with linguistic tools. For Japanese, Chasen4 was used. For Chinese segmenta-

tion, a maximum-entropy based parser was used [101].

6.2.2 Answer Similarity Features

As Chinese and Japanese factoid questions require short text phrases as answers,

the similarity between two answer candidates can be calculated with string distance

metrics. It can be also calculated by using a list of synonyms.

1) String Distance Metrics

The same string distance metrics used for English (see Section 5.2.1) were applied

to calculate the similarity of Chinese/Japanese answer candidates.

2) Synonyms

To identify synonyms, Wikipedia was used for both Chinese and Japanese. The

EIJIRO dictionary was also used to obtain Japanese synonyms. EIJIRO is a English-

Japanese dictionary containing 1,576,138 words and provides synonyms for Japanese

words.

4http://chasen.aist-nara.ac.jp/hiki/ChaSen

56

0.25四分の一

1993-07-041993 年 7 月4 日

50 %５割

1993-07-04一九九三年 七月四 日

3E+11 円3,000億円

3E+11 円三 千 億 円

Normalized answer stringOriginal answer string

Figure 6.1: Example of normalized answer strings

For temporal and numeric expressions, new conversion rules were created; for

example, a rule to convert Japanese Kanji characters to Arabic numbers is shown in

Figure 6.1.

6.3 Extension to Cross-lingual QA

Recently, QA systems have been extended to cover cross-lingual question answering

(CLQA), which accepts questions in one language (source language) and searches for

answers from documents written in another language (target language). CLQA has

been evaluated for various language pairs in CLEF and NTCIR.

For CLQA, most systems translate a question or question keyterms into the target

language and then apply a monolingual QA approach to find answers in the corpus.

One recently reported system used a monolingual QA system to find answers in the

source language, and then translated the answers into the target language [6]. This

approach, however, requires documents for both the source language and the target

language.

57

When a CLQA system uses translated questions or translated question keyterms

to find answers from the target corpus, it tends to produce lower-quality answer

candidates: (1) there are numerous incorrect answer candidates and few correct

answer candidates, and (2) correct answers are ranked very low. This phenomenon

makes answer ranking more challenging in CLQA, as it requires an additional degree

of robustness in answer ranking.

This section describes how we extend the models for CLQA answer ranking, es-

pecially for English-to-Chinese and English-to-Japanese CLQA. To support English-

to-Chinese and English-to-Japanese, we extend the features used for Chinese and

Japanese monolingual answer ranking.

6.3.1 Answer Relevance Features

We reused knowledge-based features and extended data-driven features for CLQA

as described below.

1) Knowledge-based Features

The knowledge-based features involve searching for facts in knowledge bases such

as gazetteers and/or ontologies. We reused the features developed in Chinese and

Japanese monolingual QA for English-to-Chinese and English-to-Japanese QA, re-

spectively.

58

2) Data-driven Features

Data-driven features use Google and Wikipedia to generate answer relevance scores

by counting word distance between a keyterm and an answer candidate or by cal-

culating the tf.idf score of a keyterm or an answer candidates. As CLQA tends to

have more than one translated keyterm candidate, the algorithms were extended to

support multiple keyterm candidates.

a) Google

For monolingual QA, we generated a query consisting of an answer candidate and

question keyterms. Since there are multiple translation candidates for each keyterm

in CLQA, the algorithm was extended. As shown in Figure 6.2, the new algorithm

uses each translated keyterm to create a query. As keyterm translation quality is

typically poor for proper nouns, we added English proper noun keyterms to the query.

For example, the question “In which city in Japan is the Ramen Museum located?”

contains “Ramen Museum” as one keyterm. As the current translation module does

not have a Chinese translation for this noun, it translates only Museum into a Chinese

word. This partially translated phrase does not match any Web documents even

though there are Chinese Web documents which matched the English term “Ramen

Museum”. Therefore, we used source proper noun keyterms as one alternation in

the query.

However, some inaccurate translations may retrieve incorrect text snippets from

the Web and give a high score to irrelevant answer candidates. Therefore, keyterms

whose translation scores are less than some threshold value can be ignored, or only

the top N keyterms can be used.

59

b) Wikipedia

We extended the algorithm to generate an answer relevance score using Wikipedia.

First, a query consisting of an answer candidate is sent to Wikipedia. When there is a

matching document, the document is analyzed to obtain the tf.idf score of the answer

candidate. When there is no matching document, each translated question keyterm

is sent to Wikipedia as a back-off strategy. Similarly to the Google case, we search for

English proper nouns appearing in the question and use keyterm thresholds. After

retrieving relevant Wikipedia documents, each document is analyzed to obtain the

tf.idf score of the answer candidate. The final answer relevance score is calculated

by summing the tf.idf scores acquired from each keyterm.

6.3.2 Answer Similarity Features

In monolingual QA, answer similarity was calculated using string distance metrics

and a list of synonyms (See Section 6.2.2). This approach was reused for answer

ranking in CLQA.

60

For each answer candidate Ai:
1. Initialize the Google score: gs(Ai) = 0
2. Create a query from an answer candidate and the

translated keyterms. For example, given the question
“Which companies will merge with TECO Group?,”
assume that we have three question keyterms and
their translation. Each translation has a corresponding
translation score.

- company: 公司 (0.75)
- merge: 合并 (0.78)
- TECO Group: 东元集团, TECO 组, TECO 小组,

TECO 团体, 东芝集团

For an answer candidate “聲寶公司 ”, a query is created:

“聲寶公司” “公司” “合并” (“TECO Group” or “东元
集团” or “TECO 组” or “TECO 小组”
or “TECO 团体” or “东芝集团”)

3. Send the query to the Google search engine and choose
the top 10 snippets returned from Google.

4. For each snippet s:
4.1. Initialize the snippet co-occurrence score: cs(s) = 1
4.2. For each question keyterm translation k in s:

4.2.1. Compute distance d, the minimum number of
words between k and the answer candidate,
excluding stopwords and other keywords

4.2.2. Update the snippet co-occurrence score:

4.3 gs(Ai) = gs(Ai) + cs(s)

1)1(2)()(
−+×= dscsscs

Figure 6.2: Algorithm to generate an answer relevance score from Google for cross-

lingual QA.

61

62

Chapter 7

Evaluation Methodology

The answer ranking models were evaluated for three different languages: English,

Japanese and Chinese. This chapter describes the data sets and evaluation metrics

to measure performance of the models.

7.1 Data sets and Corpora

For English, the data set from the TREC 8-15 evaluation was used. For Chinese and

Japanese, the data set from the NTCIR 5-6 evaluation was used.

7.1.1 English

A total of 2758 factoid questions from the TREC QA 8-15 evaluations [96, 97, 98,

99, 100, 17] 1 and their corresponding answers served as a dataset.

1http://trec.nist.gov/data/qamain.html

63

Two text corpora have been used in the TREC evaluations: TREC and AQUAINT.

The TREC corpus consists of newspaper articles from the AP newswire, Wall Street

Journal, San Jose Mercury News, Financial Times, Los Angeles Times and the For-

eign Broadcast Information Service. The AQUAINT corpus contains AP newswire

articles from 1998 to 2000, New York Times articles from 1998 to 2000, and Xinhua

News Agency articles from 1996 to 2000. Each corpus contains approximately one

million documents and three gigabytes of text.

7.1.2 Japanese

Questions from the NTCIR evaluation are used to evaluate answer selection for

Japanese. The NTCIR5-6 CLQA task provides 700 Japanese questions and their

corresponding answer patterns. The NTCIR CLQA Japanese corpus contains Yomi-

uri newspaper articles (2000-2001) and Mainichi newspaper (1998-2001). The corpus

contains approximately 1,080,000 documents.

7.1.3 Chinese

As with Japanese, the data set from the NTCIR 5-6 CLQA evaluation is used to

evaluate answer selection for Chinese. The data set contains 550 questions and

their corresponding answer patterns. The NTCIR CLQA Chinese corpus contains

United Daily News (1998-2001), United Express (2000-2001), Min Sheng Daily (1998-

2001), Economic Daily News (1998-2001), United Evening News (1998-1999) and

Start News (1998-1999). The corpus consists of approximately 900,000 documents

and 3.6 gigabytes of text.

64

7.2 Evaluation Metrics

Answer selection performance can be evaluated using the following metrics:

• Average top answer accuracy (TOP1): This is calculated by dividing the num-

ber of correct top answers by the number of questions where at least one correct

answer exists in the candidate list provided by an extractor.

• Mean Reciprocal Rank (MRR5): This is the average reciprocal rank of the top

N answers. For example, the answer ranked in the first position receives a score

of 1, the answer ranked in the second position receives a score of 1/2, etc. The

TREC evaluation used MRR of the top 5 answers to evaluate the performance

of early QA systems. We will use MRR of the top 5 answers as another metric

to evaluate the performance of our models.

• Average Precision at rank N: The average precision is calculated by counting

the number of unique correct answers among the top N answers. Redundant

answers are not considered as correct answers. For example, when the first two

answers are “William J. Clinton” and “George Bush”, and the third answer is

“Clinton, Bill”, the precision at rank 3 is 2/3.

As the performance of answer selection depends on the quality of answer extrac-

tion, we only considered questions where at least one correct answer exists in our

evaluation.

65

66

Chapter 8

Evaluation

This chapter describes a series of experiments to evaluate the independent prediction

model and the joint prediction model for answer ranking in multilingual question

answering. The experiments were conducted with monolingual question answer-

ing systems (English, Chinese and Japanese), cross-lingual question answering sys-

tems (English-to-Chinese and English-to-Japanese) and multi-strategy QA systems

to merge answer candidates produced by multiple English answer extractors.

8.1 Experimental Setup

As we had more than 2700 questions for the English QA system, 5-fold cross-

validation was performed to evaluate our answer ranking models in English. For

Chinese and Japanese, we had fewer available questions (550 questions for Chinese

and 700 questions for Japanese), hence 3-fold cross-validation was performed to eval-

uate answer ranking in Chinese and Japanese.

67

Several baseline algorithms were used to compare the performance of our answer

ranking models. These algorithms have been used for answer ranking in many QA

systems.

• IX: Answer extractors apply different techniques to extract answer candidates

from the retrieved documents or passages, and assign a confidence score for

each individual answer. As a simple baseline, we reranked the answer candi-

dates according to the confidence scores provided by answer extractors. This

approach was used in the LCC QA system [62] for the TREC-2002 evaluation.

As it applied deep semantic analysis to find answers, the LCC system chose

the answer which passed the logic prover without using any additional answer

selection techniques.

• Clustering: This approach clusters identical or complementary answers and

then assigns a new score to each cluster. The score of a cluster is calculated

by counting the number of answers in the cluster [15], summing the scores of

all answers in the cluster [46] or selecting the best score among the individual

answer scores in the cluster [51]. In our experiments, we used the approach

reported in (Nyberg et al.) [72] to assign a new score for each cluster. We

clustered redundant answer candidates and calculated the score for an answer

cluster given the assumption that all answers in the cluster are independent

and equally weighted. For a cluster containing N answers whose extraction

confidence scores are S1, S2, ..., SN , the cluster confidence is computed with the

following formula:

Score(Answercluster) = 1−
N∏

i=1

(1− Si) (8.1)

68

• Filtering: Many QA systems have applied filtering to remove improper an-

swer candidates. This task involves comparing the expected answer type of

the question with the type of answer candidates and then removing a candi-

date whose type does not match the expected answer type. Ontologies (such

as WordNet) and gazetteers are one of the most popular resources to check

whether or not an answer candidate matches the expected answer type [103,

14, 86]. In our experiments, we used both ontologies and gazetteers to filter out

improper answer candidates. The algorithms described in Section 5.1.1 were

used to identify improper answer candidates, and then these candidates were

removed from the answer candidate list.

• Web validation: Magnini et al. [54, 55] validated answer candidates using

a content-based approach that analyzes co-occurrence of question keywords

and an answer candidate in Web text snippets. This approach was used as

another baseline. We implemented three variants to rerank answer candidates

using Web validation scores: (1) rerank answer candidates according to the

Web validation scores, (2) add the Web score to the extractor score (called

CombSum [24]) and then rerank answer candidates according to the sum, and

(c) use a linear regression to learn the weight for both extractor scores and

Web scores and then rerank candidates according to the results from the linear

regression. In our experiments, the linear regression method was more accurate

than the other methods. Therefore, we used linear regression to combine the

Web validation scores with the extractor scores.

• MaxEnt reranking: In the latest TREC-2006 evaluation, the LCC’s Chaucer

QA system [30] was the second most accurate system for factoid questions. This

system had an answer ranking component to merge answers returned from six

69

answer extractors. This reranker was implemented using maximum entropy

similar to (Ravichandran, Hovy, & Och [18]). We implemented a maximum

entropy reranker as another baseline to be included with the features used

in both LCC and Ravichandran et al. Altogether, six features were used:

(1) frequency of answers in the candidate list, (2) answer type matching, (3)

question word absent in the answer sentence, (4) inverse term frequency of

question keywords in the answer sentence, (5) confidence of individual answer

candidate provided by an extractor, and (6) the expected answer type. Answer

candidates were reranked according to the scores from the maximum entropy

reranker1.

• Combination: We also combined three baseline systems (Clustering, Filtering,

Web validation) using linear regression in order to see the extent to which

combined approaches could improve answer selection performance. Three com-

binations were tested: Clutering+Filtering(C+F), Clustering+Web(C+W)

and Clustering+Filtering+Web (C+F+W).

8.2 Monolingual QA

The models were evaluated for three different languages: English, Chinese and

Japanese.

1The LCC Chaucer system had an additional answer selection step to find a final answer among

the reranked top 25 answers using text entailment proposed in (Hickl et al. [29]). As it is beyond

the scope of this thesis, we do not include this step in our reranking baseline system.

70

8.2.1 English

This section describes the experiments performed to evaluate our answer ranking

models in English QA. The experiments were done with two QA systems: JAVELIN

and EPHYRA.

(1) Experiments with JAVELIN

This section describes the experiments to evaluate our answer ranking models in the

JAVELIN QA system.

