
Neural Representation Learning
in Linguistic Structured Prediction

Lingpeng Kong

CMU-LTI-17-008

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis Committee:

Noah A. Smith (co-Chair), Carnegie Mellon University / University of Washington
Chris Dyer (co-Chair), Carnegie Mellon University / Google DeepMind

Alan W. Black, Carnegie Mellon University
Michael Collins, Columbia University / Google Research

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

In Language and Information Technologies

c© 2017, Lingpeng Kong

www.lti.cs.cmu.edu

For Y .

iv

Abstract

Advances in neural network architectures and training algorithms

have demonstrated the effectiveness of representation learning in nat-

ural language processing. This thesis argues for the importance of

modeling discrete structure in language, even when learning contin-

uous representations.

We propose that explicit structure representations and learned dis-

tributed representations can be efficiently combined for improved per-

formance over (i) traditional approaches to structure and (ii) unin-

formed neural networks that ignore all but surface sequential struc-

ture. We demonstrate, on three distinct problems, how assumptions

about structure can be integrated naturally into neural representation

learners for NLP problems, without sacrificing computational efficiency.

First, we propose segmental recurrent neural networks (SRNNs)

which define, given an input sequence, a joint probability distribution

over segmentations of the input and labelings of the segments and

show that, compared to models that do not explicitly represent seg-

ments such as BIO tagging schemes and connectionist temporal classi-

fication (CTC), SRNNs obtain substantially higher accuracies on tasks

including phone recognition and handwriting recognition.

Second, we propose dynamic recurrent acyclic graphical neural net-

works (DRAGNN), a modular neural architecture that generalizes the

encoder/decoder concept to include explicit linguistic structures. Lin-

guistic structures guide the building process of the neural networks

by following the transitions and encoding the (partial) structures con-

structed those transitions explicitly into the hidden layer activations.

We show that our framework is significantly more accurate and ef-

ficient than sequence-to-sequence with attention for syntactic depen-

dency parsing and yields more accurate multi-task learning for extrac-

tive summarization tasks.

Third, we propose to use discrete stochastic attention to model the

alignment structures explicitly in the neural sequence-to-sequence trans-

lation model. We regularize the posterior distributions of the latent

alignment decisions using the posteriors computed from models that

make stronger independence assumptions but that have the same la-

tent variables. We show that our posterior regularization scheme leads

to substantially improved generalization. Since the posterior regular-

ization objective can be generally expensive to compute, we propose

several approximations based on importance sampling and find that

they are either as good as or better than the exact objective in terms of

held-out generalization.

The techniques proposed in this thesis automatically learn struc-

turally informed representations of the inputs. Linguistically moti-

vated inductive biases help learning better representations in the neu-

ral models and these representations and components can be better

integrated with other end-to-end deep learning systems within and

beyond NLP.

vi

Acknowledgments

I cannot choose the best. The best chooses me.

— Rabindranath Tagore, Stray Birds

In the view of scientists, Y can represent the entire unknown world.

It can be zero or one, the perception of the world, the truths and lies

behind this symbol. We are trying to understand the world, to explain

why certain things could happen, and to predict what will happen

in the future. We learn to think more rationally when facing a phe-

nomenon, to question the essentials of a thing, to describe feelings us-

ing statistical methods, and to model the cause and effect of the world.

It seems that the pursuit of the Ph.D. is a journey from ignorance to

all-knowing. At least that was what I thought when I began mine in

the states. This is ridiculous of course, because even today, the world

still puzzles me, more than ever before.

However, I do not feel depressed. Quite the contrary, I am filled

with joy, for the love that I have towards creation and exploration, and

more importantly, for the people that I met along the way.

I want to thank my advisor Noah Smith for bringing me to this

fantastic world of research and for all the inspiring words both in re-

search and life. I could not have imagined a better advisor. I also want

to thank my co-advisor Chris Dyer for all the brilliant ideas and tech-

nical suggestions, and of course, for his boundless imagination when

telling a story in his own interesting way.

Besides my advisors, I would like to thank the rest of my thesis

committee: Alan Black and Michael Collins for their insightful com-

ments and for being my heroes in speech and NLP.

I am very lucky to work with my fellow ARK/clab members, past

and present: Shay Cohen, Dipanjan Das, André Martins, Kevin Gim-

pel, Tae Yano, Nathan Schneider, Brendan O’Connor, Dani Yogatama,

David Bamman, Waleed Ammar, Yanchuan Sim, Fei Liu, Victor Chahuneau,

Rohan Ramanath, Mengqiu Wang, Yi Zhu, Bill McDowell, Naomi Saphra,

Miguel Ballesteros, Dallas Card, Elizabeth Clark, Jesse Dodge, Jeffrey

Flanigan, Yangfeng Ji, Lucy Lin, Nelson Liu, Yijia Liu, Kelvin Luu,

Phoebe Mulcaire, Hao Peng, Nikko Rush, Maarten Sap, Roy Schwartz,

Swabha Swayamdipta, Chenhao Tan, Sam Thomson, Manaal Faruqui,

Kazuya Kawakami, Guillaume Lample, Wang Ling, Austin Matthews,

Avneesh Saluja, Yulia Tsvetkov, Kartik Goyal, Eva Schlinger.

Google Research and Google DeepMind offered me two amazing

opportunities to intern in New York and London and had the chance

to work with the best people in the field — David Weiss, Chris Al-

berti, Daniel Andor, Ivan Bogatyy, Hao Zhang, Zhuoran Yu, Kuzman

Ganchev, Dipanjan Das, Emily Pitler, Michael Collins, Slav Petrov, and,

Stephen Clark, Chris Dyer, Phil Blunsom, Dani Yogatama, Wang Ling,

Yishu Miao, Lei Yu, Angeliki Lazaridou.

I am very lucky to have many friends in many cities — Beijing,

Shanghai, Hangzhou, Shenzhen, Pittsburgh, Seattle, New York, Moun-

tain View, London, and Melbourne. I wish I could come to visit you

more often. Thanks my best graduate school friend Ting-Hao (Ken-

neth) Huang, for always asking me (benign) questions that I do not

have answers for.

I want to thank my family members, my parents X.C. and X.K, my

sisters L.H. and Y.Z., Y.H., my shiba Hikaru, for standing by me and

being the light in my life.

This research was supported in part by the U.S. Army Research

viii

Laboratory and the U.S. Army Research Office under contract/grant

number W911NF-10-1-0533, by NSF grants IIS-1054319 and IIS-1352440,

by Defense Advanced Research Projects Agency (DARPA) Information

Innovation Office (I2O) under the Low Resource Languages for Emer-

gent Incidents (LORELEI) program issued by DARPA/I2O under Con-

tract No. HR0011-15-C-0114, by grants from Google, and computa-

tional resources provided by Google, the Pittsburgh Supercomputing

Center, and Amazon Web Services.

This thesis is for Y , for the world unknown, for the danger unseen,

for the story untold, for the person unmet.

There is no better answer than unknown. There is no better experi-

ence than future. There is no better arrival than departure.

— September 2017, London

ix

x

Contents

1 Introduction 1

2 Notation and Representations 5

3 Segmental Recurrent Neural Networks 7

3.1 Model . 8

3.2 Parameter Learning . 10

3.3 Inference with Dynamic Programming 12

3.3.1 Computing Segment Embeddings 12

3.3.2 Computing the most probable segmentation/labeling and

Z(x) . 13

3.3.3 Computing Z(x, y) . 14

3.4 Connectionist Temporal Classification 15

3.5 Experiments . 16

3.5.1 Online Handwriting Recognition 16

3.5.2 Joint Chinese Word Segmentation and POS tagging 19

3.5.3 End-to-end Speech Recognition 22

3.6 Related Work . 27

3.7 Conclusion . 30

4 A Transition-based Framework for Dynamically Connected Neural Net-

xi

works 31

4.1 Background . 33

4.2 Transition Systems . 40

4.3 Transition Based Recurrent Networks 41

4.3.1 Connecting multiple TBRUs to learn shared representations 45

4.3.2 How to Train a DRAGNN . 49

4.4 Experiments . 51

4.5 Conclusion . 54

5 Stochastic Attention and Posterior Regularization for Neural Machine

Translation 55

5.1 Background . 56

5.2 Model . 58

5.2.1 Marginal likelihood and training objective 61

5.2.2 Decoding . 62

5.3 Approximating the Marginal Likelihood 62

5.4 Experiment: Deterministic vs. Stochastic Attention 64

5.5 Posterior Regularization . 66

5.6 Experiment: The Effect of Posterior Regularization 69

5.7 Related Work . 71

5.8 Conclusion . 71

6 Conclusion and Future work 73

Bibliography 77

xii

Chapter 1

Introduction

Computationally modeling the structure in language is crucial for two reasons.

First, for the larger goal of automated language understanding, linguists have

found that language meaning is derived through composition (Manning, 2016).

Understanding novel and complex sentences crucially depends on being able to

construct their meaning from smaller parts/atoms (e.g., words in a sentence) com-

positionally. Structure in language tells what these atoms are and how they fit

together (e.g., syntactic or semantic parses) in composition. Second, from the per-

spective of machine learning, linguistic structures can be understood as a form of

inductive bias, which helps learning succeed with less or less ideal data (Mitchell,

1980).

The inductive bias of a learning algorithm is the set of assumptions that the

learner uses to predict outputs given inputs that it has not encountered (Mitchell,

1980). Taking a broader view, all the things that aren’t estimated from the data

directly, we call it inductive bias. It is our understanding about the problem and

our assumptions when we design the model, or from a Bayesian perspective, the

prior.

There are many assumptions you can add or remove when designing the learn-

1

ing algorithm. Any particular inductive bias can be helpful or harmful, depend-

ing on the problem and the way we approach it. Consider the language modeling

task as an example, where the goal is to estimate a probability distribution over

sequences of words. The classical n-gram model makes an independence assump-

tion that each word depends only on the last n− 1 words. The assumption helps

to alleviate the problem of data sparsity (Chen and Goodman, 1996) when we

perform maximum likelihood estimation. The neural language model (Mikolov

et al., 2010) removes this Markov assumption and outperforms the n-gram model.

However, this isn’t saying that we cannot add back certain linguistic driven in-

ductive biases that make the model better. These biases might include syntactic

structures (Dyer et al., 2016) or discourse relations (Ji et al., 2016). In this thesis,

we specifically look into the question of how to make use of linguistic structures

to form right inductive bias in the neural models, when only limited amounts of

supervision is available.

Neural models are state-of-the-art for many NLP tasks, including speech recog-

nition (Graves et al., 2013), dependency parsing (Kuncoro et al., 2017; Dozat and

Manning, 2017; Kong et al., 2017) and machine translation (Vaswani et al., 2017).

For many applications, the model architecture combines dense representations of

words (Manning, 2016) with sequential recurrent neural networks (Dyer et al.,

2016). Thus, while they generally make use of information about what the words

are (rather than operating on sequences of characters), they ignore syntactic and

semantic structure or force models to learn it, and thus can be criticized as being

structurally naive.

This thesis argues that explicit structure representations and learned distributed

representations can be efficiently combined for improved performance over (i) tra-

ditional approaches to structure and (ii) uninformed neural networks that ignore

all but surface sequential structure. As an example, Dyer et al. (2015) yields better

2

accuracy than Chen and Manning (2014) by replacing the word representations

on the stack with composed representations derived from (partially built) depen-

dency tree structure.

In the first part of this thesis, first published as Kong et al. (2015) and Lu et al.

(2016), we propose segmental recurrent neural networks (SRNNs) which define,

given an input sequence, a joint probability distribution over segmentations of the

input and labelings of the segments. Traditional neural solutions to this problem,

e.g., connectionist temporal classification (CTC, Graves et al. (2006a)), reduce the

segmental sequence labeling problem to a sequence labeling problem in the same

spirit as BIO tagging. In our model, representations of the input segments (i.e.,

contiguous subsequences of the input) are computed by composing their con-

stituent tokens using bi-directional recurrent neural nets, and these segment em-

beddings are used to define compatibility scores with output labels. Our model

achieves competitive results in phone recognition, handwriting recognition, and

joint word segmentation & POS tagging.

In the second part of the thesis, first published as Kong et al. (2017), we pro-

pose dynamic recurrent acyclic graphical neural networks (DRAGNN), a modu-

lar neural architecture that generalizes the encoder/decoder concept to include

explicit linguistic structures. The core mechanism of DRAGNN is the Transition-

Based Recurrent Unit (TBRU). It represents the linguistic structure a sequence of

decision/state pairs and guide the building process of the neural networks by

following the transitions and encoding the (partial) structures constructed those

transitions explicitly into the hidden layer activations. We show that our frame-

work is significantly more accurate and efficient than sequence-to-sequence with

attention for syntactic dependency parsing and yields more accurate multi-task

3

learning for extractive summarization tasks.

In the third part of the thesis, we propose to use stochastic attention to model

the alignment structures explicitly in the neural sequence-to-sequence translation

model. We regularize the posterior distributions of the latent alignment decisions

using the posteriors computed from models that make stronger independence as-

sumptions. We show that our posterior regularization scheme leads to substan-

tially improved generalization and several approximations based on importance

sampling is either as good as or better than the exact objective in terms of held-out

generalization.

In this thesis, we argue for the importance of explicitly representing structure

in neural models. We demonstrate, on three distinct problems, how assumptions

about structure can be integrated naturally into neural representation learners for

NLP problems, without sacrificing computational efficiency. We demonstrate that,

when comparing with structurally naive models, models that reason about the

internal linguistic structure of the data demonstrate better generalization perfor-

mance.

4

Chapter 2

Notation and Representations

In this thesis, we model the conditional probability in the form of p(y | x) using

neural networks, where the goal is to predict the target outputs y from the input

observations x.

We introduce the variable z, where z is the linguistic structure we would like

to explicitly consider. z can take multiple forms. For example, segment structures

(chapter 3), parse tree structures (chapter 4), or alignment structures (chapter 5).

During the training phrase, when the structure is observable (chapter 4), we

can choose to maximize p(y | x) directly. In this setting, the loss is defined as

L = − log p(y, z | x) (2.1)

If the structure not directly observable from the data, we can treat z as a hidden

variable, where we follow the marginal likelihood training criterion

L = − log p(y | x) = − log ∑
z

p(y, z | x) (2.2)

z can also be given as a soft structure (i.e. , q(z) models probability of z), like in

the case of alignment structure, we can add this to the loss of the model in the

5

framework of posterior regularization (Ganchev et al., 2010):

L = − log ∑
z

p(y, z | x) + γ× DKL(p(z | x, y) || q(z)), (2.3)

where DKL denotes the Kullback–Leibler divergence (Kullback and Leibler, 1951).

In the decoding phrase, we are interested in the following prediction problem,

y∗ = arg max
y

p(y | x) = arg max
y ∑

z
p(y, z | x). (2.4)

We call this exact decoding (chapter 5). However, summing over all the possi-

ble structure z can be expensive or even intractable in many cases. Therefore, we

jointly maximize over y and z as a computationally tractable approximation for

the exact decoding method (chapter 3, chapter 4, chapter 5), which is commonly

used in MAP inference problems with latent variables. This is especially con-

venient when the model can be easily broke down into the following two parts

(chapter 4, chapter 5):

p(y, z | x) = p(z | x)× p(y | x, z) (2.5)

In some cases (chapter 4, §3.4), given input x, we have a one to many mapping

from y to z, and a one to one mapping from z to y. In these settings, we use Φ(y)

to define the set of all the possible z structures that consistent with y, and φ(z) to

define the corresponding y for z.

