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Abstract

Relational or semi-structured data is naturally represented by a graph schema,
where nodes denote entities and directed typed edges represent the relations
between them. Such graphs are heterogeneous in the sense that they describe
different types of objects and multiple types of links. For example, email data
can be described in a graph that includes messages, persons,dates and other
objects; in this graph, a message may be associated with a person with differ-
ent relations, such as ”sent-to”, ”sent-from” and so on. In the past, researchers
have suggested to apply random graph walks in order to elicita measure of
similarity between entities that are not directly connected in a graph. In this
thesis, we suggest a general framework, in which different arbitrary queries
(for instance, ”what persons are most related to this email message?”) are ad-
dressed using random walks. Naturally, there are many typesof queries possi-
ble that correspond to various flavors of inter-entity similarity; several learn-
ing techniques are therefore suggested and evaluated that adapt the graph-walk
based search to a query type.

The framework is applied in the thesis to two different domains. The first
domain is personal information management, where it is shown how seem-
ingly different tasks like alias finding, intelligent message threading and per-
son name disambiguation, can be addressed uniformly as search queries using
the adaptive graph-walk based similarity measure. The second domain eval-
uated is the processing of parsed text, where a graph represents corpora of
structured parsed text, and adaptive graph walks are applied to induce inter-
word similarity measures for tasks such as coordinate term extraction.

Finally, design and scalability considerations are discussed.
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Chapter 1

Introduction

Many tasks of text processing and information retrieval (IR)can be performed by clever
application of textual similarity metrics: in addition to the canonical problem ofad hoc
retrieval, which is often formulated as the task of finding documents “similar to” a query,
textual similarity plays a prominent role in the literaturefor diverse tasks such as text cat-
egorization [141], data integration [27], summarization [116] and document segmentation
[60].

In modern settings, however, documents are usually not isolated objects: instead, they
are frequently connected to other objects, via hyperlinks,meta-data or relational structure.
A few natural examples are XML documents [56], the Semantic Web [6]; or email, where
an email message is connected via header information to other emails and also to the
recipient’s social network [95].

The famous algorithms of PageRank [102] and HITS [75] were innovative in consider-
ing structural hyperlinks as a measure of document similarity, or document relatedness. In
their view, the Web is a network of entities (documents) connected by directed edges (the
physical hyperlinks). In particular, the PageRank model allows randomness in a surfer’s
behavior, such that every document is reachable along the course of a search, either via
following a link or by ‘jumping’ to another page. An infinite random walk in this model
then leads to a steady state, where probability distribution over nodes gives a measure of
document centrality.

As PageRank and its variants study measures of centrality in anetwork, these algo-
rithms discard by definition the initial distribution of thegraph walk. An alternative line
of research in this respect, which has also been used in IR, isspreading activation. As in
the case of linked webpages, spreading activation is applied on entity-relation networks.
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The edges linking the entities may be highly diverse – modeling a semantic taxonomy, for
example. The mechanism of spreading activation includes assigning activation levels to
nodes. Initially, the nodes associated with a given query are activated. Activation then
propagates to adjacent nodes, where the output to the query includes those nodes that are
active after a predefined number of propagation steps. The goal of the spreading activation
framework as it emerged in IR was to enrich a query with related concepts. Unfortunately,
in order to control activation flow effectively, activationpropagation required careful man-
ual design, where activation thresholds, constraints overpaths and other constraints on
activation flow had to be pre-set.

The focus of this thesis is a framework offinite graph walksover entity-relation struc-
tures. Nodes in the underlying graph are typed, and the directed edges are labeled with the
relevant relations. Similarly to PageRank, we are interested in performing a random graph
walk over this entity-relations network. However, as in spreading activation, we are in-
terested in defining an extended measure of similarity between the objects in the network.
We therefore adopt the paradigm ofPersonalized PageRank[102, 57], where we conduct
finite graph walks. In Personalized PageRank, rather than letthe surfer reset the graph
walk randomly in the graph, the reset distribution is biasedto a distribution of interest. If
the reset distribution includes the starting points of the walk, then the probability of reach-
ing nodes in the graph decays exponentially with their distance from the starting points.
Thus, rather than modeling “centrality” of nodes, this typeof a graph walk can be viewed
as propagating “similarity” from a start node through edgesin the graph—incidentally ac-
cumulating evidence of similarity over multiple connecting paths. The resulting similarity
metric can be viewed as atool for performing searchacross the nodes in the graph.

While graph walks extract nodes in the network that are similar by virtue of their
connectivity to the start nodes, the notion of similarity isoften task dependent. Assigning
generic weights to every edge type in the graph can be used to control the probability flow
in the graph. In this thesis we study several approaches to learning to better rank graph
nodes for a given labeled examples: tuning the graph edge weights; re-ranking the list of
nodes output by the graph walk, using features that described global properties of the paths
traversed to reach these nodes; and a path constrained graphwalk variant, in which high-
level information about the usefulness of the paths traversed is used to guide the graph
walk process.

Previously, Personalized PageRank graph walks over graphs have been used for esti-
mating word dependency distributions [136]: in this case, the graph was one constructed
especially for this task, and the edges in the graph represented different flavors of word-to-
word similarity. Other researchers have used graph walks over graphs for query expansion
[140, 33] and other applications. In contrast with past works, in this thesis we are inter-
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ested in a general graph representation of a given domain. Weclaim that if the graph is
not especially engineered for a specific application, then various types of queries can be
performed using the same underlying graph. We expect randomwalks to generate use-
ful similarity measures given arbitrary queries, and applylearning to further adjust the
graph-walk based similarity measure per task.

In the following, we describe the main components of this thesis (Sections 1.1–1.4),
and outline it main contributions (Section 1.5).

1.1 Contextual Search and Disambiguation

Compared with ad-hoc traditional IR, the suggested frameworkhas the advantage of repre-
senting various objects types. In contrast, common IR indexing methods, like the TF-IDF
vector model, are strictly textual. Thus, depending on application design,implicit context
may be easily incorporated in the graph walk search. For example, in email data, terms are
linked to the message file in which they appear; if a user initiates a query while browsing
an incoming message, then the node that represents that email message can be added to
the initial distribution of the graph walk.

Why is such context-enriched (aka, contextual) search useful? the motivation for using
context is two-fold. First, expanding a set of items with related information potentially
increases the recall of a retrieval system. Second, incorporating context also assists in
identifying the search results that are most relevant to thequery settings, thus improving
accuracy. For example, we have shown that graph walks are effective for tasks that involve
entity disambiguation [95]. Consider a term that is known to be a personal name mention,
like “Andrew”. We have shown that the graph-walk based framework is successful in
mapping name mentions to the correspondingpersonnodes in a graph, by virtue of co-
occurrence. However, name mentions in free text are often ambiguous; e.g., “Andrew”
may refer to multiple persons that are included in one’s email collection, such as “Andrew
Ng”, “Andrew McCallum” etc. In such ambiguous cases, starting the graph walk from
both the term and the email file in which this term appeared improves the rankings of the
relevant persons in the output distribution, due to the social network context provided by
file node.

Another important advantage of the graph walk paradigm is that while traditional IR
considers direct links between terms and files, a graph walk over multiple steps allows to
reach items that are only indirectly linked to the query, i.e., via a longer chain of depen-
dencies (considering the similarity of similar objects). This results in improved recall.
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Finally, the representation of data as a graph of linked entities is relatively compact,
and it allows using different contexts per demand efficiently.

The formulation of the suggested framework and a discussionof its properties are
included in Chapter 2.

1.2 Learning

The described graph framework can be used for many types of queries, and it is unlikely
that a single set of edge weights will be optimal. This suggests the goal of learning edge
weights for a particular class of queries. Several researchers have suggested schemes for
adjusting the set of edge weights using hill-climbing methods [39, 100, 4]. This group
of methods can be adjusted from infinite to finite graph walks.We have adapted an er-
ror backpropagation gradient descent algorithm [39] for tuning the graph weights in our
framework.

A different approach that we suggest in this thesis learns tore-order an initial ranking,
using features describing the edges in the traversed graph paths. This method parameter-
izes the graph walk with a set of representative features, and thus loses some information;
however, unlike the graph walk and weight tuning, which can only consider local edge
information, the features modeled can capture high-level properties of the graph walk. For
example, features can describe edge label n-grams, that is,the sequences of edge labels
that construct the set of connecting paths to the target node. Another feature suggested
is source-count, indicating the number of source nodes which have connecting paths to a
candidate node in the output list. This feature models the assumption that output nodes
that were reached from multiple source nodes in the graph walk are more relevant than
those reached from a smaller subset of the start distribution.

As mentioned, a main difference between the weight tuning and the re-ranking ap-
proaches is that adjusting the graph parameters is based on “local” information only, while
a reranker can use features derived from the full paths. However, for practical reasons,
reranking processes only the top nodes retrieved in an initially ranked list, and its perfor-
mance is affected by the quality of the initial ranker. it is therefore desired to incorporate
high-level information already in the graph walk process. We suggest a path constrained
graph walks variant, in which the graph walk process is guided by high-level informa-
tion about path relevancy. In this approach, the edge weights in the graph are estimated
dynamically, given the history of the walk.

The learning settings and methods are described in detail inChapter 3.
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1.3 Case Studies

The proposed framework is general whereas it is applicable to various domains. We inves-
tigate two different domains in this thesis.

One domain studied is Personal Information Management (PIM). We show that email
data, as well as meeting entries and other objects from one’spersonal information orga-
nizer, can be represented as a joint graph, including entities likepersons, dates, email-
addressesetc. We find that unlike other methods, a graph walk over this network naturally
integrates relevant textual and non-textual objects – thatis, it combines text, recipient
information and a timeline. We show that many useful email- and meeting-related appli-
cations can be phrased as search queries in the suggested framework. For example, we
evaluate the tasks ofperson name disambiguation, threading, finding meeting attendees
andfinding email aliases. At least for some tasks, labeled data can be acquired automati-
cally, facilitating the optimization of system performance via learning. We have evaluated
each task individually, comparing it to viable baselines. The conducted experiments, using
multiple corpora (including the public Enron corpus) show that the proposed framework
performs favorably to other methods. Beyond the “hard” performance measures consid-
ered, we believe that the search framework in which ranked results are presented to the user
is adequate for the purpose of personal information management. In particular, a human
user who is reasonably familiar with the data can quickly validate the relevance of the re-
turned items in the list, scanning it top-down. It would be the user’s decision then at which
rank in the list to stop, depending on his personal preference given the precision-recall
trade-off.

Chapter 4 provides an overview of personal information representation as a graph, and
the related tasks. In addition to the above-mentioned tasks, we also define a set of activity-
centered tasks, where the query consists of afolder that represents a user activity. The
empirical evaluation of all tasks includes the graph walks in combination with the various
learning methods, comparing them against relevant baselines.

A second domain that we apply our framework to is processing of parsed text. We
suggest representing word mentions as nodes, and the syntactic structure that binds these
words as labeled edges denoting inter-word relations. In particular, we consider depen-
dency parse structures. A representation schema is suggested that unifies individual de-
pendency structures derived per sentence from a large corpus (or several corpora) in a
single graph. We apply graph walks and learning to adapt an extended textual similarity
measure that considers the immediate relations between words as well as long-distance de-
pendencies. Given a sufficiently large graph, an example application is to search for items
similar to a word or a concept of interest. In particular, we show that the task of coordinate
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term extraction from parsed corpora can be phrased as a queryin this framework, where
the query defines a seed of relevant items. This task, which has drawn some interest in the
research community in recent years, is useful for automaticor semi-automatic construction
of knowledge bases. A detailed evaluation is given for city name and person name coor-
dinate term extraction. It is shown that for small corpora, the graph-based approach gives
better results than alternative vector-space methods, including a syntactic state-of-the-art
model [101]. Additional experiments of general word synonymy extraction are described,
and shown to give encouraging results.

The proposed graph representation of parsed text and the empirical evaluation of the
related tasks are described in Chapter 5.

1.4 Implementation Considerations

Given the case studies of personal information management and parsed text processing,
we are interested in drawing general conclusions regardingthe design considerations of
this framework.

Regarding the parameters involved in the graph walk process,we show that the graph
walk length affects performance in general, and that short graph walks are preferable in
some cases. In addition, we show that the choice of graph walkvariant may affect perfor-
mance as well.

Considering the set of learning approaches, we show that high-level information is use-
ful in some problems. For example, path information is highly informative in the language
domain, where local graph walks and weight tuning assign high weights to proximate
yet irrelevant nodes. We also show that the path constrainedwalk approach is effective
in eliminating irrelevant paths and improving performance. The path constrained walk
paradigm involved additional cost in terms of runtime in ourexperiments; however, apply-
ing a threshold to the path constrained graph walk schema canimprove both its accuracy
and scalability.

Overall, processing times, given short walk length and medium-sized corpora (up to
100K nodes) are fast and appropriate for online settings, where the graph walks are com-
puted ‘on-the-fly’. Other algorithms developed that improve the scalability of the Person-
alized PageRank paradigm for larger graphs can be readily implemented in our framework.

The design and scalability aspects related to the proposed framework are discussed in
Chapter 6.
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1.5 Summary of Thesis Contributions

Following is a summary of the main contributions of this thesis.

• The thesis presents a general framework that uses finite random graph walks to gen-
erate an inter-entity similarity measure in the graph, where the generated similarity
measure can be further adapted per task with learning.

• It is claimed and shown that given a general representation of structured and semi-
structured data, multiple tasks can phrased as queries in the same underlying graph.

• The thesis presents the concept of learning to rank graph walk using global informa-
tion, as opposed to the graph walk and known weight tuning methods that consider
only local information.

• Reranking is applied as a learning approach for improving graph walks; and a set of
generic task-independent global features is suggested.

• A method of path constrained walks is proposed, that incorporates global features in
the graph walk process.

• The framework is applied to the personal information management domain, where
a variety of tasks, some of which are novel, are addresses uniformly as queries;
performance is shown to exceed alternative methods for someof the tasks evaluated.

• The framework is applied to the domain of parsed text processing, where it is shown
to give superior results to state-of-the-art method for small corpora.

• Empirical evaluation shows that finite graph walks give better performance than
infinite graph walks in some cases.
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Chapter 2

Framework

In this chapter, we begin with the formalization of the graphschema and present a user
interface, including a query language for using graph similarities (Section 2.1). We then
define random graph walks as a technique of choice for evaluating the similarity of the
graph nodes to a given query (Section 2.2). The applicability of the framework and the
various motivations for using the framework are discussed in Chapter 2.3. Finally, in
Section 2.4, we review research related to the framework in general, and to graph walks as
a method for evaluating similarity in graphs in particular.

2.1 Definitions and Notation

This section defines relevant notations in terms of the underlying graph structure and the
interface between a user and the system. In general, the graph is assumed to be directed,
where typed nodes represent entities and labeled edges represent the relations between
them. The interface defined consists of a query language thatallows the user to search for
similarity between any entities represented in the graph, where the response provided is in
the form of a ranked list. Another component of the user-system interface isuser feedback
that includes judgments about which nodes are relevant to a query. Finally, we define the
notion oftasks, relating to query classes, as various flavors of inter-nodesimilarity may be
sought in a single graph.
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2.1.1 The Graph

A graphG =< V,E > consists of a set of nodesV, and a set of labeled directed edgesE.
Nodes will be denoted by letters such asx, y, or z, and we will denote an edge fromx to

y with label` asx
`−→ y. Every nodex has a type, denotedτ(x), and we will assume that

there is a fixed set of possible types. We will assume for convenience that there are no
edges from a node to itself (this assumption can be easily relaxed). We will assume that

edge labels determine the source and target node types: i.e., if x
`−→ z andw

`−→ y then
τ(w) = τ(x) andτ(y) = τ(z). However, multiple relations can hold between any particular

pair of node types: for instance, it could be thatx
`−→ y andx

`′−→ y, where` 6= `′. Note
also that edges need not denote functional relations: for a given x and `, there may be

many distinct nodesy such thatx
`−→ y. Finally, for every edge in the graph there is an

edge going in the other direction, denoting an inverse relation. This implies that the graph
is cyclic and highly connected.

Figure 2.1: A simple example of the considered graph scheme

For example, consider the graph depicted in Figure 2.1. In the figure, node types are
denoted by the different shapes of a circle, square and hexagon. The edges have different
types as well, denoted by different line styles. Suppose that a circle represents a node
of typeperson, a square represents anemail message, and an hexagon stands for aterm.
The dotted edges (e.g.,m1 → t1) may then represent a relation ofhas-term, pointing from
a message node to the terms it contains. (For simplicity, theedges are marked as bi-
directional in the Figure; in practice, however, the inverse relation – e.g.,has-term-inverse
– is represented by a separate edge in the opposite direction). Similarly, the dashed edges
may represent a relation ofsent-from, directed from anemail messagenode to aperson
node that is the sender of that message. As shown in the figure,there may be multiple types
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of relations between the same types of nodes. For example,email-messagesare connected
to personnodes also over a relation ofsent-to. This relation is denoted by solid edges in
the figure.

2.1.2 Graph-based Similarity and Query Language

Given a graph that represents entities and their inter-entity relations, we are interested
in inducing a general similarity measure between entities in the graph.1 That is, we are
interested in evaluating similarity between entities thatare not directly connected, based
on the information encoded in the graph. For example, according to the schema described
in Figure 2.1,messagesare not directly inter-connected in the graph; rather,messagesare
linked to thetermsthey contain, topersonswho are recipients or the sender of the message,
etc. As the graph represents a heterogeneous domain, containing multiple types of entities
and relations, a good similarity measure should integrate multiple types of evidence into a
single similarity score.

In this thesis, we take an information retrieval approach, where given a query, which
is anycombination of entities, a list of entities, ranked by theirsimilarity to the query, is
returned to a user. Formally, we define a query language, as follows.

Definition 1 A queryincludes an initial distribution Vq over nodes, and a desired output
typeτout.

Definition 2 A responseto a query< Vq,τout > is a ranked list of nodes z of typeτout.

Consider our running example. In the described domain, one may wish to find people
that are related to a particular term, such as “learning”. Ingeneral, a term or a set of terms
may represent a concept of interest, corresponding as a project name, or specialized key
words. The relevant query in this case is< Vq = {t2},τout =‘person’> (where the term
“learning” is represented by the graph nodet2).

2.1.3 Tasks and Feedback

Queries can be specified ad-hoc and arbitrarily by a user, according to the definition above.
However, it is reasonable to expect that particularquery typesbe executed frequently or
on a regular basis in a given domain. We definetasks(or, query types), as follows.

1We use similarity and relatedness interchangeably.
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Definition 3 A task is a distinct relation r sought between a query distribution Vq and
nodes of the specified typeτout in the graph. Queries Q1 and Q2 are instances of the same
task if Vq1 and Vq2 include nodes of the same types, and if both queries are to retrieve nodes
of typeτout1 = τout2 that are related to Vq1 and Vq2, respectively, with the same relation r.

Notice that it is optional to specify the relevant task (r) along with a query<Vq,τout >.

As examples of possible relations, consider the queries<Vq = {t =“learning”},τout =‘person’>
and< Vq = {t =“recruiting”},τout =‘person’>. These queries are instances of an asso-
ciation between a topic (represented byterms) andpersons. A terms-personsmapping
query can also reflect a different notion of entity relatedness. For example, in the query
< Vq = {t =“Bill” },τout =‘person’>, a user may be specifically interested in retrieving
persons who are referred to by the name Bill. Similarly, a usermay be interested in re-
trieving messagesthat are topically similar to a givenmessage, or in recovering athread,
in which case messages that belong to the same chain of correspondence are sought.

In other words, we distinguish between different relations(tasks) in the graph, con-
sidering them as private cases of general inter-entity similarity (or, relatedness). A key
feature of the proposed framework is that various queries, which are instances of different
tasks, are to be performed using the same underlying graph.

It is expected that aresponsehave a varying value that depends on the underlying task.
Such value is therefore a function of the user’s intentions.Next, we define the concept of
user feedback.

Definition 4 User Feedbackincludes the specification of correct (relevant) and incorrect
(irrelevant) graph nodes per query.

For example, consider the query mentioned above:<Vq = {t =“Bill” },τout =‘person’>.
In case that the underlying task is to find nodes in the graph that denote persons who are
called “Bill”, correct answers may include “William Scherlis”, whereas “William Cohen”
may be found to be an incorrect response by the user (as he doesnot use the nickname
Bill), as well as “Einat Minkov” and other person nodes.

User labels, denoting node relevance, will be used to evaluate the quality of a response
to a query, where a good response has the relevant nodes appear at the top of the ranked
list, and irrelevant nodes – at lower ranks.

User feedback that both specifies the task and provides feedback about node relevancy
will be used to learn a specialized similarity measure for that task. In general, it is a basic
requirement of the proposed framework that a general (‘default’) similarity measure result
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in useful performance for arbitrary queries. Nevertheless, we are interested in enhancing
that general measure to reflect a particular similarity flavor of interest, in cases where the
task is specified.

Finally, we notice that a “user” may not be a human being, but amachine application,
which conducts automatic information processing. For example, following the name res-
olution example, a human may be interested in resolving a name mention, while reading a
message. It is possible that the interface be adapted to accommodate this task, in the form
of a special button or menu option. In the case automatic email processing, the machine
will first recognize person names in the text, and then use thequerying mechanism to map
each name mention to the corresponding person entity.

In the next section we describe how random graph walks are employed for extracting
a general similarity measure from the graph. Section 2.3 discusses the scope of domains
and applications that are considered by the framework, given its the graph walk properties.
The adaptation of the graph walk based similarity measure toparticular tasks given user
feedback is the subject of Chapter 3.

2.2 Graph Walks

We adopt thePersonalized PageRankrandom graph walk model as the paradigm of choice
for producing a similarity measure between nodes in the graph. In this section, we first
introduce the Personalized PageRank method, and review its relation to PageRank (Section
2.2.1). Probabilistic random graph walks require transition probabilities to be defined.
In Section 2.2.2 we derive edge probabilities, where parametric edge weights that are a
function of the type of the relation represented, together with graph topology, determine
the probability of transitioning from a given node to its neighbors. Section 2.2.3 discusses
several variants of Personalized PageRank that have been used in the literature. Finally,
we discuss the properties of random graph walks in inducing similarity scores between
graph nodes, that are shared to Personalized PageRank and variants 2.2.4.

2.2.1 Personalized PageRank

As a preliminary, we first introduce the generalPageRankalgorithm [102]. The PageRank
model represents Web pages as nodes in a graph. If there exists a physical hyperlink from
pagex to pagey, then a corresponding directed edge is added to the graph. This model can
be viewed as a simple associative network, where nodes are ofuniform type, and there is
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a single type of edges. The surfer behavior is modeled as follows: given that the surfer is
at node (page)i, then with probabilityγ ∈ (0,1) the user will “jump” (reset) randomly to
some page in the network, and with probability (1− γ) the surfer chooses to move to node
j that has an outgoing link fromi. Given that the user chose to follow a link, or to reset,
the probability of nodei is distributed uniformly over the relevant set of nodes. That is, a
random walk process is constructed as follows:

Vd+1 = γ[
1
N

]1×N +(1− γ)MVd (2.1)

where the total number of nodes (pages) isN, andM is a transition matrix, indexed by
nodes.M distributes a node’s probability uniformly among the pagesit links to, i.e.

M i j =

{

1
|ch(i)| if there is an edge fromi to j

0 otherwise
(2.2)

wherech(i) is the set of nodes that have an outgoing link fromi (the children ofi).

Under this model, the transition matrix is ergodic and has a unique stationary distri-
butionV∗ (i.e.,Vd converges toV∗). The damping factorγ prevents the chain from getting
stuck in small loops [16]. ThePageRank scoreof node j, p j , is defined as its probability
in the stationary stateV∗, giving a measure of document centrality in the network.

Node scores can be computed by repeating the following recursive formula until con-
vergence:

p j = γ
1
N

+(1− γ) ∑
i∈pa( j)

pi

|ch(i)| (2.3)

wherepa( j) is the set of nodes that link toj.

The idea of biasing the PageRank computation for the purpose of personalization was
first suggested in [102]. Other researchers have explored ways to bias the model to pre-
serve an association between rankings and user preferences, or a query. TheIntelligent
Surfermodel [112], for example, suggests that the surfer only follows links to pages whose
content has been deemed relevant to a given query. Similarly, the distribution of PageR-
ank’s “jump” operation can be skewed to include only pages relevant to the query. A
similar approach has been suggested for ‘topic-sensitive’search [57], in which the surfer
is biased to reset his or her search uniformly over pages pre-categorized as relevant for
a given topic. (In this model the transition probabilities are the same as in the original
PageRank.)

The graph walk paradigm defined asPersonalized PageRank[102] is defined as fol-
lows:

Vd+1 = γV0 +(1− γ)MVd (2.4)
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Vd+1 = γIVd +(1− γ)MVd (2.5)

whereV0 denotes a distribution of interest over the graph nodes. ThePersonalized
PageRank scores are derived from the corresponding stationary state distribution. This
formula of graph walk generalizes PageRank (Equation 2.1), in whichV0 is uniform.

It has been shown that the Personalized PageRank score for a target nodez and a
query nodex equals a summation over all the paths betweenx and z (including cyclic
paths, and paths that crosszmultiple times), where paths are weighted by their probability
[67, 48, 28]. Specifically, the Personalized PageRank probability Q(z|x) of reachingz in
an infinitely-long walk fromx is also defined as:

Q(z|x) = γ
∞

∑
d=1

(1− γ)dQ(x
=d−→ z) (2.6)

whereQ(x
=d−→ z) is the probability of moving fromx to z in exactly d steps, defined

recursively as:

Q(x
=d−→ z) = ∑yPr(x−→ y) ·Q(y

=d−1−→ z)

Q(x
=0−→ z) = 1 , if x = z.

The graph walk distributes probability mass from a start distribution over nodes through
edges in the graph—incidentally accumulating evidence of similarity over multiple con-
necting paths. The reset probabilityγ applies an exponential decay over the length of the
paths betweenx and a destination nodez. In practice, this means that the infinite graph
walk probabilities can be effectively approximated by limiting the summation to some
maximal valuek [136, 48, 28].

Example. As an illustrative example to the operation of the graph walk, consider
a graph walk starting from nodem1, in the graph described in Figure 2.1. A walk of
one time step would reach those nodes that are immediately connected tom1, namely
{p1, p2, p3, t1, t2, t3}. Continuing the walk for an additional time step would propagate
similarity from these nodes to their adjacent neighbors. The nodem2, for instance, would
acquire probability mass due to the following set of connecting paths, after two time steps:

Nodem3 would acquire probability mass due to the paths:
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m1
sent−to−→ p1

sent−to−inverse−→ m2

m1
has−term−→ t2

has−term−inverse−→ m2

m1
sent−to−→ t3

sent−to−inverse−→ m2

m1
sent−to−→ p1

sent− f rom−inverse−→ m3

m1
sent−to−→ p3

sent−to−inverse−→ m3

2.2.2 Parameterized Edge Weights

The graph walk process (and accordingly, the similarity measure generated) is determined
by graph topology.2 In addition, the walk on the graph is controlled by a set of edge weight
parametersΘ. Throughout the graph, edges of type` are assigned an edge weightθ` ∈ Θ.
Let Lxy denote the set of edge types of the outgoing edges fromx to y. The probability
of reaching nodey from nodex over a single time step (corresponding to the transition
probabilityMx,y) is defined as:

Pr(x−→ y) =
∑`∈Lxy

θ`

∑y′∈ch(x) ∑`′∈Lxy′
θ`′

(2.7)

wherech(x) denote the set of immediate children ofx (the set of nodes that are reachable
from x in one time step). That is, the probability of reaching nodey from x is defined as
the proportion of total edge weights fromx to y out of the total outgoing weight fromx.
(PageRank schema of edge weighting given in Formula 2.2 is a special case, where the
graph includes a single edge type, and weights are distributed uniformly.)

Continuing the example of the graph in Figure 2.1, the set of edges corresponding to
this graph includes six types, namelyL = { has-term, has-term-inverse, sent-from, sent-
from-inverse, sent-to, sent-to-inverse}. The set of parametersΘ corresponding to this
graph includes the weights of these edges. For example, one arbitrary possible assignment
of the parameter valuesΘ is the following:

Given this parameter set, the probability of reaching nodet1 from nodem1 in a single
step, for example, is calculated according to the given graph topology, and the edge weight
parameters, as follows:

Pr(m1 −→ t1) =
θhas−term

3×θhas−term+θsent− f rom+2×θsent−to
= 0.1

2The reset probabilityγ has negligible effect on the generated rankings; see a related discussion in Section
6.1.2.
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θhas−term = 2
θhas−term−inverse= 2
θsent− f rom = 4
θsent− f rom−inverse= 3
θsent−to = 5
θsent−to−inverse= 4

The graph edge weightsΘ can be set uniformly; randomly; manually, according to
prior beliefs; or using a learning procedure, as discussed in Chapter 3.

2.2.3 Graph Walk Variants

In this thesis, we adopt Personalized PageRank as the graph walk mechanism for generat-
ing similarity scores. There are, however, other related variants of graph walks that have
been used in the literature.

One variant of a graph walk islazygraph walks. A lazy graph walk is a random walk,
where the process remains at the current vertex with some probability γ, which we call a
“stay probability” [95]. The transition matrix in this caseis defined as follows:

Mxy =

{

(1− γ)Pr(x−→ y) if x 6= y
γ if x = y

(2.8)

A walk of k steps can be defined by finite matrix multiplication: specifically, if V0 is
some initial probability distribution over nodes, then thedistribution after ak-step walk is
VT = V0MK. If V0 gives probability 1 to some nodex0 and probability 0 to all other nodes,
then the value given toz in VT is interpreted as the similarity measure betweenx andz.

Another graph walk variant concerns how the probability mass associated with edges
is distributed [7, 95, 28]. Rather than normalize the outgoing edge probabilities from each
node according to their weights, another possible schema isthe following:

Pr(x−→ y) = ∑̀Pr(x
`−→ y|`) ·Pr(`|x) (2.9)

In this schema, as a first stage, the random walker selects an edge typè to be traversed,
with probabilityPr(`|x). Pr(`|x) is computed as the ratio between the parametric weight
θ`, and the total outgoing probability mass fromx. Let Sτi be the set of possible labels
for an edge leaving a node of typeτi , and letS(x) denote the set of outgoing edge types
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that are present at the graph nodex (Sτi ⊆ S(x)); the total outgoing weight fromx can
be defined either as∑`′∈Sτi

θ′` = 1 [7, 95], or as∑`′∈S(x) θ′` [28]. (In the first case, the
considered probability distributions are deficient, as some valid outgoing edge type may
not be included inS(x) and thus can not be selected.)

Given the selected edge type`, as a second stage a child nodey is selected according

to the probabilityPr(x
`−→ y|`). In previous works, this probability has been defined to be

uniform over the set of nodes connected to the parent nodex with the given edge typè.

In the next section we describe general properties that are common to all of the graph-
walk variants.

2.2.4 Graph Walk Properties

Personalized PageRank and its variants have several inherent preferences that determine
how probability mass is distributed from a query to the graphnodes. Many of the biases
incorporated in the graph walk paradigm align well with the potential requirements of a
similarity metric. Some preferences may be sub-optimal, however, depending on the task
at hand. Following is a detailed discussion of these preferences.

• Personalized PageRank applies an exponential decay over path length (due to the
reset parameterγ). This implies that nodes in the graph that are connected to aquery
node overshorterconnecting paths are considered in general more relevant.

For example, in the graph schema described in Figure 2.1, theemail-messagem3 is
likely to be considered less similar to the termsVq = {t1, t2} compared withm1 or
m2, since it is connected to the query nodes via paths of length 3, whereas the other
two messages are associated to the terms with a directhas-term-inverserelation.

A negative correlation between node distance and similarity is well established in
graph theory (as discussed in Section 2.4.1). Naturally, ina large graph, nodes that
are far away from a given node are less likely to be related to it than its neighbors. On
the other hand, we notice that in some relational domains, itis possible that specific
long chains of inter-entity relations are significant, so that a bias due to general
proximity is less justified. This issue as raised in a case study, and our approach
for resolving it using learning (namely, the path-constrained graph walks approach),
will be discussed later in Sections 5.4.1 and 3.4 (respectively).

• Evidence of similarity is accumulated at each node over multiple connecting paths.
That is, a node that is linked to the query distribution over alarge number of paths
will be considered in general more relevant than nodes connected over fewer paths.
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For example, assume that edge weights are uniform, andk = 2. In this case, the
person nodep1 will be considered more similar to the (uniformly distributed) query
Vq = {t1, t2} compared withp2, since there are three paths connecting the query
nodes top1:

t1
has−term−inverse−→ m1

sent−to−→ p1

t2
has−term−inverse−→ m1

sent−to−→ p1

t2
has−term−inverse−→ m2

sent−to−→ p2

whereas there are two paths leading tom2:

t1
has−term−inverse−→ m1

sent− f rom−→ p2

t2
has−term−inverse−→ m1

sent− f rom−→ p2

• The edge label weightsΘ provide a mechanism for affecting the probability flow in
the graph. For example, suppose that the relationθsent− f rom > θsent−to. In this case,
p2 may be considered more similar thanp1 to the queryVq = {t1, t2}.

• The graph walk based similarity measure is asymmetric; thatis, the weight (and
rank) assigned in the final distributionVk (for a graph walk ofk steps) to a graph node
z, given a queryVq = {x} will not necessarily equal the weight (and rank) assigned
to nodex, by the inverse graph walk, starting from the queryVq = {z}. For instance,
in the graph described in Figure 2.1, given the query< Vq = {t1},τ =term} >, a
graph walk ofk = 2 steps will assign equal weights to the nodest2 andt3; however,
given the query< Vq = {t2},τ =term} >, a higher weight will be assigned tot3
compared witht1 (ast1 is linked tot2 with a subset of the paths that linkt2 to t3).
Thus, an asymmetric structure of the graph is reflected in asymmetric inter-entity
similarities.3

• The formulas for deriving edge probabilities (see Formulas2.7 and 2.8) apply a
weighting scheme that is similar to Inverse Document Frequency (IDF). Suppose
that we restrict ourselves to only two types,termsand files and allow onlyhas-
term edges, as is the case in traditional IR settings. Now consider an initial query
distribution, which is uniform over the two terms “the aardvark”. A one-step graph
walk will result in a distributionV1, which includes file nodes. The common term

3In addition, note that the edge labelsΘ may be asymmetric (i.e.,θ` 6= θ`−inverse).
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“the” will spread its probability mass into small fractionsover many file nodes, while
the unusual term “aardvark” will spread its weight over onlya few files.

In our toy example, the probability mass attributed tom1 over a single time step due

to patht1
has−term−inverse−→ m1, starting fromVq = {t1, t2} will be doubled compared

with the probability mass transmitted by the patht2
has−term−inverse−→ m1. The reason

for that is that as shown in Figure 2.1,t2 is mapped to two message nodes whereas
t1 is linked to a single message node. Hence, node connectivityhas a similar effect
as the use of an IDF weighting scheme.

• Finally, as a consequence of probability accumulation at graph nodes throughout the
graph walk, the resultant similarity measure is inclined towards high-degree nodes
in the graph (as more paths are likely to cross nodes that are connected to many
other nodes).

For instance, in Figure 2.1, the person nodep1 is connected to all of the message
nodes. This means thatp1 will be credited with probability mass via a larger number
of connecting paths, compared withp2 andp3.

Several researchers have pointed out previously that an inherent bias towards high-
degree nodes is often not desired [13, 104, 80]. In general, this means that central
nodes “take over” the graph walk, and disassociate the probability distribution in
the graph from the query. Several solutions suggested to counteract such bias are
reviewed in Section 2.4.1.