Data Set

A total of 1760 questions from the TREC8-12 QA evaluations served as a data

set. To better understand how the performance of our models can vary for different

extraction techniques, we tested our answer ranking models with three JAVELIN an-

swer extraction modules: FST, LIGHT and SVM. We did not include EXPERT and

LIGHTv2 in the experiments because EXPERT covers only a small number of ques-

tions and does not provide sufficient training data to test our answer ranking models,

and LIGHTv2 is very similar to LIGHT (both are based on distance heuristics).

Table 8.1 compares extractor performance on the test questions, and shows that

extractors vary in the types of questions they can answer and in the average number

of answers they return for each question. The third column in the table lists the

number of answer sets returned by each extractor, and the fourth column shows the

number of answer sets that included at least one correct answer. The fifth column

shows the average size of the answer sets. The last two columns show the precision

71

Table 8.1: Performance characteristics of individual answer extractors: LEX (lexi-

con), LOC (location), OBJ (object), PER (person-name), ORG (organization-name),

PROP (proper-name). ’Macro’: precision at question-level. ’Micro’: precision at

answer-level.

Answer Types #Answer #Answer sets Avg size of Precision

extractor covered sets with correct answers answer sets macro micro

FST
DATE, LOC, 837 301 4.19 0.171 0.237

ORG, OBJ,

PER, PROP

LIGHT All 1637 889 36.93 0.505 0.071

SVM All 1553 871 38.70 0.495 0.077

of individual extractors. Precision was calculated at both the macro-level and the

micro-level.

Macro-level precision measures the precision of the questions; the number of

questions where at least one correct answer exists was divided by the number of total

questions. Micro-level precision measures the precision of answer candidates. It was

calculated by dividing the number of correct answers by the number of total answers.

Generally, FST covers fewer questions than LIGHT and SVM, but it answers are

more accurate than answers from the other extractors.

Even though the data set contains only factoid questions, approximately 36% of

the questions have an average of five correct answers. This happens mostly for loca-

tion, person name, numeric and temporal questions. For example, given the question

“Where is the tallest roller coaster located?”, there are three answers in the TREC

corpus: “Cedar Point”, “Sandusky”, “Ohio”. All of them are correct, although they

72

represent geographical areas of increasing generality. Some questions require more

than one correct answer. For example, for the question “Who is the tallest man in

the world?”, the correct answers are “Gabriel Estavao Monjane”, “Robert Wadlow”,

“Ali Nashnush”, “Barman”. In addition, TREC8-9 factoid questions include some

list questions (e.g. “Name one of the major gods of Hinduism.”). Therefore, we

evaluate the average precision of the top 5 answers in order to see how effectively

the joint prediction model can identify unique answers when there is more than one

correct answer.

For Wikipedia, we used data downloaded in November 2005, which contained

1,811,554 articles.

Results and Analysis

This section describes the experimental results for the independent prediction model

and the joint prediction model.

1) Independent Prediction Model

Figure 8.1 shows the average top answer accuracy for the baseline systems and the

independent prediction model. The result shows that baseline systems improved

performance over IX. Among the baselines that uses a single feature (Clustering,

Filtering, Web validation), Web validation produced the best performance for

all three extractors. Among the combination of baseline systems, C+F+W achieved

the best performance. This suggests that combining more resources was useful in

answer selection for JAVELIN. On the other hand, MaxEnt worked well for FST,

but did not work well for the LIGHT and SVM extractors. As MaxEnt depends

73

only on internal resources such as frequency of answers and question word absent,

it improved performance over Clustering, but did not gain benefit from the use of

external resources such as Web, gazetteers and WordNet. As Web validation was

more useful in LIGHT and SVM than in FST, MaxEnt worked well for FST, but did

not work well for LIGHT and SVM.

When compared with the baseline systems, the independent prediction model

obtained the best performance gain for all three extractors. The highest gain was

achieved for the SVM extractor mostly because SVM produced more than one answer

candidate with the same confidence score, but the independent prediction model

could select the correct answer among many incorrect ones by exploiting answer

similarity and relevance features.

Further analysis examined the degree to which the average top answer accuracy

was affected by answer similarity features and answer relevance features. Figure 8.2

compares the average top answer accuracy using the answer similarity features, the

answer relevance features and all feature combinations. As can be seen, similarity fea-

tures significantly improved the performance, implying that exploiting redundancy

improves answer selection. Relevance features also significantly improved the perfor-

mance, and the gain was more significant than the gain from the similarity features.

When combining both types of features together, the answer selection perfor-

mance increased for all three extractors: an average of 102% over IX, 31% over the

similarity features alone and 1.82% over the relevance features alone. Adding the

similarity features to the relevance features generated small but consistent improve-

ment in all configurations. The biggest improvement was found with candidates

produced by the SVM extractor: a 247% improvement over IX.

We also analyzed the average top answer accuracy when using individual features.

74

Figure 8.3 shows the effect of the individual answer relevance feature on different

extraction outputs. The combination of all features significantly improved perfor-

mance compared to answer selection using a single feature. Comparing data-driven

features with knowledge-based features, we note that the data-driven features (such

as Wikipedia and Google) increased performance more than the knowledge-based

features (such as gazetteers and WordNet), mostly because the knowledge-based fea-

tures covered fewer questions. The biggest improvement was found using Google,

which provided a performance increase of an average of 74% over IX.

Table 8.2 shows the effect of individual similarity features on different extractors.

As some string similarity features (e.g., Levenshtein distance) produce a number

between 0 and 1 (where 1 means two strings are identical and 0 means they are

different), similarity scores less than a threshold can be ignored. Table 8.2 compares

the performance when using 0.3 and 0.5 as a threshold, respectively. When compar-

ing five different string similarity features (Levenshtein, Jaro, Jaro-Winkler, Jaccard

and Cosine similarity), Levenshtein and Jaccard tend to perform better than oth-

ers. When comparing synonym with string similarity features, the synonym feature

performed slightly better than the string similarity features.

As Levenshtein and Jaccard performed well among the five string similarity met-

rics, we also compared the combination of Levenshtein with synonyms and the com-

bination of Jaccard with synonyms, and then chose Levenshtein and synonyms as

the two best similarity features in the independent prediction model.

75

0.691

0.774
0.731

0.797 0.787
0.837 0.844

0.797

0.88

IX CLU FIL WEB C+F C+W C+F+W ME IP
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
FST

A
vg

 T
op

 A
ns

w
er

 A
cc

ur
ac

y

0.404

0.456
0.42

0.52

0.462

0.544 0.56

0.467

0.624

IX CLU FIL WEB C+F C+W C+F+W ME IP
0.2

0.3

0.4

0.5

0.6

0.7
LIGHT

A
vg

 T
op

 A
ns

w
er

 A
cc

ur
ac

y

0.282

0.402

0.315

0.489

0.425

0.505 0.519

0.443

0.584

IX CLU FIL WEB C+F C+W C+F+W ME IP
0.2

0.3

0.4

0.5

0.6

0.7
SVM

A
vg

 T
op

 A
ns

w
er

 A
cc

ur
ac

y

Figure 8.1: Performance of the baseline systems and the independent prediction

model (C+F: combination of Clustering and Filtering, C+W: combination of Clus-

tering and Web validation, C+F+W: combination of Clustering, Filtering and Web

validation).
76

0.0

0.2

0.4

0.6

0.8

1.0

IX AllRelevanceSimilarity

A
vg

. T
op

 A
ns

w
er

 A
cc

ur
ac

y
 FST
 LIGHT
 SVM

Figure 8.2: Average top answer accuracy of the independent prediction model (IX:

performance of extractors, Similarity: merging similarity features, Relevance: merg-

ing relevance features, ALL: combination of all features)

Baseline GZ WN WIKI WEB ALL
0.0

0.2

0.4

0.6

0.8

1.0

 GL

A
vg

 T
op

 A
ns

w
er

 A
cc

ur
ac

y

 FST
 LIGHT
 SVM

IX

Figure 8.3: Average top answer accuracy of individual answer relevance features (GZ:

gazetteers, WN: WordNet, WIKI: Wikipedia, GL: Google, ALL: combination of all

relevance features).

77

Table 8.2: Average top answer accuracy of individual similarity features under dif-

ferent thresholds: 0.3 and 0.5.

Similarity FST LIGHT SVM

feature 0.3 0.5 0.3 0.5 0.3 0.5

Levenshtein 0.728 0.728 0.471 0.455 0.381 0.383

Jaro 0.708 0.705 0.422 0.440 0.274 0.282

Jaro-Winkler 0.701 0.705 0.426 0.442 0.277 0.275

Jaccard 0.738 0.738 0.438 0.448 0.382 0.390

Cosine 0.738 0.738 0.436 0.435 0.380 0.378

Synonyms 0.745 0.745 0.458 0.458 0.412 0.412

Lev+Syn 0.748 0.751 0.460 0.466 0.420 0.412

Jac+Syn 0.742 0.742 0.456 0.465 0.396 0.396

2) Joint Prediction Model

We implemented the joint prediction model using two different inference methods:

exact inference and approximate inference. For exact inference, we limited the num-

ber of answers to the top 10, so that we could enumerate all possible configurations

in a joint table, and then easily calculate marginal and conditional probabilities us-

ing the joint table. In the experiments, we used two different data sets: (1) the

top 10 answer candidates provided by each individual answer extractor and (2) the

top 10 answers returned from the independent prediction model. For approximate

inference, we used Gibbs sampling.

78

a) Exact inference with the top 10 answers produced by extractors

This approach enumerates all possible configurations in a joint table and then calcu-

lates the marginal and conditional probabilities from the joint table. As it requires

O(2N) time and space where N is the size of the graph (i.e. number of answer can-

didates), we used only the top 10 answer candidates produced by each extractor.

Figure 8.4 shows how to generate the joint table using the top 10 answers.

1. Create a joint table (JT) whose size is 2N × (N + 1), where N=10. Fill the

column 1 to column N with all combinations of binary values.

2. For each row i, calculate a value using the relevance and similarity features

and store it to JT(i,N+1).

JT (i, N + 1)

= exp

 n∑
i=1

(
K1∑
k=1

βkrelk(Ai))Si +
∑
N(i)

(
K2∑
k=1

λksimk(Ai, AN(i)))SiSN(i))



2. Calculate the normalization constant Z: Z =
2N∑
i=1

JT (i, N + 1)

3. To make each value a probability, divide each value by Z.

JT (i, N + 1) = JT (i, N + 1)/Z

Figure 8.4: Algorithm to generate the joint table using the top 10 answers

79

Given the joint table, we calculate the conditional and marginal probabilities. For

example, the marginal probability of A1 is calculated by summing the rows where

the value of the 1st column is 1.

P (correct(A1)|Q,A1, ..., An) =
∑

i∈(JT (i,1)==1)

P (i, N + 1)

The parameters for the model were estimated from the training data by maxi-

mizing the joint probability (Equation 8.2). This was done with the Quasi-Newton

algorithm [56].

~β,~λ = argmax
~β,~λ

R∑
j=1

log
1

Z
exp

 n∑
i=1

(
K1∑
k=1

βkrelk(Ai))Si +
∑
N(i)

(
K2∑
k=1

λksimk(Ai, AN(i)))SiSN(i))


(8.2)

Table 8.3 shows the performance of the joint prediction model, compared with the

independent prediction model. As for TOP1, the joint prediction model performed

as well as the independent prediction model in ranking the relevant answer at the

top position. MRR5 shows the performance of the models when they return multiple

answers for each question. It can be seen that the joint prediction model performed

better than the independent prediction model because it could identify unique correct

answers by estimating conditional probability.

To further investigate to what degree the joint prediction model could identify

comprehensive results, we analyzed the average precision for the top 5 answers.

Table 8.4 shows the average precision of the three models. It can be seen that the

joint prediction model produced the answer list whose average precision is higher

than the independent prediction model. This is additional evidence that the joint

80

Table 8.3: Performance of IP and JP when using the top 10 answer candidates

produced by each individual extractor.

FST LIGHT SVM

IP JP IP JP IP JP

TOP1 0.873 0.870 0.604 0.605 0.532 0.536

MRR5 0.936 0.952 0.699 0.729 0.618 0.652

Table 8.4: Average precision of IP and JP.

Average FST LIGHT SVM

Precision IP JP IP JP IP JP

at rank1 0.873 0.870 0.604 0.605 0.532 0.536

at rank2 0.420 0.463 0.359 0.383 0.311 0.339

at rank3 0.270 0.297 0.268 0.280 0.233 0.248

at rank4 0.175 0.195 0.222 0.222 0.193 0.199

at rank5 0.117 0.130 0.190 0.190 0.167 0.170

prediction model can produce a more comprehensive answer list.

However, this approach only uses the top 10 answer candidates and hence misses

the opportunity to boost the correct answer which is ranked lower than 10. In the

next section, we describe another approach to address this issue.

b) Exact inference with the top 10 answers produced by IP

In the previous experiment, we limited the number of answers to the top 10. However,

this is not extensible when more than 10 answers exist. To address this issue, we

performed exact inference using the answer candidates filtered by the independent

81

Table 8.5: Performance of IP and JP when using the top 10 answers produced by IP.

FST LIGHT SVM

IP JP IP JP IP JP

TOP1 0.880 0.874 0.624 0.637 0.584 0.583

MRR5 0.935 0.950 0.737 0.751 0.702 0.724

prediction model. We first applied the independent prediction model with all the

candidates provided by each answer extractor. Then we chose the top 10 answer

candidates returned from the independent prediction model as the input to the joint

prediction model. Finally we did exact inference using enumeration.

Table 3 compares the performance of the joint prediction model with the inde-

pendent prediction model. It shows that the joint prediction model performed as

well as the independent prediction model when selecting the top relevant answer for

all extractors. When comparing MRR5, the joint prediction model performed bet-

ter than the independent prediction model because it could identify unique correct

answers by estimating conditional probability.

To further investigate to what degree the joint prediction model could identify

comprehensive results, we analyzed the average precision within the top 5 answers.