6

Chapter 3

Segmental Recurrent Neural

Networks

In this chapter, we propose segmental recurrent neural networks (SRNNs)1 which

define, given an input sequence, a joint probability distribution over segmen-

tations of the input and labelings of the segments. Representations of the in-

put segments (i.e., contiguous subsequences of the input) are computed by en-

coding their constituent tokens using bi-directional recurrent neural nets, and

these “segment embeddings” are used to define compatibility scores with out-

put labels. These local compatibility scores are integrated using a global semi-

Markov conditional random field (Sarawagi and Cohen, 2004). Both fully super-

vised training—in which segment boundaries and labels are observed—as well

as partially supervised training—in which segment boundaries are latent—are

straightforward. Applications of fully supervised training include named en-

tity recognition, Chinese word segmentation (Liu et al., 2016) and frame-semantic

parsing (Swayamdipta et al., 2017), where boundaries of segments are labeled

in the training data. A typical case of partially supervised training is speech

1First published as Kong et al. (2015) and Lu et al. (2016).

7

recognition, where we know the sequence of phonemes during training but the

boundaries are not known. Experiments show that, compared to models that do

not explicitly represent segments such as BIO tagging schemes and connectionist

temporal classification (CTC, Graves et al. (2006a)), SRNNs obtain substantially

higher accuracies.

3.1 Model

Given a sequence of input observations x = 〈x1, x2, . . . , x|x|〉with length |x|, a seg-

mental recurrent neural network (SRNN) defines a joint distribution p(y, z | x)

over a sequence of labeled segments each of which is characterized by a dura-

tion (zi ∈ Z+) and label (yi ∈ Y). The segment durations are constrained such

that ∑|z|i=1 zi = |x|. The length of the output sequence |y| = |z| is a random vari-

able, and |y| ≤ |x| with probability 1. We write the starting time of segment i as

si = 1 + ∑j<i zj.

To motivate our model form, we state several desiderata. First, we are inter-

ested in the following prediction problem,

y∗ = arg max
y

p(y | x) = arg max
y ∑

z
p(y, z | x) ≈ arg max

y
max

z
p(y, z | x). (3.1)

Note the use of joint maximization over y and z as a computationally tractable

substitute for marginalizing out z; this is commonly done in MAP inference prob-

lems with latent variables.

Second, for problems where these explicit durations are unavailable at train-

ing time, they can be inferred as a latent variable. To train this model, we use a

marginal likelihood training criterion,

L = − log p(y | x) = − log ∑
z

p(y, z | x). (3.2)

8

In Eqs. 3.1 and 3.2, the conditional probability of the labeled segment sequence is

(assuming kth order dependencies on y):

p(y, z | x) =
1

Z(x)

|y|
∏
i=1

exp f (yi−k:i, zi, x) (3.3)

where Z(x) is an appropriate normalization function. To ensure the expressive-

ness of f and the computational efficiency of the maximization and marginaliza-

tion problems in Eqs. 3.1 and 3.2, we use the following definition of f ,

f (yi−k:i, zi, xsi :si+zi−1) = w>φ(V[gy(yi−k); . . . ; gy(yi); gz(zi);
−−→
RNN(csi :si+zi−1);

←−−
RNN(csi :si+zi−1)] + a) + b

(3.4)

where
−−→
RNN(csi :si+zi−1) is a recurrent neural network that computes the forward

segment embedding by “encoding” the zi-length subsequence of x starting at in-

dex si,2 and
←−−
RNN computes the reverse segment embedding (i.e., traversing the

sequence in reverse order), and gy and gz are functions which map the label can-

didate y and segmentation duration z into a vector representation. The notation

[a; b; c] denotes vector concatenation. Finally, the concatenated segment duration,

label candidates and segment embedding are passed through a affine transforma-

tion layer parameterized by V and a and a nonlinear activation function φ (e.g.,

tanh), and a dot product with a vector w and addition by scalar b computes the log

potential for the clique. Our proposed model is equivalent to a semi-Markov con-

ditional random field (Sarawagi and Cohen, 2004) with local features computed

using neural networks. Figure 3.1 shows the model graphically.

We chose bi-directional LSTMs (Graves and Schmidhuber, 2005) as the imple-

mentation of the RNNs in Eq. 3.4. LSTMs (Hochreiter and Schmidhuber, 1997a)

2Rather than directly reading the xi’s, each token is represented as the concatenation, ci, of a

forward and backward over the sequence of raw inputs. This permits tokens to be sensitive to

the contexts, and this is standardly used with neural net sequence labeling models (Graves et al.,

2006b).

9

are a popular variant of RNNs which have been seen successful in many repre-

sentation learning problems (Graves and Jaitly, 2014; Karpathy and Fei-Fei, 2015).

Bi-directional LSTMs enable effective computation for embeddings in both direc-

tions and are known to be good at preserving long distance dependencies, and

hence are well-suited for our task.

3.2 Parameter Learning

We consider two different learning objectives. We use the log loss in our models,

other losses such as structured hinge loss can also be used (Tang et al., 2017).

Supervised learning In the supervised case, both the segment durations (z) and

their labels (y) are observed.

L = ∑
(x,y,z)∈D

− log p(y, z | x)

= ∑
(x,y,z)∈D

log Z(x)− log Z(x, y, z)

In this expression, the unnormalized conditional probability of the reference seg-

mentation/labeling, given the input x, is written as Z(x, y, z).

Partially supervised learning In the partially supervised case, only the labels

are observed and the segments (the z) are unobserved and marginalized.

L = ∑
(x,y)∈D

− log p(y | x)

= ∑
(x,y)∈D

∑
z∈Z(x,y)

− log p(y, z | x)

= ∑
(x,y)∈D

log Z(x)− log Z(x, y)

10

x1 x2 x3 x4 x5 x6

(

(
En

co
de

r B
iR

N
N

Se
gm

en
ta

tio
n/

La
be

lin
g

M
od

el

x1 x2x1 x2x1 x2x1 x2x1x1 x2x1

c1 c2 c3 c4 c5 c6

z1 z2 z3

y1 y2 y3

x1 x2 x3 x4 x5 x6

�!
h 1,3

�!
h 4,5

�!
h 6,6

 �
h 6,6

 �
h 4,5

 �
h 1,3

Figure 3.1: Graphical model showing a six-frame input and three output segments with durations

z = 〈3, 2, 1〉 (this particular setting of z is shown only to simplify the layout of this figure; the

model assigns probabilities to all valid settings of z). Circles represent random variables. Shaded

nodes are observed in training; open nodes are latent random variables; diamonds are determin-

istic functions of their parents; dashed lines indicate optional statistical dependencies that can be

included at the cost of increased inference complexity. The graphical notation we use here draws

on conventions used to illustrate neural networks and graphical models.

For both the fully and partially supervised scenarios, the necessary derivatives

can be computed using automatic differentiation or (equivalently) with backward

variants of the above dynamic programs (Sarawagi and Cohen, 2004).

11

3.3 Inference with Dynamic Programming

We are interested in three inference problems: (i) finding the most probable seg-

mentation/labeling for a model given a sequence x; (ii) evaluating the partition

function Z(x); and (iii) computing the posterior marginal Z(x, y), which sums

over all segmentations compatible with a reference sequence y. These can all be

solved using dynamic programming. For simplicity, we will assume zeroth order

Markov dependencies between the yis. Extensions to the kth order Markov depen-

dencies are straightforward. Since each of these algorithms relies on the forward

and reverse segment embeddings, we first discuss how these can be computed

before going on to the inference algorithms.

3.3.1 Computing Segment Embeddings

Let
−→
h i,j designate the

−−→
RNN encoding of the input span (i, j), traversing from left

to right, and let
←−
h i,j designate the reverse direction encoding using

←−−
RNN. There

are thus O(|x|2) vectors that must be computed, each of length O(|x|). Naively

this can be computed in time O(|x|3), but the following dynamic program reduces

this to O(|x|2):

−→
h i,i =

−−→
RNN(

−→
h 0, ci)

−→
h i,j =

−−→
RNN(

−→
h i,j−1, cj)

←−
h i,i =

←−−
RNN(

←−
h 0, ci)

←−
h i,j =

←−−
RNN(

←−
h i+1,j, ci)

The algorithm is executed by initializing in the values on the diagonal (represent-

ing segments of length 1) and then inductively filling out the rest of the matrix. In

practice, we often can put a upper bound for the length of a eligible segment thus

reducing the complexity of runtime to O(|x|). This savings can be substantial for

12

very long sequences (e.g., those encountered in speech recognition).

We define the concatenation of
−→
h i,j and

←−
h i,j as the segment embedding of seg-

ment i to j. One important advantage of SRNNs over RNNs which simply adopt

the BIO tagging scheme is that we have these explicit representations for arbitrary

given spans.

3.3.2 Computing the most probable segmentation/labeling and

Z(x)

Figure 3.2: Dynamic programming for the computation of Z(x). We introduce a auxiliary variable

αi basically sum over all the potentials until the point of i in the sequence. By combining that

with the next segment, (we need to sum over all the y labels there), we get αj. All these partial

representations are computed from dynamically constructed neural networks.

For the input sequence x, there are 2|x|−1 possible segmentations and O(|Y||x|)

13

different labelings of these segments, making exhaustive computation of Z(x) in-

feasible. Fortunately, the partition function Z(x) may be computed in polynomial

time with the following dynamic program (Figure 3.2):

α0 = 1

αj = ∑
i<j

αi × ∑
y∈Y

(
exp w>φ(V[gy(y); gz(zi);

−−→
RNN(csi :si+zi−1);

←−−
RNN(csi :si+zi−1)] + a) + b

)
.

After computing these values, Z(x) = α|x|. By changing the summations to a

max operator (and storing the corresponding arg max values), the maximum a

posteriori segmentation/labeling can be computed.

Both the partition function evaluation and the search for the MAP outputs

run in time O(|x|2 · |Y|) with this dynamic program. Adding nth order Markov

dependencies between the yis adds requires additional information in each state

and increases the time and space requirements by a factor of O(|Y|n). However,

this may be tractable for small |Y| and n.

Avoiding overflow. Since this dynamic program sums over exponentially many

segmentations and labelings, the values in the αi chart can become very large.

Thus, to avoid issues with overflow, computations of the αi’s must be carried out

in log space.3

3.3.3 Computing Z(x, y)

To compute the posterior marginal Z(x, y), it is necessary to sum over all segmen-

tations that are compatible with a label sequence y given an input sequence x.

3An alternative strategy for avoiding overflow in similar dynamic programs is to rescale the

forward summations at each timestep (Rabiner, 1989; Graves et al., 2006b). Unfortunately, in a

semi-Markov architecture each term in αi sums over different segmentations (e.g., the summation

for α2 will have contain some terms that include α1 and some terms that include only α0), which

means there are no common factors, making this strategy inapplicable.

14

To do so requires only a minor modification of the previous dynamic program to

track how much of the reference label sequence y has been consumed. We intro-

duce the variable m as the index into y for this purpose. The modified recurrences

are:

γ0(0) = 1

γj(m) = ∑
i<j

γi(m− 1)×
(

exp w>φ(V[gy(yi); gz(zi);
−−→
RNN(csi :si+zi−1);

←−−
RNN(csi :si+zi−1)] + a) + b

)
.

The value Z(x, y) is γ|x|(|y|).

3.4 Connectionist Temporal Classification

We briefly review the connectionist temporal classification (CTC) model here since

CTC is used as an important baseline for our experiments. CTC also directly com-

putes the conditional probability P(y | x), with the key difference from SRNNs

in that it normalizes the probabilistic distribution at the frame level 4. Because of

this, CTC doesn’t include a segmentation explicitly in its representation. To ad-

dress the problem of length mismatch between the input and output sequences,

CTC allows repetitions of output labels and introduces a special blank token (−),

which represents the probability of not emitting any label at a particular timestep.

The conditional probability is then obtained by summing over all the probabili-

ties of all the paths that corresponding to y after merging the repeated labels and

removing the blank tokens, i.e.,

p(y | x) = ∑
z∈Ψ(z)

p(z | x), (3.5)

4In speech recognition, we often segment the audio, which is a time-varying signal, into short

snippets of audio. We call these snippets “frames”.

15

where Ψ(y) denotes the set of all possible paths that correspond to y after repeti-

tions of labels and insertions of the blank token (Figure 3.3). Now the length of z is

the same as x, the probability p(z | x) is then approximated by the independence

assumption as

p(z | x) ≈
T

∏
t=1

p(zt | x), (3.6)

where zt ranges over Y ∪ {−}, and p(zt | x) can be computed using the softmax

function. As with SRRNs, there are many sequences z that are compatible with

y. The training criterion for CTC is to maximize the conditional probability of the

ground truth labels, which is equivalent to minimizing the negative log likelihood:

L = − log p(y | x), (3.7)

which can be reformulated as the cross entropy loss criterion. More details re-

garding the computation of the loss and the backpropagation algorithm to train

CTC models can be found in (Graves et al., 2006a).

3.5 Experiments

3.5.1 Online Handwriting Recognition

Dataset We use the handwriting dataset from (Kassel, 1995). This dataset is an

online collection of hand-written words from 150 writers. It is recorded as the

coordinates (x, y) at time t plus special pen-down/pen-up notations. We break the

coordinates into strokes using the pen-down and pen-up notations. One character

typically consists one or more contiguous strokes.5

5There are infrequent cases where one stroke can go across multiple characters or the strokes

which form the character can be not contiguous. We leave those cases for future work.

16

Figure 3.3: The illustration above shows CTC computing the probability of an output sequence

”THE CAT ”, as a sum over all possible alignments of input sequences that could map to ”THE

CAT ”, taking into account that labels may be duplicated because they may stretch over several

timesteps of the input data (represented by the spectrogram at the bottom of the image) (Amodei

et al., 2015).

The dataset is split into train, development and test set following (Kassel,

1995). Table 3.1 presents the statistics for the dataset.

A well-know variant of this dataset was introduced by Taskar et al. (2004).

Taskar et al. (2004) selected a “clean” subset of about 6,100 words and rasterized

and normalized the images of each letter. Then, the uppercased letters (since they

are usually the first character in a word) are removed and only the lowercase let-

ters are used. The main difference between our dataset and theirs is that their

dataset is “offline” — Taskar et al. (2004) mapped each character into a bitmap

and treated the segmentation of characters as a preprocessing step. We use the

richer representation of the sequence of strokes as input.

17

#words #characters

Train 4,368 37,247

Dev 1,269 10,905

Test 637 5,516

Total 6,274 53,668

Table 3.1: Statistics of the Online Handwriting Recognition Dataset

Implementation We trained two versions of our model on this dataset, namely,

the fully supervised model (§3.2), which takes advantage of the gold segmenta-

tions on training data, and the partially supervised model (§3.2) in which the gold

segmentations are only used in the evaluation. A CTC model reimplemented on

the top of our Encoder BiRNNs layer (Figure 3.1) is used as a baseline so that we

can see the effect of explicitly representing the segmentation.6 For the decoding of

the CTC model, we simply use the best path decoding, where we assume that the

most probable path will correspond to the most probable labeling, although it is

known that prefix search decoding can slightly improve the results (Graves et al.,

2006b).

As a preprocessing step, we first represented each point in the dataset using a

4 dimensional vector, p = (px, py, ∆px, ∆py), where px and py are the normalized

coordinates of the point and ∆px and ∆py are the corresponding changes in the

coordinates with respect to the previous point. ∆px and ∆py are meant to capture

basic direction information. Then we map the points inside one stroke into a fixed-

6The CTC interpretation rules specify that repeated symbols, e.g. , aa will be interpreted as

a single token of a. However since the segments in the handwriting recognition problem are

extremely short, we use different rules and interpret this as aa. That is, only the blank symbol

may be used to represent extended durations. Our experiments indicate this has little effect, and

Graves (p.c.) reports that this change does not harm performance in general.

18

length vector using a bi-direction LSTM. Specifically, we concatenated the last

position’s hidden states in both directions and use it as the input vector x for the

stroke.

In all the experiments, we use Adam (Kingma and Ba, 2014) with λ = 1× 10−6

to optimize the parameters in the models. We train these models until conver-

gence and picked the best model over the iterations based on development set

performance then report performance on the test set.