2.3 Applicability

So far we have defined the framework, including the graph formalism and the user-system
interface. We have also described Personalized PageRank random graph walks as the tech-
nique of choice for evaluating node similarity for a given query. In this section, we define
the intended scope of the framework, i.e., the types of problems that can be modeled (Sec-
tion 2.3.1). In addition, we summarize the various motivations for applying this framework
(Section 2.3.2). A main motivation that we stress in this thesis isgenerality; our goal is
that a graph that represents the ‘natural’ structure of datacan be used for a large number
of different tasks, rather than having to engineer a graph carefully for each task.
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a. WebPages and hyperlinks

b. Recommendation Systems

c. Email

Figure 2.2: Example graphs (left) and their corresponding graph schemas (right).
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2.3.1 Structured and Semi-structured data as a Graph

Many real-world data and problems can be modeled as a graph inthe specified framework.
The description of the web as a network, where nodes denote webpages and directed links
represent the hyperlinks between them [117, 102] can be considered as a special case
of the framework, where the graph includes a single type of nodes and a single type of
edges, as shown in Figure 2.2(a). Similarly, scientific papers (or other publications) can be
represented as a graph, where relationships between papersare inferred from their cross-
citations [126], and so on.

Another generic type of graph that can readily be represented in this framework im-
plements recommender systems. In this case, a user’s preference for an item constitutes
a relationship between the user and the item. This problem isnaturally modeled as bi-
partite graph, as demonstrated in Figure 2.2(b) [49]. The classical information retrieval
settings, in which documents are indexed by the terms they contain, is another example of
a bi-partite graph.

However, the framework is also adequate for richer, structured and semi-structured
domains, in which the relation schema includes multiple types of nodes (objects) and var-
ious relations between them. For example, Figure 2.2(c) gives a representation schema
for email data (this schema extends the toy example from Figure 2.1). In this representa-
tion, node types includemessage, person, email-address, termanddate. The graph edges
correspond to various inter-entity relations, such assent-from, connecting a message to its
sender;alias, linking a personnode to itsemail-address, etc. Most of the relations can
be readily parsed from an email header. The email content is treated as a bag-of-words,
where each unique word is represented as atermnode, linked to themessagesthat contain
it. Other examples of semi-structured domains include citation networks, where entities
like author, venueandpublication titleare linked in a relational structure, and are also as-
sociated with text descriptions. An ontology such as WordNet [47] forms a network which
include a single type of entity (words), but multiple types of edges, includinghypernym,
hyponymand so on. Later in this thesis, we consider a corpus of parsedtext as a typed
network, where nodes represent words, and edges denote syntactic relations (Chapter 5).

Representation Scope

Graph schema.Notice that the above-mentioned examples are characterized by well-
defined graph schemas. (These schemas are described in Figure 2.2.) We assume in this
thesis that for a given domain, there exists a closed set of entity types and the possi-
ble inter-relations between entities are pre-specified. Domains for which the full graph
schema is not known in advance (such as, domains that evolve over time) may be modeled
by extending the framework. For example, default edge weights θde f may be defined for
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unknown edge types. This general case, however, is out of thescope of this thesis. Sim-
ilarly, domains for which the graph schema is very large (e.g., the semantic Web), pose
special challenges. We believe that at least some of techniques presented in this thesis will
be beneficial in such cases. However, this remains a problem for future study.

Entity attributes. Entity-relation schemas, as used in database terminology,may in-
clude entity attributes. For example, an entity such asemployeemay be associated with
attributes likename, age, addressetc. (A specific entity is then associated with specific
attribute values, e.g.,name:“John”, age:42, etc.). In the proposed general graph schema,
attribute values can be modeled as additional nodes, and special links can be added that
represent relationships between an entity and an attributevalue. It is also straight-forward
to define such links to benon-walkable, and only use them for afiltering or other post-
processing operations (similarly to “having” statement inSQL), so they do not affect the
similarity metric.

Real values.Many graphs have been suggested in the literature that weight edges by
real-valued weights, designating link importance, frequency, confidence, etc. For exam-
ple, a social network that models inter-personal interactions may contain nodes represent-
ing persons; a single edge type denoting evidence of pastinteraction (e.g., correspon-
dence) between personx and persony; and edge weights that designate the relative impor-
tance/strength of the interaction (e.g., the number of messages exchanged betweenx and
y). In this thesis, we are interested in avoiding settings in which human judgments about
feature relevance are encoded in the graph. Instead, we advocate relational graphs. The
social network described above, for instance, can be modeled as a heterogeneous graph,
where nodes denotepersonsand interactions; persons will be linked in this network via
their shared interactions. In general, however, it is straight-forward to extend the frame-
work to accommodate edge weighting. Specifically, formulas2.7 and 2.8 can be modified
such that the outgoing weight from a given node, per (θ`), be distributed among the edges
of that type according to their relative individual values.

One may also be interested in representing real-value nodes(for example, for denoting
attribute values, as described above). Real-values, however, are handled as discrete in the
framework. This means that in case that the set of values is large, the size of the graph
may be boosted. In addition, there is no trivial schema for linking nodes with proximate
real values.

Undirected edges.Undirected edges can be trivially replaced with symmetric directed
edges, in both directions.

n-ary relations.In general, inter-entity relationship may involve multiple entities. For
instance, a relation like “hire” involves the person hired as well as the relevant position,
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and possibly, the agent responsible for the hiring action. The framework, which underlies
this thesis, can not accommodate n-ary relations: rather, only relationships between pairs
of entities can be modeled.

2.3.2 Types of Motivating Applications

There are multiple possible motivations for applying graphwalks to derive an inter-entity
similarity measure. In what follows, we discuss several motivating applications.

Associative retrieval.Graph walks implement a notion of transitive similarity. They
can therefore be used as a mechanism for expanding or enriching a set of entities with
related objects, in anassociativemanner. In the email domain, for example, a user is
oftentimes interested in retrieving a specific item from hermailbox that she remembers.
Searching by specifying strings included in the different fields of the message (as common
in many commercial email management interfaces) may fail toretrieve the request item
due to a possible mismatch between the terms as specified in the query and in the message.
Suppose that the user is trying to track amessagesent recently by William Scherlis, in
which a meeting is coordinated. Searching for messages thatinclude the strings “Bill” and
“meeting” will fail in case that the message does not includethe nickname “Bill” and the
term “meeting” is not explicitly mentioned. Associative search using graph walks using
the queryVq = {terms=“Bill, meeting”} is more likely to include the relevant message
in the results, due to graph similarity between “Bill” and “William”. (and if semantic
relations between words are modeled, a term or expression that are related to a meeting
may be reached as well.) Similarly, one can submit a query that includes a person’s first
name (represented as aterm) and retrieve relatedemail-addressnodes. This problem is
referred to as thealias-findingproblem in Chapter 4.

In the past, graph walks over a network that consists of inter-word semantic relations
derived from WordNet [47] and other resources have been applied for query expansion in
Information Retrieval [33]. Random walks over a similar graphhave also been applied as
a smoothing mechanism for the task of prepositional phrase attachment [136]. Automatic
image captioning is another domain, in which graph walks have been applied to enrich
textual descriptions of images with terms linked to relatedimages [58, 105].

Structural similarity. A main motivation for representing data as a graph is to utilize
a notion of global, structural similarity. In general, structure is expressed by sub-clusters
in the graph, such that similarity between points that have multiple common neighbors
is reinforced using random walks. For example, in a citationnetwork, which includes
co-citation links, applying random graph walks should identify clusters of papers that are
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mutually related; in a social network, graph walks can reveal sub-communities, and so on.
The extent to which similarity gets concentrated in internal graph structures is dependent
on the walk length, and on the graph walk parameters. It has been shown the length
of the walk should be sufficient, but not infinite (i.e., shorter than mixing time) to find
clusters in data [129, 131]. ThePersonalized PageRankgraph walk variant maintains
high weight around the query nodes and decays fast thereafter. It reflects global structural
similarity, however, in the sense that the graph topology affects the resultant similarity
score distribution.

Evidence integration.As discussed above, graph walks accumulate evidence of sim-
ilarity between query nodes and a target nodes, via multipleconnecting paths. Thus, the
probability score assigned to a target node as a consequenceof the graph walk, summa-
rizes various aspects of similarity. In the email domain, for instance, emailmessagesare
inter-connected through shared content (via thehas-termrelations), through social net-
work information (via the relationssent-fromand sent-to), and also through a timeline
(sent-on-date).

The graph representation can readily integrate also multiple information sources. For
example, organizational hierarchies can be added to email corpora, by adding links such
as “reports-to” between an employee and her manager in the graph. Lexical networks are
another example, in which various WordNet-based and other word-to-word relations are
included in the graph [136, 33, 65].

Finally, the proposed framework offers the advantage ofGenerality. In the past, Per-
sonalized PageRank graph walks have been applied to carefully engineered graph schemas,
constructed using information that is partial or pre-processed, with the goal of optimizing
a particular task. For example, Toutanova et al [136] applied graph walks on a graph engi-
neered to improve on the task of prepositional phrase attachment; and special graphs have
been engineered for image captioning [58, 105]. In this thesis, we assume a graph schema
that describes a given domain in a general and straight-forward fashion. i.e., avoiding ad-
dition or omission of certain entities or relations from therelational data structure. We
claim that in a general graph, multiple tasks can be phrased in terms of inter-entity simi-
larity in the graph. That is, we argue that graph walks can be applied as ageneral-purpose
tool. Indeed, a general graph scheme may be sub-optimal for some tasks. Therefore, we
consider learning, to optimize the graph-walk based similarity measure per task. In our
study of the email problem (Chapter 4), we will show that graphwalks yield good per-
formance for a variety of email-related problems using default parameters, and improved
results with learning.
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2.4 Related Research

There are many research areas that are related to the framework that we apply in this the-
sis. In this section we give a short overview of some of these main areas, and try to point
out the links between previous algorithms and observationsmade and this work. We first
give a review of similarity measures prevalent in the area ofgraph theory (Section 2.4.1),
including basic measures of graph similarity such the shortest-path or maximum-flow cri-
teria, and also similarity metrics that are based on node immediate neighborhoods. Section
2.4.2 focuses on more recent work in graph theory that are closely related to random graph
walks in general, and the Personalized PageRank graph walk variant in particular. Several
of the algorithms are based on the electrical current analogue of random walks. Also in-
cluded in Section 2.4.2 are works that generate a subgraph asresponse to a query, and
graph-walk based algorithms for this purpose. In Section 2.4.3 we review previous re-
search that is concerned with similarity in relational data, represented as a graph, where
edges denoted entity relations. Several researchers have previously applied graph walks in
these settings. We discuss the differences between these works and our approach.

In Section 2.4.4 we review several works in the area of learning, mostly for clustering
and semi-supervised disambiguation, that apply a notion ofstructural similarity, and have
strong connections to random graph walks.

Section 2.4.5 described the paradigm ofspreading activation, a mechanism for propa-
gating similarity between concepts in associative networks. We claim that the framework
of this thesis (including its learning component) automates many manual design choices
that are necessary in spreading activation.

Finally, in Section 2.4.6 we discuss the methodology of statistical relational learning
(SRL), which has drawn much interest in the recent years, and is concerned with the mod-
eling of structured information. As an example of SRL, we focus on Markov logic net-
works (MLNs). A short overview of the MLN approach is given, followed by a discussion
of some of the main differences between MLNs and our framework.

2.4.1 Similarity Measures in Graph Theory

One simple graph proximity measure is the length of the shortest path connecting two
nodesx andy, measured as the number of hops, or the as the sum of the edge weights along
the shortest path. Another related concept from graph theory is maximal network flow[34].
Assigning a limited capacity to each edge (proportional to the edge’s weight), this measure
is defined as the maximal number of units that can be simultaneously delivered fromx to
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Shortest distance (the negation of) the length of shortest path betweenx andy
Maximum flow max. number of units that can be simultaneously delivered fromx to y
Neighborhood measures
Common neighbors |Γ(x)∩Γ(y)|
Jaccard’s coefficient |Γ(x)∩Γ(y)

Γ(x)∪Γ(y) |
Adamic Adar ∑z∈Γ(x)∩Γ(y)

1
|log(Γ(z))|

Table 2.1: Basic measures of node similarity in graph theory

y.

It has been argued that the shortest-path and max-flow similarity measures are not
suitable for graphs representing phenomena such as social networks, for several reasons
[46, 80]. First, the relationships between entities may be realized by multiple different
paths; the shortest-path criterion, however, considers a single path by definition. Sec-
ond, the maximum flow criterion is monotonic with the number of connecting paths, but
disregards path lengths. In addition, it is desired that theproximity measure assign higher
importance to edges between low-degree nodes, as these edges presumably indicate a more
meaningful relationships. Both of the shortest-path and maximum-flow measures fail to
capture these phenomena. Koren et-al [80] point out that maximal flow equals the capacity
of the bottleneck of the flow betweenx andy, making such a measure less robust.

Additional measures of node proximity in graph theory, based on node neighborhoods,
are included in Table 2.1. The most basicnode neighborhoodmeasure is computed as the
overlap between node neighbors. That is, denoting the neighborhood of nodex asΓ(x),
inter-node similarity is defined as|Γ(x)∩Γ(y)|. TheJaccard coefficient[115] measures the
probability thatx andy have a common neighbor, for a randomly selected node from the
union|Γ(x)∪Γ(y)|. The relatedAdamic-Adarmeasure [1] considers a notion of frequency
of the common neighbors, represented by neighborhood size.Liben-Nowell and Kleinberg
[85] describe and empirically evaluate these and other related measures on the task of link
prediction in social networks. They indicate that in the networks studied, between 71%
and 83% of new edges form between pairs at distance three or greater. Since nodes at
distance greater than two have no neighbors in common, this rules out the neighborhood-
based methods, which are local, for link prediction tasks.

TheKatz measure[72] is another metric, which defines node similarity as the number
of their connecting paths, where path contribution is damped by length. It is calculated as
follows:

Sim(x,y) =
∞

∑̀
=1

β`|paths`x,y|
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wherepaths̀ is the set of connecting paths of length`, andβ is the damping factor.

Liben-Nowell and Kleinberg include the Katz measure in their comparative study [85],
where it is shown to be among the best performing method. Thismeasure is in fact related
to random walks, which we describe next.

2.4.2 Graph-walk based similarity measures

In this section we describe proximity measures in networks that are associated with ran-
dom graph walks. The methods are detailed in chronological order.

Hitting time. Consider a random walk initiated at nodex, and iteratively moving to
a neighbor ofx chosen uniformly at random. The hitting timeH(x,y) is the expected
number of steps required to reachy. (The corresponding similarity score is the negation
of H(x,y).) Commute timeis a similar symmetric measure, defined asC(x,y) = H(x,y)+
H(y,x). Since the hitting time is generally small whenevery is a high-degree node, it has
been suggested to modify it as follows:H ′(x,y) = H(x,y) ·πy, whereπy is the stationary
probability ofy [85].

SimRank[66] is a similarity measure adapted for directed graphs. Inthis model, objects
are similar if they are related to similar objects, as follows:

Sim(x,y) = γ× ∑a∈Γ(x) ∑b∈Γ(y) Sim(a,b)

Γ(x)Γ(y)

whereγ ∈ [0,1]. A base case is that objects are similar to themselves (Sim(x,x)=1). Over-
all, for a graph of sizen, SimRank includes a set ofn2 similarity equations. An iterative
calculation propagates scores one step forward along the direction of the edges, until scores
converge. SimRank was shown to equal the expected value ofγ`, wherè is a random vari-
able giving the time at which two random surfers are expectedto meet at the same node if
they started at nodesx andy simultaneously and randomly walked the graph backwards.
Hence, the SimRank measure is symmetric.

Effective conductance (EC)[104, 46]. LetG be a weighted undirected graph. The
graph can be modeled as an electric circuit, where edge weights denote their conductance
[41]. The proposed similarity measure is generated by setting the voltage of nodex to
1, while groundingy (so its voltage is 0). Solving a system of linear equations gives the
delivered current fromx to y, called theeffective conductance. In terms of random walks,
EC is equivalent to the expected number of ‘successful escapes’ fromx to y (escapeis the
event wherey is reached by a random walk prior to re-visitingx), where the number of
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attempts equals the outgoing degree ofx, denoteddeg(x). That is:

EC(x,y) = deg(x) ·Pesc(x→ y) = deg(y) ·Pesc(y→ x)

The escape probability decreases if long paths must be followed, and increases with the
number of alternative paths. However, Palmer and Faloutsos[104] point out that this
similarity measure is biased towards high degree nodes (as there is higher probability that
a random walk will visit a high degree node at any given time).They therefore introduce
a “universal sink” node that is grounded, and absorbs a positive proportion of the current
that flows into any given node. This means that high degree nodes are heavily penalized,
because each node is also “taxed” by its neighbors. In addition, grounding all of the
graph nodes applies additional penalty on long paths, as after each step there is a certain
probability that the walk will terminate in the universal sink.

Tong et-al [132] refer to the problem of high degree nodes, where they apply the Per-
sonalized PageRank graph walk paradigm. As an alternative tothe universal sink, they
propose to normalize the transition matrixM , as follows:

M ′
x,z =

Mx,z

deg(x)α

wherez ranges over all of the graph nodes (z = 1, ...,N), and the coefficientα is a free
parameter. This formula applies a stronger penalty on high-degree nodes.

In a later work, Tong et-al [134] extend the electrical network similarity interpretation
to directed graphs. While electric networks are inherently undirected, they suggest to
generalize the effective conductance to handle directional information by using the escape
probability. Escape probability can be computed as a function of the voltages at each
nodes, as follows:

Pesc(x→ y) =
n

∑
k=1

Mx,k ·vk(x,y)

whereM is the transition matrix,n is the total number of nodes in the graph, andvk(x,y)
is the generalized voltage at nodek (where the voltage atx is 1, andy is grounded).

Cycle free effective conductance (CFEC). As discussed above, EC is interpreted in
term of the escape probability, where the walk might backtrack and visit the same nodes
many times. Koren et-al [80] point out that sending information in directions not leading
to the target nodey is a wasted effort, which cannot be fixed by a later backtracking. They
suggest to consider instead cycle-free escape probabilities, which disallows paths fromx
to y where nodes are revisited. The Cycle Free Effective Conductance (CFEC) measure
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equals the sum of the simple (acyclic) connecting paths’ probabilities, multiplied by the
degree of the query nodex, as follows:

CFEC(x,y) = deg(x) ·Pc f.esc(x→ y) = deg(y) ·Pc f.esc(y→ x)

where,
Pc f.esc(x→ y) = ∑

R∈R

Prob(R)

andR is the set of simple paths fromx to y. The authors approximate the CFEC mea-
sure using theK most probablex− y paths. They use an algorithm due to Katoh et-al
[71], which generates paths of monotonically increasing length successively. Once the
ratio between path probability and the probability of the most probable path falls below
a threshold, further paths are discarded. Cycle-free effective conductance can naturally
accommodate directed edges.

Connection Sub-graphs

In addition to evaluating node similarity in terms of probability scores, it has been
suggested to present the user a small sub-graph, which explains the relationship between
given nodes. Below is a short overview of recent research thatextends graph walk (or,
analogously, electrical flow) based similarity measures toa similarity sub-graph.

Faloutsos et-al [46] define aconnection subgraphas a small subgraph (amenable to
visual inspection) of a large graph that best captures the relationship between two nodes.
They construct a subgraph that maximizes a goodness function, defined as the delivered
current between the source nodex to the destination nodey, subject to a constraint on the
number of nodes included in the subgraph. The flow captured inthe subgraph equals the
summation of delivered current over all the distinct ‘downhill’ (acyclic) paths fromx to y
included in the subgraph. A greedy algorithm optimizes the subgraph constructed, such
that end-to-end paths are added iteratively, maximizing the ratio of flow along the path,
divided by the number of new vertices that need to added to theoutput graph.

Tong et-al [132] defined thecenter-piece subgraph (CEPS)problem. This problem
generalizes the connection subgraphs task, as it considerssubgraphs that connect multiple
query nodes. In addition, they allow different types of queries, including OR, AND, and K-
softAND (where a sub-graph similar to at leastK nodes out of the query nodes specified is
searched) operations. The ‘goodness criterion’ of the subgraphs is based on Personalized
PageRank scores in this case. In particular, the authors consider themeeting probability:
the joint probability that random walks originating from multiple query nodes ‘meet’ at
a target node in the steady-state. In the case of AND queries,the meeting probability
considered is the multiplication of the individual PPR scores with respect to each query
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node. The OR operation requires the complimentary probability. For the computationally
expensive case of K-softAND, a fast algorithm is provided. The subgraph produced is
undirected and unweighted.

Koren et-al [80] use the cycle free effective conductance similarity measure to extract
small subgraphs, which they callproximity graphs. Their motivation is to directly provide
an explanation for a specific CFEC proximity value (see above). In particular, theK paths
used for computing the proximity value serve as the buildingblocks of the connection sub-
graph. The subgraph extracted maximizes a ratio between theproximity value explained
by the subgraph (raised to the power of a parameterα) and the number of vertices included.
Solving this function is NP-hard, and heuristics (based on branch-and-bound algorithm)
are suggested. The generated subgraphs can be directed.

2.4.3 Similarity in Relational Data

The idea of representing structured data as a graph is widespread in the data mining com-
munity, which is mostly concerned with relational or semi-structured data. Proximity
search in databases represented as graphs has been first suggested to the best of our knowl-
edge by Goldman et-al [54]. They suggested inter-object search, where the proximity used
was the shortest path between objects.

BANKS[13] is a later model, suggested for keyword-based search inrelational databases.
In the BANKS framework, tuples are modeled as nodes in a graph, which are connected
by links induced by foreign key and other relationships. Inverse links are added to the
graph schema. In response to a query, the returned ranked list of answers constitutes of
small sub-trees, connecting nodes that match the query terms. It is suggested that such
trees should help the user understand how the answer was reached, and allow him or her
to further browse the database. The underlying graph schemaincludes typed and weighted
edges (reflecting link importance). The answer subtrees areranked using a weighted com-
bination of edge weights and node prestige, where prestige is defined as the node in-degree.

XRank[56] is a model that applies graph walks for keyword search queries over hy-
perlinked XML documents. In their model, the search can return nested XML elements
that contain the desired keywords, rather than full documents. The authors’ goal is to
compute a measure an XML element’s importance, based on the hyperlinked structure of
XML documents. They suggest applying the PageRank model, where possible moves to
neighboring nodes in the XML hierarchy are also considered by the random walk model
(in addition to following hyperlinks between webpages).

TheObjectRankmodel [7] was the first to apply random walks – specifically, Personal-
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ized PageRank – to keyword search in relational data modeled as typedgraphs. In Objec-
tRank, the graph edges are directed and typed; nodes are typedand associated with a set of
keywords, derived from the attribute values of the represented tuple. As in previous works,
for each edge in the graph, an inverse edge is added to the graph schema. The authors use
an ‘authority transfer’ schema that is set manually, to determine the weight per edge type.
(The schema is equivalent to the edge weight parameterΘ in our notation.) The authority
transfer rate per each type is distributed uniformly among the outgoing edges of that type
from each node. Given a query, Personalized PageRank graph walks are applied, where
the reset operation is limited to graph nodes that include the query terms as keywords.
The final node similarity scores are a combination of the latter keyword-specific scores,
and global node scores, obtained using the PageRank approach. The authors evaluate Ob-
jectRank using citation records. Our framework is very similar to ObjectRank. However,
we allow querying the graph regardless of object types, whereas queries in ObjectRank
(as well as XRank) are limited to terms. Accordingly, text is represented as regular nodes
within the graph (see Chapter 4), rather than being processedseparately. In addition, we
are interested in optimizing the similarity measure induced by the graph walk for multiple
different tasks.

Recently, several researchers have constructed special graphs, with typed edges and
typed nodes, engineered to induce an improved similarity measure for a particular task,
using graph walks. Pan et-al [105], for example, study the problem of automatic image
captioning. They have applied Personalized PageRank graph walks to graphs that are
undirected and unweighted, but include multiple types of nodes and several edge types.
In particular, the graph constructed includes nodes representingimages, graphical regions
andterms. Nodes are linked due to structural links (image to its graphical regions of im-
ages, and image to its caption terms), or due to high graphical similarity. Others have
constructed networks of word-to-word semantic relations to improve on the task of prepo-
sitional phrase attachment in natural language processing[136] and query expansion, in
information retrieval [33]. In contrast to these works, thegraphs that are the focus of this
thesis are ‘general-purpose’ graphs, where data is represented as a graph with no target
task pre-specified.

In another venue, it has been suggested to adapt the approachof connection graphs [46]
(described earlier) to the relational domain [110]. The authors were interested in incorpo-
rating the semantics of different node and edge types in the considerations for selecting a
response sub-graph. They used a hierarchical ontology of object classes and relationships,
having each data object associated to relevant classes. Weights were assigned to nodes
based on class specificity (where high specificity was preferred). The paths included in
the sub-graph were weighted by parameters such as path rarity. In addition, paths that link
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instances of classes belonging to different schemas were considered more informative.
This work is a nice example of a different approach for evaluating similarity in relational
domains. However, the model suggested is somewhat arbitrary, while we are interested
in adapting existing graph walk techniques to relational data. (In addition, sub-graphs
construction as response to queries are not included in thisthesis.)

2.4.4 Learning Using Random Walks

There are multiple works in the area of machine learning addressing the problem of semi-
supervised clustering using methods that directly apply orcan be interpreted as random
graph walks. In the semi-supervised clustering settings, given a graph in which some of
the nodes are labeled, the link structure of the graph is exploited to infer the labels of the
remaining unlabeled nodes.

Kondor and Lafferty [79] have proposedheat diffusion kernels, a class of kernels on
graphs for handling discrete structures, where the kernel captures both the local and global
structure of the graph. Diffusion kernels can be regarded asa generalization of Gaussian
kernels to graphs, in the sense that the continuous limit of heat diffusion kernels on a
two-dimensional grid is a Gaussian kernel. It is also shown that diffusion kernels are the
continuous time limit oflazy random walks. The diffusion kernel function is interpreted
as a sum over paths from pointx to pointy, namely the sum of the probabilities that the
lazy walk takes each path. Diffusion kernels are applicableonly to undirected graphs, as a
kernel function must be symmetric.

Szummer and Jaakkola [129] have applied Markov diffusion processes [131] in the
settings of semi-supervised transductive classification,where labels are known for only
a small number of the available data points. In their work, a local similarity metric is
used that defines the distance between pairs of adjacent points. The underlying graph is
undirected, and a node is connected to its k-nearest neighbors. (Local distances are then
exponentiated and normalized to obtain transition probabilities.) This work applieslazy
graph walks, as self-transitions back to each point are alsoincluded. A global similarity
measure between arbitrary two pointsx andy is defined as thediffusion probability– the
probability of transitioning fromx toy in t time steps. (This measure is produced by using a
matrix power, that is computingM t , whereM is the transition matrix including self-loops.)
The association of unlabelled points to the different labels is defined as the expectation
over the diffusion probabilities to the labeled points. Theauthors discuss considerations
of choosing the number of walk stepst. It is argued (similarly to Tishby and Slonim [131])
that clusters are formed for a finite walk lengtht, and that the clusters start dissipating as
the graph walk converges. They claim that good choices oft for classification depend
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on the problem; for example, if labels change quickly over small distances, a smallert
provides a sharper representation. It is therefore proposed to chooset that maximizes the
log likelihood of the data. It is also proposed that in case the graph has multiple connected
components, individualt ’s should be set for each component.

Another approach to semi-supervised learning is based on a random field model de-
fined on a weighted graph over the unlabeled and labeled data,where the weights are given
in terms of a similarity function between instances [146]. In this framework, the known
label assignments are fixed, and harmonic energy minimization is applied over a continu-
ous state space to label the other instances. In terms of a random walk, this is interpreted
as a walk starting from an unlabeled node, until the particlehits a labeled node. The mea-
sure used for classification is the probability that the particle, starting from nodex, hits
a labeled node with label 1. That is, the labeled data is viewed as absorbing boundary
for the random walk. The solution is an equilibrium state, expressed in terms of a hitting
time. The authors point out that using this formulation, there is no need to tune the walk
lengtht (unlike Szummer and Jaakkola [129]). The resulting classification algorithms can
be viewed as a form of nearest neighbor approach, where the nearest labeled examples are
computed in terms of a random walk on the graph.

A regularization framework that forces the classification function to change slowly on
densely linked subgraphs has also been suggested recently for directedgraphs [144].

Zhou et-al [145] suggested to performranking using the intrinsic global manifold
structure collectively revealed by a very large amount of data. They claim that the rank-
ing problem can be viewed as an extreme case of semi-supervised learning, in which only
positive labeled points are available. In their framework,the graph is represented as a
weighted symmetric and normalized matrix, constructed using a local similarity metric.
Positive scores are assigned to each query node. The query points then spread their score
to their nearby neighbors via the weighted network. A fixed ratio of the propagated scores
is re-assigned to the query nodes, and the process is repeated until a global stable state is
reached. The authors show that this variant of random graph walks is equivalent to Per-
sonalized PageRank, where the ranking score of each query node is weighted according
to its degree. They show that the suggested graph walks are equivalent to assembling all
paths between two points, and weighting them by a decreasingfactor.

2.4.5 Spreading Activation

The spreading activation (SA) Model is based on supposed mechanisms of human memory
operations. Originating from psychological studies [109,114], it was first introduced in
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computing science in the area of artificial intelligence to provide a processing framework
for semantic networks. In this method, “activating” some node in a network leads to itera-
tively activating adjacent nodes, thus reaching a broad context from an initial distribution.

There are many ways of spreading the activation over a network (a review is available
in [35]). In its simple form, SA computes the input signalI j to node j as a weighted sum
of the activation levels of the nodesi connected toj:

I j = ∑
i

Oiwi j

whereOi is the activation level of nodei, andwi j is the weight of the link connecting node
i to node j. The weights may be real or binary values. A node’s activation level is usually
computed as a function of the input signal:

O j = f (I j)

where example functions are the threshold, linear and sigmoid functions. After the node
has computed its output value, it fires it to all the nodes connected to it. If the edge weights
are binary, this process is often referred to asmarker passing[45].

The result of the SA process is the activation level of nodes reached at termination
time. The interpretation of the level of activation of each node depends on the application,
as well as the characteristics of the object being modeled bythat node.

Drawbacks of the described general approach is that the activation ends up spreading
over all the network. For this reason, and in order to use the information captured in the
edge labels, the following heuristic constraints are oftenimplemented:

1. distance constraints- cease SA once reaching nodes that are far (in terms of links
traversed) from the initially activated nodes. It is commonto consider only first,
second and third order relations.

2. fan-out constraints - cease SA at nodes with very high downstream connectivity
(fan-out).

3. path constraints - spread activation using preferential paths, reflecting domain spe-
cific inference rules. This can be modeled using the edge weights or, if links are
labeled, by diverting the activation flow to particular paths while stopping it from
following other paths.

4. activation constraints - it is possible to assign different threshold levels to each
node or sets of nodes, considering their meaning in the context of the application.
This allows implementing various complex inference rules.
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Since its peak in the eighties, there has been relatively little research activity related to
the spreading activation paradigm in the area of information retrieval. A possible reason
for that is that designing and adapting the various constraints that optimize activation flow
in SA require a substantial manual effort. Furthermore, theunderlying graphs have to be
often manually crafted as well, for a given domain.

The framework of Personalized PageRank and its variants, which gained much popu-
larity in recent years (as described thus far) addresses some of these shortcomings. First,
the inherent exponential decay over path length implementsa softdistanceconstraint. In
addition, the probabilistic graph walk limits the outgoingprobability mass from a given
node, such that nodes that have high out-degree distribute little probability to their indi-
vidual descendants. This implements a soft version of thefan-out constraint. Further,
path constraints and the importance (weights) of differentlink types in the network can be
learned, rather then set manually, as will be discussed in the next chapter. Finally, while
spreading activation required careful graph design, we consider using relational data, that
is transformed to a graph in an automatic data-driven fashion.

2.4.6 Statistical Relational Learning

Statistical relational learning (SRL) concerns the induction of probabilistic knowledge for
multi-relational structured data. Various paradigms of statistical relational learning have
been proposed in recent years, including probabilistic relational models [51], Bayesian
logic programs [74], relational dependency networks [99],Markov Logic Networks (MLNs)
[111] and others. A general review of statistical relational learning is out of the scope of
this thesis, and is available elsewhere [52].4 In this section we give an overview of the
Markov Logic Networks paradigm, an SRL model that generalizes finite first-order logic
and Markov networks. We then discuss some of the differencesbetween this paradigm
and the graph walk framework.

It has been indicated that small variations in parameters can cause large variations in
the models learned with ILP (e.g., Relational data min-ing with inductive logic program-
ming for link discovery, Mooney et-al, 2002])

4SRL is closely related to inductive logic programming (ILP); on the application of ILP to relational
learning, see for example Mooney et al [70].
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Overview of Markov Logic Networks.

Markov logic combines first-order logic and Markov networksby attaching weights to
first-order formulas and viewing them as templates for features of Markov networks. In
general, MLNs allows softened first-order logic, where situations in which not all formulae
are satisfied are considered less likely but not impossible.

Formally, a Markov network is a model for the joint distribution of a set of variables
X = (X1,X2, ...,Xn) ∈ χ. It is composed of an undirected graphG and a set of potential
functionsφk. The graph includes a node for each variable, and the model has a potential
function for each clique in the graph, mapping the clique’s state to a non-negative real
value. The joint distribution represented by a Markov network is given by:

P(X = x) =
1
Z ∏

k

(

φkx{k}
)

wherex{k} is the state of the k-th clique (comprised of the states of thevariables that
appear in that clique). The partition function Z, is a summation over all possible clique
states.

Markov networks are often represented as log-linear models, with each clique potential
replaced by an exponentiated weighted sum of features of thestate. Markov logic assigns
first order formulae (also called clauses or rules) as features. LetF be the set of all clauses
in the MLN, wi be the weight associated with clausefi ∈ F , Gfi ∈ {0,1} be the set of
possible groundings of clausefi (1 if satisfied, and 0 otherwise), andZ be the normalizing
constant. Then the probability of a particular truth assignmentx to the variables inX is as
follows:

P(X = x) =
1
Z

exp



∑
fi∈F

wi ∑
g∈Gfi

g(x)





=
1
Z

exp

(

∑
fi∈F

wini(x)

)

whereni(x) = ∑g∈Gfi
g(x) is the number of groundings offi that are satisfied given the

current truth assignments to the variables inX. This means that the fewer formulas a world
violates, the more probable it is. The impact of each rule is determined by its associated
weight.
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The main inference task in MLNs involves finding the most probable state of the world
given some evidence. In order to perform inference for an MLN, one needs to produce
its corresponding ground Markov network. As described by Richardson and Domingos
[111], this is done by including a node for every possible grounding of the predicates
in the network and an edge between two nodes if they appear together in a ground-
ing of a clause. Network grounding consumes memory exponential in the arity of the
clauses. For example, Figure 2.3 (taken from [40]) shows theground Markov network
obtained by applying an MLN containing the formulas:∀xSmokes(x) ⇒ Cancer(x) and
∀x∀yFriends(x,y) ⇒ (Smokes(x) ⇔ Smokes(y)) to the constants Anna(A) and Bob(B).

Figure 2.3: A ground Markov network obtained for two formulas of arity 2 and two con-
stants

Exact inference in MLNs is intractable in general. Approximate inference algorithms
include MCMC methods (like Gibbs sampling and simulated tempering). Weighted sat-
isfiability solvers can also be readily applied in these settings (such as MaxWalkSAT, a
weighted variant of the WalkSAT). MC-SAT [107] is a method that has been shown to
outperform MCMC methods, as it employs WalkSAT to jump between regions of non-
zero probability. In order to alleviate the memory requirements for propositionalizing the
domain, a lazy version of WalkSAT has been suggested, which grounds atoms and clauses
only as needed, taking advantage of the sparseness of the relational domain (e.g., most
atoms are false) [125]. Using lazy WalkSAT has been shown to reduce memory usage by
orders of magnitude. It is also possible to perform lifted first-order probabilistic inference
in Markov logic [40, 15].

