Adaptive Graph Walk Based Similarity
Measures in Entity-Relation Graphs

Einat Minkov

CMU-LTI-09-004
December 2008

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
William W. Cohen, Chair
Tom Mitchell
Christos Faloutsos
Raymond J. Mooney, University of Texas at Austin

Submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy.

Copyright(©) 2008 Einat Minkov

Abstract

Relational or semi-structured data is naturally represkoyea graph schema,
where nodes denote entities and directed typed edges eepitbe relations
between them. Such graphs are heterogeneous in the sengethdescribe
different types of objects and multiple types of links. Frample, email data
can be described in a graph that includes messages, petdstes,and other
objects; in this graph, a message may be associated wittsarpetth differ-
ent relations, such as "sent-to”, "sent-from” and so onhkpast, researchers
have suggested to apply random graph walks in order to elimeasure of
similarity between entities that are not directly connddtea graph. In this
thesis, we suggest a general framework, in which differeoitrary queries
(for instance, "what persons are most related to this emedsage?”) are ad-
dressed using random walks. Naturally, there are many wyjgseries possi-
ble that correspond to various flavors of inter-entity samil/; several learn-
ing techniques are therefore suggested and evaluateditijzttthe graph-walk
based search to a query type.

The framework is applied in the thesis to two different damsaiThe first
domain is personal information management, where it is shiogw seem-
ingly different tasks like alias finding, intelligent megsathreading and per-
son name disambiguation, can be addressed uniformly ashsgaeries using
the adaptive graph-walk based similarity measure. Thensedomain eval-
uated is the processing of parsed text, where a graph repsesarpora of
structured parsed text, and adaptive graph walks are apjglienduce inter-
word similarity measures for tasks such as coordinate tetracion.

Finally, design and scalability considerations are diseds

Acknowledgments

This thesis concludes a period of five years that | spent aadugte student at CMU. At
this point, | can only hope that my future holds as interggtohallenging and fun expe-
riences as those that | had during these years. | got to mewst imi@resting people, both
inside and outside the classroom, had the opportunity emdtmany inspiring lectures
and talks, traveled around the globe to participate in gemiges, and got used to small
robots running around in the corridors. It is true that alaiiidp these perks came a heavy
workload; however, luckily, doing things that one loves igraat motivation. At CMU
I've seen many people who are enthusiastic and creativet fifveiuresearch.

First and foremost in the list of people that | should thankmfiaking these years great
is my advisor, William Cohen. | am grateful to him for allowinge both the freedom and
responsibility to follow directions that | liked, for letty me make mistakes and nudging
me back on track when necessary. There is so much that caarbedefrom William, and
| hope that | was able to acquire some fraction of it duringéhgears. In addition to that,
William is a very kind and supportive advisor, and that urlstedly made a difference.
Last but not least, the annual barbeques hosted by WilliasinSusan were a lot of fun,
and are to be remembered!

This thesis has been improved based on detailed feedbaunkfiedistinguished com-
mittee members: Tom Mitchell, Christos Faloutsos and Ray Mgohwish to thank them
for their reviews, and for keeping their door open for anydssion.

During the graduate studies, | spent a very interesting semamnMicrosoft Research
in beautiful Seattle. My mentors at MSR, Kristina Toutanomd &isami Suzuki, made it
an engaging and productive experience. Other collab@atw friends from whom | got
good advice and ideas are Anthony Tomasic, HangHang TongjrKeollins-Thompson,
Oren Kurland, Benjamin Van Durme, Elchanan Mossel, Noah ISamtd Andrew Ng.

As can be expected, my experience of CMU is made up of the pecgitared it
with, who have mostly already spread in many directions. kENoWv CMU-ers, from
first year to last, are Richard Wang, Vitor Carvalho and Yiferakly, with whom | shared

offices, travels, as well as some important life events. Halberstam, Anat Talmy, Oren
Dobzinski, Katharina Probst, Guy Lebanon, Arye Kontorbvamd Guy Zinman are dear
friends; | am happy to have spent a chunk of life in Pittsbuxagether with them, and
look forward to crossing paths in the future. Ricardo Silva imemorable friend, and |
wish him best of luck in his continued quest of latent varsbl

My partner and friend, Avshalom, gave me his unlimited supjpoanything and any-
time, including in the period of thesis writing.

This thesis is dedicated to my late mother Tzila, who hestallied Computer Science
when it was even less popular for women to do so, and who ramgsit believe that | was
special and capable. It is also dedicated with love to myefatteonid, who made sure
to be very involved and supportive in every aspect in the smof these years, and to my
dear sister Ortal.

Vi

Contents

1 Introduction
1.1 Contextual Search and Disambiguation. 3

1.2 Leamning o 4

1.3 CaseStudies. e 5

1.4 Implementation Considerations 6

1.5 Summary of Thesis Contributions 7

2 Framework 9

2.1 Definitionsand Notation 9
211 TheGraph e 10
2.1.2 Graph-based Similarity and Query Language 11
2.1.3 TasksandFeedback 11

22 GraphWalks 13
2.2.1 PersonalizedPageRank 13
2.2.2 Parameterized Edge Weights 16
2.23 GraphWalkVariants 17
2.2.4 GraphWalk Properties 18

2.3 Applicability 20
2.3.1 Structured and Semi-structured dataasa Graph 22
2.3.2 Types of Motivating Applications 24

24 RelatedResearch 26

2.4.1 Similarity Measures in Graph Theory 26

2.4.2 Graph-walk based similarity measures 28
2.4.3 Similarity in RelationalData 13
2.4.4 Learning Using RandomWalks 33
2.45 Spreading Activation L 34
2.4.6 Statistical RelationalLearning 36
25 Summary ... e e e e 40
Learning 43
3.1 LearningSettings 44
3.2 Edge Weight Tuning: Error BackPropagation 46
33 Reranking 48
3.3.1 RerankingOverview 49
3.3.2 General Graph-based Reranking Features 50
3.3.3 Feature computation 53
3.4 Path-Constrained GraphWalks 54
3.4.1 Path-Tree Construction 55
3.4.2 A Path-tracking Graph-walk 58
3.5 Method Comparison 59
3.6 RelatedWork 62
3.6.1 LearningRandomWalks 62
3.6.2 EdgeWeightTuning 63
3.6.3 Graph Walks using Global Information 64
3.7 SumMMary e e e 66
Case Study: Personal Information Management (PIM) 67
4.1 Email and Meetings Graph Representation 68
4.2 PIMTasksasQueries i i e 70
4.3 Experimental Corpora. 74

4.4 ExperimentsandResults 0 L.
4.4.1 Person Name Disambiguation
442 Threading

4.4.3 Meeting Attendees Prediction 5 8

444 AliasFinding
45 EffectofQuerylength
4.5.1 Predicting Person-Activity Future Involvement 92

4.5.2 Message Folderingand Tracking 6 9

453 DISCUSSION o e
46 RelatedWork
A7 SUMMANY . . . o o e e e e e e e e e e e e e

Case Study: Applications of Parsed Text 107

51 ParsedTextasaGraph
5.2 TextProcessing TasksasQueries 109

5.3 ExperimentalCorpora. 111

5.4 ExperimentsandResults, 211

5.4.1 Coordinate Term Extraction
5.4.2 General Word Similarity
55 RelatedWork
56 Summary e e

Design and Scalability Considerations 125

6.1 Graphwalk parameters 512

6.1.1 WalkLength
6.1.2 ResetProbability
6.1.3 Graphwalkvariants
6.2 Learning e
6.2.1 Localvs. GlobalLearning

iX

6.2.2 Combining Learning Methods
6.2.3 PCW thresholding
6.3 Scalability

6.3.1 Implementation Details and Running Times

6.3.2 Impact of Path Constrained Walks on Scalability.
6.4 Related Work

6.4.1 Summary

7 Conclusion
7.1 The Framework
7.2 Case Studies
7.3 Future Directions

A Symbols and Definitions
B Evaluation Metrics
C Markov Logic Networks: Empirical Comparison

Bibliography

161

165

List of Figures

2.1 A simple example of the considered graph scheme 10
2.2 Example graphs (left) and their corresponding grapkmes (right). . . . 21

2.3 A ground Markov network obtained for two formulas of a2 and two
constants L e e 38

3.1 A dataset, generated using initial rankings per labelaimples for the
task of alias finding. In this task, the queries includem nodes, and
nodes retrieved are of tygamail-address Relevant answers for quegey

(marked by a checkmark) are the nodes specifidg.in. 45
3.2 An example sub-graph, showing the connecting pathsdeetwthe nodes

M, Mpandmg. 51
3.3 An example path-tree: path counts (top) and verticeghitities (bottom). 56
3.4 Pseudo-code for path-constrained graphwalk 58
4.1 A joint graph representation of email and meetingsdata 68

4.2 Person name disambiguation test results: Recall at fh&Gaanks, for
baseline and plain graph walk, where the query includeswadety (Gw:Uniform(T)),
or term and file (denoted as Gw:Uniform(T+F)) (left); and &irmethods

using contextual queries (T+F) (right). 78
4.3 Meeting attendee prediction results: 11-point Prenisecall curve. . . . 87
4.4 Person to email-address mapping: Precision-recalecur 91
5.1 Ajoint graph of dependency structures 109

5.2 Test results: Precision at the top 100 ranks, for ther@iye extraction
task (top) and person name extraction task (bottom).. 117

Xi

6.1

6.2

6.3

6.4

6.5

Precision-recall curves varying the walk lengtlor city name extraction
(top) and person name extraction (bottom). The left graplbsgvghe full
curves, and the right graphs focus on the top of the lists {dmrecall
0.2). These results were all generated using the MUC corpus.

Precison-recall performance for city name extractromfthe MUC cor-
pus for path constrained walks with varying thresholds, giragbh walks
with uniformweights.

Average query processing time and standard deviatms]$or the named
entity coordinate extraction tasks, using graph walk ef6 steps and path
constrained graph walk with varying thresholds. (A graphdisplay of

Table6.8.)

The cumulative number of nodes visited at each step oftdyeh walk,
for the city name extraction and person name extractionsdtafor in-

126

creasingly largercorpora. o 431

The cumulative number of nodes visited at each step ofjthph walk
using the MUC+AP corpus, for city name extraction and persamen
extraction, applying unconstrained graph walk and pattsitamed walk

(PCW) with varying thresholds.

Xii

List of Tables

2.1

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

Basic measures of node similarity in graphtheory 27

Feature representation of nodesandmg, given that the query node is
my, the graph is as described in Figure 3.2 and walk lekgt®. 52

An algorithm for computinyk(z) andF(z) concurrently, given transition
probabilitiesPr(xi —yj). oo 54

Email and meetings node and relation types. (Inverse ggps are de-

noted by asuperscript.) e 69
Query realizations of the consideredtasks 71
Person disambiguation corpora and dataset details. 76
Example person name type distribution per dataset. 77

Person name disambiguation results: MAP and accuralg. cblumns
denoted as “T” give results for queries including the refdtarm node,

and the “T+F” columns refer to queries that include btghm and file
information; thex sign denotes results that are statistically significantly
better (in MAP) than the baseline (String sim.), and thesign marks
results that are significantly better than graph walk usmfpum weights

(Gw: Uniform). e 79

Threading corpora and dataset details. 82

Xiii

4.7 Threading Results: MAP and accuracy. Fheign denotes results that
are significantly better (in MAP) than the TF-IDF baselinedahe +
sign denotes results that are significantly better thanhgveglks using
uniform weights (Gw:Uniform). Four configurations are undéd, where
email components are gradually removed (as detailed in ¢aeldr by
the checkmarks), and the best result for each configurasionarked in

boldface. 83
4.8 Meeting attendee prediction corpus and dataset details. 86
4.9 Meeting attendees findingresults 87
4.10 Alias finding corpus and datasetdetails. 89
4.11 AliasFindingResults 09
4.12 Activity-person prediction corpora and datasettetai. 93
4.13 Person-activity prediction results: Recallatrank20... 94
4.14 Message foldering and tracking: corpora and datasaisle 96
4.15 Message foldering results: MAP 97
4.16 Message trackingresults: MAP 98
51 Corpusstatistics e 111
5.2 Word synonym pairs: train and testexamples 120
5.3 General word synonyms extraction results: MAP 121

6.1 Results (MAP) of applying graph walks using uniform edggghts, vary-
ing the graph walk length parametefy=0.5). 127

6.2 Results (MAP) of applying graph walks using uniform edgsghts, vary-
ing thereset probability. 129

6.3 Results (MAP) of applying a lazy graph walk variant (LGwaihd a dif-
ferent scheme for assigning the random transitions in thgrglun, in
SUPEISCIIPL). o o e e e e e 130

6.4 Performance comparison (MAP) of graph walks with randeeights
(Gw:Random), weight tuning (Gw:Learned), reranking usidgessequence
features (Rrkwr) and the combination of weight tuning and reranking
(RrkgwL). Reranking using the full set of features is denoted as Rrk. 132

Xiv

6.5 Performance comparison (MAP) of graph walks with umfawveights
(Gw:Uniform), path constrained walk (PCW), reranking usinye se-
guence features (Rgi.u) and the combination of path constrained walks
and reranking (Rr&w.). Reranking using the full set of features is de-

notedasRrk.. 133
6.6 A comparison of path constrained walks performance]ifterent thresh-

olds (MAP). e e 137
6.7 Average query processing time and standard deviaters[per dataset

and differentwalk lengthk. o Lo 140

6.8 Average query processing time and standard deviatms]$or the named
entity coordinate extraction tasks, using graph walk ef6 steps and path

constrained graph walk with varying thresholds. 141
A.1 Symbols related to the graph walk framework and theimitens. 157
A.2 Symbols related to learning and their definitions. 158

C.1 A Markov Logic Network suggested that models the messagading
problem. e 162

XV

XVi

Chapter 1

Introduction

Many tasks of text processing and information retrieval @By be performed by clever
application of textual similarity metrics: in addition tbe canonical problem add hoc
retrieval, which is often formulated as the task of findingulments “similar to” a query,
textual similarity plays a prominent role in the literatdioe diverse tasks such as text cat-
egorization [141], data integration [27], summarizati®h§] and document segmentation
[60].

In modern settings, however, documents are usually natswlobjects: instead, they
are frequently connected to other objects, via hyperlinleta-data or relational structure.
A few natural examples are XML documents [56], the Semaned {8]; or email, where
an email message is connected via header information to ethails and also to the
recipient’s social network [95].

The famous algorithms of PageRank [102] and HITS [75] werevative in consider-
ing structural hyperlinks as a measure of document sirtylast document relatedness. In
their view, the Web is a network of entities (documents) amed by directed edges (the
physical hyperlinks). In particular, the PageRank modeivedl randomness in a surfer’s
behavior, such that every document is reachable along these®f a search, either via
following a link or by ‘jumping’ to another page. An infiniteundom walk in this model
then leads to a steady state, where probability distribubier nodes gives a measure of
document centrality.

As PageRank and its variants study measures of centralityngtwaork, these algo-
rithms discard by definition the initial distribution of tlggaph walk. An alternative line
of research in this respect, which has also been used in Hprémading activationAs in
the case of linked webpages, spreading activation is applieentity-relation networks.

The edges linking the entities may be highly diverse — modedi semantic taxonomy, for
example. The mechanism of spreading activation includsigi@isg activation levels to
nodes. Initially, the nodes associated with a given queeyaativated. Activation then
propagates to adjacent nodes, where the output to the quenygles those nodes that are
active after a predefined number of propagation steps. Thleofithe spreading activation
framework as it emerged in IR was to enrich a query with relancepts. Unfortunately,
in order to control activation flow effectively, activatipnopagation required careful man-
ual design, where activation thresholds, constraints pedins and other constraints on
activation flow had to be pre-set.

The focus of this thesis is a frameworkfafite graph walkover entity-relation struc-
tures. Nodes in the underlying graph are typed, and thetdilexdges are labeled with the
relevant relations. Similarly to PageRank, we are inteteistperforming a random graph
walk over this entity-relations network. However, as inegaling activation, we are in-
terested in defining an extended measure of similarity betwiee objects in the network.
We therefore adopt the paradigmdrsonalized PageRaik02, 57], where we conduct
finite graph walks. In Personalized PageRank, rather thatihéesurfer reset the graph
walk randomly in the graph, the reset distribution is biased distribution of interest. If
the reset distribution includes the starting points of tladkwthen the probability of reach-
ing nodes in the graph decays exponentially with their distafrom the starting points.
Thus, rather than modeling “centrality” of nodes, this tgb@ graph walk can be viewed
as propagating “similarity” from a start node through edigetbe graph—incidentally ac-
cumulating evidence of similarity over multiple connegtipaths. The resulting similarity
metric can be viewed astaol for performing searclacross the nodes in the graph.

While graph walks extract nodes in the network that are smiilavirtue of their
connectivity to the start nodes, the notion of similaritpften task dependent. Assigning
generic weights to every edge type in the graph can be usemhtootthe probability flow
in the graph. In this thesis we study several approachesataoifey to better rank graph
nodes for a given labeled examples: tuning the graph edgghteeire-ranking the list of
nodes output by the graph walk, using features that destglodal properties of the paths
traversed to reach these nodes; and a path constrainedwadiplariant, in which high-
level information about the usefulness of the paths trakrs used to guide the graph
walk process.

Previously, Personalized PageRank graph walks over graplesheen used for esti-
mating word dependency distributions [136]: in this cake,draph was one constructed
especially for this task, and the edges in the graph repregelifferent flavors of word-to-
word similarity. Other researchers have used graph wal&sgnaphs for query expansion
[140, 33] and other applications. In contrast with past oIk this thesis we are inter-

ested in a general graph representation of a given domainclaia that if the graph is
not especially engineered for a specific application, themous types of queries can be
performed using the same underlying graph. We expect randalis to generate use-
ful similarity measures given arbitrary queries, and agpbrning to further adjust the
graph-walk based similarity measure per task.

In the following, we describe the main components of thisihéSections 1.1-1.4),
and outline it main contributions (Section 1.5).

1.1 Contextual Search and Disambiguation

Compared with ad-hoc traditional IR, the suggested frameWwaskthe advantage of repre-
senting various objects types. In contrast, common IR imdemethods, like the TF-IDF
vector model, are strictly textual. Thus, depending oniappbn designimplicit context
may be easily incorporated in the graph walk search. For plgnm email data, terms are
linked to the message file in which they appear; if a useratas a query while browsing
an incoming message, then the node that represents thdtreassage can be added to
the initial distribution of the graph walk.

Why is such context-enriched (aka, contextual) search lis#fa motivation for using
context is two-fold. First, expanding a set of items withatetl information potentially
increases the recall of a retrieval system. Second, incatipg context also assists in
identifying the search results that are most relevant tajthery settings, thus improving
accuracy. For example, we have shown that graph walks aetig# for tasks that involve
entity disambiguation [95]. Consider a term that is knownealpersonal name mention,
like “Andrew”. We have shown that the graph-walk based fraomk is successful in
mapping name mentions to the correspondiegsonnodes in a graph, by virtue of co-
occurrence. However, name mentions in free text are oftdmcamus; e.g., “Andrew”
may refer to multiple persons that are included in one’s eoadlection, such as “Andrew
Ng”, “Andrew McCallum” etc. In such ambiguous cases, startine graph walk from
both the term and the email file in which this term appearedavgs the rankings of the
relevant persons in the output distribution, due to theada®twork context provided by
file node.

Another important advantage of the graph walk paradigmas while traditional IR
considers direct links between terms and files, a graph wadk multiple steps allows to
reach items that are only indirectly linked to the query,, M& a longer chain of depen-
dencies (considering the similarity of similar objectshisresults in improved recall.

3

Finally, the representation of data as a graph of linkediestis relatively compact,
and it allows using different contexts per demand efficientl

The formulation of the suggested framework and a discussfdts properties are
included in Chapter 2.

1.2 Learning

The described graph framework can be used for many typesesfegy and it is unlikely
that a single set of edge weights will be optimal. This sutgyhge goal of learning edge
weights for a particular class of queries. Several reseasdiave suggested schemes for
adjusting the set of edge weights using hill-climbing meth¢39, 100, 4]. This group
of methods can be adjusted from infinite to finite graph waM& have adapted an er-
ror backpropagation gradient descent algorithm [39] foirtg the graph weights in our
framework.

A different approach that we suggest in this thesis learme-twrder an initial ranking,
using features describing the edges in the traversed giapis.pThis method parameter-
izes the graph walk with a set of representative featurasitars loses some information;
however, unlike the graph walk and weight tuning, which caty @onsider local edge
information, the features modeled can capture high-lenaggrties of the graph walk. For
example, features can describe edge label n-grams, thaeisequences of edge labels
that construct the set of connecting paths to the target.nddether feature suggested
is source-countindicating the number of source nodes which have conrggiaths to a
candidate node in the output list. This feature models tlsaraption that output nodes
that were reached from multiple source nodes in the grapk ar@ more relevant than
those reached from a smaller subset of the start distritutio

As mentioned, a main difference between the weight tunirdythe re-ranking ap-
proaches is that adjusting the graph parameters is basddaai information only, while
a reranker can use features derived from the full paths. Mewyéor practical reasons,
reranking processes only the top nodes retrieved in amliyitianked list, and its perfor-
mance is affected by the quality of the initial ranker. ithetefore desired to incorporate
high-level information already in the graph walk process $AMggest a path constrained
graph walks variant, in which the graph walk process is giiibg high-level informa-
tion about path relevancy. In this approach, the edge weighthe graph are estimated
dynamically, given the history of the walk.

The learning settings and methods are described in det@hapter 3.

4

1.3 Case Studies

The proposed framework is general whereas it is applicablarious domains. We inves-
tigate two different domains in this thesis.