We used 5 as the hidden state dimension in the bi-directional RNNs, which

map the points into fixed-length stroke embeddings (hence the input vector size

5× 2 = 10). We set the hidden dimensions of c in our model and CTC model to 24

and segment embedding h in our model as 18. We tried to experiment with larger

hidden dimensions and we found the performance did not vary much.

The results of the online handwriting recognition task are presented in Ta-

ble 3.2. We see that both of our models outperform the baseline CTC model, which

does not carry an explicit representation for the segments being labeled, by a sig-

nificant margin. An interesting finding is that, although the partially supervised

model performs slightly worse in the development set, it actually outperforms

the fully supervised model in the test set. Because the test set is written by dif-

ferent people from the train and development set, they exhibit different styles in

their handwriting; our results suggest that the partially supervised model may

generalize better across different writing styles.

3.5.2 Joint Chinese Word Segmentation and POS tagging

In this section, we look into two related tasks. The first task is joint Chinese word

segmentation and POS tagging, where the z variables will group the Chinese char-

acters into words and the y variables assign POS tags as labels to these words. We

also tested our model on pure Chinese word segmentation task, where the assign-

19

Development Test

Pseg (%) Rseg (%) Fseg (%) Error (%) Pseg (%) Rseg (%) Fseg (%) Error (%)

SRNNs (Partial) 98.7 98.4 98.6 4.2 99.2 99.1 99.2 2.7

SRNNs (Full) 98.9 98.6 98.8 4.3 98.8 98.6 98.6 5.4

CTC - - - 15.2 - - - 13.8

Table 3.2: The performance of SRNNs and CTC on the task of hand-writing recognition

ments of z is the only thing we care about (simulated using a single label for all

segments).

Dataset We used standard benchmark datasets for these two tasks. For the

joint Chinese word segmentation and POS tagging task, we use the Penn Chinese

Treebank 5 (Xue et al., 2005), following the standard train/dev/test splits. For the

pure Chinese word segmentation task, we used the SIGHAN 2005 dataset7. This

dataset contains four portions, covering both simplified and traditional Chinese.

Since there is no pre-assigned development set in this dataset (only train and test

set are provided), we manually split the original train set into two, one of which

(roughly the same size as the test set) is used as the development set. For both

tasks, we use Wang2Vec (Ling et al., 2015a) to generate the pre-trained character

embeddings from the Chinese Gigaword (Graff and Chen, 2005).

Implementation Only the supervised version of SRNNs (§3.2) is tested in these

tasks. The baseline model is a bi-directional LSTM tagger (basically the same

structure as our Encoder BiRNNs in Figure 3.1). It takes the c at each timestep

and pushes it through an element-wise non-linear transformation (tanh) followed

by an affine transformation to map it to the same dimension as the number of

labels. The total loss is therefore the sum of negative log probabilities over the

sequence. Greedy decoding is applied in the baseline model, making it a zeroth

7http://www.sighan.org/bakeoff2005/

20

http://www.sighan.org/bakeoff2005/

order model like our SRNNs.

In order to perform segmentation and POS tagging jointly, we composed the

POS tags with “B” or “I” to represent the segmentation point. For the segmentation-

only task, in the SRNNs we simply used same dummy tag for all y and only care

about the z assignments. In the BiRNN case, we used “B” and “I” tags.

For both tasks, the dimension for the input character embedding is 64. For our

model, the dimension for c and the segment embedding h is set to 24. For the

baseline bi-directional LSTM tagger, we set the hidden dimension (the c equiva-

lent) size to 128. Here we deliberately chose a larger size than in our model hoping

to make the number of parameters in the bi-directional LSTM tagger roughly the

same as our model. We trained these models until convergence and picked the

best model over iterations based on its performance on the development set.

As for speed, the SRNNs run at ∼3.7 sentence per second during training on

the CTB dataset using a single CPU.

Results Table 3.3 presents the results for the joint Chinese word segmentation

task. We can see that in both segmentation and POS tagging, the SRNNs achieve

higher F-scores than the BiRNNs.

Table 3.4 presents the results for the Chinese word segmentation task (POS

tagging is not required). The SRNNs perform better than the BiRNNs with the ex-

ception of the PKU portion of the dataset. The reason for this is probably because

the training set in this portion is the smallest among the four. This leads to high

variance in the test results.

In this set of the experiments, we see that explicit modeling of the segmenta-

tion information in SRNNs improves the results for both tagging and segmenta-

tion. Even in the case where the tags contain no additional information for the

segments (i.e., the pure word segmentation task in Table 3.4), explicit represen-

tation of segmentation information helps, despite the fact that the improvement

21

Development Test

Pseg (%) Rseg (%) Fseg (%) Pseg (%) Rseg (%) Fseg (%)

BiRNNs 93.2 92.9 93.0 94.7 95.2 95.0

SRNNs 93.8 93.8 93.8 95.3 95.8 95.5

Ptag (%) Rtag (%) Ftag (%) Ptag (%) Rtag (%) Ftag (%)

BiRNNs 87.1 86.9 87.0 88.1 88.5 88.3

SRNNs 89.0 89.1 89.0 89.8 90.3 90.0

Table 3.3: The performance of BiRNNs and SRNNs on the task of joint Chinese word segmentation

and POS tagging. Labeled precision (P), recall (R) and F1-score (F) are measured.

here is not as large as the joint segmentation and tagging task, where the informa-

tion from the tags can directly affect the segmentation decisions in the SRNNs.

3.5.3 End-to-end Speech Recognition

Hierarchical Subsampling In speech recognition, since the input x is at the

frame level, it is computationally expensive for RNNs to model these long se-

quences, because the number of possible segmentations is exponential with the

length of the input sequence as mentioned before. The computational cost can be

significantly reduced by using the hierarchical subsampling RNN (Graves, 2012a)

to shorten the input sequences, where the subsampling layer takes a window of

hidden states from the lower layer as input as shown in Figure 3.4. In our speech

experiments (§3.5.3), we consider three variants: a) concatenate – the hidden states

in the subsampling window are concatenated before they are fed into the next

layer; b) add – the hidden states are added into one vector for the next layer; c) skip

– only the last hidden state in the window is kept and all the others are skipped.

The last two schemes are computationally cheaper as they do not introduce extra

22

BiRNNs SRNNs

Pseg (%) Rseg (%) Fseg (%) Pseg (%) Rseg (%) Fseg (%)

CU 92.7 93.1 92.9 93.3 93.7 93.5

AS 92.8 93.5 93.1 93.2 94.2 93.7

MSR 89.9 90.1 90.0 90.9 90.4 90.7

PKU 91.5 91.2 91.3 90.6 90.6 90.6

Table 3.4: The performance of BiRNNs and SRNNs on the task of Chinese word segmentation on

SIGHAN 2005 dataset. There are four portions of the dataset from City University of Hong Kong

(CU), Academia Sinica (AS), Microsoft Research (MSR) and Peking University (PKU). The former

two are in traditional Chinese and the latter two are in simplified Chinese. Unlabeled precision

(P), recall (R) and F1-score (F) are measured.

subsampling L speedup

No 30 1

1 layer 15 ∼3x

2 layers 8 ∼10x

Table 3.5: Speedup by hierarchical subsampling networks.

model parameters.

We demonstrate the results of the hierarchical subsampling recurrent network,

which is the key to speed up our experiments. We set the size of the subsampling

window to be 2, therefore each subsampling layer reduced the time resolution by

a factor of 2. We set the maximum segment length (§3.3.1) to be 300 milliseconds,

which corresponded to 30 frames of FBANKs (sampled at the rate of 10 millisec-

onds). With two layers of subsampling recurrent networks, the time resolution

was reduced by a factor of 4, and the value of L was reduced to be 8, yielding

around 10 times speedup as shown in Table 3.5.

Table 3.6 compares the three implementations of the recurrent subsampling

23

x1 x2 x3 x4
· · ·

x1 x2 x3 x4
· · ·

a) concatenate / add

b) skip

Figure 3.4: Hierarchical subsampling recurrent network (Graves, 2012a) . The size of the subsam-

pling window is two in this example.

network detailed in section 3.5.3. We observed that concatenating all the hidden

states in the subsampling window did not yield lower phone error rate (PER) than

using the simple skipping approach, which may be due to the fact that the TIMIT

dataset is small and it prefers a smaller model. On the other hand, adding the

hidden states in the subsampling window together worked even worse, possibly

due to that the sequential information in the subsampling window was flattened.

In the following experiments, we stuck to the skipping method, and using two

24

System d(w) d(V) layers hidden PER(%)

skip 64 64 3 128 21.2

conc 64 64 3 128 21.3

add 64 64 3 128 23.2

skip 64 64 3 250 20.1

conc 64 64 3 250 20.5

add 64 64 3 250 21.5

Table 3.6: Results of hierarchical subsampling networks. d(w) and d(V) denote the dimension of

w and V in Eqs. (3.4) respectively. layers denotes the number of LSTM layers and hidden is

the dimension of the LSTM cells. conc is short for concatenating operation in the subsampling

network.

subsampling layers.

Hyperparameters We then evaluated the model by tuning the hyperparameters,

and the results are given in Table 3.7. We tuned the number of LSTM layers, and

the dimension of LSTM cells, as well as the dimensions of w and the segment vec-

tor V. In general, larger models with dropout regularization yielded higher recog-

nition accuracy. Our best result was obtained using 6 layers of 250-dimensional

LSTMs. However, without dropout, the model can be easily overfit due to the

small size of training set.

Features We then evaluated another two types of features using the same system

configuration that achieved the best result in Table 3.7. We increased the number

of FBANKs from 24 to 40, which yielded slightly lower PER. We also evaluated the

standard Kaldi features (Povey et al., 2011) — 13 dimensional MFCCs spliced by

a context window of 7 and then two sets of “delta” functions are added, followed

by LDA and MLLT transform and with feature-space speaker-dependent MLLR,

25

Table 3.7: Results of tuning the hyperparameters on the development set.

Dropout d(w) d(V) layers hidden PER (%)

64 64 3 128 21.2

64 32 3 128 21.6

32 32 3 128 21.4

64 64 3 250 20.1

0.2 64 32 3 250 20.4

32 32 3 250 20.6

64 64 6 250 19.3

64 32 6 250 20.2

32 32 6 250 20.2

64 64 3 128 21.3

0.1 64 64 3 250 20.9

64 64 6 250 20.4

× 64 64 6 250 21.9

which were the same features used in the HMM-DNN baseline in Table 3.9. The

well-engineered features improved the accuracy of our system by more than 1%

absolute.

Results In Table 3.9, we compare our result to other reported results using seg-

mental CRFs as well as recent end-to-end systems. The previous state-of-the-art

result using segmental CRFs on the TIMIT dataset is reported by Tang et al. (2015),

where the first-pass decoding was used to prune the search space, and the second-

pass was used to re-score the hypothesis using various features including neural

network features. The ground-truth segmentation was used in (Tang et al., 2015).

We achieved considerably lower PER with first-pass decoding, despite the fact

that our CRF was zeroth-order, and we did not use any language model. Further-

26

Table 3.8: Results of three types of acoustic features.

Features Deltas d(x) PER (%)

24-dim FBANK
√

72 19.3

40-dim FBANK
√

120 18.9

Kaldi × 40 17.3

more, our results are also comparable to that from the CTC and attention-based

RNN end-to-end systems. The accuracy of segmental RNNs may be further im-

proved by using higher-order CRFs or incorporating a language model into the

decode step, using beam search to reduce the search error. However, for the CTC

system, Graves et al. (2013) obtained a slightly better result compared to ours

(18.4% vs. 18.9% in Table 3.9). Apart from the implementation difference of using

different code bases, Graves et al. (2013) applied the prefix decoding with beam

search, which may have lower search error than our best path decoding algorithm.

3.6 Related Work

Segmental labeling problems have been widely studied. A widely used approach

to a segmental labeling problems with neural networks is the connectionist tem-

poral classification (CTC) objective and decoding rule of (Graves et al., 2006b)

discussed in § 3.4. CTC reduces the “segmental” sequence label problem to a clas-

sical sequence labeling problem in which every position in an input sequence x is

explicitly labeled by interpreting repetitions of input labels—or input labels fol-

lowed by a special “blank” output symbol—as being a single label with a longer

duration. During training, the marginal likelihood of the set of labelings com-

patible (according to the CTC interpretation rules) with the reference label y is

maximized. CTC has demonstrated impressive success in various fully discrimi-

27

System LM SD PER

HMM-DNN
√ √

18.5

first-pass SCRF (Zweig, 2012)
√ × 33.1

Boundary-factored SCRF (He and Fosler-Lussier, 2012) × × 26.5

Deep Segmental NN (Abdel-Hamid et al., 2013)
√ × 21.9

Discriminative segmental cascade (Tang et al., 2015)
√ × 21.7

+ 2nd pass with various features
√ × 19.9

CTC (Graves et al., 2013) × × 18.4

RNN transducer (Graves et al., 2013) - × 17.7

Attention-based RNN baseline (Chorowski et al., 2015) × × 18.7

+Conv. Features + Smooth Focus (Chorowski et al., 2015) × × 17.6

Segmental RNN × × 18.9

Segmental RNN × √
17.3

Table 3.9: Comparison to Related Works. LM denote if the language model is used, and SD denotes

feature space speaker-dependent transform. The HMM-DNN baseline was trained with cross-

entropy using the Kaldi recipe. Sequence training did not improve it due to the small amount of

data. RNN transducer can be viewed as a combination of the CTC network with a built-in RNN

language model.

native end-to-end speech recognition models (Graves and Jaitly, 2014; Maas et al.,

2015; Hannun et al., 2014, inter alia).

Although CTC has been used successfully and its reuse of conventional se-

quence labeling architectures is appealing, it has several potentially serious limi-

tations. First, it is not possible to model interlabel dependencies explicitly—these

must instead be captured indirectly by the underlying RNNs. Second, CTC has

no explicit segmentation model. Although this is most serious in applications

where segmentation is a necessary/desired output (e.g., information extraction,

protein secondary structure prediction), we argue that explicit segmentation is

28

potentially valuable even when the segmentation is not required. To illustrate the

value of explicit segments, consider the problem of phone recognition. For this

task, segmental duration is strongly correlated with label identity (e.g., while an

[o] phone token might last 300ms, it is unlikely that a [t] would) and thus mod-

eling it explicitly may be useful. Finally, making an explicit labeling decision for

every position (and introducing a special blank symbol) in an input sequence is

conceptually unappealing.

Several alternatives to CTC have been approached, such as using various at-

tention mechanisms in place of marginalization (Chan et al., 2015; Bahdanau et al.,

2015b). These have been applied to end-to-end discriminative speech recogni-

tion problem. A more direct alternative to our method—indeed it was proposed

to solve several of the same problems we identified—is due to (Graves, 2012b).

However, a crucial difference is that our model explicitly constructs representa-

tions of segments which are used to label the segment while that model relies on

a marginalized frame-level labeling with a null symbol.

The work of Abdel-Hamid (2013) also seeks to construct embeddings of multi-

frame segments. Their approach is quite different than the one taken here. First,

they compute representations of variable-sized segments by uniformly sampling

a fixed number of frames and using these to construct a representation of the seg-

ment with a simple feed-forward network. Second, they do not consider them

problem of latent segmentation.

Recently, in speech recognition, Wang et al. (2017a) propose SWAN, which can

be regarded as a generalization of CTC to allow segmented outputs. Another re-

lated work in machine translation is the online segment to segment neural trans-

duction (Yu et al., 2017), where the model is able to capture unbounded depen-

dencies in both the input and output sequences, while still permitting polynomial

inference.

29

Finally, using neural networks to provide local features in conditional random

field models has also been proposed for sequential models (Peng et al., 2009) and

tree-structured models (Durrett and Klein, 2015). To our knowledge, this is the

first application to semi-Markov structures.