Learning an MLN includes two components: setting the weightof each clause, and
learning the logical clauses (structure learning). There are two approaches to weight
learning in MLNs: generative, and discriminative. In generative learning, the goal is to
maximize the likelihood of the data. Running inference in every iteration, however, is too
expensive. A more efficient approach is to maximize the pseudo-likelihood of the data, and
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its gradient, estimated using the Markov blanket [111]. Thepseudo-likelihood parameters
may, however, lead to poor results when long chains of inference are required. Discrim-
inative learning can be applied in cases where the query predicates are pre-specified and
the goal is to correctly predict the latter given the evidence variables. The voted Percep-
tron algorithm for discriminatively learning hidden Markov models has been adapted to
Markov logic simply by replacing the Viterbi algorithm withMaxWalkSAT, for finding
the MAP state (the most probable state of the query predicategiven the evidence) [124].
A state-of-the-art discriminative weight learner is preconditioner scaled conjugate gradi-
ent (PSCG) [87], which uses samples from MC-SAT to approximatethe expected counts
of satisfied clauses for a given model, feeding them into the gradient and Hessian of the
conditional log-likelihood of an MLN.

Regarding structure learning, Kok and Domingos [77] have suggested to apply beam
search or shortest-first search over the set of clauses. Mihalkova and Mooney [93] sug-
gested to first construct Markov network templates from the data and then generate can-
didate clauses from these network templates, adding greedily to the final MLN. Recently,
Huynh and Mooney [138] proposed a discriminative approach for constructing MLNs, in
cases where the target and evidence predicates are pre-specified. More specifically, they
use a variant of an existing ILP system (ALEPH) to construct alarge number of potential
clauses and then learn their parameters by altering existing discriminative MLN weight-
learning methods to utilize exact inference and L1 regularization.

Markov logic has been applied to problems in entity resolution, link prediction, infor-
mation extraction and others, and is the basis of the open-source Alchemy system [78].

Discussion

The information encoded in the graph can be represented as Markov logic networks. In
particular, the direct inter-entity relations represented by the graph edges correspond to ev-
idence predicates in MLNs (e.g.,sent-from(x,y)). Long range associations between entities
can be modeled in MLNs as rules. (For example, consider the rule: ∀x∀y has-term(x,y)∧
sent-to(y,z) ⇒ related(x,z). There are, however, several crucial differences between the
graph walk paradigm and MLNs.

First, as mentioned above, Markov network grounding requires memory exponential
in the arity of the clauses. Even with binary clauses, havinga large number of constants
can result in several million clauses. In the graph-walk framework, in contrast, the graph
constructed is compact, as every entity (constant) corresponds to single node in the graph
and the entity interactions are represented by the graph edges. The scalability challenge
of network grounding is partially addressed by the inference algorithm of lazy MC-SAT;
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however, its efficiency varies for different networks.

Another difference between the approaches is that MLNs require the rules relevant to
the domain and problem of interest to be specified in advance.(This requirement is related
to the scalability bottleneck, as specifying all possible relations is infeasible.) Currently,
manually designing an MLN requires some expertise. Automatic structure learning is an
active research area, which has not yet reached maturity. Incontrast, learning task-specific
structures (rules) is not pre-requisite in our framework. Notice also that since the relevant
rules are different for each task, a different network is instantiated in MLNs in each case.
The graph framework, on the other hand, does not encode task-specific information in the
graph, so that the same graph is used for different tasks.

The expressive power of MLNs is larger compared with our framework, since it can
also model any n-ary relations; the graph representation, on the other hand, only represents
binary relations. On the other hand, the notion of structural similarity is not as well rep-
resented in MLNs. For example, high-degree nodes distribute their probability over many
children nodes in the graph, thus achieving an IDF-like effect. In MLNs, this phenomenon
is not inherently modeled.

An empirical evaluation of our framework and Markov logic networks for a small
subset of the problems that are evaluated later on in this thesis is included in Appendix C.

2.5 Summary

In this chapter, we introduced a framework for extracting a similarity measure from struc-
tured and semi-structured data. We represent data as directed labeled graph, where nodes
denote entities and typed edges represent the relations between them. We take a ranking
approach, where a query includes a distribution over entities (graph nodes), and specifies
the type of entity to be retrieved. A response is a list of entities of the requested type,
ranked by their similarity to the query. As a mechanism for inducing the similarity mea-
sure between nodes, we adopt the Personalized PageRank algorithm, where we apply finite
graph walks. The graph walk propagates similarity to a startnode through edges in the
graph—incidentally accumulating evidence of similarity over multiple connecting paths.
While we apply Personalized PageRank, other graph-walk basedvariants or algorithms
with similar properties could be used as well.

In this thesis, we focus on a graph that naturally models a structured dataset (like an
email corpus). Representing data in full, and avoiding special data and feature engineering,
allows to process many different classes of queries using the same underlying graph. We
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further defined ataskas a query class as a particular inter-entity relationship in the graph.
While we expect the basic similarity measure (Personalized PageRank, or another base
measure) to be effective in the general case, we are interested in exploring learning to
improve the results of the graph walk for specific tasks. Thisis the topic of Chapter 3.
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Chapter 3

Learning

In the framework, as defined in Chapter 2, multiple tasks can beaddressed as queries
using the same graph. Atask (defined previously) refers to a particular flavor of inter-
node similarity in the graph. For instance, consider the domain of email, represented by
the graph schema described in Figure 2.2(c). Concrete examples of tasks in this domain
includeAlias finding, where a user is interested in retrievingemail-addressnodes that are
associated with (that is, belong to) a specific person.Threadingis a different task in this
domain, in which given a particularmessage, the goal is to recover messages that belong to
the same thread. Another example is theperson name disambiguationtask, where given
a person name mention in a message, the correspondingpersonnode is sought. These
and other generic tasks in the extended domain of personal information management are
presented and evaluated in the next chapter. Overall, the number of different tasks possible
is very large.

A general similarity measure, such as the Personal PageRank graph-walk based met-
ric, can be applied to different tasks, and produce similarity scores that reflect structural
information in the graph. It is reasonable, however, that different similarity notions imply
varying importance for different link types. In other words, it is unlikely that a single set
of parameter valuesΘ will be best for all tasks. Furthermore, the sequences of edge types
(paths) that are traversed by the graph walk in reaching a target node also carry semantic
meaning characteristic to the type of relationship betweenthe query and target nodes. In
this chapter, we therefore consider the problem oflearninghow to better rank graph nodes
for a given task.

The learning approaches discussed include tuning of the edge weight parametersΘ
where several methods exist that learn the edge weight parameters to optimize graph per-
formance [136, 39, 4]. Following prior work, we adapt an error backpropagation approach
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[39] to our settings. These weight tuning methods, however,are local in the sense that
they decompose the graph walk into discrete time steps (i.e., they ignore the walk history).
We present the concept ofglobal learningto improve graph walk performance for a given
task. In particular, we apply reranking in this framework. Given ranked lists generated
by a base similarity metric (such as Personalized PageRank),we suggest to re-order these
lists using predefined features that describe node properties. The feature set can describe
global properties of the graph walk, such as the sequences ofedge types traversed in the
route from the source query nodes to a target node. Since reranking post-processes ini-
tially ranked lists, it can be readily combined with weight tuning in a pipeline fashion. In
addition to reranking, we also suggest apath-constrainedgraph walk variant as a method
for specializing the graph-based similarity measure to a task. In this graph walk variant,
our goal is to incorporate global information about the graph walk into the graph walk
process. Rather than model the graph walk as a Markovian process, we require that the
random walkers ‘remember’ the paths they traversed at each step of the walk, and consider
varying edge transition probabilities, depending on the walk history.

In the rest of this chapter we first describe the learning problem and settings (Section
3.1). In Section 3.2 we describe the error backpropagation algorithm for tuning the edge
weights, adapting it to finite Personalized PageRank graph walks. The reranking schema,
and a set of generic features used to describe graph nodes in terms of the graph walk, are
described in Section 3.3.

3.1 Learning Settings

In this thesis, we consider supervised learning settings. That is, it is assumed that labeled
example queriesei are provided (1≤ i ≤ N) that are instances of a taskt of interest. Each
example query specifies a different distribution over nodesV i

q, but the same user intention
(taskt) is assumed in all example queries. In case that the focus task is alias finding, for
instance, example queries may includeV i

q = {term=“William” }, V i+1
q = {term=“Jason”}

and so forth.

Example labeling schema.Several labeling schemas have been suggested in the area
of learning to rank, including absolute scores, where target node probabilities are specified
[137]; ordinal information, where ordinal values are assigned to nodes that represent their
relative relevancy to the example query [18]; and pairwise node preferences, sampled
from initially ranked lists [4]. In this thesis, we considera binary labeling scheme, where
the complete set of nodes that are considered as relevant answers to an example query
ei, denoted asRi, is provided. (We will assume that graph nodes that are not explicitly
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Figure 3.1: A dataset, generated using initial rankings perlabeled examples for the task
of alias finding. In this task, the queries includeterm nodes, and nodes retrieved are of
typeemail-address. Relevant answers for queryei (marked by a checkmark) are the nodes
specified inRi.

included inRi are irrelevant toei.) This labeling schema is adequate for well defined
problems, in which a query corresponds to a finite set of “correct answers”, and other
nodes are considered irrelevant.

Initial rankings. Given are the graphG, the graph walk parameters (walk lengthk
and reset probabilityγ), and some initial graph edge weight parametersΘ0. We apply
graph walks using these graph parameters to generate a ranked list of graph nodes, for
every example queryei. The corresponding output ranked list generated per example ei is
denoted asl0i . Henceforth,zi j will denote the output node ranked at rankj in the ranked
list l i, andpzi j will denote the score assigned tozi j in the ranked list.

Learning goal.Learning is aimed at improving the initial rankingsl0i , such that nodes
known to be relevant,zi j ∈ Ri, are ranked higher than the irrelevant nodes (jrel < j irrel ) for
every node pair in the output rankingl i; that is, we are interested in producing modified
lists l i , in which the relevant nodes occupy the top ranks. As is the case with learning
in general, it is expected that the learned models generalize and improve the rankings
of unseen instances. These instances may correspond to the same graph that the labeled
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examples refer to, or different graphs in the same domain, i.e., other graphs that adhere to
the same graph schema.

Figure 3.1 provides a graphical illustration of a dataset (aset of labeled examples)
for the task ofalias finding. Every exampleei includes a queryV i

q specifying a person’s
first name, represented as aterm in the graph. The goal of the alias finding task is to
retrieve email-addresses that belong to the person represented by the query. The setRi

includes the relevant answers for each queryei. For example, the person whose name is
Jason (represented in the queryVq = {term=“Jason”}), uses two out of the email-addresses
that are included in the corpus (graph):jernst@cs.cmu.edu(his department account) and
jernst@andrew.cmu.edu(his general student account). The initial rankings generated from
the example queries (shown in the bottom part of the figure) rank one of Jason’s email-
addresses at the top ranks in response to this query, but the other relevant email-address
is ranked at the third rank. For another example query (V i+1

q = {term=“William” }), the
initial ordering gives the correct answer in the second rank. The goal of learning is to
improve the node orderings, such that the correct answers appear at the top ranks, across
all the queries, to the extent possible.

3.2 Edge Weight Tuning: Error BackPropagation

As discussed earlier, the graph edge weight parametersΘ can affect the generated graph-
walk based similarity scores (Section 2.2.4). Specifically, the parametersΘ, together with
the graph topology, determine the transition probabilities in the graph (Equations 2.7 and
2.8). Rather than set the edge weights individually, the parametric weighting schema is
based on the assumption that the relations represented by the links between entities in
the graph have varying degrees of importance in evaluating inter-node relatedness. It is
unlikely, however, that a single set of parameter valuesΘ will be best for all tasks. We are
therefore interested in adapting the edge weightsΘ per task.

Several methods have been developed that automatically tune the edge weight param-
eters in similar settings, where edge weights are parameterized by the edge type. We
review these methods in Section 3.6. As an example of the weight tuning approach, we
evaluate the error backpropagation algorithm due to Diligenti et-al [39], applying it to our
framework for graph walks.

The algorithm applies a hill climbing approach, where the gradient of the weight of
each edge type,θ`, is derived using the paradigm of error backpropagation in neural net-
works. The target cost function is a squared error function (typical to backpropagation
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[113]), as follows:

E =
1
N ∑

z∈S

errz =
1
S∑

z∈S

1
2
(pz− pOpt

z )2 (3.1)

whereerrz is the error for a target nodez, defined as the squared difference between the
final score assigned tozby the graph walkpz and some ideal score according to the exam-
ple’s labels,pOpt

z . Specifically,pOpt
z is arbitrarily set to 1 in case that the nodez is known

to be a correct answer or 0 otherwise. The error is averaged over a set of example nodes
S. (The target nodesS can be sampled from the rankings of multiple queries, including
relevant and possibly irrelevant nodes.)

The cost function is minimized by gradient descent with respect to every edge weight
θ`′, as follows:

θ`′ = θ`′ −η
∂E
∂θ`′

= θ`′ −η
1
|S| ∑z∈S

∂errz

∂θ`′
(3.2)

The derivative of the error with respect toθ` is computed as the summation over each of
the graph walk’s time steps, where the final error is propagated backward, weighted by the
relative contribution of every intermediate node to the final node score. Specifically, for
every target nodez, the full set of paths that are traversed in reachingz from the query dis-
tributionVq can be recovered by apath unfoldingprocedure, common in neural networks
(e.g., [39]). (We find the connecting paths up to lengthk using a concurrent walk from the
query nodes andz, up to a meeting point.) Given the set of connecting paths, the derivative
of the errorez is computed as follows:

∂errz

∂θ`′
= (pz− popt

z )
k−1

∑
t=0

∑
y∈Uz(t+1)

P(y, t +1→ z,k) · ∂py(t +1)

∂θ`′
(3.3)

wherek is the number of walk steps;Uz(t +1) denotes the set of graph nodes that are in
the set of connecting paths leading tozat timet +1; and, given that nodey belongs to this
set,P(y, t +1→ z, t) is the total probability of reachingz at timek starting fromy at time
t +1.

The derivative of each intermediate nodey with respect to an edge weightθ`′ is com-
puted with respect to the probability mass attributed toy by its parents,pa(y), as it is
determined by the ratio of probability transferred toy, out of the total outgoing probability
of each parent at timet; i.e., it is determined by the edge weight parameters, as specified
in Equation 2.7.1 That is, the derivative is as follows.

1In case that a different formula is used, such as Equation 2.8, it is straight-forward to update the deriva-
tives accordingly.
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∂py(t +1)

∂θ`′
= ∑

x∈pa(y)

px(t) ·
∂ ∑`∈Lxy θ`

∑y′∈ch(x) ∑`′∈Lxy′
θ`′

∂θ`′
(3.4)

Finally, denoting asC(`′,Lxy) the count of edge typè′ in the set of connecting paths
Lxy, the explicit derivative is:

∑
x∈pa(y)

px(t) ·
C(`′,Lxy)Ox−C(`′,Lxy′)θ`

O2
x

(3.5)

where we use the abbreviationOx for the total outgoing weight from nodex, i.e. Ox =

∑y′∈ch(x) ∑`′∈Lxy′
θ`′ , andch(x) denotes the set of nodes that have incoming edges fromx.

The target function is non-convex, and it is possible that the gradient descent procedure
result in local minima [90]. Common techniques to overcome this pitfall include executing
multiple trials, using different initialization parameters (Θ0, here); simulated annealing,
etc. Given the cost function and the gradient, it is also possible to apply an optimization
package such as LBFGS.

The hill climbing process involves re-computing the rankedlist (by executing the graph
walk) in every iteration. The described weight tuning procedure may therefore be time
consuming. (The learning time varies across datasets; in general, iteration processing time
shortens drastically with caching.) As we will see, relatively few example nodes give
good performance [39]. Most importantly, however, once theset of weights is learned for
a given task, it can be readily applied to new queries that areinstances of that task, simply
by setting the graph edge weight parameters to the learned weightsΘ∗ and performing the
graph walk. That is, weight tuning involves no additional cost in responding to a query,
compared to the basic graph walks.

3.3 Reranking

An alternative approach for improving graph walk performance that we suggest in this
thesis is learning tore-order an initial ranking. The reranking approach has been used
in the past for meta-search [30] and also for several natural-language related tasks (e.g.,
[32, 31]). While typically the ranked list of candidates is generated using local search
methods, reranking can incorporate features which represent global phenomena that was
not captured by the local model. Such high-level information is often useful in discrim-
inating between the top ranked candidates. For example, a previous work [31] applied a
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MaxEnt learner to perform named entity tagging; then, reranked high-probability annota-
tions using features describing the entity boundaries predicted. Discriminative reranking
has improved the state-of-the-art results of syntactic parsing, using sentence-level features
to describe the high-probability candidate parse trees [32, 25].

In this section we suggest to apply discriminative reranking to learn to better rank
graph nodes. Unlike weight tuning, reranking allows one to considerglobal properties of
the graph-walk based similarity measure. In particular, wewill use generic features that
describe thepathstraversed in the graph walk from the query distribution to a target node.

Next we give an overview of the reranking model. We then propose a generic set of
reranking features that describe the graph walks (Section 3.3.2). The computation of these
features, either throughout the execution of the graph walks, or post the initial graph walk,
is discussed in Section 3.3.3.

3.3.1 Reranking Overview

The reranking model represents each output nodezi j throughm features, which are com-
puted by pre-defined feature functionsf1, . . . , fm. Assuming that relevant answer(s) are re-
trieved in the top ranks, reranking often considers only thetopK candidates (j = 1, ...,K).
The goal in reranking is to maximize the margin between the candidate that is known to be
the best answer and the other candidates. The reranking problem is thus reduced to a clas-
sification problem by using pairwise samples [122]. Severalalgorithms have been used
for reranking, including the Perceptron algorithm and its variants [32, 122] and Support
Vector Machines [121]. In this section we describe in detaila boosting approach, due to
Collins and Koo [32].

In this approach, theranking functionfor nodezi j is linear, defined as:

F(zi j , ᾱ) = α0log(pzi j )+
m

∑
k=1

αk fk(zi j ) (3.6)

whereᾱ is a vector of real-valued parameters. As shown, this function considers alsopzi j ,
the probability assigned tozi j by the initial ranker. Given an initially ranked list of a new
test example, it is re-ordered byF(zi j , ᾱ).

To learn the parameter weights̄α, the boosting algorithm minimizes the following
exponential loss function on the training data:

ExpLoss(ᾱ) = ∑
i

l i

∑
j=2

e−(F(zi1,ᾱ)−F(zi j ,ᾱ)) (3.7)
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wherezi1 is, without loss of generality, a correct target node.2 The weights for the function
are learned with a boosting-like method, where in each iteration the featurefk that has the
most impact on the loss function is chosen, andαk is modified. Provided that the fea-
tures are binary, closed form formulas exist for calculating the optimal additive parameter
updates [118].

Other researchers have also applied the voted Perceptron algorithm [50] and other
Perceptron variants to learn the weightsᾱ of the linear ranking function [122, 28].

3.3.2 General Graph-based Reranking Features

We suggest several generic features that describe the output nodes in terms of the graph
walk traversed to reach these nodes. These features are derived from the set of paths
leading to every candidate node in the ranked list, and describe non-local properties of the
graph walk. In particular, we define the following three types of feature templates:

• Edge label n-grams- features indicating whether a particular sequence ofn edge
labels(n < k) occurred within the set of paths leading to the output nodes.

• Top edge label n-grams- these features are similar to the previous feature type.
However, here the subset of topK paths that had the largest contribution to the final
accumulated score of the output node is considered.

• Source count- In case that the initial distribution defined by the query includes mul-
tiple nodes, this feature indicates the number of differentsource nodes in the set of
connecting paths leading to the candidate node. This feature models the assumption
that nodes that are reachable from multiple query source nodes are more relevant to
the query.

Example.Consider the sub-graph depicted in Figure 3.2. Suppose that atask of in-
terest isthreading, where given a message, the goal is to retrieve other messages that are
a response to the source message, or otherwise, messages that the specified message re-
sponds to. For the example queryVq = {msg=m1}, the ranked list generated by graph walk
is likely to include the messagesm2 andm3 at the top ranks, as both nodes are linked tom1

over several short connecting paths. In order to represent these nodes in term of the feature
templates, we first recover the set of paths linking the querym1 and each node. Overall,
the nodem2 is reached over three paths according to Figure 3.2 (the sub-graph shown is
assumed to contain all of the relevant connecting paths, up to length 2), including:

2If there arek > 1 target nodes in a ranking, ranking can be split intok examples.
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Figure 3.2: An example sub-graph, showing the connecting paths between the nodesm1,
m2 andm3.

m1
sent−to−→ p1

sent− f rom−inv−→ m2

m1
has−term−→ t1

has−term−inv−→ m2

m1
sent− f rom−→ p2

sent−to−inv−→ m2

The nodem3 is connected tom1 over three other paths:

m1
sent− f rom−→ p2

sent− f rom−inv−→ m3

m1
has−term−→ t2

has−term−inv−→ m3

m1
has−term−→ t3

has−term−inv−→ m3

The representation of the target nodesm2 andm3 as features is shown in Table 3.1. As
shown, the edge n-gram features represent the types of edge sequences traversed in the
paths to each node. In the example, the query distribution include a single node, and the
source-count feature equals 1 in both cases. The features are given in a binary form, where
features that are not detailed for a given node in the table are assumed to be false for that
node. It is possible to encode quantitative information by using discretized binary features
(e.g., “source-count=1”,“source-count=2”). In case thatreal-value features are preferred,
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feature type m2 m3

edge unigrams sent-from sent-from
sent-from-inv sent-from-inv
has-term has-term
has-term-inv has-term-inv
sent-to
sent-to-inv

edge bigrams has-term.has-term-inv has-term.has-term-inv
sent-from.sent-to-inv sent-from.sent-from-inv
sent-to.sent-from-inv

source-count source-count=1 source-count=1

Table 3.1: Feature representation of nodesm2 andm3, given that the query node ism1, the
graph is as described in Figure 3.2 and walk lengthk = 2.

feature weights can denote the count of the edge n-gram sequence in the set of connecting
paths; or, feature weights can also denote the probability mass that was transmitted through
each edge type (unigrams) from the query nodes to the target node. Example of the latter
feature weighting is included in Section 3.3.3.

Intuitively, given the features represented in Table 3.1, messagem2 is more likely to
belong to the same thread asm1, compared withm3. Specifically, the edge sequencessent-
from.sent-to-invandsent-to.sent-from-invare typical of a response to a message, where
the sender becomes the recipient, and vice-versa. Discriminative reranking is therefore
expected to assign high weight to these features. Notice that manipulating the edge weights
cannot capture this long-range pehnomena. In particular, the sequencesent-from.sent-
from-inv includes the same individual edge types, but is less indicative of a thread, or
email response, at path level.

The given feature set is general, in the sense that it is applicable to any task phrased
as a query in the graph. In addition to this general feature set, the design of additional
task-adapted features may improve performance further. Various properties of the set of
connecting to the target node can be represented as features; e.g., information about the
nodes visited in the course of the graph walk may be useful forcertain problems. External
information, which is not included in the graph but considered relevant for the task, can
also be added to a node’s feature description.

In the next section, we describe a couple of approaches for computing the reranking
features; either during the graph walk, or as a separate procedure.
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3.3.3 Feature computation

A number of features describing the set of paths from the query distributionVq can be
conveniently computed in the process of executing the graphwalk. Recall the definition
of the probability of reachingz from x over a multi-step graph walk,Vk(z) (Equation 2.6).
The same sort of recursive definition can be used to build up a feature vector that describes
a ranked itemz. First, a vectorf of primitive feature functions that describe the individual
edges in a graph is defined. We can define a weighted vector function F which aggregates
the feature primitive functions over a walk that starts at node x and walks to nodez in
exactlyd steps, as follows:

F0(z) = 0

Fd(z) = ∑y
(

Pr(x
`−→ y) · f (x

`−→ y)
)

·Q(y
=d−1−→ z)

whereQ(y
=d−1−→ z) is the probability of stopping atz in graph walk originating fromy of

lengthd−1. Finally, we can define:

Fk(z) = γ
k

∑
d=1

(1− γ)dF(x
=d−→ z) (3.8)

Fk(z) can be computed throughout the execution of the graph walk, while computingVk(z)
[28]. An algorithm for computing the graph walk and the node feature vector representa-
tion concurrently is given in Table 3.2. The algorithm computes a distribution over edge
types, weighting each edge by the probability mass that was traversed via that edge en
route to the target nodez. This algorithm can be extended to compute edge bigrams by
recording the set of edge types fromx to y (that is, the union

�
xLxy) at every iteration,

and using this history in walking fromy in the consecutive iteration. (The bigram feature
weights can be replaced by counts, or assigned similarly to edge unigrams in Table 3.2.)
Similarly, n-gram edge sequences can be computed. The feature function may include
additional properties of a path segment, such as the source node typeτ(x) etc.

The cost involved in computing the feature function described in Table 3.2 is constant
per each node visited. In our implementation, this approximately doubles the cost of the
graph walk computation. Maintaining n-gram edge sequence features, however, requires
memory of size|Θ|nN.

Alternatively, rather than calculate the feature vectors on-the-fly for every node visited
during the graph walk, it is possible to compute the feature vectors only for the topK
nodes retrieved that are to be reranked. Feature extractionin this case takes place after
the graph walk is completed. Given the set of connecting paths, which can be extracted

53



1. letV0 be the probability distributionVq, and letF0 be an empty distribution.

2. for d = 1, . . . ,k do

• let Vd(x) = 0 for all x

• for eachxi ∈Vd−1 do

(a) Vd(xi) = γVd−1(xi)

(b) Fd(xi) = γFd−1(xi)

(c) for each nodey j ∈ ch(x), ` ∈ Lxiy j

– incrementVd(y j) by (1− γ)Vd−1(xi)Pr(xi
`−→ y j)

– incrementFd(y j) by (1− γ)Vd−1(xi)Pr(xi
`−→ y j) · f (xi

`−→ y j)

3. returnVk(z),Fk(z).

Table 3.2: An algorithm for computingVk(z) andFk(z) concurrently, given transition prob-
abilitiesPr(xi −→ y j).

via the path unfolding procedure as described above, it is straight-forward to derive the
feature values (see example in Section 3.3.2). In this thesis, we take this latter approach
for feature computation.

Unlike the weighted tuning approach, reranking requires some overhead over the graph
walks. Namely, given new instances of queries, feature vectors need to be computed as
part of query execution, before the applying the reranking function. A main concern is that
while edge labelbigramscorrespond to a relatively small space, higher ordern-gramsmay
translate to large feature space. Given a limited number of training examples, this is likely
to lead to over-fitting. In case that high-order n-grams are incorporated, it is therefore
required to apply techniques such as feature selection or regularization.

3.4 Path-Constrained Graph Walks

While node reranking allows the incorporation of high-levelfeatures that describe the
traversed paths, it is desirable to utilize such information directly in the graph walk pro-
cess, so the quality of the initial rankings produced is improved. Assume that preliminary
knowledge is available that indicates the probability of reaching a correct target node from
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the query distributionVq, following distinct edge type sequences (paths) . Rather than
have the graph transition probabilities be evaluated locally, based on a fixed set of edge
weightsΘ, the probability of following an edge of typèfrom nodex can then be evaluated
dynamically, given thehistory of the walk up tox. That is, the edge weightsΘ will de-
pend on the random walker history. Performance-wise, in case that paths carry additional
information compared with individual edges, this should bebeneficial as paths that lead
mostly to irrelevant nodes are likely to be degraded in the graph walk process. In addition,
it is straight-forward to apply a threshold, to prune paths with low estimated probability
of reaching a relevant node in the walk. This can yield scalability gains, while keeping
performance at a high level.

This section describes apath-constrainedgraph walk variant, which implements these
ideas. The algorithm includes two main components. First, it addresses the evaluation
of dynamic edge weights, given the history of a walk, based ontraining examples. The
second component of the algorithm adapts the random walk to consider path history. The
space of path histories is|Θ|k, so that a compact representation is required.

In general, the approach suggested is to model paths observed in a training dataset as a
path tree, where every path is associated with the probability of reaching a relevant target
node following this path, based on the labeled examples. Path probabilities are propagated
in the tree to obtain estimates of the parametersΘ for various histories of graph walk. In
order to perform a graph walk, which co-samples from the graph and the path tree, we
will compactly represent walk histories by associating each node visited in the graph walk
with the corresponding vertices of the path tree.

Next we describe in detail the process constructing the pathtree, and the estimation of
the path tree’s vertex probabilities (Section 3.4.1). We then describe a modified algorithm
of path-constrained graph walks (Section 3.4.2).

3.4.1 Path-Tree Construction

We construct a path-treeT using the training set ofN labeled queries. Let aedge sequence
p denote a sequence of edge types up to (the maximal pre-defined) lengthk. For each
training example, we recover all of the connecting paths leading to the topM correct and
incorrect nodes, and extract the corresponding edge sequences. (The connecting path set
per a single node may include multiple instances of an edge sequence, for different in-
termediate nodes visited.) LetC+

p be the count of an edge sequencep within the paths
leading to the correct nodes, over all examplesN; and similarly, letC−

p denote its count
within the paths leading to the negatively labeled nodes in the example set. The full set of
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Figure 3.3: An example path-tree: path counts (top) and vertice probabilities (bottom).

edge sequences observed can be represented as a tree. The leaves of the tree, which corre-
spond to full edge sequences traversed to a target node, are assigned a Laplace-smoothed

probability: Pr(p) =
C+

p +1

C+
p +C−

p +2
. Pr(p) is a (smoothed) maximum likelihood estimate of

the probability of reaching a correct node followingp, based on the observed examples. In
our experiments, we found that better performance is obtained ifC(p) are evaluated using
acyclic paths only (that is, paths where nodes are not re-visited). We therefore consider
only edge sequences that are derived from the relevant acyclic paths in the graph. In the
rest of this section, we refer to this set of edge sequences aspaths, from which the tree is
constructed.

Example.Consider the graph shown in Figure 3.2, where the query isVq = {m2}, node
m1 is considered a correct answer to the query, and nodem3 is an incorrect answer. The
set of paths that lead to each of these node over a 2 step graph walk are detailed in Section
3.3.2. As described, there are three unique paths that lead to the relevant nodem2, where
each path occurs once. Each path is therefore credited with apositive +1 count, as follows:

sent−to−→ sent− f rom−inv−→ +1
has−term−→ has−term−inv−→ +1
sent− f rom−→ sent−to−inv−→ +1

The irrelevant nodem3 is reached via two unique paths, where one of the paths repeats
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twice, and is therefore attributed a negative -2 count, as follows.

sent− f rom−→ sent− f rom−inv−→ −1
has−term−→ has−term−inv−→ −2

Overall path counts, based on these nodes, are:

sent−to−→ sent− f rom−inv−→ +1 0
has−term−→ has−term−inv−→ +1 −2
sent− f rom−→ sent−to−inv−→ +1 0
sent− f rom−→ sent− f rom−inv−→ 0 −1

The count statistics in this case show that while the pathhas-term.has-term-invleads to
relevant nodes, this path is relatively ‘noisy’, in the sense that this path also reaches in-
correct responses with relatively high probability. The final path statistics per the example
above correspond to a path tree that includes three branchesoriginating from the root
(representing thesent-to,has-termandsent-fromedge types), and four leaves. The path
has-term.has-term-invwill be associated with a leaf smoothed probability of 0.4, indicat-
ing the probability of reaching a correct target node over this path in the underlying data.
Having accumulated path counts for a sufficient number of nodes, the count statistics are
expected to represent general phenomena in the graph.

Further, the tree leaf probabilities are propagated backwards to the tree vertices, apply-
ing theMAX operator.

In our experiments, we have also considered a differentaveragingscheme for esti-
mating vertex probability, where the positive and negativecounts at the downstream paths
(leaves)pi from that node were summed (i.e.,∑C+

pi
and∑C−

pi
), and the smoothed ver-

tex probabilities were computed using the cumulative counts. The results using theMAX
operator were superior in most cases.3

Example.An example path tree is given in Figure 3.3. This path-tree includes three
paths, constructed from the edge typesk, l ,m,n, and their observed counts. According
to the stated counts, the leaf probability corresponding tothe pathl .m.k is estimated at
0.2 (3/15), and at 0.9 per the pathl .n.k. The bottom part of the figure gives the path-tree
vertex probabilities. As shown, at the root of the tree, the probability of reaching a relevant

3Interestingly, in reinforcement learning an agent also selects the step that maximizes the future reward
in its path to a goal.
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Given: graphG, path-treeT, query distributionV0, number of stepsK
Initialize: for eachxi ∈V0, assign a pair< root(T),xi >

Repeat for stepsk = 0 to K:
For each< ti ,xi >∈Vk:
Let L be the set of outgoing edge labels fromxi , in G.
For each lm ∈ L:

For each xj ∈ G s.t.,xi
lm−→ x j , add< t j ,x j > to Vk+1, wheret j ∈ T, s.t. ti

lm−→ t j , with probability
Pr(xi |Vk)×Pr(lm|ti ,T). (The latter probabilities should be normalized with respect toxi .)
If ti is a terminal node inT, emitxi with probabilityPr(xi |Vk)×Pr(ti |T).

Figure 3.4: Pseudo-code for path-constrained graph walk

answer is estimated at 0.9 (computed asMAX(0.2,0.9)) if an edge of typel is followed,
and at 0.75 if an edge of typem is selected. We assume that probabilities associated with
edge types not included in the path-tree at a given vertex to be zero.

3.4.2 A Path-tracking Graph-walk

Given a path-tree, we applypath-constrainedgraph walks that adhere both to the topology
of the graphG and the path treeT. Walk histories of each nodex visited in the walk are
compactly represented as pairs〈t,x〉, wheret denotes the relevant vertex in the path tree.
(This means that ifx was reached viaK different paths, it would be represented usingK
node pairs.) For example, according to the path-tree in Figure 3.3, suppose that after one
walk step, the maintained node-history pairs include〈T(l),x1〉 and 〈T(m),x2〉. If x3 is
reached in the next walk step from bothx1 andx2 over paths included in the path-tree, it
will be represented by multiple node pairs, e.g.,〈T(l → n),x3〉 and〈T(m→ l ,x3〉.

The pseudo-code for the path-constrained graph walk is given in Figure 3.4. In the
algorithm, the path-tree probabilities are treated as dynamic edge weights. These weights
are normalized at each node (pair) traversed to generate local transition probabilities (fol-
lowing Equation 2.7).

Example.Consider the node pair〈T(`),x1〉, where there are outgoing edges fromx1

of typem, n andk. The effective edge weights for this node-history pair areθ∗m = 0.2 and
θ∗n = 0.9, according to the path-tree shown in Figure 3.3. The sequence of edges̀.k does
not exist as a path prefix in the path-tree, and thereforeθ∗k = 0. Given the modified edge
weights, the graph walk can proceed according to its original schema.

Notice that the number of nodes visited in the modified graph walk increases relative to
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an unconstrained walk. On the other hand, paths in the graph that are not represented in the
path tree are pruned. (It is possible, of course, to assign a small probability to previously
unseen paths.) In addition, it is straight-forward to discard paths inT that are associated
with a lower probability than some threshold. A threshold of0.5, for example, implies that
only paths that led to a majority of positively labeled nodesin the training set are followed.
Path pruning has a direct effect on the time complexity of thewalk, reducing the number
of nodes and edges visited.