One domain studied is Personal Information Management \RN@ show that email
data, as well as meeting entries and other objects from geesonal information orga-
nizer, can be represented as a joint graph, including estitke persons dates email-
addressesgtc. We find that unlike other methods, a graph walk over taigsark naturally
integrates relevant textual and non-textual objects —i#)at combines text, recipient
information and a timeline. We show that many useful emaitl meeting-related appli-
cations can be phrased as search queries in the suggestesivisek. For example, we
evaluate the tasks gferson name disambiguatipthreading finding meeting attendees
andfinding email aliasesAt least for some tasks, labeled data can be acquired atitoma
cally, facilitating the optimization of system performanda learning. We have evaluated
each task individually, comparing it to viable baselinelse Tonducted experiments, using
multiple corpora (including the public Enron corpus) shdwattthe proposed framework
performs favorably to other methods. Beyond the “hard” penfitnce measures consid-
ered, we believe that the search framework in which rankaadlteare presented to the user
is adequate for the purpose of personal information managenin particular, a human
user who is reasonably familiar with the data can quicklydak the relevance of the re-
turned items in the list, scanning it top-down. It would be tiser’s decision then at which
rank in the list to stop, depending on his personal preferagieen the precision-recall
trade-off.

Chapter 4 provides an overview of personal information regméation as a graph, and
the related tasks. In addition to the above-mentioned tagkalso define a set of activity-
centered tasks, where the query consists fdlder that represents a user activity. The
empirical evaluation of all tasks includes the graph watkeambination with the various
learning methods, comparing them against relevant baselin

A second domain that we apply our framework to is processingacsed text. We
suggest representing word mentions as nodes, and the sy staccture that binds these
words as labeled edges denoting inter-word relations. itiqodar, we consider depen-
dency parse structures. A representation schema is seggbsit unifies individual de-
pendency structures derived per sentence from a large £¢gpuseveral corpora) in a
single graph. We apply graph walks and learning to adapt tandrd textual similarity
measure that considers the immediate relations betweeatswsiwell as long-distance de-
pendencies. Given a sufficiently large graph, an examplicapipn is to search for items
similar to a word or a concept of interest. In particular, \Wwews that the task of coordinate

5

term extraction from parsed corpora can be phrased as a gutng framework, where
the query defines a seed of relevant items. This task, whisldtzavn some interest in the
research community in recent years, is useful for autonsagsemi-automatic construction
of knowledge bases. A detailed evaluation is given for cayne and person name coor-
dinate term extraction. It is shown that for small corpone, graph-based approach gives
better results than alternative vector-space methodsidimg a syntactic state-of-the-art
model [101]. Additional experiments of general word synogyextraction are described,
and shown to give encouraging results.

The proposed graph representation of parsed text and thigiemhpvaluation of the
related tasks are described in Chapter 5.

1.4 Implementation Considerations

Given the case studies of personal information managenmehparsed text processing,
we are interested in drawing general conclusions regartieglesign considerations of
this framework.

Regarding the parameters involved in the graph walk proeesshow that the graph
walk length affects performance in general, and that shaplywalks are preferable in
some cases. In addition, we show that the choice of graph veai&nt may affect perfor-
mance as well.

Considering the set of learning approaches, we show thatleighinformation is use-
ful in some problems. For example, path information is highformative in the language
domain, where local graph walks and weight tuning assigih migights to proximate
yet irrelevant nodes. We also show that the path constranadkl approach is effective
in eliminating irrelevant paths and improving performandée path constrained walk
paradigm involved additional cost in terms of runtime in experiments; however, apply-
ing a threshold to the path constrained graph walk schemaganove both its accuracy
and scalability.

Overall, processing times, given short walk length and onedsized corpora (up to
100K nodes) are fast and appropriate for online settingsravthe graph walks are com-
puted ‘on-the-fly’. Other algorithms developed that imggaoke scalability of the Person-
alized PageRank paradigm for larger graphs can be readilgimgnted in our framework.

The design and scalability aspects related to the propeaatefvork are discussed in
Chapter 6.

1.5 Summary of Thesis Contributions

Following is a summary of the main contributions of this ikes

The thesis presents a general framework that uses finitemagdaph walks to gen-
erate an inter-entity similarity measure in the graph, whbe generated similarity
measure can be further adapted per task with learning.

It is claimed and shown that given a general representatfistractured and semi-
structured data, multiple tasks can phrased as queries satine underlying graph.

The thesis presents the concept of learning to rank graghwsaig global informa-
tion, as opposed to the graph walk and known weight tunindnaust that consider
only local information.

Reranking is applied as a learning approach for improvinglyrealks; and a set of
generic task-independent global features is suggested.

A method of path constrained walks is proposed, that inaaitps global features in
the graph walk process.

The framework is applied to the personal information managg domain, where
a variety of tasks, some of which are novel, are addressdsromy as queries;
performance is shown to exceed alternative methods for sbithe tasks evaluated.

The framework is applied to the domain of parsed text proogswhere it is shown
to give superior results to state-of-the-art method forlsawepora.

Empirical evaluation shows that finite graph walks give déretierformance than
infinite graph walks in some cases.

Chapter 2

Framework

In this chapter, we begin with the formalization of the graghema and present a user
interface, including a query language for using graph sirities (Section 2.1). We then
define random graph walks as a technique of choice for evatuttie similarity of the
graph nodes to a given query (Section 2.2). The applicglohtthe framework and the
various motivations for using the framework are discusse@hapter 2.3. Finally, in
Section 2.4, we review research related to the frameworknegal, and to graph walks as
a method for evaluating similarity in graphs in particular.

2.1 Definitions and Notation

This section defines relevant notations in terms of the uyidgrgraph structure and the
interface between a user and the system. In general, thb grassumed to be directed,
where typed nodes represent entities and labeled edgessesprthe relations between
them. The interface defined consists of a query languagalioats the user to search for
similarity between any entities represented in the grapiteresthe response provided is in
the form of a ranked list. Another component of the useresydnterface isiser feedback
that includes judgments about which nodes are relevant teeygFinally, we define the
notion oftasks relating to query classes, as various flavors of inter-rsomdarity may be
sought in a single graph.

2.1.1 The Graph

A graphG =<V, E > consists of a set of nod&s and a set of labeled directed eddes
Nodes will be denoted by letters suchxay, or z, and we will denote an edge frorto

y with label/ asx AN y. Every nodex has a type, denoterx), and we will assume that
there is a fixed set of possible types. We will assume for cuevee that there are no
edges from a node to itself (this assumption can be eastyxed). We will assume that

edge labels determine the source and target node typesf ke- zandw y then
(W) = 1(X) andt(y) = 1(z). However, multiple relations can hold between any paréicul

pair of node types: for instance, it could be that— y andx £, y, wherel # ¢'. Note
also that edges need not denote functional relations: faveng and/, there may be

many distinct nodeyg such thatx AN y. Finally, for every edge in the graph there is an
edge going in the other direction, denoting an inverseimglai his implies that the graph
is cyclic and highly connected.

-“ ,
pEa e
T e
B Mg W message
. b
e - Y
- . -
-0 - Ry

—* sent-to

——+ sent-from
..... » has-term

Figure 2.1: A simple example of the considered graph scheme

For example, consider the graph depicted in Figure 2.1. drfijure, node types are
denoted by the different shapes of a circle, square and bexdte edges have different
types as well, denoted by different line styles. Supposedharcle represents a node
of type person a square represents amail messageand an hexagon stands foteam
The dotted edges (e.gmy — t1) may then represent a relationtodis-term pointing from
a message node to the terms it contains. (For simplicity,etigees are marked as bi-
directional in the Figure; in practice, however, the inearslation — e.g has-term-inverse
—is represented by a separate edge in the opposite direcHonilarly, the dashed edges
may represent a relation sent-from directed from aremail messagaode to aperson
node that is the sender of that message. As shown in the figere,may be multiple types

10

of relations between the same types of nodes. For exaepla)-messagese connected
to personnodes also over a relation sént-to This relation is denoted by solid edges in
the figure.

2.1.2 Graph-based Similarity and Query Language

Given a graph that represents entities and their intetyergiations, we are interested
in inducing a general similarity measure between entitiethé graph. That is, we are
interested in evaluating similarity between entities ta not directly connected, based
on the information encoded in the graph. For example, acugtd the schema described
in Figure 2.1 messageare not directly inter-connected in the graph; rathe#ssageare
linked to thetermsthey contain, tgoersonswvho are recipients or the sender of the message,
etc. As the graph represents a heterogeneous domain,raagtaiultiple types of entities
and relations, a good similarity measure should integratiipte types of evidence into a
single similarity score.

In this thesis, we take an information retrieval approachenrg given a query, which
is any combination of entities, a list of entities, ranked by th@milarity to the query, is
returned to a user. Formally, we define a query languagelas/f

Definition 1 A queryincludes an initial distribution ¥ over nodes, and a desired output
typeTout.

Definition 2 Aresponséo a query< Vg, Tout > IS a ranked list of nodes z of typguyt.

Consider our running example. In the described domain, onewrsh to find people
that are related to a particular term, such as “learninggdneral, a term or a set of terms
may represent a concept of interest, corresponding as agbrmgme, or specialized key
words. The relevant query in this case<isvVg = {t2}, Tout ='person> (where the term
“learning” is represented by the graph nadge

2.1.3 Tasks and Feedback
Queries can be specified ad-hoc and arbitrarily by a usesrdiog to the definition above.

However, it is reasonable to expect that particujaery typese executed frequently or
on a regular basis in a given domain. We detasks(or, query types), as follows.

We use similarity and relatedness interchangeably.

11

Definition 3 A taskis a distinct relation r sought between a query distributiopand
nodes of the specified typgy: in the graph. Queries Qand Q are instances of the same
task if \§, and g, include nodes of the same types, and if both queries arertevetnodes
of typetyu = Ty, that are related to Yy, and \,,, respectively, with the same relation r.

Notice that it is optional to specify the relevant taskglong with a query Vi, Tout >.

As examples of possible relations, consider the quetiég= {t ="learning”}, Tout =" person>
and < Vg = {t ="recruiting”}, oyt ='person>. These queries are instances of an asso-
ciation between a topic (represented tbymg and persons A terms-personsnapping
query can also reflect a different notion of entity relatesdneFor example, in the query
< Vg = {t ="Bill” }, 104t ='person>, a user may be specifically interested in retrieving
persons who are referred to by the name Bill. Similarly, a nsay be interested in re-
trieving messagethat are topically similar to a givemessageor in recovering dhread
in which case messages that belong to the same chain of gon@snce are sought.

In other words, we distinguish between different relati(askg in the graph, con-
sidering them as private cases of general inter-entitylarity (or, relatedness). A key
feature of the proposed framework is that various queridg;ware instances of different
tasks are to be performed using the same underlying graph.

It is expected that eesponsédiave a varying value that depends on the underlying task.
Such value is therefore a function of the user’s intentidtesxt, we define the concept of
user feedback

Definition 4 User Feedbackcludes the specification of correct (relevant) and inegtr
(irrelevant) graph nodes per query.

For example, consider the query mentioned abeve = {t ="Bill" }, Tout="person>.
In case that the underlying task is to find nodes in the graphdénote persons who are
called “Bill”, correct answers may include “William Schexlj whereas “William Cohen”
may be found to be an incorrect response by the user (as hendbese the nickname
Bill), as well as “Einat Minkov” and other person nodes.

User labels, denoting node relevance, will be used to eteatha quality of a response
to a query, where a good response has the relevant nodes applea top of the ranked
list, and irrelevant nodes — at lower ranks.

User feedback that both specifies the task and providesdekdibout node relevancy
will be used to learn a specialized similarity measure fat thsk. In general, it is a basic
requirement of the proposed framework that a general (tdefsimilarity measure result

12

in useful performance for arbitrary queries. Neverthelessare interested in enhancing
that general measure to reflect a particular similarity flaafanterest, in cases where the
task is specified.

Finally, we notice that a “user” may not be a human being, butahine application,
which conducts automatic information processing. For gdapfollowing the name res-
olution example, a human may be interested in resolving a&emaention, while reading a
message. It is possible that the interface be adapted torexodate this task, in the form
of a special button or menu option. In the case automaticlegnagessing, the machine
will first recognize person names in the text, and then usquleeying mechanism to map
each name mention to the corresponding person entity.

In the next section we describe how random graph walks ardogmegbfor extracting
a general similarity measure from the graph. Section 2. 8udises the scope of domains
and applications that are considered by the frameworkngteg¢he graph walk properties.
The adaptation of the graph walk based similarity measupatticular tasks given user
feedback is the subject of Chapter 3.

2.2 Graph Walks

We adopt thé’ersonalized PageRam&ndom graph walk model as the paradigm of choice
for producing a similarity measure between nodes in thelgrdip this section, we first
introduce the Personalized PageRank method, and revieslatgon to PageRank (Section
2.2.1). Probabilistic random graph walks require traositprobabilities to be defined.
In Section 2.2.2 we derive edge probabilities, where patamedge weights that are a
function of the type of the relation represented, togethién graph topology, determine
the probability of transitioning from a given node to itsgi@bors. Section 2.2.3 discusses
several variants of Personalized PageRank that have bednrude literature. Finally,
we discuss the properties of random graph walks in inducimgjagity scores between
graph nodes, that are shared to Personalized PageRank ardvar2.4.

2.2.1 Personalized PageRank

As a preliminary, we first introduce the genealgeRanlalgorithm [102]. The PageRank
model represents Web pages as nodes in a graph. If thers axibiysical hyperlink from
pagex to pagey, then a corresponding directed edge is added to the graphmiudel can
be viewed as a simple associative network, where nodes anmgform type, and there is

13

a single type of edges. The surfer behavior is modeled amAfsil given that the surfer is
at node (pagei), then with probabilityy € (0,1) the user will “jump” (reset) randomly to
some page in the network, and with probability(¥) the surfer chooses to move to node
j that has an outgoing link from Given that the user chose to follow a link, or to reset,
the probability of node is distributed uniformly over the relevant set of nodes. tliaa
random walk process is constructed as follows:

1
Vd+1:V[N]1><N+(1—V)MVd (2.1)

where the total number of nodes (pagesiNisandM is a transition matrix, indexed by
nodesM distributes a node’s probability uniformly among the paigésks to, i.e.

jch(i)]

if there is an edge fromto
Mij = . 9 . (2.2)
0 otherwise

wherech(i) is the set of nodes that have an outgoing link friofthe children of).

Under this model, the transition matrix is ergodic and hasigue stationary distri-
butionV, (i.e.,Vy converges t&,). The damping factoy prevents the chain from getting
stuck in small loops [16]. Th@ageRank scoref nodej, pj, is defined as its probability
in the stationary staté,, giving a measure of document centrality in the network.

Node scores can be computed by repeating the following seeuformula until con-
vergence:
Pi

iepa) 1n0)

m=v$+@—w (2.3)

wherepa(j) is the set of nodes that link tp

The idea of biasing the PageRank computation for the purplgsersonalization was
first suggested in [102]. Other researchers have explorgd wabias the model to pre-
serve an association between rankings and user preferarcagjuery. Thdntelligent
Surfermodel [112], for example, suggests that the surfer onlpbadl links to pages whose
content has been deemed relevant to a given query. Simitadydistribution of PageR-
ank’s “jump” operation can be skewed to include only pagésveat to the query. A
similar approach has been suggested for ‘topic-sensg®aich [57], in which the surfer
is biased to reset his or her search uniformly over pagesgtegorized as relevant for
a given topic. (In this model the transition probabilitie® ghe same as in the original
PageRank.)

The graph walk paradigm defined Bsrsonalized PageRarjk02] is defined as fol-
lows:

Vi1 = Wo+ (1 Y)MVg (2.4)

14

Vi1 =YIVg + (1 —y)MVy (2.5)

whereV denotes a distribution of interest over the graph nodes. Rédreonalized
PageRank scores are derived from the corresponding stgtistedte distribution. This
formula of graph walk generalizes PageRank (Equation ZhyhichVp is uniform.

It has been shown that the Personalized PageRank score foyed tedez and a
query nodex equals a summation over all the paths betwremd z (including cyclic
paths, and paths that crassultiple times), where paths are weighted by their prolisbil
[67, 48, 28]. Specifically, the Personalized PageRank piitityak)(z|x) of reachingz in
an infinitely-long walk fromx is also defined as:

Qavr=n§<r—w%xXii> (2.6)
=1

where Q(x =9, z) is the probability of moving fromx to z in exactlyd steps, defined
recursively as:

Qx =% 2) = 3,Prix—y)-Qly =" 2)

Q(x:—O>z):1,ifx:z.

The graph walk distributes probability mass from a statrithgtion over nodes through
edges in the graph—incidentally accumulating evidencariiarity over multiple con-
necting paths. The reset probabilitypplies an exponential decay over the length of the
paths betweer and a destination node In practice, this means that the infinite graph
walk probabilities can be effectively approximated by himg the summation to some
maximal valuek [136, 48, 28].

Example. As an illustrative example to the operation of the graph walbnsider
a graph walk starting from nodey, in the graph described in Figure 2.1. A walk of
one time step would reach those nodes that are immediatelyected tomy, namely
{p1, P2, pP3,t1,t2,t3}. Continuing the walk for an additional time step would progiteg
similarity from these nodes to their adjacent neighborse fibdem,, for instance, would
acquire probability mass due to the following set of conimggbaths, after two time steps:

Nodemg would acquire probability mass due to the paths:

15

sent-to sent-to—inverse
i — P1 —

has-term, has-term-inverse
—

m — t2
sent-to sent-to—inverse
m — 3 —

sent-to sent- from—inverse
m — P —

sent-to sent-to—inverse
M — P3 —

2.2.2 Parameterized Edge Weights

The graph walk process (and accordingly, the similarity sneagenerated) is determined
by graph topology. In addition, the walk on the graph is controlled by a set ofeedigight
parameter®. Throughout the graph, edges of typare assigned an edge weidhtc O.

Let Lxy denote the set of edge types of the outgoing edges komy. The probability

of reaching nodeg/ from nodex over a single time step (corresponding to the transition
probabilityMyy) is defined as:

2 e Lxy 0,
Zy’ ech(x) dre Lyy 0y

wherech(x) denote the set of immediate childrenxofthe set of nodes that are reachable
from x in one time step). That is, the probability of reaching ngdeom x is defined as
the proportion of total edge weights froxto y out of the total outgoing weight from
(PageRank schema of edge weighting given in Formula 2.2 i®eaapase, where the
graph includes a single edge type, and weights are distdlurniformly.)

Pr(x —vy) =

(2.7)

Continuing the example of the graph in Figure 2.1, the set gésaorresponding to
this graph includes six types, namely= { has-term has-term-inversesent-from sent-
from-inverse sent-tg sent-to-inverse. The set of paramete® corresponding to this
graph includes the weights of these edges. For example rbitieagy possible assignment
of the parameter value3 is the following:

Given this parameter set, the probability of reaching nedeom nodemy in a single
step, for example, is calculated according to the giventgtapology, and the edge weight
parameters, as follows:

ehas—term —01

Primp — 1) =
() 3 X Bnas-term+ Bsent- from+ 2 X Bsent_to

2The reset probability has negligible effect on the generated rankings; see @catiscussion in Section
6.1.2.

16

Bhas-term = 2
ehasfterrminverse: 2
esent— from= 4
esenkfromfinverse: 3
esent—to =5
esenHofinverse: 4

The graph edge weigh® can be set uniformly; randomly; manually, according to
prior beliefs; or using a learning procedure, as discussé&hapter 3.

2.2.3 Graph Walk Variants

In this thesis, we adopt Personalized PageRank as the grdbimeehanism for generat-
ing similarity scores. There are, however, other relatethags of graph walks that have
been used in the literature.

One variant of a graph walk lazygraph walks. A lazy graph walk is a random walk,
where the process remains at the current vertex with sommapildy y, which we call a
“stay probability” [95]. The transition matrix in this cagedefined as follows:

% if x=y

A walk of k steps can be defined by finite matrix multiplication: spealfyc if Vg is
some initial probability distribution over nodes, then thstribution after &-step walk is
Vr = VoMK, If \p gives probability 1 to some nodg and probability O to all other nodes,
then the value given toin Vi1 is interpreted as the similarity measure betweandz.

Mxy:{ (1_y)Pr(X—>y) |fX7éy (28)

Another graph walk variant concerns how the probability sressociated with edges
is distributed [7, 95, 28]. Rather than normalize the outg@dge probabilities from each
node according to their weights, another possible schemha i®llowing:

Pr(x —y) = ;Pr(xLyw).Pr(ax) (2.9)

In this schema, as a first stage, the random walker selectiyatype’ to be traversed,
with probability Pr(¢|x). Pr(¢|x) is computed as the ratio between the parametric weight
8,, and the total outgoing probability mass from Let S;; be the set of possible labels
for an edge leaving a node of typg and letS(x) denote the set of outgoing edge types

17

that are present at the graph nodéS;, C S(x)); the total outgoing weight fromx can
be defined either a5 s, 0, =1 [7, 95], or asy pcgx) 0 [28]. (In the first case, the
considered probability distributions are deficient, as smalid outgoing edge type may
not be included ir§(x) and thus can not be selected.)

Given the selected edge typeas a second stage a child nodis selected according

to the probabilityPr(x LN y|¢). In previous works, this probability has been defined to be
uniform over the set of nodes connected to the parent rRedth the given edge typé

In the next section we describe general properties thatamenon to all of the graph-
walk variants.

2.2.4 Graph Walk Properties

Personalized PageRank and its variants have several inlprefarences that determine
how probability mass is distributed from a query to the graptes. Many of the biases
incorporated in the graph walk paradigm align well with tleggmtial requirements of a
similarity metric. Some preferences may be sub-optimakdwer, depending on the task
at hand. Following is a detailed discussion of these pratas.

e Personalized PageRank applies an exponential decay ovetepajth (due to the
reset paramets). This implies that nodes in the graph that are connected)teesy
node ovesshorterconnecting paths are considered in general more relevant.