3.7 Conclusion

We have proposed a new model for segment labeling problems that learns ex-

plicit representations of segments of an input sequence. Segment structures are

represented as segment embeddings in our framework and used directly to predict

the labels for them. When the segment structures are not presented in the data,

we model the them as hidden variables and sum them up to compute the final

loss. Experiments show that, compared to models that do not explicitly represent

segments such as BIO tagging schemes and connectionist temporal classification

(CTC), SRNNs obtain substantially higher accuracies on tasks including phone

recognition and handwriting recognition, showing the effectiveness of adding the

segment structure as an inductive bias to the model.

30

Chapter 4

A Transition-based Framework for

Dynamically Connected Neural

Networks

In this chapter, we propose dynamic recurrent acyclic graphical neural networks

(DRAGNN)1, a modular neural architecture that generalizes the encoder/decoder

concept to include explicit linguistic structures2.

Sequence-to-sequence model (Cho et al., 2014a) has been seen successful in

many representation learning problems. However, in its simplest form, neither

the encoder side nor the decoder side considers more sophisticated linguistic struc-

tures that can offer helpful inductive bias for the learning problems. The encoder

just consumes the input tokens one by one and the decoder, even when used to

predict structured output such as a phrase-structure parse tree, doesn’t have the

basic constraint that the parentheses should match explicitly (Vinyals et al., 2015).

In DRAGNN, we aim to add these useful linguistic driven inductive biases

1https://github.com/tensorflow/models/tree/master/syntaxnet/dragnn
2First published as Kong et al. (2017).

31

https://github.com/tensorflow/models/tree/master/syntaxnet/dragnn

back to the model. The core mechanism of DRAGNN is the Transition-Based Re-

current Unit (TBRU, §4.3). The linguistic structure z is represented using a se-

quence of decision/state pairs (s1, d1) . . . (sn, dn). Through TBRU, linguistic struc-

tures can guide the building process of the neural networks by following the tran-

sitions and encoding the partial structure constructed by (s1, d1) . . . (sj, dj) explic-

itly into the hidden layer activations at timestep j. The final target y will be re-

covered using the mapping function y = φ(z). By following the sequence of

decision/state pairs, we can fully recover the final target output.

One advantage of this formulation is that a TBRU can serve as both an en-

coder for downstream tasks and as a decoder for its own task simultaneously

(§4.3.1, example 6). This idea will prove particularly powerful when we consider

syntactic parsing, which involves compositional structure over the input. For ex-

ample, consider a “no-op” TBRU that traverses an input sequence x1, . . . , xn in

the order determined by a binary parse tree: this transducer can implement a re-

cursive tree-structured network in the style of (Tai et al., 2015), which computes

representations for sub-phrases in the tree. In contrast, with DRAGNN, we can

use the arc-standard parser directly to produce the parse tree as well as encode

sub-phrases into representations.

Our framework can represent sequence-to-sequence learning (Cho et al., 2014b)

as well as models with explicit structure like bi-directional tagging models (Wang

et al., 2015) and compositional, tree-structured models (Socher et al., 2013). We

show that our framework is significantly more accurate and efficient than seq2seq

with attention for syntactic dependency parsing and yields more accurate multi-

task learning for extractive summarization tasks.

32

4.1 Background

To apply deep learning models to structured prediction, machine learning prac-

titioners must address two primary issues: (1) how to represent the input, and

(2) how to represent the output. The seq2seq encoder/decoder framework (Kalch-

brenner and Blunsom, 2013; Cho et al., 2014b; Sutskever et al., 2014) proposes

solving these generically. In its simplest form, the encoder network produces a

fixed-length vector representation of an input, while the decoder network produces

a linearization of the target output structure as a sequence of output symbols. En-

coder/decoder is state of the art for several key tasks in natural language process-

ing, such as machine translation (Wu et al., 2016).

However, fixed-size encodings become less competitive when the input struc-

ture can be explicitly mapped to the output. In the simple case of predicting tags

for individual tokens in a sentence, state-of-the-art taggers learn vector represen-

tations for each input token in context and predict output tags from those (Ling

et al., 2015b; Andor et al., 2016). When the input or output is a syntactic parse

tree, networks that explicitly operate over the compositional structure of the net-

work typically outperform generic representations (Dyer et al., 2015; Li et al., 2015;

Bowman et al., 2016). Implicitly learned mappings via attention mechanisms can

significantly improve the performance of sequence-to-sequence (Bahdanau et al.,

2015a; Vinyals et al., 2015), at a computational cost of O(m × n) where m is the

length of the input sequence and n is the length of the output sequence.

In DRAGNN, we define any given architecture as a series of modular units,

where connections between modules are unfolded dynamically as a function of the

intermediate activations produced by the network. These dynamic connections

represent the explicit input and output structure produced by the network for a

given task.

33

Encoder/Decoder (2 TBRU)

Bi-LSTM Tagging (3 TBRU)

Y1 Y2 Y3 Y4 Y5

Y1 Y2 Y3 Y4 Y5

Stack-LSTM (2 TBRU)
Y1 Y2 Y3 Y4 Y5

Transition Based Recurrent Unit (TBRU)

Network
Cell

Discrete
state

Recurrence fcn
Input embeddings

network activations

Figure 4.1: High-level schematic of a transition-based recurrent unit (TBRU), and familiar network architectures that can be implemented

with multiple TBRUs. The discrete state is used to compute recurrences and fixed input embeddings, which are then fed through a

network cell. The network predicts an action which is used to update the discrete state (dashed output) and provides activations that

can be consumed through recurrences (solid output). Note that we present a slightly simplified version of Stack-LSTM (Dyer et al., 2015)

for clarity.

34

Right-to-left
LSTM

Summarization

Multi-task Encoder/Decoder

Dependency
Trees

Right-to-left
LSTM Summarization

DRAGNN w/ Intermediate representations

Dependency
Trees

Intermediate representation

Dynamic
unrolled links

laughed man Uniformed

Uniformed
SHIFT

man
SHIFT

laughed
LA(nn)

laughed
SHIFT

<eos>
LA(nsubj)

<eos>
RA(root)

Uniformed
DROP

man
KEEP

laughed
KEEP

laughed man Uniformed

Uniformed
SHIFT

man
SHIFT

laughed
LA(nn)

laughed
SHIFT

<eos>
LA(nsubj)

<eos>
RA(root)

Uniformed
DROP

man
KEEP

laughed
KEEPRight-to-left LSTM TBRU

Extractive summarization TBRU

Dynamic links as a function of transition state

Dependency parsing TBRU

Figure 4.2: Using TBRUs to share fine-grained, structured representations. Top left: A high level view of multi-task learning with

DRAGNN in the style of multi-task seq2seq (Luong et al., 2015). Bottom left: Extending the “stack-propagation” (Zhang and Weiss,

2016) idea to included dependency parse trees as intermediate representations. Right: Unrolled TBRUs for each setup for an input

fragment “Uniformed man laughed”, using the transition systems described in Section 4.4.

35

We build on the idea of transition systems from the parsing literature (Nivre,

2006), which linearize structured outputs as a sequence of (state, decision) pairs.

Transition-based neural networks have recently been applied to a wide variety of

NLP problems; (Dyer et al., 2015; Lample et al., 2016; Kiperwasser and Goldberg,

2016; Zhang et al., 2016; Andor et al., 2016), among others. We generalize these ap-

proaches with a new basic module, the Transition-Based Recurrent Unit (TBRU),

which produces a vector representation for every transition state in the output

linearization (Figure 4.1). These representations also serve as the encoding of the

explicit structure defined by the states. For example, a TBRU that attaches two

sub-trees while building a syntactic parse tree will also produce the hidden layer

activations to serve as an encoding for the newly constructed phrase. Multiple

TBRUs can be connected and learned jointly to add explicit structure to multi-

task learning setups and share representations between tasks with different input

or output spaces (Figure 4.2).

This inference procedure will construct an acyclic compute graph representing

the network architecture, where recurrent connections are dynamically added as

the network unfolds. We therefore call our approach Dynamic Recurrent Acyclic

Graphical Neural Networks, or DRAGNN.

DRAGNN has several distinct modeling advantages over traditional fixed neu-

ral architectures. Unlike generic seq2seq, DRAGNN supports variable sized in-

put representations that may contain explicit structure. Unlike purely sequential

RNNs, the dynamic connections in a DRAGNN can span arbitrary distances in

the input space. Crucially, inference remains O(m + n), in contrast O(m× n) the

attention mechanisms, where m is the length of the input sequence and n is the

length of the output sequence.

Dynamic connections thus establish a compromise between pure seq2seq (Cho

et al., 2014b) and pure attention architectures (Bahdanau et al., 2014) by provid-

36

ing a finite set of long-range inputs that ‘attend’ to relevant portions of the input

space. Unlike recursive neural networks (Socher et al., 2010, 2011) DRAGNN can

both predict intermediate structures (such as parse trees) and utilize those struc-

tures in a single deep model, backpropagating downstream task errors through

the intermediate structures. Compared to models such as Stack-LSTM (Dyer et al.,

2015) and SPINN (Bowman et al., 2016), TBRUs are a more general formulation

that allows incorporating dynamically structured multi-task learning (Zhang and

Weiss, 2016) and more varied network architectures.

In sum, DRAGNN is not a particular neural architecture, but rather a formula-

tion for describing neural architectures compactly. The key to this compact description

is a new recurrent unit—the TBRU—which allows connections between nodes in

an unrolled compute graph to be specified dynamically in a generic fashion. We

use transition systems to provide succinct, discrete representations via lineariza-

tions of both the input and the output for structured prediction. We provide a

straightforward way of reusing representations across NLP tasks that operate on

different structures.

DRAGNN is close related to the idea of “stack-propagation” (Zhang and Weiss,

2016). The key advantage of “stack-propagation” is that the model does not re-

quire predicted POS tags for parsing at test time. Instead, the tagger network is

run up to the hidden layer over the entire sentence, and then dynamically connect

the parser network to the tagger network based upon the discrete parser config-

urations as parsing unfolds. In this way, they can avoid cascading POS tagging

errors to the parser. We generalize “stack-propagation” style pipeline that every

task is represented by a TBRU in DRAGNN and can be easily used as intermediate

representations.

We demonstrate the effectiveness of DRAGNN on two NLP tasks that benefit

from explicit structure: dependency parsing and extractive sentence summariza-

37

tion (Filippova and Altun, 2013). First, we show how to use TBRUs to incremen-

tally add structure to the input and output of a “vanilla” seq2seq dependency

parsing model, dramatically boosting accuracy over seq2seq with no additional

computational cost. Second, we demonstrate how the same TBRUs can be used

to provide structured intermediate syntactic representations for extractive sen-

tence summarization. This yields better accuracy than is possible with the generic

multi-task seq2seq (Dong et al., 2015; Luong et al., 2015) approach. Finally, we

show how multiple TBRUs for the same dependency parsing task can be stacked

together to produce a single state-of-the-art dependency parsing model.

38

LSTM / MLP
Cell

LSTM / MLP
Cell

m(si)

LSTM / MLP
Cell

hi

si

· · · · · ·

s1 s2

m(s1) m(s2)

h1 h2

Bob gave Alice a pretty flower on Monday .

nsubj iobj

punct

dobj

det
amod prep pobj

gave flower on Monday .

Bob Alice

nsubj iobj

a pretty

det amod

Stack Buffer

gave
flower

on Monday .

Bob Alice

nsubj iobj

a pretty

det amod

gave flower Monday .

Bob Alice

nsubj iobj

a pretty

det amod

on

dobj

Transition state:

Dependency Parse: Buffer

d = Shift (correct)

d = Right arc (incorrect)

Figure 4.3: Left: TBRU schematic. Right: Dependency parsing example. A gold parse tree and an arc-standard transition state with two

sub-trees on the stack are shown. From this state, two possible actions are also shown (Shift and Right arc). To agree with the gold tree,

the Shift action should be taken.

39

4.2 Transition Systems

We use transition systems to map inputs x to outputs y using a sequence of tran-

sitions d1 . . . dn which encode the structure z. For the purposes of implementing

DRAGNN, transition systems make explicit two desirable properties. First, we

stipulate that the output symbols represent modifications of a persistent, discrete

state, which makes book-keeping to construct the dynamic recurrent connections

easier to express. Second, transition systems make it easy to enforce arbitrary

constraints on the output, e.g. the output should produce a valid tree.

Formally, we use the same setup as (Andor et al., 2016), and define a transition

system T = {S ,A, t} as:

• A set of states S .

• A special start state s† ∈ S .

• A set of allowed decisions A(s, x) for all s ∈ S .

• A transition function t(s, d, x) returning a new state s′ for any decision d ∈
A(s, x).

For brevity, we will drop the dependency on x in the functions given above. We

will use transition systems in which all complete structures for the same input x

have the same number of decisions n(x) (or n for brevity), although this is not

necessary.

A complete structure is then a sequence of decision/state pairs (s1, d1) . . . (sn, dn)

such that s1 = s†, di ∈ A(si) for i = 1 . . . n, and si+1 = t(si, di). We will now define

recurrent network architectures that operate over these linearizations of input and

output structure.

40

4.3 Transition Based Recurrent Networks

We now formally define how to combine transition systems with recurrent net-

works into what we call a transition based recurrent unit (TBRU). A TBRU consists

of the following:

• A transition system T ,

• An input function m(s) that maps states3 to fixed-size vector representa-

tions, for example, an embedding lookup operation for features from the

discrete state, m(s) : S 7→ RK

• A recurrence function r(s) that maps states to a set of previous time steps:

r(s) : S 7→ P{1, . . . , i− 1},

where P is the power set. Note that in general |r(s)| is not necessarily fixed

and can vary with s. We use r to specify state-dependent recurrent links in

the unrolled computation graph.

• A neural network cell that computes a new hidden representation from the

fixed and recurrent inputs:

hs ← NN(m(s), {hi | i ∈ r(s)}).

Example 1. Sequential tagging RNN. Let the input x = {x1, . . . , xn} be a se-

quence of word embeddings, and the output be a sequence of tags y = {y1, . . . , yn}.
Here the linguistic structure z is simply the same as y and can be easily mapped

to transitions {d1, . . . , dn} where di means to tag token xi as di. We can model a

simple LSTM tagger as follows:

• T sequentially tags each input token, where si = {1, . . . , di−1}, i.e., the

whole history of past tagging decisions, and A is the set of possible tags.

We call this the tagger transition system.
3For simplicity, we assume the states contain the information from the input x.

41

Features Window Dimensionality

Symbols 1 8

Capitalization +/- 1 4

Prefixes/Suffixes (n = 2, 3) +/- 1 16

Words +/- 3 64

Table 4.1: Window-based tagger feature spaces. “Symbols” indicates whether the word contains a

hyphen, a digit or a punctuation

• m(si) = xi, the word embedding for the next token to be tagged.

• r(si) = {i− 1} to connect the network to the previous state.

• NN is a single instance of the LSTM cell.

Example 2. Parsey McParseface. In the open-source syntactic parsing model

(Andor et al., 2016), the input x is a sequence of words. The output y, same as the

underlying linguistic structure z, is the dependency tree. It will be represented by

a sequence of transitions {d1, . . . , dn} following the arc-standard transition system.

Parsey McParseface can be defined in our framework as follows:

• T is the arc-standard transition system (Figure 4.3), so the state contains all

words and partially built trees on the stack as well as unseen words on the

buffer.

• m(si) is the concatenation of 52 feature embeddings extracted from tokens

based on their positions in the stack and the buffer. Table 4.1 show the details

of these window-based features.

• r(si) = {} is empty, as this is a feed-forward network.

• NN is a feed-forward multi-layer perceptron (MLP).

42

Inference with TBRUs. Given the above, inference in the TBRU proceeds as

follows:

1. Initialize s1 = s†.

2. For i = 1, . . . , n:

(a) Update the hidden state:

hi ← NN(m(si), {hj | j ∈ r(si)}).
(b) Update the transition state:

di ← arg maxd∈A(si)
w>d hi, si+1 ← t(si, di).