Table 8.6 shows the average precision of the models. It can be seen that the joint

prediction model performed much better than the independent prediction model.

For example, the average precision at rank 2 increased by 33% (FST), 43% (LIGHT)

and 42% (SVM) over independent prediction. This is a significant improvement over

the joint prediction model described in the previous section (a) because the previous

one improved the average precision at rank 2 by only 10% (FST), 6% (LIGHT) and

9% (SVM). This additional analysis on average precision clearly shows that the joint

82

Table 8.6: Average precision of IP and JP when using the top 10 answers produced

by IP.

Average FST LIGHT SVM

Precision IP JP IP JP IP JP

at rank1 0.880 0.874 0.624 0.637 0.584 0.583

at rank2 0.414 0.548 0.377 0.541 0.350 0.498

at rank3 0.269 0.377 0.274 0.463 0.255 0.424

at rank4 0.178 0.259 0.220 0.399 0.203 0.366

at rank5 0.118 0.181 0.191 0.349 0.175 0.319

prediction model can generate more comprehensive results than the independent

prediction model.

c) Approximate inference using Gibbs sampling

We tested the joint prediction model with only the top 10 answers either provided

by each extractor or provided by the independent prediction model. Even though

this worked well for factoid questions, limiting the number of answers may not be

useful for list and complex questions because they may have more than ten correct

answers.

To address this issue, approximate inference can be used (e.g. Markov chain

Monte Carlo sampling, Gibbs sampling or variational inference). We used Gibbs

sampling in our experiments. Gibbs sampling has been commonly used for undi-

rected graphical models because it is simple and requires only conditional probability

P (Si|S−i), where S−i represents all nodes except Si (Equation 8.4).

83

P (Si = 1|S−i) (8.3)

=
P (Si = 1, S−i)

P (Si = 1, S−i) + P (Si = 0, S−i)

=
1

1 + P (Si=0,S−i)
P (Si=1,S−i)

Using this conditional probability, Gibbs sampling generates a set of samples:

S(0), S(1), S(2), ..., S(T). Equation 8.4 shows how Gibbs sampling generates one sample

S(t+1) from the previous sample S(t). In each sequence, each component S
(t+1)
i is

generated from the distribution conditional on the other components. This result

S
(t+1)
i is then used for sampling of the next component.

1. S
(t+1)
1 ∼ p(S1|S(t)

2 , ..., Sn(t)) (8.4)

2. S
(t+1)
2 ∼ p(S2|S(t+1)

1 , x
(t)
3 ..., S

(t)
n)

3. S
(t+1)
i ∼ p(Si|S(t+1)

1 , ..., S
(t+1)
i−1 , S

(t)
i+1, ..., S

(t)
n)

4. S(t+1)
n ∼ p(Sn|S(t+1)

1 , ..., S
(t+1)
n−1)

As it takes time for Gibbs sampling to converge, we ignored the first 2000 samples.

This process is called burn-in. In addition, all samples are not independent and we

only used every 10th sample generated by Gibbs sampling. This process is called

thinning.

The model parameters were estimated from training data using contrastive diver-

gence learning, which estimates model parameters by approximately minimizing con-

trastive divergence. Contrastive divergence (CD) is defined using Kullback-Leibler

divergence (KL) [44] as shown in Equation 8.5. This learning method has been pop-

84

ularly used with Gibbs sampling because it quickly converges after a few steps. More

details about contrastive divergence can be found at [31, 11].

CDn = KL(p0||p∞)−KL(pn||p∞) (8.5)

where p0 is the data distribution, pn is the empirical distribution at nth step and p∞

is the model distribution.

Table 8.7 shows the performance of Gibbs sampling. For the FST data set,

Gibbs sampling worked as well as the independent prediction model. However, it

did not work well for the LIGHT and SVM extractors, mostly because the answer

list produced by LIGHT and SVM contained a lot of incorrect answers. The FST

extractor contains 23.7% of correct answers in the answer candidate list. But LIGHT

contains only 7.1% of correct answers in the candidate list and SVM contains only

7.7% of correct answers (see Table 8.1). Due to a significant imbalance between

correct and incorrect answer candidates, Gibbs sampling and contrastive divergence

learning did not work well for the LIGHT and SVM extractors.

Table 8.7: Performance of JP when using Gibbs sampling

FST LIGHT SVM

IP JP IP JP IP JP

TOP1 0.880 0.870 0.624 0.537 0.584 0.480

MRR 0.935 0.930 0.737 0.657 0.702 0.638

85

d) Summary

We implemented the joint prediction model in three different ways using exact in-

ference and approximate inference. For exact inference, we applied enumeration by

using the top 10 answers provided by either each individual answer extractor or the

independent prediction model. For approximate inference, we used Gibbs sampling.

While Gibbs sampling does not limit the number of answers, it still did not work

well for the extractors which produced significantly unbalanced data.

The experimental results show that exact inference using the outputs from the

independent prediction model produced the best performance. Therefore, in the rest

of the experiments, we will use this approach to implement the joint prediction model

and compare its performance with the independent prediction in other systems.

To address the unbalanced data problem, resampling including over-sampling and

under-sampling [1, 107] can be applied. Over-sampling generates training data for

the minority class, and under-sampling randomly removes training data from the

majority class. Recently (Zhu and Hovy, 2007) [108] proposed bootstrap-based over-

sampling to reduce issues in over-sampling. Applying resampling to the data from

the LIGHT and SVM extractors is one extension of this work we intend to perform

in the future. In addition, implementing the joint prediction model with different

approaches (e.g., variable elimination, loopy belief propagation) is another expected

extension.

86

(2) Experiments with List Questions

The previous section shows that JP is better than IP when selecting multiple answers.

In this section, we report another experiment to evaluate the performance of the

answer ranking models for list questions.

Data Set

The data set we used in the previous section contained many questions which had

more than one correct answers. To evaluate the answer ranking models for list

questions, we extracted 482 questions whose number of correct answers is more than

three from the TREC8-12 questions; an average number of the correct answers was

5.7.

Table 8.8 shows the characteristics of the LIGHT and SVM extractors. As the

FST extractor returns the average of 4.19 answers, we only used the LIGHT and

SVM extractors for this experiment. It can be seen that precision is higher than the

factoid case (shown in Table 8.1) because the questions had more correct answers.

Table 8.8: Performance characteristics of the LIGHT and SVM extractors

#Answer #Answer sets with Average size Precision

Extractor sets correct answers of answer sets macro micro

LIGHT 299 203 36.4 0.679 0.110

SVM 284 196 35.3 0.690 0.125

87

Table 8.9: Average precision of the answer ranking models when there are more

than three correct answers per question (“Diff”: difference between IP and JP at

each rank).

LIGHT SVM

IP JP Diff IP JP Diff

at rank 1 0.532 0.547 0.015 0.473 0.493 0.020

at rank 2 0.355 0.461 0.106 0.318 0.411 0.094

at rank 3 0.250 0.386 0.136 0.236 0.343 0.107

at rank 4 0.217 0.346 0.129 0.195 0.308 0.113

at rank 5 0.188 0.315 0.127 0.174 0.286 0.111

at rank 6 0.164 0.284 0.120 0.159 0.260 0.101

at rank 7 0.144 0.251 0.107 0.143 0.242 0.099

at rank 8 0.127 0.228 0.101 0.132 0.233 0.102

at rank 9 0.113 0.207 0.094 0.120 0.214 0.094

at rank 10 0.104 0.193 0.089 0.112 0.200 0.088

Results and Analysis

To investigate the degree to which the joint prediction model could identify com-

prehensive results, we analyzed the average precision within the top 10 answers.

Table 8.9 shows the average precision of the models. It can be seen that the joint

prediction model performed much better than the independent prediction model.

For example, the average precision at rank 10 increased by 85% (LIGHT) and 78%

(SVM) over independent prediction.

However, the improvement of JP over IP tends to decrease as there are more

88

answers. “Diff” in Table 8.9 shows the performance difference between IP and JP

at each rank. For the LIGHT case, the difference started to decrease at rank 4 and

after rank 6, it significantly decreased. In the SVM case, the difference started to

decrease at rank 5. When considering that the average number of the correct answers

was 5.7, we can tell that JP tends to improve the average precision while there are

correct answers, but this improvement tends to decrease when adding more answers

to the input (i.e. the input contains more incorrect answers).

(3) Experiments with EPHYRA

We also evaluated the answer ranking models with the answer candidates provided

by the EPHYRA QA system. This section describes experiments done with the

EPHYRA QA system [85].

Data Set

A total of 998 factoid questions from the TREC13-15 QA evaluations served as a

data set. For the Wikipedia feature, we used a version of Wikipedia downloaded in

Feb 2007.

EPHYRA has two extractors: Extractor1 and Extractor2. Extractor1 exploits

answer types to extract associated named entities, and Extractor2 uses patterns

which were automatically obtained from question-answer pairs in the training data.

Table 8.10 shows the characteristics of the EPHYRA extractors. It can be seen

that micro-level precision was lower here than in the JAVELIN case mostly because

the EPHYRA extractors returned much more answers than the JAVELIN extractors.

In addition, the correct answer occurs only once in the EPHYRA candidate list

89

because the input to the answer ranking models was already merged. On the other

hand, the JAVELIN extractors tend to contain redundant correct answer candidates

extracted from different documents. The redundancy of correct answers is another

reason why micro-level precision was higher in JAVELIN.

Table 8.10: Performance characteristics of EPHYRA extractors

#Answer #Answer sets with Average size Precision

Extractor sets correct answers of answer sets macro micro

Extractor 1 813 464 27 0.465 0.026

Extractor 2 535 305 104 0.306 0.008

Results and Analysis

Figure 8.5 shows the performance of baseline systems, IP and JP on the EPHYRA

answer candidates. Clustering did not affect performance even though it was use-

ful in the JAVELIN case. As EPHYRA already combined the answer candidates

whose surface strings were the same, there was no answer to be clustered. On the

other hand, JAVELIN extractors return multiple redundant answer candidates from

different documents. Therefore, exploiting answer redundancy was important in

JAVELIN, but not in EPHYRA.

Filtering did not significantly affect performance because the number of EPHYRA

answer types is smaller than that in JAVELIN. In addition, JAVELIN has two-tier

answer types: one for the named entity information (e.g. location, person, organi-

zation) and the other for more specific information such as city, river, writer, etc.

As Filtering heavily depends on the second answer type and EPHYRA does not

produce this information, the gain from Filtering was not significant.

90

Among the baseline systems, Web validation produced the best performance for

both Extractor1 and Extractor2. When compared with Web validation, the answer

ranking models did not significantly improve performance. To explain this result,

further analysis was done with the answer relevance and similarity features. Fig-

ure 8.6 (a) shows the utility of the relevance features on the independent prediction

model. It can be seen that the knowledge-based features (gazetteers and WordNet)

did not significantly boost performance; this is similar to the Filtering case. The

biggest improvement was found with Google. Adding Wikipedia slightly improved

results only in Extractor2. Figure 8.6 (b) shows the effect of the similarity features

on the independent prediction model. As there was much less redundancy in the an-

swer candidates, the similarity features also had little impact on performance either.

Therefore, Google was the only feature that affected the answer selection perfor-

mance in EPHYRA. This explains why Web validation achieved performance gain

comparable to that achieved by our answer ranking models.

One interesting result is that C+F+W produced lower performance than Web validation

because each method (Clustering, Filtering, Web validation, respectively) some-

times made a conflict decision. This demonstrates that combination of multiple ap-

proaches is hard. However, our answer ranking models made a small but significant

improvement over one single baseline even though they merged multiple approaches.

91

0.497 0.497 0.493

0.597

0.493

0.597 0.527
0.553

0.603 0.607

IX CLU FIL WEB C+F C+W C+F+W ME IP JP
0.3

0.4

0.5

0.6

0.7
Extractor2

A
vg

 T
op

 A
ns

w
er

 A
cc

ur
ac

y

0.508 0.508 0.512

0.577

0.512

0.577 0.575

0.531

0.581 0.581

IX CLU FIL WEB C+F C+W C+F+W ME IP JP
0.3

0.4

0.5

0.6

0.7
Extractor1

A
vg

 T
op

 A
ns

w
er

 A
cc

ur
ac

y

Figure 8.5: Performance of the answer ranking models for the EPHYRA QA system.

92

Baseline WN GAZ WIKI GL ALL
0.45

0.50

0.55

0.60

0.65

A
vg

 T
op

 A
ns

w
er

 A
cc

ur
ac

y
 Extractor1
 Extractor2

0.5430.5370.5120.510Lev+Syn

0.5400.5600.5030.514JAR+Syn

0.5230.5230.5140.514Synonyms

0.5270.5230.5010.505Levenshtein

0.5200.5270.4990.492JaroWinkler

0.5200.5300.5010.497Jaro

0.5430.5530.4920.495Jaccard

0.5570.5470.4970.499Cosine

0.50.30.50.3

Extractor2Extractor1Similarity
feature

(a) Relevance features

(b) Similarity features

IX

Figure 8.6: Average top answer accuracy when using individual relevance features

and similarity features

93

8.2.2 Chinese

This section describes the experiments we used to evaluate the answer ranking mod-

els for Chinese QA. The JAVELIN QA system [58] was used as a testbed for the

evaluation.

Data Set

550 Chinese questions provided by the NTCIR 5-6 QA evaluations served as the data

set. Among them, 200 questions were used to train the Chinese answer extractor and

350 questions were used to evaluate our answer ranking models. Table 8.11 shows

the characteristics of the Chinese extractor. As the Chinese extractor returned many

answer candidates (the average number of answer candidates was 565.8), micro-

level precision was very low. Therefore, we preprocessed the data to remove answer

candidates having rank lower than 100.

Table 8.11: Performance characteristics of the Chinese extractor

#Answer #Answer sets with Average size Precision

sets correct answers of answer sets macro micro

Chinese extractor 350 272 565.8 0.777 0.010

For the Wikipedia feature, we used a version of Wikipedia downloaded in Feb

2007.