For example, in the graph schema described in Figure 2.Ertel-messagey is
likely to be considered less similar to the terWs= {t1,t>} compared withmy or
My, since it is connected to the query nodes via paths of lengtth8reas the other
two messages are associated to the terms with a diaseterm-inverseelation.

A negative correlation between node distance and simyl&itvell established in
graph theory (as discussed in Section 2.4.1). Naturallg,large graph, nodes that
are far away from a given node are less likely to be relatetttan its neighbors. On
the other hand, we notice that in some relational domaiis pibssible that specific
long chains of inter-entity relations are significant, satth bias due to general
proximity is less justified. This issue as raised in a casdystand our approach
for resolving it using learning (namely, the path-consteai graph walks approach),
will be discussed later in Sections 5.4.1 and 3.4 (respalg)iv

e Evidence of similarity is accumulated at each node overiplaltonnecting paths.
That is, a node that is linked to the query distribution ovéarge number of paths
will be considered in general more relevant than nodes adadever fewer paths.

18

For example, assume that edge weights are uniformkana®. In this case, the
person nodg; will be considered more similar to the (uniformly distribd) query
Vg = {t1,t2} compared withp,, since there are three paths connecting the query
nodes top;:
has-term—inverse sent-to
11 — m —
t2
t2

P1
P1

has-term—inverse sent-to
— m —

has-term—inverse sent-to
— T

whereas there are two paths leadingrto

has-term-inverse sent- from
— m —

t1
)

P2
has-term—inverse sent- from
— m — P2

e The edge label weight® provide a mechanism for affecting the probability flow in
the graph. For example, suppose that the reldi@rfrom > Bsent_to. IN this case,
p2 may be considered more similar thanto the queryg = {t1,t>}.

e The graph walk based similarity measure is asymmetric; ithahe weight (and
rank) assigned in the final distributidf (for a graph walk ok steps) to a graph node
z, given a queryq = {x} will not necessarily equal the weight (and rank) assigned
to nodex, by the inverse graph walk, starting from the quésy= {z}. For instance,
in the graph described in Figure 2.1, given the queryy = {t1},T =term} >, a
graph walk ofk = 2 steps will assign equal weights to the notyesndts; however,
given the query< Vg = {t2},T =term} >, a higher weight will be assigned tg
compared with; (ast; is linked tot, with a subset of the paths that litkto t3).
Thus, an asymmetric structure of the graph is reflected imasstric inter-entity
similarities?

e The formulas for deriving edge probabilities (see Form@asand 2.8) apply a
weighting scheme that is similar to Inverse Document Fraqu€lDF). Suppose
that we restrict ourselves to only two typgermsandfiles and allow onlyhas-
termedges, as is the case in traditional IR settings. Now considénitial query
distribution, which is uniform over the two terms “the aaadk’. A one-step graph
walk will result in a distributiorivq, which includes file nodes. The common term

3In addition, note that the edge lab@smay be asymmetric (i.€8; # 0;_inversd-

19

“the” will spread its probability mass into small fractiooger many file nodes, while
the unusual term “aardvark” will spread its weight over oaliew files.

In our toy example, the probability mass attributedartoover a single time step due

to pathty "> MM starting fromVg = {t1,t2} will be doubled compared

with the probability mass transmitted by the pati®> "®™ "¢ 1. The reason

for that is that as shown in Figure 21%,is mapped to two message nodes whereas
t1 is linked to a single message node. Hence, node connedtiz#tya similar effect
as the use of an IDF weighting scheme.

Finally, as a consequence of probability accumulation@blginodes throughout the
graph walk, the resultant similarity measure is inclineddals high-degree nodes
in the graph (as more paths are likely to cross nodes thatcameected to many
other nodes).

For instance, in Figure 2.1, the person ngadeas connected to all of the message
nodes. This means thpt will be credited with probability mass via a larger number
of connecting paths, compared wiph and ps.

Several researchers have pointed out previously that amenhbias towards high-
degree nodes is often not desired [13, 104, 80]. In gendrialnteans that central
nodes “take over” the graph walk, and disassociate the pilityadistribution in
the graph from the query. Several solutions suggested toteract such bias are
reviewed in Section 2.4.1.

2.3 Applicability

So far we have defined the framework, including the graph &ism and the user-system
interface. We have also described Personalized PageRaidmagraph walks as the tech-
nique of choice for evaluating node similarity for a giverequ In this section, we define
the intended scope of the framework, i.e., the types of prablthat can be modeled (Sec-
tion 2.3.1). In addition, we summarize the various motwasifor applying this framework
(Section 2.3.2). A main motivation that we stress in thisithés generality our goal is
that a graph that represents the ‘natural’ structure of daabe used for a large number
of different tasks, rather than having to engineer a grapéfcly for each task.

20

a. WebPages and hyperlinks

b. Recommendation Systems

1D=1

II —_— | D=2

A f—
P
\,

D=4
L r
c. Email
e .
. Has-term ;
" = William EAr;':'rl Alias lrl
X

g graph //
e ‘,&(/" 1 Sent-to-email SentTo
v el roposa

M ..__\“\;P__-.E oMU Sent-from -email \ (Sentfrom

\O)'?
ot "
J \ ﬁ As-term
\'l
.éh ; einatfcs.cmu.edu 1 6/17/07 orston %
ﬁ 8 0.? n-date as-term
“SEinat !i / 6/1 / &) }/_
E Has Subject Term
Minkov" ﬂ I e \Q
Term

Figure 2.2: Example graphs (left) and their correspondiagly schemas (right).
21

“William Ill

W.Cohen” | |

2.3.1 Structured and Semi-structured data as a Graph

Many real-world data and problems can be modeled as a grapé specified framework.
The description of the web as a network, where nodes dendipages and directed links
represent the hyperlinks between them [117, 102] can beidznes as a special case
of the framework, where the graph includes a single type desaand a single type of
edges, as shown in Figure 2.2(a). Similarly, scientific paf@ other publications) can be
represented as a graph, where relationships between papdrderred from their cross-
citations [126], and so on.

Another generic type of graph that can readily be repredentéhis framework im-
plements recommender systems. In this case, a user’s gme&for an item constitutes
a relationship between the user and the item. This problematigrally modeled as bi-
partite graph, as demonstrated in Figure 2.2(b) [49]. Thesital information retrieval
settings, in which documents are indexed by the terms thetaoqg is another example of
a bi-partite graph.

However, the framework is also adequate for richer, strectiand semi-structured
domains, in which the relation schema includes multipleesypf nodes (objects) and var-
ious relations between them. For example, Figure 2.2(®sg&v representation schema
for email data (this schema extends the toy example fromr&igil). In this representa-
tion, node types includmessaggperson email-addresstermanddate The graph edges
correspond to various inter-entity relations, suckest-from connecting a message to its
sender;alias, linking a personnode to itsemail-addressetc. Most of the relations can
be readily parsed from an email header. The email contentased as a bag-of-words,
where each unique word is represented tss@node, linked to thenessagethat contain
it. Other examples of semi-structured domains includdioitanetworks, where entities
like author, venueandpublication titleare linked in a relational structure, and are also as-
sociated with text descriptions. An ontology such as WoitdHig] forms a network which
include a single type of entity (words), but multiple typdsedges, includindhypernym
hyponymand so on. Later in this thesis, we consider a corpus of pdesg¢ds a typed
network, where nodes represent words, and edges denosesymelations (Chapter 5).

Representation Scope

Graph schemalotice that the above-mentioned examples are charadaidvizevell-
defined graph schemas. (These schemas are described ie Eigyr We assume in this
thesis that for a given domain, there exists a closed set titly égpes and the possi-
ble inter-relations between entities are pre-specifiedm&ios for which the full graph
schema is not known in advance (such as, domains that evadveime) may be modeled
by extending the framework. For example, default edge visigdr+ may be defined for

22

unknown edge types. This general case, however, is out cfdbyge of this thesis. Sim-
ilarly, domains for which the graph schema is very large.(d¢lge semantic Web), pose
special challenges. We believe that at least some of tegbsipresented in this thesis will
be beneficial in such cases. However, this remains a prodefatiire study.

Entity attributes. Entity-relation schemas, as used in database terminofogy, in-
clude entity attributes. For example, an entity suclemployeemay be associated with
attributes likename age addressetc. (A specific entity is then associated with specific
attribute values, e.gname:“John”, age: 42, etc.). In the proposed general graph schema,
attribute values can be modeled as additional nodes, amibspeks can be added that
represent relationships between an entity and an attriale. It is also straight-forward
to define such links to beon-walkable and only use them for filtering or other post-
processing operations (similarly to “having” statemen$f@L), so they do not affect the
similarity metric.

Real valuesMany graphs have been suggested in the literature that twedges by
real-valued weights, designating link importance, freguye confidence, etc. For exam-
ple, a social network that models inter-personal inteoastimay contain nodes represent-
ing persons a single edge type denoting evidence of pgagtraction (e.g., correspon-
dence) between persarand persory; and edge weights that designate the relative impor-
tance/strength of the interaction (e.g., the number of agssexchanged betwermand
y). In this thesis, we are interested in avoiding settings lmctv human judgments about
feature relevance are encoded in the graph. Instead, weadvielational graphs. The
social network described above, for instance, can be mddelea heterogeneous graph,
where nodes denot@rsonsandinteractions persons will be linked in this network via
their shared interactions. In general, however, it is glraforward to extend the frame-
work to accommodate edge weighting. Specifically, form@ldsand 2.8 can be modified
such that the outgoing weight from a given node, [8g), e distributed among the edges
of that type according to their relative individual values.

One may also be interested in representing real-value r{tatesxample, for denoting
attribute values, as described above). Real-values, hoyarechandled as discrete in the
framework. This means that in case that the set of valuesgs,léhe size of the graph
may be boosted. In addition, there is no trivial schema faitig nodes with proximate
real values.

Undirected edgedJndirected edges can be trivially replaced with symmetirieaied
edges, in both directions.

n-ary relations.In general, inter-entity relationship may involve mulé@ntities. For
instance, a relation like “hire” involves the person hiredveell as the relevant position,

23

and possibly, the agent responsible for the hiring actidre ffamework, which underlies
this thesis, can not accommodate n-ary relations: ratingyr,relationships between pairs
of entities can be modeled.

2.3.2 Types of Motivating Applications

There are multiple possible motivations for applying gragtiks to derive an inter-entity
similarity measure. In what follows, we discuss severalivating applications.

Associative retrieval Graph walks implement a notion of transitive similarity. €éyh
can therefore be used as a mechanism for expanding or ergiehset of entities with
related objects, in aassociativemanner. In the email domain, for example, a user is
oftentimes interested in retrieving a specific item from mailbox that she remembers.
Searching by specifying strings included in the differegld$ of the message (as common
in many commercial email management interfaces) may faiétoeve the request item
due to a possible mismatch between the terms as specifieel quéry and in the message.
Suppose that the user is trying to tracknassagesent recently by William Scherlis, in
which a meeting is coordinated. Searching for messagesittiatie the strings “Bill” and
“meeting” will fail in case that the message does not incltidenickname “Bill” and the
term “meeting” is not explicitly mentioned. Associativeaseh using graph walks using
the queryVg = {terms="Bill, meeting”} is more likely to include the relevant message
in the results, due to graph similarity between “Bill” and ‘M&m”. (and if semantic
relations between words are modeled, a term or expressatrath related to a meeting
may be reached as well.) Similarly, one can submit a quenyitichudes a person’s first
name (represented agexm) and retrieve relatedmail-addressiodes. This problem is
referred to as thalias-findingproblem in Chapter 4.

In the past, graph walks over a network that consists of-witad semantic relations
derived from WordNet [47] and other resources have beenexpfdr query expansion in
Information Retrieval [33]. Random walks over a similar gréyalve also been applied as
a smoothing mechanism for the task of prepositional phrdaetanent [136]. Automatic
image captioning is another domain, in which graph walksehasen applied to enrich
textual descriptions of images with terms linked to relatedges [58, 105].

Structural similarity. A main motivation for representing data as a graph is tozatili
a notion of global, structural similarity. In general, stture is expressed by sub-clusters
in the graph, such that similarity between points that hawitipte common neighbors
is reinforced using random walks. For example, in a citahetwork, which includes
co-citation links, applying random graph walks should tifgrclusters of papers that are

24

mutually related; in a social network, graph walks can resab-communities, and so on.
The extent to which similarity gets concentrated in intégraph structures is dependent
on the walk length, and on the graph walk parameters. It has kaown the length
of the walk should be sufficient, but not infinite (i.e., skorthan mixing time) to find
clusters in data [129, 131]. Theersonalized PageRardwaph walk variant maintains
high weight around the query nodes and decays fast thereafteflects global structural
similarity, however, in the sense that the graph topolodgca$ the resultant similarity
score distribution.

Evidence integrationAs discussed above, graph walks accumulate evidence of sim-
ilarity between query nodes and a target nodes, via multpieecting paths. Thus, the
probability score assigned to a target node as a conseqoétire graph walk, summa-
rizes various aspects of similarity. In the email domaim,ifigtance, emainessageare
inter-connected through shared content (via lths-termrelations), through social net-
work information (via the relationsent-fromand sent-t9, and also through a timeline
(sent-on-datg

The graph representation can readily integrate also nhelftfformation sources. For
example, organizational hierarchies can be added to emgbeca, by adding links such
as “reports-to” between an employee and her manager in #phgt.exical networks are
another example, in which various WordNet-based and otloedto-word relations are
included in the graph [136, 33, 65].

Finally, the proposed framework offers the advantag&enerality. In the past, Per-
sonalized PageRank graph walks have been applied to cgrefgfineered graph schemas,
constructed using information that is partial or pre-pesasl, with the goal of optimizing
a particular task. For example, Toutanova et al [136] ag@i@ph walks on a graph engi-
neered to improve on the task of prepositional phrase attanh and special graphs have
been engineered for image captioning [58, 105]. In thisithege assume a graph schema
that describes a given domain in a general and straightafier#ashion. i.e., avoiding ad-
dition or omission of certain entities or relations from tiedational data structure. We
claim that in a general graph, multiple tasks can be phraséerins of inter-entity simi-
larity in the graph. That is, we argue that graph walks cargpiied as ageneral-purpose
tool. Indeed, a general graph scheme may be sub-optimabfoe sasks. Therefore, we
consider learning, to optimize the graph-walk based snitylaneasure per task. In our
study of the email problem (Chapter 4), we will show that grawtks yield good per-
formance for a variety of email-related problems using diéfgarameters, and improved
results with learning.

25

2.4 Related Research

There are many research areas that are related to the fraknnabwe apply in this the-
sis. In this section we give a short overview of some of theamrareas, and try to point
out the links between previous algorithms and observatioade and this work. We first
give a review of similarity measures prevalent in the aregraph theory (Section 2.4.1),
including basic measures of graph similarity such the gistypath or maximum-flow cri-
teria, and also similarity metrics that are based on nodeddiate neighborhoods. Section
2.4.2 focuses on more recent work in graph theory that aeebioelated to random graph
walks in general, and the Personalized PageRank graph waditvan particular. Several
of the algorithms are based on the electrical current anal@g random walks. Also in-
cluded in Section 2.4.2 are works that generate a subgraptspense to a query, and
graph-walk based algorithms for this purpose. In Sectidn32we review previous re-
search that is concerned with similarity in relational da&presented as a graph, where
edges denoted entity relations. Several researchers hawieysly applied graph walks in
these settings. We discuss the differences between theke amd our approach.

In Section 2.4.4 we review several works in the area of lea;nnostly for clustering
and semi-supervised disambiguation, that apply a notiatrattural similarity, and have
strong connections to random graph walks.

Section 2.4.5 described the paradignspfeading activationa mechanism for propa-
gating similarity between concepts in associative netwo¥ke claim that the framework
of this thesis (including its learning component) autorsate&any manual design choices
that are necessary in spreading activation.

Finally, in Section 2.4.6 we discuss the methodology ofigtial relational learning
(SRL), which has drawn much interest in the recent years,s00rcerned with the mod-
eling of structured information. As an example of SRL, we foom Markov logic net-
works (MLNSs). A short overview of the MLN approach is giveollbwed by a discussion
of some of the main differences between MLNs and our framkwor

2.4.1 Similarity Measures in Graph Theory

One simple graph proximity measure is the length of the slsbpath connecting two
nodes< andy, measured as the number of hops, or the as the sum of the etgesxadong
the shortest path. Another related concept from graph ytisanaximal network flof34].
Assigning a limited capacity to each edge (proportionah®ddge’s weight), this measure
is defined as the maximal number of units that can be simutzste delivered fronx to

26

Shortest distance (the negation of) the length of shortest path betweandy

Maximum flow max. number of units that can be simultaneously delivered ftoory
Neighborhood measures

Common neighbors IF(x)Nr(y)|

Jaccard’s coefficient |EE§;DF8§ |

Adamic Adar 2.2eT ()T (y) TiogT @]

Table 2.1: Basic measures of node similarity in graph theory

y.

It has been argued that the shortest-path and max-flow sityilaeasures are not
suitable for graphs representing phenomena such as setvabrks, for several reasons
[46, 80]. First, the relationships between entities maydadized by multiple different
paths; the shortest-path criterion, however, considensgespath by definition. Sec-
ond, the maximum flow criterion is monotonic with the numb&cannecting paths, but
disregards path lengths. In addition, it is desired thaptiogimity measure assign higher
importance to edges between low-degree nodes, as thesegdgamably indicate a more
meaningful relationships. Both of the shortest-path andimam-flow measures fail to
capture these phenomena. Koren et-al [80] point out thatmratlow equals the capacity
of the bottleneck of the flow betweerandy, making such a measure less robust.

Additional measures of node proximity in graph theory, lem@ node neighborhoods,
are included in Table 2.1. The most basade neighborhootheasure is computed as the
overlap between node neighbors. That is, denoting the heiood of nodex asrl (x),
inter-node similarity is defined &5 (x) NI (y)|. TheJaccard coefficier[tt15] measures the
probability thatx andy have a common neighbor, for a randomly selected node from the
union|l" (x) UT (y)|. The related\damic-Adameasure [1] considers a notion of frequency
of the common neighbors, represented by neighborhoodisizen-Nowell and Kleinberg
[85] describe and empirically evaluate these and otheta@laeasures on the task of link
prediction in social networks. They indicate that in thewarks studied, between 71%
and 83% of new edges form between pairs at distance threeeategr Since nodes at
distance greater than two have no neighbors in common,ulés out the neighborhood-
based methods, which are local, for link prediction tasks.

TheKatz measur¢r2] is another metric, which defines node similarity as thenber
of their connecting paths, where path contribution is dasipelength. It is calculated as
follows:

Sim(x,y) = [Z B'|pathg,|
=1

27

wherepathd is the set of connecting paths of lengtrandp is the damping factor.

Liben-Nowell and Kleinberg include the Katz measure inttkemparative study [85],
where it is shown to be among the best performing method. Mbkasure is in fact related
to random walks, which we describe next.

2.4.2 Graph-walk based similarity measures

In this section we describe proximity measures in netwadnks are associated with ran-
dom graph walks. The methods are detailed in chronologickdro

Hitting time. Consider a random walk initiated at nogeand iteratively moving to
a neighbor ofx chosen uniformly at random. The hitting tink&(x,y) is the expected
number of steps required to reagh(The corresponding similarity score is the negation
of H(x,y).) Commute timés a similar symmetric measure, defineds,y) = H(X,y) +
H(y,x). Since the hitting time is generally small wheneyés a high-degree node, it has
been suggested to modify it as followd!(x,y) = H(x,y) - Ty, whererty, is the stationary
probability ofy [85].

SimRanK66] is a similarity measure adapted for directed graphghisimodel, objects
are similar if they are related to similar objects, as fobow

2 acr(x) 2ber(y) Sim(a, b)
F)r(y)

wherey € [0,1]. A base case is that objects are similar to themselves (Sijx). Over-

all, for a graph of sizen, SimRank includes a set of similarity equations. An iterative
calculation propagates scores one step forward alongtbetiin of the edges, until scores
converge. SimRank was shown to equal the expected valewherel is a random vari-
able giving the time at which two random surfers are expetiedeet at the same node if
they started at nodesandy simultaneously and randomly walked the graph backwards.
Hence, the SimRank measure is symmetric.

Effective conductance (EQ)04, 46]. LetG be a weighted undirected graph. The
graph can be modeled as an electric circuit, where edge teaiigimote their conductance
[41]. The proposed similarity measure is generated byrgpttie voltage of noda to
1, while groundingy (so its voltage is 0). Solving a system of linear equationsgihe
delivered current fronx to y, called theeffective conductancén terms of random walks,
EC is equivalent to the expected number of ‘successful est&mmx toy (escapes the
event wherey is reached by a random walk prior to re-visitig where the number of

Sim(x,y) =y x

28

attempts equals the outgoing degree,alenoteddegx). That is:

EC(x,y) = degX) - PesdX — Y) = dedy) - Pesdy — X)

The escape probability decreases if long paths must besfetipand increases with the
number of alternative paths. However, Palmer and Faloyil®4] point out that this
similarity measure is biased towards high degree node&éas is higher probability that
a random walk will visit a high degree node at any given tinTé)ey therefore introduce
a “universal sink” node that is grounded, and absorbs aipegtoportion of the current
that flows into any given node. This means that high degreesatk heavily penalized,
because each node is also “taxed” by its neighbors. In addigrounding all of the
graph nodes applies additional penalty on long paths, as @dich step there is a certain
probability that the walk will terminate in the universahki

Tong et-al [132] refer to the problem of high degree nodesretthey apply the Per-
sonalized PageRank graph walk paradigm. As an alternatitieetoiniversal sink, they
propose to normalize the transition matkix as follows:

/ _ Ile,Z
%z degx)a

wherez ranges over all of the graph nodes= 1, ...,N), and the coefficientt is a free
parameter. This formula applies a stronger penalty on Hegree nodes.