Intuitively, this is just saying, when we don’t have the gold transitions {d1, . . . , dn},
w e make a prediction at every time stamp and update the state and the RNN

based on the prediction.

A schematic overview of a single TBRU is presented in Figure 4.3. By adjusting

NN, r, and T , TBRUs can represent a wide variety of neural architectures.

43

Bob gave Alice a pretty flower on Monday .

Bob

gave

Alice a pretty

flower on Monday

Stack Buffer

INPUT(s)

== =

.
.

Sh Sh L Sh R Sh Sh Sh L L

Unrolled graph (incomplete): Recurrent inputs:

TBRU 1

TBRU 2

Subtree(s, S0) Subtree(s, S1)

Figure 4.4: Detailed schematic for the compositional dependency parser used in our experiments. TBRU 1 consumes each input word

right-to-left. TBRU 2 uses the arc-standard transition system. Note how each Shift action causes the TBRU 1→TBRU 2 link to advance.

The dynamic recurrent inputs to each state are highlighted; the stack representations are obtained from the last Reduce action to modify

each sub-tree.

44

4.3.1 Connecting multiple TBRUs to learn shared representations

While TBRUs are a useful abstraction for describing recurrent models, the pri-

mary motivation for this framework is to allow new architectures by combining

representations across tasks and compositional structures. We do this by connect-

ing multiple TBRUs with different transition systems via the recurrence function

r(s). We formally augment the above definition as follows:

1. We execute a list of T TBRUs, one at a time, so that each TBRU advances

a global step counter. Note that for simplicity, we assume an earlier TBRU

finishes all of its steps before the next one starts execution.

2. Each transition state from the τ’th component sτ has access to the terminal

states from every prior transition system, and the recurrence function r(sτ)

for any given component can pull hidden activations from every prior one

as well.

Example 3. “Input” transducer TBRUs via no-op decisions. We find it useful to

define TBRUs even when the transition system decisions don’t correspond to any

output. These TBRUs, which we call no-op TBRUs, transduce the input according

to some linearization. The simplest is the shift-only transition system, in which

the state is just an input pointer si = {i}, and there is only one transition which

advances it: t(si, ·) = {i + 1}. Executing this transition system will produce a

hidden representation hi for every input token.

Example 4. Encoder/decoder networks with TBRUs. We can reproduce the en-

coder/decoder framework for sequence tagging by using two TBRUs: one using

the shift-only transition system to encode the input, and the other using the tagger

transition system. For input x = {x1, . . . , xn}, we connect them as follows:

• For shift-only TBRU: m(si) = xi, r(si) = {i− 1}.

45

• For tagger TBRU: m(sn+i) = ydn+i−1
, r(si) = {n, n + i− 1}.

We observe that the tagger TBRU starts at step n after the shift-only TBRU fin-

ishes, that yj is a fixed embedding vector for the output tag j, and that the tagger

TBRU has access to both the final encoding vector hn as well as its own previous

timestep hn+i−1.

Example 4. Bi-directional LSTM tagger. With three TBRUs, we can implement

a bi-directional tagger. The first two run the shift-only transition system, but in

opposite directions. The final TBRU runs the tagger transition system and con-

catenates the two representations:

• Left to right: T = shift-only, m(si) = xi, r(si) = {i− 1}.
• Right to left: T = shift-only, m(sn+i) = xn−i, r(sn+i) = {n + i− 1}.
• Tagger: T = tagger, m(s2n+i) = {}, r(s2n+i) = {i, 2n− i}.

We observe that the network cell in the tagger TBRU takes recurrences only

from the bi-directional representations, and so is not recurrent in the traditional

sense. See Fig. 4.1 for an unrolled example.

Example 5. Multi-task bi-directional tagging. Here we observe that it is possi-

ble to add additional annotation tasks to the bi-directional TBRU stack from Ex-

ample 4 by adding more instances of the tagger TBRUs that produce outputs from

different tag sets, e.g. parts-of-speech vs. morphological tags. Most important,

however, is that any additional TBRUs have access to all three earlier TBRUs. This

means that we can support the “stack-propagation” (Zhang and Weiss, 2016) style

of multi-task learning simply by changing r for the last TBRU:

• Traditional multi-task (Luong et al., 2015; Søgaard and Goldberg, 2016):

r(s3n+i) = {i, 2n− i}

46

Parsing TBRU recurrence, r(si) ⊆ {1, . . . , n + i} Parsing Accuracy (%)

Input links Recurrent edges News Questions Runtime

{n} {n + i− 1} 27.3 70.1 O(n)

{n} {SUBTREE(si, S0), SUBTREE(si, S1)} 36.0 75.6 O(n)

Attention {n + i− 1} 76.1 84.8 O(n2)

Attention {SUBTREE(si, S0), SUBTREE(si, S1)} 89.0 91.9 O(n2)

INPUT(si) {n + i− 1} 87.1 89.7 O(n)

INPUT(si) {SUBTREE(si, S0), SUBTREE(si, S1)} 90.9 92.1 O(n)

Table 4.2: Dynamic links enable much more accurate, efficient linear-time parsing models on the

Treebank Union development set. We vary the recurrences r to explore using explicit structure in

the parsing TBRU. Using the explicit INPUT(si) pointer is more effective and more efficient than

a quadratic attention mechanism. Incorporating the explicit stack structure via recurrent links

further improves performance.

• Stack-prop:

r(s3n+i) = { i︸︷︷︸
Left-to-right

, 2n− i︸ ︷︷ ︸
Right-to-left

, 2n + i︸ ︷︷ ︸
Tagger TBRU

}

Example 6. Compositional representations from arc-standard dependency pars-

ing. We use the arc-standard transition system (Nivre, 2006) to model depen-

dency trees. The system maintains two data structures as part of the state s: an

input pointer and a stack (Figure 4.3). Trees are built bottom up via three possible

attachment decisions. Assume that the stack consists of S = {A, B}, with the next

token being C. We use S0 and S1 to refer to the top two tokens on the stack. Then

the decisions are defined as:

• Shift: Push the next token on to the stack: S = {A, B, C}, and advance the

input pointer.

47

• Left arc + label: Add an arc A ←label B, and remove A from the stack: S =

{B}.
• Right arc + label: Add an arc A →label B, and remove B from the stack:

S = {A}.
For a given parser state si, we compute two types of recurrences:

• rINPUT(si) = {INPUT(si)}, where INPUT returns the index of the next input

token.

• rSTACK(si) = {SUBTREE(si, S0), SUBTREE(s, S1)}, where SUBTREE(S,I) is a func-

tion returning the index of the last decision that modified the i’th token:

SUBTREE(s, i) = arg max
j
{dj s.t. dj shifts or adds a newchild to token i}

We show an example of the links constructed by these recurrences in Figure 4.4,

and we investigate variants of this model in Section 4.4. This model is recursively

compositional according to the decision taken by the network: when the TBRU

at step si decides to add an arc A → B for state, the activations hi will be used

to represent that new subtree in future decisions.4 The links we chose here are

inspired by standard transitional based parsers (Nivre, 2003). The key advantage

of our model is that it uses subtree representations on the stack.

Example 7. Extractive summarization pipeline with parse representations. To

model extractive summarization, we follow (Andor et al., 2016) and use a tag-

ger transition system with two tags: Keep and Drop. However, whereas (Andor

et al., 2016) use discrete features of the parse tree, we can use the SUBTREE recur-

rence function to pull compositional, phrase-based representations of tokens as

4This composition function is similar to that in the constituent parsing SPINN model (Bowman

et al., 2016), but with several key differences. Since we use TBRUs, we compose new representa-

tions for “Shift” actions as well as reductions, we take inputs from other recurrent models, and we

can use subtree representations in downstream tasks.

48

Input representation Multi-task style A (%) F1 (%) LAS (%)

Single LSTM – 28.93 79.75 –

Bi-LSTM – 29.51 80.03 –

Multi-task LSTM (Luong et al., 2015) 30.07 80.31 89.42

Parse sub-trees (Figure 4.2) (Zhang and Weiss, 2016) 30.56 80.74 89.13

Table 4.3: Single- vs. multi-task learning with DRAGNN on extractive summarization. “A” is

full-sentence accuracy of the extraction model, “F1” is per-token F1 score, and “LAS” is labeled

parsing accuracy on the Treebank Union News dev set. Both multi-task models that use the pars-

ing data outperform the single-task approach, but the model that uses parses as an intermediate

representation via our extension of (Zhang and Weiss, 2016) (Fig. 4.2) is more effective. The locally

normalized model in (Andor et al., 2016) obtains 30.50% accuracy and 78.72% F1.

constructed by the dependency parser. This model is outlined in Fig. 4.2.

4.3.2 How to Train a DRAGNN

Given a list of TBRUs, we propose the following learning procedure. We assume

training data consists of examples x along with gold decision sequences d1 . . . dM

to construct the structure z. The function ψ(z) will map z to the target output y.

L = − log p(y, z | x) (4.1)

= −
M

∑
i=1

log p(ψ(z), z | x), (4.2)

= −
M

∑
i=1

log p(di | x) (4.3)

Eq. (4.1) is locally normalized (Andor et al., 2016), since we optimize the probabil-

ities of the individual decisions in the gold sequence.

A slight variant of this objective is assuming we only have such data for the

final TBRU. Given decisions d1 . . . dN from prior components 1 . . . T− 1, we define

49

a log-likelihood objective to train the Tth TBRU along its gold decision sequence

to construct zN, i.e., dN+1, . . . , dN+n:

L = − log p(yN, zN | z1:N, x) (4.4)

= −
n

∑
i=1

log p(ψ(zN), z | z1:N, x), (4.5)

= −
n

∑
i=1

log p(dN+i | d1:N, dN+1:N+i−1, x) (4.6)

The remaining question is where the decisions d1 . . . dN come from. There are

two options here: either 1) they come as part of the gold annotation (e.g., if we

have joint tagging and parsing data), or 2) they are predicted by unrolling the pre-

vious components. When training the stacked extractive summarization model,

the parse trees will be predicted by the previously trained parser TBRU.

When training a given TBRU, we unroll an entire input sequence and then use

backpropagation through structure (Goller and Kuchler, 1996) to optimize Equa-

tion (4.1). To train the whole system on a set of C datasets (tasks), we use a strat-

egy similar to Dong et al. (2015) and Luong et al. (2015). At each iteration, we

sample a target task c, 1 ≤ c ≤ C, based on a pre-defined uniform distribution,

and take a stochastic optimization step on the objective of task c’s TBRU. In prac-

tice, task sampling is usually preceded by a deterministic number of pre-training

steps, allowing, for example, to run a certain number of tagger training steps be-

fore running any parser training steps. In general, we train more steps for the

tasks closer to the end. We find it works better when we set the training step ratio

to be 1 : 2 : 4 : ... : 2|C| works better than train the same number of steps for each

of the task.

50

Union-News Union-Web Union-QTB

Model UAS LAS POS UAS LAS POS UAS LAS POS

Andor et al. (2016) 94.44 92.93 97.77 90.17 87.54 94.80 95.40 93.64 96.86

Left-to-right parsing 94.60 93.17 97.88 90.09 87.50 94.75 95.62 94.06 96.76

Deep stacked parsing 94.66 93.23 98.09 90.22 87.67 95.06 96.05 94.51 97.25

Table 4.4: Deep stacked parsing compared to state-of-the-art on Treebank Union for parsing and

POS.

4.4 Experiments

In this section, we evaluate three aspects of our approach on two NLP tasks: En-

glish dependency parsing and extractive sentence summarization. For English

dependency parsing, we primarily use the Union Treebank setup from (Andor

et al., 2016). By evaluating on both news and questions domains, we can sepa-

rately evaluate how the model handles naturally longer and shorter form text. On

the Union Treebank setup there are 93 possible actions considering all arc-label

combinations. For extractive sentence summarization, we use the dataset of (Fil-

ippova and Altun, 2013), where a large news collection is used to heuristically

generate compression instances. The final corpus contains about 2.3M compres-

sion instances, but since we evaluated multiple tasks using this data, we sub-

sampled the training set to be comparably sized to the parsing data (≈60K train-

ing sentences). The test set contains 160K examples. We implement our method in

TensorFlow, using mini-batches of size 4 and following the averaged momentum

training and hyperparameter tuning procedure of (Weiss et al., 2015).

Using explicit structure improves encoder/decoder We explore the impact of

different types of recurrences on dependency parsing in Table 4.2. In this setup,

51

we used relatively small models: single-layer LSTMs with 256 hidden units, tak-

ing 32-dimensional word or output symbol embeddings as input to each cell. In

each case, the parsing TBRU takes input from a right-to-left shift-only TBRU. Un-

der these settings, the pure encoder/decoder seq2seq model simply does not have

the capacity to parse newswire text with any degree of accuracy, but the TBRU-

based approach is nearly state-of-the-art at the same exact computational cost. As

a point of comparison and an alternative to using input pointers, we also im-

plemented an attention mechanism within DRAGNN. We used the dot-product

formulation from (Parikh et al., 2016b), where r(si) in the parser takes in all of

the shift-only TBRU’s hidden states and NN aggregates over them. Using the

INPUT(si) pointer is more effective and more efficient than a quadratic attention

mechanism. It also outperforms the vanilla seq2seq solution, which is equivalent

of fixing the input links at n. We also vary the recurrences r to explore using ex-

plicit structure in the parsing TBRU. Incorporating the explicit stack structure via

recurrent links improves performance. This shows that the information encoded

in the hidden states representing the subtrees is helpful for resolving ambiguities

in parsing.

Utilizing parse representations improves summarization We evaluate our ap-

proach on the summarization task in Table 4.3. We compare two single-task LSTM

tagging baselines against two multi-task approaches: an adaptation of (Luong

et al., 2015) and the stack-propagation idea of (Zhang and Weiss, 2016). In both

multi-task setups, we use a right-to-left shift-only TBRU to encode the input, and

connect it to both our compositional arc-standard dependency parser and the Keep/Drop

summarization tagging model.

In both setups we do not follow seq2seq, but use the INPUT function to con-

nect output decisions directly to input token representations. However, in the

stack-prop case, we use the SUBTREE function to connect the tagging TBRU to

52

the parser TBRU’s phrase representations directly (Figure 4.2). We find that al-

lowing the compressor to directly use the parser’s phrase representations signifi-

cantly improves the outcome of the multi-task learning setup. In both setups, we

pretrained the parsing model for 400K steps and tuned the subsequent ratio of

parser/tagger update steps using a development set.

Deep stacked bi-directional parsing Here we propose a continuous version of

the bi-directional parsing model of (Attardi and Dell’Orletta, 2009): first, the sen-

tence is parsed in the left-to-right order as usual; then a right-to-left transition

system analyzes the sentence in reverse order using additional features extracted

from the left-to-right parser. In our version, we connect the right-to-left pars-

ing TBRU directly to the phrase representations of the left-to-right parsing TBRU,

again using the SUBTREE function. Our parser has the significant advantage that

the two directions of parsing can affect each other during training. During each

training step the right-to-left parser uses representations obtained using the pre-

dictions of the left-to-right parser. Thus, the right-to-left parser can backpropagate

error signals through the left-to-right parser and reduce cascading errors caused

by the pipeline.

Our final model uses 5 TBRU units. Inspired by (Zhang and Weiss, 2016), a left-

to-right POS tagging TBRU provides the first layer of representations. Next, two

shift-only TBRUs, one in each direction, provide representations to the parsers.

Finally, we connect the left-to-right parser to the right-to-left parser using links

defined via the SUBTREE function. The result (Table 4.4) is a state-of-the-art de-

pendency parser, yielding the highest published accuracy on the Treebank Union

setup for both part of speech tagging and parsing.