Results and Analysis

Figure 8.7 compares the average top answer accuracy when using the baseline sys-

tems, the independent prediction model and the joint prediction model. Among the

94

0.389

0.462
0.432

0.547 0.547 0.543 0.556 0.556

0.644 0.644

IX CLU FIL WEB C+F C+W C+F+W ME IP JP
0.2

0.3

0.4

0.5

0.6

0.7
C-C

A
vg

 T
op

 A
ns

w
er

 A
cc

ur
ac

y

Figure 8.7: Performance of the answer ranking models for Chinese answer selection

Table 8.12: Average precision of the answer ranking models for Chinese answer

selection

at rank1 at rank2 at rank3 at rank4 at rank5

IP 0.644 0.356 0.247 0.200 0.167

JP 0.644 0.401 0.290 0.226 0.186

baseline systems which used a single feature, Web validation produced the best

performance ; observe that this is similar to results for the English case. The best

baseline systems were (C+F+W and MaxEnt reranking). When comparing the base-

line systems with the answer ranking models, we note that the answer ranking models

obtained beter performance gain than the baseline systems. Both of the models im-

proved performance by 15.8% over the best baseline systems (C+F+W and MaxEnt

reranking).

95

As there was no difference between independent prediction and joint prediction

in selecting the top answer, we further investigated to what degree the joint predic-

tion model could identify comprehensive results. Table 8.12 compares the average

precision of IP and JP and shows that JP performed better than IP when selecting

the top 5 answers. This was because joint prediction could identify unique correct

answers by estimating conditional probability.

We further analyzed the utility of individual relevance features in the indepen-

dent prediction model (Figure 8.8 (a)). The manual filtering and gazetteers features

were somewhat useful in ruling out wrong answers, but the ontology did not im-

prove performance; we assume that this is because the Chinese ontology (HowNet)

contains much less information overall than the English ontology (WordNet). As for

Wikipedia, there were fewer Chinese Wikipedia documents available. Even though

we used Baidu as a supplemental resource for Chinese, this did not improve answer

selection performance. Among the relevance features, Google produced the best

performance.

Given that the limited coverage of the ontology feature decreased performance,

we also compared the performance when combining all relevance features with the

performance when combining all features except ontology (“ALL” v.s. “ALL (except

ontology)” in Figure 8.8 (a)). The latter improved performance by 5.5% over the

former.

Figure 8.8 (b) shows the effect of individual similarity features on Chinese an-

swer selection when using two thresholds (0.3 and 0.5). In our experiments, the

combination of Levenshtein and Synonyms worked best.

In our previous experiments on English QA, the relevance features improved

performance by an average of 67.5% over IX and the similarity features improved

96

performance by an average of 33.4% over IX. In Chinese, both the similarity and the

relevance features significantly improved answer selection performance compared to

the baseline: 63.5% improvement when using similarity features and 29% improve-

ment when using relevance features. However, answer relevance features played less

important roles than in English, because of fewer Chinese resources to identify an-

swer relevance. For example, as of Feb 2007, Chinese Wikipedia contained around

263,000 documents, and English Wikipedia contained 3,583,699 documents. Due to

the smaller coverage in Chinese, the answer relevance features had less impact on

answer ranking in Chinese QA.

97

(a) Relevance features

(b) Similarity features

IX ONT GAZ FIL WIKI GL ALL ALL
0.35

0.40

0.45

0.50

0.55

(w/o ONT)

A
vg

 T
op

 A
ns

w
er

 A
cc

ur
ac

y

0.50.3Similarity feature

0.6180.631Lev+Syn

0.6050.605Cos+Syn

0.6090.609Synonyms

0.5790.588Levenshtein

0.5580.584JaroWinkler

0.5540.579Jaro

0.6140.614Jaccard

0.6140.614Cosine

Figure 8.8: Average top answer accuracy in Chinese QA when using (a) individual

relevance features and (b) similarity features.

98

8.2.3 Japanese

This section describes the experiments we conducted to evaluate the answer ranking

models for Japanese QA. The JAVELIN QA system [58] was used as a testbed for

the evaluation.

Data Set

We used 700 Japanese questions provided by the NTCIR 5-6 QA evaluations as

the data set. Among them, 300 questions were used to train the Japanese answer

extractor, and 400 questions were used to evaluate our models. Among 400 test

questions, the Japanese extractor did not produce any answers for 4 questions and

251 questions contained at least one correct answer (Table 8.13).

Table 8.13: Performance characteristics of the Japanese extractor

#Answer #Answer sets with Average size Precision

sets correct answers of answer sets macro micro

Japanese extractor 396 251 58.5 0.628 0.077

For the Wikipedia feature, we used a version of Wikipedia downloaded in Feb

2007.

Results and Analysis

Figure 8.9 compares the average accuracy when using baselines, the independent pre-

diction model and the joint prediction model. Among the baseline systems, MaxEnt

reranking produced the best performance. On the other hand, Web validation

99

0.498
0.536

0.498
0.528 0.528 0.545 0.545 0.557 0.57 0.57

IX CLU FIL WEB C+F C+W C+F+W ME IP JP
0.2

0.3

0.4

0.5

0.6

0.7
J-J

A
vg

 T
op

 A
ns

w
er

 A
cc

ur
ac

y

Figure 8.9: Performance of the answer ranking models for Japanese QA

Table 8.14: Average precision of the answer ranking models for Japanese QA.

at rank1 at rank2 at rank3 at rank4 at rank5

IP 0.570 0.315 0.237 0.185 0.156

JP 0.570 0.379 0.271 0.209 0.171

was not as useful for Japanese as in the Chinese and English cases. This can be

explained by analyzing the difference in the data set. Figure 8.10 compares answer

type distribution in Chinese and Japanese. In the Chinese data set, 66% of ques-

tions look for names (person name, organization name and location name), 11% for

numbers and 17% for temporal expressions. But in the Japanese data set, far fewer

questions look for names (42%) while more questions search for numbers (27%) and

temporal expressions (21%).

100

person loc org artifact date time money percent numex
0

10

20

30

40
P

er
ce

nt
ag

e
of

 q
ue

st
io

ns

Answer type

 Japanese
 Chinese

Figure 8.10: Answer type distribution in Chinese and Japanese data set

Web validation is less useful in validating numeric and temporal questions be-

cause correct answers to numeric and temporal questions may vary over even short

periods of time. In addition, some answers are too specific and hard to find within

Web documents (e.g. “At what hour did a truck driven by Takahashi rear-end a

truck driven by Hokubo?” or “How many cardboard boxes were there on the truck

driven by Hiroshi Hokubo?”). As Japanese question set contained much more nu-

meric and temporal questions, Web validation was not as useful as in the Chinese

case.

The smaller performance gain from Web validation also limited the improve-

ment of both IP and JP relative to MaxEnt. Even though both IP and JP slightly im-

proved the average top answer accuracy (an increase of 2.25% over MaxEnt reranking),

the performance gain was not statistically significant.

More analysis was performed by examining the utility of relevance features. Fig-

101

ure 8.11 (a) shows that the data-driven features were more useful than the knowledge-

based features. This is similar to the Chinese case, but the gain from data-driven

features was much less than in the Chinese case. For example, the Google feature

feature led to improvements of 7.6% in Japanese and 23.3% in Chinese. In addition,

the gain from the similarity features was less than in the Chinese case (6% gain in

Japanese and 63.5% gain in Chinese). Therefore, there was less opportunity to boost

correct answers to the top position when using our answer ranking models.

Figure 8.11 (b) shows the effect of individual similarity features on Japanese

answer selection. In our experiments, Levenshtein tends to perform better than

the other features with threshold “0.3”. However, the performance gain from the

similarity features was much less than that in the Chinese case: 58.9% gain in Chinese

and 6% gain in Japanese. In addition, the combination of two similarity features

(“Lev+Syn” and “Cos+Syn”) did not improve performance in Japanese. Therefore,

we only used Levenshtein feature in our answer ranking models for Japanese.

We also analyzed the difference between IP and JP. Table 8.14 shows the average

precision at rank N. Similar to the English and Chinese cases, the joint predic-

tion model could identify unique correct Japanese answers by estimating conditional

probability.

102

(a) Relevance features

(b) Similarity features

IX ONT GAZ FIL WIKI GL ALL ALL
0.45

0.50

0.55

0.60

G+G+W

A
vg

 T
op

 A
ns

w
er

 A
cc

ur
ac

y

0.50.3Similarity feature

0.4940.506Lev+Syn

0.5060.494Cos+Syn

0.5150.515Synonyms

0.5060.528Levenshtein

0.5060.502JaroWinkler

0.5060.502Jaro

0.5110.511Jaccard

0.5110.511Cosine

Figure 8.11: Average top answer accuracy in Japanese QA when using (a) individual

relevance features (“G+G+W”: combination of Google, Gazetteers and Wikipedia)

and (b) similarity features.

103

8.2.4 Utility of Data-driven Features

In our experiments, we used data-driven features as well as knowledge-based features.

As knowledge-based features require manual effort to provide an access to language-

specific resources for each language, we conducted an additional experiment with

data-driven features, in order to see how much performance gain is available without

the manual work. As Google, Wikipedia and string similarity metrics can be used

without any additional manual effort when extended to other languages, we used

these three features and compared performance in JAVELIN.

IX Data-driven features All features

English (FST) 0.691 0.840 0.880

English (LIGHT) 0.404 0.617 0.624

English (SVM) 0.282 0.556 0.584

Chinese 0.386 0.635 0.644

Japanese 0.478 0.553 0.570

Table 8.15: Average top answer accuracy when using data-driven features v.s. when

using all features.

Table 8.15 shows the performance when using data-driven features v.s. all fea-

tures in the independent prediction model. For all three languages, data-driven fea-

tures alone achieved significant improvement over IX. This indicates that the model

can easily be extended to any language where appropriate data resources are avail-

able, even if knowledge-based features and resources for the language are still under

development.

104

8.3 Cross-lingual QA

This section describes our experiments which evaluate the answer ranking models

for cross-lingual QA. Empirical results for NTCIR cross-lingual questions (English-

to-Chinese and English-to-Japanese) show the effectiveness and robustness of the

models in cross-lingual answer ranking.

8.3.1 English-to-Chinese

This section describes the experiments that evaluate the answer ranking models for

English-to-Chinese QA. The JAVELIN QA system [58] was used as a testbed for the

evaluation.

Data Set

550 questions provided by NTCIR 5-6 were used as a data set. Among them, 200

questions were used to train the Chinese answer extractor and the other 350 questions

were used to evaluate the answer ranking models. Among the 350 test questions,

the Chinese extractor could not find any answers for one question; 190 questions

contained at least one correct answer in the candidate list (Table 8.16).

Table 8.16: Performance characteristics of the extractor

#Answer #Answer sets with Average size Precision

sets correct answers of answer sets macro micro

349 190 76.6 0.543 0.029

105

0.299

0.38

0.321

0.402 0.397

0.451 0.451
0.424

0.462 0.467

IX CLU FIL WEB C+F C+W C+F+W ME IP JP
0.2

0.3

0.4

0.5

0.6

0.7
E-C

A
vg

 T
op

 A
ns

w
er

 A
cc

ur
ac

y

Figure 8.12: Performance of the answer ranking models in English-to-Chinese QA.

Table 8.17: Average precision of the answer ranking models in English-to-Chinese

QA.

at rank1 at rank2 at rank3 at rank4 at rank5

IP 0.462 0.255 0.190 0.155 0.135

JP 0.467 0.293 0.246 0.196 0.164

Results and Analysis

Figure 8.12 compares the average accuracy when using the baseline systems, IP

and JP. Among the baseline systems,“C+W” and “C+W+F” produced the best

performance. Compared to the best baseline systems, IP and JP slightly improved

performance, but the difference was not statistically significant. This differs from

the Chinese monolingual QA where IP and JP achieved significant performance gain

over “C+W” and “C+W+F”.

106

Table 8.17 compares the average precision of IP and JP. Similar to the Chinese

monolingual case, JP performed better than IP when selecting the top 5 answers by

identifying unique answers for English-to-Chinese QA.

We also analyzed to what extent the average top answer accuracy was affected by

the use of individual features. Figure 8.13 (a) shows the performance of individual

relevance features. Google produced the best performance, but the other relevance

features did not provide performance gains because they covered too few questions.

Therefore, combining all relevance resources did not improve the performance over

Google. This result is unlike that for the monolingual case, where a combination of

relevance features obtained a performance gain.

Figure 8.13 (b) shows the performance of similarity features under different sim-

ilarity thresholds. Among the different string similarity features we tested, Cosine

and Jaccard features performed better than other features; further, the combina-

tion of the Cosine and Synonym features produced the best performance for both

threshold 0.3 and 0.5.

Similar to the Chinese monolingual QA case, we achieved greater performance

gain from the similarity features than the relevance features; this is because we had

fewer available resources to estimate answer relevance in Chinese.

107

(a) Relevance features

(b) Similarity features

IX FIL ONT GAZ WIKI GL ALL
0.20

0.25

0.30

0.35

0.40

A
vg

 T
op

 A
ns

w
er

 A
cc

ur
ac

y

0.50.3Similarity feature

0.424 0.429Lev+Syn

0.457 0.457Cos+Syn

0.418 0.418Synonyms

0.424 0.413Levenshtein

0.386 0.37JaroWinkler

0.38 0.37Jaro

0.451 0.451Jaccard

0.451 0.451Cosine

Figure 8.13: Average top answer accuracy in English-to-Chinese QA when using (a)

individual relevance features and (b) similarity features.

108

8.3.2 English-to-Japanese

This section describes the experiments we conducted to evaluate the answer ranking

models for English-to-Japanese QA. The JAVELIN QA system [58] was used as a

testbed for the evaluation.

Data Set

700 questions from the NTCIR 5-6 evaluation were used as a data set. Among them,

300 questions were used to train the Japanese answer extractor and 400 questions

were used to evaluate the models. Among 400 test questions, the Japanese extractor

found no answers for two questions, and only 166 questions contained at least one

correct answer (Table 8.18).