In a later work, Tong et-al [134] extend the electrical netagmilarity interpretation
to directed graphs. While electric networks are inherentigirected, they suggest to
generalize the effective conductance to handle diredtiof@mation by using the escape
probability. Escape probability can be computed as a fanatif the voltages at each
nodes, as follows:

n
PesdX —y) = Z Mx,k‘Vk(XJ)
k=1

whereM is the transition matrixn is the total number of nodes in the graph, aRek,y)
is the generalized voltage at nokiéwhere the voltage atis 1, andy is grounded).

Cycle free effective conductance (CFEB@}p discussed above, EC is interpreted in
term of the escape probability, where the walk might backti@nd visit the same nodes
many times. Koren et-al [80] point out that sending inforimain directions not leading
to the target nodg is a wasted effort, which cannot be fixed by a later backtragKihey
suggest to consider instead cycle-free escape probasjlitthich disallows paths from
to y where nodes are revisited. The Cycle Free Effective Condoetéd@DFEC) measure

29

equals the sum of the simple (acyclic) connecting pathsbabdities, multiplied by the
degree of the query node as follows:

CFEC(x,y) = degX) - Pef.esdX— Y) = dedy) - Pet.esdy — X)

where,

PefesdX —Y) = Z Prob(R)
ReR.

and R _is the set of simple paths fromto y. The authors approximate the CFEC mea-
sure using thé&k most probablex —y paths. They use an algorithm due to Katoh et-al
[71], which generates paths of monotonically increasingyie successively. Once the
ratio between path probability and the probability of thesinarobable path falls below
a threshold, further paths are discarded. Cycle-free @ffecbnductance can naturally
accommodate directed edges.

Connection Sub-graphs

In addition to evaluating node similarity in terms of probiyp scores, it has been
suggested to present the user a small sub-graph, whichiexpiee relationship between
given nodes. Below is a short overview of recent researchetkt@éinds graph walk (or,
analogously, electrical flow) based similarity measures $omilarity sub-graph.

Faloutsos et-al [46] define @nnection subgraphs a small subgraph (amenable to
visual inspection) of a large graph that best captures tlhaéigaship between two nodes.
They construct a subgraph that maximizes a goodness fancéeined as the delivered
current between the source nodt® the destination nodg subject to a constraint on the
number of nodes included in the subgraph. The flow capturddeisubgraph equals the
summation of delivered current over all the distinct ‘dowWihfacyclic) paths fromx toy
included in the subgraph. A greedy algorithm optimizes thigegsaph constructed, such
that end-to-end paths are added iteratively, maximizimgr#tio of flow along the path,
divided by the number of new vertices that need to added toukut graph.

Tong et-al [132] defined theenter-piece subgraph (CEP8j)oblem. This problem
generalizes the connection subgraphs task, as it considiegsaphs that connect multiple
guery nodes. In addition, they allow different types of gerincluding OR, AND, and K-
softAND (where a sub-graph similar to at le&shodes out of the query nodes specified is
searched) operations. The ‘goodness criterion’ of the iydits is based on Personalized
PageRank scores in this case. In particular, the authorsdesrtiemeeting probability
the joint probability that random walks originating from hmple query nodes ‘meet’ at
a target node in the steady-state. In the case of AND quehesmeeting probability
considered is the multiplication of the individual PPR s&sowith respect to each query

30

node. The OR operation requires the complimentary proipaldtor the computationally
expensive case of K-softAND, a fast algorithm is provideche Bubgraph produced is
undirected and unweighted.

Koren et-al [80] use the cycle free effective conductanoelarity measure to extract
small subgraphs, which they calloximity graphs Their motivation is to directly provide
an explanation for a specific CFEC proximity value (see abdwg)articular, theK paths
used for computing the proximity value serve as the buildhlogks of the connection sub-
graph. The subgraph extracted maximizes a ratio betweegprtixémity value explained
by the subgraph (raised to the power of a parantetand the number of vertices included.
Solving this function is NP-hard, and heuristics (based @mth-and-bound algorithm)
are suggested. The generated subgraphs can be directed.

2.4.3 Similarity in Relational Data

The idea of representing structured data as a graph is wiegsn the data mining com-
munity, which is mostly concerned with relational or sefmisstured data. Proximity
search in databases represented as graphs has been fiestteddg the best of our knowl-
edge by Goldman et-al [54]. They suggested inter-objectbewhere the proximity used
was the shortest path between objects.

BANKY13]is a later model, suggested for keyword-based seanahdtional databases.
In the BANKS framework, tuples are modeled as nodes in a gnapfch are connected
by links induced by foreign key and other relationships. ehse links are added to the
graph schema. In response to a query, the returned rankexd dsswers constitutes of
small sub-trees, connecting nodes that match the querystelnis suggested that such
trees should help the user understand how the answer wdsettand allow him or her
to further browse the database. The underlying graph schrestuales typed and weighted
edges (reflecting link importance). The answer subtreesaated using a weighted com-
bination of edge weights and node prestige, where prestigefined as the node in-degree.

XRank[56] is a model that applies graph walks for keyword searctrigs over hy-
perlinked XML documents. In their model, the search canrretested XML elements
that contain the desired keywords, rather than full documeithe authors’ goal is to
compute a measure an XML element’s importance, based orygierlmked structure of
XML documents. They suggest applying the PageRank modelentassible moves to
neighboring nodes in the XML hierarchy are also considegethb random walk model
(in addition to following hyperlinks between webpages).

TheObjectRankmodel [7] was the first to apply random walks — specificallyseaal-

31

ized PageRank — to keyword search in relational data modsiggh@dgraphs. In Objec-
tRank, the graph edges are directed and typed; nodes areagpdedsociated with a set of
keywords, derived from the attribute values of the repreesetuple. As in previous works,
for each edge in the graph, an inverse edge is added to thie gthpma. The authors use
an ‘authority transfer’ schema that is set manually, to heitee the weight per edge type.
(The schema is equivalent to the edge weight paran@terour notation.) The authority
transfer rate per each type is distributed uniformly amdrmgautgoing edges of that type
from each node. Given a query, Personalized PageRank grdkb ara applied, where
the reset operation is limited to graph nodes that inclugeqgthery terms as keywords.
The final node similarity scores are a combination of theetateyword-specific scores,
and global node scores, obtained using the PageRank appidaehuthors evaluate Ob-
jectRank using citation records. Our framework is very samib ObjectRank. However,
we allow querying the graph regardless of object types, adsequeries in ObjectRank
(as well as XRank) are limited to terms. Accordingly, textapresented as regular nodes
within the graph (see Chapter 4), rather than being processmarately. In addition, we
are interested in optimizing the similarity measure indliog the graph walk for multiple
different tasks.

Recently, several researchers have constructed specmigyraith typed edges and
typed nodes, engineered to induce an improved similaritgsuee for a particular task,
using graph walks. Pan et-al [105], for example, study tlublem of automatic image
captioning. They have applied Personalized PageRank gragks wo graphs that are
undirected and unweighted, but include multiple types afesoand several edge types.
In particular, the graph constructed includes nodes reptegyimages graphical regions
andterms Nodes are linked due to structural links (image to its gregdhregions of im-
ages, and image to its caption terms), or due to high grapsicalarity. Others have
constructed networks of word-to-word semantic relatiansiprove on the task of prepo-
sitional phrase attachment in natural language proce$$B8®] and query expansion, in
information retrieval [33]. In contrast to these works, graphs that are the focus of this
thesis are ‘general-purpose’ graphs, where data is remezbas a graph with no target
task pre-specified.

In another venue, it has been suggested to adapt the apmfo@mimection graphs [46]
(described earlier) to the relational domain [110]. Thénatg were interested in incorpo-
rating the semantics of different node and edge types indhsiderations for selecting a
response sub-graph. They used a hierarchical ontologyjefiotiasses and relationships,
having each data object associated to relevant classeghi&/evere assigned to nodes
based on class specificity (where high specificity was pre@@r The paths included in
the sub-graph were weighted by parameters such as path rargddition, paths that link

32

instances of classes belonging to different schemas wersidered more informative.
This work is a nice example of a different approach for evagesimilarity in relational
domains. However, the model suggested is somewhat agbiwaile we are interested
in adapting existing graph walk techniques to relationahdgIn addition, sub-graphs
construction as response to queries are not included ithbsss.)

2.4.4 Learning Using Random Walks

There are multiple works in the area of machine learningegking the problem of semi-
supervised clustering using methods that directly applgaor be interpreted as random
graph walks. In the semi-supervised clustering settinygnga graph in which some of

the nodes are labeled, the link structure of the graph iso#egl to infer the labels of the

remaining unlabeled nodes.

Kondor and Lafferty [79] have proposdrbat diffusion kernelsa class of kernels on
graphs for handling discrete structures, where the keaptlces both the local and global
structure of the graph. Diffusion kernels can be regardesl ganeralization of Gaussian
kernels to graphs, in the sense that the continuous limiteat kliffusion kernels on a
two-dimensional grid is a Gaussian kernel. It is also shdvat diffusion kernels are the
continuous time limit olazy random walks The diffusion kernel function is interpreted
as a sum over paths from poxto pointy, namely the sum of the probabilities that the
lazy walk takes each path. Diffusion kernels are applicablg to undirected graphs, as a
kernel function must be symmetric.

Szummer and Jaakkola [129] have applied Markov diffusiarcesses [131] in the
settings of semi-supervised transductive classificatidmere labels are known for only
a small number of the available data points. In their workop@al similarity metric is
used that defines the distance between pairs of adjacertspdihe underlying graph is
undirected, and a node is connected to its k-nearest neaighfloocal distances are then
exponentiated and normalized to obtain transition prdisi) This work appliedazy
graph walks, as self-transitions back to each point areiatdoded. A global similarity
measure between arbitrary two pointandy is defined as thdiffusion probability— the
probability of transitioning fronxtoy in t time steps. (This measure is produced by using a
matrix power, that is computinél!, whereM is the transition matrix including self-loops.)
The association of unlabelled points to the different labgldefined as the expectation
over the diffusion probabilities to the labeled points. Euthors discuss considerations
of choosing the number of walk stepdt is argued (similarly to Tishby and Slonim [131])
that clusters are formed for a finite walk lengttand that the clusters start dissipating as
the graph walk converges. They claim that good choiceisfof classification depend

33

on the problem; for example, if labels change quickly oveakmistances, a smallér
provides a sharper representation. It is therefore praptuzsehoosé that maximizes the
log likelihood of the data. It is also proposed that in casegtaph has multiple connected
components, individudls should be set for each component.

Another approach to semi-supervised learning is based andom field model de-
fined on a weighted graph over the unlabeled and labeledwlaéage the weights are given
in terms of a similarity function between instances [146].this framework, the known
label assignments are fixed, and harmonic energy miniroizagi applied over a continu-
ous state space to label the other instances. In terms otlamawalk, this is interpreted
as a walk starting from an unlabeled node, until the parhitkea labeled node. The mea-
sure used for classification is the probability that theiplat starting from node, hits
a labeled node with label 1. That is, the labeled data is ease absorbing boundary
for the random walk. The solution is an equilibrium statgressed in terms of a hitting
time. The authors point out that using this formulationyéhis no need to tune the walk
lengtht (unlike Szummer and Jaakkola [129]). The resulting clasifn algorithms can
be viewed as a form of nearest neighbor approach, where #residabeled examples are
computed in terms of a random walk on the graph.

A regularization framework that forces the classificationdtion to change slowly on
densely linked subgraphs has also been suggested reaardiyeictedgraphs [144].

Zhou et-al [145] suggested to performranking using the intrinsic global manifold
structure collectively revealed by a very large amount addd hey claim that the rank-
ing problem can be viewed as an extreme case of semi-supeiarning, in which only
positive labeled points are available. In their framewdHhe graph is represented as a
weighted symmetric and normalized matrix, constructedgisi local similarity metric.
Positive scores are assigned to each query node. The quety ffeen spread their score
to their nearby neighbors via the weighted network. A fixedraf the propagated scores
is re-assigned to the query nodes, and the process is rdpedtea global stable state is
reached. The authors show that this variant of random gragksvis equivalent to Per-
sonalized PageRank, where the ranking score of each quegyisakighted according
to its degree. They show that the suggested graph walks areatant to assembling all
paths between two points, and weighting them by a decre&suaoy.

2.4.5 Spreading Activation

The spreading activation (SA) Model is based on supposetiamesms of human memory
operations. Originating from psychological studies [1094], it was first introduced in

34

computing science in the area of artificial intelligence tovide a processing framework
for semantic networks. In this method, “activating” somé@&a a network leads to itera-
tively activating adjacent nodes, thus reaching a broatezbfrom an initial distribution.

There are many ways of spreading the activation over a nkt(@xeview is available
in [35]). In its simple form, SA computes the input sighato nodej as a weighted sum
of the activation levels of the nodesonnected tg:

lj = ZOiWij
]

whereQ; is the activation level of node andwi; is the weight of the link connecting node
i to nodej. The weights may be real or binary values. A node’s activatwel is usually
computed as a function of the input signal:

Oj = f(Ij)

where example functions are the threshold, linear and sgyfmactions. After the node
has computed its output value, it fires it to all the nodes eoted to it. If the edge weights
are binary, this process is often referred toresker passing45].

The result of the SA process is the activation level of nodexmed at termination
time. The interpretation of the level of activation of eadudea depends on the application,
as well as the characteristics of the object being modelatidtynode.

Drawbacks of the described general approach is that theadoth ends up spreading
over all the network. For this reason, and in order to usertf@mation captured in the
edge labels, the following heuristic constraints are oitgplemented:

1. distance constraints- cease SA once reaching nodes that are far (in terms of links
traversed) from the initially activated nodes. It is comntorconsider only first,
second and third order relations.

2. fan-out constraints - cease SA at nodes with very high downstream connectivity
(fan-out).

3. path constraints- spread activation using preferential paths, reflectingaio spe-
cific inference rules. This can be modeled using the edgehigeigy, if links are
labeled, by diverting the activation flow to particular pathhile stopping it from
following other paths.

4. activation constraints - it is possible to assign different threshold levels to each
node or sets of nodes, considering their meaning in the xbafehe application.
This allows implementing various complex inference rules.

35

Since its peak in the eighties, there has been relativélly iesearch activity related to
the spreading activation paradigm in the area of infornmateirieval. A possible reason
for that is that designing and adapting the various comgsanat optimize activation flow
in SA require a substantial manual effort. Furthermore,uth@erlying graphs have to be
often manually crafted as well, for a given domain.

The framework of Personalized PageRank and its variantghadained much popu-
larity in recent years (as described thus far) addressee sbthese shortcomings. First,
the inherent exponential decay over path length implemeeststdistanceconstraint. In
addition, the probabilistic graph walk limits the outgoipgbability mass from a given
node, such that nodes that have high out-degree distritttiéeprobability to their indi-
vidual descendants. This implements a soft version offéineout constraint. Further,
path constraints and the importance (weights) of diffeliekttypes in the network can be
learned, rather then set manually, as will be discussedeiméixt chapter. Finally, while
spreading activation required careful graph design, weiden using relational data, that
is transformed to a graph in an automatic data-driven fashio

2.4.6 Statistical Relational Learning

Statistical relational learning (SRL) concerns the inductf probabilistic knowledge for
multi-relational structured data. Various paradigms afistical relational learning have
been proposed in recent years, including probabilistiati@ial models [51], Bayesian
logic programs [74], relational dependency networks [#grkov Logic Networks (MLNS)
[111] and others. A general review of statistical relatidearning is out of the scope of
this thesis, and is available elsewhere [$2 this section we give an overview of the
Markov Logic Networks paradigm, an SRL model that generalipgte first-order logic
and Markov networks. We then discuss some of the differebeéseen this paradigm
and the graph walk framework.

It has been indicated that small variations in parametaerscaase large variations in
the models learned with ILP (e.g., Relational data min-inthwiductive logic program-
ming for link discovery, Mooney et-al, 2002])

4SRL is closely related to inductive logic programming (ILBh the application of ILP to relational
learning, see for example Mooney et al [70].

36

Overview of Markov Logic Networks.

Markov logic combines first-order logic and Markov netwoi)s attaching weights to
first-order formulas and viewing them as templates for fiestwf Markov networks. In
general, MLNs allows softened first-order logic, wheredaitns in which not all formulae
are satisfied are considered less likely but not impossible.

Formally, a Markov network is a model for the joint distrilmrt of a set of variables
X = (X1,X2,...,%Xn) € X. Itis composed of an undirected gra@hand a set of potential
functionsqy. The graph includes a node for each variable, and the moded Ipatential
function for each clique in the graph, mapping the cliquéitesto a non-negative real
value. The joint distribution represented by a Markov netwe given by:

P(X=x) = % D (PcxXgir)

wherexy, is the state of the k-th clique (comprised of the states o¥/ér@bles that
appear in that clique). The partition function Z, is a sumarabver all possible clique
states.

Markov networks are often represented as log-linear mouagts each clique potential
replaced by an exponentiated weighted sum of features aftéhe. Markov logic assigns
first order formulae (also called clauses or rules) as featuretF be the set of all clauses
in the MLN, w; be the weight associated with claugez F, Gy, € {0,1} be the set of
possible groundings of clausg(1 if satisfied, and O otherwise), adde the normalizing
constant. Then the probability of a particular truth assigntx to the variables irX is as
follows:

1
P(X=x) = - exp 2 Wi g;fl 9(x)

— % exp (f; Wih (x))

wheren;j(x) = Y geG, g(x) is the number of groundings df that are satisfied given the
current truth assignments to the variableXinThis means that the fewer formulas a world
violates, the more probable it is. The impact of each rulestenined by its associated
weight.

37

The main inference task in MLNs involves finding the most jaalke state of the world
given some evidence. In order to perform inference for an Mahe needs to produce
its corresponding ground Markov network. As described byhRidson and Domingos
[111], this is done by including a node for every possibleugiding of the predicates
in the network and an edge between two nodes if they appeathi|gin a ground-
ing of a clause. Network grounding consumes memory expaiantthe arity of the
clauses. For example, Figure 2.3 (taken from [40]) showsgtibend Markov network
obtained by applying an MLN containing the formulas&xSmokex) = Cancefx) and
VxvyFriendgx,y) = (Smoke&) < Smoke§y)) to the constants Anna(A) and Bob(B).

Friends(A,B)

Friends(B,B)
Cancer(B)

Friends(B,A)

Figure 2.3: A ground Markov network obtained for two formatzf arity 2 and two con-
stants

Exact inference in MLNSs is intractable in general. Approatminference algorithms
include MCMC methods (like Gibbs sampling and simulated tenmg). Weighted sat-
isfiability solvers can also be readily applied in theseisgst (such as MaxWalkSAT, a
weighted variant of the WalkSAT). MC-SAT [107] is a methodtthas been shown to
outperform MCMC methods, as it employs WalkSAT to jump bemvesgions of non-
zero probability. In order to alleviate the memory requiests for propositionalizing the
domain, a lazy version of WalkSAT has been suggested, whimlmgls atoms and clauses
only as needed, taking advantage of the sparseness of gtmmel domain (e.g., most
atoms are false) [125]. Using lazy WalkSAT has been showedace memory usage by
orders of magnitude. It is also possible to perform liftegtforder probabilistic inference
in Markov logic [40, 15].

Learning an MLN includes two components: setting the weafheach clause, and
learning the logical clauses (structure learning). Theeetao approaches to weight
learning in MLNs: generative, and discriminative. In gexise learning, the goal is to
maximize the likelihood of the data. Running inference inrgvieration, however, is too
expensive. A more efficient approach is to maximize the pséikdlinood of the data, and

38

its gradient, estimated using the Markov blanket [111]. pheudo-likelihood parameters
may, however, lead to poor results when long chains of infegere required. Discrim-
inative learning can be applied in cases where the queryqated are pre-specified and
the goal is to correctly predict the latter given the evidewnariables. The voted Percep-
tron algorithm for discriminatively learning hidden Markenodels has been adapted to
Markov logic simply by replacing the Viterbi algorithm witddaxWalkSAT, for finding
the MAP state (the most probable state of the query predgiaém the evidence) [124].
A state-of-the-art discriminative weight learner is pneditioner scaled conjugate gradi-
ent (PSCG) [87], which uses samples from MC-SAT to approxirttegeexpected counts
of satisfied clauses for a given model, feeding them into tladignt and Hessian of the
conditional log-likelihood of an MLN.

Regarding structure learning, Kok and Domingos [77] havegested to apply beam
search or shortest-first search over the set of clauses. IRdifsaand Mooney [93] sug-
gested to first construct Markov network templates from th&nd then generate can-
didate clauses from these network templates, adding dydedhe final MLN. Recently,
Huynh and Mooney [138] proposed a discriminative approactténstructing MLNSs, in
cases where the target and evidence predicates are piéezpeklore specifically, they
use a variant of an existing ILP system (ALEPH) to construetrge number of potential
clauses and then learn their parameters by altering egidistriminative MLN weight-
learning methods to utilize exact inference and L1 regeddion.

Markov logic has been applied to problems in entity resohytlink prediction, infor-
mation extraction and others, and is the basis of the operes®Ichemy system [78].

Discussion

The information encoded in the graph can be represented dsoMipgic networks. In
particular, the direct inter-entity relations represerig the graph edges correspond to ev-
idence predicates in MLNSs (e.gent-fronfx,y)). Long range associations between entities
can be modeled in MLNs as rules. (For example, consider tlee VYuvy has-ternix,y)A
sent-tdy,z) = related x,z). There are, however, several crucial differences betwieen t
graph walk paradigm and MLNSs.