53

4.5 Conclusion

We presented a compact, modular framework for describing recurrent neural ar-

chitectures. We evaluated our dynamically structured model and found it to be

significantly more efficient and accurate than attention mechanisms for depen-

dency parsing and extractive sentence summarization in both single- and multi-

task setups. While we focused primarily on syntactic parsing, the framework

provides a general means of sharing representations between structured predic-

tion tasks. The core idea here is that, linguistic structure can guide the building

process of the neural networks through its corresponding transition system by fol-

lowing the transitions and encoding the (partial) structures constructed by those

transitions explicitly into the hidden layer activations. There remains space to

be explored: in particular, our approach can be globally normalized with multi-

ple hypotheses in the intermediate structure. We also plan to push the limits of

multi-task learning by combining many different NLP tasks, such as translation,

summarization, tagging problems, and reasoning tasks, into a single model.

54

Chapter 5

Stochastic Attention and Posterior

Regularization for Neural Machine

Translation

Given the existence of abundant parallel data, neural machine translation (NMT)

has been established as state-of-the-art approaches in machine translation, when

compared to rule-based and statistical machine translation (SMT) systems, partic-

ularly in the case of human evaluation (Wu et al., 2016; Klein et al., 2017; Vaswani

et al., 2017). The best performing models are built on the sequence-to-sequence

models (Cho et al., 2014a) and use the attention mechanism to connect the decoder

with the encoder side (Bahdanau et al., 2014). Recent work (Vaswani et al., 2017)

argues that the attention mechanism is a crucial part in neural machine translation

systems.

Attention mechanism is built on the intuition of adding the linguistically plau-

sible (soft-)alignment structures between a source sentence and the corresponding

target sentence, as a form of inductive bias into the original pure sequence-to-

sequence models (Bahdanau et al., 2014). These alignment structures also play

55

an essential part in the statistical machine translation (SMT) systems. The main

difference between the NMT and the SMT approach, is that the SMT system mod-

els these alignments information using random variables, while the NMT system

models them using a deterministic function of the input.

In this chapter, we further strengthen the inductive biases introduced by the

alignment structures in two ways. First, we explicitly model the alignment deci-

sions in the probabilistic framework by replacing the soft weighting scheme with

a hard (but stochastic) decision. Second, we regularize the posterior distributions

of the latent alignment decisions using the posteriors computed from IBM model

2 (Brown et al., 1993; Dyer et al., 2013). This alleviates the problem that neural

networks can fit noisy data or explain away stochastic latent variables, because

they are general-purpose function approximators (Chen et al., 2017; Zhang et al.,

2017).

5.1 Background

In sequence transduction tasks (e.g. machine translation), a conditional distribu-

tion over sequences y given a sequence x is modeled, and parameters are learned

by maximizing log p(y | x) from a set of (x, y) pairs. A key innovation that has

made neural autoregressive models effective for this task is attention, due to Bah-

danau et al. (2015b). Attention enables different parts of the input to be attended

selectively as the output sequence is generated. In most models, attention is a

weighting of all input positions, that is computed deterministically as a function

of the decoder RNN’s hidden state. The attended view of the input is a weighted

combination of the input representations.

In this chapter, we use a hard stochastic decision in place of the standard soft

weighting scheme, focusing on the problem of translation (§5.2). In contrast to

56

soft weighting over all positions of the input, we sample a single position from

a distribution over positions, and then, conditional on the chosen input (as well

as the RNN’s summary of the generation history), generate the next output sym-

bol. Our model is thus a joint model p(y, z | x), where each z is a sequence of

alignment decisions, one for each output symbol, similar to traditional statistical

translation models introduced by Brown et al. (1993). This captures our a priori

expectation that translation is mostly a word-to-word translation process. How-

ever, since the representations attended to are computed via a bi-directional RNN

encoding, contextual information still can inform the lexical translation decisions.

By marginalizing the latent alignments, the log (marginal) likelihood is differ-

entiable, making end-to-end learning feasible. However, learning with stochastic

latent variables in neural networks is nontrivial, since the required posterior dis-

tributions are generally intractable to compute. Usually, any of a variety of ap-

proximate inference techniques are used (Kingma and Welling, 2014; Bornschein

and Bengio, 2015; Burda et al., 2016; Miao and Blunsom, 2016; Maddison et al.,

2017). We first compare several strategies for marginalizing the latent alignments.

Furthermore, to understand the effect of different inference algorithms, we also

make a conditional independence assumption that allows us to tractably marginal-

ize the alignments analytically. Thus, we can compare the effects of different ap-

proximation algorithms on the quality of the model learned against a gold stan-

dard inference technique and evaluate them objectively in terms of marginal like-

lihood. Our experiments find that stochastic attention, by itself, offers little ben-

efit over classical deterministic soft attention, and worse, that several standard

approximation algorithms can harm performance.

We then improve the generalization of our model by regularizing the poste-

rior distributions over the latent variables during learning. We are motivated by

the observation that neural networks are general-purpose function approxima-

57

tors that can fit noisy data or, when stochastic units are present, explain away

stochastic latent variables (Chen et al., 2017; Zhang et al., 2017). Indeed, we find

evidence that this is happening in our model. Our regularization strategy is in-

spired by posterior regularization (Ganchev et al., 2010), but rather than impos-

ing declarative moment constraints on the posteriors, we regularize the posterior

distributions over the latent variables to be similar to posterior distributions ob-

tained from models that make stronger independence assumptions and therefore

use their latent variables (rather than the deterministic autoregressive component)

to explain the outputs. In those models with stronger independence assumptions,

it is easier to learn sensible alignment structures with less data. Our approach

combines this strength with expensiveness of the neural networks to offer a better

performance.

We propose both an exact training objective based on analytical marginals, and

several approximations based on importance sampling that are suitable when ex-

act marginals cannot be computed. Experimentally, we show (1) that our poste-

rior regularization scheme leads to substantially improved generalization, (2) that

a similar penalty imposed on the deterministic model underperforms the stochas-

tic model, and (3) that an approximation based on importance sampling (which is

therefore suitable for problems with intractable marginals) is either as good as or

better than the exact objective in terms of held-out generalization.

5.2 Model

Our model, illustrated in Figure 5.2, is based on a standard attention-based se-

quence to sequence model (Bahdanau et al., 2015b), illustrated in Figure 5.1. Given

a source sentence x = (x1, x2, . . . , xN), the goal is to predict a target sentence y =

(y1, y2, . . . , yM). We are using a form of attention termed “late fusion” by Wang

58

and Cho (2015), wherein the decoder attends to the source representation based

on the current RNN state, and makes a joint prediction of the next word based on

the vector returned by attention, and the current RNN state.

Le chat gris dort . <s> The grey

The grey cat

…

…
z1 z2 z3 z4 z5

BiLSTM

Attention

Weighted Sum

source
vectors

attention
weights

context
vector

y

x

Figure 5.1: Sequence to sequence model with deterministic soft attention

Encoder. The encoder embeds each source word into a vector xi ∈ RD and

encode the source sentence with a bi-directional long short-term memory net-

work (Hochreiter and Schmidhuber, 1997b). We take the representation of the

i-th source word as the concatenation of forward and reverse LSTM states (
−→
h i

and
←−
h i respectively), and designate this as hi ∈ R2H.

Decoder. The decoder is a uni-directional (forward) LSTM that takes the final

state of the encoder’s forward LSTM
−→
h N as its initial state. The hidden state at

output timestep t is designated with gt. gt is computed from the previous hidden

state gt−1 and the input vector xt.

Deterministic Soft Attention. For the attention mechanism, we take an inner

product between gt and each source word encoding, exponentiate and normalize

59

Le chat gris dort . <s> The grey

The grey cat

…

…

BiLSTM

source
vectors

attention
weights sampled

source
vector

y

x

z1 z2 z3 z4 z5
sampled
one-hot

Attention

Parameterise Categorical

Select (Weighted Sum)

⇣̃1 ⇣̃2 ⇣̃3 ⇣̃4 ⇣̃5

Figure 5.2: Sequence to sequence model with hard stochastic attention

it to obtain ζ̃t (the attention weighting over the source positions at time t (Parikh

et al., 2016a)). We then compute the context vector as follows:

ct =
N

∑
i=1

ζ̃t,ihi.

We can see here that if ζ̃t is treated as the parameters of a categorical distribu-

tion Categorical(zt; ζ̃t), soft alignment is in fact computing the expectation of the

representation according to the distribution:

ct = ECategorical(zt;ζ̃t)
[hat] .

What makes this form of attention “late fusion” is that our definition of ct is de-

fined as a function of gt rather than in terms of gt−1, as done in “early fusion”.

Stochastic Hard Attention. As an alternative to the deterministic computation

of ct, we can also define this stochastically. To do so we compute the weighting

60

vector ζ̃t as above, but we instead treat it as the parameter of a categorical dis-

tribution and sample a position in the source sentence represented as a one-hot

encoding; ct is the defined as the source encoding indexed by this sampled posi-

tion:

zt ∼ Categorical(zt; ζ̃t) (5.1)

ct = hzt . (5.2)

Word generator. Given our context vector ct, which contains the result of the

attention (computed either stochastically or deterministically), and gt, the token

yt is generated as follows:

pt = softmax(W[gt; ct] + b)

yt ∼ Categorical(pt).

5.2.1 Marginal likelihood and training objective

To train the model with stochastic attention, it is necessary to optimize the marginal

likelihood of the training data. Because we use “late fusion”, zt and zt+1 are inde-

pendent given x. Therefore, we can be computed in time O(MN) as follows:

p(y | x) = ∑
z

p(y, z | x) (5.3)

=
M

∏
t=1

N

∑
zt=1

p(zt | x, y<t)p(yt | zt, x, y<t), (5.4)

where the probabilities are defined as above. M is the length of the source sentence

and N is the length of the target sentence.

The training objective is the negative log-likelihood,

L = − log p(y | x).

61

5.2.2 Decoding

Most simply, one can jointly sample (or greedily maximize) sequences of z, y given

an input x. However, the same independence assumption means that generating

samples from the marginal distribution is possible. For the translation results

reported in this paper, we perform a simple greedy search, alternating between

choosing the next best alignment and choosing the next best output symbol.

5.3 Approximating the Marginal Likelihood

Exact calculation of the marginal likelihood for models with latent variables is,

in general, intractable. Furthermore, although strictly tractable, Eq. 5.4 is costly

to compute relative to deterministic attention. Although the time complexity of

the them are both O(MN), the stochastic version requires to compute M times

softmax over the full vocabulary at every timestep on the decoder side, while de-

terministic attention mechanism only requires to compute the softmax once every

timestep on the decoder side. We therefore consider a variety of strategies for

approximating this quantity.

Variational lower bound. Variational inference (Jordan et al., 1999; Blei et al.)

is a widely method for approximating probability densities which are difficult to

compute. The main idea behind variational inference is to find a approximate

distribution q that is easy to deal with and use that q to construct a lower bound

for the original posterior distribution to optimize. We use variational inference to

62

approximate the marginal likelihood in Equation 5.4 as follows:

log p(y | x) = log ∑
z

p(y, z | x) (5.5)

=
M

∑
t=1

log
N

∑
zt=1

p(zt | x, y<t)p(yt | zt, x, y<t) (5.6)

=
M

∑
t=1

log
N

∑
zt=1

p(yt, zt | x, y<t) (5.7)

≥
M

∑
t=1

E
q

log
p(yt, zt | x, y<t)

q(zt)
(5.8)

=
M

∑
t=1

E
q

log p(yt, zt | x, y<t) + H(q) (5.9)

Here q is the variational approximation, an approximate distribution created to

make inference easier. H(q) defines the entropy of the q distribution.

In the literature of neural variational inference, the approximate distribution q

is often referred as a recognition model (Salakhutdinov and Larochelle, 2010; Mnih

and Gregor, 2014; Rezende et al., 2014). The parameters in the q distribution come

from the neural networks. We parameterize this recognition model basically the

same way as we parameterize the categorical distribution in Equation 5.2, except

the hidden representations on the target side of the recognition model are com-

puted from a bi-directional LSTM conditioning on the whole y structure instead

of the uni-directional (forward) LSTM conditioning on the history y<t. The pa-

rameters are not shared between the recognition model and the encoder/decoder.

We use the Monte Carlo method to approximate the expectation under the q dis-

tribution. Equation 5.9 can be approximated using:

log p(y | x) ≤
M

∑
t=1

E
q

log
p(yt, zt | x, y<t)

q(zt)
(5.10)

≈
M

∑
t=1

1
K
(

K

∑
i=1

log p(yt, z̃t
(i) | x, y<t)

q(z̃t
(i))

) (5.11)

63

where z̃t
(i) is ith sample from the q distribution (i.e., the recognition model), we

take K samples in total.

REINFORCE. Another way to approximate the marginal likelihood is to use the

REINFORCE algorithm (Williams, 1987, 1992). It can be essentially seen as a one-

sample approximation of the original marginal likelihood objective in Equation

5.4:

p(y | x) =
M

∏
t=1

N

∑
zt=1

p(zt | x, y<t)p(yt | zt, x, y<t) (5.12)

=
M

∏
t=1

p(z̃t | x, y<t)p(yt | z̃t, x, y<t) (5.13)

where z̃t is sampled from the Categorical distribution in Equation 5.2.

5.4 Experiment: Deterministic vs. Stochastic Atten-

tion

We conducted our experiments for translating from Chinese to English. The ex-

periments focus on a (simulated) low resource setting, where only a limited amount

of training data is available.

We used the BTEC corpus, where the number of training sentence pairs is

44,016. We followed the standard split in this data set, using ‘devset1 2’ as the

development and ‘devset 3’ as test set and in both cases, we used the first refer-

ence for evaluation.

For all the models, we used word embedding dimensions D of 128 and search

over hidden dimensions H of {64, 128} in 2-layer LSTMs. We tuned the dropout

rate in the grid of {0.2, 0.3, 0.4, 0.5} to maximize validation set likelihood. In all the

experiments, we use the stochastic gradient decent algorithm and set the step size

64

Model Inference BLEU Perplexity

Deterministic – 31.87 5.25

Stochastic exact 31.91 4.65

Stochastic variational 30.10 5.40

Stochastic REINFORCE 29.85 5.31

Table 5.1: Deterministic vs. Stochastic Attention.

to be 0.1 to optimize the parameters in the models. All parameters were initialized

according to recommendations given by Glorot and Bengio (2010). We give each

setting 3 times of random initialization and pick the best among these.

We measure the BLEU score and perplexity (PPL). Log probabilities of the tar-

get side words are normalized by the number of target side words, then inverted

and exponentiated to yield the perplexity (lower perplexity suggests better per-

formance). When computing the perplexity, we always use the exact marginal

likelihood so that it is fair to compare perplexity of approximate inference meth-

ods because we do not approximate perplexity during the evaluation. For the

BLEU score, we use greedy decoding (§5.2.2) and use the single best prediction

for evaluation.

Table 5.1 shows the comparison between deterministic and stochastic atten-

tion mechanisms. We use our own implementation of the deterministic attention

sequence-to-sequence model as the baseline and test the performance of three dif-

ferent variants (i.e., the exact marginal objective (exact; Equation 5.4, the vari-

ational lower bound objective (variational; Equation 5.9) and the REINFORCE

algorithm (REINFORCE; Equation 5.13)) of our stochastic attention sequence-to-

sequence model. The later two variants are approximating methods.

We find that introducing the stochastic variable for the alignments, although

the exact version achieves the best BLEU score and perplexity, does not improve

65

the performance of the model significantly. The reason behind this might be that,

as a general-purpose function approximators, the current neural networks has no

strong inductive bias to bring the power of those stochastic attention fully in to

play. In fact, there is a chance that the model will ignore these stochastic variables

and degenerate into a pure sequence-to-sequence model, especially in the low

resource setting where the training set is not so large and thus easy to fit. For

the approximate methods, because the variance of the samples can be large, they

harm the performance of the system. These motivate us to regularize the posterior

distributions of the latent alignment decisions using the posteriors computed from

IBM model 2 (Brown et al., 1993; Dyer et al., 2013) in the next section (§5.5).