3.5 Method Comparison

So far, we presented three different approaches for learning to rank graph nodes given la-
beled examples and initial rankings generated using graph walk. In this section we discuss
the relative strengths and weaknesses of these methods withrespect to key criteria, includ-
ing: the scope of information that can be considered by each approach; and the extent to
which each learning method can alter the initial rankings produced by the graph walk; and,
the differences between the methods in terms of their training procedures and application
requirements during runtime.

Global vs. Local Information.

The graph walk process is strictly Markovian, where the random walker does not “re-
member” the history of the walk. In our framework, this meansthat edge probabilities (or,
edge weights) are fixed over the course of the walk. Similarly, in learning the graph edge
weights using methods like error backpropagation, the graph walk is decomposed into sin-
gle time steps, and optimization is performed “locally”. This chapter established the notion
of “global” learning in graph walks. The node reranking approach allows one to exploit
global properties of the walk, as it can represent information about the full paths traversed
to reach a target node. In particular, we suggest features that describeedge sequences
traversed over multiple time steps. The path-constrained graph walk method embeds high
level information, considering the paths traversed, already into the graph walk.

Overall, reranking is perhaps the “most global” method, outof the approaches con-
sidered. In addition to edge sequences, reranking can incorporate features that describe
properties of thecollectionof paths leading to a node. For example, thesource countfea-
ture denotes the number of different query nodes that link tothe target node. Similarly,
reranking features can model the number of paths leading to anode, and other global prop-
erties pertaining to a node connectivity. The path-constrained walks, in contrast, consider
individual paths and cannot model properties at the path setlevel.
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Finally, reranking can also model arbitrary domain-specific features, incorporating ad-
ditional relevant information sources that are independent of the graph walk.

Learning Impact.

Learning may alter the graph-walk based initial rankings tovarying extents. Next we
discuss the learning methods with respect to their ability to substantially change the initial
rankings.

Weight tuning alters the results produced by the graph walk.Recall, however, that the
graph walk generated rankings are affected also by other factors, involving the topology
of the graph and properties of the graph walk paradigm (Section 2.2.4). For instance, an
exponential decay over the transmitted probabilities is applied by Personalized PageRank
graph walk, diminishing the contribution of long walks. Nodes that are linked to nodes
in the query distribution via short connecting paths are therefore likely to be assigned
high probability scores and appear among the top ranks of theoutput node list. In other
words, we claim that tuning the edge weight parametersΘ has a limited impact on the final
rankings.

Unlike weight tuning, discriminative reranking is not constrained to the graph walk
paradigm, and a ranked list can be significantly altered using the re-ranking procedure.
However, for efficiently reasons, reranking is only appliedto the top nodes retrieved. Per-
formance using reranking is therefore limited, as it depends on the quality of the initially
ranked lists. It is therefore desirable to apply reranking in combination with a good initial
ranking function. In particular, reranking may be applied in combination with graph walks
that use a learned set of edge weightsΘ∗, or with path-constrained walks, in a sequential
fashion.

Finally, the path-constrained graph walk variant can affect the output rankings to a
large extent, as it incorporates a bias towards specific paths during the graph walk. Thus,
nodes that are close to the query nodes, but are so related over a relation that is not mean-
ingful, for example, will be excluded for the ranked list. Nevertheless, the path-constrained
graph walks reflect the graph topology. The deviation of the path-constrained graph walk
result from the initial rankings can vary, depending on the applied threshold.

Method Applicability.

The methods differ in their training requirements, the result of learning, and its appli-
cation to unseen instances.

The error backpropagation weight tuning approach requiresre-computing graph walk
rankings in each learning iteration. In addition, several independent learning sessions are
recommended, in order to avoid local minima. Weight tuning therefore needs to be run
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offline, and may require a relatively long time to train. On the other hand, this method
yields a set of edge weightsΘ that is optimized for the given task. Given a query which
is an instance of the same task, the learned set of edge weights parameters can be readily
applied to the graph walk, with no overhead during runtime.

The reranking approach requires only a one-time execution of the graph walk. Fea-
tures describing the top graph nodes retrieved are derived either during the graph walk, or
as a separate step, using a path unfolding procedure. The model generated in reranking
is a weighted function, which can be readily applied to feature vectors describing other
instances of the learned task. In terms of training requirements, a rule of the thumb is that
for discriminative methods such as reranking, the larger the feature space modeled, the
larger is the training set required. This generally means that compared with weight tuning,
we expect more examples to be required using the reranking approach. That is, there is a
trade-off between the methods of weight tuning and reranking, where weight tuning can
efficiently learn with very few examples [39], but the feature space that it can represent is
much more limited, namely, individual edge types.

While learning a reranking function and applying the learnedmodel to other feature
vectors are efficient, the procedure of encoding nodes with their feature values adds pro-
cessing overhead to query execution. The additional processing time is affected by the
types of features used, and the fashion in which they are computed.

The path-constrained graph walk approach is simple and fastto train. Like reranking,
it requires a single execution of the graph walk for the givenexample queries, as well as
path unfolding. Unlike reranking, this approach uses the full paths as features, such that
the step of computing feature values is trivial. Given the path-tree learned for the task of
interest, the constrained graph walks are applied to the unconstrained graph walks original
schema.

Summary

We conclude that edge weight tuning is a natural learning tool, as it is derived from and
applied directly to the graph walk. However, it is limited toconsidering local information
of the graph walk. In addition, the impact of the graph’s edgeweights on the graph-walk
based rankings may be limited in some cases. Path-constrained walks consider global
information about path relevancy, and can have a great impact on the quality of the output
ranked list. Finally, reranking allows the consideration of arbitrary features, and features
that describe a node by properties of the set of paths that connect it to the query. Reranking,
however, operates only on the top candidates retrieved by the graph walks; also in response
to a query, reranking requires feature encoding overhead, unlike the other approaches.

While node reranking can be used as an alternative to the othermethods, it can readily
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be used as complementary approach, as the techniques can be naturally combined by first
adapting the graph walk generated rankings, and then applying the reranking model. This
hybrid approach has been used successfully in the past on tasks like parsing [32].

3.6 Related Work

We first review general learning techniques previously suggested to improve graph-walk
based rankings 3.6.1. In Section 3.6.2, we discuss in detailalgorithms that specifically
adapt the edge weight setΘ. Section 3.6.3 reviews works that consider global featuresin
combination with local search methods (such as the graph walk), as well as methods that
utilize path information in graphs.

3.6.1 Learning Random Walks

PageRank and Personalized PageRank variants find the stationary distribution of a reason-
able but arbitrary Markov walk over a network, and do not learn from relevance feedback.
Several researchers have suggested to learn the link weights of the transition matrix, such
that the authority scores assigned to nodes better reflect user preferences. Chang et-al [24]
applied gradient ascent on the elements of the link matrix constructed by the related HITS
algorithm [75], altering rankings to more closely align with the documents that match user
interests. They begin by running HITS to convergence using the original link matrix. They
then derive a gradient of authoritative webpages with respect to the link matrix, and add
a fraction of the gradient to each element of the link matrix.This operation not only in-
creases the rank of a given node but also increases the rank ofother similar documents.
The algorithm, however, produced results of varying quality.

It was later suggested to learn the teleport (reset) vector in the PageRank algorithm,
to affect node rankings [137]. The input preferences considered were formed as either
absolute node scores (where the initial walk scores were given to the user as reference), or
as node pairwise preferences. The authors applied a quadratic programming approach to
optimizing the teleport vector, where preferences were modeled as linear constraints. In
their work, the teleport vector learned reflects fixed preferences from a data administrator’s
point of view; adapting the reset distribution is redundantin our framework, however, as
it is defined dynamically per query, including the query nodes (Equation 2.4).

Agarwal et-al [4] assume a similar setting, where a user has one or more hidden pre-
ferred communities that the learning algorithm must discover, and relevance feedback is
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given as node-pair preferences. Their goal is to tune the transition probabilities of the
link matrix. (In their model, teleport transitions are modeled as regular transitions to a
dummy node, such that tuning of the teleport vector is included within the general tran-
sition matrix.) They present NetRank, an algorithm that optimizes the transition matrix
probabilities, such that the final node probabilities are similar in terms of KL divergence
to the results of an initial flow, and the given pairwise ranking preferences are satisfied.
NetRank does not provide generalization guarantees, and does not generalize well in the
experiments. In a later work [3], a theoretical justification is given for this approach. The
authors show that minimizing KL divergence between the learned and reference (standard
PageRank) flows amounts to searching for a smooth scoring function. That is, it bounds
the probability of the expected loss being very different from the empirical loss for the
considered loss function.

Agarwal and Chakrabarti [3] draw a connection between learning to rank graph walks,
where directed edges denote structural inter-entity relations, and learning inassociative
networks, where undirected edges denote similarity and are weightedaccording to simi-
larity strength. In particular, they analyze a Laplacian smoothing approach [5], applied in
associative networks. The authors argue that in contrast toLaplacian smoothing, which as-
signs arbitrary scores to nodes, thus inducing all possiblenode permutations, certain node
orders may be impossible to achieve in graph walks over a directed graph. That is, the hy-
pothesis space of the PageRank model is contained in the hypothesis space of the Laplacian
smoothing approach. Preliminary experiments indicate that this increased bias aids gen-
eralization. The authors also suggest an enhanced approachto learning in PageRank-like
directed graphs, using additive margin and cost/rank-sensitive learning. They show that
this approach compares favorably to Laplacian-based smoothing for directed graphs.

3.6.2 Edge Weight Tuning

Several methods have been developed that automatically tune the edge weight parameters
in extended PageRank models, where edge weighted are associated with the relation type
that they represent. Earlier works, including the XRank [56]and ObjectRank [7] models,
experimented with assigning different edge weights, but did so manually.

Nie et-al [100] have suggested PopRank, an object-level linkanalysis model that ranks
the objects within a specific domain, where relationships between objects are heteroge-
neous. They apply a simulated annealing algorithm to explore the search space of all
possible edge weight assignments, with the goal of reducingthe difference between par-
tial rankings given by domain experts, and the ranking produced by the learned model.
In order to make learning time manageable, they use a subgraph in the learning process,
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trading optimality for efficiency. The subgraph used consists of a set of concentric circles
with the training objects in the center as the core.

Toutanova et-al [136] have constructed a special graph including diverse word-to-word
relationships, describing WordNet relations, morphologylinks and word features derived
from dependency relations. They applied truncated Personalized PageRank graph walks
to induce smoothed word probabilities, using these probabilities for the task of predicting
prepositional word attachment. In their work, the edge weight parameters of the model
were fitted to optimize the conditional log-likelihood of the correct attachment sites for
a development set of samples, including quadratic regularization. Optimization was per-
formed using a limited memory quasi-Newton method. The authors have also experi-
mented with tuning separate edge weight parameters for different nodes in the graph,
defining equivalence classes of states by which the parameters were grouped. For example,
parameters were binned based on the observed number of word occurrences. However, it
is reported that the simplest model having a single equivalence class across all of the graph
nodes performs on average as well as the more complex models.

Agarwal et-al [4] have presented a hill-climbing approximation algorithm adapted for
partial order preferences. They add given pairwise constraints as a violation penalty to the
cost function. The derivative with respect to the weight of each edge type is computed
by applying the chain rule, accompanying the regular PageRank iterations with gradient
finding steps. It is shown that scaling up the graph size, the time per iteration scales essen-
tially linearly with the number of graph vertices and edges,and the number of iterations
grows slowly with the size of the graph. Overall, the training time is mildly superlinear to
the graph scale factor. The authors experiment also with a maxent flow setting, address-
ing the problem of learning general transition probabilities, where the edge weights are
non-parametric. They find that since the approximate gradient-descent approach estimates
a small number of global weights, it can generalize from training to test instances that
involve completely different nodes, far away in the graph, with a much smaller number of
examples, compared with the latter settings.

3.6.3 Graph Walks using Global Information

The reranking approach has been applied in the past to a variety of structure prediction
tasks, including parsing [32, 31, 25], machine translation[123], semantic role labeling
[135] and more. In general, structure prediction problems are usually factorized into a
chain of local decisions in order to apply efficient inference algorithms, such as dynamic
programming. The factorized model, however, can only consider local features, and the
maximum likelihood structure predicted is often sub-optimal. In the reranking approach,
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rather than predict the most likely candidate, the topK most likely candidates are generated
in the search process. These candidates are then evaluated based on global features; i.e.,
properties pertaining to the long range dependencies in thepredicted structure. These
features allow the reranking classifier to improve on the initially ranked list, by demoting
candidates that violates various constraints or preferences in the subject domain. In the
problem of semantic role labeling, for example, a hard constraint is that arguments cannot
overlap with each other or the predicate, and a soft constraint is that a predicate have no
more than one AGENT argument [135].

To the best of our knowledge, we are the first to consider global features in graph-walk
based induced similarity measures in general. In particular, we are the first to suggest
reranking to improve rankings of graph nodes, using features that describe global proper-
ties of the paths traversed.

Researchers have pointed out that the performance of the reranking approach is bounded
by the quality of the top candidates reranked. Rather than apply high-level constraints to
the results of a localized search, it is therefore desired toconsider such constraints earlier,
in the inference process. Several previous works suggestedmodels that incorporate high-
level constraints in the inference procedure, tailored forspecific problems. For example,
Punyakanok et-al [108] apply an inference procedure based on integer linear programming
that supports the incorporation of structural constraintsfor the semantic role labeling task.
Instead of predicted a structure, they predict the local components of the structure (verb
arguments), using classifiers that emphasize high recall. The inference procedure then
takes confidence scores assigned to each individual component as input, and outputs the
best global assignment that satisfies the high-level constraints. Specifically, they apply in-
teger linear programming to reason about the global assignments. In another recent work,
Huang [64] proposesforest reranking, a method that reranks a packed forest of exponen-
tially many parse trees. Since exact inference is intractable with non-local features, he
presents an approximate algorithm inspired by forest rescoring. In the proposed approach,
non-local features are computed incrementally from bottomup, that is, as early as possi-
ble (‘on-the-fly’). The decoder can then consider this information at internal nodes of the
parse tree generated. The path-constrained graph walk variant suggested in this chapter
applies a similar idea. Rather than compute the graph walk as aMarkovian process, the
algorithm allows the edge weights parameters to be determined by path information, built
incrementally as the graph and the path-tree are traversed concurrently. To our knowledge,
the approach of using path information as guidance within the framework of random graph
walks is novel.

Other researchers have considered path information in classifying relations between
pairs of objects connected over individual structures, such as entities that co-appear in

65



a sentence dependency tree [127]. In particular, rich features sets were proposed that
describe these paths [36, 17]. The approach of discriminative reranking similarly incor-
porates path information as well as arbitrary feature sets.Given that individual structures
are represented within a combined graph, the graph walk framework allows toretrievethe
most related entities over relevant paths, rather than evaluate a large space of entity pairs.

Finally, path constraints are often used in the spreading activation paradigm (see Sec-
tion 2.4.5) in order to eliminate probability propagation to irrelevant areas in the graph. In
spreading activation, path preferences are coded manually, and enforced deterministically.
We use learning to obtain path information, and apply path features probabilistically.

3.7 Summary

We presented three approaches for learning to adapt the graph walk based similarity mea-
sure for a given task. The first approach is weight tuning, where we adapted an error
backpropagation hill climbing method to our framework of finite graph walks. The second
approach is reranking. We presented a set of general features that encode high-level prop-
erties of the paths traversed in the graph walk. While additional specialized features can be
designed per task, the basic set of features proposed can be applied to any task, as it repre-
sents long-range relationships between entities in the graph. In practical settings, however,
only the top nodes retrieved by the initial graph walks can bereranked. It is therefore de-
sirable to incorporate global features in the initial ranking process. We therefore suggested
a novel graph walk variant, in which edge probabilities depend on the history of the walk.
The proposed algorithm represents walk history efficientlyusing a compact path-tree, in
which edge weights are derived based on path information. Both reranking and the path
constrained graph walk methods can be combined with weight tuning. In the future, we
would like to enhance this model by learning the edge probabilities using a richer set of
features.
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Chapter 4

Case Study: Personal Information
Management (PIM)

In this chapter, we evaluate personal information management as a case study of the graph
walk and learning derived similarity measures. We suggest representing personal informa-
tion as a graph (extending the toy examples given earlier), and will evaluate a variety of
related tasks. Some tasks have been studied before, and sometasks are novel.

There are several motivations for applying our framework tothis domain. Personal
information, such as email and meeting entries, implicitlyrepresent social network infor-
mation, textual content and a timeline. Obviously, there isa close relationship between
these components of information. For example, persons on a user’s contact list may be
related by being part of one social “clique”, as derived by a simple analysis of header in-
formation in an email corpus [63, 62]. In addition, they can be related via common key
words that appear in the relevant correspondence in the email corpus [89]. Such inter-
personal relatedness is also tied to a time dimension. It is therefore desired to combine
multiple relevance measures to utilize the multi-faceted information that is included in
personal information source for related applications and tasks. Using graph walks, these
multiple email-related aspects of information can be integrated.

Another motivation for using graph walks is that the graph ismodular, and can be
easily extended to include various entity types. For example, we combine meeting entries
in the graph. We also consider a notion ofactivity, represented by an email folder.

As shall be shown, since the graph representation is not reduced to task-specific fea-
tures, we will use the same underlying graph to perform multiple different tasks. We eval-
uate the extent to which learning can further enhance the graph-walk generated similarity
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Figure 4.1: A joint graph representation of email and meetings data

measure per the specific task of interest.

This chapter is organized as follows. We first discuss the representation of personal
information as a graph. We then present the set of email tasksevaluated, and their corre-
sponding representation as email queries. Experimental results are then given for all tasks,
where both base graph walks and the learning techniques are evaluated. For each task, the
graph-based results are also compared against relevant baselines. The chapter concludes
with a discussion of related works, and a summary.

4.1 Email and Meetings Graph Representation

A graph example including both email and meeting objects is given in Figure 4.1. The
corresponding graphschemais detailed in Table 4.1. The graph representation naturally
models an email corpus in the sense that it forms a direct layout of the information in-
cluded within the corpus. The graph entities correspond to objects of typesmessagesand
terms, as well asemail addresses, personsanddates. Directed graph edges represent re-
lations likesent-from, sent-toandon-date. As shown, we distinguish betweenhas-term
and has-subject-termrelations. In addition, in the suggested schema, a person node is
linked to its constituent token values with an “as-term” edge. Similarly, terms that are
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source type edge type target type
message sent-from person

sent-from-email email-address
sent-to person
sent-to-email email-address
on-date date
has-subject-term term
has-term term

meeting attendee person
attendee-email email-address
mtg-on-date date
mtg-has-term term

person sent-from−1 message
sent-to−1 message
attendee−1 meeting
alias email-address
as-term term

email-address sent-to-email−1 message
sent-from-email−1 message
attendee-email−1 meeting
alias−1 person
is-email−1 term

term has-subject-term−1 message
has-term−1 message
mtg-has-term−1 meeting
is-email email-address
as-term−1 person

date on-date−1 message
mtg-on-date−1 meeting

Table 4.1: Email and meetings node and relation types. (Inverse edge types are denoted
by a superscript.)
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identified as email-addresses are linked over an “is-email”edge type to the corresponding
email-addressnode. In some of the experiments described in this chapter, we have added
a “string similarity” edge type, linking email-addresses for which the evaluated string sim-
ilarity score is higher than a threshold. It is straightforward to add other information types
available; e.g., organizational hierarchy inter-personal relations, if given, etc.

Given a graph that includes email information,meetingobjects can be easily incorpo-
rated to create a graph representing both email and meeting information. In particular, we
assume that a given meeting includes attendees’ information (names, or email-addresses),
text describing the meeting (e.g.,“Webmaster mtg, 3305 NS”) and a date. One can imag-
ine a richer setting where meetings are also linked to longertexts, files, web URLs, etc.
Evidently, related email and meeting corpora have many entities in common: namely,
persons and email-addresses, terms and dates. It is therefore straightforward to join the
two information sources. In the combined graph, ameetingwill have a connecting path
via term anddatenodes tomessagefiles, for example. Many tasks can benefit from the
combined representation of messages and meetings. For instance, relevant messages (or
other potentially included entities, like papers and presentations), can be retrieved as re-
lated background material for a meeting in this framework. Similarly, the social network
information embedded in emails may be enhanced given meeting information. That is, if
meetings in the graph are linked to known attendees, these links may provide additional
knowledge about persons’ relationships, complementing the social network derived from
email files.

Finally, we also suggest to embedactivitiesin the graph. While user activities are of-
ten implicit, they can be represented in the graph as explicit entities. Many user-created
foldersfocus messages related to a project activity, for example. Folder structure can be
extracted from the corpus, wherefolder-messageassociations are given. Recently, there
is an increasing interest in activity-based interfaces formanaging information at the desk-
top [12]. Such interfaces may provide additional evidence regarding activities and their
relations with other entities.

4.2 PIM Tasks as Queries

The suggested framework can be used as an ad-hoc contextual search platform, given
email, meetings and other relevant information represented as a graph. The data included
in the graph may describe personal information, in which case it can be used to serve one
personal data search and consolidation needs; or, it may relate to organizational-level data,
where cross-organizational information is available for retrieval and analysis.

70



task Vq τout

Person name disambiguationterm(name mention)(+file) person
Threading message message
Finding meeting attendees meeting email-address
Finding email aliases term/s(person’s name) email-address
Message foldering message folder
Message tracking folder message
Activity-person Prediction activity/folder email-address

Table 4.2: Query realizations of the considered tasks

The framework is general, and many query and search types arepossible. One can
search for similar or related items to a set of objects of interest using this the framework
(e.g., “show persons names that are related to personP”); alternatively, a user can search
for a specific item, using loose associations (e.g., “show those email-messages that are
related to ‘Jenny’, around ‘March 1’ ”).1

In this section, we will show that many email-related tasks,which have been treated
separately in the literature, can be addressed uniformly asqueries in the suggested frame-
work. As previously defined (Section 4.2), atask is aquery class, for which a particular
type of similarity or association between objects is sought. For example, in the task of
threading, a user (human, or an automatic email processing agent) looks for messages
that are adjacent to a given message in a thread. Given labeled examples, learning can be
applied to adapt the graph-based similarity measure for each task.

Following is a description of the tasks evaluated in our casestudy. Table 4.2 shows the
corresponding query representation for each of these tasks.

Person Name Disambiguation.

Consider an email message containing a common name like “Andrew”. Ideally an intelli-
gent automated mailer would, like the user, understand which person “Andrew” refers to,
and would rapidly perform tasks like retrieving Andrew’s preferred email address or home
page. Resolving the referent of a person name is also an important complement to the abil-
ity to perform named entity recognition for tasks like social network analysis or studies
of social interaction in email. However, while the referentof a name mention is usually
unambiguous to the recipient of the email, it can be non-trivial for an automated system
to find out which “Andrew” is indicated. Automatically determining that “Andrew” refers

1The latter query can be supported if links are drawn between proximate dates.
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to “Andrew Y. Ng” and not “Andrew McCallum” is especially difficult when an informal
nickname is used, or when the mentioned person does not appear in the email header. This
problem can be modeled as the following search query: given aterm that is identified as
a name-mention in an email messagem, retrieve a ranked list ofpersonnodes. Assum-
ing that the identity of the messagem is available, one a contextual query can be phrased,
which includes both the name mention and themessagenode, adding valuable information
for name disambiguation.

Threading.

Threadingis the problem of retrieving other messages in an email thread given a single
message from the thread. Threading is a well known task for email. As has been pointed
out [84], users make inconsistent use of the “reply” mechanism, and there are frequent
irregularities in the structural information that indicates threads; thus, thread discourse
arguably should be captured using an intelligent approach.It has also been suggested that
once obtained, thread information can improve message categorization into topical folders
[76].

As threads (and more generally, similar messages) are indicated by multiple types of
relations including text, social network information, andtiming information, we expect
this task to benefit from the graph framework. We formulate threading as follows: given
an email file as a query, produce a ranked list of related emailfiles. We consider the
immediate parent and child of the given file to be “correct” answers for learning.

Finding Meeting Attendees.

Having meetings embedded in the graph, one can leverage the information included in both
the email and meeting corpora to assist in meeting management. Specifically, we assume
that a given meeting is associated with a text description. One can apply a search query
starting from a meeting node, looking for relevant email addresses. A returned ranked
list of such addresses can be utilized semi-automatically,assisting the user in the task of
identifying relevant recipients to include in the meeting invitation or update notifications.

Finding Email Aliases.

Consider the task of automatic assistance in finding a person’s email-address. A typical
email user often needs to retrieve email-addresses from hisor her address book. In some
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cases, this is done by searching for a message with the desired information in the header. In
the graph walk paradigm, this information can be retrieved by querying a person’s name,
searching for relevant email-addresses. The user may provide either a person’s full name,
as a set of terms, or the person’s first or last name only. The latter setting may be faster
and more convenient for an end user, and can be used also when auser is not certain about
the full name.

Message Foldering and Tracking.

Email, as well as other entities at the work station including meetings, files and directo-
ries, correspond to different facets of underlying useractivities, which evolve over time.
we consider the task of associating email messages to existing user-created folders which
denote an activity or a project, and vice versa. While not all folders pertain to a co-
herent activity (for example, a “sent-items” folder holds an eclectic collection of email
messages), folders are often used to tag a collection of messages related by an underlying
activity, such as a project or a recurrent activity (e.g., travel). We addactivity nodes to
the graph schema, which correspond to such folders. These nodes are linked to the email
messagesthat are tagged with each folder. Foldering has been studiedin the past, with
the goal of classifying an email message to a single relevantfolder [119, 9, 61]. We are
interested in a scenario where a user may be interested in associating a message tomultiple
relevant folders. (Multi-tagging is supported, for example, by the populargmail applica-
tion.) For example, a user may be interested in tagging a message both with the relevant
project folder and with a general “recruiting” folder. Unlike many previous works, which
classified email messages to a single relevant folder, we approach this task as aranking
problem. Suggesting a ranked list of folders to the user supports multiple choice, where it
is desired to have the most relevant folders placed at the topof the list.

In addition to the foldering task, we consider the inverse problem, namelymessage
tracking, which did not get previous attention. Consider a scenario where a user tags most
messages with the relevant folder but happens to skip some messages. Once this user is
interested in retrieving a specific mistakenly untagged message, he will not be able to find
it in the relevant folder. The task of folder-message ranking can be useful in such settings,
as well as in the general case, where messages related to a particular activity are sought,
while they may have been associated to other folders. We phrase this task as a query that
specifies afolderof interest, where the entities sought are of typemessage.
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Predicting Person-Activity Involvement.

We consider a novel (and ambitious) task, where we seek to predict persons that are to
get involved in the future in an ongoing project activity, represented by a folder in an
email corpus. While finding experts [8, 106] and recommendingrecipients [22] relies on
evidence observed in the past, the prediction of future involvement of persons from the en-
terprise in an ongoing project may depend on the dynamics of the project and other factors
that are unknown within the email corpus alone, and possiblyhard to predict in general.
Nevertheless, it is reasonable that some of the people that will get involved in a project
can be predicted based on observed email correspondence. The task of person prediction
for an activity may be valuable to an organization, as it may promote early involvement
of relevant individuals in a project. We phrase this task as aquery that includes afolder
representing an ongoing activity, where the entities retrieved are of typeemail-address.

4.3 Experimental Corpora

We experiment with the following corpora.

Management game.This corpus contains email messages collected from a manage-
ment course conducted at Carnegie Mellon University in 1997 [96]. In this course, MBA
students, organized in teams of four to six members, ran simulated companies in different
market scenarios. The corpus we used in our experiments includes the emails of all teams
over a period of four days.

Enron.The Enron corpus is a collection of email from the Enron corpus that has been
made available to the research community [76]. This corpus can be easily segmented by
user: in the experiments, we used the saved email of several different Enron users. To
eliminate spam and news postings we removed email files sent from email addresses with
suffix “.com” that are not Enron’s; widely distributed emailfiles sent from addresses such
as “enron.announcement@enron.com”; emails sent to “all.employees@enron.com” etc.
We also removed reply lines (quotes) from all messages, for the same reason.

Meetings.This corpus contains a subset of William Cohen’s email and meeting files.
The email files were all drawn from a “meetings” folder, over atime span of about six
months. In addition, we use all meeting entries (as maintained in a “Palm” calendar) for
the same period. The information available for the meeting files is their accompanying
descriptive notes as well as the meeting date. The meeting notes typically include one
phrase or sentence – usually mentioning relevant person names, project name, meeting
locations etc. The list of attendees per meeting was not included in the constructed graph.
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Personal.This is a collection of email messages sent and received by the author.

The statistics of corpora size and their graph representations are detailed per experi-
ment below. For all corpora, terms were Porter-stemmed and stop words were removed.
The Enron corpora, the Management game and the Personal corpora are of moderate
size—representative, we hope, of an ordinary user’s collection of saved mail. The Meet-
ings corpus is modest in size. In general, this framework should benefit from larger corpora
that may be less sparse in text and have a richer link structure.

The processed Enron-derived corpora used in the experiments are available from the
author’s home page. Unfortunately, due to privacy issues, the Management game, Meet-
ings and Personal corpora can not be distributed.

4.4 Experiments and Results

There are currently no available annotated email corpora for evaluation of email-related
queries. Thus, a key property of the evaluated tasks is that anon-subjective correct answer
set is constructed per query. This section describes the experiments conducted per the each
of the tasks defined above.

For every task, we evaluate performance using graph walks with uniformedge weights
Θ, i.e., θ` = θ`′ ,∀` (denoted as Gw:Uniform), and also for graph walks where the edge
weights have been tuned (Gw:Learned). In order to avoid local minima in learning the
graph edge weights using the gradient procedure, we initiated the learning process from
five randomly selected set of edge weights, and picked the weights which yielded the
final best results on the training sets.2 Further, in all experiments we applied reranking
on top of the uniform-weighted graph walk results. For everyexample, the top 50 nodes
have been reranked (denoted as ’Rerank’), and both train and development set examples
have been utilized in training the reranking model. Finally, for the path-constrained graph
walk variant, path trees were learned using the train and development sets, where the top
positively and negatively ranked labeled nodes were considered. In general, the number
of negative examples was limited to the number of positive example available, so that the
constructed path trees are balanced.

In all of the experiments reported in this chapter we applieda reset probabilityγ = 0.5.

Statistical significance in comparing performance of the various methods was obtained
using a two-sided Wilcoxon test [82], at significance level of 95%.

2We found that the error function and MAP are well-correlated.
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corpus dataset
files nodes edges train dev. test

M.Game 821 6248 60316 20 25 61
Sager 1632 9753 112192 15 12 35
Shapiro 978 13174 169016 15 10 35

Table 4.3: Person disambiguation corpora and dataset details.

For every task, the specific experimental settings and datasets are presented. Results
are given for graph walks and the various learning techniques, as well as for relevant
baselines. We discuss the results and derive conclusions from each experiment regarding
the framework.

4.4.1 Person Name Disambiguation

As described in Section 4.2, in the person name disambiguation task we are given aterm,
which is known to refer to a person’s first name. The goal is then to retrieve a ranked list
of entities of typeτ =person, such that the relevant person appears at the top of the list.

Datasets

Unfortunately, building a corpus for evaluating the personname disambiguation task is
non-trivial, because (if trivial cases are eliminated) determining a name’s referent is often
hard for a human other than the intended recipient. We evaluate this task using three
labeled datasets, as detailed in Table 4.3.

The Management game corpus has been manually annotated withpersonal names [96].
Along with the corpus, which contains correspondence between teams of students partic-
ipating in a management game, there is a great deal of information available about the
composition of the individual teams, the way the teams interact, and the full names of the
team members. Based on this information, we manually labeled106 cases in which single-
token names were mentioned in the the body of a message that did not match any person
name included in the header. In addition to names that refer to people that are simply not
in the header, the names in this dataset include people that are in fact in the email header,
but cannot be matched because they are referred to differently than their formal names.
Overall, the types of name mentions identified include:

• initials–this is common in a message sign-off;
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initials nicknames other

M.Game 11.3% 54.7% 34.0%
Sager-E - 10.2% 89.8%
Shapiro-R - 15.0% 85.0%

Table 4.4: Example person name type distribution per dataset.

• nicknames, including common nicknames (e.g., “Dave” for “David”), uncommon
nicknames (e.g., “Kai” for “Keiko”); and, American names that were adopted by
persons with foreign-language names (e.g., “Jenny” for “Qing”).

• other– other name mentions labeled are regular first names, mentioned in the body
of the email message, while not being included in the sender or recipient list.

For Enron, two datasets were generated automatically. The datasets correspond to cor-
pora drawn for two Enron employees: Sager and Shapiro. For these corpora, we collected
name mentions which correspond uniquely to names that are inthe email “Cc” header
line; then, to simulate a non-trivial matching task, we eliminated the collected person
name from the email header. We also used a small dictionary of16 common American
nicknames to identify nicknames that mapped uniquely to full person names on the “Cc”
header line.

Table 4.4 gives the distribution of name mention types for all datasets. For each dataset,
some examples were picked randomly and set aside for training and development purposes
(see Table 4.3).

Baseline: string similarity

To our knowledge, at the time this experiment was conducted,there were no previously
reported experiments for this task on email data. (There are, however, a concurrent and
subsequent works, which are included in the discussion of related research.) As a baseline,
we applied a reasonably sophisticated string matching method [29]. Each name mention in
question was matched against all of the person names in the corpus. The similarity score
between the name term and a person name was calculated as the maximal Jaro similarity
score [29] between the term and any single token of the personal name (ranging between
0 to 1). In addition, we incorporated a nickname dictionary,3 such that if the name term is
a known nickname of the person name, the similarity score of that pair is set to 1.

3The same dictionary that was used for dataset generation.
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Figure 4.2: Person name disambiguation test results: Recallat the top 10 ranks, for base-
line and plain graph walk, where the query includes a term only (Gw:Uniform(T)), or
term and file (denoted as Gw:Uniform(T+F)) (left); and for all methods using contextual
queries (T+F) (right).
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MAP Accuracy
T T+F T T+F

Cspace
String sim. 0.49 - 0.33 -
Gw: Uniform weights 0.68∗ 0.65∗ 0.53 0.44
Gw: Learned weights 0.61∗ 0.67∗ 0.46 0.48
Gw: Path constrained 0.64∗ 0.65∗ 0.53 0.46
Gw: Reranked 0.75∗+ 0.85∗+ 0.66 0.77
Sager-E
String sim. 0.68 - 0.39 -
Gw: Uniform weights 0.83∗ 0.67 0.74 0.49
Gw: Learned weights 0.82∗ 0.81+ 0.74 0.71
Gw: Path constrained 0.81∗ 0.76+ 0.71 0.63
Gw: Reranked 0.87∗ 0.82+ 0.80 0.71
Shapiro-R
String sim. 0.61 - 0.39 -
Gw: Uniform weights 0.78∗ 0.61 0.71 0.40
Gw: Learned weights 0.78∗ 0.80∗+ 0.71 0.71
Gw: Path constrained 0.76∗ 0.62 0.69 0.43
Gw: Reranked 0.76∗ 0.78∗+ 0.69 0.69

Table 4.5: Person name disambiguation results: MAP and accuracy. The columns denoted
as “T” give results for queries including the relevanttermnode, and the “T+F” columns
refer to queries that include bothterm and file information; the∗ sign denotes results
that are statistically significantly better (in MAP) than the baseline (String sim.), and the
+ sign marks results that are significantly better than graph walk using uniform weights
(Gw: Uniform).