First, as mentioned above, Markov network grounding regumemory exponential
in the arity of the clauses. Even with binary clauses, haaitgrge number of constants
can result in several million clauses. In the graph-walkieavork, in contrast, the graph
constructed is compact, as every entity (constant) cooredgto single node in the graph
and the entity interactions are represented by the grapbsedihe scalability challenge
of network grounding is partially addressed by the infeesalgorithm of lazy MC-SAT;

39

however, its efficiency varies for different networks.

Another difference between the approaches is that MLNsiredfe rules relevant to
the domain and problem of interest to be specified in advaiites requirement is related
to the scalability bottleneck, as specifying all possildations is infeasible.) Currently,
manually designing an MLN requires some expertise. Autanstucture learning is an
active research area, which has not yet reached maturitgritrast, learning task-specific
structures (rules) is not pre-requisite in our frameworktidé also that since the relevant
rules are different for each task, a different network isansated in MLNs in each case.
The graph framework, on the other hand, does not encodespaesiific information in the
graph, so that the same graph is used for different tasks.

The expressive power of MLNs is larger compared with our gark, since it can
also model any n-ary relations; the graph representatiotheother hand, only represents
binary relations. On the other hand, the notion of strudtsirailarity is not as well rep-
resented in MLNs. For example, high-degree nodes distitheir probability over many
children nodes in the graph, thus achieving an IDF-likeatffen MLNS, this phenomenon
is not inherently modeled.

An empirical evaluation of our framework and Markov logictwerks for a small
subset of the problems that are evaluated later on in thigtieincluded in Appendix C.

2.5 Summary

In this chapter, we introduced a framework for extractingnalarity measure from struc-
tured and semi-structured data. We represent data asatiriatieled graph, where nodes
denote entities and typed edges represent the relatione®ethem. We take a ranking
approach, where a query includes a distribution over estiigraph nodes), and specifies
the type of entity to be retrieved. A response is a list oftesgtiof the requested type,
ranked by their similarity to the query. As a mechanism faluicing the similarity mea-
sure between nodes, we adopt the Personalized PageRanthatgarhere we apply finite
graph walks. The graph walk propagates similarity to a stade through edges in the
graph—incidentally accumulating evidence of similarityeo multiple connecting paths.
While we apply Personalized PageRank, other graph-walk beesgahts or algorithms
with similar properties could be used as well.

In this thesis, we focus on a graph that naturally modelswuecttred dataset (like an
email corpus). Representing data in full, and avoiding spelta and feature engineering,
allows to process many different classes of queries usiagdme underlying graph. We

40

further defined @gaskas a query class as a particular inter-entity relationshtpe graph.
While we expect the basic similarity measure (PersonalizgkRank, or another base
measure) to be effective in the general case, we are inter@stexploring learning to
improve the results of the graph walk for specific tasks. Thtke topic of Chapter 3.

41

42

Chapter 3

Learning

In the framework, as defined in Chapter 2, multiple tasks caadukessed as queries
using the same graph. fask(defined previously) refers to a particular flavor of inter-
node similarity in the graph. For instance, consider the aiarof email, represented by
the graph schema described in Figure 2.2(c). Concrete erarpltasks in this domain
includeAlias finding where a user is interested in retrieviagnail-addressiodes that are
associated with (that is, belong to) a specific persidmeadingis a different task in this
domain, in which given a particulanessaggthe goal is to recover messages that belong to
the same thread. Another example is gfggson name disambiguatidask, where given

a person name mention in a message, the correspopéisgnnode is sought. These
and other generic tasks in the extended domain of persoioaimation management are
presented and evaluated in the next chapter. Overall, tmdauof different tasks possible
is very large.

A general similarity measure, such as the Personal PageRapk-gvalk based met-
ric, can be applied to different tasks, and produce sintylatores that reflect structural
information in the graph. It is reasonable, however, théiedint similarity notions imply
varying importance for different link types. In other woydss unlikely that a single set
of parameter value® will be best for all tasks. Furthermore, the sequences oé égjoes
(pathg that are traversed by the graph walk in reaching a targes atsb carry semantic
meaning characteristic to the type of relationship betwberguery and target nodes. In
this chapter, we therefore consider the probleneafninghow to better rank graph nodes
for a given task.

The learning approaches discussed include tuning of the eagght parameter®
where several methods exist that learn the edge weight péeasto optimize graph per-
formance [136, 39, 4]. Following prior work, we adapt an etrackpropagation approach

43

[39] to our settings. These weight tuning methods, howeses,local in the sense that
they decompose the graph walk into discrete time stepsttigy ignore the walk history).
We present the concept global learningto improve graph walk performance for a given
task. In particular, we apply reranking in this frameworkivéh ranked lists generated
by a base similarity metric (such as Personalized PageRarlguggest to re-order these
lists using predefined features that describe node pregeriihe feature set can describe
global properties of the graph walk, such as the sequencedgef types traversed in the
route from the source query nodes to a target node. Sincekiagapost-processes ini-
tially ranked lists, it can be readily combined with weighming in a pipeline fashion. In
addition to reranking, we also suggegtath-constrainedyraph walk variant as a method
for specializing the graph-based similarity measure tcsh.tén this graph walk variant,
our goal is to incorporate global information about the grawalk into the graph walk
process. Rather than model the graph walk as a Markovian gspae require that the
random walkers ‘remember’ the paths they traversed at ¢aplothe walk, and consider
varying edge transition probabilities, depending on thiékwastory.

In the rest of this chapter we first describe the learning lerakand settings (Section
3.1). In Section 3.2 we describe the error backpropagatgorithm for tuning the edge
weights, adapting it to finite Personalized PageRank gragpkswd@he reranking schema,
and a set of generic features used to describe graph nodasna of the graph walk, are
described in Section 3.3.

3.1 Learning Settings

In this thesis, we consider supervised learning settingat iB, it is assumed that labeled
example querieg are provided (X i < N) that are instances of a taskf interest. Each
example query specifies a different distribution over nd@ebut the same user intention
(taskt) is assumed in all example queries. In case that the focksgadias finding for
instance, example queries may inclu{aes {term=“William” }, Vc‘ﬁl = {term="Jason’}
and so forth.

Example labeling schem&everal labeling schemas have been suggested in the area
of learning to rank, including absolute scores, where targde probabilities are specified
[137]; ordinal information, where ordinal values are assigjto nodes that represent their
relative relevancy to the example query [18]; and pairwiedenpreferences, sampled
from initially ranked lists [4]. In this thesis, we considebinary labeling scheme, where
the complete set of nodes that are considered as relevaneento an example query
g, denoted afy, is provided. (We will assume that graph nodes that are nuolicetky

44

task ¢t : “alias finding”

/ \

€ € 41
\Y “William™ “Jason”
q
R {wcohen@cs.cmu.edu} {jason@cs.cmu.edu,
jason@andrew.cmu.edu }
N T DN DI SR G S D N DI D S G | B I S T DT D S D D G —
z, scherlis@cs.cmu.edu jernst@cs.cmu.edu \/
z, wcohen@es.cmu.edu J zZivbj@es.cmu.edu
Z; Tom.mitchell@cmu.edu jernst@andrew.cmu.edu J

Figure 3.1: A dataset, generated using initial rankingslgleeled examples for the task
of alias finding. In this task, the queries inclugem nodes, and nodes retrieved are of
typeemail-addressRelevant answers for queey(marked by a checkmark) are the nodes
specified inR;.

included inR; are irrelevant tog.) This labeling schema is adequate for well defined
problems, in which a query corresponds to a finite set of &dranswers”, and other
nodes are considered irrelevant.

Initial rankings. Given are the grapks, the graph walk parameters (walk lend¢h
and reset probability), and some initial graph edge weight paramet@?s We apply
graph walks using these graph parameters to generate adrésikef graph nodes, for
every example querg. The corresponding output ranked list generated per e>xaenid
denoted a$|°. Henceforthz; will denote the output node ranked at rajpkn the ranked
listl;, and Pz; will denote the score assignedzp in the ranked list.

Learning goal.Learning is aimed at improving the initial rankintfs such that nodes
known to be relevant;j € R;, are ranked higher than the irrelevant nodies K jirrer) for
every node pair in the output rankihg that is, we are interested in producing modified
lists l;, in which the relevant nodes occupy the top ranks. As is tlse @dth learning
in general, it is expected that the learned models general improve the rankings
of unseen instances. These instances may correspond tartieeggaph that the labeled

45

examples refer to, or different graphs in the same domain,dther graphs that adhere to
the same graph schema.

Figure 3.1 provides a graphical illustration of a datasesgtof labeled examples)
for the task ofalias finding Every examples includes a query/ci] specifying a person’s
first name, represented ageam in the graph. The goal of the alias finding task is to
retrieve email-addresses that belong to the person rapessby the query. The s&
includes the relevant answers for each qugryFor example, the person whose name is
Jason (represented in the qu¥gy= {tern="Jason’}), uses two out of the email-addresses
that are included in the corpus (grapigrnst@cs.cmu.ed(his department account) and
jernst@andrew.cmu.edhis general student account). The initial rankings geedritom
the example queries (shown in the bottom part of the figuneljf cme of Jason’s email-
addresses at the top ranks in response to this query, butliberelevant email-address
is ranked at the third rank. For another example quvégl'l(: {term=*William” }), the
initial ordering gives the correct answer in the second rafke goal of learning is to
improve the node orderings, such that the correct answ@eaa@t the top ranks, across
all the queries, to the extent possible.

3.2 Edge Weight Tuning: Error BackPropagation

As discussed earlier, the graph edge weight paraméteemn affect the generated graph-
walk based similarity scores (Section 2.2.4). Specificétly parameter®, together with
the graph topology, determine the transition probabditrethe graph (Equations 2.7 and
2.8). Rather than set the edge weights individually, therpatac weighting schema is
based on the assumption that the relations representecebdinks between entities in
the graph have varying degrees of importance in evaluatiteg-node relatedness. It is
unlikely, however, that a single set of parameter valbesll be best for all tasks. We are
therefore interested in adapting the edge weighpser task.

Several methods have been developed that automaticaytieredge weight param-
eters in similar settings, where edge weights are paraimeteby the edge type. We
review these methods in Section 3.6. As an example of thehwé&iging approach, we
evaluate the error backpropagation algorithm due to Diliiget-al [39], applying it to our
framework for graph walks.

The algorithm applies a hill climbing approach, where thadgnt of the weight of
each edge typd,, is derived using the paradigm of error backpropagatioreural net-
works. The target cost function is a squared error functtgpi¢al to backpropagation

46

[113]), as follows:

1 1 1
E=— zerrZ == ZS—(pz— opty2 (3.1)
N VAS SZG 2 ’

whereerr; is the error for a target nodg defined as the squared difference between the
final score assigned by the graph walkp, and some ideal score according to the exam-
ple’s Iabels,szpt. Specifically,pzOIDt is arbitrarily set to 1 in case that the nadis known

to be a correct answer or 0 otherwise. The error is averagedeoset of example nodes
S. (The target nodeS can be sampled from the rankings of multiple queries, inolyd
relevant and possibly irrelevant nodes.)

The cost function is minimized by gradient descent with eespo every edge weight
0., as follows:
oE 1 derr,

9/:9/— —:6/— —_— JR—
v =% Nag, =2 g £ 98,

(3.2)

The derivative of the error with respectf is computed as the summation over each of
the graph walk’s time steps, where the final error is propbbackward, weighted by the
relative contribution of every intermediate node to thelfimade score. Specifically, for
every target node the full set of paths that are traversed in reachifrgm the query dis-
tribution Vy can be recovered bygath unfoldingprocedure, common in neural networks
(e.g., [39]). (We find the connecting paths up to lengtising a concurrent walk from the
query nodes angl up to a meeting point.) Given the set of connecting patlesgérivative

of the errore; is computed as follows:

derr, i opy(t+1)
= (pz— pz") Py,t+1—2zk). — (3.3)
08, ‘ t;) yeUzZ(H 1) 08y

wherek is the number of walk steptl,(t + 1) denotes the set of graph nodes that are in
the set of connecting paths leadingetat timet + 1; and, given that nodgbelongs to this
set,P(y,t +1 — zt) is the total probability of reachingat timek starting fromy at time
t+1.

The derivative of each intermediate nogwith respect to an edge weight is com-
puted with respect to the probability mass attributed tay its parentspa(y), as it is
determined by the ratio of probability transferred/f@ut of the total outgoing probability
of each parent at timg i.e., it is determined by the edge weight parameters, asftgok
in Equation 2.7 That is, the derivative is as follows.

1In case that a different formula is used, such as EquatiqritasSstraight-forward to update the deriva-
tives accordingly.

47

Z?Eny 9[
apy(t + 1) ' 2y ech(x) ZI/’ELX)/ 0y

g = Px(t)
o xepza(y) 90y

(3.4)

Finally, denoting a€ (¢, Lyy) the count of edge typé in the set of connecting paths
Lxy, the explicit derivative is:

C(¢,Lyy)Ox—C(¥',Lyy)0
X

xe pa(y)

where we use the abbreviati@y for the total outgoing weight from node i.e. Ox =
> yech(x) Zé’eny 6, , andch(x) denotes the set of nodes that have incoming edgesxrom

The target function is non-convex, and it is possible thagitadient descent procedure
resultin local minima [90]. Common techniques to overconigpiftfall include executing
multiple trials, using different initialization paramese(@°, here); simulated annealing,
etc. Given the cost function and the gradient, it is also iptesso apply an optimization
package such as LBFGS.

The hill climbing process involves re-computing the rankstby executing the graph
walk) in every iteration. The described weight tuning pcho® may therefore be time
consuming. (The learning time varies across datasetsniergk iteration processing time
shortens drastically with caching.) As we will see, relalyvfew example nodes give
good performance [39]. Most importantly, however, oncesieof weights is learned for
a given task, it can be readily applied to new queries thaingtances of that task, simply
by setting the graph edge weight parameters to the learnigthis®* and performing the
graph walk. That is, weight tuning involves no additionasicim responding to a query,
compared to the basic graph walks.

3.3 Reranking

An alternative approach for improving graph walk performamthat we suggest in this
thesis is learning tee-order an initial ranking. The reranking approach has been used
in the past for meta-search [30] and also for several natangjuage related tasks (e.g.,
[32, 31]). While typically the ranked list of candidates isngeated using local search
methods, reranking can incorporate features which reptegebal phenomena that was
not captured by the local model. Such high-level informai® often useful in discrim-
inating between the top ranked candidates. For examples\aopis work [31] applied a

48

MaxEnt learner to perform named entity tagging; then, reedrhigh-probability annota-
tions using features describing the entity boundariesigi@dl Discriminative reranking
has improved the state-of-the-art results of syntactisipgr using sentence-level features
to describe the high-probability candidate parse treesZ3R

In this section we suggest to apply discriminative reragkio learn to better rank
graph nodes. Unlike weight tuning, reranking allows onednsiderglobal properties of
the graph-walk based similarity measure. In particularywileuse generic features that
describe thgathstraversed in the graph walk from the query distribution targét node.

Next we give an overview of the reranking model. We then psepa generic set of
reranking features that describe the graph walks (Sect®@)3 The computation of these
features, either throughout the execution of the graphsyalkpost the initial graph walk,
is discussed in Section 3.3.3.

3.3.1 Reranking Overview

The reranking model represents each output rjydiaroughm features, which are com-
puted by pre-defined feature functiofis. . ., f,,. Assuming that relevant answer(s) are re-
trieved in the top ranks, reranking often considers onlytdpK candidatesj(= 1, ..., K).
The goal in reranking is to maximize the margin between timglickate that is known to be
the best answer and the other candidates. The rerankintgpradthus reduced to a clas-
sification problem by using pairwise samples [122]. Sevalgbrithms have been used
for reranking, including the Perceptron algorithm and asiants [32, 122] and Support
Vector Machines [121]. In this section we describe in deddloosting approach, due to
Collins and Koo [32].

In this approach, theanking functiorfor nodez; is linear, defined as:
m
F(zj,0) = aolog(pz) + 3 ocfic(zj) (3.6)
K=1

wherea is a vector of real-valued parameters. As shown, this fonatbnsiders alspy;,
the probability assigned tm; by the initial ranker. Given an initially ranked list of a new
test example, it is re-ordered By(z;,a).

To learn the parameter weights the boosting algorithm minimizes the following
exponential loss function on the training data:

li
I j=

49

wherezq is, without loss of generality, a correct target nédEhe weights for the function
are learned with a boosting-like method, where in eachtiterahe featurefy that has the
most impact on the loss function is chosen, agpds modified. Provided that the fea-
tures are binary, closed form formulas exist for calcutatime optimal additive parameter
updates [118].

Other researchers have also applied the voted Percepgonthaim [50] and other
Perceptron variants to learn the weightef the linear ranking function [122, 28].

3.3.2 General Graph-based Reranking Features

We suggest several generic features that describe thetougpas in terms of the graph
walk traversed to reach these nodes. These features avedlémom the set of paths
leading to every candidate node in the ranked list, and tessnpn-local properties of the
graph walk. In particular, we define the following three tyd feature templates:

e Edge label n-grams features indicating whether a particular sequenca efige
labels(n < k) occurred within the set of paths leading to the output nodes.

e Top edge label n-gramsthese features are similar to the previous feature type.
However, here the subset of tBppaths that had the largest contribution to the final
accumulated score of the output node is considered.

e Source court In case that the initial distribution defined by the quergludes mul-
tiple nodes, this feature indicates the number of diffesenirce nodes in the set of
connecting paths leading to the candidate node. This featodels the assumption
that nodes that are reachable from multiple query sourcesiack more relevant to
the query.

Example. Consider the sub-graph depicted in Figure 3.2. Suppose ttaeskeof in-
terest isthreading where given a message, the goal is to retrieve other mesHaafeare
a response to the source message, or otherwise, messagte thpecified message re-
sponds to. For the example quéfy= {msg=m }, the ranked list generated by graph walk
is likely to include the message® andmg at the top ranks, as both nodes are linkedhto
over several short connecting paths. In order to reprekBesetnodes in term of the feature
templates, we first recover the set of paths linking the quarand each node. Overall,
the nodem, is reached over three paths according to Figure 3.2 (thegsatih shown is
assumed to contain all of the relevant connecting pathsy tgngth 2), including:

2|f there arek > 1 target nodes in a ranking, ranking can be split kiexamples.

50

Sent-from
e 1 i
i /A T B
” II Ps
P, \ / P2 \ /
Sent-from Sent-to SanEiiG Sent-to
m, m;

Figure 3.2: An example sub-graph, showing the connectitigsgaetween the nodes,
mp andmg.

sent-to sent- from—inv

m i P1 —
has-term has-term—inv

m — 11 —

sent- from sent-to—inv
m — P2 —

The nodamg is connected tony over three other paths:

sent-from sent- from—inv

m — P2 B
has-term has-term—inv

m — o — mg
has-term has-term—inv

m — i3 —

The representation of the target noaiesandmg as features is shown in Table 3.1. As
shown, the edge n-gram features represent the types of edgerses traversed in the
paths to each node. In the example, the query distributiclidie a single node, and the

source-count feature equals 1 in both cases. The featwegsvan in a binary form, where

features that are not detailed for a given node in the talel@ssumed to be false for that
node. Itis possible to encode quantitative information $ng discretized binary features
(e.g., “source-count=1",“source-count=2"). In case tieatl-value features are preferred,

51

feature type np 3

edge unigrams sent-from sent-from
sent-from-inv sent-from-inv
has-term has-term
has-term-inv has-term-inv
sent-to
sent-to-inv

edge bigrams has-term.has-term-inv has-term.has-term-inv
sent-from.sent-to-inv sent-from.sent-from-inv
sent-to.sent-from-inv

source-count source-count=1 source-count=1

Table 3.1: Feature representation of nose®ndmg, given that the query node sy, the
graph is as described in Figure 3.2 and walk lergth2.

feature weights can denote the count of the edge n-gram segjirethe set of connecting
paths; or, feature weights can also denote the probabiblifssithat was transmitted through
each edge type (unigrams) from the query nodes to the taogiet iexample of the latter
feature weighting is included in Section 3.3.3.

Intuitively, given the features represented in Table 3.&ssagam, is more likely to
belong to the same threadmms, compared withmg. Specifically, the edge sequencesit-
from.sent-to-invand sent-to.sent-from-inare typical of a response to a message, where
the sender becomes the recipient, and vice-versa. Dis@tive reranking is therefore
expected to assign high weight to these features. Noti¢etaaipulating the edge weights
cannot capture this long-range pehnomena. In particliarsequencsent-from.sent-
from-inv includes the same individual edge types, but is less ingeatf a thread, or
email response, at path level.

The given feature set is general, in the sense that it is@gipé to any task phrased
as a query in the graph. In addition to this general featutetise design of additional
task-adapted features may improve performance furtheroda properties of the set of
connecting to the target node can be represented as featugesinformation about the
nodes visited in the course of the graph walk may be usefdddain problems. External
information, which is not included in the graph but consatkrelevant for the task, can
also be added to a node’s feature description.

In the next section, we describe a couple of approaches fapating the reranking
features; either during the graph walk, or as a separategue.