Table 8.18: Performance characteristics of the extractor

#Answer #Answer sets with Average size Precision

sets correct answers of answer sets macro micro

398 166 53.3 0.415 0.043

Results and Analysis

Figure 8.14 compares the average accuracy of the baseline algorithms and the an-

swer ranking models. The results show that there was less performance gain in

English-to-Japanese answer selection than the English-to-Chinese case. The best

baseline system was Web validation, but the combination of Web validation with

Filtering and/or Clustering did not improve performance over Web validation;

this demonstrates that in this case combining multiple strategies is hard. However,

109

0.427 0.445 0.427

0.476
0.451 0.451 0.451 0.445

0.482 0.482

IX CLU FIL WEB C+F C+W C+F+W ME IP JP
0.2

0.3

0.4

0.5

0.6

0.7
E-J

A
vg

 T
op

 A
ns

w
er

 A
cc

ur
ac

y

Figure 8.14: Performance of baseline, IP and JP for English-to-Japanese QA

Table 8.19: Average precision of IP and JP for English-to-Japanese QA.

at rank1 at rank2 at rank3 at rank4 at rank5

IP 0.482 0.277 0.209 0.165 0.140

JP 0.482 0.308 0.226 0.181 0.150

IP and JP were robust and still produced the best performance even though they

combined multiple features.

Further analysis was done by comparing the average precision. Table 8.19 com-

pares the average precision of IP and JP when ranking all answer candidates. In

English-to-Japanese QA, JP performed better than IP when selecting the top 5 an-

swers.

Figure 8.15 (a) shows the performance of individual relevance features. For

English-to-Japanese, the Google and Wikipedia features produced the best perfor-

110

mance. Compared with English-to-Chinese, the Wikipedia feature was more useful in

answer ranking. However, the combination of all relevance features did not improve

performance because the ontology and gazetteer features covered few questions.

Figure 8.15 (b) shows the performance of similarity features under different sim-

ilarity thresholds. Among the different string similarity features we tested, Leven-

shtein performed better than other features. Similar to the Japanese monolingual

case, we had greater performance gain from the relevance features than from the

similarity features.

111

(a) Relevance features

(b) Similarity features

IX FIL ONT GAZ WIKI GL ALL GL+WIKI
0.30

0.35

0.40

0.45

0.50

A
vg

 T
op

 A
ns

w
er

 A
cc

ur
ac

y

0.50.3Similarity feature

0.4450.439Lev+Syn

0.4390.39Cos+Syn

0.4390.439Synonyms

0.4450.415Levenshtein

0.4150.427JaroWinkler

0.4090.427Jaro

0.4210.421Jaccard

0.4210.421Cosine

Figure 8.15: Average top answer accuracy in English-to-Japanese QA when using

(a) individual relevance features and (b) similarity features.

112

8.4 Multi-strategy QA

This section describes the experiments that we conducted to examine answer merging

for multi-strategy QA. The experiments were done with two English QA systems,

JAVELIN and EPHYRA.

8.4.1 JAVELIN

In Section 8.2.1, we evaluated the answer ranking models with the answer list pro-

duced by each individual JAVELIN extractor: FST, LIGHT and SVM. As different

extractors cover different types of questions with varying precision and recall, we

merged their answers with the extended answer ranking models (described in Sec-

tion 6.1). These models use the confidence scores provided by individual extractors

as additional features to measure answer relevance.

Experimental Setup

The same data set used to evaluate each individual JAVELIN extractor was used to

evaluate the answer ranking models for multi-strategy QA. As different extractors

returned different numbers of answer candidates, we only considered the top 50

answer candidates produced by each individual extractor. Among 1760 questions in

the data set, there were 978 questions for which at least one extractor identified a

correct answer.

The baseline was the result from the independent prediction model, which was run

on the answer candidates provided by each individual extractor. As each extractor

covers different questions, the performance was measured using answer coverage,

113

calculated by the percentage of correct top answers among the 978 questions for

which at least one correct answer exists.

Results and Analysis

Figure 8.16 shows the experimental results. Figure 8.16 (a) is the coverage of the

independent prediction model for answer candidates produced by the FST extrac-

tor. As can be seen, the model selected the correct top answers only for 27.1% of

the questions. Figure 8.16 (b) and (c) shows the coverage of the independent pre-

diction model for answer candidates produced by the LIGHT and SVM extractors,

respectively. The independent prediction model identified the correct top answers

for 56.1% of the questions in LIGHT; the model selected the correct top answers for

52% of the questions provided by SVM. Comparing these three extractor results, the

coverage of FST is small because it can answer only specific types of questions.

Figure 8.16 (d) and (e) show the coverage of answer merging. Answer merging

with the independent prediction model improved the coverage by 7.5% over LIGHT

alone. Answer merging with the joint prediction model produced the best perfor-

mance, having a 9.8% improvement over LIGHT alone. The results show that the

models are effective in merging answers produced by different extraction strategies.

8.4.2 EPHYRA

In Section 8.2.1, we evaluated the answer ranking models with the answer list pro-

duced by each individual EPHYRA extractor: Extractor1 and Extractor2. This

section describes the experiments on answer merging in EPHYRA.

114

Experimental Setup

The same 998 questions used to evaluate each individual EPHYRA extractor were

used to evaluate answer merging. Similar to the JAVELIN case, we only considered

the top 50 answer candidates produced by each individual extractor. Among the

total of 998 questions, only 55.4% of questions (553 questions) had at least one

correct answer.

The baseline was the independent prediction model which was run on the answer

candidates provided by each individual extractor. As each extractor covers different

questions, the performance was measured with the answer coverage.

Results and Analysis

Figure 8.17 shows the experimental results. Figure 8.17 (a) is the coverage of the

independent prediction model on the answer candidates produced by Extractor1. It

selected the correct top answers for 49.7% of the questions. Extractor2 identified the

correct answers for 34% of the questions.

Figure 8.17 (c) and (d) show the coverage of answer merging. Answer merging

with the independent prediction model and the joint prediction model improved the

coverage by 7.2% over Extractor1 alone. Again, the models were able to improve

answer selection performance when merging the two EPHYRA extractor results.

When comparing JAVELIN and EPHYRA, we had greater performance gain

when merging JAVELIN extractors because JAVELIN had one more extractor than

EPHYRA and the coverage of the LIGHT and SVM extractors was higher than for

the EPHYRA extractors.

115

(e) Answer Merging with JP

61.7%

38.3%

(b) LIGHT

56.1%

43.9%

(a) FST

27.1%

72.9%

 Uncovered
 Covered

(d) Answer Merging with IP

60.3%

39.7%

48%

(c) SVM

52%

Figure 8.16: Answer merging in JAVELIN. (a),(b) and (c) show the coverage of IP

on FST, LIGHT and SVM, respectively. (d) shows the coverage of IP when merging

answers from the three extractors. (e) shows the coverage of JP when merging

answers from the three extractors.

116

46.7%

(c) Answer Merging with IP

53.3%

46.7%

(d) Answer Merging with JP

53.3%

50.3%

(a) Extractor1

49.7%

 Uncovered
 Covered

66%

(b) Extractor2

34%

Figure 8.17: Answer merging in EPHYRA. (a) and (b) show the coverage of IP on

Extractor1 and Extractor2, respectively. (c) shows the coverage of IP when merging

answers from the two extractors. (d) shows the coverage of JP when merging answers

from the two extractors.

117

8.5 Comparison with State-of-the-art Systems

In the previous sections, we evaluated the answer ranking models with cross-validation

in order to see how much the models improved the average answer accuracy in one

QA system. In this section, we compare the QA systems which incorporate our

answer ranking models with state-of-the-art QA systems.

Experimental Setup

Questions from the latest TREC and NTCIR evaluations served as a test set: the

latest TREC-2006 evaluation contains 403 English factoid questions, and the latest

NTCIR-6 evaluation contains 150 Chinese questions and 200 Japanese questions.

All other questions from the previous TREC and NTCIR evaluations were used as

a training set.

As both TREC and NTCIR use the top answer accuracy as an evaluation metric,

we used the top answer accuracy to compare the performance. As the experiments

in the previous sections showed that there was no significant difference in selecting

the top answer between the independent prediction model and the joint prediction

model, we only used the independent prediction model for this experiment.

Results and Analysis

Table 8.20 shows the performance of EPHYRA and JAVELIN without and with the

independent prediction model for answer selection. It can be seen that JAVELIN and

EPHYRA with IP worked much better than the TREC and NTCIR median runs for

all languages. As for Japanese (both Japanese-to-Japanese and English-to-Japanese),

118

Table 8.20: Performance comparison with the latest TREC-2006 (English) and

NTCIR-6 (Chinese and Japanese) systems.

Testbed score Testbed score TREC/NTCIR TREC/NTCIR

Testbed w/o IP with IP best score median score

E-E EPHYRA 0.196 0.238 0.578 0.134

C-C JAVELIN 0.287 0.393 0.547 0.260

E-C JAVELIN 0.167 0.233 0.340 0.107

J-J JAVELIN 0.320 0.370 0.360 0.295

E-J JAVELIN 0.215 0.235 0.195 0.140

JAVELIN with IP performed better than the best QA system in NTCIR-6.

119

8.6 Summary

We conducted a series of experiments to evaluate the performance of our answer rank-

ing models and analyzed the effect of individual relevance and similarity features. We

also tested the answer ranking models further by applying them to multi-strategy QA

and multilingual QA. Multi-strategy QA tends to have greater answer redundancy,

and identifying answer similarity was more important. Multilingual QA includes two

tasks: Chinese/Japanese monolingual QA and cross-lingual QA. The former provides

a testbed to evaluate to what degree our models are robust in different languages.

The latter entails question translation from English to another language and tends to

have poor quality data. Applying the models to cross-lingual QA shows the degree

to which the models are noise-resistant in supporting data of poor quality.

Table 8.21 summarizes performance gain of the independent prediction model

over the baseline systems. We only compared the performance of the independent

prediction model because there was no significant difference between IP and JP

in selecting the top answer. The performance of the answer ranking model varied

according to the characteristics of input quality (e.g. score distribution, degree of

answer redundancy, availability of external resources, question distribution, etc).

However, answer ranking performance is inherently system-dependent. Although

we may be able to characterize contexts in which different approaches are likely to

perform well, many of the details (e.g., cutoff threshold decisions, feature selection)

must be learned for specific QA systems (corpora, languages, etc). Additionally, as

translation quality improves, the best approach to answer ranking may change.

120

T
ab

le
8.

21
:

P
er

fo
rm

an
ce

ga
in

of
IP

ov
er

b
as

el
in

es
an

d
ch

ar
ac

te
ri
st

ic
s

of
te

st
b
ed

sy
st

em
s.

(*
m

ea
n
s

th
e

d
iff

er
en

ce
is

st
at

is
ti

ca
ll
y

si
gn

ifi
ca

n
t

(p
=

0.
05

))
.

Im
p
ro

ve
m

en
t

Im
p
ro

ve
m

en
t

S
y
st

em
ov

er
IX

ov
er

C
L
U

,F
IL

,W
E

B
,M

E
C

h
ar

ac
te

ri
st

ic
s

E
-E

(F
S
T

)
27

.3
5%

*
10

.4
1%

(W
E
B
)*

R
ed

u
n
d
an

t
an

sw
er

s
ex

is
t

in
th

e
ca

n
d
id

at
e

li
st

,

E
-E

(L
IG

H
T

)
54

.4
6%

*
20

.0
0%

(W
E
B
)*

an
d

ex
p
lo

it
in

g
re

d
u
n
d
an

cy
is

im
p
or

ta
n
t.

E
-E

(S
V

M
)

10
7.

09
%

*
19

.4
3%

(W
E
B
)*

F
in

e-
gr

an
u
la

te
d

an
sw

er
ty

p
e

an
d

su
b
ty

p
es

(u
se

fu
l
fo

r
fi
lt
er

in
g)

.

E
-E

(E
p
h
y
ra

1)
14

.3
7%

*
0.

69
%

(W
E
B
)

IX
al

re
ad

y
m

er
ge

d
re

d
u
n
d
an

t
an

sw
er

s
(n

o
ga

in

fr
om

si
m

il
ar

it
y

fe
at

u
re

s)
.

E
-E

(E
p
h
y
ra

2)
21

.3
3%

*
1.

01
%

(W
E
B
)

H
ig

h
va

ri
an

ce
in

ex
tr

ac
to

r
sc

or
es

.

N
ot

en
ou

gh
su

b
ty

p
e

in
fo

rm
at

io
n
.

C
-C

65
.5

5%
*

15
.8

3%
(M
E
)*

D
at

a
se

t
h
as

m
an

y
n
am

e
q
u
es

ti
on

s
(w

eb

E
-C

54
.5

2%
*

8.
96

%
(M
E
)*

va
li
d
at

io
n

is
u
se

fu
l
fo

r
th

em
).

J
-J

14
.4

6%
*

2.
33

%
(M
E
)

E
x
tr

ac
to

r
ou

tp
u
t

is
m

or
e

ac
cu

ra
te

th
an

E
-J

12
.8

8%
*

1.
26

%
(W
E
B
)

C
h
in

es
e

(h
ig

h
er

b
as

el
in

e
th

an
C

h
in

es
e)

.

D
at

a
se

t
h
as

m
or

e
n
u
m

er
ic

q
u
es

ti
on

s
an

d
fe

w
er

n
am

e
q
u
es

ti
on

s
(n

u
m

er
ic

q
u
es

ti
on

s
ar

e
h
ar

d
to

va
li
d
at

e:
co

rp
u
s-

sp
ec

ifi
c)

.

121

122

Chapter 9

Conclusions and Future Research

In the previous chapters, we proposed probabilistic answer ranking models and de-

scribed a series of experiments to evaluate their performance on answer selection in

monolingual, cross-lingual & multi-strategy question answering. This chapter sum-

marizes the research results and discusses future research.

9.1 Conclusions

In this thesis, we described our probabilistic answer ranking models for answer se-

lection in question answering. Our hypothesis is that the answer ranking models

provide a generalized probabilistic framework that supports answer selection (1) in

monolingual QA as well as (2) cross-lingual QA (3) on answer candidates produced

by multiple extraction techniques (4) in different question answering systems, and

perform better than state-of-the-art answer selection algorithms.