5.5 Posterior Regularization

Neural networks are powerful approximators that can fit noisy data or, when

stochastic units are present, explain away stochastic latent variables (Chen et al.,

2017; Zhang et al., 2017). They tend not to use more sophisticated stochastic mech-

anisms, because with the expressiveness offered by the nonlinearity, just observ-

ing input patterns the model can explain the data quite well. We find evidence

that this is happening in our model. It is easy for the neural models to achieve

high performance on the training set, but on the testing set. It may not generalize

well. That is the reason people introduces many regularization strategies, for ex-

ample the dropout method which almost become a essential in the neural network

training procedure.

For these reasons, we should not let the neural networks arbitrarily fit the

stochastic units. Because these units represent the alignment structures, they

should be linguistically sound. The aligned parts should share the same/similar

semantic meanings in different languages. Our regularization strategy is inspired

66

by posterior regularization (Ganchev et al., 2010), but rather than imposing declar-

ative moment constraints on the posteriors, we regularize the posterior distribu-

tions over the latent variables to be similar to posterior distributions obtained

from models that make stronger independence assumptions and therefore use

their latent variables (rather than the deterministic autoregressive component) to

explain the outputs.

Exact regularized objective. In the framework of posterior regularization (Ganchev

et al., 2010), we can compute the loss as follows:

L = − log ∑
z

p(y, z | x) + γ× DKL(p(z | x, y) || q̃(z)), (5.14)

where DKL denotes the Kullback–Leibler divergence (Kullback and Leibler, 1951)

and γ ≥ 0 is the hyperparameter which controls the regularization strength. We

use q̃ instead of q here to emphasize that the q̃ here is a fixed distribution. There are

no parameters in the q̃ distribution for the model to optimize, different from the q

in Equation 5.9. We follow this notation convention when we discuss important

sampling methods in the next sections.

To compute posterior p(z | x, y), we follow the definition of conditional prob-

ability:

p(z | x, y) =
p(y, z | x)

∑z p(y, z | x)
, (5.15)

where p(y, z | x) can be computed same way as in Equation 5.4.

Now the only question remains is how to choose the distribution q. For that,

we use a model which makes stronger independence assumptions. As an essential

part in the statistical machine translation (SMT) systems, IBM model 2 (Brown

et al., 1993; Dyer et al., 2013) is a natural choice for the q̃ distribution. For the

importance sampling and Jensen important sampling, we also use this as the q̃

distribution.

67

Indirect regularization via importance sampling Importance sampling (IS) (Doucet

and Johansen, 2009) is a general approximation technique and it has a theoretical

guarantee that if the true posterior is used as the approximate distribution, the

importance sampling estimator would have zero variance (Mnih and Rezende,

2016). IBM model 2 in this case, makes a sensible q̃ distribution here because it is

a good approximation for the true alignment structure information.

log p(y | x) = log ∑
z

p(y, z | x) (5.16)

=
M

∑
t=1

log
N

∑
zt=1

p(zt | x, y<t)p(yt | zt, x, y<t) (5.17)

=
M

∑
t=1

log
N

∑
zt=1

p(yt, zt | x, y<t) (5.18)

=
M

∑
t=1

log
N

∑
zt=1

q̃(zt)w(zt, x, y) (5.19)

=
M

∑
t=1

E
q̃

w(zt, x, y), (5.20)

where,

w(zt, x, y) =
p(yt, zt | x, y<t)

q̃(zt)
(5.21)

defines the importance weights.

A variant of importance sampling we refer it as Jensen importance sampling

(Jensen IS). Inspired by Mnih and Rezende (2016), when we consider the varia-

tional lower bound objective in Equation 5.9, one reason it does not work so well

might be that the samples from the q distribution has too high variance. Therefore,

if we replace that with a fixed distribution q̃ from IBM model 2, we will achieve

68

variance reduction here and may achieve better performance.

log p(y | x) = log ∑
z

p(y, z | x) (5.22)

=
M

∑
t=1

log
N

∑
zt=1

p(zt | x, y<t)p(yt | zt, x, y<t) (5.23)

=
M

∑
t=1

log
N

∑
zt=1

p(yt, zt | x, y<t) (5.24)

≥
M

∑
t=1

E
q̃

log
p(yt, zt | x, y<t)

q̃(zt)
(5.25)

=
M

∑
t=1

E
q̃

log p(yt, zt | x, y<t)− H(q̃) (5.26)

(5.27)

The derivation of Jensen importance sampling (Jensen IS) is almost the same as in

the derivation of the variational lower bound in Equation 5.9. The key difference is

that, here q̃ is a fixed distribution rather than a parameterized recognition model.

Because of this, when we optimize this objective, we are effectively optimizing the

importance sampling objective expect that we do not divide the p(yt, zt | x, y<t)

term by the approximate distribution since H(q̃) is a fixed value for a given q̃

distribution.

5.6 Experiment: The Effect of Posterior Regulariza-

tion

In these experiments, we follow the same setting as in §5.4. We tuned the γ in the

exact posterior regularization objective in the grid of 0.1, 1, 10 by picking the best

value using the separate development data. We report the BLEU score and the

perplexity on the test set.

69

Model Inference PR BLEU Perplexity

Deterministic – none 31.87 5.25

Stochastic exact none 31.91 4.65

Deterministic – full 32.48 5.20

Stochastic exact full 35.17 4.03

Stochastic IS approximate 34.68 4.04

Stochastic Jensen IS approximate 35.40 3.94

Table 5.2: The effects of posterior regularization.

Table 5.2 shows that adding the information from alignment structures in the

framework of posterior regularization generally improves the performance of the

model. In the deterministic attention version, we add the KL distance between

q̃(zt) andCategorical(zt; ζ̃t) as a term to simulate the PR penalty. Chen et al. (2016)

used this approach to bias the attention mechanism of a sequence-to-sequence

neural machine translation (NMT) model towards the well-studied statistical word

alignment models. It is not in the framework of posterior regularization but the

closest we think to use the information from the alignment structure information

in the q̃ distribution. We find this underperforms our stochastic model.

Approximations based on importance sampling is either as good as or better

than the exact objective in terms of held-out generalization, suggesting a compu-

tationally effective way to add these inductive bias introduced by the alignment

structure information into the model. With our current implementation, running

approximate methods is about 5 times faster than computing the exact objective

on the same hardware.

70

5.7 Related Work

Neural sequence to sequence models with stochastic attention have been explored

twice, and both used a kind of regularization of the posterior values. Wang et al.

(2017b) used an HMM dependency on the zt’s, and trained with an EM algo-

rithm whose initial “E-step” values were set to the posteriors computed from IBM

Model 1 (similar in structure to the q̃ we used). Yu et al. (2016) assumed a latent

variable parameterized as a series of independent Bernoulli trials initialized to

favor a diagonal alignment.

Initializing complex models using parameters and/or posteriors derived from

latent variables from simpler models that make more independence assumptions

has an enduring history, and has been particularly effective for alignment mod-

els (Brown et al., 1993; Och and Ney, 2003; Gimpel and Smith, 2012).

Our training objective is related to posterior regularization (Ganchev et al.,

2010). However, PR was proposed as a strategy for correcting the biases associated

with overly naı̈ve statistical models. In other words, while PR was designed to

deal with errors arrising from overly biased models, we have used it to deal with

models that make errors due to high variance.

Our posterior regularization approach is also related to (Smith and Eisner,

2006), where their task is unsupervised dependency parsing, and they regularize

their posteriors to be close to a simple length-based model.

5.8 Conclusion

In this chapter, we further strengthen the inductive biases introduced by the align-

ment structures in two ways. First, we explicitly model the alignment decisions

in the probabilistic framework by replacing the soft weighting scheme with a

hard (but stochastic) decision. Second, we regularize the posterior distributions

71

of the latent alignment decisions using the posteriors computed from IBM model

2 (Brown et al., 1993; Dyer et al., 2013). This alleviates the problem that neural

networks can fit noisy data or explain away stochastic latent variables, because

they are general-purpose function approximators (Chen et al., 2017; Zhang et al.,

2017). We propose both an exact training objective based on analytical marginals,

and several approximations based on importance sampling that are suitable when

exact marginals cannot be computed. We show that by adding the helpful induc-

tive biases leads to substantially improved generalization. The approximations

based on importance sampling (which is therefore suitable for problems with in-

tractable marginals) is either as good as or better than the exact objective in terms

of held-out generalization.

72

Chapter 6

Conclusion and Future work

The work presented in this thesis describes several instances of how adding lin-

guistic driven inductive biases can improve the performance of the neural repre-

sentation learners for NLP problems, without sacrificing computational efficiency.

Neural nets can enrich the expressive power of probability distributions in a

similar manner to latent variables and marginalization. We stress the importance

of explicitly representing structure in neural models. We show that the linguistic

driven inductive biases can regularize the model while keep the expressiveness

of the neural networks. When comparing with structurally naive models, models

that reason about the internal linguistic structure of the data demonstrate better

generalization performance.

The techniques proposed in thesis automatically learn the structurally informed

representations of the inputs. These representations and components in the mod-

els can be better integrated with other end-to-end deep learning systems within

and beyond NLP (Cho et al., 2014b; Graves et al., 2013, inter alia).

73

There are many interesting directions that can be explored further in the future.

We discuss three of them in the following.

Segment Structures in Neural Machine Translation Segment structures are proved

to be very useful in machine translation (Koehn, 2009). However, in most sequence-

to-sequence based neural machine translation systems, segment structures are

mostly ignored. Recent work by Huang et al. (2017) showed promising results

by introducing segment information into their model. In chapter 3 we introduce

to model the segments explicitly using SRNNs. Future work can explore how

to effectively use these segment embeddings and combine them with effective

phrase-based decoding algorithms such as (Chang and Collins, 2017) on the de-

coder side.

Automatic Linguistic Structure Discovery Linguists have found that language

meaning is derived through composition (Manning, 2016). In this thesis, we show

that explicitly modeling of these structures improves the performance of neural

representation learners. In chapter 4, these structures are learned in a fully super-

vised fashion. One promising direction is to use reinforcement learning to auto-

matically discover these structures from the distance supervision of the end task.

Yogatama et al. (2016) show promising results of learning tree structures this way.

Because DRAGNN can encode many different types of linguistic structures, it can

be interesting to explore how to automatically construct those structures and how

different kinds of linguist structures work together to affect the performance of

the end task.

Hard Constraints in Attention Mechanism A key challenge in phrase-based

machine translation is to solve the inference problem of finding the best trans-

lation given the constrain that each source-language word must be exactly once

74

(Koehn et al., 2003; Chang and Collins, 2011; Rush, 2012). In Chapter 5 we show

that regularize the posterior distributions of the latent alignment decisions in the

discrete stochastic attention model leads to substantially improved generalization.

Future work can explore if we can effectively hard constraints, such as attending

to each source-language word exactly once, into the framework and to see if these

constraints improve or harm the performance of the model.

75

76

Bibliography

Abdel-Hamid, H. (2013). Structural-Functional Analysis of Plant Cyclic Nucleotide

Gated Ion Channels. PhD thesis, University of Toronto.

Abdel-Hamid, O., Deng, L., Yu, D., and Jiang, H. (2013). Deep segmental neural

networks for speech recognition. In Proc. INTERSPEECH, pages 1849–1853.

Amodei, D., Anubhai, R., Battenberg, E., Case, C., Casper, J., Catanzaro, B., Chen,

J., Chrzanowski, M., Coates, A., Diamos, G., Elsen, E., Engel, J., Fan, L., Fougner,

C., Han, T., Hannun, A., Jun, B., LeGresley, P., Lin, L., Narang, S., Ng, A., Ozair,

S., Prenger, R., Raiman, J., Satheesh, S., Seetapun, D., Sengupta, S., Wang, Y.,

Wang, Z., Wang, C., Xiao, B., Yogatama, D., Zhan, J., and Zhu, Z. (2015). Deep

speech 2: End-to-end speech recognition in english and mandarin. arXiv preprint

arXiv:1512.02595.

Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S.,

and Collins, M. (2016). Globally normalized transition-based neural networks.

Proc. ACL.

Attardi, G. and Dell’Orletta, F. (2009). Reverse revision and linear tree combina-

tion for dependency parsing. In Proceedings of Human Language Technologies: The

2009 Annual Conference of the North American Chapter of the Association for Compu-

tational Linguistics, Companion Volume: Short Papers, pages 261–264. Association

for Computational Linguistics.

77

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by

jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

Bahdanau, D., Cho, K., and Bengio, Y. (2015a). Neural machine translation by

jointly learning to align and translate. ICLR.

Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., and Bengio, Y. (2015b).

End-to-end attention-based large vocabulary speech recognition. CoRR,

abs/1508.04395.

Blei, D., Kucukelbir, A., and McAuliffe, J. Variational inference: A review for

statisticians. 2016. arXiv preprint arXiv:1601.00670.

Bornschein, J. and Bengio, Y. (2015). Reweighted wake-sleep. In Proc. ICLR.

Bowman, S. R., Gauthier, J., Rastogi, A., Gupta, R., Manning, C. D., and Potts,

C. (2016). A fast unified model for parsing and sentence understanding. arXiv

preprint arXiv:1603.06021.

Brown, P. F., Della Pietra, V. J., Della Pietra, S. A., and Mercer, R. L. (1993). The

mathematics of statistical machine translation: parameter estimation. Computa-

tional Linguistics, 19(2):263–311.

Burda, Y., Grosse, R., and Salakhutdinov, R. (2016). Importance weighted autoen-

coders. In Proc. ICLR.

Chan, W., Jaitly, N., Le, Q. V., and Vinyals, O. (2015). Listen, attend, and spell.

CoRR, abs/1508.01211.

Chang, Y.-W. and Collins, M. (2011). Exact decoding of phrase-based translation

models through lagrangian relaxation. In Proceedings of the Conference on Empir-

ical Methods in Natural Language Processing, EMNLP ’11, pages 26–37, Strouds-

burg, PA, USA. Association for Computational Linguistics.

Chang, Y.-W. and Collins, M. (2017). A Polynomial-Time dynamic programming

algorithm for Phrase-Based decoding with a fixed distortion limit. Transactions

78

of the Association for Computational Linguistics, 5(0):59–71.

Chen, D. and Manning, C. D. (2014). A fast and accurate dependency parser using

neural networks. In Proc. EMNLP.

Chen, S. F. and Goodman, J. (1996). An empirical study of smoothing techniques

for language modeling. In Proceedings of the 34th annual meeting on Association

for Computational Linguistics, pages 310–318. Association for Computational Lin-

guistics.

Chen, W., Matusov, E., Khadivi, S., and Peter, J.-T. (2016). Guided alignment train-

ing for Topic-Aware neural machine translation.

Chen, X., Kingma, D. P., Salimans, T., Duan, Y., Dhariwal, P., Schulman, J.,

Sutskever, I., and Abbeel, P. (2017). Variational lossy autoencoder. In Proc. ICLR.

Cho, K. et al. (2014a). Foundations and advances in deep learning.

Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., and Bengio,

Y. (2014b). Learning phrase representations using RNN encoder-decoder for

statistical machine translation. Pro. EMNLP.

Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., and Bengio, Y. (2015).

Attention-based models for speech recognition. In Advances in Neural Informa-

tion Processing Systems, pages 577–585.

Dong, D., Wu, H., He, W., Yu, D., and Wang, H. (2015). Multi-task learning

for multiple language translation. In Proceedings of the 53rd Annual Meeting of

the ACL and the 7th International Joint Conference on Natural Language Processing,

pages 1723–1732.

Doucet, A. and Johansen, A. M. (2009). A tutorial on particle filtering and smooth-

ing: Fifteen years later. Handbook of nonlinear filtering, 12(656-704):3.

Dozat, T. and Manning, C. D. (2017). Deep biaffine attention for neural depen-

dency parsing. arXiv preprint arXiv:1611.01734.

79

Durrett, G. and Klein, D. (2015). Neural CRF parsing. In Proc. ACL.

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., and Smith, N. A. (2015).

Transition-based dependency parsing with stack long short-term memory. In

Proc. ACL.