52

3.3.3 Feature computation

A number of features describing the set of paths from theyqdestributionVy can be
conveniently computed in the process of executing the gvegdh. Recall the definition
of the probability of reaching from x over a multi-step graph walkj(z) (Equation 2.6).
The same sort of recursive definition can be used to build epiafe vector that describes
a ranked itenz. First, a vectorf of primitive feature functions that describe the indivilua
edges in a graph is defined. We can define a weighted vectdidarc which aggregates
the feature primitive functions over a walk that starts atlew and walks to node in
exactlyd steps, as follows:

Fo(Z) = 0
Fi@ = 3, (Pix—5y)-fx—5y)-Qy == 2)

whereQ(y iy z) is the probability of stopping ain graph walk originating frony of
lengthd — 1. Finally, we can define:

k
F(2) =y dz (1-y)Fx=2 2 (3.8)
=1

F«(z) can be computed throughout the execution of the graph waitevwwomputingvi(z)

[28]. An algorithm for computing the graph walk and the nodattire vector representa-
tion concurrently is given in Table 3.2. The algorithm congsua distribution over edge
types, weighting each edge by the probability mass that veagiised via that edge en
route to the target node This algorithm can be extended to compute edge bigrams by
recording the set of edge types fronto y (that is, the uniorJ,Lxy) at every iteration,
and using this history in walking fromin the consecutive iteration. (The bigram feature
weights can be replaced by counts, or assigned similarlgde @nigrams in Table 3.2.)
Similarly, n-gram edge sequences can be computed. Therdefatuction may include
additional properties of a path segment, such as the soodetgper(x) etc.

The cost involved in computing the feature function desatiim Table 3.2 is constant
per each node visited. In our implementation, this apprexaty doubles the cost of the
graph walk computation. Maintaining n-gram edge sequeeatifes, however, requires
memory of size¢®|"N.

Alternatively, rather than calculate the feature vectaorghe-fly for every node visited
during the graph walk, it is possible to compute the featgetars only for the togK
nodes retrieved that are to be reranked. Feature extractitns case takes place after
the graph walk is completed. Given the set of connectingspathiich can be extracted

53

1. letVy be the probability distributioN, and letky be an empty distribution.
2. ford=1,...,kdo

e letVy(x) =0 for all x
e for eachx; € Vy_; do

(@) V(%) = Wa-1(%)
(b) Fa(Xi) = YFa-1(x)
(c) for each nodg; € ch(x), £ € Lyy,

— incrementvy(y;) by (1—y)Va_106)Pr(% —— ;)
— incrementFy(y;) by (1—y)Va_1(6)Pr(x —— ;) f(x ——y;)
3. returnVk(z), K(2).

Table 3.2: An algorithm for computing(z) andR(z) concurrently, given transition prob-
abilitiesPr(x, — yJ)

via the path unfolding procedure as described above, irasgsit-forward to derive the
feature values (see example in Section 3.3.2). In thisshess take this latter approach
for feature computation.

Unlike the weighted tuning approach, reranking requir@sesoverhead over the graph
walks. Namely, given new instances of queries, featureovecteed to be computed as
part of query execution, before the applying the rerankimgfion. A main concern is that
while edge labebigramscorrespond to a relatively small space, higher ordgramsmay
translate to large feature space. Given a limited numberofihg examples, this is likely
to lead to over-fitting. In case that high-order n-grams ao®iporated, it is therefore
required to apply techniques such as feature selectiorgafaiezation.

3.4 Path-Constrained Graph Walks

While node reranking allows the incorporation of high-lefehtures that describe the
traversed paths, it is desirable to utilize such infornraticectly in the graph walk pro-

cess, so the quality of the initial rankings produced is onpd. Assume that preliminary
knowledge is available that indicates the probability @faléing a correct target node from

54

the query distribution/y, following distinct edge type sequencemathyg . Rather than
have the graph transition probabilities be evaluated lpchhsed on a fixed set of edge
weights©, the probability of following an edge of tygdrom nodex can then be evaluated
dynamically, given thdistory of the walk up tox. That is, the edge weight® will de-
pend on the random walker history. Performance-wise, ia taat paths carry additional
information compared with individual edges, this shouldbleaeficial as paths that lead
mostly to irrelevant nodes are likely to be degraded in tla@lymwalk process. In addition,
it is straight-forward to apply a threshold, to prune pathithwow estimated probability
of reaching a relevant node in the walk. This can yield sckifalyains, while keeping
performance at a high level.

This section describespmth-constrainedraph walk variant, which implements these
ideas. The algorithm includes two main components. Fitsiddresses the evaluation
of dynamic edge weights, given the history of a walk, basedraining examples. The
second component of the algorithm adapts the random walértsider path history. The
space of path histories [®|, so that a compact representation is required.

In general, the approach suggested is to model paths oblseradraining dataset as a
path tree, where every path is associated with the probabflireaching a relevant target
node following this path, based on the labeled example$. frababilities are propagated
in the tree to obtain estimates of the parame®&fesr various histories of graph walk. In
order to perform a graph walk, which co-samples from the lyrapd the path tree, we
will compactly represent walk histories by associatingeaade visited in the graph walk
with the corresponding vertices of the path tree.

Next we describe in detail the process constructing the tpa¢h and the estimation of
the path tree’s vertex probabilities (Section 3.4.1). Wnttescribe a modified algorithm
of path-constrained graph walks (Section 3.4.2).

3.4.1 Path-Tree Construction

We construct a path-tréeusing the training set dfl labeled queries. Let@dge sequence
p denote a sequence of edge types up to (the maximal pre-deferegthk. For each
training example, we recover all of the connecting pathditeato the topM correct and
incorrect nodes, and extract the corresponding edge segste(The connecting path set
per a single node may include multiple instances of an edgeesee, for different in-
termediate nodes visited.) Lé:;a+ be the count of an edge sequerzw®ithin the paths
leading to the correct nodes, over all exampiesand similarly, letC, denote its count
within the paths leading to the negatively labeled nodebéretxample set. The full set of

55

m R, "'2| -11

[n ; !
/v___* k, +17 -1

\K [+5 -1

m 02 R
0.2 —>

{ ;

Figure 3.3: An example path-tree: path counts (top) andoeeprobabilities (bottom).

edge sequences observed can be represented as a tree vEk@fdhe tree, which corre-
spond to full edge sequences traversed to a target nodessigned a Laplace-smoothed

probability: Pr(p) = % Pr(p) is a (smoothed) maximum likelihood estimate of
the probability of reaching a correct node followipgbased on the observed examples. In
our experiments, we found that better performance is obtkif'C(p) are evaluated using
acyclic paths only (that is, paths where nodes are not iitestls We therefore consider
only edge sequences that are derived from the relevantiag@aths in the graph. In the
rest of this section, we refer to this set of edge sequencpaths from which the tree is

constructed.

Example Consider the graph shown in Figure 3.2, where the quéryis{my}, node
my is considered a correct answer to the query, and megdis an incorrect answer. The
set of paths that lead to each of these node over a 2 step gedblare detailed in Section
3.3.2. As described, there are three unique paths that dethe relevant nodey, where
each path occurs once. Each path is therefore credited ikitive +1 count, as follows:

sent-to sent- from—inv
— — +1
has-term has-term—inv
- — +1
sent-from sent-to—inv
— — +1

The irrelevant nodeng is reached via two unique paths, where one of the paths epeat

56

twice, and is therefore attributed a negative -2 count, boWs.

sent-from sent-from—inv
— — -1

has-term has-term—inv
- - -2
Overall path counts, based on these nodes, are:

sent-to sent- from—inv
—

— +1 O

has-term has-term—inv
R = +1 -2
sent- from sent-to—inv
— — +1 O
sent-from sent-from—inv
— — 0 -1

The count statistics in this case show that while the patstterm.has-term-inkeads to
relevant nodes, this path is relatively ‘noisy’, in the setisat this path also reaches in-
correct responses with relatively high probability. Thefipath statistics per the example
above correspond to a path tree that includes three bramclgsating from the root
(representing theent-tghas-termand sent-fromedge types), and four leaves. The path
has-term.has-term-inwill be associated with a leaf smoothed probability of Ondlicat-
ing the probability of reaching a correct target node ovex plath in the underlying data.
Having accumulated path counts for a sufficient number okspthe count statistics are
expected to represent general phenomena in the graph.

Further, the tree leaf probabilities are propagated baaksva the tree vertices, apply-
ing theMAX operator.

In our experiments, we have also considered a diffea@etragingscheme for esti-
mating vertex probability, where the positive and negatvents at the downstream paths
(leaves)p; from that node were summed (ig,Ca andy C,), and the smoothed ver-
tex probabilities were computed using the cumulative counhe results using thd AX
operator were superior in most cases.

Example.An example path tree is given in Figure 3.3. This path-tretutfes three
paths, constructed from the edge typelk m,n, and their observed counts. According
to the stated counts, the leaf probability correspondinthéopathl.m.k is estimated at
0.2 (3/15), and at 0.9 per the pdth.k. The bottom part of the figure gives the path-tree
vertex probabilities. As shown, at the root of the tree, ttadpbility of reaching a relevant

SInterestingly, in reinforcement learning an agent alseaslthe step that maximizes the future reward
in its path to a goal.

57

Given: graphG, path-treeT, query distributionvy, number of step&

Initialize: for eachx; € Vp, assign a paik root(T),x >

Repeat for stepsk = 0to K:

For each< tj,x > Wk

Let L be the set of outgoing edge labels framin G.

For each |, € L:

Foreach x € Gs.t., X m, Xj, add< tj,x; > to Vi;1, wheret; € T, s.t. m, tj, with probability
Pr(x|Vk) x Pr(lm|ti,T). (The latter probabilities should be normalized with respegt.jo

If t; is a terminal node iiT, emitx; with probability Pr(x;|Vk) x Pr(t|T).

Figure 3.4: Pseudo-code for path-constrained graph walk

answer is estimated at 0.9 (computedvesX(0.2,0.9)) if an edge of typd is followed,
and at 0.75 if an edge of typais selected. We assume that probabilities associated with
edge types not included in the path-tree at a given verter ebo.

3.4.2 A Path-tracking Graph-walk

Given a path-tree, we apppath-constrainedraph walks that adhere both to the topology
of the graphG and the path tre&. Walk histories of each nodevisited in the walk are
compactly represented as paftsx), wheret denotes the relevant vertex in the path tree.
(This means that ik was reached vi& different paths, it would be represented usig
node pairs.) For example, according to the path-tree inrBi§us, suppose that after one
walk step, the maintained node-history pairs inclyd@él), x;) and (T (m),xz). If x3 is
reached in the next walk step from bothandx, over paths included in the path-tree, it
will be represented by multiple node pairs, e(@.(I — n),x3) and(T(m— I,x3).

The pseudo-code for the path-constrained graph walk isagivd-igure 3.4. In the
algorithm, the path-tree probabilities are treated as olyo@dge weights. These weights
are normalized at each node (pair) traversed to generadkttaasition probabilities (fol-
lowing Equation 2.7).

Example.Consider the node paif (¢),x1), where there are outgoing edges framn
of typem, n andk. The effective edge weights for this node-history pair@ge= 0.2 and
6;, = 0.9, according to the path-tree shown in Figure 3.3. The semuehedgeg.k does
not exist as a path prefix in the path-tree, and theredpre 0. Given the modified edge
weights, the graph walk can proceed according to its origiclaema.

Notice that the number of nodes visited in the modified graplkwncreases relative to

58

an unconstrained walk. On the other hand, paths in the ghegplate not represented in the
path tree are pruned. (It is possible, of course, to assignadl probability to previously
unseen paths.) In addition, it is straight-forward to didgaaths inT that are associated
with a lower probability than some threshold. A threshol@® &, for example, implies that
only paths that led to a majority of positively labeled noutethe training set are followed.
Path pruning has a direct effect on the time complexity ofvlaék, reducing the number
of nodes and edges visited.

3.5 Method Comparison

So far, we presented three different approaches for legutninank graph nodes given la-
beled examples and initial rankings generated using gragbk W this section we discuss
the relative strengths and weaknesses of these methodsesitct to key criteria, includ-

ing: the scope of information that can be considered by epplhoach; and the extent to
which each learning method can alter the initial rankingslpced by the graph walk; and,
the differences between the methods in terms of their trygiprocedures and application
requirements during runtime.

Global vs. Local Information.

The graph walk process is strictly Markovian, where the cendvalker does not “re-
member” the history of the walk. In our framework, this metret edge probabilities (or,
edge weights) are fixed over the course of the walk. Similanliearning the graph edge
weights using methods like error backpropagation, thelgveadk is decomposed into sin-
gle time steps, and optimization is performed “locally”.iFbhapter established the notion
of “global” learning in graph walks. The node reranking aggwh allows one to exploit
global properties of the walk, as it can represent inforama#ibout the full paths traversed
to reach a target node. In particular, we suggest featusdsdtscribeedge sequences
traversed over multiple time steps. The path-constraimadrgwalk method embeds high
level information, considering the paths traversed, dlyaato the graph walk.

Overall, reranking is perhaps the “most global” method, @iuthe approaches con-
sidered. In addition to edge sequences, reranking canpocate features that describe
properties of theollectionof paths leading to a node. For example, sberce countea-
ture denotes the number of different query nodes that lintkéotarget node. Similarly,
reranking features can model the number of paths leadingtal@, and other global prop-
erties pertaining to a node connectivity. The path-comsthwalks, in contrast, consider
individual paths and cannot model properties at the patlegek

59

Finally, reranking can also model arbitrary domain-spedédatures, incorporating ad-
ditional relevant information sources that are indepehdéthe graph walk.

Learning Impact.

Learning may alter the graph-walk based initial rankingsarying extents. Next we
discuss the learning methods with respect to their abiitgubstantially change the initial
rankings.

Weight tuning alters the results produced by the graph wRécall, however, that the
graph walk generated rankings are affected also by oth&r&adnvolving the topology
of the graph and properties of the graph walk paradigm (8e&i2.4). For instance, an
exponential decay over the transmitted probabilities diad by Personalized PageRank
graph walk, diminishing the contribution of long walks. Nesdthat are linked to nodes
in the query distribution via short connecting paths argdtoze likely to be assigned
high probability scores and appear among the top ranks abubgut node list. In other
words, we claim that tuning the edge weight parame®engas a limited impact on the final
rankings.

Unlike weight tuning, discriminative reranking is not ctnagned to the graph walk
paradigm, and a ranked list can be significantly alteredgusie re-ranking procedure.
However, for efficiently reasons, reranking is only appliedhe top nodes retrieved. Per-
formance using reranking is therefore limited, as it degemthe quality of the initially
ranked lists. It is therefore desirable to apply rerankingambination with a good initial
ranking function. In particular, reranking may be applieg@ombination with graph walks
that use a learned set of edge weigBts or with path-constrained walks, in a sequential
fashion.

Finally, the path-constrained graph walk variant can aftee output rankings to a
large extent, as it incorporates a bias towards specificsghihing the graph walk. Thus,
nodes that are close to the query nodes, but are so related o¥ation that is not mean-
ingful, for example, will be excluded for the ranked list.\Iéetheless, the path-constrained
graph walks reflect the graph topology. The deviation of thiafronstrained graph walk
result from the initial rankings can vary, depending on tpeli@d threshold.

Method Applicability.

The methods differ in their training requirements, the testulearning, and its appli-
cation to unseen instances.

The error backpropagation weight tuning approach requéeomputing graph walk
rankings in each learning iteration. In addition, sevandependent learning sessions are
recommended, in order to avoid local minima. Weight tunimgréfore needs to be run

60

offline, and may require a relatively long time to train. O tther hand, this method
yields a set of edge weigh@ that is optimized for the given task. Given a query which
is an instance of the same task, the learned set of edge weighdameters can be readily
applied to the graph walk, with no overhead during runtime.

The reranking approach requires only a one-time executigheograph walk. Fea-
tures describing the top graph nodes retrieved are deritteer @uring the graph walk, or
as a separate step, using a path unfolding procedure. Thelmederated in reranking
is a weighted function, which can be readily applied to featectors describing other
instances of the learned task. In terms of training requér@s) a rule of the thumb is that
for discriminative methods such as reranking, the largerffature space modeled, the
larger is the training set required. This generally meaasdbmpared with weight tuning,
we expect more examples to be required using the rerankimgpagh. That is, there is a
trade-off between the methods of weight tuning and rerapkivhere weight tuning can
efficiently learn with very few examples [39], but the fe&t@pace that it can represent is
much more limited, namely, individual edge types.

While learning a reranking function and applying the learneatiel to other feature
vectors are efficient, the procedure of encoding nodes \Wéh feature values adds pro-
cessing overhead to query execution. The additional psougdime is affected by the
types of features used, and the fashion in which they are atedp

The path-constrained graph walk approach is simple anddasdin. Like reranking,
it requires a single execution of the graph walk for the giegample queries, as well as
path unfolding. Unlike reranking, this approach uses thiepaths as features, such that
the step of computing feature values is trivial. Given thihgeee learned for the task of
interest, the constrained graph walks are applied to thenstined graph walks original
schema.

Summary

We conclude that edge weight tuning is a natural learninky &sat is derived from and
applied directly to the graph walk. However, it is limiteddonsidering local information
of the graph walk. In addition, the impact of the graph’s edggghts on the graph-walk
based rankings may be limited in some cases. Path-coredramlks consider global
information about path relevancy, and can have a great ingueihie quality of the output
ranked list. Finally, reranking allows the consideratidrabitrary features, and features
that describe a node by properties of the set of paths thatobit to the query. Reranking,
however, operates only on the top candidates retrieveddgreiph walks; also in response
to a query, reranking requires feature encoding overheditteuthe other approaches.

While node reranking can be used as an alternative to the witiods, it can readily

61

be used as complementary approach, as the techniques catubaly combined by first
adapting the graph walk generated rankings, and then aygpllge reranking model. This
hybrid approach has been used successfully in the pastkslike parsing [32].

3.6 Related Work

We first review general learning techniques previously sstgd to improve graph-walk
based rankings 3.6.1. In Section 3.6.2, we discuss in datglithms that specifically
adapt the edge weight s&t Section 3.6.3 reviews works that consider global features
combination with local search methods (such as the grapk)wad well as methods that
utilize path information in graphs.

3.6.1 Learning Random Walks

PageRank and Personalized PageRank variants find the stgtitistaibution of a reason-
able but arbitrary Markov walk over a network, and do notrifaom relevance feedback.
Several researchers have suggested to learn the link wagtite transition matrix, such
that the authority scores assigned to nodes better reflecpusferences. Chang et-al [24]
applied gradient ascent on the elements of the link matmstacted by the related HITS
algorithm [75], altering rankings to more closely alignkvihe documents that match user
interests. They begin by running HITS to convergence usiagtiginal link matrix. They
then derive a gradient of authoritative webpages with retsjeethe link matrix, and add
a fraction of the gradient to each element of the link matfikis operation not only in-
creases the rank of a given node but also increases the rastkeasfsimilar documents.
The algorithm, however, produced results of varying qualit

It was later suggested to learn the teleport (reset) ventting PageRank algorithm,
to affect node rankings [137]. The input preferences carsidl were formed as either
absolute node scores (where the initial walk scores weengivthe user as reference), or
as node pairwise preferences. The authors applied a gicagragiramming approach to
optimizing the teleport vector, where preferences wereeteatlas linear constraints. In
their work, the teleport vector learned reflects fixed peiees from a data administrator’s
point of view; adapting the reset distribution is redundaraur framework, however, as
it is defined dynamically per query, including the query ro(fequation 2.4).

Agarwal et-al [4] assume a similar setting, where a user hasoo more hidden pre-
ferred communities that the learning algorithm must discoand relevance feedback is

62

given as node-pair preferences. Their goal is to tune thesittan probabilities of the
link matrix. (In their model, teleport transitions are mtmteas regular transitions to a
dummy node, such that tuning of the teleport vector is inetudithin the general tran-
sition matrix.) They present NetRank, an algorithm thatropes the transition matrix
probabilities, such that the final node probabilities ameilgir in terms of KL divergence
to the results of an initial flow, and the given pairwise ramgkpreferences are satisfied.
NetRank does not provide generalization guarantees, argdraieggeneralize well in the
experiments. In a later work [3], a theoretical justificatie given for this approach. The
authors show that minimizing KL divergence between thenedrand reference (standard
PageRank) flows amounts to searching for a smooth scoringidancThat is, it bounds
the probability of the expected loss being very differeniirthe empirical loss for the
considered loss function.

Agarwal and Chakrabarti [3] draw a connection between legrto rank graph walks,
where directed edges denote structural inter-entityioglaf and learning imssociative
networks where undirected edges denote similarity and are weigitedrding to simi-
larity strength. In particular, they analyze a Laplaciarosthing approach [5], applied in
associative networks. The authors argue that in contrastgtacian smoothing, which as-
signs arbitrary scores to nodes, thus inducing all possitie permutations, certain node
orders may be impossible to achieve in graph walks over atédegraph. That is, the hy-
pothesis space of the PageRank model is contained in theltegi®space of the Laplacian
smoothing approach. Preliminary experiments indicatettiia increased bias aids gen-
eralization. The authors also suggest an enhanced appimégdrning in PageRank-like
directed graphs, using additive margin and cost/ranki#semsearning. They show that
this approach compares favorably to Laplacian-based snmgptor directed graphs.

3.6.2 Edge Weight Tuning

Several methods have been developed that automaticaétieredge weight parameters
in extended PageRank models, where edge weighted are dsdowith the relation type
that they represent. Earlier works, including the XRank [&&j ObjectRank [7] models,
experimented with assigning different edge weights, bdisdi manually.

Nie et-al [100] have suggested PopRank, an object-levelinatysis model that ranks
the objects within a specific domain, where relationshipgsvben objects are heteroge-
neous. They apply a simulated annealing algorithm to erplbe search space of all
possible edge weight assignments, with the goal of redutiaglifference between par-
tial rankings given by domain experts, and the ranking pceduby the learned model.
In order to make learning time manageable, they use a subgnape learning process,

63

trading optimality for efficiency. The subgraph used calssi$ a set of concentric circles
with the training objects in the center as the core.