123

Probabilistic Answer Ranking Framework

As a probabilistic answer ranking framework to estimate the probability of an indi-

vidual answer candidate, we proposed two answer ranking models: the independent

prediction model and the joint prediction model. Both models consider the rele-

vance of individual answers as well as their correlation in order to rank the answer

candidates.

The independent prediction model directly estimates the probability of correct-

ness for each answer candidate. It considers two factors: answer relevance and answer

similarity. The relevance of an answer to a question can be estimated by the prob-

ability P(correct(Ai) |Ai, Q), where Q is a question and Ai is an answer candidate.

Answer similarity is is based on an estimate of the probability P (correct(Ai)|Ai, Aj),

where Aj is similar to Ai. Since both probabilities influence answer selection per-

formance, it is important to combine them in a unified framework and to estimate

the probability of an answer candidate as: P (correct(Ai)|Q,A1, ..., An), where n is

the number of answer candidates under consideration. The independent prediction

model uses logistic regression to directly estimate this probability.

The joint prediction model estimates the joint probability of correctness of avail-

able answer candidates. In particular, the joint prediction model estimates the prob-

ability of P (correct(A1),..., correct(An)| Q,A1, ..., An). The marginal probability

of P (correct(Ai)|Q,A1, ..., An) for each individual answer as well as the conditional

probability P (correct(Ai)|correct(Aj) , Q,A1, ..., An) can be naturally derived from

the joint probability. This enables better answer ranking results for a more accurate

and comprehensive answer list. An extensive set of empirical results on TREC and

NTCIR questions shows that the joint prediction model significantly improved an-

124

swer ranking performance and was better at finding a unique set of correct answers

(e.g. for a list-type question).

As the models provide a unified framework, they can be easily extended to support

answer selection in other QA systems. This is different from most answer selection

approaches (e.g. IBM’s PIQUANT QA system [13] has separate modules to validate

answer candidates and to merge answers provided by multiple answering agents,

each of which requires a separate training). As our answer ranking models have one

unified framework to run answer validation and answer merging, they can be easily

integrated into another QA system with only one trainable step using the training

data provided by the QA system. To our best understanding, this is the first research

work that proposes a formal unified probabilistic framework to model the correctness

and correlation of answer candidates in question answering. In addition, this is a

novel approach to design a flexible and extensible system architecture for answer

selection.

Support of Monolingual QA

As the models are based on a statistical framework, they can be easily extended to

support multiple languages by incorporating language-specific features and retraining

them for individual languages. We evaluated the models for answer selection in

three monolingual QA systems for English, Chinese and Japanese. As English differs

markedly from Chinese and Japanese, extending the models to Chinese and Japanese

shows that the models are language-independent.

An extensive set of experiments on TREC English questions and NTCIR Chinese

and Japanese questions shows that the models significantly improved answer selection

125

performance over the baseline (IX) for all three languages. Further experiments

on data-driven features show that data-driven features alone achieved significant

improvements. This indicates that the models can easily be extended to any language

where appropriate data resources are available, even if knowledge-based features and

resources for the language are still under development.

As the models were evaluated in three different languages, the utility of individual

features can be compared. In English QA (JAVELIN), the combination of relevance

and similarity features improved performance by an average of 102% over the baseline

IX. The relevance features improved performance by an average of 67.5% over the

baseline, and the similarity features improved performance by an average of 33.4%

over the baseline. On the other hand, in Chinese QA, the relevance features improved

performance by 29% and the similarity features improved performance by 63.5% over

the baseline. In Chinese, answer relevance features played less important roles than

in English because there are fewer Chinese resources suitable for identifying answer

relevance. Due to the smaller coverage in available Chinese resources, the answer

relevance features had less impact on answer ranking in the Chinese case. As there

are more available resources in Japanese, the answer relevance features produced a

more performance gain than in Chinese, but the gain was smaller than in the English

case.

On the other hand, similarity features heavily depend on redundancy of answer

candidates provided by answer extractors. In JAVELIN, similarity features improved

performance because the JAVELIN answer extractors produced many redundant

answers extracted from different documents. But in EPHYRA similarity features

had much less impact on answer ranking because answer candidates provided by

EPHYRA tend to have much less redundancy.

126

Support of Cross-lingual QA

The models were extended to support cross-lingual QA (CLQA). As CLQA involves

question and/or keyterm translation to find answers from the target corpus, the

answer candidates tend to contain a lot of noisy data. This can be explained by

the following; (1) while there are numerous incorrect answer candidates, there are

few correct answer candidates, and (2) correct answers have very low rankings. This

causes answer ranking to be more challenging in CLQA, as it requires an additional

degree of robustness in answer selection. Applying the models to cross-lingual QA

shows the degree to which the models are noise-resistant in supporting low quality

data.

To support CLQA, we extended the data-driven features used by monolingual

answer ranking, while reusing the knowledge-based features. This extension was to

incorporate multiple translated keyterms into answer relevance features. As more

than one translation candidate might exist for each keyterm, multiple translation

candidates were used to search for Web and Wikipedia documents. As some inaccu-

rate translations might retrieve incorrect information, only the top 3 keyterms were

used to search for data-driven features. In addition, we used English proper noun

keyterms to retrieve Web and Wikipedia documents because the translation quality

was not high for proper nouns.

The models were evaluated for answer selection in two cross-lingual QA systems:

English-to-Chinese and English-to Japanese. The experimental results on NTCIR

questions showed that the models improved answer selection performance in both

English-to-Chinese and English-to-Japanese.

127

Support of Multiple Extraction Techniques

The models were evaluated with multiple extraction techniques: (1) an extractor

based on finite state transducers that incorporate a set of extraction patterns (both

manually created and generalized patterns), (2) an extractor that selects answer

candidates using a non-linear distance heuristic between the keywords and an an-

swer candidate, (3) an extractor that uses Support Vector Machines to discriminate

between correct and incorrect answers (4) an extractor that uses patterns automat-

ically obtained from question-answer pairs in training data, (5) an extractor that

uses answer types to extract associated named entities, and (6) an extractor that

uses maximum entropy models with multiple features such as answer type matching,

dependency structure matching, and similarity score of predicate argument struc-

tures.

A series of experiments showed that the answer ranking models improved answer

selection performance on answer candidates provided by different extraction tech-

niques. This is evidence that the models are robust and generalizable for different

extraction techniques.

Support of Multiple QA Systems

The models were evaluated using two different question answering systems: JAVELIN

and EPHYRA. Even though both are open-domain question answering systems, im-

plementation details differ. One major difference is how a list of answer candidates

is produced. JAVELIN directly searches the given corpus (the TREC/AQUAINT

corpora for English and the NTCIR corpora for Chinese and Japanese) to extract

documents, so that the list of answer candidates contains several redundant or similar

128

answers retrieved from different documents. On the other hand, EPHYRA extracts

answer candidates from Web snippets and combines the answer candidates whose

surface strings are the same. Then it conducts answer projection to find supporting

documents from the TREC/AQUAINT corpus. Therefore, the input to the answer

ranking models does not include redundant answers. In addition, they have different

answer type hierarchy and different answer candidate score distributions. Never-

theless, a series of experiments show that the models improved answer selection

performance for both JAVELIN and EPHYRA.

Support of Answer Merging

Many recent QA systems incorporate multiple answering agents that extract answer

candidates from multiple sources with different strategies. The basic idea of this ap-

proach is that a combination of similar answers extracted from different sources with

different strategies performs better than any individual answering strategy alone.

As answer candidates come from different agents with different score distributions,

exploiting answer redundancy plays a more important role in answer ranking.

The models were extended to merge answer candidates provided by multiple ex-

traction strategies. Experiments were done to merge three JAVELIN English extrac-

tors and merge two EPHYRA extractors. The experimental results show that the

models were effective in merging answer candidates in both systems and produced

better performance than the case in which used an individual extractor output was

used alone.

129

Combination of Knowledge-based and Data-driven Features

The models use multiple answer relevance and answer similarity features that are ap-

propriate for the language in question. The features generate scores using knowledge-

based approaches (e.g. using ontologies and gazetteers) as well as data-driven ap-

proaches (e.g exploiting the Web and Wikipedia). The models can easily learn how to

combine them using different weights. In addition, the models provide a framework

to evaluate the utility of individual features.

9.2 Future Research

This section describes possible directions for future research.

Extension to complex questions

We conducted a series of experiments on factoid questions whose answers are short

noun phrases or named entities. The experimental results show that our answer rank-

ing models improve performance on three languages (English, Chinese and Japanese).

As a generalized framework, the models should be able to support different types of

questions. As recent TREC data set includes complex questions as well as factoid

questions, it would be very important to support complex questions in our answer

ranking models. Complex questions require longer answers representing facts or re-

lations (e.g., “What is the relationship between Alan Greenspan and Robert Rubin?”,

“Who is Bill Clinton?”). Hence, we cannot reuse the answer relevance and similarity

features used for factoid questions, and need to develop different features for answer

selection in complex questions.

130

One simple relevance feature is to check whether or not an answer candidate

contains the required question keywords. For example, given the question “What

is the relationship between Egypt and Syria?”, “Egypt” and “Syria” are chosen as

the required keywords by the Question Analyzer. If an answer candidate does not

contain the required keywords, it will probably not be a good answer to the question.

Therefore, a relevance score for each answer candidate can be calculated by dividing

the number of required keywords in each answer candidate by the number of required

keywords in the question.

Another feature is predicate structure match [73]. For example, given the question

“Did Egypt sell Scud missiles to Syria?”, the key predicate from the question is

Sell(Egypt, Syria, Scud missile). If there is a sentence which contains the predicate

structure Buy(Syria, Scud missile, Egypt), we can calculate the predicate structure

distance and use it as a relevance feature.

For answer similarity, some approaches used in the TREC Novelty track [92] can

be applied. The Novelty track has experimented with finding relevant and novel

sentences from a document collection. We can reuse some approaches evaluated

in Allan et al. [4] (e.g., the number of new named entities, the number of new

words, or language models) as a feature to measure the similarity of two answer

candidates. Semantic match can be applied to measure the semantic similarity (e.g.

“Sell (Egypt, Syria, Scud missile)” vs. “Buy (Syria, Scud missile, Egypt)”) between

answer candidates.

Inference for joint prediction

The joint prediction model was implemented with exact inference and approximate

inference. For exact inference, we used enumeration on the top 10 answers produced

131

by either an extractor or the independent prediction model. Even though this worked

well for factoid questions, limiting the number of answers may not be useful for list

and complex questions because they may have more than ten correct answers. As a

more general approach, we applied Gibbs sampling. However, our experiments show

that Gibbs sampling did not work well when the data set is significantly unbalanced.

To address the unbalanced data problem, resampling such as over-sampling and

under-sampling [1, 107] can be applied. Over-sampling generates training data for

the minority class, and under-sampling randomly removes training data from the

majority class. Recently (Zhu and Hovy, 2007) [108] proposed bootstrap-based over-

sampling to reduce issues in over-sampling. Applying resampling to the data from the

LIGHT and SVM extractors is likely future research. In addition, more experiments

should be done to support different exact and approximate inferences such as variable

elimination, loopy belief propagation, mean field, etc.

Feature extension

Experimental results show that answer relevance features had a greater impact for

English QA than for Chinese and Japanese QA because the quality and coverage

of the data resources available for English answer validation are much higher than

the quality and coverage of existing resources for Japanese and Chinese. Acquiring

more data resources for answer validation in Chinese and Japanese can be done to

improve the performance of answer selection. Similarly, adding more data resources

to estimate answer relevance and answer similarity is another future work.

Recently, there has been research on supporting a unified ontology search. Fed-

erated Ontology Search (FOS) is one system which provides a unified interface to

search for several knowledge-bases [77]. It incorporates multiple ontologies such as

132

CYC [48], SUMO [68], Omega [79], Scone [22], ThoughtTreasure [66] and Word-

Net [23], and it supports functionality to identify relationships between two English

words (e.g., IS-A, PART-OF). FOS can be used as an additional answer relevance fea-

ture. In our experiments, we only used gazetteers and WordNet as a knowledge-based

approach, but their utility was significantly less than that of data-driven features.

Adding FOS as an additional feature can be one future work to improve the utility

of knowledge-based features.

Answer Clustering for Interactive QA

In this thesis, we focused on the degree to which the answer ranking models could

identify the correct answers in a batch test. But recent TREC focuses on evaluating

the ability to support question answering in an interactive mode so that the user can

ask a series of questions. In the interactive QA, it is important to display the answers

as well as identify the correct answers. To support a better user interface for interac-

tive QA, the answer ranking models can be extended to support hierarchical answer

clustering. For example, given the question, ”What missiles does Egypt have?”, we

have multiple answers extracted from different document corpora (Figure 9.1). If we

can create feature structure for each answer using more sophisticated natural lan-

guage processing (NLP) for individual languages (e.g. KANTOO [69, 70]), we can

generate normalized answers with a feature structure as shown in Figure 9.2. Now we

can cluster answers using a weighted feature unification and ontologies. Figure 9.3

shows a hierarchical cluster, whose top cluster is the Missile cluster which represents

the semantic type of the question.

133

Answers from
English documents

1. Egypt has a plant to produce improved Scud-B missiles with North Korea.
2. Egypt is now believed to be able, with North Korean assistance, to
manufacture Scuds.
3. Egypt purchased 50 Scud-B missiles.
4. The shipments included steel sheets and support equipment, and gave Egypt
everything it would need to produce 310-mile-range Scud-C missiles.
5. Egypt and North Korea have reportedly had a licensing agreement to produce
Scud-C missiles since the 1980s.