The results are given in Table 4.5, listing MAP and accuracy results. (These and other
evaluation measures are described in Appendix B.) In addition, Figure 4.2 shows the aver-
age recall at every rank down to rank 10. As shown, the baseline approach is substantially
less effective for the Management game dataset. Recall that the Management game corpus
includes many nicknames that have no literal resemblance tothe person’s name – these
cases are not handled well by the string similarity approach. For the Enron datasets, string
similarity performs very well since lexical similarity wasused in automatically generat-
ing the dataset. In all the corpora, however, there are ambiguous instances, e.g., common
names like “Dave” or “Andy”. In these cases string similarity matches the name mentions
with multiple people with equal strength. This results in lower recall at the top ranks.
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Graph walks

We performed two variants of graph walk, corresponding to different methods of forming
the query distributionVq. In the first variant, we concentrate all the probability in the query
distribution on the name term. In the other graph walk variant, Vq is a uniform distribution
including the name term and the relevant message node. In both cases, the length of the
graph walks has been set to 2.

Using thisterm graph walk variant, the name term propagates its weight to the mes-
sages in which it appears. Then, weight is propagated to person nodes which co-occur
with these files. Note that in our graph scheme there is a direct path between terms to
person names (via theas-termrelation), so that person nodes may receive weight via this
path as well. The column labeled “T” in Table 4.5 gives the results of the graph walk from
the termprobability vector, and Figure 4.2 (left column, Gw:Uniform(T)) shows recall at
each rank, down to rank 10. As can be seen in the results, the graph walk performance
is preferable to string matching. For example, the graph walk accuracy is 52.5% for the
management game corpus, vs. 32.5% using the string matchingapproach. More drastic
improvements in accuracy are observed for the Enron corpora. In terms of MAP, the graph
walks are significantly better than string matching. However, this graph walk variant does
not handle ambiguous terms as well as one would like, as the query does not include any
information of thecontextin which the name occurred: the top-ranked answer for am-
biguous name terms (e.g., “Dave”) will always be the same person (where well-connected
nodes get ranked higher).

We found that adding the file node toVq provides useful context for ambiguous in-
stances – e.g., the correct “David” would in general be ranked higher than other persons
with this same name. Indeed, as shown in Figure 4.2 (left part, Gw:Uniform(T+F)), this
contextual search yields recall improvements compared to term-only queries, leading to
nearly perfect recall at rank 10. On the other hand though, adding the file node results
in attribution of probability score to nodes that link to thefile node but not to theterm
node. Adding the file node to the query therefore adds noise tothe output ranking. This is
reflected in the lower MAP and accuracy evaluation scores. This shortcoming is addressed
in this case using learning.

Learning

Weight tuning.We learned the graph edge weights using the error backpropagation method
(denoted as Gw:Learned). We applied learning to each corpusseparately. Edge weight
learning resulted in a comparable performance to theterm-query graph walks using uni-
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form weights in all cases. However, learning the weights significantly improved perfor-
mance for the contextual search (T+F) for the two Enron corpora. As described earlier,
the Enron datasets were created using a simpler automatic procedure. We conjecture that
the difference in weight learning performance between the management game and Enron
corpora is due to the difference in name mention distributions (and consequently, due to
different connectivity patterns).

Reranking. For re-ranking, we applied theedge bigramand source countfeatures,
as described in Section 3.3.2. We also formedstring similarity features, which indicate
whether the query term is a nickname of the candidate person name retrieved (using the
available small nicknames dictionary); and whether the Jaro similarity score between the
term and the person name is above 0.8. This information is similar to that used by the
baseline ranking system.

As shown in Table 4.5 and in Figure 4.2, reranking substantially improves perfor-
mance, especially for the contextual walk. While the base graph walks yielded high recall,
but incorporated noise at the top ranks for the contextual queries, the discriminative model
learned allowed to rerank the nodes such that noisy nodes were demoted. In particular,
high weights were assigned to the string similarity features and thesource countfeature.
Both types of information assist in eliminating the “noise” due to the query file node in
the contextual search.

Overall, as shown in Table 4.5, reranking gives the best results for two of the three
datasets, including the harder management game dataset. Reranking results are signif-
icantly better than the base graph walks with uniform weights in the contextual search
settings, for all datasets. The right part of Figure 4.2 shows reranking results, compared
with the other methods, for the contextual search case.

Path constrained walks.Performance of the path constrained graph walk variant was
generally comparable base graph walks with uniform weights. An exception is the Sager
dataset, for which the PCW method significantly improved results for the contextual search
settings. We conjecture that rather than a small number of predictive paths, the person
disambiguation problem is characterized by a combination of “weak” noisy paths (i.e.,
paths that lead to both correct and incorrect answers at highrates). Unlike reranking, string
similarity or the high-level information considered by thesource-countfeature could not
be modeled in the path constrained walk approach.
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corpus dataset
files nodes edges train dev. test

M.Game 821 6248 60316 20 25 80
Farmer 2642 14082 203086 22 23 93
Germany 2651 12730 158484 24 21 42

Table 4.6: Threading corpora and dataset details.

4.4.2 Threading

In the thread recovery task, as discussed in Section 4.2, we are interested in retrieving
messagesthat are adjacent to a givenmessagein a thread (i.e., either a ’parent’ or imme-
diately consecutive messages). We consider this task as a proxy to the more general task
of finding generally related messages.

Datasets

We created three datasets for the evaluation of the threading task, using the management
game and two Enron corpora. (Here we use the messages extracted for two other Enron
employees, Farmer and Germany.) Statistics about the corpora and the constructed datasets
are given in Table 4.6. For each relevant message, its parentwas identified by using the
subject line and time stamp. About 10-20% of the messages have both parent and child
messages available, otherwise only one file in the thread is acorrect answer.

We used several versions of this data, in which we varied the amount of message
information that is available. More specifically, we distinguish between the following in-
formation types: the emailheader,including sender, recipients and date; thebody, i.e., the
textual content of an email, excluding any quoted reply lines or attachments from previous
messages;reply lines, i.e., quoted lines from previous messages; andthe subject, i.e., the
content of the subject line. We compared several combinations of these components, in
which information is gradually eliminated. First, we included all of the information avail-
able in the graph representation. We then removed reply lines if applicable, and eliminated
further subject line information; finally, we removed the content of the messages. Of par-
ticular interest is the task which considers header and bodyinformation alone (without
reply lines and subject lines), since it excludes thread-specific clues, and can therefore be
viewed as a proxy for the more general task of finding related messages.
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header
√ √ √ √ √ √ √ √

body
√ √ √

-
√ √ √

-
subject

√ √
- -

√ √
- -

reply lines
√

- - -
√

- - -
MAP Accuracy

Cspace
TF-IDF 0.55 0.49 0.37 0.42 0.44 0.34 0.22 0.17
Gw: Uniform weights 0.59 0.53 0.36 0.36 0.46 0.35 0.20 0.22
Gw: Learned weights 0.68∗+ 0.59 0.44+ 0.43+ 0.59 0.47 0.31 0.37
Gw: Path constrained 0.75∗+ 0.73∗+ 0.52∗+ 0.45+ 0.67 0.62 0.39 0.41
Gw: Reranked 0.77∗+ 0.73∗+ 0.59∗+ 0.51∗+ 0.68 0.62 0.44 0.34
Germany-C
TF-IDF - 0.53 0.36 0.23 - 0.34 0.22 0.07
Gw: Uniform weights - 0.55 0.49 0.44∗ - 0.39 0.34 0.27
Gw: Learned weights - 0.55 0.51∗ 0.44∗ - 0.39 0.37 0.27
Gw: Path constrained - 0.65+ 0.53∗ 0.45∗ - 0.46 0.37 0.22
Gw: Reranked - 0.72∗+ 0.65∗+ 0.64∗+ - 0.56 0.51 0.51
Farmer-D
TF-IDF - 0.69 0.36 0.32 - 0.55 0.25 0.13
Gw: Uniform weights - 0.65 0.53∗ 0.50∗ - 0.48 0.40 0.41
Gw: Learned weights - 0.72+ 0.57∗+ 0.50∗ - 0.61 0.46 0.41
Gw: Path constrained - 0.76+ 0.63∗+ 0.52∗+ - 0.66 0.54 0.45
Gw: Reranked - 0.83∗+ 0.65∗+ 0.61∗+ - 0.70 0.56 0.52

Table 4.7: Threading Results: MAP and accuracy. The∗ sign denotes results that are
significantly better (in MAP) than the TF-IDF baseline; and the + sign denotes results
that are significantly better than graph walks using uniformweights (Gw:Uniform). Four
configurations are included, where email components are gradually removed (as detailed
in the header by the checkmarks), and the best result for eachconfiguration is marked in
boldface.

83



Baseline: TF-IDF

As a baseline approach we applied a vector space model, in which a message is represented
as a TF-IDF weighted vector of terms, and inter-message similarity score is defined as
the cosine similarity of their vectors. All information, including a message header, was
included in the vector representation as terms.

The TF-IDF weighting scheme used is the following:

wi, j = t fi j · id fi = t fi j · log2(
N
d fi

)

whereN is the total number of files,d fi is the count of messages in which of termi appears,
andt fi j is the count of termi mentions in messagej.

The results, detailed in terms of MAP and accuracy (Table 4.7), show that this approach
performs reasonably well. As one might expect, removing information, in particular the
subject and reply lines, degrades performance substantially.

Graph walks

To formulate this as a problem in the graph model, we letVq assign probability 1 to thefile
node that corresponds to the original message, and letτout = file (see Table 4.2). Graph
walks of length 2 were applied.

The results show that the graph walk using uniform weights (Gw:Uniform) and the
TF-IDF method give comparable performance when identical chunks of text, such as sub-
ject lines, are present in both the query message and the “target”. However, the graph
walk performs significantly better in the case that only header and body text information
are available, improving MAP by 91% and 56% for the Germany and Farmer corpora,
respectively.

Learning

Weight tuning.Learning the graph edge weights results in (often significantly) improved
performance, across corpora, as shown in Table 4.7 (Gw:Learned). High weights were
assigned to thehas-subject-termedge type (and its inverse), where applicable; and to the
edgessent-fromandsent-to, in all of the experiment’s configurations.

Reranking.We applied reranking usingedge bigramfeatures. Overall, reranking the
graph walk output yields the best results of the considered methods. In all cases, the results
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of graph walk with reranking are significantly better than the TF-IDF baseline, as well as
than the graph walks with uniform weights. The MAP for the setting in which the least
information is available, namely header information only,is higher than 0.5 across corpora
with reranking.

Most features that were assigned high weight by the learner were edge type bigrams
corresponding to paths such as:

• message
sent− f rom−→ person

sent−to−1

−→ message

• message
has−term/has−sub j−term−→ term

has−term/has−sub j−term−1

−→ message

• message
on−date−→ date

on−date−1

−→ message

These paths are indeed characteristic of a thread: e.g., thesender of a message is likely
to be a recipient of a reply message, there is high temporal proximity between messages
in a thread, and some textual overlap.

Note that while such sequences of relations can be readily identified as important in
the graph framework, they cannot be modeled in a flat representation such as the vector
space model. Sequential processes exist also for other email-related tasks, e.g., workflows
and social interaction [20].

Path constrained walks.Finally, the path constrained graph walk variant give second-
best overall results for this problem. We found high correlation between the edge se-
quences considered significant by the reranking models and the path probabilities of the
path trees constructed.

4.4.3 Meeting Attendees Prediction

Given ameetingdescription, which links to textual notes, a date and possibly a partial list
of attendees, the task of attendee prediction is to rank theperson, or email-addressnodes
in the graph by their relevancy to the meeting. While this is arecommendationtask, we
evaluate it as a prediction task, where links from meeting toattendees have been removed,
and we are interested in recovering these links.
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corpus dataset
files nodes edges train dev. test

email 346 3239 27366
meetings 334 441 2074 5 0 6

Table 4.8: Meeting attendee prediction corpus and dataset details.

Datasets

For evaluation of the meeting attendee prediction task we use theMeetingscorpus that
contains a subset of William Cohen’s email and meeting files. The email files were all
drawn from a “meetings” folder, over a time span of about six months. In addition, we use
all meeting entries (as maintained in a “Palm” calendar) forthe same period. The informa-
tion available for the meeting files is their accompanying descriptive notes as well as the
meeting date. The meeting notes typically include one phrase or sentence – usually men-
tioning relevant person names, project names, meeting locations etc. The list of attendees
per each meeting is not available, and is not included in the constructed graph.

The corpus statistics are given in Table 4.8. The first line ofthe table (’email’) gives
the number of email messages, and the size of their respective representing graph. The
second line of the table (’meetings’) refers to meeting entries statistics. The size of the re-
spective graph refers toadditionalgraph nodes and edges, given that the email information
is already represented in the graph.

The experimental dataset consists of labeled examples of meetings for which the list
of the email addresses of relevant attendees is given (manually annotated by the corpus
owner). The examples for the time slice of which this corpus was derived are often similar
to each other, given that many meetings are periodic. In order to avoid a bias towards
specific repetitive examples, the constructed dataset includes only 11 examples, manually
selected as having distinct attendee lists4. The number of relevant meeting attendees varies
– for some examples that represent personal or small meetings there are only few relevant
email-addresses identified, while for larger project meetings there are dozens of relevant
email-address nodes. For all examples, all attendees are considered to be equally relevant.
Overall, 195 email-addresses are known in the corpus.

We notice that mapping email-addresses to meetings is not trivial since in many cases,
there are multiple email-addresses referring to a single person. Some email-addresses
refer to a group, e.g., members of the RADAR project. In addition, some addresses may
be rarely used or obsolete. In the experiments conducted, weconsiderall email-addresses

4We also required that the meetings relate to persons that arelikely to appear in the email corpus.
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MAP Accuracy
Meetings
String sim. 0.24 0.33
Gw: Uniform weights 0.58∗ 0.67
Gw: Learned weights 0.65∗ 0.67
Gw: Path constrained 0.68∗ 1.00
Gw: Reranked 0.59∗ 0.67

Table 4.9: Meeting attendees finding results
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Figure 4.3: Meeting attendee prediction results: 11-pointPrecision-recall curve.

that are associated with the attendees as correct answers. In results reported elsewhere,
evaluation procedures where thefirst email-address retrieved per attendee was considered,
or all email-addresses were considered per user; these gave similar results [94].

Overall, the experimental corpus and dataset are modest in size. In general, the frame-
work should benefit from larger corpora that may be less sparse in text and having a richer
link structure. Nevertheless, despite its size, this experimental corpus is an interesting
testbed for the suggested application.

Baseline: String similarity

To the best of our knowledge, the suggested task is novel and there are no previous sug-
gested methods in these settings. As a baseline, we use a string matching approach. Since
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many of the message notes include persons and project names,string matching can uti-
lize the similarity between persons name or public project names and relevant personal
or project-related email-addresses. We use the Jaro-Winkler measure [29] to compute
string similarity. The similarity score for every email-address is considered as the maxi-
mum Jaro-Winkler score of that email-address against any one of the words appearing in
a meeting notes. The result of the described procedure is a ranked list of email-addresses,
given the meeting notes.

The results of applying the string matching approach are given in Table 4.9 in terms
of MAP and accuracy. Since the number of correct answers varies to a large extent be-
tween examples we use an 11-point interpolated precision-recall curve averaged over all
examples for evaluation. The precision-recall curve is shown in Figure 4.3. As the given
meeting notes often include explicit mentions of persons names, string matching reaches
some of the relevant email-addresses. This approach fails,however, in many cases where
the text associated with the meeting entry is more general, referring to (formal or infor-
mal) project names. In such cases, string matching can not map the given terms to indi-
vidual persons’ email-addresses. In addition, string matching does not allow the retrieval
of email-addresses that are not similar to person names mentioned.

Graph walks

We perform a 3-step graph walk. As shown in the results, the graph walk performance
is significantly preferable to string matching. Unlike string matching, the graph walk can
retrieve email-addresses that have no literal ressemblence to a person’s name, using co-
occurence mappings. In particular, a 3-step walk uses pathssuch as:

• meeting
mtg−has−term−→ term

as−term−1

−→ person
alias−→ email-address

• meeting
mtg−has−term−→ term

has−term−1/has−sub j−term−1

−→ message
sent−to/ f rom−email−→ email-

address

• meeting
mtg−on−date−→ date

on−date−1

−→ message
sent−to/ f rom−email−→ email-address

In addition, a graph walk would give higher weight to frequently-used email-addresses
over rarely used ones. This is a desired property in this case.

88



corpora dataset
files nodes edges train dev. test

Personal 810 11136 113224 9 8 26
Meetings 346 3239 27366 8 - 6

Table 4.10: Alias finding corpus and dataset details.

Learning

As shown in Table 4.9 and Figure 4.3, learning the graph edge weights gives preferable
performance to the all-purpose uniform-weighted graph walks. Statistical significance
could not be obtained due to the small number of examples. Edge types that were assigned
high weights by weight tuning are, for example,as-term-invandalias. Reranking gave
similar results as the initial graph walk. We conjecture that learning a reranking model
could benefit from a larger training set. Finally, the path-constrained graph walks gave the
best performance and perfect accuracy, where a relevant email-address has been identified
at the top rank for every meeting description.

4.4.4 Alias Finding

The task of alias finding is defined as the retrieval of allemail-addressespertaining to an
individual (or a mailing-group). The query may consist of apersonnode, or the corre-
sponding nameterm(see also Section 4.2). In the experiments conducted, we consider the
latter settings.

Datasets

We evaluate the task of alias finding using two corpora, as detailed in Table 4.10. For both
corpora, we use a manually labeled list of email-address aliases per person. All of the
examples considered refer to individual users (as opposed to mailing lists) that have two
to five email-addresses. In the experiments, we require the full set of email-addresses to
be retrieved given the person’s name. Elsewhere, we have shown the settings in which the
query included the person’s full name represented as terms to be an easier problem [94].
In addition, querying by the person’s first name only may be faster and more convenient
for an end user and can be used also when a user is not certain about the full name.
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MAP Accuracy
Meetings
String similarity 0.55 0.67
Gw: Uniform weights 0.61 0.83
Gw: Learned weights 0.55 0.67
Gw: Path constrained 0.68 0.83
Gw: Reranked 0.59 0.83
Personal
String similarity 0.54 0.69
Gw: Uniform weights 0.72 0.77
Gw: Learned weights 0.73 0.77
Gw: Path constrained 0.74 0.96
Gw: Reranked 0.63 0.85

Table 4.11: Alias Finding Results

Baseline: String matching

As a baseline, we use here the string matching approach described earlier (Section 4.4.3).
The results of applying string matching are given in Table 4.11 in terms of MAP and
accuracy, and in Figure 4.4, as an 11-point precision-recall curve. String matching is
successful in this case in identifying email-addresses that are similar to the person’s first
name. There are, however, email-addresses that are similarto a last name only, or to that
are not similar to neither the person’s first or last name. Such instances bound the recall of
this approach.

Graph walks

We apply a 3-step walk. In addition to the previously described edge types (Table 4.1),
we add here to the graph schema links that denote string similarity betweenemail-address
nodes. Specifically, email-address pairs for which string similarity is higher than a thresh-
old are linked over twostring similarity symmetrical directed edges. In general, graph
walks are expected to be effective in realizing co-occurrence information and retrieving
highly used email-address nodes. However, rarely used email-addresses may be harder
to find using graph walks. Incorporating string matching into the graph links should thus
increase graph walk recall.

As shown, the performance of the graph walk is better than string matching for both
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Figure 4.4: Person to email-address mapping: Precision-recall curve

corpora. It results in MAP of 0.61 and 0.72 for the Meetings and the Personal corpora
respectively, compared with 0.55 and 0.54 using string matching. Some relevant paths in
a 3-step walk are as follows:

• term
as−term−1

−→ person
alias−→ email-address

• term
has−term−1/has−sub j−term−1

−→ message
sent−to/ f rom−email−→ email-address

• term
has−term−1/has−sub j−term−1

−→ message
sent−to/ f rom−→ person

alias−→ email-address

In addition, similarity edges can be added as a “tail” to the previous paths. That is, once
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the graph walk reaches an email address node, the next step propagates some probability
mass to similar email-address nodes over “similar-string”edges.

Learning

As shown, learning the graph edge weights resulted in comparable performance to the
graph walks with uniform weights. While particular edge sequences are meaningful for
the alias finding task, weight tuning only uses local information. We conjecture that this
limits performance in this case.

For reranking, we usededge bigramfeatures in the reported experiments. Reranking
performance was comparable to the initial graph walks. Using edge-trigram features (and
adding feature selection to avoid overfitting in this largerfeature space) may yield better
performance.

Finally, the path constrained walks gave the best results for both datasets. This reflects
the information carried in the full paths traversed.

The differences between the methods were not found to be statistically significant.

4.5 Effect of Query Length

The tasks reviewed in Section 4.4 are modeled as queries thatcontain a small number of
term nodes, a message, or a meeting node. This section reviews a couple of additional
tasks, where the query includes afolder node. Each folder node is associated with many
messages, such that probability spreads rapidly in the network. Specifically, the tasks
discussed include the prediction of persons future involvement in an ongoing project (rep-
resented by a folder), and message foldering and tracking. We first present the experiments
and their results. This section concludes with a discussion.

4.5.1 Predicting Person-Activity Future Involvement

In the person-activity prediction task we are given afolder that is associated with a project
activity as a query. The entities retrieved are of typeemail-address. We assume that the
email messages in the folder provide textual and social network evidence, which allows the
prediction of persons likely to get involved in the project in the future. In the experiments,
we consider a snapshot of an email corpus at a particular point in time. Predictions are
evaluated based on the email traffic that took place later in time.
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corpora dataset
date files nodes edges #personsfolder #known #targets

Kaminski V. Feb 1, 01 1193 10005 102984 611London 111 19
Beck S. Oct 1, 00 1334 12944 174886 635Europe 144 33
Kitchen L. Sep 1, 01 1065 11762 149274 552Portland 106 25

East-power 156 14
Mexico 49 9

Farmer D. Jul 1, 00 741 7354 64556 336 Ces 55 13
Wellhead 38 9

Table 4.12: Activity-person prediction corpora and dataset details.

Datasets

We evaluate this task using the saved email of four differentEnron employees. Each of
the individual mailboxes was truncated at a particular point in time (individual to each
user, adapted to their individual periods of activity). Themailboxes include foldering
information, as created by the users. For each folder, up to 80 most recent messages are
maintained. (This allows both efficiency in maintaining email history and also keeps the
corpus up-to-date.) That is, for each user we consider a snapshot of his or her mailbox,
where history is limited. The relevant corpora statistics for the four users are presented in
Table 4.12.

The dataset consists of seven folders, drawn from the described corpora, that are as-
sociated with project activity. Table 4.12 details for eachfolder the number of persons
that are already associated with the messages in the folder by the corpus snapshot date
(‘known’). In the experiments, a query is defined as the node representing the subject
folder, and all of the entities of typeemail-address(the size of this set for each corpus is
detailed in the column named ‘persons’ in the table) are ranked. Only addresses which
are have not appeared in the subject folder prior to the snapshot time stamp are considered
valid answers. The number of correct answers for each corpusis given in the table, in the
‘targets’ column.5
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Folder Cosine DP Gw:Uniform Gw:Learned PCW

London 0 0 0.05 - -
Europe 0 0 0.12 0.12 0.09
Portland 0.28 0.28 0.12 0.12 0.36
East-power 0.07 0 0 0 0
Mexico 0 0 0.11 0.11 0.22
CES 0 0 0.08 0.15 0
Wellhead 0.22 0 0 0 0

Table 4.13: Person-activity prediction results: Recall at rank 20

Baseline: TF-IDF

A different approach previously suggested in the personal information management do-
main is to model the various entities using word distributions [98]. According to this
approach, the word distribution assigned to anemail-addressentity, for example, reflects
the word frequencies in the messages sent by, and received bythat email-address. We
representfolder (and more generally,activity) entities in the same fashion; that is, as an
average of the word frequencies of the messages associated with the folder. Inter-entity
similarity can then be estimated by the dot product or cosinesimilarity between pairs of
word distribution vectors. In our experiments, we match theTF-IDF weighted word dis-
tribution representing the folder with the distributions that describe each of the relevant
email-address entities.

The results are shown in Table 4.13. It is reasonable that therecommending system
will present a relatively short ranked set of email addresses (or names) to the user. We
therefore evaluate performance in terms of recall at the topranks, considering the top 20
rated nodes. Recall is measured by the ratio of email-addresses retrieved at the top 20
ranks that indeed appeared in the folder later in time. For example, there are 25 persons
(email-addresses) known to get associated with the “Portland” folder after the considered
snapshot date (Table 4.12); if exactly 7 correct email-addresses are included in the top 20
email-addresses retrieved given the folder “Portland” as aquery, then the recall at the top
20 ranks is 0.28 .

Given the TF-IDF weighted representations, we ranked email-addresses by both co-
sine and dot-product (DP) similarity. Cosine similarity gave preferable results, where at
least one correct email-address was predicted for three of the eight folders. Dot-product

5The number of valid predictions for each corpus is thereforethe number of ‘persons’, where the number
of ‘known’ entities is subtracted.
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similarity performance was inferior, resulting in positive recall at the top 20 ranks only for
one of the folders.

Graph walks

We applied graph walks ofk= 4 steps for this task. As shown in Table 4.13, the graph walk
method gives better predictions for four out of the seven folders compared with cosine
similarity, which is preferable for the three remaining folders.

Learning

The Londonfolder was used for training the models. Learning the graph edge weights
led to improved recall at rank 20 for one of the test folders (namely, for the’Ces’ folder,
increasing the number of predicted email-addresses withinthe top 20 ranks from one to
two email-addresses).

We did not apply reranking in this case, as there was only little training data available.
Path-constrained walks, however, led to improvements for two of the folders and some-
what degraded performance for two other folders. Overall, the path constrained walks
performance was better than its cosine similarity counterpart. Highly predictive paths in
the constructed path-tree included:

• folder
in− f older−1

−→ message
sent− f rom/to−email−→ email-address

sent−to−email−1

−→ message
sent−to−email−→ email-address

• folder
in− f older−1

−→ message
has−term−→ term

has−term−1

−→ message
sent−to−email−→ email-address

This shows that both social network information and textualevidence were found infor-
mative for this task.

Overall, while the task of predicting future involvement ofpersons from the enterprise
in an ongoing activity is challenging, the results indicatethat several correct predictions
are likely to be included in short lists introduced to users.Consider also that our form of
evaluation is strict, and it is possible that email-addresses (persons) predicted, who have
not in fact appeared in the folder later in time, may be informative.

In addition to quantifiable performance, a potential advantage of the graph walk meth-
ods is that they can provide an explanation about the project-person relationship in the
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corpora dataset
files folders nodes edgesfolder files examples

Kaminski V. 859 33 8925 81728 Conferences 80 10
London 80 10
Resumes 80 10
Stanford 27 8

Beck S. 1131 89 12149 146746 Congratulations 28 5
Recruiting 61 10
Europe 80 10

Kitchen L. 1085 32 11758 142432 HR 80 10
East-power 80 10

Farmer D. 635 16 6741 52968 Wellhead 80 10

Table 4.14: Message foldering and tracking: corpora and dataset details.

corpus. That is, the primary paths leading from a folder to a person, including the tra-
versed relation types, can be presented to the user. An explanation mechanism should
be useful in motivating recommendations to a user who is reasonably familiar with the
corpus.

4.5.2 Message Foldering and Tracking

In the message foldering task, we are interested in ranking existing user-createdfolders
by their relevancy to a givenmessage. We also consider the inverse problem: ranking
untaggedmessagesby their similarity to a givenfolder. The folders considered denote
user activities. (Other eclectic folders, such as “sent-items” folder, etc. are ignored.) A
more detailed description of these tasks is given in Section4.2.

Datasets

We consider the same corpora constructed for the task of activity-person prediction (Sec-
tion 4.5.1). These corpora consist of the saved email of fourEnron employees, drawn
from the Enron corpus. For the evaluation of the message foldering and tracking tasks, we
consider folders that reflect a project or recurring activity. The modified corpora statistics
for the four users are presented in Table 4.14.

Overall, the dataset includes 10 different folders for all users. For each of these folders,
we consider the consequent “future” messages in each folder(right past the corpus snap-
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Folder Cosine DP G:U G:L PCW
Conferences 0.79 0.41 0.54 - -
London 0.95 0.90 0.93 - -
Resumes 0.85 0.72 0.62 - -
Stanford 1.00 0.94 0.81 - -
Congratulations 0.47 0.27 0.53 0.53 0.36
Recruiting 0.88 0.73 0.83 0.82 0.84
Europe 1.00 0.55 0.90 1.00 0.95
HR 0.58 0.17 0.53 0.57 0.45
East-power 0.95 0.50 0.77 0.67 0.79
Wellhead 0.76 0.69 0.95 1.00 1.00

Table 4.15: Message foldering results: MAP

shot date). In the graph representation, the test messages are linked to all of the relevant
entities in the graph (persons, email-addresses, terms etc.). These messages, however, are
disconnected from the associated folder. Our goal is then torecover the message-folder
links. Since in the Enron email corpora a message is attachedto a single folder, the actual
folder assigned to a message is considered as a single correct answer to each query in the
foldering task. The inverse problem is addressed in a similar fashion. In this case the
folder forms the query, and all of the test messages pertaining to the folder are the correct
answers. Table 4.14 details the folder names and the number of test messages per each
folder. The number of candidate folders to be ranked in the foldering task is detailed in
the ‘folders’ column. The number of test messages per folderis given in the ‘examples’
column. (In foldering, each test message is represented by aseparate query; in message
tagging, each query represents a folder, and the test messages are the relevant answers.)

Baseline: TFIDF

As a baseline, we generate inter-entity similarity scores in the vector space, similarly to the
baseline for the person prediction task described in the previous section. In this paradigm,
a folder is represented as a TF-IDF weighted vector, which isthe average of the vector
representations of all of the messages associated with the folder. Folders are ranked for
each test message, and all messages are ranked for a given folder (for the foldering task
and the message tracking task, respectively) using cosine as well as dot-product similarity
measures.

The results of the foldering task are presented in Table 4.15in terms of mean average
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Folder Cosine DP G:U G:L PCW
Conferences 0.34 0.15 0.04 - -
London 0.34 0.08 0.01 - -
Resumes 0.35 0.08 0.32 - -
Stanford 0.99 0.12 0.13 - -
Congratulations 0.37 0.02 0.06 0.05 0.06
Recruiting 0.50 0.09 0.11 0.11 0.43
Europe 0.27 0.05 0.04 0.05 0.25
HR 0.26 0.06 0.03 0.03 0.07
East-power 0.97 0.43 0.12 0.12 0.34
Wellhead 0.60 0.09 0.08 0.09 0.27

Table 4.16: Message tracking results: MAP

precision. As shown, performance using cosine similarity gives very good results for all
folders. Dot-product similarity (which is identical to thecosine similarity measure, except
for message length normalization) gives reasonable performance, but not as good as the
cosine measure.

The results of the inverse folder-message tracking task arepresented in Table 4.16. For
this task, the cosine similarity measure results in surprisingly good performance, consid-
ering the large number of candidate messages being ranked. In this case, the performance
of the dot-product similarity is far behind its cosine counterpart. This suggests that long
messages are ranked higher with the dot-product measure, whereas length normalization
in the cosine measure accounts for this factor.

Graph walks

We applied graph walks of lengthk = 4 for both tasks.

As shown, the performance of graph walks for the foldering task (Table 4.15) is com-
parable to cosine similarity in most cases, and somewhat worse in a few instances. The
graph walk results are superior to dot-product similarity.

In the case of message tracking, however, the results are quite different (Table 4.16).
The graph walk gives poor performance compared with the cosine similarity measure.
Interestingly, the graph walk results are comparable to dot-product similarity for most
examples.

A possible explanation for the major difference in performance of the graph walk be-
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tween the two tasks is as follows. Lets assume that the folder“recruiting” is characterized
by frequent use of the term “recruit” in the messages linked to it. In thefolderingtask, the
graph walk propagates probability mass from the query node,representing a message, to
the terms that appear in the message within one walk step. In the next steps of the walk,
probability mass is conveyed from these terms to other messages, and then to folder nodes.
Should the original message include the term “recruit”, this term node (which is assigned
the same weight as other terms included in that message) willconvey most of its allocated
probability to files that are associated with the folder “recruiting”. Other, less predictive
terms, on the other hand, will distribute their probabilityto files that are associated with
various folders, resulting in smaller contributions per folder. In the inverse task, the graph
walk starts with afoldernode. Probability is then propagated to the messages linkedto the
folder. In the next graph walk step, each (uniformly weighted) message node, distributes
its probability to the terms it contains. This means that frequent terms, that appear in a
large number of messages, are likely to be assigned high weights. Similarly, the graph
walk is biased in favor of long messages. This suggests that beyond stop word elimina-
tion (which was already performed in constructing the graph), downweighting high-degree
nodes may be beneficial in this case.

Learning

In learning, theKaminskicorpus, including four folders, was allocated for trainingpur-
poses. Testing took place using the remaining corpora.

Learning the graph edge weights resulted in overall minor improvements of the results
for both foldering and message tracking. We conjecture thatgraph topology dominates the
graph weights, especially for the task of message tracking.

We did not apply reranking to this problem. We do believe thatreranking can be
helpful, especially if specialized features are used; for example, features that encode the
IDF value of traversedterms, or the length of the ranked messages. This is left for future
work.

Finally, path-constrained walks resulted in major improvements for the message track-
ing task. (although, not reaching the level of performance achieved using cosine similar-
ity). Paths in the path-tree that were associated with high positive probability to reach a
target node included:

• folder
in− f older−1

−→ message
sent−to−email/sent− f rom−email−→ email-address

sent− f rom−email−1

−→
message
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• folder
in− f older−1

−→ message
has−term−→ term

as−term−1

−→ person
sent− f rom−1

−→ message

• folder
in− f older−1

−→ message
sent−to−email−→ email-address

alias−1

−→ person
sent− f rom−1

−→ mes-
sage

• folder
in− f older−1

−→ message
has−term−→ term

has−term−1

−→ message

These paths include social network connectivity (see the first three patterns), as well
as shared content evidence (the last pattern above).

4.5.3 Discussion

In this section, we reviewed the graph walk performance for aset of activity centric tasks.
Performance was found to be inferior to TF-IDF based entity similarity for two tasks,
where the queries includedfoldernodes. Each folder in the experimental corpora is highly-
connected, being linked to a large number ofmessagenodes. The effective query therefore
corresponds to a wide distribution over the graph nodes for these two tasks. In such cir-
cumstances, the graph walk tends to reflect the global structure of the graph, rather than
local relatedness phenomenon [131, 104]. In other words, the bias towards central nodes
in the graph is more prominent once probability is already spread in the graph. Thus,
nodes that are highly-connected in the graph are assigned high importance, and the results
get somewhat disassociated from the query. While Personalized PageRank applies expo-
nential decay with the distance from the query nodes in orderto maintain the association
to the query, a large query corresponds to a relatively largesubgraph as its starting point.

In general, a modified edge weighting scheme may improve performance. For exam-
ple, Tong et-al [132] have proposed to normalize the graph transition matrix based on node
degree, such that high-drgree nodes are more strongly penalized (see Section 2.4.1). Other
weighting schemas, such as TF-IDF node weighting embedded in the transition matrix,
may be useful. We leave this for future work.

4.6 Related Work

In this section we first discuss works that are related to personal information processing
in general. We then proceed to reviewing previous work relevant for each of the tasks
studied.
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There has been an increased interest in applying machine learning techniques, or ar-
tificial intelligence in general, to the area of personal information management in recent
years. In particular, a variety of email-related tasks havebeen studied with the goal of facil-
itating email management and utilizing the information that resides in email corpora. Ex-
ample tasks include email foldering [9], automatic finding of experts at the enterprise us-
ing email resources [8, 106], recommendation of recipientsfor a given message [22, 103],
identifying possible email leakage to wrong recipients [21], and more.