Toutanova et-al [136] have constructed a special graphdieg diverse word-to-word
relationships, describing WordNet relations, morpholbglks and word features derived
from dependency relations. They applied truncated PeligzedaPageRank graph walks
to induce smoothed word probabilities, using these prditiakifor the task of predicting
prepositional word attachment. In their work, the edge Wegarameters of the model
were fitted to optimize the conditional log-likelihood ofetltorrect attachment sites for
a development set of samples, including quadratic regaion. Optimization was per-
formed using a limited memory quasi-Newton method. The @nstihave also experi-
mented with tuning separate edge weight parameters fogrdift nodes in the graph,
defining equivalence classes of states by which the parasneéee grouped. For example,
parameters were binned based on the observed number of woud-ences. However, it
is reported that the simplest model having a single equicaelass across all of the graph
nodes performs on average as well as the more complex models.

Agarwal et-al [4] have presented a hill-climbing approxiioa algorithm adapted for
partial order preferences. They add given pairwise coimésras a violation penalty to the
cost function. The derivative with respect to the weight ale edge type is computed
by applying the chain rule, accompanying the regular PageRarations with gradient
finding steps. It is shown that scaling up the graph size,ithe per iteration scales essen-
tially linearly with the number of graph vertices and edgas) the number of iterations
grows slowly with the size of the graph. Overall, the tragntime is mildly superlinear to
the graph scale factor. The authors experiment also withx@mdlow setting, address-
ing the problem of learning general transition probalettiwhere the edge weights are
non-parametric. They find that since the approximate grailescent approach estimates
a small number of global weights, it can generalize fromnirgy to test instances that
involve completely different nodes, far away in the graphhwa much smaller number of
examples, compared with the latter settings.

3.6.3 Graph Walks using Global Information

The reranking approach has been applied in the past to aywafistructure prediction
tasks, including parsing [32, 31, 25], machine translafiiz8], semantic role labeling
[135] and more. In general, structure prediction problemesusually factorized into a
chain of local decisions in order to apply efficient infereragorithms, such as dynamic
programming. The factorized model, however, can only aersiocal features, and the
maximum likelihood structure predicted is often sub-ogtinin the reranking approach,

64

rather than predict the most likely candidate, theKapost likely candidates are generated
in the search process. These candidates are then evalaested dn global features; i.e.,
properties pertaining to the long range dependencies irptédicted structure. These
features allow the reranking classifier to improve on thealty ranked list, by demoting
candidates that violates various constraints or prefe®itthe subject domain. In the
problem of semantic role labeling, for example, a hard qanstis that arguments cannot
overlap with each other or the predicate, and a soft comstimthat a predicate have no
more than one AGENT argument [135].

To the best of our knowledge, we are the first to consider ¢feladures in graph-walk
based induced similarity measures in general. In particwa are the first to suggest
reranking to improve rankings of graph nodes, using feattirat describe global proper-
ties of the paths traversed.

Researchers have pointed out that the performance of theknegeapproach is bounded
by the quality of the top candidates reranked. Rather thaly dyggh-level constraints to
the results of a localized search, it is therefore desiretsider such constraints earlier,
in the inference process. Several previous works suggesbeléls that incorporate high-
level constraints in the inference procedure, tailoredsfuecific problems. For example,
Punyakanok et-al [108] apply an inference procedure bas@ueger linear programming
that supports the incorporation of structural constrdmtshe semantic role labeling task.
Instead of predicted a structure, they predict the localmmments of the structure (verb
arguments), using classifiers that emphasize high recdie iiference procedure then
takes confidence scores assigned to each individual compasenput, and outputs the
best global assignment that satisfies the high-level caings: Specifically, they apply in-
teger linear programming to reason about the global as®gtsnin another recent work,
Huang [64] proposeforest reranking a method that reranks a packed forest of exponen-
tially many parse trees. Since exact inference is intréetalith non-local features, he
presents an approximate algorithm inspired by forest résgoln the proposed approach,
non-local features are computed incrementally from bottgmthat is, as early as possi-
ble (‘on-the-fly’). The decoder can then consider this infation at internal nodes of the
parse tree generated. The path-constrained graph wabnvaiggested in this chapter
applies a similar idea. Rather than compute the graph walkNarkovian process, the
algorithm allows the edge weights parameters to be detedvby path information, built
incrementally as the graph and the path-tree are travemediorently. To our knowledge,
the approach of using path information as guidance witherfrdamework of random graph
walks is novel.

Other researchers have considered path information isitlasy relations between
pairs of objects connected over individual structureshsag entities that co-appear in

65

a sentence dependency tree [127]. In particular, rich featgets were proposed that
describe these paths [36, 17]. The approach of discrimmaéranking similarly incor-
porates path information as well as arbitrary feature $gigen that individual structures
are represented within a combined graph, the graph walkeinark allows taretrievethe
most related entities over relevant paths, rather thamuatahb large space of entity pairs.

Finally, path constraints are often used in the spreaditigagion paradigm (see Sec-
tion 2.4.5) in order to eliminate probability propagationrrelevant areas in the graph. In
spreading activation, path preferences are coded manaathenforced deterministically.
We use learning to obtain path information, and apply padkuies probabilistically.

3.7 Summary

We presented three approaches for learning to adapt thla grag based similarity mea-
sure for a given task. The first approach is weight tuning, revlvee adapted an error
backpropagation hill climbing method to our framework oftérgraph walks. The second
approach is reranking. We presented a set of general feghatencode high-level prop-
erties of the paths traversed in the graph walk. While addilispecialized features can be
designed per task, the basic set of features proposed capledio any task, as it repre-
sents long-range relationships between entities in thehgrda practical settings, however,
only the top nodes retrieved by the initial graph walks candsanked. It is therefore de-
sirable to incorporate global features in the initial rangkprocess. We therefore suggested
a novel graph walk variant, in which edge probabilities depen the history of the walk.
The proposed algorithm represents walk history efficiening a compact path-tree, in
which edge weights are derived based on path informationh Bwanking and the path
constrained graph walk methods can be combined with weighig. In the future, we
would like to enhance this model by learning the edge prditialsi using a richer set of
features.

66

Chapter 4

Case Study: Personal Information
Management (PIM)

In this chapter, we evaluate personal information managéeasea case study of the graph
walk and learning derived similarity measures. We sugggseisenting personal informa-
tion as a graph (extending the toy examples given earliag,vell evaluate a variety of
related tasks. Some tasks have been studied before, andaskaare novel.

There are several motivations for applying our frameworlkhis domain. Personal
information, such as email and meeting entries, impliagi#gresent social network infor-
mation, textual content and a timeline. Obviously, thera dose relationship between
these components of information. For example, persons @egswcontact list may be
related by being part of one social “clique”, as derived bynapée analysis of header in-
formation in an email corpus [63, 62]. In addition, they canrblated via common key
words that appear in the relevant correspondence in thel eoraius [89]. Such inter-
personal relatedness is also tied to a time dimension. herefore desired to combine
multiple relevance measures to utilize the multi-facet@drmation that is included in
personal information source for related applications asttd. Using graph walks, these
multiple email-related aspects of information can be iraezsd.

Another motivation for using graph walks is that the grapmmisdular, and can be
easily extended to include various entity types. For exampeé combine meeting entries
in the graph. We also consider a notionaativity, represented by an email folder.

As shall be shown, since the graph representation is noteetiio task-specific fea-
tures, we will use the same underlying graph to perform pigltilifferent tasks. We eval-
uate the extent to which learning can further enhance thehgnaalk generated similarity

67

v Has-term
““—'-'-—+ William
X°

"William — proposal
W.Cohen” \\
| S

K 6/17/07
e 6/18/07

"Einat I
Minkov' | |

einat@cs.cmu. edu

Figure 4.1: A joint graph representation of email and messtidata

measure per the specific task of interest.

This chapter is organized as follows. We first discuss theesgmtation of personal
information as a graph. We then present the set of email aslsated, and their corre-
sponding representation as email queries. Experimergaltseare then given for all tasks,
where both base graph walks and the learning techniquesateated. For each task, the
graph-based results are also compared against relevaeiiness The chapter concludes
with a discussion of related works, and a summary.

4.1 Email and Meetings Graph Representation

A graph example including both email and meeting objectavergin Figure 4.1. The
corresponding grapschemas detailed in Table 4.1. The graph representation nagurall
models an email corpus in the sense that it forms a direculagbthe information in-
cluded within the corpus. The graph entities correspondijeats of typesnessageand
terms as well asemail addressegersonsanddates Directed graph edges represent re-
lations like sent-from sent-toandon-date As shown, we distinguish betwedras-term
and has-subject-ternmelations. In addition, in the suggested schema, a persda %0
linked to its constituent token values with an “as-term” edd@imilarly, terms that are

68

source type edge type target type

message sent-from person
sent-from-email email-address
sent-to person
sent-to-email email-address
on-date date
has-subject-term term
has-term term

meeting attendee person
attendee-email email-address
mtg-on-date date
mtg-has-term term

person sent-fronr? message
sent-to! message
attendee?! meeting
alias email-address
as-term term

email-address sent-to-emait® message
sent-from-emait! message
attendee-email meeting
alias™t person
is-emailt term

term has-subject-termt message
has-ternm? message
mtg-has-term? meeting
is-email email-address
as-term! person

date on-date® message
mtg-on-date?! meeting

Table 4.1: Email and meetings node and relation types. i($evedge types are denoted

by a superscript.)

69

identified as email-addresses are linked over an “is-eradijje type to the corresponding
email-addressiode. In some of the experiments described in this chapeehave added
a “string similarity” edge type, linking email-addresses\vhich the evaluated string sim-
ilarity score is higher than a threshold. It is straightfard/to add other information types
available; e.g., organizational hierarchy inter-persoslations, if given, etc.

Given a graph that includes email informationeetingobjects can be easily incorpo-
rated to create a graph representing both email and meefmgration. In particular, we
assume that a given meeting includes attendees’ informét@ames, or email-addresses),
text describing the meeting (e.g.,"Webmaster mtg, 3305)M8&t a date. One can imag-
ine a richer setting where meetings are also linked to lotgéds, files, web URLS, etc.
Evidently, related email and meeting corpora have manyiestin common: namely,
persons and email-addresses, terms and dates. It is tteestfaightforward to join the
two information sources. In the combined grapmeetingwill have a connecting path
via term anddatenodes tomessagéiles, for example. Many tasks can benefit from the
combined representation of messages and meetings. Fandestrelevant messages (or
other potentially included entities, like papers and pnéstgons), can be retrieved as re-
lated background material for a meeting in this frameworknilarly, the social network
information embedded in emails may be enhanced given ngeetiormation. That is, if
meetings in the graph are linked to known attendees, theke thay provide additional
knowledge about persons’ relationships, complementiegstitial network derived from
email files.

Finally, we also suggest to embadtivitiesin the graph. While user activities are of-
ten implicit, they can be represented in the graph as exitities. Many user-created
foldersfocus messages related to a project activity, for exampbédef structure can be
extracted from the corpus, whef@der-messagassociations are given. Recently, there
is an increasing interest in activity-based interfacesrianaging information at the desk-
top [12]. Such interfaces may provide additional evideregarding activities and their
relations with other entities.

4.2 PIM Tasks as Queries

The suggested framework can be used as an ad-hoc contegaurah glatform, given
email, meetings and other relevant information represkeasea graph. The data included
in the graph may describe personal information, in whicleéasan be used to serve one
personal data search and consolidation needs; or, it matg itel organizational-level data,
where cross-organizational information is available &grieval and analysis.

70

task Vq Tout
Person name disambiguatiorterm(name mentionj+file) person

Threading message message
Finding meeting attendees meeting email-address
Finding email aliases term/s(person’s name) email-address
Message foldering message folder
Message tracking folder message
Activity-person Prediction activity/folder email-address

Table 4.2: Query realizations of the considered tasks

The framework is general, and many query and search typegsoasble. One can
search for similar or related items to a set of objects ofrggtusing this the framework
(e.g., “show persons names that are related to pdPSpmlternatively, a user can search
for a specific item, using loose associations (e.g., “shave¢hemail-messages that are
related to ‘Jenny’, around ‘March 1’).

In this section, we will show that many email-related tasidsich have been treated
separately in the literature, can be addressed uniformijuases in the suggested frame-
work. As previously defined (Section 4.2)taskis aquery classfor which a particular
type of similarity or association between objects is soudtdr example, in the task of
threading a user (human, or an automatic email processing agent} lfmskmessages
that are adjacent to a given message in a thread. Given therdenples, learning can be
applied to adapt the graph-based similarity measure fdr &esk.

Following is a description of the tasks evaluated in our caisdy. Table 4.2 shows the
corresponding query representation for each of these.tasks

Person Name Disambiguation.

Consider an email message containing a common name like éridideally an intelli-
gent automated mailer would, like the user, understandiwpérson “Andrew” refers to,
and would rapidly perform tasks like retrieving Andrew’farred email address or home
page. Resolving the referent of a person name is also an iamga@amplement to the abil-
ity to perform named entity recognition for tasks like sbciatwork analysis or studies
of social interaction in email. However, while the referehta name mention is usually
unambiguous to the recipient of the email, it can be nonatriior an automated system
to find out which “Andrew” is indicated. Automatically deteining that “Andrew” refers

1The latter query can be supported if links are drawn betweeximate dates.

71

to "“Andrew Y. Ng” and not “Andrew McCallum” is especially diffult when an informal
nickname is used, or when the mentioned person does notrdppika email header. This
problem can be modeled as the following search query: giviennathat is identified as

a name-mention in an email messageretrieve a ranked list gbersonnodes. Assum-
ing that the identity of the messageis available, one a contextual query can be phrased,
which includes both the name mention anditiessag@ode, adding valuable information
for name disambiguation.

Threading.

Threadingis the problem of retrieving other messages in an email thgdzen a single
message from the thread. Threading is a well known task failers has been pointed
out [84], users make inconsistent use of the “reply” mecdraniand there are frequent
irregularities in the structural information that indieatthreads; thus, thread discourse
arguably should be captured using an intelligent approltias also been suggested that
once obtained, thread information can improve messaggaagation into topical folders
[76].

As threads (and more generally, similar messages) areaitedidoy multiple types of
relations including text, social network information, atihing information, we expect
this task to benefit from the graph framework. We formulatedking as follows: given
an email file as a query, produce a ranked list of related efires. We consider the
immediate parent and child of the given file to be “correctwaars for learning.

Finding Meeting Attendees.

Having meetings embedded in the graph, one can leveragaftimmiation included in both
the email and meeting corpora to assist in meeting managei@pacifically, we assume
that a given meeting is associated with a text descriptiome €an apply a search query
starting from a meeting node, looking for relevant emailraddes. A returned ranked
list of such addresses can be utilized semi-automaticadlgisting the user in the task of
identifying relevant recipients to include in the meetingitation or update notifications.

Finding Email Aliases.

Consider the task of automatic assistance in finding a personail-address. A typical
email user often needs to retrieve email-addresses fromr isr address book. In some

72

cases, thisis done by searching for a message with the desioemation in the header. In
the graph walk paradigm, this information can be retrievedylerying a person’s name,
searching for relevant email-addresses. The user mayda@iher a person’s full name,
as a set of terms, or the person’s first or last name only. Ter Isetting may be faster
and more convenient for an end user, and can be used also wAsenia not certain about
the full name.

Message Foldering and Tracking.

Email, as well as other entities at the work station inclgdmeetings, files and directo-
ries, correspond to different facets of underlying usetivities which evolve over time.
we consider the task of associating email messages torexisser-created folders which
denote an activity or a project, and vice versa. While not @llidrs pertain to a co-
herent activity (for example, a “sent-items” folder holds eclectic collection of email
messages), folders are often used to tag a collection ofagesselated by an underlying
activity, such as a project or a recurrent activity (e.cayét). We addactivity nodes to
the graph schema, which correspond to such folders. Thetesraye linked to the email
messagethat are tagged with each folder. Foldering has been studidte past, with
the goal of classifying an email message to a single releedaher [119, 9, 61]. We are
interested in a scenario where a user may be interestedaoiassg a message toultiple
relevant folders. (Multi-tagging is supported, for examy the populagmail applica-
tion.) For example, a user may be interested in tagging aagedsoth with the relevant
project folder and with a general “recruiting” folder. Ukgi many previous works, which
classified email messages to a single relevant folder, weoapb this task as enking
problem. Suggesting a ranked list of folders to the useraappnultiple choice, where it
is desired to have the most relevant folders placed at thefttye list.

In addition to the foldering task, we consider the inversebgm, namelymessage
tracking, which did not get previous attention. Consider a scenariere/a user tags most
messages with the relevant folder but happens to skip sorssages. Once this user is
interested in retrieving a specific mistakenly untaggedsags, he will not be able to find
it in the relevant folder. The task of folder-message ragkian be useful in such settings,
as well as in the general case, where messages related tbcalpaactivity are sought,
while they may have been associated to other folders. Wesphhas task as a query that
specifies dolder of interest, where the entities sought are of typessage

73

Predicting Person-Activity Involvement.

We consider a novel (and ambitious) task, where we seek ttighneersons that are to
get involved in the future in an ongoing project activitypresented by a folder in an
email corpus. While finding experts [8, 106] and recommendaugpients [22] relies on
evidence observed in the past, the prediction of futureli@ment of persons from the en-
terprise in an ongoing project may depend on the dynamidsegbttoject and other factors
that are unknown within the email corpus alone, and possiatyg to predict in general.
Nevertheless, it is reasonable that some of the people tilaget involved in a project
can be predicted based on observed email correspondenedadihof person prediction
for an activity may be valuable to an organization, as it meympte early involvement
of relevant individuals in a project. We phrase this task gsiery that includes &lder
representing an ongoing activity, where the entitieseett are of typemail-address

4.3 Experimental Corpora

We experiment with the following corpora.

Management gameThis corpus contains email messages collected from a manage
ment course conducted at Carnegie Mellon University in 198]. [In this course, MBA
students, organized in teams of four to six members, ranlatedicompanies in different
market scenarios. The corpus we used in our experimentgesithe emails of all teams
over a period of four days.

Enron. The Enron corpus is a collection of email from the Enron cerhat has been
made available to the research community [76]. This corjaushe easily segmented by
user: in the experiments, we used the saved email of sevierledt Enron users. To
eliminate spam and news postings we removed email files sentdmail addresses with
suffix “.com” that are not Enron’s; widely distributed emfliés sent from addresses such
as “enron.announcement@enron.com”; emails sent to tighleyees@enron.com” etc.
We also removed reply lines (quotes) from all messageshésame reason.

Meetings.This corpus contains a subset of William Cohen’s email andtimgéles.
The email files were all drawn from a “meetings” folder, ovetime span of about six
months. In addition, we use all meeting entries (as maiathin a “Palm” calendar) for
the same period. The information available for the meetilgg fis their accompanying
descriptive notes as well as the meeting date. The meetites rigpically include one
phrase or sentence — usually mentioning relevant persoesigmnoject name, meeting
locations etc. The list of attendees per meeting was natdead in the constructed graph.

74

Personal.This is a collection of email messages sent and receivedebguthor.

The statistics of corpora size and their graph representtire detailed per experi-
ment below. For all corpora, terms were Porter-stemmed topivgords were removed.
The Enron corpora, the Management game and the Personaraaape of moderate
size—representative, we hope, of an ordinary user’s dutleof saved mail. The Meet-
ings corpus is modest in size. In general, this frameworkishmenefit from larger corpora
that may be less sparse in text and have a richer link streictur

The processed Enron-derived corpora used in the expesnaeatavailable from the
author’'s home page. Unfortunately, due to privacy issuesManagement game, Meet-
ings and Personal corpora can not be distributed.

4.4 Experiments and Results

There are currently no available annotated email corparavaluation of email-related
queries. Thus, a key property of the evaluated tasks is thahaubjective correct answer
set is constructed per query. This section describes theriexgnts conducted per the each
of the tasks defined above.

For every task, we evaluate performance using graph waltksuniformedge weights
O, i.e., 0, = 6,,V/¢ (denoted as Gw:Uniform), and also for graph walks where tlgee
weights have been tuned (Gw:Learned). In order to avoid lmdaima in learning the
graph edge weights using the gradient procedure, we idtitdte learning process from
five randomly selected set of edge weights, and picked thghigiwhich yielded the
final best results on the training sétsurther, in all experiments we applied reranking
on top of the uniform-weighted graph walk results. For ev@tgmple, the top 50 nodes
have been reranked (denoted as 'Rerank’), and both train ewrelagpment set examples
have been utilized in training the reranking model. Findtly the path-constrained graph
walk variant, path trees were learned using the train andldpment sets, where the top
positively and negatively ranked labeled nodes were censdd In general, the number
of negative examples was limited to the number of positiengxe available, so that the
constructed path trees are balanced.

In all of the experiments reported in this chapter we appieglset probability = 0.5.

Statistical significance in comparing performance of th@owes methods was obtained
using a two-sided Wilcoxon test [82], at significance levied$%.

2\We found that the error function and MAP are well-correlated

75

corpus dataset
files nodes edgestrain dev. test

M.Game 821 6248 60316 20 25 61
Sager 1632 9753 112192 15 12 35
Shapiro 978 13174 169016 15 10 35

Table 4.3: Person disambiguation corpora and datasetdetai

For every task, the specific experimental settings and efstase presented. Results
are given for graph walks and the various learning techrigas well as for relevant
baselines. We discuss the results and derive conclusionsdach experiment regarding
the framework.

4.4.1 Person Name Disambiguation

As described in Section 4.2, in the person name disambmutdsk we are givent@rm,
which is known to refer to a person’s first name. The goal is tioeretrieve a ranked list
of entities of typer =person such that the relevant person appears at the top of the list.

Datasets

Unfortunately, building a corpus for evaluating the pers@ame disambiguation task is
non-trivial, because (if trivial cases are eliminated)edetining a name’s referent is often
hard for a human other than the intended recipient. We etalils task using three
labeled datasets, as detailed in Table 4.3.