Answers from
Japanese
documents

1. この時、エジプト軍はイスラエル軍施設にスカッド Bを発射した。
2. 北朝鮮はエジプトから ソ連製のスカッドＢミサイルを提供された。
3. 朝鮮民主主義人民共和国はエジプトから 2基のスカッドミサイルを購
入した。
4. 北朝鮮は 1976年にエジプトから旧ソ連製のスカッド-Ｂミサイルを導
入。
5. エジプトはソ連からスカッド Cを提供されていた。

Answers from
Chinese documents

1. 朝鲜 1976年从埃及 引进了飞毛腿 B型 导弹
2. 刚果共和国和埃及除飞毛腿-B之外，还购买了飞毛腿-C.
3. 埃及擁有"飛毛腿" 導彈
4. 埃及和 叙利亚向以色列的腹地 发射了 约 28枚 苏制“飞毛腿 C” 导弹

((quantifier 50)
 (name Scud)
 (subtype B)
 (head missile)
 (num plural)
 (string "50 Scud-B
missiles”))

((quantifier 2)
 (name Scud)
 (head missile)
 (num plural)
 (string "2基のスカッド
ミサイル”))

((quantifier 28)
 (name Scud)
 (subtype C)
 (head missile)
 (num plural)
 (made-by Russia)
 (string "约 28枚 苏 飞制

毛腿 C 导弹”))

Figure 9.1: Answer candidates extracted from multiple document corpora for the

question “What missiles does Egypt have?’

134

Answers from
English documents

1. Egypt has a plant to produce improved Scud-B missiles with North Korea.
2. Egypt is now believed to be able, with North Korean assistance, to
manufacture Scuds.
3. Egypt purchased 50 Scud-B missiles.
4. The shipments included steel sheets and support equipment, and gave Egypt
everything it would need to produce 310-mile-range Scud-C missiles.
5. Egypt and North Korea have reportedly had a licensing agreement to produce
Scud-C missiles since the 1980s.

Answers from
Japanese
documents

1. この時、エジプト軍はイスラエル軍施設にスカッド Bを発射した。
2. 北朝鮮はエジプトから ソ連製のスカッドＢミサイルを提供された。
3. 朝鮮民主主義人民共和国はエジプトから 2基のスカッドミサイルを購
入した。
4. 北朝鮮は 1976年にエジプトから旧ソ連製のスカッド-Ｂミサイルを導
入。
5. エジプトはソ連からスカッド Cを提供されていた。

Answers from
Chinese documents

1. 朝鲜 1976年从埃及 引进了飞毛腿 B型 导弹
2. 刚果共和国和埃及除飞毛腿-B之外，还购买了飞毛腿-C.
3. 埃及擁有"飛毛腿" 導彈
4. 埃及和 叙利亚向以色列的腹地 发射了 约 28枚 苏制“飞毛腿 C” 导弹

((quantifier 50)
 (name Scud)
 (subtype B)
 (head missile)
 (num plural)
 (string "50 Scud-B
missiles”))

((quantifier 2)
 (name Scud)
 (head missile)
 (num plural)
 (string "2基のスカッド
ミサイル”))

((quantifier 28)
 (name Scud)
 (subtype C)
 (head missile)
 (num plural)
 (made-by Russia)
 (string "约 28枚 苏 飞制

毛腿 C 导弹”))

Figure 9.2: Normalized answers for English (left), Japanese (middle) and Chinese

(right).

Scud-B Scud-C

Scud

310-mile-
range Scud-C

Scud-C
missiles

50 Scud-B
missiles
missiles

answers

clusters

improved Scud-
B missiles

スカッド B

ソ連製のスカ

ッドＢミサイ旧ソ連製のスカ

ッド-Ｂミサイル

スカッド C

Scuds

2基のスカッ
ドミサイル

Missile

Other missile

…

飛毛腿導彈

飞毛腿-C
约 28枚 苏制“飞
毛腿 C” 导弹

飞毛腿-B
飞毛腿 B型
导弹

Figure 9.3: Answer clustering for interactive QA.

135

To support this functionality, we need research on more advanced NLP techniques

to create feature structure in individual languages and to support feature unification.

In addition, creating ontologies is important to hierarchically cluster answers.

Application to other QA systems and other languages

We evaluated the models with QA systems: JAVELIN and EPHYRA. As the models

are based on a probabilistic framework, they can be extended to other QA systems

with re-training for each individual system. More specifically, the re-training process

should consider the following steps:

• Tuning of relevance features: Our experimental results show that the effect of

the relevance features highly depends on the characteristics of the extractor

outputs. In addition, some relevance features require manual effort to provide

access to language-specific resources and tools (e.g. segmentation for Chi-

nese and Japanese). Therefore, tuning relevance features for a specific system

and/or a language is one important task when applying the models to another

QA system.

• Tuning of similarity features: As each QA system requires different sets of

similarity features and thresholds, it is important to learn the best similarity

features and cutoff thresholds for each system.

• Training data acquisition: To retrain the models for another QA system, we

need to obtain training data provided by the system. The training data should

contain question keywords, answer type information, answer strings and their

associated scores.

136

• Extractor score normalization: Each extractor has a different score distribu-

tion. As the extractor score is one of the important features, it is necessary to

normalize the extractor scores for consistency.

• Mapping of answer type classification: Each QA system has a different answer

type hierarchy. As our answer ranking models highly depend on answer types

(e.g., the web feature was less useful in validating temporal and numeric types

of questions), we need to convert the answer types of each individual QA system

into the answer types which the models use.

In addition, we can extend the model to unify answers provided by several QA

systems in order to have higher quality answers. As each QA system has different

score distribution and different coverage on specific types of questions for different

languages, it is important to select the best QA systems for each type of questions

and merge their results. Merging has been extensively studied in the context of

the information retrieval problems known as metasearch and federated search. In

metasearch, multiple search engines are queried simultaneously and the resulting

ranked document lists are merged to optimize their combined precision and recall.

Many different metasearch merging algorithms have been implemented and evaluated

in (Aslam and Montague, 2001; Manmatha and Sever, 2002) [5, 64]. Federated

search [91] is useful when the participants work in uncooperative environments. In

this environment, it is hard to obtain training data and a semi-supervised merging

approach [88, 89] has been proposed to efficiently merge documents by using a small

number of documents. A natural question is whether algorithms proven successful

for this task can be applied to answer-merging in the QA domain using our answer

ranking models. This is one interesting area of future research.

137

138

Bibliography

[1] T. Jo A. Estabrooks and N. Japkowicz. A multiple resampling method for

learning from imbalanced data sets. Computational Intelligence, 20:18–36(19),

February 2004.

[2] D. Ahn, V. Jijkoun, G. Misha, K. Mller, M. de Rijke, and S. Schlobach. Us-

ing Wikipedia at the TREC QA Track. In Proceedings of the Text REtrieval

Conference, 2004.

[3] K. Ahn, J. Bos, J. R. Curran, D. Kor, M. Nissim, and B. Webber. Question

Answering with QED at TREC-2005. In Proceedings of the Text REtrieval

Conference, 2005.

[4] J. Allan, C. Wade, and A. Bolivar. Retrieval and novelty detection at the

sentence level. In Proceedings of ACM SIGIR Conference on Research and

Development on Information Retrieval, 2003.

[5] J. Aslam and M. Montague. Models for meta-search. In Proceedings of ACM

SIGIR Conference on Research and Development on Information Retrieval,

2001.

139

[6] J. Bos and M. Nissim. Cross-Lingual Question Answering by Answer Transla-

tion. In Working Notes for the CLEF 2006, 2006.

[7] E. Brill, S. Dumais, and M. Banko. An analysis of the askmsr question-

answering system. In Proceedings of the Conference on Empirical Methods

in Natural Language Processing (EMNLP), 2002.

[8] E. Briscoe and J. Carroll. Robust accurate statistical annotation of general

text. In Proceedings of the International Conference on Language Resources

and Evaluation (LREC), 2002.

[9] D. Buscaldi and P. Rosso. Mining Knowledge from Wikipedia for the Question

Answering task. In Proceedings of the International Conference on Language

Resources and Evaluation (LREC), 2006.

[10] C. Cardie, D. Pierce V. Ng, and C. Buckley. Examining the Role of Sta-

tistical and Linguistic Knowledge Sources in a General-Knowledge Question-

Answering System. In Proceedings of 6th Applied Natural Language Processing

Conference and 1st Meeting of the North American Chapter of the Association

for Computational Lingusitics, 2000.

[11] Miguel Á. Carreira-Perpiñ and Geoffrey Hinton. On contrastive divergence

learning. In Proceedings of Artificial Intelligence and Statistics, pages 33–40,

2005.

[12] J. Chu-Carroll, K. Czuba, J. Prager, and A. Ittycheriah. In question answering,

two heads are better than one. In Proceedings of HLT/NAACL, 2003.

[13] J. Chu-Carroll, K. Czuba, J. Prager, A. Ittycheriah, and S. Blair-Goldensohn.

140

IBM’s PIQUANT II in TREC2004. In Proceedings of the Text REtrieval Con-

ference, 2004.

[14] J. Chu-Carroll, J. Prager, C. Welty, K. Czuba, and D. Ferrucci. A Multi-

Strategy and Multi-Source Approach to Question Answering. In Proceedings

of the Text REtrieval Conference, 2002.

[15] C. Clarke, G. Cormack, and T. Lynam. Exploiting redundancy in question

answering. In Proceedings of ACM SIGIR Conference on Research and Devel-

opment on Information Retrieval, 2001.

[16] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Proba-

bilistic Networks and Expert Systems. Springer, 1999.

[17] H. T. Dang, J. Lin, and D. Kelly. Overview of the TREC 2006 Question

Answering Track. In Proceedings of the Text REtrieval Conference, 2006.

[18] Eduard Hovy Deepak Ravichandran and Franz Josef Och. Statistical qa -

classifier vs. re-ranker: What’s the difference? In in Proceedings of the ACL

Workshop on Multilingual Summarization and Question Answering, 2003.

[19] Zhendong Dong. Hownet: http://www.keenage.com. 2000.

[20] S. Dumais, M. Banko, E. Brill, J. Lin, and A. Ng. Web question answering: Is

more always better? In Proceedings of ACM SIGIR Conference on Research

and Development on Information Retrieval, 2002.

[21] A. Echihabi, U. Hermjakob, E. Hovy, D. Marcu, E. Melz, and D. Ravichandran.

Multiple-Engine Question Answering in TextMap. In Proceedings of the Text

REtrieval Conference, 2003.

141

[22] S. E. Fahlman. Scone user’s manual. http://www.cs.cmu.edu/ sef/scone/,

2005.

[23] C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998.

[24] E. Fox and J. Shaw. Combination of multiple searches. In Proceedings of the

Text REtrieval Conference, 1994.

[25] S. Guiasu and A. Shenitzer. The principle of maximum entropy. The Mathe-

matical Intelligencer, 7(1):43–38, 1985.

[26] S. Harabagiu and F. Lacatusu. Strategies for advanced question answering. In

HLT-NAACL 2004: Workshop on Pragmatics of Question Answering. Associ-

ation for Computational Linguistics, 2004.

[27] S. Harabagiu, D. Moldovan, C. Clark, M. Bowden, J. Williams, and J. Bensley.

Answer mining by combining extraction techniques with abductive reasoning.

In Proceedings of the Text REtrieval Conference, 2003.

[28] S. Harabagiu, D. Moldovan, M. Pasca, R. Mihalcea, M. Surdeanu, R. Bunsecu,

R. Girju, V. Rus, and P. Morarescu. Falcon: Boosting knowledge for answer

engines. In Proceedings of the Text REtrieval Conference, 2000.

[29] A. Hickl, J. Williams, J. Bensley, K. Roberts, B. Rink, and Y. Shi. Recog-

nizing Textual Entailment with LCC. In Proceedings of the Second PASCAL

Challenges Workshop, 2006.

[30] A. Hickl, J. Williams, J. Bensley, K. Roberts, Y. Shi, and B. Rink. Question

Answering with LCC’s CHAUCER at TREC 2006. In Proceedings of the Text

REtrieval Conference, 2007.

142

[31] G. Hinton. Training products of experts by minimizing contrastive divergence,

2000.

[32] G.E. Hinton and T.J. Sejnowski. Learning and relearning in Boltzmann ma-

chines. In Rumelhart, editor, Parallel Distributed Processing, pages pp. 282–

317. MIT Press, 1986.

[33] E. Hovy, L. Gerber, U. Hermjakob, C. Lin, and D. Ravichandran. Toward

Semantics-Based Answer Pinpointing. In Proceedings of the Human Language

Technology Conference (HLT). San Diego, 2001.

[34] E. H. Hovy, L. Gerber, U. Hermjakob, M. Junk, and C. Lin. Question Answer-

ing in Webclopedia. In Proceedings of the Text REtrieval Conference, 2000.

[35] M. A. Jaro. Advances in record-linkage methodology as applied to matching the

1985 census of tampa, florida. Journal of the American Statistical Association,

84(406):414–420, 1989.

[36] M. A. Jaro. Probabilistic linkage of large public health data files. Statistics in

Medicine, 14(5–7):491–498, 1995.

[37] V. Jijkoun, J. Kamps, G. Mishne, C. Monz, M. de Rijke, S. Schlobach, and

O. Tsur. The University of Amsterdam at TREC 2003. In Proceedings of the

Text REtrieval Conference, 2003.

[38] V. Jijkoun, J. van Rantwijk, D. Ahn, E. Tjong Kim Sang, and M. de Rijke.

The University of Amsterdam at CLEF@QA 2006. In Working Notes CLEF,

2006.

[39] Michael Jordan, editor. Learning in Graphical Models. MIT Press, 1999.

143

[40] Michael Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence Saul.

An introduction to variational methods for graphical models. In Michael

Jordan, editor, Learning in Graphical Models. Kluwer Academic Publishers,

Boston, 1998.

[41] Noriko Kando. Overview of the Second NTCIR Workshop. In Proceedings of

the Second NTCIR Workshop Meeting on Evaluation of Chinese and Japanese

Text Retrieval and Text Summarization, 2001.

[42] Noriko Kando. Overview of the Third NTCIR Workshop. In Working notes of

the Third NTCIR Workshop, 2002.

[43] Boris Katz, Jimmy J. Lin, Daniel Loreto, Wesley Hildebrandt, Matthew Bilotti,

Sue Felshin, Aaron Fernandes, Gregory Marton, and Federico Mora. Integrat-

ing web-based and corpus-based techniques for question answering. In Text

REtrieval Conference, pages 426–435, 2003.