Naturally, email, as well as other entities at the work station such as documents, calen-
dars and webpages, correspond to different facets of underlying useractivities. Research
has been conducted concerning activity-centered collaboration [53], and methods have
been developed with the goal of identifying threads of activities based on the contents
of emails and documents that people are working on [81, 20]. The problem of classi-
fying email messages into activities has been studied as well [42]. Mitchell et-al [98]
have suggested a framework for the automatic extraction of user activities, based on the
user’s email, calendar, and the entire workstation contentaccessible via Google Desktop
Search. In the work of Belloti et-al [11, 12], a user interfaceis suggested that is adapted
to activity management. Their goal is to support common activities such as organizing a
meeting, planning a trip or conducting a performance review, as well as other user-defined
activities, side by side with existing email functions. Thesuggested interface, named
Activity-Centered Task Assistant (ACTA), was designed to create an efficient personal in-
formation management environment and provide context metadata for machine learning
and automation techniques. For example, it is desired that relevant emails, people, and
email addresses be suggested to a user when viewing a meetingrelated to a particular ac-
tivity on their calendar. The activity-centered contextual search problems described in this
chapter can naturally complement frameworks such as ACTA.

Unlike most previous works, the graph walk framework processes personal informa-
tion as semi-structured data, where meta-data is represented explicitly, as well as inter-
entity relations. There are only few previous works in the literature that integrate meta-data
and text in email. One example examines clustering using multiple types of interactions
in co-occurrence data [10]. Another work [2] proposes a graph-based approach for email
classification. They represent an individual email messageas a structured graph, including
both content and header, and find a graph profile for each folder; incoming messages are
classified into folders using graph matching techniques.

Another advantage of the graph walk paradigm compared with other approaches, is
that it addresses various tasks similarly. That is, the sameunderlying graph, interface
and query language are used for multiple tasks. Previous works treated individual tasks
separately, adapting data representation and using different methods per task.
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In what follows we describe earlier works for each of the tasks included in this case
study.

Person name disambiguation.The task of person name disambiguation has been stud-
ied in the field of social networks and applied also to email data (e.g., [88, 38]). Diehl
et-al have suggested to perform name disambiguation in email using traffic information,
as derived from the email headers [38]. In their approach, a candidate set is first generated,
including network references with identical names to the name mentions, for which at least
one email communication has been observed with the sender. They then suggest a scoring
formula based on the counts of message exchange between eachcandidate and the sender,
or between each candidate and all of the message recipients,summarizing over different
ranges of history. Our approach differs from theirs mainly in that it allows the integra-
tion of email content and a timeline in addition to social network information in a unified
framework. In addition, rather than evaluate a pre-filteredset of candidates (thus bounding
recall), we use the graph walk to rank all of the graph nodes using network topology.

Recently, Elsayed et-al [43] proposed a generative model forresolving name men-
tions in email. The model suggested can be thought of as a language model over a set
of personal references. They annotated a subset of the Enroncorpus with person names,
mapping them to their email-addresses and nicknames (as deduced from email salutations
and signatures) to learn these preferences. In the experiments conducted, persons that have
a first name or nickname that exactly matches the name mentionare considered as candi-
dates for matching. Acontextual spaceof a name mentionm is defined as a mixture of
4 types of contexts: the email message; all messages in the corresponding thread; discus-
sions that some or all of the message participants (sender and receivers) joined or initiated
at around the date of the considered message; and messages with a similar topic that were
delivered around the same time. Each name mention is then resolved based on the learned
person–email-address–nickname mappings. Overall, the described approach is specific to
the subject problem, and does not employ learning. In addition, incorporating other types
of evidence such as lexical similarity or meeting objects requires manual adaptation of the
model.

Threading.Lewis and Knowles [84] considered email threading as a retrieval problem.
They applied text matching methods to the textual portions of messages. More specifically,
they suggested a strategy of using the quotation of a messageas a query and matching it
against the unquoted part of a target message. Yeh et-al [142] extend this approach. They
suggest using string similarity metrics and a heuristic algorithm to reassemble threads in
the absence of header information. In addition to message content similarity they con-
sider heuristics, such as subject, timestamp, and sender/recipient relationships between
two messages. They also introduce a time window constraint to reduce the search scope
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in the corpus. In contrast with these works, the graph walk framework is generic, and
does not rely on manually encoded world knowledge. Instead,learning allows to adapt the
general graph walks to the special characteristics of the threading task.

In general, we note that the threading information learned in the graph can be useful
in learning other related sequential information. For example, thread information was also
used in the chaining of sequential speech acts [20].

Finding meeting attendees.We are not aware of previous works exploring the task of
finding a set of relevant meeting attendees, in planning or updating a meeting. Previous
research focused mainly on automatic meeting scheduling [120, 97]. Our work facilitates
semi-automatic construction of a meeting attendees’ list,which is a preliminary step to
meeting scheduling. Anauthor-recipient-topic(ART) generative model has been recently
suggested [89] for clustering persons by their inter-similarity, assuming a joint model of
email recipients and topic. This approach may be adapted to predict relevant persons given
text. Another recent work [98] uses desktop search to createa bag-of-words representation
of email messages, and also of persons and meetings. According to this method, cosine
or another similarity measure between the bag-of-words representation of a meeting and a
person could be used to identify relevant meeting attendees. One difference between their
approach and ours is that we consider the data structure in evaluating entity relationships;
that is, we can tune the importance of particular relations,and optimize performance for
the task. In addition, in order to achieve high performance,vector-based similarity mea-
sures require sufficient data. This may be an obstacle given short meeting descriptions.

Alias finding. The task of finding a person’s set of email-addresses in an email cor-
pus given the person’snameis novel as well. This task is related, however, to the task of
identifying email aliases (given an email-address) in a corpus. Previous works explored
the information residing in social network co-occurrencesfor this task, which resulted in
performance better than random [62], and attempted to combine social network informa-
tion and string similarity measures for this task [63]. Our approach allows integration of
header information and string similarity measures, as wellas email content and time in a
unified framework.

Message foldering and tracking.The foldering task [61] has been considered in the
past. Previous works applied algorithms such as TF-IDF [119]. Other works have ad-
dressed foldering as a classification problem, with the goalof classifying an email mes-
sage to a single relevant folder. Good classification results were obtained using Naive
Bayes, MaxEnt and SVM [9]. In addition, a graph matching technique was applied for
classifying incoming messages into folders [2]. Our approach in foldering is related to
semi-supervised classification is graphs, where probability is distributed randomly in the
graph, reaching nodes that denote classes (folder) with different intensities (see Section
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2.4.4). We are not aware of previous works that considered the inverse task, of message
foldering.

Activity-person prediction.There has been much interest recently in the task of expert
finding given email corpora and other person-document associations. Several researchers
have employed a language modeling approach for this problem[8, 106]. While content
is important to the prediction of person involvement in a project, our results show that
social network information is more crucial for this task. Another similar task studied
is finding relevant recipients for a given message or a meeting invitation. It has been
shown recently that a simple K-nearest-neighbors approachgives good performance for
this problem [22]. In the settings considered, however, the‘query’ pertains to a single
message, and partial information about the recipients is available. In the task defined as
predicting future person’s involvement in an activity, theavailable information is a whole
folder. As was the case for other tasks described thus far, the main difference between
other works and our framework is that we do not pre-process the data, adapting a model
for this specific problem. On the other hand, the graph framework does not apply fine text
processing compared with language models.

Liben-Nowell and Kleinberg [85] investigated a generic related problem, predicting
the appearance of new interactions in an evolving social structure. Given a snapshot of
a social network at a given time, they were interested in accurately predicting the edges
that would be added to the network during a subsequent time interval. The approaches
used in this work included measures for analyzing node proximity in networks, assuming
that new links are hinted at by the topology of the network. Empirical evaluation in the
domain of collaboration between researchers showed that for a sufficiently narrow set of
researchers considered, e.g., researchers who publish in the same conferences, almost any
author can collaborate with almost any other author, and there seems to be a strong random
component to new collaborations. Specifically, the link prediction methods applied could
not beat random guessing by a factor of more than about seven.In our work, we consider
structured networks, where relations are typed and directed. We study a different problem,
and find our results to be encouraging.

4.7 Summary

We have presented a schema for representing personal information with a graph. In this
schema, meta-data that is available as structured fields in the header of email messages and
meeting entries is included as typed entities connected with labeled and directed edges.
Associated text is represented as a bag-of-word in the graph.
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We have shown that different tasks in the personal information management domain
can be phrased in terms of entity similarity and addressed asqueries in our framework.
Graph walk performance on these tasks was evaluated using various corpora, including
corpora extracted from the public Enron email collection. We have shown that graph
walks yield preferable performance to alternative methodsin most cases.

A major advantage of the graph walk approach is that it integrates social informa-
tion, content and temporal evidence in evaluating entity relatedness. The tasks evaluated
demonstrate additional strengths of the graph walk framework. In particular, theperson
name disambiguationtask is an example of contextual search, wheremessageinformation
that is readily available from the user’s environment is used to enhance the query. This
information was shown to assist in person disambiguation. In other tasks, we have demon-
strated the modularity of the graph representation, where variations in the graph layout
are easily accommodated. The task ofpredicting meeting attendees, for example, uti-
lized meeting and email messages interactions in the graph.Similarly, folders that denote
user activities were included in the graph for thefoldering, message trackingandactivity-
person predictiontasks. In the task ofalias finding, we also have added string similarity
edges to the graph. Nevertheless, the underlying graph was not reconstructed per task, as
the graph representation is general and is independent of the tasks performed.

The basic graph walk models co occurrence and graph topologyinformation in gen-
erating initial results. Learning, using relatively smallsets of labeled examples and a set
of generic features, allowed us to further optimize the graph walk results per task. We
have shown that the different learning methods improve the graph walk performance in
most cases. While weight tuning proved to be usually effective, reranking and the path
constrained walks, which use global information about the graph walk, yielded superior
results than weight tuning for some of the tasks. For instance, we found that high-level
information about the edge sequences traversed in the graphwalk was very informative
for the threadingtask,alias findingetc. In addition, reranking using specialized string
similarity features improved the results for theperson name disambiguationtask.

We found that ‘long’ queries, which refer to a large set of nodes in the graph, are
challenging in this framework, as the bias towards highly-connected nodes embedded in
the random graph walk paradigm is more prominent in these settings. General techniques
that penalize high-degree nodes are expected to improve thegraph walk performance. In
addition, we are interested in exploring ways of integrating this approach with language-
modeling approaches for document representation and document retrieval. Formally, this

can be done straightforwardly by appropriately defining Pr(d
`−→ t|`) for the edge type

` =has-termto correspond to the probability fort assigned by a language model for the

documentd, and by defining Pr(t
`−→ d|`) for the edge typè =in-file to reflect the prob-

105



ability of the documentd given the query termt.

Another venue of future work is modeling of a timeline in thisframework. It is straight-
forward for example to add edges between date nodes according to time proximity, thus
modeling a timeline as required additional graph walk steps.
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Chapter 5

Case Study: Applications of Parsed Text

In the PIM graph schema presented in Chapter 4, text was represented as a bag-of-words. It
is desirable, however, to utilize the information residingin the syntactic structure binding
words in text processing tasks. In this chapter, we suggest to represent text as an entity-
relation graph that includes sentences and their underlying dependency structures. Given
this representation, we will be interested in processing tasks that involve word similarity in
the graph. Previous works have applied graph walks to draw a notion of semantic similar-
ity in graphs, which were carefully designed and manually tuned, and included WordNet
[47] inter-word relations [136, 33, 65]. While these and other researchers have used lexi-
cons such as WordNet to evaluate similarity between words, there has been much interest
in extracting a word similarity measure directly from text corpora (e.g., [127, 101]). We
suggest processing dependency parse trees within the general framework of directed la-
beled graphs. We construct a graph that directly representsa corpus of structured (parsed)
text. In the suggested graph scheme, nodes denote words and weighted edges represent
the dependency relations between them. We apply graph walksto derive an inter-word
similarity (relatedness) measure. We further apply the setof learning techniques available
to improve the derived corpus-based similarity measures.

The graph representation and the set of graph walk similarity measures are empirically
evaluated on the task ofcoordinate termextraction,1 from small to moderately sized cor-
pora, where we compare them against vector-based models, including a state-of-the-art
syntactic distributional similarity method [101]. It is shown that the graph walk based ap-
proach gives preferable results for the smaller datasets (and comparable otherwise), where
learning yields significant gains in performance. We also present results for the extracting

1In particular, we focus on the extraction of named entity classes.
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word synonyms from a corpus, which are consistent with thesefindings.

Below we first outline our proposed scheme for representing a dependency-parsed text
corpus as a graph (Section 5.1). We next discuss the coordinate extraction task, and how
it can be processed as queries in the graph (Section 5.2). Thesettings and results of an
empirical evaluation are detailed in Sections 5.3 and 5.4. This chapter concludes a review
of related work (Section 5.5) and a summary.

5.1 Parsed Text as a Graph

In recent years, there has been an increasing interest in using dependency parses for a range
of NLP tasks, including machine translation, relation extraction and question answering
(e.g., [127, 139]). Such applications benefit particularlyfrom having access to dependen-
cies between words, since these provide information about predicate-argument structure
that is not readily available from phrase structure parses.At the same time, dependency
parsers of higher quality and speed are becoming available.

A typed dependency parse tree consists of directed links between words, where depen-
dencies are labeled with the relevant grammatical relation(e.g.,subject, indirect object
etc). We suggest representing a text corpus as a connected graph of dependency structures,
according to the scheme shown in Figure 5.1. The graph shown in the figure includes the
dependency analysis of two sentences: “boys like playing with all kinds of cars”, and
“girls like playing with dolls”. In the graph, each word mention is represented as a node,
which includes the index of the sentence in which it appears,as well as its position within
the sentence. Word mentions are marked as circles in the figure. The “type” of each word
– henceforth aterm node – is denoted by a square in the figure. Each word mention is
linked to the corresponding term; for example, the nodes “like1” and “like2” represent
distinct word mentions and both nodes are linked to theterm “like”. For every edge in
the graph, we add another edge in the opposite direction (notshown in the figure); for
example, an link exists from “like1” to “girls1” with an edge labeled as “nsubj-inv”. The
resulting graph is highly interconnected and cyclic.

We will apply graph walks to derive an extended measure of similarity, or relatedness,
between wordterms(as defined above). For example, starting from the term “girls”, we
will reach the semantically related term “boys” via the following two paths:

girls
mention−→ girls1

nsub j−→ like1
as−term−→ like

mention−→ like2
nsub j−inverse−→ boys2

as−term−→ boys , and

girls
mention−→ girls1

nsub j−→ like1
partmod−→ playing1

as−term−→ playing
mention−→ playing2

partmod−inverse−→ like2
nsub j−inverse−→ boys2

as−term−→ boys .
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Figure 5.1: A joint graph of dependency structures

Intuitively, in a graph representing a large corpus, terms that are more semantically
related will be linked by a larger number of connecting paths. In addition, shorter con-
necting paths may be in general more meaningful. The graph walk paradigm addresses
both of these requirements. Further, different edge types,as well as the paths traversed,
are expected to have varying importance in different types of word similarity (for exam-
ple, verbs and nouns are associated with different connectivity patterns). These issues are
addressed using learning.

5.2 Text Processing Tasks as Queries

We evaluate the induced graph-based similarity measures and the text representation schema
on the task ofcoordinate termextraction. Coordinate terms are defined as a symmetric se-
mantic relations between words that share a hypernym in a thesaurus. For example,wolf is
a coordinate term ofdog, and dog is a coordinate term of wolf, since both are instances of
canine. Similarly, named entities of the same class are consideredto be coordinate terms.
For instance,New-York, ParisandRomeare all instances of acity name. Coordinate terms
reflect a particular type of word similarity (relatedness),and are therefore an appropriate
test case for our framework.

In general, automatic extraction of coordinate terms, as well as other inter-word seman-
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tic relations, is required for the automatic construction of word thesaurus and databases of
world knowledge. While coordinate term extraction is often addressed by a rule-based
(templates) approach [59], rule based extraction is best adapted for very large corpora
such as the Web, where information is highly redundant and precision oriented extraction
gives good results. In this test case, we focus on relativelysmall corpora. Small limited
text collections may correspond to documents residing on a personal desktop, email col-
lections, discussion groups and other specialized sets of documents. In limited-size text
collections word mentions may be scarce, and ‘deeper’ text processing methods should
yield higher recall.

In this test case, we evaluate the extraction ofcity namesand person namesfrom
small to medium corpora of newswire data. The task defined in the experiments is to
retrieve a ranked list of city or person names given a small set of seeds. This task is
implemented in the graph as a query, where we let the query distributionVq be uniform over
the given seeds (and zero elsewhere). Ideally, the resulting ranked list will be populated
with many additional city or person names. Since named entities (NEs) such as cities
and persons often contain more than one token (e.g., “New York”, or “William Cohen”)
we apply available tools to first segment the text, and also identify named entity spans.
Text segmentation and named entity recognition are both well studied problems, and there
are various tools available that are sufficiently fast for the pre-processing of limited size
corpora. Given NE chunks, it is possible to filter the query results by node typeτ =“named
entity”. We apply this filter in the experiments. Otherwise,results can be filtered based on
by part-of-speech tags, capitalization patterns etc.

Notice that high-quality retrieved lists, in which the top ranks are densely populated
with correctly identified coordinate terms, can support an iterativebootstrappingprocess.
That is, given an initial seed and a retrieval mechanism, thesystem can automatically
select additional seeds using the produced ranked lists, and re-querythe corpus, with the
goal of increasing coverage. We did not attempt bootstrap extraction in the experiments
conducted.

General wordsynonym extractionis another task considered in this test case. Identi-
fying semantic relations between words using parsed text isa well studied problem. We
are interested in applying the graph walk techniques to extract synonymous words. The
query distributionVq will consist in this case of the term of interest. The objectsretrieved
can be of a general type,τ =term. It is also possible to query for onlynouns, verbsetc.,
according to the query word and the user intentions.
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Corpus words nodes edges unique NEs
MUC 140K 82K 244K 3K
MUC+AP 2,440K 1,030K 3,550K 36K
BNC+AP 1,333K 462K 1,731K -

Table 5.1: Corpus statistics

5.3 Experimental Corpora

The following corpora are used in the experiments.

MUC-6. We use the training set portion of the MUC-6 corpus [MUC6]. TheMUC
corpus contains articles of the Wall Street journal, and is fully annotated with named entity
tags.

Associated press (AP).Another corpus used consists of articles of the Associated press,
extracted from the AQUAINT corpus [14]. The AQUAINT corpus includes automatically
generated, noisy, named entity tags.

British National Corpus (BNC).Finally, we use a subset of the British National Cor-
pus [19]. The full BNC corpus is a 100-million word collectionof samples of written
and spoken language from multiple sources, designed to represent a wide cross-section
of contemporary British English. We use this corpus for the evaluation of the synonym
extraction task.

All corpora were parsed using the Stanford dependency parser [37].2. Statistics of the
experimental corpora constructed and their correspondinggraph representations are given
in Table 5.1. The MUC corpus is relatively small, containingabout 140 thousand words.
A corpus constructed that included the union of MUC data and arandom subset of the
AP experimental corpus (MUC+AP) is substantially larger, containing about 2.5 million
words. The number of unique named entities annotated in bothcorpora is detailed in the
“unique NEs” column in the table.

The BNC+AP corpus contains mainly texts from the BNC corpus, as well as a small
addition of sentences from the AP corpus, including a total of about 1.3 million words.

Additional details regarding the considerations in corpusconstruction are provided in
the experimental settings description.

2http://nlp.stanford.edu/software/lex-parser.shtml; sentences longer than 70 words omitted.
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5.4 Experiments and Results

We evaluate performance using graph walks withuniformedge weightsΘ, i.e.,θ` = θ`′,∀`,
and also for graph walks where the edge weights have been tuned. We apply the same
weight tuning procedure described in the previous chapter.Reranking is applied on top
of the modified graph walk results in this case, using the learned edge weights. Path trees
were learned using the top positive, and the top negatively labeled nodes. (In general,
we required the number of positive and negative examples to be balanced.) All models
were trained using examples allocated for training and tuning purposes. Performance was
evaluated on the separate test examples. In all of the experiments reported in this chapter
we applied a reset probabilityγ = 0.5.

The research described in this chapter is perhaps most related to syntax-based vector
space models, which derive a notion of semantic similarity from statistics associated with
a parsed corpus [55, 86, 101]. In most cases, these models construct vectors to represent
each wordwi. Every element in the vector ofwi corresponds to particular “context”c,
representing a numeric count or an indication of whetherwi occurred in contextc. A
“context” can refer to simple co-occurrence with another word w j , to a particular syntactic
relation to another word (e.g., a relation of “direct object” to w j ), etc. Given these word
vectors, inter-word similarity is evaluated using some appropriate similarity measure for
the vector space, such as cosine vector similarity, orLin’s similarity [86] that was designed
for this domain.

Recently, Pad́o and Lapata [101] have suggested an extended syntactic vector space
model calleddependency vectors(DV). In this model, rather than simple counts, the com-
ponents of a word vector consist ofweighted scores, which combine both co-occurrence
frequency and the importance of a context (i.e., the syntactic dependency patterns connect-
ing the word mentions). They considered two different context-based weighting schemes:
a length weighting scheme, assigning lower weight to word co-occurrence over longer
connecting paths (computed as inverse of path length); and an obliquenessweighting hier-
archy [73], assigning higher weight to paths that include grammatically salient relations.
Another parameter controlling the computed scores in theirframework limits the set of
considered paths to a manually designed set, representing various types of linguistic in-
teresting phenomena. In an evaluation of word pair similarity based on statistics from
a corpus of about 100 million words, they showed improvements over several previous
vector space models.

In the experiments, we therefore compare the graph walk framework against the main
two following models.
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Co-occurrence model.We compare against a vector-based bag-of-words co-occurrence
model. The co-occurrence model represents a traditional approach, where text is processed
as a stream of words rather than as syntactic structures. A co-occurrence vector-space
model was applied using a window of two tokens to the right andto the left of the focus
word. Inter-word similarity was evaluated using cosine similarity, where the underlying
co-occurrence counts were normalized by log-likelihood ratio [101].

Dependency vectors (DV).We compare graph walks also todependency vectors, being
a state-of-the-art syntactic vector-based model. In implementing this method, we used
code made available by the authors3, where we converted the underlying syntactic patterns
to the Stanford dependency parser conventions. The parameters of the DV method were
set based on a cross validation evaluation (using the city name extraction train set queries,
and the MUC+AP corpus). Themediumset of dependency paths and theobliqueedge
weighting scheme were found to perform best. We experimented with cosine as well as
the Lin similarity measure in combination with the dependency vectors method.

In applying the vector-space based methods, we compute a similarity score between
everycandidate from the corpus and each of the query terms, and then average these scores
(as the query distributions are uniform) to construct a ranked list.

Below, we present the experimental evaluation of the coordinate term extraction and
the word synonyms extraction tasks in detail (Sections 5.4.1 and 5.4.2, respectively). For
every task, we describe the datasets constructed, the results of the vector-space models,
and the results of graph walks and learning in the graph walk framework. Finally, we draw
conclusions from the experiments regarding the framework.

5.4.1 Coordinate Term Extraction

In the coordinate extraction task, queries include a small number of seed examples rep-
resenting a named entity class of interest. We require the retrieved nodes to be of type
τ =named entity, using the available corpus annotations. The empirical evaluation in-
cludes the extraction of named entities that are instances of city andpersonnames.

In what follows we describe the experimental datasets, and the experimental settings
for each of the evaluated approaches. We then briefly review the models generated by the
learning methods, present the results and discuss the observed trends.

3 http://www.coli.uni-saarland.de/ pado/dv.html
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Datasets

The MUC-6 collection provides gold standard annotations of named entities (NEs) and
their types—e.g., “New York” is annotated as “Location”. For the city name extraction
experiments, we hand-labeled all location NEs as to whetherthey were city names. Over-
all, we identified 185 unique city names in the corpus.4 We then generated 10 queries
comprised of cities’ names. Each query includes 4 city names, selected randomly accord-
ing to the distribution of city name mentions in the MUC-6 corpus. For the person name
extraction task, we also generated 10 queries. Each query includes 4 randomly selected
person names included in the MUC-6 corpus. For every dataset,we use 5 labeled queries
for training and tuning purposes, and reserve the remaining5 queries for testing.

In addition to the small MUC-6 corpus we constructed a larger corpus, by adding to
the MUC-6 corpus parsed articles extracted from the AQUAINT corpus (MUC+AP). The
AQUAINT corpus has been annotated with named entities automatically, so it includes
noisy tags; nevertheless, we process queries in the this graph in the same manner described
above. The same queries were applied to both corpora.

Experimental Setup

Details regarding the experimental settings of each of the approaches considered are given
below.

Vector-Space Similarity. We evaluated the co occurrence model (CO) and the de-
pendency vector model using the test queries on both corpora. Limiting the considered set
of candidates to named entities allows us to reduce the size of the co-occurrence matrix
maintained by the vector models, thus overcoming memory requirement constraints. In the
larger MUC+AP corpus, however, the number of candidates thatneed to be evaluated is
very large (Table 5.1). We therefore show the results of applying the vector-space models
to the top, high-quality, entities retrieved with reranking for this corpus. (We process the
union of the top 200 results per each query; that is, 1,000 candidates are ranked overall.)

Graph Walks. We first set the length of the graph walkk, using cross-validation over
the training queries using varying walk lengths. We found that beyondk= 6 improvements
in mean average precision were small. We therefore setk = 6.

Weight tuning. Weight tuning was trained using the training set and two dozens of
target nodes for each task.

Reranking. In reranking, we evaluate specialized feature templates inthis domain, as

4The list was not normalized—e.g., it includes synonyms like “New York” and “N.Y”.
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follows.

Edge label sequences.These features indicate whether a particular sequence of edge
labels`i occurred, in a particular order, within the set of paths leading to the target node
zi j . Here we consider full paths from query to target. (However,we removed the edges
mentionandas-termfrom the feature description, such that the remaining edge sequences
are mostly bigrams.)

Lexical unigrams. The lexical unigram features indicate whether a word mention
whose lexical value istk was traversed in the set of paths leading tozi j .

For example, for the query term “girl” in the graph depicted in Figure 5.1, the tar-
get node “boys” is described by the features (denoted asfeature-name.feature-value):
sequence.nsubj.nsubj-inv(wherementionandas-termedges are omitted) ,lexical.’“like”
etc. In addition, we applied theSource-countfeature (see Section 3.3.2).

We set a count cutoff (of 3) to the reranking features in orderto avoid over-fitting.
Reranking was applied to the top 200 ranked nodes output by thegraph walk using the
tuned edge weights. (We computed the features independently of the graph walk, using
the path unfolding procedure, as described in Section 3.3.3.)

Path Constrained Walk. Finally, path-trees were constructed using the top 20 correct
nodes and 20 incorrect nodes retrieved by the uniformly weighted graph walk. Labels
indicating the relevancy of each node retrieved were available to us in the MUC corpus.
In the MUC+AP corpus, however, we could not readily identify negative examples. For
this corpus, we therefore considered nodes not known to be correct answers as incorrect
responses; i.e., the training data in this case is noisy. In the experiments, we apply a
threshold of 0.5 to the path constrained graph walk method.

Learned Models

Following is a short description of the models learned in weight tuning, reranking and the
path constrained walks.

Applying weight tuning, high weights were assigned to edge types such asconj-and,
prep-inandprep-from, nn, apposandamodfor the city extraction task. For person extrac-
tion, prominent edge types includedsubj, obj, possandnn. The latter preferences align
well with the linguistically motivated weights of the dependency vectors model.

High weights were assigned by the reranking model in the cityname extraction task to
lexical features such as “based” and “downtown”; and to edgebigrams such as “prep-in-
Inverse→conj-and” or “nn-Inverse→nn”.
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In the path trees constrcuted, positive highly predictive paths included many symmetric
paths. For example, in the city extraction task, predictivepatterns included the following
symmentric paths:

...→conj andInverse→ ...→.conj and→ ...

...→prep inInverse→ ...→.prepin → ...

Results

Figure 5.2 gives results for the city name (top) and the person name (bottom) extraction
tasks. The given curves show precision as a function of rank in the ranked list, down to
rank 100. (We hand-labeled all the top-ranked results as to whether they are city names
or person names.) The figure shows the results for the MUC corpus (left), and for the
MUC+AP corpus (right).

The figures included the resulting curves using the co-occurrence model (CO), apply-
ing a cosine similarity; and using the syntactic vector-space DV model, where the Lin
similarity measure was applied (DV:Lin). (Performance of the DV model using cosine
similarity was found comparable or inferior to using the Linmeasure, and was omitted
from the figure for clarity.) Out of the vector-based models,the co-occurrence model is
preferable for the city name extraction task. The syntacticdependency vectors model, on
the other hand, gives substantially better performance forperson name extraction. We
conjecture that city name mentions are less structured in the underlying text. In addition,
the syntactic weighting scheme of the DV model is probably not optimal in the case of city
names. For example, theconjunctionrelation was found highly indicative for city names
(see below). However, this relation is not emphasized by theDV weighting schema. As
expected, the performance of the vector-based models is improved with the size of the cor-
pus [130]. Overall, the vector-space models demonstrate good performance for the larger
MUC+AP corpus, but only mediocre performance for the smallerMUC corpus.

The results of applying graph walks with uniform weights areshown in Figure 5.2
(Gw:Uniform). The performance of graph walks is inferior tothe vector space model
for the city name extraction task. For person name extraction, the graph walks achieve
higher recall than the co occurrence model, but lower accuracy at the top ranks. Studying
the results, we found that due to the exponential decay over path length embedded in
the graph walk paradigm, named entities linked to the query nodes over a large number
of longer paths were often ranked below other nodes connected to the query over few
short paths. In the problem settings considered, however, some long connecting paths are
more meaningful than shorter arbitrary connecting paths. (For example, in Figure 5.1,

116



MUC MUC+AP

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100

P
re

ci
si

on

Rank

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

P
re

ci
si

on
Rank

Gw:Uniform
Gw:Learned

CO
DV:Lin

PCW
Rerank

a. City name extraction

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100

P
re

ci
si

on

Rank

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

P
re

ci
si

on

Rank
b. Person name extraction

Figure 5.2: Test results: Precision at the top 100 ranks, forthe city name extraction task
(top) and person name extraction task (bottom).
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we consider “girls” to be more similar to “boys” than to the word “playing” and the path
between “girls” and “boys” to be more significant, although the path that connects “girls”
to “playing” is shorter in length.)

We next discuss learning results, and show how learning allows to promote nodes that
are distant, yet connected to the query over a large number ofmeaningful paths. Figure 5.2
shows the precision-at-rank curves for the graph walk method using the learned weights
(Gw:Learned), the same graph walks with reranking (Reranked) and a path-constrained
graph-walk (PCW).

Several trends can be observed from the results. First, the graph walk using the learned
edge weights consistently outperforms the graph walk with uniform weights. Reranking
and the path-constrained graph walk, however, yield superior results. Both of these learn-
ing methods utilize high-level features compared with the graph walk and weight tuning,
which can only consider local information. In particular, while the graph walk paradigm
assigns lower importance to longer connecting paths, reranking and the path-constrained
walker allow to discard short yet irrelevant paths, and thereby eliminate errors at the top
ranks of the retrieved lists.

Contrasting the graph-based methods with the vector-based models, the difference in
performance in favor of reranking and the path constrained walks can be attributed to two
factors. The first factor is learning, which optimizes performance for the underlying data.
A second factor is the incorporation of non-local information, which allows to consider
high-level properties of the traversed paths. The difference in performance between the
graph-walk and vector based approaches narrows with the size of the corpus, as the vector
based methods improve given more statistics.

5.4.2 General Word Similarity

In the previous section, we used the framework to extract words that are related by being
coordinate terms. In particular, our experiments focused on named entities. In this section,
we consider the extraction of synonyms, given general words. For example, given the
queryVq = {term=“movie”}, we are interested in retrieving list of entities of typeτ =term
(or τ =noun), and expect to get synonymous words, likefilm, appear at the top of the list
retrieved.

Below we describe the experimental datasets and a set of preliminary results.
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Datasets

We collected pairs of word synonyms from teaching materialsfor foreign students. We
then constructed an experimental corpus by extracting sentences that contain these words.
Specifically, we extracted all of the relevant sentences from the BNC corpus. (The number
of extracted sentences was bound to 2,000 per word.) For infrequent words, we extracted
additional example sentences from the AP corpus. (Sentencecount was complemented
to 300 per word, where applicable.) The constructed corpus,BNC+AP, is based on 1.3
million words overll. The corpus statistics are given in Table 5.1.

We distinguish between nouns, adjectives and verbs. Table 5.2 details the synonyms
pairs. For each part-of-speech type, we use 10 synonym pairsas queries. (the term men-
tioned first for each pair is the query, and the other term is considered as a correct answer.)
The remaining synonym pairs were used as test queries.

Experimental Setup

We applied a simple co-occurrence model (CO) that does not consider the syntactic rela-
tions available in the parse structure, using cosine similarity and applying log-likelihood
normalization. In addition, we applied the dependency vectors model, using a simple
cosine similarity measure (DV:Cos); using a cosine similarity measure, where the statis-
tics have been first normalized by log-likelihood (DV:Cos-ll), and using the Lin similarity
metric (DV:Lin).

For scalability reasons, rather than index all of the words in the corpus in the vector
space models, we consider the top 400 words retrieved by graph walks (with uniform
weights) per query. (That is, the union of the top results perall queries is indexed.)

We applied graph walks, using walk lengthk = 6 and uniform weights (Gw:Uniform).
Path-trees were generated using the correct node and the topincorrect node per each of
the training queries. (In this case, training data is noisy,as it is possible that the top term
retrieved is semantically related to the query word.) We applied a threshold of 0.5 to the
path constrained walks (PCW). Finally, reranking was appliedusing the features described
for the coordinate term extraction task. Since the graph walks yielded poor performance
in this case (a discussion of the results follows), we applied reranking on top of the results
obtained using the path constrained walks in this case.
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Training examples Test examples
Adjectives contemporary : modern infrequent : rare

immediate : instant dedicated : committed
lethal : deadly necessary : essential
particular : specific pressing : urgent
deliberate : planned informal : casual
gay : homosexual isolated : lonely
dubious : doubtful legitimate : valid
infamous : notorious constant : fixed
imperative : vital exact : precise
lucid : clear economic : profitable

essential : fundamental
attractive : appealing
intelligent : clever
prosperous : affluent

Nouns commencement : graduationmurderer : assassin
convention : conference disaster : catastrophe
destiny : fate discount : reduction
hunger : starvation impediment : obstacle
hypothesis : speculation homicide : murder
material : fabric measure : degree
movie : film interplay : interaction
possibility : opportunity inflow : influx
remorse : regret meeting : assembly
association : organization ballot : poll

bid : tender
comfort : consolation

Verbs answered : replied oversee : supervise
conform : comply received : got
disappeared : vanished admitted : confessed
cited : quoted began : started
diminished : decreased closes : shuts
enquire : investigate confine : restrict
evaluated : assessed disclose : reveal
inspected : examined illustrate : demonstrate
renewed : resumed assure : guarantee
demonstrated : protested illuminated : clarified

nominated : appointed
responded : replied
renewed : resumed

Table 5.2: Word synonym pairs: train and test examples
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CO DV:Cos DV:Cos-ll DV:Lin Gw:Uniform PCW Rerank(PCW)
Adjectives 0.07 0.18 0.21 0.41 0.08 0.34 0.34
Nouns 0.05 0.21 0.29 0.55 0.01 0.17 0.36
Verbs 0.04 0.13 0.22 0.45 0.01 0.40 0.27
All 0.05 0.17 0.24 0.47 0.04 0.31 0.33

Table 5.3: General word synonyms extraction results: MAP

Results

Results are presented in Table 5.3 in terms of mean average precision. While we evalu-
ate performance using our self constructed experimental corpus, the results are consistent
with similar experiments reported in the literature [101].That is, the model of depen-
dency vectors, which considers syntactic relations (DV:Cos) in computing co occurrence
weights outperforms the simple co occurrence model (CO). Adding pre-processing of log-
likelihood normalization of the statistics improved the performance of the dependency vec-
tors model further. Lastly, using the Lin measure, specialized for this model for inter-word
similarity, in combination with dependency vectors reaches high levels of performance.