Dyer, C., Chahuneau, V., and Smith, N. A. (2013). A simple, fast, and effective

reparameterization of ibm model 2. Association for Computational Linguistics.

Dyer, C., Kuncoro, A., Ballesteros, M., and Smith, N. A. (2016). Recurrent neural

network grammars. Proc. NAACL.

Filippova, K. and Altun, Y. (2013). Overcoming the lack of parallel data in sentence

compression. In EMNLP, pages 1481–1491. Citeseer.

Ganchev, K., Graça, J., Gillenwater, J., and Taskar, B. (2010). Posterior regulariza-

tion for structured latent variable models. 11:2001–2049.

Gimpel, K. and Smith, N. A. (2012). Concavity and initialization for unsupervised

dependency parsing. In Proc. NAACL.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep

feedforward neural networks. In International conference on artificial intelligence

and statistics, pages 249–256.

Goller, C. and Kuchler, A. (1996). Learning task-dependent distributed represen-

tations by backpropagation through structure. In Neural Networks, 1996., IEEE

International Conference on, volume 1, pages 347–352. IEEE.

Graff, D. and Chen, K. (2005). Chinese gigaword. LDC Catalog No.: LDC2003T09,

1.

Graves, A. (2012a). Hierarchical subsampling networks. In Supervised Sequence

Labelling with Recurrent Neural Networks, pages 109–131. Springer.

Graves, A. (2012b). Sequence transduction with recurrent neural networks. In

80

Proc. ICML.

Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006a). Connectionist

temporal classification: labelling unsegmented sequence data with recurrent

neural networks. In Proc. ICML.

Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006b). Connectionist

temporal classification: Labelling unsegmented sequence data with recurrent

neural networks. In Proc. ICML.

Graves, A. and Jaitly, N. (2014). Towards end-to-end speech recognition with re-

current neural networks. In Proc. ICML.

Graves, A., Mohamed, A.-R., and Hinton, G. (2013). Speech recognition with deep

recurrent neural networks. In Proc. ICASSP, pages 6645–6649. IEEE.

Graves, A. and Schmidhuber, J. (2005). Framewise phoneme classification with

bidirectional LSTM and other neural network architectures. Neural Networks,

18(5):602–610.

Hannun, A. Y., Case, C., Casper, J., Catanzaro, B. C., Diamos, G., Elsen, E., Prenger,

R., Satheesh, S., Sengupta, S., Coates, A., and Ng, A. Y. (2014). Deep speech:

Scaling up end-to-end speech recognition. CoRR, abs/1412.5567.

He, Y. and Fosler-Lussier, E. (2012). Efficient segmental conditional random fields

for phone recognition. In Proc. INTERSPEECH, pages 1898–1901.

Hochreiter, S. and Schmidhuber, J. (1997a). Long short-term memory. Neural com-

putation, 9(8):1735–1780.

Hochreiter, S. and Schmidhuber, J. (1997b). Long short-term memory. Neural com-

putation, 9(8):1735–1780.

Huang, P.-S., Wang, C., Zhou, D., and Deng, L. (2017). Toward neural phrase-

based machine translation.

81

Ji, Y., Haffari, G., and Eisenstein, J. (2016). A latent variable recurrent neural net-

work for discourse relation language models. arXiv preprint arXiv:1603.01913.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduc-

tion to variational methods for graphical models. Machine learning, 37(2):183–

233.

Kalchbrenner, N. and Blunsom, P. (2013). Recurrent continuous translation mod-

els. EMNLP.

Karpathy, A. and Fei-Fei, L. (2015). Deep visual-semantic alignments for generat-

ing image descriptions. In Proc. CVPR.

Kassel, R. H. (1995). A comparison of approaches to on-line handwritten character recog-

nition. PhD thesis, Massachusetts Institute of Technology.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Kingma, D. P. and Welling, M. (2014). Autoencoding variational Bayes. In Proc.

ICLR.

Kiperwasser, E. and Goldberg, Y. (2016). Simple and accurate dependency parsing

using bidirectional lstm feature representations. ACL.

Klein, G., Kim, Y., Deng, Y., Senellart, J., and Rush, A. M. (2017). Opennmt: Open-

source toolkit for neural machine translation. arXiv preprint arXiv:1701.02810.

Koehn, P. (2009). Statistical Machine Translation. Cambridge University Press.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical phrase-based translation. In

Proceedings of the 2003 Conference of the North American Chapter of the Association

for Computational Linguistics on Human Language Technology - Volume 1, NAACL

’03, pages 48–54, Stroudsburg, PA, USA. Association for Computational Lin-

guistics.

82

Kong, L., Alberti, C., Andor, D., Bogatyy, I., and Weiss, D. (2017). Dragnn: A

transition-based framework for dynamically connected neural networks. arXiv

preprint arXiv:1703.04474.

Kong, L., Dyer, C., and Smith, N. A. (2015). Segmental recurrent neural networks.

Proc. ICLR.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The annals

of mathematical statistics, 22(1):79–86.

Kuncoro, A., Ballesteros, M., Kong, L., Dyer, C., Neubig, G., and Smith, N. A.

(2017). What do recurrent neural network grammars learn about syntax? arXiv

preprint arXiv:1611.05774.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., and Dyer, C.

(2016). Neural architectures for named entity recognition. arXiv preprint

arXiv:1603.01360.

Li, J., Luong, M.-T., Jurafsky, D., and Hovy, E. (2015). When are tree structures

necessary for deep learning of representations? arXiv preprint arXiv:1503.00185.

Ling, W., Dyer, C., Black, A. W., and Trancoso, I. (2015a). Two/too simple adapta-

tions of word2vec for syntax problems. In Proc. NAACL.

Ling, W., Luı́s, T., Marujo, L., Astudillo, R. F., Amir, S., Dyer, C., Black, A. W., and

Trancoso, I. (2015b). Finding function in form: Compositional character models

for open vocabulary word representation. arXiv preprint arXiv:1508.02096.

Liu, Y., Che, W., Guo, J., Qin, B., and Liu, T. (2016). Exploring segment represen-

tations for neural segmentation models. arXiv preprint arXiv:1604.05499.

Lu, L., Kong, L., Dyer, C., Smith, N. A., and Renals, S. (2016). Segmental recurrent

neural networks for end-to-end speech recognition. Proc. Interspeech.

Luong, M., Le, Q. V., Sutskever, I., Vinyals, O., and Kaiser, L. (2015). Multi-task

sequence to sequence learning. CoRR, abs/1511.06114.

83

Maas, A. L., Xie, Z., Jurafsky, D., and Ng, A. Y. (2015). Lexicon-free conversational

speech recognition with neural networks. In Proc. NAACL.

Maddison, C. J., Mnih, A., and Teh, Y. W. (2017). The concrete distribution: A

continuous relaxation of discrete random variables. In Proc. ICLR.

Manning, C. D. (2016). Computational linguistics and deep learning. Computa-

tional Linguistics.

Miao, Y. and Blunsom, P. (2016). Language as a latent variable: Discrete generative

models for sentence compression. In Proc. EMNLP.

Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., and Khudanpur, S. (2010). Re-

current neural network based language model. In Interspeech, volume 2, page 3.

Mitchell, T. M. (1980). The need for biases in learning generalizations. Department of

Computer Science, Laboratory for Computer Science Research, Rutgers Univ.

New Jersey.

Mnih, A. and Gregor, K. (2014). Neural variational inference and learning in belief

networks. arXiv preprint arXiv:1402.0030.

Mnih, A. and Rezende, D. (2016). Variational inference for monte carlo objectives.

In International Conference on Machine Learning, pages 2188–2196.

Nivre, J. (2003). An efficient algorithm for projective dependency parsing. In Pro-

ceedings of the 8th International Workshop on Parsing Technologies (IWPT. Citeseer.

Nivre, J. (2006). Inductive dependency parsing. Springer.

Och, F. and Ney, H. (2003). A systematic comparison of various statistical align-

ment models. Computational Linguistics, 29(1):19–51.

Parikh, A., Täckström, O., Das, D., and Uszkoreit, J. (2016a). A decomposable

attention model for natural language inference. In Proc. EMNLP.

Parikh, A. P., Täckström, O., Das, D., and Uszkoreit, J. (2016b). A decomposable

84

attention model for natural language inference. arXiv preprint arXiv:1606.01933.

Peng, J., Bo, L., and Xu, J. (2009). Conditional neural fields. In Proc. NIPS.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Han-

nemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., and

Vesely, K. (2011). The kaldi speech recognition toolkit. In IEEE 2011 Workshop

on Automatic Speech Recognition and Understanding. IEEE Signal Processing Soci-

ety. IEEE Catalog No.: CFP11SRW-USB.

Rabiner, L. R. (1989). A tutorion on hidden Markov models and selected applica-

tions in speech recognition. Proc. IEEE, 77(2).

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropa-

gation and approximate inference in deep generative models. arXiv preprint

arXiv:1401.4082.

Rush, A. M. (2012). A tutorial on dual decomposition and lagrangian relaxation

for inference in natural language processing. J. Artif. Intell. Res., 45:305–362.

Salakhutdinov, R. and Larochelle, H. (2010). Efficient learning of deep boltzmann

machines. In Proceedings of the Thirteenth International Conference on Artificial

Intelligence and Statistics, pages 693–700.

Sarawagi, S. and Cohen, W. W. (2004). Semi-markov conditional random fields

for information extraction. In Advances in neural information processing systems,

pages 1185–1192.

Smith, N. A. and Eisner, J. (2006). Annealing structural bias in multilingual

weighted grammar induction. In Proceedings of the 21st International Conference

on Computational Linguistics and the 44th annual meeting of the Association for Com-

putational Linguistics, pages 569–576. Association for Computational Linguistics.

Socher, R., Bauer, J., Manning, C. D., and Ng, A. Y. (2013). Parsing with composi-

tional vector grammars. In Proc. ACL, pages 455–465.

85

Socher, R., Huang, E. H., Pennin, J., Manning, C. D., and Ng, A. Y. (2011). Dy-

namic pooling and unfolding recursive autoencoders for paraphrase detection.

In Advances in Neural Information Processing Systems, pages 801–809.

Socher, R., Manning, C. D., and Ng, A. Y. (2010). Learning continuous phrase

representations and syntactic parsing with recursive neural networks. In NIPS-

2010 Deep Learning and Unsupervised Feature Learning Workshop.

Søgaard, A. and Goldberg, Y. (2016). Deep multi-task learning with low level

tasks supervised at lower layers. In Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics, volume 2, pages 231–235.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with

neural networks. In Advances in Neural Information Processing Systems, pages

3104–3112.

Swayamdipta, S., Thomson, S., Dyer, C., and Smith, N. A. (2017). Frame-semantic

parsing with softmax-margin segmental rnns and a syntactic scaffold. arXiv

preprint arXiv:1706.09528.

Tai, K. S., Socher, R., and Manning, C. D. (2015). Improved semantic represen-

tations from tree-structured long short-term memory networks. arXiv preprint

arXiv:1503.00075.

Tang, H., Lu, L., Kong, L., Gimpel, K., Livescu, K., Dyer, C., Smith, N. A., and

Renals, S. (2017). End-to-end neural segmental models for speech recognition.

arXiv preprint arXiv:1708.00531.

Tang, H., Wang, W., Gimpel, K., and Livescu, K. (2015). Discriminative segmental

cascades for feature-rich phone recognition. In Proc. ASRU.

Taskar, B., Guestrin, C., and Koller, D. (2004). Max-margin Markov networks.

NIPS, 16:25.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

86

Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. arXiv preprint

arXiv:1706.03762.

Vinyals, O., Kaiser, Ł., Koo, T., Petrov, S., Sutskever, I., and Hinton, G. (2015).

Grammar as a foreign language. In Advances in Neural Information Processing

Systems, pages 2773–2781.

Wang, C., Wang, Y., Huang, P.-S., Mohamed, A., Zhou, D., and Deng, L. (2017a).

Sequence modeling via segmentations. arXiv preprint arXiv:1702.07463.

Wang, P., Qian, Y., Soong, F. K., He, L., and Zhao, H. (2015). A unified tagging

solution: Bidirectional lstm recurrent neural network with word embedding.

arXiv preprint arXiv:1511.00215.

Wang, T. and Cho, K. (2015). Larger-context language modelling. arXiv preprint

arXiv:1511.03729.

Wang, W., Zhu, D., and Ney, H. (2017b). Hybrid neural network alignment and

lexicon model in direct HMM for statistical machine translation. In Proc. ACL.

Weiss, D., Alberti, C., Collins, M., and Petrov, S. (2015). Structured training for

neural network transition-based parsing. ACL.

Williams, R. J. (1987). A class of gradient-estimating algorithms for reinforcement

learning in neural networks. In Proceedings of the IEEE First International Confer-

ence on Neural Networks San Diego, CA.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine learning, 8(3-4):229–256.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M.,

Cao, Y., Gao, Q., Macherey, K., et al. (2016). Google’s neural machine transla-

tion system: Bridging the gap between human and machine translation. arXiv

preprint arXiv:1609.08144.

Xue, N., Xia, F., Chiou, F.-D., and Palmer, M. (2005). The Penn Chinese TreeBank:

87

Phrase structure annotation of a large corpus. Natural Language Engineering,

11(2):207–238.

Yogatama, D., Blunsom, P., Dyer, C., Grefenstette, E., and Ling, W. (2016). Learn-

ing to compose words into sentences with reinforcement learning.

Yu, L., Buys, J., and Blunsom, P. (2016). Online segment to segment neural ma-

chine translation. In Proc. EMNLP.

Yu, L., Buys, J., and Blunsom, P. (2017). Online segment to segment neural trans-

duction. arXiv preprint arXiv:1609.08194.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2017). Understanding

deep learning requires rethinking generalization. In Proc. ICLR.

Zhang, M., Zhang, Y., and Fu, G. (2016). Transition-based neural word segmenta-

tion. In Proceedings of the 54nd Annual Meeting of the Association for Computational

Linguistics.

Zhang, Y. and Weiss, D. (2016). Stack-propagation: Improved representation

learning for syntax. In Proc. ACL.

Zweig, G. (2012). Classification and recognition with direct segment models. In

Proc. ICASSP, pages 4161–4164. IEEE.

88

	1 Introduction
	2 Notation and Representations
	3 Segmental Recurrent Neural Networks
	3.1 Model
	3.2 Parameter Learning
	3.3 Inference with Dynamic Programming
	3.3.1 Computing Segment Embeddings
	3.3.2 Computing the most probable segmentation/labeling and Z(bold0mu mumu xx2005/06/28 ver: 1.3 subfig packagexxxx)
	3.3.3 Computing Z(bold0mu mumu xx2005/06/28 ver: 1.3 subfig packagexxxx,bold0mu mumu yy2005/06/28 ver: 1.3 subfig packageyyyy)

	3.4 Connectionist Temporal Classification
	3.5 Experiments
	3.5.1 Online Handwriting Recognition
	3.5.2 Joint Chinese Word Segmentation and POS tagging
	3.5.3 End-to-end Speech Recognition

	3.6 Related Work
	3.7 Conclusion

	4 A Transition-based Framework for Dynamically Connected Neural Networks
	4.1 Background
	4.2 Transition Systems
	4.3 Transition Based Recurrent Networks
	4.3.1 Connecting multiple TBRUs to learn shared representations
	4.3.2 How to Train a DRAGNN

	4.4 Experiments
	4.5 Conclusion

	5 Stochastic Attention and Posterior Regularization for Neural Machine Translation
	5.1 Background
	5.2 Model
	5.2.1 Marginal likelihood and training objective
	5.2.2 Decoding

	5.3 Approximating the Marginal Likelihood
	5.4 Experiment: Deterministic vs. Stochastic Attention
	5.5 Posterior Regularization
	5.6 Experiment: The Effect of Posterior Regularization
	5.7 Related Work
	5.8 Conclusion

	6 Conclusion and Future work
	Bibliography