[44] S. Kullback and R.A. Leibler. On information and sufficiency. Annals of

Mathematical Statistics, 22:76–86, 1951.

[45] Julian Kupiec. MURAX: A Robust Linguistic Approach For Question-

Answering Using An On-Line Encyclopedia. In Proceedings of ACM SIGIR

Conference on Research and Development on Information Retrieval, 1993.

[46] C. Kwok, O. Etzioni, and D. Weld. Scaling Question Answering to the Web.

In Proceedings of the Text REtrieval Conference, 2001.

[47] J. Leidner, J. Bos, T. Dalmas, J. Curran, S. Clark, C. Bannard, B. Webber, and

M. Steedman. QED: The Edinburgh TREC-2003 Question Answering System.

In Proceedings of the Twelfth Text Retrieval Conference (TREC 2003), 2003.

144

[48] D.B. Lenat. Cyc: A large-scale investment in knowledge infrastructure. Com-

munications of the ACM, 38(11):32–38, 1995.

[49] Hang Li, Yunbo Cao, and Conf Li. Using Bilingual Web Data To Mine and

Rank Translations. In Proceedings of IEEE Intelligent Systems 18(4), 2003.

[50] F. Lin, H. Shima, M. Wang, and T. Mitamura. CMU JAVELIN System for

NTCIR5 CLQA1. In Proceedings of the 5th NTCIR Workshop, 2005.

[51] J. Lin and B. Katz. Question answering from the web using knowledge anno-

tation and knowledge mining techniques. In Proceedings of the Text REtrieval

Conference, 2003.

[52] L.V. Lita. Instance-based Question Answering. Thesis proposal, March 2005.

[53] L.V. Lita, W. Hunt, and E. Nyberg. Resource Analysis for Question Answering.

In Proceedings of ACL, 2004.

[54] B. Magnini, M. Negri, R. Pervete, and H. Tanev. Comparing statistical and

content-based techniques for answer validation on the web. In Proceedings of

the VIII Convegno AI*IA, 2002.

[55] B. Magnini, M. Negri, R. Pervete, and H. Tanev. Is It the Right Answer?

Exploiting Web Redundancy for Answer Validation. In Proceedings of ACL,

2002.

[56] T. Minka. A Comparison of Numerical Optimizers for Logistic Regression.

Unpublished draft, 2003.

[57] G. Mishne and M. de Rijke. Query formulation for answer projection. In

Proceedings of the European Conference on Information Retrieval, 2005.

145

[58] T. Mitamura, F. Lin, H. Shima, M. Wang, J. Ko, J. Betteridge, M. Bilotti,

A. Schlaikjer, and E. Nyberg. JAVELIN III: Cross-Lingual Question Answering

from Japanese and Chinese Documents. In Proceedings of the 6th NTCIR

Workshop, 2007.

[59] T. Mitamura, M. Wang, H. Shima, and F. Lin. Keyword Translation Accuracy

and Cross-Lingual Question Answering in Chinese and Japanese. In Proceed-

ings of the EACL Workshop on Multilingual Question Answering, 2006.

[60] Tom Mitchell. Machine Learning, chapter 1 (draft for second edition). McGraw

Hill, 1997.

[61] D. Moldovan, D. Clark, S. Harabagiu, and S. Maiorano. Cogex: A logic prover

for question answering. In Proceedings of HLT-NAACL, 2003.

[62] D. Moldovan, S. Harabagiu, R. Girju, P. Morarescu, F. Lacatusu, A. Novis-

chi, A. Badulescu, and O. Bolohan. LCC tools for Question Answering. In

Proceedings of the 11th Text REtrieval Conference (TREC-2002), 2002.

[63] D. Moldovan, S. Harabagiu, M. Pasca, R. Mihalcea, R. Girju, R. Goodrum, and

V. Rus. The structure and performance of an open-domain question answering

system. In Proceedings of ACL, 2000.

[64] M. Montague and J. Aslam. Relevance score normalization for metasearch. In

Proceedings of the ACM Tenth International Conference on Information and

Knowledge Management (CIKM), 2001.

[65] F. Mora, J. Louis-Rosenberg, G. Marton, and B. Katz. Using Structured,

Knowledge-Rich Corpora in Question Answering. In CSAIL Student Workshop,

2005.

146

[66] Erik Mueller. Natural language processing with ThoughtTreasure. New York:

Signiform, 1998.

[67] N. Nagata, T. Saito, and K. Suzuki. Using the Web as a Bilingual Dictio-

nary. In Proceedings of ACL 2001 Workshop Data-Driven Methods in Machine

Translation, 2001.

[68] Ian Niles and Adam Pease. Towards a standard upper ontology. In Proceedings

of the International Conference on Formal Ontology in Information Systems

(FOIS), pages 2–9. ACM Press, 2001.

[69] E. Nyberg and T. Mitamura. The KANT System: Fast, Accurate, High-

Quality Translation in Practical Domains. In Proceedings of the International

Conference on Computational Linguistics (COLING), 1992.

[70] E. Nyberg and T. Mitamura. The Kantoo machine translation environment.

In Proceedings of the Association for Machine Translation in the Americas

Conference (AMTA), 2000.

[71] E. Nyberg, T. Mitamura, J. Callan, J. Carbonell, R. Frederking, K. Collins-

Thompson, L. Hiyakumoto, Y. Huang, C. Huttenhower, S. Judy, J. Ko,

A. Kupse, L. Lita, V. Pedro, D. Svoboda, and B. Van Durme. A multi-strategy

approach with dynamic planning. In Proceedings of the Text REtrieval Con-

ference, 2003.

[72] E. Nyberg, T. Mitamura, J. Carbonell, J. Callan, K. Collins-Thompson,

K. Czuba, M. Duggan, L. Hiyakumoto, N. Hu, Y. Huang, J. Ko, L. Lita,

S. Murtagh, V. Pedro, and D. Svoboda. The JAVELIN Question-Answering

System at TREC 2002. In Proceedings of the Text REtrieval Conference, 2002.

147

[73] E. Nyberg, T. Mitamura, R. Frederking, M. Bilotti, K. Hannan, L. Hiyaku-

moto, J. Ko, F. Lin, V. Pedro, and A. Schlaikjer. JAVELIN I and II Systems

at TREC 2005. In Proceedings of the Text REtrieval Conference, 2005.

[74] E. Nyberg, T. Mitamura, R. Frederking, V. Pedro, M. Bilotti, A. Schlaikjer,

and K. Hannan. Extending the javelin qa system with domain semantics. In

Proceedings of the 20th National Conference on Artificial Intelligence (AAAI),

2005.

[75] M. Pasca and S. Harabagiu. High-Performance Question Answering. In Pro-

ceedings of ACM SIGIR Conference on Research and Development on Infor-

mation Retrieval, 2001.

[76] Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge Univer-

sity Press, 2000.

[77] Vasco Pedro. Federated Ontology Search. Thesis proposal, October 2006.

[78] Vasco Pedro, Jeongwoo Ko, and Eric Nyberg. An Information Repository

Model For Advanced Question Answering Systems. In Proceedings of the Con-

ference on Language Resources and Evaluation (LREC), 2004.

[79] A. Philpot, M. Fleischman, and E. H. Hovy. Semi-Automatic Construction of

a General Purpose Ontology. In Proceedings of the International Lisp Confer-

ence, 2003.

[80] J. Prager, E. Brown, A. Coden, and D. Radev. Question answering by predic-

tive annotation. In Proceedings of ACM SIGIR Conference on Research and

Development on Information Retrieval, 2000.

148

[81] J. Prager, J. Chu-Carroll, K. Czuba, C. Welty, A. Ittycheriah, and R. Mahin-

dru. IBM’s PIQUANT in TREC2003. In Proceedings of the Text REtrieval

Conference, 2003.

[82] S.J. Russell and P. Norvig. Artificial Intelligence: a modern approach. Prentice-

Hall, 1995.

[83] Y. Sasaki, H. Chen, K. Chen, and C. Lin. Overview of the NTCIR-5 Cross-

Lingual Question Answering Task (CLQA1). In Proceedings of NTCIR-5 Work-

shop, 2005.

[84] J. Savoy and P-Y Berger. Selection and Merging Strategies for Multilingual

Information Retrieval. In Proceedings of Cross-Language Evaluation Forum,

2004.

[85] N. Schlaefer, P. Gieselman, and G. Sautter. The Ephyra QA System at TREC

2006. In Proceedings of the Text REtrieval Conference, 2006.

[86] S. Schlobach, M. Olsthoorn, and M. de Rijke. Type checking in open-domain

question answering. In Proceedings of European Conference on Artificial Intel-

ligence, 2004.

[87] H. Shima, M. Wang, F. Lin, and T. Mitamura. Modular Approach to Error

Analysis and Evaluation for Multilingual Question Answering. In Proceedings

of International Conference on Language Resources and Evaluation, 2006.

[88] L. Si and J. Callan. Using sampled data and regression to merge search engine

results. In Proceedings of the Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, 2002.

149

[89] L. Si and J. Callan. A semi-supervised learning method to merge search engine

results. ACM Transactions on Information Systems, 21(4):457–491, 2003.

[90] L. Si and J. Callan. Clef2005: Multilingual retrieval by combining multiple

multilingual ranked lists. In Proceedings of Cross-Language Evaluation Forum,

2005.

[91] Luo Si. Federated Search of Text Search Engines in Uncooperative Environ-

ments. Thesis, 2006.

[92] I. Soboroff. Overview of the TREC 2004 Novelty Track. In Proceedings of the

Text REtrieval Conference, 2004.

[93] V Vapnik. The Nature of Statistical Learning Theory. Springer, New York,

1995.

[94] Vladimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

[95] E. Voorhees. The TREC-8 question answering track report. In Proceedings of

the Text REtrieval Conference, 1999.

[96] E. Voorhees. Overview of the TREC-9 question answering track. In Proceedings

of the Text REtrieval Conference, 2001.

[97] E. Voorhees. Overview of the TREC 2002 question answering track. In Pro-

ceedings of the Text REtrieval Conference, 2002.

[98] E. Voorhees. Overview of the TREC 2003 question answering track. In Pro-

ceedings of the Text REtrieval Conference, 2003.

[99] E. Voorhees. Overview of the TREC 2004 question answering track. In Pro-

ceedings of the Text REtrieval Conference, 2004.

150

[100] E. Voorhees. Overview of the TREC 2005 question answering track. In Pro-

ceedings of the Text REtrieval Conference, 2005.

[101] M. Wang, K. Sagae, and T. Mitamura. A Fast, Accurate Deterministic Parser

for Chinese. In Proceedings of COLING/ACL, 2006.

[102] W. E. Winkler. The state of record ligrenkage and current research problems.

Technical report, Statistical Research Division, U.S. Census Bureau, Washing-

ton, DC, 1999.

[103] J. Xu, A. Licuanan, J. May, S. Miller, and R. Weischedel. TREC 2002 QA at

BBN: Answer Selection and Confidence Estimation. In Proceedings of the Text

REtrieval Conference, 2003.

[104] J. Xu, A. Licuanan, and R. Weischedel. TREC 2003 QA at BBN: Answering

Definitional Questions. In Proceedings of the Text REtrieval Conference, 2004.

[105] H. Yang, T.S. Chua, S. Wang, and C.K. Koh. Structured use of external knowl-

edge for event-based open domain question answering. In Proceedings of ACM

SIGIR Conference on Research and Development on Information Retrieval,

2003.

[106] Hui Yang, Hang Cui, Mstislav Maslennikov, Long Qiu, Min-Yen Kan, and

Tat-Seng Chua. QUALIFIER In TREC-12 QA Main Task. In Text REtrieval

Conference, pages 480–488, 2003.

[107] Zhi-Hua Zhou and Xu-Ying Liu. Training cost-sensitive neural networks with

methods addressing the class imbalance problem. IEEE Trans. Knowl. Data

Eng., 18(1):63–77, 2006.

151

[108] Jingbo Zhu and Eduard Hovy. Active Learning for Word Sense Disambiguation

with Methods for Addressing the Class Imbalance Problem. In Proceedings of

ACL, 2007.

152

	1 Introduction
	1.1 Motivation
	1.2 Approach
	1.3 Hypothesis
	1.4 Contributions
	1.5 Outline

	2 Related Work
	2.1 Previous Research
	2.2 QA Evaluation
	2.2.1 TREC
	2.2.2 NTCIR

	3 System Overview
	3.1 The JAVELIN System
	3.1.1 System for English QA
	3.1.2 System for Multilingual QA

	3.2 The EPHYRA System

	4 Answer Ranking Models
	4.1 Independent Prediction Model (IP)
	4.2 Joint Prediction Model (JP)
	4.3 Comparison of IP and JP

	5 Feature Representation
	5.1 Answer Relevance Features
	5.1.1 Knowledge-based Features
	5.1.2 Data-driven Features

	5.2 Answer Similarity Features
	5.2.1 String Distance Metrics
	5.2.2 Synonyms

	6 Model Extensions
	6.1 Extension to Multi-strategy QA
	6.2 Extension to Different Monolingual QA
	6.3 Extension to Cross-lingual QA

	7 Evaluation Methodology
	7.1 Data sets and Corpora
	7.1.1 English
	7.1.2 Japanese
	7.1.3 Chinese

	7.2 Evaluation Metrics

	8 Evaluation
	8.1 Experimental Setup
	8.2 Monolingual QA
	8.2.1 English
	8.2.2 Chinese
	8.2.3 Japanese
	8.2.4 Utility of Data-driven Features

	8.3 Cross-lingual QA
	8.3.1 English-to-Chinese
	8.3.2 English-to-Japanese

	8.4 Multi-strategy QA
	8.4.1 JAVELIN
	8.4.2 EPHYRA

	8.5 Comparison with State-of-the-art Systems
	8.6 Summary

	9 Conclusions and Future Research
	9.1 Conclusions
	9.2 Future Research

	Bibliography