As shown in the table, the results of graph walk without learning are relatively poor
(these results are comparable to the results of applying cosine similarity). We conjecture
that as was the case in coordinate term extraction, here too the preference of the graph
walks for nodes that are close to the query node is unjustified. The path constrained walks
improve performance significantly, by directing the walks to follow meaningful paths.
Reranking improved the path constrained walks for the noun queries, but hurt perfor-
mance for the verb queries. It is possible that specially designed reranking features that
are adapted to this problem can improve reranking performance. In general, we observed
that the graph walks, as well as the path-constrained walks,are biased towards words that
are frequent. It is therefore desired to lower the effect of high node connectivity (using
manipulation of the transition matrix, for example [132]; see Section 2.4.2).

Overall, the path constrained walks and reranking give second-best performance in
the reported results. The performance of learning are better than the syntactic model of
dependency vectors using cosine similarity and log-likelihood normalization, for example.
Notice that graph walks were in fact used in the experiments as a preliminary mechanism
for retrieving relevant candidates, to be processed by the vector-space models.
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5.5 Related Work

This work is not the first to apply graph walks to obtain a notion of semantic similar-
ity for NLP problems. Toutanova et-al [136] constructed a directed graph, where nodes
represented words, and the edges denoted various types of inter-word semantic relations,
extracted from WordNet. They applied graph walks to infer a measure of word similarity.
The semantic similarity scores obtained were used for lexical smoothing for the task of
prepositional word attachment. Recently, Hughes and Ramage [65] constructed a simi-
lar graph, representing various types of word relations from WordNet, and compared the
random-walk generated similarity measure to similarity assessments from human-subject
trials. Another work in the field of information retrieval employed random walks in a
graph that included word relations from WordNet and other resources as well as corpus co-
occurrence based measures, for query expansion [33]. In this chapter we considercorpus-
basedword similarity measures, using syntactic information. While previous works were
tailored to extract a particular flavor of word similarity, with the goal of improving the
performance of a specific end application, we use learning totune the generated similarity
measure per task. In the experiments reported, we were mainly interested in comparing the
graph walk performance against corpus-based vector-spacemodels that use parsed text as
their input. It is straight-forward, however, to add external resources such as WordNet rela-
tions to the graph, thus integrating corpus-based and lexicons. This is a possible direction
for future research.

There have been multiple works that applied PageRank style graph walks for natural
language applications; i.e., using node centrality (or prestige) scores. For example, it has
been suggested to construct text graphs for automatic text summarization, where nodes are
sentences and (undirected and weighted) links are drawn between similar sentences [44,
92]. In these graphs, sentences assigned high centrality scores are considered as salient,
and are used to construct an automatically generated summary. Mihalcea [91] applied
graph walks also for the task of word sense disambiguation. She used a separate graph per
sentence, in which nodes represented the possible WordNet synsets of the contained words,
and directed edges between the synset nodes denoted their inter-similarity, weighted by the
overlap in the synset definitions in WordNet. Graph walks using the PageRank paradigm
were then used to select the most probable synset per word. Toour knowledge the research
presented in this chapter is novel in representing a corpus as a graph that includes syntactic
information (in particular, dependency-parsed text), andis novel in exploring the use of
random-walk similarity on such a graph. Compared with the abovementioned works, our
goal is not to deduce centrality scores, but to learn inter-word similarity measures.

We note that graphs derived from individual parsed sentences have been widely used.
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For example, Snow et al [127] used dependency paths in order to extract hyponyms from a
corpus of parsed text. In particular, they extracted patterns from the parse tree of sentences
in which hyponym word pairs co-appeared, and trained a hyponym classifier using these
patterns as features. Overall, they created a feature lexicon of about 70,000 dependency
paths, consisting of frequent dependency paths that occurred between noun pairs in their
corpus. The authors indicated that due to data sparsity, theratio of relevant sentences in the
corpus was low. In contrast, we represent text corpora as a connected graph of dependency
structures, where the graph walk traverses both within- andcross-sentence paths.

Dependency paths of individual sentences have been used also for general relation ex-
traction. Culotta and Sorenson [36] explore the detection and classification of instances
of relations, where relations correspond to meaningful connections between two entities
(e.g., “based-in”, “member”, “spouse”). They represent each relation instance as a depen-
dency tree, augmented with features for each node, including part-of-speech tags, entity
type, WordNet synsets etc. For each pair of entities in a sentence, the smallest common
subtree in the dependency tree that includes both entities is found. Based on the hypothesis
that instances containing similar relations share similarsubstructures in their dependency
trees, the authors propose kernel functions that estimate the similarity between the sub-
trees. Empirical evaluation results showed that the tree kernel approach outperformed a
bag-of-words kernel, implying that the structural information represented in the tree kernel
is useful for the relation extraction problem. Bunescu and Mooney [17] observed that the
information required to assert a relationship between two named entities in the same sen-
tence is typically captured by the shortest path between thetwo entities in the undirected
version of the dependency graph, where words are tagged withpart-of-speech, entity type
and other features. They propose a kernel which captures a dot product of the common
features in the shortest paths, using it with SVM to classifynew instances.

The graph representation we suggest may be used for general relation extraction. The
rich feature set encoded by the described kernels can be represented in the graph (for
example, using part-of-speech walkable nodes and edges, WordNet links etc.). Relevant
features can also be fed to reranker. Rather than address the relation extraction problem
as a classification problem, graph walks would approach it asa ranking (or, retrieval)
problem. General relation extraction is a challenging problem, and it is a direction for
future exploration.
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5.6 Summary

In this chapter we have explored a novel but natural representation for a corpus of dependency-
parsed text, as a labeled directed graph. We have evaluated the task of coordinate term
extraction using this representation, and shown that this task can be performed using sim-
ilarity queries in the general-purpose graph-walk based query language. Further, we have
successfully applied the learning techniques available inthe framework. In this domain,
path information and other global features proved to be beneficial compared with the local
graph walks and weight tuning.

Empirical evaluation of the coordinate term extraction task suggest that the graph-
based framework performs better than state-of-the-art vector-space models given small
corpora. We therefore find that the suggested model is suitable for deep (syntactic) pro-
cessing of small specialized corpora. Preliminary evaluation of general word synonymy
gave consistent results.

The framework presented can be enhanced in several ways. Forinstance, WordNet
edges and morphology relations can be readily encoded in thegraph. Finally, we believe
that this framework can be applied for the extraction of morespecialized notions of word
relatedness, as in general relation extraction.

124



Chapter 6

Design and Scalability Considerations

The test cases studied vary in multiple dimensions, including the graph schema, the tasks
considered and the relevant corpora sizes. Given this experimental setup, we are interested
in drawing some conclusions regarding high-level system parameters and design choices.
In the first part of this chapter, we evaluate the effect of thegraph walk parameters, includ-
ing the walk length, the reset probability and variants of the graph walk schema (Section
6.1). We then discuss learning, where the performance of theindividual techniques, as
well as their combination, are evaluated empirically (Section 6.2). In Section 6.3 we dis-
cuss scalability issues, and detail the experimental queryprocessing times. In addition, the
impact of the path constrained walks on the graph walk processing time is evaluated. Fi-
nally, a discussion of related research is included (Section 6.4) that focuses on algorithms
developed for scaling up Personalized PageRank graph searches.

6.1 Graph walk parameters

The graph walk framework (as described in Chapter 2) includestwo parameters: the re-
set probabilityγ; and, as we performfinite graph walks, another parameter is the length
of the walkk. In this section we evaluate empirically the effect of theseparameters on
performance. In addition, several variants of the graph walk schema (Section 2.2.3) are
evaluated.
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Figure 6.1: Precision-recall curves varying the walk length k for city name extraction (top)
and person name extraction (bottom). The left graphs show the full curves, and the right
graphs focus on the top of the lists (down to recall 0.2). These results were all generated
using the MUC corpus.
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Corpus k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Person name disambiguation
M.Game 0.65 0.67 0.66 0.66 0.67 0.67 0.67
Sager 0.67 0.56 0.56 0.56 0.56 0.56 0.56
Shapiro 0.61 0.46 0.44 0.43 0.43 0.43 0.43
Threading
M.Game 0.53 0.52 0.50 0.50 0.50 0.49 0.49
Germany 0.55 0.56 0.49 0.49 0.49 0.48 0.47
Farmer 0.65 0.64 0.58 0.58 0.57 0.56 0.56
Alias finding
Meetings 0.60 0.72 0.73 0.73 0.73 0.72 0.72
Personal 0.58 0.61 0.62 0.63 0.63 0.63 0.63

Table 6.1: Results (MAP) of applying graph walks using uniform edge weights, varying
the graph walk length parameterk (γ = 0.5).

6.1.1 Walk Length

We evaluated the performance of the person name disambiguation, threading and alias
finding tasks, using eight datasets in total, for varying walk lengthk. The results, in terms
of mean average precision, are shown in Table 6.1. For every dataset, the best results
are marked in bold. As shown, performance for the person namedisambiguation task is
similar for the management game corpus, given different values ofk. In the case of the
two Enron datasets, however, the performance on the person name disambiguation task is
substantially better for a short walk length (k = 2), where it converges to an inferior result
for longer walks. In the threading task, performance is better for short walks of length
k = 2 or k = 3 across all corpora. Finally, for the alias finding task, there is a substantial
improvement increasing the walk length fromk = 2 to k = 3, and performance converges
for longer walks. In all of the experiments, performance converged for walks longer than
k = 8 steps.

These results support our approach of conducting finite graph walks, rather than infinite
walks, in two ways. First, Personalized PageRank graph walksconverge within a small
number of iterations, as indeed shown by the empirical results. Walks over a small number
of steps therefore provide a very good approximation of infinite walks. Secondly, and
perhaps more interestingly, the results show that limited graph walks give a more accurate
similarity measure in some cases. This means that given a strong local indication of inter-
entity similarity (as reflected by the set of their connecting paths), propagating similarity
in the graph over longer walks may introduce noise to the generated similarity metric. On
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the other hand, we find that the graph walk should be long enough to allow the traversal
of all acyclic meaningful paths from the query to the target nodes. (Obviously, acyclic
paths are the shortest way to reach a target node over a particular sequence of edges.)
In other words, graph walks that are too short will hurt recall. In the alias finding task,
for example, some of the target nodes can be reached in two steps from the query node.
However, additional relevant nodes can be reached over paths that are three steps away
overall. A walk of three steps therefore gives better performance in this case. Once all of
the relevant nodes have been reached for the first time by the graph walk, the benefit in
continuing the walk is marginal in the experiments reportedhere, or hurts performance in
some of the cases, as mentioned above.

In another set of experiments, we evaluated the effect of thewalk length parameter in
the language domain. In this domain, every query is associated with a large number of
correct answers (see Section 5.4.1). The mean average precision in this case is therefore
fairly low (since many correct answers that are not reached contribute zeros to the overall
mean average precision score). On the other hand, the MUC corpus is fully annotated,
allowing us to show results in terms of a precision-recall curve for this corpus. Figure
6.1 shows the precision-recall curve for the city name extraction task (top) and the person
name extraction task (bottom) for the MUC corpus. The left part of the figure show the
full curve for the two tasks; the right part focuses on the topof the lists retrieved (down to
recall of 0.2).

The top left graph in Figure 6.1 demonstrates clearly that increasing the graph walk
length increases recall. For both tasks, short walks wherek <= 4 yielded poor recall.
(For the person name extraction task, recall was near zero, and the corresponding curves
were eliminated from the figure.) The reason for the low recall in these cases is that
there are relatively few relevant nodes that can be reached over short connecting paths in
this domain. For example, the short path “contains – conj-and – containsInv” models a
conjunction relation between words appearing in the same sentence. This type of evidence
is relatively scarce, and occurs more frequently for city names than for person names
in the experimental corpora. The majority of meaningful paths are of length six in the
graph. (E.g., the path that models a common direct object argument is of length six, etc.)
Increasing the walk beyondk = 6 in this domain improves recall, as shown in the figure;
however, the additional nodes reached in a longer walk are generally added at the bottom
of the retrieved list, due to the exponential decay embeddedin the walk.

In conclusion, the length of the graph walkk should allow the graph walk to reach
graph nodes over a variety of meaningful paths. As a rule of the thumb, it is recommended
that the walk length allows traversal of the full set of (acyclic) connecting paths to a tar-
get node. It is straight-forward to tune the walk length parameter using a set of tuning
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Corpus k γ = 0.15 γ = 0.3 γ = 0.5 γ = 0.7 γ = 0.85
Person name disambiguation
M.Game 2 0.66 0.67 0.65 0.66 0.66
Sager 0.67 0.67 0.67 0.67 0.67
Shapiro 0.60 0.61 0.61 0.61 0.61
Threading
M.Game 2 0.53 0.53 0.53 0.53 0.53
Germany 0.55 0.55 0.55 0.55 0.55
Farmer 0.65 0.65 0.65 0.65 0.65
Alias finding
Meetings 3 0.60 0.60 0.60 0.60 0.60
Personal 0.67 0.67 0.67 0.67 0.67

Table 6.2: Results (MAP) of applying graph walks using uniform edge weights, varying
the reset probabilityγ.

examples.

6.1.2 Reset Probability

In all of the experiments reported thus far, the reset probability was set toγ = 0.5. Table
6.2 shows the results of varyingγ for multiple tasks and corpora in terms of mean average
precision. The table shows that changingγ has negligible effect on the actual produced
rankings. These results are in line with previous findings, showing that while this param-
eter affects the actual scores assigned to the graph nodes, it does not change the output
relative rankings [102].

6.1.3 Graph walk variants

As described in Section 2.2.3, there are several variants ofgraph walk schemas that re-
searchers have applied in the past in performing random graph walks to extract similarity
in graphs. In the experiments conducted so far, we adopted the Personalized PageRank
graph walk model, where the outgoing edge weights from each given node were normal-
ized to form a probability distribution. In this section, weprovide experimental results us-
ing closely related graph walk schemes. More specifically, we evaluatelazygraph walks,
comparing them to Personalized PageRank graph walks. In the lazy walk schema, the
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Corpus Gw Gwts LGw LGwts

Person name disambiguation
M.Game 0.65 0.68 0.66 0.68
Sager 0.67 0.69 0.68 0.68
Shapiro 0.61 0.62 0.61 0.62
Threading
M.Game 0.53 0.62 0.53 0.62
Germany 0.55 0.56 0.55 0.56
Farmer 0.65 0.65 0.65 0.65
Alias finding
Meetings 0.61 0.60 0.60 0.59
Personal 0.72 0.71 0.69 0.70

Table 6.3: Results (MAP) of applying a lazy graph walk variant(LGw), and a different
scheme for assigning the random transitions in the graph (un, in superscript).

random walker stays at the current node with probabilityγ at each step of the walk, or con-
tinues to the neighboring nodes with the remaining probability. We evaluate lazy walks
usingγ = 0.5. In addition, we evaluate two edge weighting schemas in conjunction with
each of the models. In the weighting scheme used in the experiments so far, each outgoing
edge from nodex is assigned a typical edge weight by its type, and the walker picks an
edge at random according to its weight (Formula 2.7). Another possible weighting scheme
assumes that the walker first picks an edge type at random, outof the set of outgoing edge
types available at each node (S(x), per section 2.2.3); given the edge type, a specific edge
is then selected uniformly (Formula 2.8). We refer to the latter schema astwo-stagegraph
walk.1

Table 6.3 gives the results for the combinations of the two walk paradigms and the two
edge weighting schema. The Personalized PageRank graph walks are denoted as ‘Gw’ in
the table, and the lazy graph walk variant is denoted as ‘LGw’. The ‘two-stage’ graph
walk variant is marked with the superscriptts. The edge weights were assigned uniformly
in the experiments.

Overall, the different variants have very limited effect onthe results. More specifi-
cally, the lazy graph walks and Personalized PageRank are shown to generate very similar
rankings (as reflected by the mean average precision measure). The two-stage weighting
scheme gives noticeably better results for one of the eight datasets.

1In our implementation, the weights of the outgoing edge types are normalized at each nodex, where the
total outgoing weight fromx is computed as S(x), defined in Section 2.2.3.
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6.2 Learning

As discussed in Chapter 4, several researchers have suggested schemes for adjusting the
set of edge weights using hill-climbing methods in the Personalized PageRank settings
[39, 100, 4]. We have shown, however, that high-level information, such as the edge
sequencesencountered in traveling from the source nodes to a target node, can be useful
in evaluating the node inter-relatedness. Adjusting the graph parameters based on “local”
information only may be thus sub-optimal. (The notion of global and local information
has been introduced in Section 3.5.)

The reranking approach parameterizes the graph walk with a set of representative fea-
tures, which allows one to capture certain global properties of the graph walk. However,
this representation loses some quantitative information compared with exact gradient com-
puting. The path constrained walk approach considers global information in the form of
edge sequences as well. Compared to reranking, path constrained walks have more impact
on the graph walk procedure; on the other hand, a more restricted space of features is con-
sidered in this method. In Section 3.5 we discussed the qualitative differences between the
learning approaches in detail. Here, we present and discussempirical comparative results
(Section 6.2.1).

It is possible to combine several learning methods. In particular, it is straight-forward
to apply weight tuning and reranking as a pipeline, where theoutput of the graph walk
with the set of tuned weights is provided to the reranker. Similarly, path constrained walks
can be used to generate an initial ranking to be processed by the reranker. In Section 6.2.2,
we provide empirical results for the utility of these learner combinations.

Finally, Section 6.2.3 discusses the effect of the threshold applied to the path con-
strained walks in terms of performance (mean average precision), based on a set of relevant
empirical results.

6.2.1 Local vs. Global Learning

In this section, we compare every pair of the learning methods in terms of performance.
The discussion is based on empirical results of the person name disambiguation and thread-
ing tasks, evaluated on six datasets.
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Corpus Gw:Random Gw:Learned RrkGw:R Rrk+
Gw:R RrkGw:L Rrk+

Gw:L
Person name disambiguation
M.Game 0.61 0.67 0.63 0.83∗ 0.65 0.85∗†
Sager 0.65 0.81∗ 0.72 0.89∗ 0.72 0.83∗

Shapiro 0.70 0.80∗ 0.52 0.75 0.52 0.79∗

Threading
M.Game 0.52 0.59∗ 0.75∗† - 0.74∗† -
Germany 0.51 0.55∗ 0.66∗† - 0.68∗† -
Farmer 0.68 0.72 0.83∗† - 0.87∗† -

Table 6.4: Performance comparison (MAP) of graph walks withrandom weights
(Gw:Random), weight tuning (Gw:Learned), reranking using edge sequence features
(RrkGw:R) and the combination of weight tuning and reranking (RrkGw:L). Reranking using
the full set of features is denoted as Rrk+.

Reranking vs. weight tuning.

We compare the gradient descent method and reranking as follows. Since the gradient
descent algorithm is prone to converge to local minima, we ran the algorithm for every
task and corpus (train set) combination for 5 randomly generated initial graph edge weight
parameter setsΘ, out of which we considered the parameters for which the bestend result
is reached by the gradient algorithm,Θ0. The output of this procedure is a modified set
of weightsΘG; we then applied graph walks usingΘG to evaluate performance on the test
set queries.

Re-ranking was trained separately, using both thetrain anddevelopmentsets, where
for comparison reasons, the same set of initial random graphedge weightsΘ0 was used
to generate the graph walk output. Thus, both methods are compared against the same
baseline. (Conversely, in the previous experiments reported in Chapter 4, re-ranking was
given the output of the graph walk with uniform weights.) Forevery example, the top 50
nodes were re-ranked.

We are interested in comparing reranking with edge weight tuning asalternativelearn-
ing methods that improve on graph walk performance. The features that we use for rerank-
ing will be therefore derived from the set of paths leading toevery candidate node (that is,
the same information available to the error backpropagation algorithm is used), describ-
ing non-local properties of these paths. In particular, theconsidered features includeedge
label bigramsand thesource countfeature. As defined in Section 3.3.2, the latter feature
indicates the number of different source nodes in the set of connecting paths leading to
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Corpus Gw:Uniform PCW RrkGw:U Rrk+
Gw:U RrkPCW Rrk+

PCW
Person name disambiguation
M.Game 0.65 0.65 0.65 0.85∗† 0.69 0.84∗†
Sager 0.67 0.76∗ 0.72 0.82∗ 0.68 0.89∗†
Shapiro 0.61 0.62 0.52 0.78∗† 0.65 0.77∗†
Threading
M.Game 0.53 0.73∗ 0.73∗ - 0.75∗ -
Germany 0.55 0.65∗ 0.72∗ - 0.67∗ -
Farmer 0.65 0.76∗ 0.83∗ - 0.85∗ -

Table 6.5: Performance comparison (MAP) of graph walks withuniform weights
(Gw:Uniform), path constrained walk (PCW), reranking using edge sequence features
(RrkGw:U ) and the combination of path constrained walks and reranking (RrkGw:L).
Reranking using the full set of features is denoted as Rrk+.

the candidate node. The results of reranking using the full set of features designed for the
considered tasks (see Chapter 4) are given as well.

Table 6.4 includes mean average precision results for theperson name disambiguation
task (applying the contextual version, where queries consist of file and term nodes) and
threading, using the relevant corpora. The table includes the evaluation of graph walk
with the baseline set of randomized weightsΘ0 (Gw:Random). It also gives the results of
applying graph walks with the learned set of edge weights (Gw:Learned); reranking of the
graph walk results using the initial edge weightsΘ0, where only path-describing features
are used (RrkGw:R). Results using the full set of reranking features are also included in
the table (in the columns Rrk+

Gw:R and Rrk+Gw:L). Results that were found significantly
different, using a two-sided Wilcoxon test at 95% confidencelevel, are marked with an
asterisk, with respect to the random weights baseline. Results that were found significantly
different than the weight tuning performance are marked with a dagger in the table.

The results show that weight tuning is more effective than reranking in using graph
walk information for the person name disambiguation task. For two of the corpora, weight
tuning gives a significantly better result than the baselinegraph walk, whereas the improve-
ments of the reranking method are not significant. In one casereranking performance is
inferior to the baseline (for theShapirodataset). For the threading task, however, rerank-
ing gives significantly better results for all datasets using path information only, compared
with both the baseline and weight tuning.

There are several reasons for the observed trends. In the threading task, an adjacent
message in a thread is often a reply-to message, where a recipient becomes the sender and
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vice versa, etc. This composite relation is captured by edgebigrams such assent-to→ sent-
from-inverse. The gradient descent, however, does not model multi-stepsdependencies,
and therefore yields smaller improvements for this task. Inthe person name disambigua-
tion task, on the other hand, it appears that name resolutionis based on entity associations
(co-occurrences), and edge sequence specification is less useful in this case. As shown
in the table, however, using a richer set of features in reranking, namely string similarity
measures, allows reranking to eliminate noisy nodes from the ranked list, yielding superior
performance to weight tuning.

In addition, we refer the reader to the results reported earlier for the city name and
person name extraction tasks (Figure 5.2). In the domain of parsed text there are dozens
of different edge types. While weight tuning improved the graph walk performance com-
pared to using uniform weights, reranking gave superior results to weight tuning across all
tasks and corpora in this domain. There may be a couple of mainreasons explaining this
behavior. First, gradient descent is more likely to reach local minima in an environment
that includes a large number of variables (as the error surface becomes even less smooth).
Another reason, which is supported by the subject matter, isthat edge sequences are very
meaningful in determining the relevance of words in a parse structure.

We therefore conclude that reranking, while losing some quantitative data that is con-
sidered by the weight tuning algorithm, leads to preferableresults compared with weight
tuning for various tasks, due to its modeling of global properties of the walk and its capac-
ity for representing additional relevant features.

Path constrained walks vs. weight tuning.

Table 6.5 gives results for applying path constrained walksto the same tasks and datasets.
In the experiments we constructed path trees using the top nodes ranked by graph walks
with uniform weights (denoted as G:Uniform). We applied path constrained walks using
a threshold of 0, i.e., considering all paths. The results ofapplying the path constrained
walks are shown in the Table (PCW). Results that were found to be significantly different
from the graph walks with uniform weights are marked with an asterisk.

Contrasting the constrained graph walk and weight tuning results (G:Learned in Ta-
ble 6.4) reveals similar trends, as observed with reranking. That is, weight tuning gives
preferable results for the person name disambiguation task, whereas for threading, the path
constrained walks yield better results for all datasets. This again supports our claim about
the importance of modeling edge sequence information for tasks such as threading.

Referring to the results in the domain of text representation(Figure 5.2) – also in this
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case, the trends are consistent with our conclusions above:namely, the path constrained
walks give much better performance than weight tuning. Thisagain shows the importance
of modeling edge sequences rather than local information for this domain.

Path constrained walks vs. reranking.

Table 6.5 details the outcome mean average precision of performing path constrained
walks (PCW), as well as reranking the output of the baseline graph walks using uniform
weights. Results for applying reranking using graph walk describing features only (see
above) are denoted as RrkG:U . The performance of reranking using the full set of features
is given in the Rrk∗G:U column.

Overall, the performance of path constrained walks and reranking, using path describ-
ing features only, is comparable. Reranking using string similarity and thesource-count
feature (Rrk∗G:U ), however, gives superior results for the person name disambiguation task.
Indeed, the path constrained walk approach is more restricted and less ‘global’ then rerank-
ing, as it cannot not accommodate external sources of information (such as string similar-
ity in this case) or model properties of the set of paths connecting to a node (such as the
source-countfeature), as opposed to individual paths.

In the language domain, the performance of path constrainedwalks and reranking
(where the reranking featured included both edge sequence features and lexical informa-
tion) was shown to be roughly comparable. In this domain, where graphs are larger, the
path constrained walks also have the utility of improving the graph walk scalability. The
contribution of the path constrained walks to scalability is discussed later in Section 6.3.

6.2.2 Combining Learning Methods

Reranking can be affected by the quality of the input ranked lists in two ways. First,
as reranking is applied to the topK nodes, its recall is limited by the number of correct
answers retrieved by the initial ranker in the topK positions. Secondly, the original node
score assigned by the initial ranker to the output nodes is used as a feature by the reranker.
Therefore, better initial scoring should contribute also to the reranking process. In this
section, we consider the setting where the graph walk rankings are first improved using
learning, and then reranking is applied to the modified ranked lists.

We combined weight tuning and reranking, as follows: graph rankings were generated
using the set of weights as modified by the gradient learner,ΘG; then, reranking was
applied given these output ranked lists. The results are given in Table 6.4. The combined
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approach, where reranking uses graph walk describing features, is denoted by ‘RrkGw:L’.
Results of reranking using the full feature set are given in the column named ‘Rrk+Gw:L.
Results that are significantly better than weight tuning are marked with a dagger.

Similarly, we consider the ‘concatenation’ of path constrained walks and reranking.
Table 6.5 includes the results of the combined approach, where reranking using graph
walk describing features is denoted as ‘RrkPCW’, and reranking using the full feature set
is denoted as ‘Rrk+PCW.

Overall, the performance of the combined approach is betteror comparable to applying
reranking on top of the graph walks using random weights (‘RrkG:R and ‘Rrk+G:R, in Table
6.4) or uniform weights (‘RrkG:U and ‘Rrk+G:U , in Table 6.5). In both sets of experiments,
the combined approach gives the best results for three of thesix datasets. In the case of
weight tuning and reranking combination, the combined approach significantly improves
upon weight tuning for one of the datasets. For the path constrained walks and reranking
combination, the pipeline approach is significantly betterthan the path constrained walks
for the three person name disambiguation datasets.

We conclude that reranking, given ranked lists of sufficientquality and adequate fea-
tures, is relatively insensitive to small perturbations inthe initially ranked lists. However,
significantly improving the initial ranking process, and then reranking the output list, is
likely to boost the final result.

6.2.3 PCW thresholding

In this section we are interested in evaluating the effect ofpath constrained walks thresh-
olding on performance. Table 6.6 shows the performance of the path constrained walks in
terms of mean average precision for the thresholds of 0 (PCW:0), considering all the paths
in the corresponding path tree; 0.5 (PCW:0.5), following paths that lead to a majority of
relevant nodes only; and 0.8 (PCW:0.8), following paths thatlead to a strong majority of
relevant nodes. We note that separate path tree were constructed per each corpus, using
the training and development examples.

According to the results, a threshold of 0.5 is roughly comparable to a threshold of
0 across all datasets. A threshold of 0.8 captured very few tono paths using the person
name disambiguation and threading describing path trees. High probability paths were
included in the two path trees corresponding to the alias task, and a threshold of 0.8 yielded
comparable or somewhat degraded performance for this task.

Figure 6.2 gives the results of applying path constrained walks with varying threshold
to the task of city name extraction, using the MUC corpus, in terms of a precision-recall
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Corpus G:U PCW:0 PCW:0.5 PCW:0.8
Person name disambiguation
M.Game 0.65 0.65 0.74 0.00
Sager 0.67 0.65 0.65 0.00
Shapiro 0.71 0.76 0.79 0.00
Threading
M.Game 0.53 0.65 0.64 0.10
Germany 0.55 0.76 0.73 0.00
Farmer 0.65 0.62 0.63 0.00
Alias finding
Meetings 0.61 0.68 0.66 0.58
Personal 0.72 0.74 0.63 0.63

Table 6.6: A comparison of path constrained walks performance, for different thresholds
(MAP).

curve. The figure gives also the performance of graph walks with uniform weights as
reference. In this domain, the constrained graph walk paradigm dominates the graph walk.
As discussed earlier (Section 5.4.1), the preference embedded in the graph walk paradigm
for nodes that are proximate to the query, is only partially justified in this domain, and
therefore incorporates noise at the top of the lists retrieved. This phenomenon accounts
for the relative success of path constrained walks in this domain, where this approach
directs the graph walk towards longer meaningful paths.

Comparing performance for different thresholds, as depicted in Figure 6.2 shows that
applying higher threshold to the path constrained walk leads to improved performance in
this case. It is also shown that the higher threshold yield lower overall recall, as expected
due to narrowing path coverage.

In general, our conclusion is that eliminating paths associated with low probability of
reaching relevant target nodes from the path tree can often boost performance. The utility
of applying a threshold of a particular value is domain-dependent, and should be tuned as
a system parameter.

6.3 Scalability

In general, the paradigm of Personalized PageRank (and its variants) poses a major scala-
bility challenge. While the PageRank algorithm [102] corresponds to asinglesteady-state
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Figure 6.2: Precison-recall performance for city name extraction from the MUC corpus for
path constrained walks with varying thresholds, and graph walks with uniform weights.

node distribution, which need only be updated infrequently, in Personalized PageRank
different distributions are associated with each possiblequery/preference vectorVq.

There are two distinct approaches for applying the personalized PageRank framework.
The first approach is to compute the personalized views at query time. This requires an
iterative computation over the graph, where response time is linear with respect to the
number of iterations and the number of edges traversed.2 Another approach for imple-
menting Personalized PageRank is an ‘offline’ computation, where personalized views are
pre-processed and stored. Pre-processing of all personal views (queries) possible is in-
feasible due to time and space constraints, as there areO(2n) different queries possible
for graphs withn vertices and the necessary index database size of a fully Personalized
PageRank algorithm isΩ(n2) [48].

A variety of techniques have been discussed in the literature that address the computa-
tional aspects of personalized PageRank. For example, several researchers have suggested
efficient indexing of a reduced set of pre-computed Personalized PageRank vectors, trad-
ing some decrease in precision with significant savings of space and improved response
times. We review these and other relevant methods in Section6.4.

We next give details about our implementation of the graph walk, including empirical
query processing time per our experimental corpora. We willalso discuss the effect of the
path constrained walk on processing time and memory requirements.

2The complexity of online iterative graph walk is O(Ek), where E is the number of graph edges [105].
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6.3.1 Implementation Details and Running Times

Table 6.7 shows the average processing time per query for thetasks of person name disam-
biguation, threading and alias finding, where the walk length varies fromk = 2 to k = 8.
The sizes of the experimental corpora range from 6K to 14K nodes, and from 60K to about
200K edges (see Chapter 4). The results were obtained using a commodity PC with 4GB
of RAM, where graph information has been loaded to memory. In the experiments, we
observed the processing time per query,ti, averaged over the queries in the test set of each
dataset. We obtained five such observations in repeated runs, for which we report the av-
erage:∑5

i=1 ti/5. In addition, we report the corresponding standard deviation (shown in
brackets).

As shown in the table, the average processing times increasewith the number of walk
stepsk, and with the number of graph edges. (For example, longer processing times are
required for the Shapiro corpus compared with the smaller management game corpus).
The cardinality of the query distributionVq affects processing time as well, as the number
of nodes expanded in the graph walk equals the union of nodes visited in a separate graph
walk from every individual query node. Thus, processing times are longer for the two-
node person name disambiguation queries for any givenk, compared with the single-node
threading queries, both using the management game corpus.

The times given in Table 6.7 are satisfying for real-time applications. In particular, we
have shown earlier in this chapter (Section 6.1.1) that short graph walks yield performance
that is preferable or comparable to longer walks in this domain. Short walks of 2 or 3 steps
require an average processing time of a small fraction of a second.

The option of online computation may be less desirable givenlarger graphs when real-
time response is required. Table 6.8 includes the average processing time (and their stan-
dard deviation, in brackets) of graph walks of lengthk = 6 for the city name and person
name extraction tasks, in the column named ‘Graph walks’. (Figure 6.3 gives a graphi-
cal display of the processing times; see the ‘Graph walk’ point set.) We remind the reader
that the each of the queries constructed per these tasks include four graph nodes, compared
with a single query node in threading and two query nodes in the person name disambigua-
tion task. As discussed above, this factor adds to the spreading of the graph walk. The
average processing times are stated in the table per the relatively compact MUC corpus
(which includes about 80K nodes and 245K edges).

To evaluate performance on large graphs, we constructed three intermediate size cor-
pora that include MUC, and a part of the AP corpus: one of these corpora includes a
quarter of the AP corpus (MUC+1/4AP); the second corpus corresponds to about half of
the AP corpus (MUC+1/2AP); and the third corpus includes MUC and about three quar-
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Corpus k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Person name disambiguation
M.Game 0.02 (0.01) 0.15 (0.01) 0.44 (0.03) 0.74 (0.04) 1.03 (0.07) 1.38 (0.05) 1.65(0.13)
Sager 0.08 (0.02) 0.38 (0.01) 0.94 (0.04) 1.52 (0.04) 2.12 (0.06) 2.79 (0.08) 3.29(0.03)
Shapiro 0.11 (0.01) 0.64 (0.01) 1.56 (0.06) 2.42 (0.02) 3.43 (0.10) 4.27 (0.12) 5.22(0.10)
Threading
M.Game 0.03 (0.01) 0.14 (0.00) 0.43 (0.01) 0.77 (0.02) 1.12 (0.03) 1.46 (0.03) 1.94(0.05)
Germany 0.09 (0.01) 0.33 (0.03) 0.97 (0.02) 1.97 (0.06) 2.70 (0.08) 3.56 (0.26) 4.48(0.11)
Farmer 0.08 (0.00) 0.38 (0.01) 1.24 (0.06) 2.32 (0.06) 3.45 (0.08) 4.54 (0.20) 5.52(0.28)
Alias finding
Meetings 0.03 (0.01) 0.08 (0.02) 0.16 (0.01) 0.30 (0.01) 0.46 (0.06) 0.60 (0.07) 0.70(0.01)
Personal 0.02 (0.00) 0.11 (0.02) 0.39 (0.01) 0.99 (0.02) 1.66 (0.05) 2.26 (0.10) 2.85(0.14)

Table 6.7: Average query processing time and standard deviation [secs] per dataset and
different walk lengthk.

ters of the AP corpus. The number of nodes and edges of each corpus are included in Table
6.8.

We limited ourselves to these moderate-sized corpus for reasons of convenience. The
implementation used for the other experiments in this thesis is not optimized for memory
usage; in particular, the memory required to store each edgeis fairly large, including a
string to label the edge type and a string identifier for the destination node. The strings
used as labels are also fairly long (meaningful) labels, which is convenient for debugging
and development, but expensive in memory usage. Two libraries were used for manipulat-
ing this graph, and the memory-based implementation used here stores edges in standard
Java library data structures, which add an additional levelof memory overhead (e.g., Java
stores strings in unicode, not ascii). As a consequence, thememory-based implementation
could not load the entire MUC+AP graph in the available address space of our (32-bit)
machine. While more memory-efficient implementation could certainly be produced - or
alternatively, the experiments could be conducted on a machine with larger address space
- we leave this task as a subject for future work, and for now simply extrapolate the per-
formance of such an implementation from moderate-sized datasets.

While the MUC corpus is larger than the email corpora, and the query distribution
includes more nodes, query processing time is only 0.4 seconds on average for the person
name extraction task and 0.8 seconds on average for the city name extraction task. The
difference in processing times between the two tasks is due to a larger number of city
name occurrences in the corpus. (Most of the person names included in the experimental
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Corpus nodes [K] edges [K] Graph walk PCW:0 PCW:0.5 PCW:0.8
City name extraction
MUC 82 244 0.8 (0.1) 1.8 (0.1) 1.7 (0.1) 0.5 (0.1)
MUC+1/4AP 326 1,077 3.3 (0.5) 10.3 (0.4) 6.7 (0.3) 5.3 (0.4)
MUC+1/2AP 564 1,910 7.8 (0.3) 20.0 (0.7) 13.0 (0.5) 10.3 (0.7)
MUC+3/4AP 785 2,682 11.3 (0.9) - - -
Person name extraction
MUC 82 244 0.4 (0.0) 0.6 (0.1) 0.5 (0.0) 0.2 (0.1)
MUC+1/4AP 326 1,077 0.6 (0.1) 2.5 (0.5) 1.8 (0.2) 1.7 (0.3)
MUC+1/2AP 564 1,910 0.9 (0.1) 4.1 (0.6) 2.2 (0.5) 2.4 (0.1)
MUC+3/4AP 785 2,682 2.0 (0.9) - - -

Table 6.8: Average query processing time and standard deviation [secs] for the named
entity coordinate extraction tasks, using graph walk ofk = 6 steps and path constrained
graph walk with varying thresholds.

datasets correspond to only few mentions in the corpus, suchthat a smaller number of
edges is traversed.)

As shown in Table 6.8 and Figure 6.3, the average query processing times for the
larger corpora get substantially longer, up to 11.3 secondson average per query for the
MUC+3/4AP corpus and the city name extraction task. In general, the implementation
scheme applied in our experiments can be improved by using better machinery as well as
by distributed computing. We therefore expect processing times to be shorter using opti-
mized systems, as well as using algorithms that approximatethe graph walk (see Section
6.4).

Rather than process the graph walk using the machine’s memory, it is also possible to
store the graphs in secondary memory. We used the open-source database package Sleep-
ycat [Sleepycat] to store the user-defined nodes and edges. This allowed us to execute
the graph walk for the large MUC+AP corpus. The cumulative number of nodes visited
at each step of the graph walk for MUC, MUC+1/4AP, MUC+1/2AP and the MUC+AP
corpora are presented in Figure 6.4 (logarithm scale). As shown in the figure, the overall
number of nodes visited increases roughly by a factor of 2, given a double sized corpus.
(The MUC corpus, which is characterized by somewhat different named entity distribu-
tion, can be considered as an outlier.) The figure also shows that the graph walks for the
city name queries spread more in the graph, compared with person name queries.

Next we discuss the effect of the path constrained walks on scalability.
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Figure 6.3: Average query processing time and standard deviation [secs] for the named
entity coordinate extraction tasks, using graph walk ofk = 6 steps and path constrained
graph walk with varying thresholds. (A graphical display ofTable 6.8.)

6.3.2 Impact of Path Constrained Walks on Scalability.

Table 6.8 shows the empirical average query processing times, applying the path con-
strained walk with no threshold (PCW:0); with a threshold of 0.5 (PCW:0.5); and with a
high threshold (PCW:0.8) on these corpora.3 The average processing times required for
the execution of unconstrained graph walk are given in the column named ‘Graph walk’.
Figure 6.3 gives a respective graphical display of these processing times. The reported
results indicate that longer processing times are requiredusing the path constrained walks,
compared with the unconstrained graph walks. As expected, the processing times shorten
as the threshold applied increases.

In Figure 6.5, on the other hand, it is shown that the number ofnodes visited at each
step of the walk starts dropping atk = 4 using the path constrained walks. (In practice,
graph nodes that do not have an outgoing edge associated witha high probability edge in
the path tree are discarded.) Constraining the graph walk to follow a path tree reduces
the number of nodes (and edges) traversed in the walk, for several reasons. First and
foremost, the path trees constructed in our experiments discard cyclic paths. In addition,

3Results of the path constrained walk for the MUC+3/4AP are not reported due to high memory require-
ments, as discussed later in this section.
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Figure 6.4: The cumulative number of nodes visited at each step of the graph walk, for the
city name extraction and person name extraction datasets, for increasingly larger corpora.

the path tree represents the paths that correspond to the topnodes observed in the set of
training examples, thus other arbitrarily possible paths are eliminated. Finally, applying a
threshold on the probabilities associated with the path tree edges above which the graph
walk is terminated, eliminates more (possibly frequent) paths.

While the path constrained walks limit the number of nodes (and edges) that are tra-
versed in the walk, we note that the path constrained walks require the processing of all
combinations of a node and its unique histories (represented as graph node and path tree
node pairs, see Section 3.4). In the experiments reported inTable 6.8 and Figure 6.3,
these added processing requirements overcome the savings due to node pruning in terms
of running time. In addition, maintaining graph and path tree node pairs requires addi-
tional memory in comparison to the unconstrained walk. Therefore, we conclude that path
constrained walks, while contributing to performance, involve in practice an additional
computational cost. However, path constrained walks are expected to save on processing
times in case that the graph is accessed from a secondary memory. In that case, node
pruning can affect the expense involved in disk access.
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Figure 6.5: The cumulative number of nodes visited at each step of the graph walk us-
ing the MUC+AP corpus, for city name extraction and person name extraction, applying
unconstrained graph walk and path constrained walk (PCW) withvarying thresholds.

6.4 Related Work

As mentioned earlier, the paradigm of Personalized PageRankrequires a power iteration
computation given a query, which may correspond to impractical response times. Alter-
natively, a large set of ‘personalized’ distributions can be pre-processed, where computing
and storing distribution vectors for all possible queries (node combinations) is infeasi-
ble. In order to alleviate the scalability problem, one musttherefore either exploit special
features of the web graph or relax the exact problem to an approximate one [133]. This
section reviews the efforts made to address this scalability challenge. The related research
reviewed includes techniques for pre-computing and storing a reduced number of Person-
alized PageRank vectors, sampling of the graph walk, and efficient matrix multiplication
and inversion operations. Our main focus is on algorithms developed in the context of
Personalized PageRank.

Scalable Storage of Personalized PageRank Vectors

Haveliwala [57] suggested the topic biased PageRank model, where his implementation
of the model applied restricted personalization. That is, as part of offline preprocessing,
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a small number (16) of topic-sensitive PageRank vectors weregenerated. At query time,
the similarity of the query to each of the pre-indexed topicswas calculated. The final
node scores were then computed using a linear combination ofthe topic-sensitive vectors,
weighted by the similarity of the query to each topic.

Kamvar et-al [68] later suggested theBlockRankmodel. This model is adapted to the
Web and restricts personalization to hosts. The authors point out that the web link graph
has a nested block structure: most hyperlinks link pages on ahost to other pages on the
same host. They exploit this structure by computing local PageRank scores within each
host, and combining these local PageRank scores based on the importance of each host.
In this work, the Personalized PageRank model is modified suchthat rather than reset the
walk to a biased distribution of webpages, a random surfer isassumed to be choosing
hosts. The personalization vector therefore becomes a distribution over different hosts in
this case.

Jeh and Widom [67] presented thelinearity theorem, which proved to be a funda-
mental tool for scalable personalization. Informally, thelinearity theorem states that the
solution to a linear combination of preference (query) vectorsu1 andu2 is the same linear
combination of the corresponding Personalized PageRank vectors (PPVs)v1 andv2. This
means that if PPVs are available for some preference vectors, then PPVs can be easily
computed for any combination of these vectors. Jeh and Widomtherefore suggested to
encode personalized views as partial vectors. In their work, the set of personalized vectors
was restricted to a set of hub nodesH, selected as those more important for personaliza-
tion. The size ofH can be viewed as the available degree of personalization. Further, to
compute a large number of hub vectors efficiently, the hub vectors are decomposed into
partial vectors and a skeleton, components from which hub vectors can be constructed at
query time. One partial vector is computed for each hub pagep, which encodes the part
of the hub vector unique top. The complement to the partial vectors is the hubs skeleton,
which captures the interrelationships among hub vectors. The authors present dynamic
programming iterative algorithms for computing the partial vectors.

Balmin et-al presented the ObjectRank model [7], which was concerned with apply-
ing personalized PageRank to the setting of retrieval from relational datasets. The authors
have pointed out that in this case it is not recommended to restrict personalization to a set
of hub nodes [67], since any node of the database may be included in a query. Instead, a
Personalized PageRank vector is computed in the ObjectRank model for each word in the
corpus vocabulary. A few monotone score-combining functions for multi-word queries are
suggested by the authors. They also propose a method for reducing Personalized PageR-
ank vectors computation time for ’almost-acyclic’ graphs.Further, to save cache space,
the ObjectRank implementation truncates elements smaller than some threshold from the
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produced vectors.

Sampling of the Graph Walk

Fogaras et-al [48] were interested in their work in achieving full personalization, enabling
online serving of personalization queries for any set of nodes (as opposed to Jeh and
Widom [67], who restricted personalization to a set of hub nodes). They precomputefin-
gerprintsper each of the graph nodes, and store them in a database. Afingerprint pathof
a vertexu is defined as a random walk starting fromu. The authors exploit the graph walk
representation as a geometric distribution (i.e., after each step the walker takes a further
step with probability 1− γ and ends with probabilityγ, see Equation 2.6). Afingerprintof
a nodeu is defined as the ending vertex of a fingerprint path ofu. As a random variable,
the fingerprint ofu has the distribution of the Personalized PageRank vector ofu. The
authors suggest a Monte Carlo algorithm to compute approximate values of personalized
PageRank, where for each nodeu, N independent fingerprints are produced by simulating
N independent random walks starting fromu. The Personalized PageRank vector foru
is approximated with the distribution of the correspondingfingerprints, and indexed in a
dataset. The output ranking is computed at query time from the indexed fingerprints using
the linearity theorem. In order to increase the precision ofthe approximated vectors, the
authors suggest to use the fingerprints generated for the neighbors ofu (somewhat sim-
ilarly to the dynamic programming approach suggested by Jehand Widom [67]). The
authors suggest also sampling finite graph walks. That is, instead of allowing very long
fingerprint paths, they suggest to drop all fingerprints longer than lengthL.

Using sampling trades full personalization with precision. However, the authors show
that a relatively small number of fingerprints allows to distinguish between the high,
medium and low ranked nodes in the fully computed Personalized PageRank scores. (In
particular, experiments conducted on 80 million webpages and N = 1,000 yielded good
performance.) The order of the low ranked nodes is usually not as accurate using sampling.
It is argued that PageRank itself was shown to be unstable around low ranked nodes, in the
sense that a small perturbation of the graph can cause a very low ranked node to move to
the middle of the ranking [83].

Recently, Chakrabarti [23] has suggested an algorithm named HubRank for comput-
ing personalized PageRank scores in entity-relation graphs, where edges are directed and
typed. The algorithm indexes fingerprints (following Fogaras et-al, [48]) for a small frac-
tion of nodes, chosen using query log statistics. Accordingto the proposed approach, only
‘entity’ nodes (where textual information is excluded) arepre-loaded, to form a skeleton of
the graph. Given a keyword query, the query words are instantiated as nodes in the graph,
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which are linked to the entity nodes in which the words appear. A graph walk starting
from the query nodes spreads over a small ‘active sub-graph’, which is bounded by node
distance (or, in our terminology – by the number of walk steps), and otherwise by nodes
for which the personalized PageRank score has been indexed. Once the active subgraph
is set up, scored are propagated from the indexed nodes to other nodes in the subgraph,
using a dynamic programming computation [67]. In this work,elements in the fingerprint
vectors smaller than a threshold are pruned, where experimental results have confirmed
that this operation has minimal effect on accuracy. In summary, this method approximates
the Personalized PageRank vectors due to indexing of selected nodes only, sampling of
the graph walk and pruning the resultant personalized vectors. In addition, computation
is limited to a sub-graph, such that the graph walk is approximated locally. Experimental
results have shown this approach to be preferable to ObjectRank [7] implementation in
terms of pre-processing time, indexing space and online computation time.

Scalable Matrix Operations

The graph walk can be executed using implementations of matrix operations. The area of
accelerating matrix multiplication is well studied, and there are various techniques avail-
able that reduce this opreration complexity and processingtime. We review several rele-
vant examples that pertain to the Personalized PageRank paradigm.

Kamvar et-al [69] suggested the technique ofquadratic extrapolationthat is applied
periodically to enhance the convergence of PageRank using the simple power iteration
method (i.e., iterative matrix multiplication). The authors claim that quadratic extrapola-
tion eliminates the bottleneck for the power method, namelythe second and third eigen-
vector components in every iteration, thus boosting the effectiveness of the simple power
method.

Sun et-al [128] suggest a matrix multiplication approximation for the Personalized
PageRank settings. They utilize the fact that real graphs areorganized in a block-wise
structure (i.e., communities). Using this property of the transition matrix, they propose to
perform random walk with restart (i.e., Personalized PageRank) only on the partition of
the graph that contains the query node; that is, they suggestto output a local estimation
of the Personalized PageRank vector. Tong et-al [133] suggest an enhanced approach,
which allows a global estimation of the Personalized PageRank vectors. They are inter-
ested in evaluating the stationary distribution of the Personalized PageRank graph walk
process. The stationary distribution can be found by solving a linear system problem (this
method is alternative to the power iteration approach), where a matrix inversion operation
is required. Once the inverse matrix is computed and stored,the Personalized PageRank
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vectors for every given query can be efficiently computed in real-time. The matrix in-
version and storing, however, requires quadratic space andcubic pre-computation. The
authors alleviate this scalability problem by consideringthe block-wise structure property
of the graph, as well as linear correlations that often existacross rows and columns of
the adjacency matrix. Specifically, they suggest to partition the adjacency matrix, and
pre-compute and store the inversion of each partition, rather than the full matrix. Given
a low-rank approximation of the cross-partition links, a global evaluation of the Person-
alized PageRank distribution can be obtained. Given a query,only a few matrix-vector
multiplication operations are required. Experimental results show that this approximation
preserves high quality of the computed values, and achieveshigh speed ups in comparison
with the iterative approach. The algorithm results in majorsavings in pre-computation and
storage costs, compared with a straight-forward inversionof the full original matrix.

Finally, Cohen and Lewis [26] have suggested a general algorithm for approximating
large matrix multiplication. They propose a sampling algorithm that identifies high-values
entries of matrix products, without full computation of theproduct. In their method, the
expected values of the scores are equal to the true value thatwould be obtained with
the full computation. The variance of the scores depends on the (relative) value of the
entry, and decreases for high-value entries. That is, theiralgorithm returns exact scores
for the top ranked entries. Simply put, in the suggested algorithm the matrices product
is represented as a graph, where the edge weights of this graph are calculated backwards,
measuring the impact of the multiplication represented by an edge on the end result. The
multiplication graph is then sampled from, where each sample amounts to a random walk
on the graph. According to the authors, this method is particularly effective for dense
matrices. Otherwise, for sparse matrices, where only the top scoring instances are needed
and exact values are not necessary, other methods are available, including: compressing
inverted files, using lower precision arithmetic, ignoringsome parts of inverted lists and
limiting the number of document score accumulators maintained.

6.4.1 Summary

In this chapter, we conducted comparative experiments for different framework parameters
and design choices.

Based on empirical evidence, we find that finite (and relatively short) graph walks are
preferable in some cases to infinite walks, i.e. to the stationary state probabilities. The
graph walk length should be sufficient, however, to reach therelevant nodes in the graph.
The edge weighting schema used also affected the graph walk performance in some cases.
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The comparative evaluation of the various learning methodsgiven in this chapter
showed that global features are useful for some problems. Inparticular, path informa-
tion was shown to be highly informative in the language domain, where local graph walks
and weight tuning assigned high weights to proximate yet irrelevant nodes.

In terms of scalability, we have shown that the path constrained walks approach im-
proves query processing times significantly, where most of the paths followed by the base
(unconstrained) graph walks are effectively pruned duringthe walk. We have also shown
that applying a threshold to the path constrained graph walkschema can improve both
accuracy and scalability.

The processing times, given short walk lengthk and medium-sized corpora, were
shown to be fast and appropriate for online settings. In addition, we have discussed re-
lated research concerned with improving the scalability ofthe Personalized PageRank
paradigm for larger graphs. A majority of the algorithms discussed can be readily imple-
mented within our framework.
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Chapter 7

Conclusion

7.1 The Framework

This thesis presents a general framework for inducing adaptive similarity measures in het-
erogenous data represented as an entity-relation graph (Chapter 2). The framework builds
on existing graph-walk based paradigms that generate measures of structural similarity
between entities in the graph. In particular, the Personalized PageRank paradigm is used
throughout this thesis; yet, other graph walk variants, e.g., lazy graph walks, can be readily
applied. Previously, researchers have applied graph walksusing carefully designed graphs
with the goal of solving specific problems. In contrast, thisthesis claims and shows that
given a general representation of the data that is not engineered for a specific task, multiple
tasks can be defined and performed as queries in this framework using the same underlying
graph.

The graph walk paradigm has many desired properties in computing entity similarity
in graphs and it is shown that finite graph walks give good performance in response to
various queries in many cases. However, if labeled instances of entity relations in the
graph are available, then learning can be applied to furtheradapt the similarity measure
produced by the graph walk to the relation sought. Previously, it has been suggested to
tune parametric edge weights in the graph, such the probability flow in the graph walk
process is biased towards the nodes considered as correct answers to the query. In this
thesis, two additional approaches were proposed: reranking, and path constrained walks
(Chapter 3). Unlike weight tuning, both of these methods can consider global informa-
tion about the graph walk. In reranking, discriminative learning can be applied to reorder
the rankings generated by an initial graph walk using high level features; for example,
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these features can describe the set of paths traversed in reaching a target node from the
query distribution. We proposed generic features that model global properties of the graph
walk, including the sequences of edges traversed. In the path constrained walk approach,
the edge weight parameters are conditioned on the history ofthe walk, and are updated
dynamically based on edge sequence features. The learning methods of weight tuning,
reranking and path constrained walks have different characteristics in terms of scope, ap-
plicability and impact (Sections 3.5 and 6.2.1). In some cases, combining local and global
learning is advantageous (Section 6.2.2).

The scalability of graph walks in general, and PersonalizedPageRank in particular,
has received much attention in recent years, with the goal ofproviding a fast response
to a query (Section 6.4). Most of this research is orthogonalto this thesis and can be
readily incorporated into the framework’s implementation. Interestingly, the empirical
results reported show that conducting short finite graph walks is both computationally
efficient and also provides better accuracy in some cases (Section 6.1.1).

7.2 Case Studies

The thesis presents a case study in the domain of personal information management. It was
shown that multiple tasks in this domain can be addressed uniformly as queries, including
novel problems such as person name disambiguation, meetingattendees recommendation;
as well known tasks such as threading and alias finding (Section 4.2). In most cases,
learning led to improvements in performance. In particular, high level information about
the graph walk was found to be useful, where reranking and thepath constrained walks
methods outperformed the weight tuning approach (Section 4.4).

A second domain studied in the thesis is the processing of a corpus of parsed sentences
represented as a graph (Section 5.1). Applying graph walks to induce a measure of inter-
word similarity gave mediocre results in this case. We foundthat in this domain, the
assumption embedded in the graph walks, that proximate nodes are more relevant, is often
false. In particular, in this domain nodes reached over specific edge sequences were more
relevant than proximate nodes connected over unmeaningfulrelations. While graph walks
are not ideal in such settings, the global learning methods,namely reranking and path
constrained walks, gave excellent results (Section 5.4).

Comparing the framework of adaptive graph walks to state-of-the-art vector-space
methods on the task of coordinate term extraction from parsed text, showed the frame-
work to be preferable for small and medium text corpora (Section 5.4).
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In general, tasks corresponding to “long” queries appearedto be biased in the exper-
iments towards nodes that are highly connected in the graph in the experiments (Section
4.5). This phenomenon is known in the literature, and can be addressed to some extent by
down weighting transitions in the graph towards such nodes (Section 2.4.1).

Overall, the case studies demonstrate that multiple tasks in a given domain can be
successfully processed using this proposed framework. Thetasks included in the thesis
can be theoretically represented within related paradigms, such as statistical relational
learning (Section 2.4.6). However, while statistical relational learning is more general, we
find that the graph-walk based framework allows better scalability and is more suited for
search settings, as of today (Appendix C).

7.3 Future Directions

There are many directions in which the framework presented can be extended; in what
follows, we detail several possible venues of future research.

Framework. The graph walk representation only accommodates binary inter-entity
relations. It is an open question if and how the proposed framework can account for n-ary
relations. As an example, consider a graph representation of the sentences “Mary likes
ice-cream in winter”, “Andy like ice-cream in winter”, “Jamie has ice-cream” and “Jamie
likes tea in winter”. For a query that includes ”Mary”, the graph walk will find Jamie and
Andy to be equally relevant, since the set of the corresponding connecting paths in both
cases is identical. However, the combination of the arguments “likes”, “ice-cream” and
“in winter” is more indicative of similarity to ”Mary” then their appearance in isolation.
In the framework described in the thesis, it may be possible to model n-ary relations as
features in reranking; i.e., in addition to the paths traversed, properties of the values of
the nodes traversed can be considered. The features modeledwill need to be general, or
selected carefully, in order to avoid boosting the corresponding feature space. Another
possible solution is to represent tuples (e.g., the combination of ”ice-cream” ”winter”) as
nodes; this approach will involve an additional computational cost.

In Section 2.3.2, we argued that the graph representation ismodular, where multiple
information sources can be added to the graph. Presumably, adding nodes and edges
provides more evidence for entity similarity in the graph, and thus is expected to have a
positive effect on the similarity measures produced. On theother hand, it is possible that
adding irrelevant or noisy information can degrade performance. An open question is in
what circumstances and due to which factors adding information canhurt performance.

153



Learning. In terms of learning, we would like to modify the path constrained graph
walk approach such that it can consider diverse types of features. The path constrained
walks have been shown to improve performance due to the consideration of path infor-
mation during the graph walk process. However, the featuresembedded in the path con-
strained walk method are limited to modeling information about the edge sequences tra-
versed. It is therefore desired to incorporate richer typesof high level features in the graph
walk process (similarly to reranking); for example, it may be beneficial to consider various
properties of the graph nodes traversed during the walk. A possible approach in this regard
is to train a separate classifier per each of the vertices in the learned path tree. In addition,
in order to account for features that are scarce, smoothing techniques that are adjusted to
the graph settings may be useful.

Further, the learning settings that are assumed in this thesis can be relaxed and allow
additional types of user feedback; that is, rather than consider binary signals about a node
relevancy, relative node preferences or other forms of feedback may be provided. The
learning procedures that are described in this thesis will need to be adjusted accordingly.

Another interesting venue for future work is learning to adapt the structure of the graph
over time. Suppose that ongoing user feedback indicates that a subset of the edge types
in the graph is consistently uninformative. These edges canbe pruned from the graph,
resulting potentially in savings in query processing timesas well as reduced noise levels
in the graph walk process. Similarly, one may be interested in “hard-coding” relationships
between entities in the graph that are known to be closely related (for example, according
to user feedback; or, based on relevant results from anotherdomain). Adding links to
the graph may improve the quality of response to future queries. A policy of modifying
the underlying graph structure should be evaluated with scrutiny, where the graph should
remain general in order to provide good performance given arbitrary queries.

A related question is if and how predictive models that are learned for one task can be
used to leverage performance for other tasks in a given domain. Suppose that a sufficiently
large set of labeled examples is available for one task, but only a few or no examples are
available for another type of relation sought. It is an open question, to what extent the
similarities in the graph are general and can be shared (or,transferred) across different
tasks; for example, the edge weight parameters that are learned in one task may be helpful
for other tasks. Correspondingly, relevant mechanisms for leveraging learning across tasks
are required.

Applications.In terms of applications, while the evaluation of the framework focused
on providing a single ranked list in response to a query, the same querying mechanism can
be used in abootstrappingprocess. In bootstrapping, the results retrieved in response to
queries are used for automatically creating new queries, with the goal of machine-driven
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construction of a knowledge base. In order to avoid divergence in bootstrapping due to
noisy responses, it may be desired to control the ratio between precision and recall of
the responses to a query. The path constrained graph walk method proposed provides a
coarse solution to this issue using its threshold mechanism. In addition, evaluating and
controlling the reliability, or confidence, of the predicted similarity measure can be useful.
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Appendix A

Symbols and Definitions

For the reader’s convenience, following are the symbols used in this thesis and their defi-
nitions.1 Table A.1 includes symbols related to the graph walk framework and Table A.2
lists the symbols that are related to the learning settings and algorithms.

Symbol Definition
G a graph
x,y,z graph nodes
N the number of graph nodes in total
τ(x) the type of entity represented by nodex
` edge (relation) type
L the set of all edge types
θ` parametric weight of edgè
Θ the set of graph edge weight parameters
Lxy the set of edge types from nodex to y
Sx the set of outgoing edge types from nodex
M the transition matrix
Pr(x−→ y) the probability of reaching nodey from nodex over a single time step
γ reset probability
k number of graph walk steps
τout the type of nodes retrieved, as specified in a query
Vq query distribution, as specified in a query
Vk score distribution over graph nodes after a graph walk ofk steps is performed.

Table A.1: Symbols related to the graph walk framework and their definitions.

1These definitions hold throughout the thesis unless stated explicitly otherwise.
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Symbol Definition
ei example queryi
Ri a set of relevant answers corresponding to queryei

l i the output ranked list generated per exampleei

zi j the node located at rankj in list l i
pz the score assigned to nodez in a ranked list
popt

z an optimal score assumed for a target nodez in a ranked list
errz the error for a target nodez in a ranked list
Uz(t +1) the set of graph nodes that are traversed at stept +1, in route to target nodezat stepk
η learning rate of gradient descent
fk reranking featurek
fk(z) the value of featurefk per nodez
αk a real-value weight associated with featurek in a reranking function
ᾱ the set of feature weights in a reranking function
F(z, ᾱ) the value of the ranking function for nodez

Q(x
=d−→ z) the probability of stopping atz in graph walk originating fromX of lengthd

Fd(z) a partial ranking function for nodez, computed up to graph walk stepd
T path-tree
ti a node in path treeT
p edge sequence
C+

p the count ofp within the paths leading to correct nodes considered byT
C−

p the count ofp within the paths leading to nodes assumed to be incorrect,
considered byT

Pr(p) an estimate of the probability of reaching a correct node followingp

Table A.2: Symbols related to learning and their definitions.
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Appendix B

Evaluation Metrics

The graph walk search framework, as well as the baseline methods that we compare it to,
all generate a ranked list of entities. As in traditional document retrieval settings, every
query is mapped to a set of relevant “correct” answers. In this thesis we use the following
evaluation metrics:

Mean Average Precision (MAP).Consider a ranked list that hasn correct entries at
ranksk1, . . . ,kn, and assume that the end user will scan down the list of answers and stop
at some particular “target answer”ki that he or she finds to be of interest. One would
like the density of correct answers up to rankki to be high: to formalize this, define the
precision at rank k, prec(k), to be the number of correct entries up to rankk, divided by
k—i.e., the precision of the list up to rankk1. Thenon-interpolated average precisionof
the ranking is simply the average ofprec(k) for each positionki that holds a correct entry:

AveragePrecision=
1
n

n

∑
i=1

prec(ki)

As an example, consider a ranked list of items, where the items at ranks 1,2,5 are correct
and those at ranks 3,4 are not. The precision at ranks 1 and 2 equals 1.0, and the precision
at the next correct item is 0.6 (since there are 3 correct answers before rank 5). The non-
interpolated average precision on this ranked list is thus(1+1+0.6)/3= 0.87. The Mean
Average Precision (MAP) is the average of the non-interpolated average precision scores,
over multiple rankings (queries).

In our ranking systems, it may happen that some correct answers do not appear in
the ranked list (i.e., they are assigned zero probability).In this case, we follow standard

1 In case that the ranking results include blocks of items withthe same score, a node’s rank is counted as
the average rank of the “block”.
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practice and defineprec(ki) for that answer to be zero. (Continuing our example, if there
were a fourth answer that did not appear anywhere on the list,then the average precision
would be(1+ 1+ 0.6+ 0)/4 = 0.65.) If there are no correct answers for a problem, we
define the average precision of any ranking to be 1.0.

Elsewhere, it has been noted thatprec(ki) can be viewed as a ratiomi,actual/mi,opt,
wheremi,opt is the number of entries the user must examine to find thei-th correct entry
in an optimal ranked list, andmi,actual is the analogous number for the actual ranked list
[143]. Thus, non-interpolated average precision can also be interpreted as a measure of the
additional work imposed on the user by a suboptimal ranking—e.g., an average precision
of 0.5 means that the user must examine twice as many list entries as needed, on average.

Mean Reciprocal Rank (MRR).Reciprocal rank is the reciprocal of the rank of the first
relevant answer for each query. Thus, the MRR for the example given above is 1. The
mean reciprocal rank is the average of the reciprocal ranks for all queries in the evaluation
set. Note that if all queries have a single correct answer, MRRand MAP are equal.

Accuracy. This measure denotes the percentage of queries for which thetop item in
the ranked list contains a relevant answer.

11-point interpolated precision-recall curve.The interpolated precision at a certain
recall levelr is defined as the highest precision found for any recall levelr ′ ≥ r:

pinter(r) = max
r ′≥r

p(r ′)

The 11-point curve shows the interpolated precision measured at 11 recall levels (0,0.1,
...,1.0), where it is averaged over the set of evaluated queries. While the MAP measure is
a single score (which is biased towards performance at the top ranks of the retrieved lists),
a precision-recall curve gives a detailed and graphical view of performance.
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Appendix C

Markov Logic Networks: Empirical
Comparison

An overview of the Markov Logic Networks (MLNs) paradigm is given in Section 2.4.6.
In this appendix, we describe the results of applying Markovlogic to the task of email
threading.

We use the open-source Alchemy system [78] to conduct the experiments. Table C.1
includes an MLN model designed for the threading problem. The first part of the model
details the predicates that are used in the email domain, corresponding to the graph schema
described in Table 4.1 (where the relations involving meetings are excluded). The instan-
tiated predicates encode the structure of the graph, and aredetailed as evidence predicates
in a separate data file. For example, an edge of typesent-tofrom message m2 to person p1
is represented by the evidence predicate: sent-to (m2,p1). Predicates that are not explicitly
instantiated as evidence will be assumed to be false.

Our model of the threading problem involves to a single classpredicate rule: thread(m1,m2).
In the description of the training data, the labeled thread predicates are provided. Given the
test portion of the data, the likelihood of the thread predicated being true will be evaluated.

The last part of the model shown in Table C.1 includes the rulesthat connect the
evidence (attribute) predicates with the class predicate.For example, consider the rule
∀x∀y has-term(x,z)∧ has-term(y,z) ⇒ thread(x,y).) This rule is denoted in the Markov
logic model as: ‘hasTerm (m1, t1) ∧ hasTerm (m2, t1) ⇒ thread (m1, m2). The rules applied
have been designed manually, based on the models learned by the learning methods in our
framework. Automatic learning of a model given examples is supported in Alchemy;
however, we have not evaluated this approach.
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Predicates:

has-subject-term (msg, term)
has-term (msg, term)
sent-to-email (msg, email-address)
sent-from-email (msg, email-address)
sent-to (msg, person)
sent-from (msg, person)
alias (person, email-address)
as-term (person, term)
sent-on-date (msg, date)
thread (msg, msg)

A single predicate rule:

! thread (m1, m2)

Rules connecting attribute match predicates to class match predicates:

hasTerm (m1, t1) ∧ hasTerm (m2, t1) ⇒ thread (m1, m2)
hasSubjectTerm (m1, t1) ∧ hasSubjectTerm (m2, t1) ⇒ thread (m1, m2)
sentFromEmail (m1, e1) ∧ sentToEmail (m2, e1) ⇒ thread (m1, m2)
sentFromEmail (m1, e1) ∧ sentFromEmail (m2, e1) ⇒ thread (m1, m2)
sentToEmail (m1, e1) ∧ sentFromEmail (m2, e1) ⇒ thread (m1, m2)
sentToEmail (m1, e1) ∧ sentToEmail (m2,e1) ⇒ thread (m1, m2)
sentFrom (m1, p1) ∧ sentTo (m2, p1) ⇒ thread (m1, m2)
sentTo (m1, p1) ∧ sentTo (m2, p1) ⇒ thread (m1, m2)
sentOnDate (m1, d1) ∧ sentOnDate (m2, d1) ⇒ thread (m1, m2)

Table C.1: A Markov Logic Network suggested that models the message threading prob-
lem.
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Experiments were conducted using the management game emailcorpus (where reply
lines have been discarded). First, rule weights were learned. Then, in the inference step,
real-value scores were assigned to all of the class predicate pairs, designating the confi-
dence of the model in each predicate being true. A a ranked list was constructed based on
these scores for every query in the test set.

The yielded test set result for this corpus was 0.69 in mean average precision. In
comparison, graph walks using uniform weights gave MAP of 0.53; graph walks using the
learned set of edge weights resulted in MAP of 0.59; and, bothreranking and the path con-
strained walks resulted in MAP of 0.73 (as detailed in Table 4.7). Since information about
relevant rules was manually predefined in the MLN schema, andlearning was applied to
tune the weights of these rules, the results produced using MLNs should be compared
against the latter learning approaches. Overall, performance is comparable between the
two paradigms for this task and corpus.

Learning the rules weights required about 5 minutes in Alchemy, using a commodity
PC. We applied the lazy SAT algorithm for inference. Inference over all message pairs in
the corpus (corresponding to a total of 8172 predicates, as there are 817 distinct messages
in the management game corpus) required about 5 hours and 30 minutes overall. This
corresponds to about 0.03 seconds per individual query, with the graph walk process. The
query response times for the threading queries using the management game corpus using
our framework were similar (see Table 6.7).

In another set of experiments, we were not able to apply learning in Alchemy to the
threading model using the larger Enron corpora (see Table??) because of memory con-
straints in the phase of network grounding.

Based on this limited set of experiments, we find that the graph-based framework
demonstrates higher scalability on the evaluated corpora.

As discussed earlier, an advantage of the graph-walk framework is that while learning
improves results for pre-defined tasks, the framework can generate results also for ad-hoc
queries, applying graph walks with no learning. The Markov logic networks paradigm
on the other hand requires rule learning (or expert knowledge) as a pre-requisite, since
different network structures are defined per task (i.e., forevery model); in the graph-walk
framework, a fixed graph is used for multiple tasks.

Overall, we believe that the proposed framework is more appropriate in search set-
tings, where arbitrary queries are possible. Our experiments suggest that the graph walk
framework is more scalable as it can handle larger corpora.
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