The Management game corpus has been manually annotatgulesstimal names [96].
Along with the corpus, which contains correspondence baetvteams of students partic-
ipating in a management game, there is a great deal of int@mmavailable about the
composition of the individual teams, the way the teams adgrand the full names of the
team members. Based on this information, we manually lad€léatases in which single-
token names were mentioned in the the body of a message thabtimatch any person
name included in the header. In addition to names that refpetple that are simply not
in the header, the names in this dataset include peoplerénat éact in the email header,
but cannot be matched because they are referred to diffgtéan their formal names.
Overall, the types of name mentions identified include:

e initials—this is common in a message sign-off;

76

initials nicknames other
M.Game 11.3% 54.7% 34.0%

Sager-E - 10.2% 89.8%
Shapiro-R - 15.0% 85.0%

Table 4.4: Example person name type distribution per datase

e nicknamesincluding common nicknames (e.g., “Dave” for “David”), common
nicknames (e.g., “Kai” for “Keiko”); and, American namesathwere adopted by
persons with foreign-language names (e.g., “Jenny” fongi.

e other— other name mentions labeled are regular first names, nmextio the body
of the email message, while not being included in the sendexaipient list.

For Enron, two datasets were generated automatically. @tasets correspond to cor-
pora drawn for two Enron employees: Sager and Shapiro. Esetborpora, we collected
name mentions which correspond uniquely to names that atteeiemail “Cc” header
line; then, to simulate a non-trivial matching task, we éhated the collected person
name from the email header. We also used a small dictionaty @ommon American
nicknames to identify nicknames that mapped uniquely toplilson names on the “Cc”
header line.

Table 4.4 gives the distribution of name mention types flad@asets. For each dataset,
some examples were picked randomly and set aside for tggamd development purposes
(see Table 4.3).

Baseline: string similarity

To our knowledge, at the time this experiment was condudtezie were no previously
reported experiments for this task on email data. (Therghawever, a concurrent and
subsequent works, which are included in the discussionate@research.) As a baseline,
we applied a reasonably sophisticated string matchingmadd29]. Each name mention in
guestion was matched against all of the person names in thasoThe similarity score
between the name term and a person name was calculated aaximeainJaro similarity
score [29] between the term and any single token of the pats@me (ranging between
0to 1). In addition, we incorporated a nickname dictiongsych that if the name term is
a known nickname of the person name, the similarity scorbaifgair is set to 1.

3The same dictionary that was used for dataset generation.

77

M.game

T
[S]
(7]
x
0.2 | — 0.2 | —
0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Rank Rank
Sager
T T T T
T) T)
[S] (8]
(7] (7]
x i o i
0.2 | — 0.2 | —
0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Rank Rank
Shapiro
1 T T T I///] T T 1 T
o8f . 08 | - g
String match ——
= 06 . = 06 Gw:Uniform -------- -
IS) g Gw:Learned
9 P ; 9 . k
o : String match | o 3 reran |
0.4 Gw:Uniform(T) 0.4 PCW --------
Gw:Uniform(FT) --------
0.2 | — 0.2 | —
0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Rank Rank

Figure 4.2: Person name disambiguation test results: Ractdlé top 10 ranks, for base-
line and plain graph walk, where the query includes a terny ¢@w:Uniform(T)), or
term and file (denoted as Gw:Uniform(T+F)) (left); and fdrrakthods using contextual
queries (T+F) (right).

78

MAP Accuracy
T T+F T | T+F

Cspace
String sim. 0.49 - 0.33 -
Gw: Uniform weights| 0.68 | 0.65° | 0.53| 0.44
Gw: Learned weights| 0.6 | 0.67 | 0.46| 0.48
Gw: Path constrained 0.64° | 0.65 0.53] 0.46

Gw: Reranked 0.75" | 0.85" | 0.66 | 0.77
Sager-E
String sim. 0.68 - 0.39 -

Gw: Uniform weights| 0.83 | 0.67 0.74 | 0.49
Gw: Learned weights| 0.82 | 0.81" | 0.74| 0.71
Gw: Path constrained 0.8 | 0.76" | 0.71| 0.63

Gw: Reranked 0.87 | 0.82" | 0.80| 0.71
Shapiro-R
String sim. 0.61 0.39

Gw: Uniform weights| 0.78 | 0.61 0.71| 0.40
Gw: Learned weights| 0.78 | 0.80°" | 0.71| 0.71
Gw: Path constrained 0.76° | 0.62 0.69| 0.43
Gw: Reranked 0.76 0.78" | 0.69 | 0.69

Table 4.5: Person name disambiguation results: MAP andacguThe columns denoted
as “T” give results for queries including the relevaatm node, and the “T+F” columns
refer to queries that include botkerm and file information; thex sign denotes results
that are statistically significantly better (in MAP) tharetbaseline (String sim.), and the
+ sign marks results that are significantly better than graplk wsing uniform weights

(Gw: Uniform).

The results are given in Table 4.5, listing MAP and accurasylts. (These and other
evaluation measures are described in Appendix B.) In addiE@ure 4.2 shows the aver-
age recall at every rank down to rank 10. As shown, the basafwproach is substantially
less effective for the Management game dataset. Recalhbdlanagement game corpus
includes many nicknames that have no literal resemblantieetperson’s name — these
cases are not handled well by the string similarity appro&oin the Enron datasets, string
similarity performs very well since lexical similarity wased in automatically generat-
ing the dataset. In all the corpora, however, there are amhbiginstances, e.g., common
names like “Dave” or “Andy”. In these cases string simikamatches the name mentions
with multiple people with equal strength. This results iwéos recall at the top ranks.

79

Graph walks

We performed two variants of graph walk, corresponding tiedint methods of forming
the query distributiovy. In the first variant, we concentrate all the probabilitytie fjuery
distribution on the name term. In the other graph walk varigpis a uniform distribution
including the name term and the relevant message node. lnchses, the length of the
graph walks has been set to 2.

Using thisterm graph walk variant, the name term propagates its weightdartbas-
sages in which it appears. Then, weight is propagated tmpersdes which co-occur
with these files. Note that in our graph scheme there is atdoah between terms to
person names (via thes-termrelation), so that person nodes may receive weight via this
path as well. The column labeled “T” in Table 4.5 gives theiltssof the graph walk from
theterm probability vector, and Figure 4.2 (left column, Gw:UnifofT)) shows recall at
each rank, down to rank 10. As can be seen in the results, #phgvalk performance
is preferable to string matching. For example, the graplkaaturacy is 52.5% for the
management game corpus, vs. 32.5% using the string matappr@ach. More drastic
improvements in accuracy are observed for the Enron corprotarms of MAP, the graph
walks are significantly better than string matching. Howgthgs graph walk variant does
not handle ambiguous terms as well as one would like, as teg/gloes not include any
information of thecontextin which the name occurred: the top-ranked answer for am-
biguous name terms (e.g., “Dave”) will always be the samsqgrefwhere well-connected
nodes get ranked higher).

We found that adding the file node ¥y provides useful context for ambiguous in-
stances — e.g., the correct “David” would in general be rdrtkgher than other persons
with this same name. Indeed, as shown in Figure 4.2 (left @awtUniform(T+F)), this
contextual search yields recall improvements comparedrto-bnly queries, leading to
nearly perfect recall at rank 10. On the other hand thougtingdthe file node results
in attribution of probability score to nodes that link to thie node but not to théerm
node. Adding the file node to the query therefore adds noiteetoutput ranking. This is
reflected in the lower MAP and accuracy evaluation scorei dfortcoming is addressed
in this case using learning.

Learning

Weight tuningWe learned the graph edge weights using the error backpatipagnethod
(denoted as Gw:Learned). We applied learning to each capparately. Edge weight
learning resulted in a comparable performance taténerquery graph walks using uni-

80

form weights in all cases. However, learning the weightsificantly improved perfor-
mance for the contextual search (T+F) for the two Enron a@pdés described earlier,
the Enron datasets were created using a simpler automatiequre. We conjecture that
the difference in weight learning performance between theagement game and Enron
corpora is due to the difference in name mention distrimgtiGand consequently, due to
different connectivity patterns).

Reranking. For re-ranking, we applied thedge bigramand source counfeatures,
as described in Section 3.3.2. We also fornséthg similarity features, which indicate
whether the query term is a nickname of the candidate peraoremetrieved (using the
available small nicknames dictionary); and whether the danilarity score between the
term and the person name is above 0.8. This information idasito that used by the
baseline ranking system.

As shown in Table 4.5 and in Figure 4.2, reranking substiytiaproves perfor-
mance, especially for the contextual walk. While the basplgvealks yielded high recall,
but incorporated noise at the top ranks for the contextuatigs, the discriminative model
learned allowed to rerank the nodes such that noisy nodes @esnoted. In particular,
high weights were assigned to the string similarity featwaed thesource counfeature.
Both types of information assist in eliminating the “noisaledto the query file node in
the contextual search.

Overall, as shown in Table 4.5, reranking gives the bestiteefar two of the three
datasets, including the harder management game dataseinkiRey results are signif-
icantly better than the base graph walks with uniform weightthe contextual search
settings, for all datasets. The right part of Figure 4.2 shoevanking results, compared
with the other methods, for the contextual search case.

Path constrained walksPerformance of the path constrained graph walk variant was
generally comparable base graph walks with uniform weighAtsexception is the Sager
dataset, for which the PCW method significantly improvedIts$ar the contextual search
settings. We conjecture that rather than a small numberefigtive paths, the person
disambiguation problem is characterized by a combinatiotweak” noisy paths (i.e.,
paths that lead to both correct and incorrect answers atrhtghk). Unlike reranking, string
similarity or the high-level information considered by thaurce-counfteature could not
be modeled in the path constrained walk approach.

81

corpus dataset
files nodes edgestrain dev. test

M.Game 821 6248 6031 20 25 80
Farmer 2642 14082 203086 22 23 93
Germany 2651 12730 158484 24 21 42

Table 4.6: Threading corpora and dataset details.

4.4.2 Threading

In the thread recovery task, as discussed in Section 4.2 reventerested in retrieving

messagethat are adjacent to a givenessagén a thread (i.e., either a 'parent’ or imme-
diately consecutive messages). We consider this task asxg fr the more general task
of finding generally related messages.

Datasets

We created three datasets for the evaluation of the thrgadsk, using the management
game and two Enron corpora. (Here we use the messages edtfactwo other Enron
employees, Farmer and Germany.) Statistics about the izoapal the constructed datasets
are given in Table 4.6. For each relevant message, its pasentdentified by using the
subject line and time stamp. About 10-20% of the messages Iath parent and child
messages available, otherwise only one file in the threadasract answer.

We used several versions of this data, in which we varied theuat of message
information that is available. More specifically, we digfirish between the following in-
formation types: the emadileaderincluding sender, recipients and date; tioely i.e., the
textual content of an email, excluding any quoted replydioeattachments from previous
messageseply lines i.e., quoted lines from previous messages; tedsubjecti.e., the
content of the subject line. We compared several combinatid these components, in
which information is gradually eliminated. First, we indkd all of the information avail-
able in the graph representation. We then removed reply ifreplicable, and eliminated
further subject line information; finally, we removed thentent of the messages. Of par-
ticular interest is the task which considers header and lyoidymation alone (without
reply lines and subject lines), since it excludes threastsig clues, and can therefore be
viewed as a proxy for the more general task of finding relatedsages.

82

header v v v v VN VA BV BV
body v v v VI v v -
subject V vV - - vV vV - -
reply lines V - - - Vv - - -
MAP Accuracy
Cspace
TF-IDF 0.55 0.49 0.37 0.42 0.44] 0.34| 0.22| 0.17
Gw: Uniform weights| 0.59 | 0.53 | 0.36 | 0.36 | 0.46| 0.35| 0.20| 0.22
Gw: Learned weights 0.68" | 0.59 | 0.44" | 0.43" | 0.59| 0.47| 0.31| 0.37
Gw: Path constrained 0.75" | 0.73" | 0.52" | 0.45" | 0.67| 0.62| 0.39| 0.41
Gw: Reranked 0.77% | 0.73" | 0.59" | 0.51" | 0.68| 0.62| 0.44 | 0.34
Germany-C
TF-IDF - 0.53 0.36 0.23 -10.34] 0.22] 0.07
Gw: Uniform weights| - 0.55 0.49 0.44 -10.39] 0.34]| 0.27
Gw: Learned weights| - 0.55 0.5r 0.44 -10.39] 0.37] 0.27
Gw: Path constrained - 0.65" | 0.53 | 0.45 -1 0.46| 0.37| 0.22
Gw: Reranked - 0.72% | 0.65" | 0.64" -1056] 051|051
Farmer-D
TF-IDF - 0.69 0.36 0.32 -1055]0.25]0.13
Gw: Uniform weights| - 0.65 0.53 | 0.50 -10.48]| 0.40| 0.41
Gw: Learned weights| - 0.72 | 0.57" | 0.50° -10.61|0.46| 041
Gw: Path constrained - 0.76" | 0.63" | 0.52" -1 0.66| 0.54| 0.45
Gw: Reranked - 0.83" | 0.65" | 0.61" -10.70] 0.56| 0.52

Table 4.7: Threading Results: MAP and accuracy. ¥hs@gn denotes results that are
significantly better (in MAP) than the TF-IDF baseline; ahe # sign denotes results
that are significantly better than graph walks using unifareights (Gw:Uniform). Four
configurations are included, where email components adugtly removed (as detailed
in the header by the checkmarks), and the best result for @adiguration is marked in
boldface.

83

Baseline: TF-IDF

As a baseline approach we applied a vector space model, ainahmessage is represented
as a TF-IDF weighted vector of terms, and inter-messagdasityi score is defined as
the cosine similarity of their vectors. All information,dluding a message header, was
included in the vector representation as terms.

The TF-IDF weighting scheme used is the following:

. N
wi j = tfjj -id fi = tfj -|Ogg(ﬁ)
|
whereN is the total number of filegl f; is the count of messages in which of terappears,
andt fjj is the count of termh mentions in message

The results, detailed in terms of MAP and accuracy (Tablg ghow that this approach
performs reasonably well. As one might expect, removingrimgtion, in particular the
subject and reply lines, degrades performance substgntial

Graph walks

To formulate this as a problem in the graph model, w&detssign probability 1 to thile
node that corresponds to the original message, ang et file (see Table 4.2). Graph
walks of length 2 were applied.

The results show that the graph walk using uniform weights:(@iform) and the
TF-IDF method give comparable performance when identicah&s of text, such as sub-
ject lines, are present in both the query message and thgettarHowever, the graph
walk performs significantly better in the case that only legahd body text information
are available, improving MAP by 91% and 56% for the Germany Barmer corpora,
respectively.

Learning

Weight tuning.Learning the graph edge weights results in (often signifigaimproved
performance, across corpora, as shown in Table 4.7 (Gwnedar High weights were
assigned to thbas-subject-ternedge type (and its inverse), where applicable; and to the
edgessent-fromandsent-tq in all of the experiment’s configurations.

Reranking.We applied reranking usingdge bigranfeatures. Overall, reranking the
graph walk output yields the best results of the considereitiaus. In all cases, the results

84

of graph walk with reranking are significantly better thaa F-IDF baseline, as well as
than the graph walks with uniform weights. The MAP for thetisgtin which the least
information is available, namely header information orgyjigher than 0.5 across corpora
with reranking.

Most features that were assigned high weight by the leareee wdge type bigrams
corresponding to paths such as:

sent-from sent-to~!
e message —— person —— message

has-term/has-subj-term has-term/has-subjterm1
e Mmessage — term — message

on—date on—date !
e message—— date” —> message

These paths are indeed characteristic of a thread: e.getiter of a message is likely
to be a recipient of a reply message, there is high tempooaimpity between messages
in a thread, and some textual overlap.

Note that while such sequences of relations can be readihytiited as important in
the graph framework, they cannot be modeled in a flat reptasen such as the vector
space model. Sequential processes exist also for othel-efzed tasks, e.g., workflows
and social interaction [20].

Path constrained walkd=inally, the path constrained graph walk variant give seeon
best overall results for this problem. We found high cotretabetween the edge se-
guences considered significant by the reranking modelstangdth probabilities of the
path trees constructed.

4.4.3 Meeting Attendees Prediction

Given ameetingdescription, which links to textual notes, a date and pdgsilpartial list

of attendees, the task of attendee prediction is to rankéhgon or email-addressiodes

in the graph by their relevancy to the meeting. While this re@mmendatiotask, we
evaluate it as a prediction task, where links from meetirgttendees have been removed,
and we are interested in recovering these links.

85

corpus dataset
files nodes edgestrain dev. test
email 346 3239 27366
meetings 334 441 2074 5 0 6

Table 4.8: Meeting attendee prediction corpus and datasetisl

Datasets

For evaluation of the meeting attendee prediction task veetlisMeetingscorpus that
contains a subset of William Cohen’s email and meeting filelse &mail files were all
drawn from a “meetings” folder, over a time span of about sonths. In addition, we use
all meeting entries (as maintained in a “Palm” calendarjiersame period. The informa-
tion available for the meeting files is their accompanyingatigtive notes as well as the
meeting date. The meeting notes typically include one ghoasentence — usually men-
tioning relevant person names, project names, meetingdmsaetc. The list of attendees
per each meeting is not available, and is not included in timstcucted graph.

The corpus statistics are given in Table 4.8. The first lintheftable (email’) gives
the number of email messages, and the size of their respaefpresenting graph. The
second line of the table ('meetings’) refers to meetingieststatistics. The size of the re-
spective graph refers aditionalgraph nodes and edges, given that the email information
is already represented in the graph.

The experimental dataset consists of labeled examples efimge for which the list
of the email addresses of relevant attendees is given (rarauimnotated by the corpus
owner). The examples for the time slice of which this corpas derived are often similar
to each other, given that many meetings are periodic. Inrdalavoid a bias towards
specific repetitive examples, the constructed datasatdeslonly 11 examples, manually
selected as having distinct attendee fisithe number of relevant meeting attendees varies
— for some examples that represent personal or small medtiege are only few relevant
email-addresses identified, while for larger project megtithere are dozens of relevant
email-address nodes. For all examples, all attendees asgeoed to be equally relevant.
Overall, 195 email-addresses are known in the corpus.

We notice that mapping email-addresses to meetings isiwal gince in many cases,
there are multiple email-addresses referring to a singtegme Some email-addresses
refer to a group, e.g., members of the RADAR project. In addjtsome addresses may
be rarely used or obsolete. In the experiments conductedpn&derall email-addresses

4We also required that the meetings relate to persons théikalgto appear in the email corpus.

86

| MAP | Accuracy
Meetings
String sim. 0.24 0.33
Gw: Uniform weights| 0.58 0.67
Gw: Learned weights| 0.65 0.67
Gw: Path constrained 0.68 1.00
Gw: Reranked 0.59 0.67

Table 4.9: Meeting attendees finding results

l T T T T 1
T String sim. ——
i Tteee.. . Gw:Uniform --------
0.8 - Sz sGwiLearned 5
" Rerank
0.6 w PCW i

Precision

0.4

0.2

0

0 0.10203040506070809 1
Recall

Figure 4.3: Meeting attendee prediction results: 11-pBnecision-recall curve.

that are associated with the attendees as correct answerssults reported elsewhere,
evaluation procedures where tlirst email-address retrieved per attendee was considered,
or all email-addresses were considered per user; these gavargiesililts [94].

Overall, the experimental corpus and dataset are modeigeinla general, the frame-
work should benefit from larger corpora that may be less sparext and having a richer
link structure. Nevertheless, despite its size, this erpamtal corpus is an interesting
testbed for the suggested application.

Baseline: String similarity

To the best of our knowledge, the suggested task is novelrerd aire no previous sug-
gested methods in these settings. As a baseline, we usa@sigiching approach. Since

87

many of the message notes include persons and project natmeg, matching can uti-
lize the similarity between persons name or public projeshes and relevant personal
or project-related email-addresses. We use the Jaro-#imkeasure [29] to compute
string similarity. The similarity score for every emailgrdss is considered as the maxi-
mum Jaro-Winkler score of that email-address against aryobthe words appearing in
a meeting notes. The result of the described procedure iskaddist of email-addresses,
given the meeting notes.

The results of applying the string matching approach arergim Table 4.9 in terms
of MAP and accuracy. Since the number of correct answergvaoi a large extent be-
tween examples we use an 11-point interpolated precigoalrcurve averaged over all
examples for evaluation. The precision-recall curve isaghim Figure 4.3. As the given
meeting notes often include explicit mentions of persomae® string matching reaches
some of the relevant email-addresses. This approachHhaigever, in many cases where
the text associated with the meeting entry is more genegtdyring to (formal or infor-
mal) project names. In such cases, string matching can npttiheagiven terms to indi-
vidual persons’ email-addresses. In addition, string lmatcdoes not allow the retrieval
of email-addresses that are not similar to person namesanedt

Graph walks

We perform a 3-step graph walk. As shown in the results, thplgmwalk performance
is significantly preferable to string matching. Unlike strimatching, the graph walk can
retrieve email-addresses that have no literal ressemblena person’s name, using co-
occurence mappings. In particular, a 3-step walk uses pattisas:

. _mtg-has-term as-term 1 alias .
e meeting =~ — term ™ — person— email-address
. _mtg—has-term has-term~1/has-sub j-term ! sent-to/ from—email .
e meeting ~ — term — message — email-
address
. _mtg-on—date on—date! sent-to/ from—email .
e meeting ~ — date message — email-address

In addition, a graph walk would give higher weight to freqthgused email-addresses
over rarely used ones. This is a desired property in this.case

88

corpora dataset
files nodes edgestrain dev. test
Personal 810 11136 113224 9 8 26
Meetings 346 3239 27366 8 - 6

Table 4.10: Alias finding corpus and dataset details.

Learning

As shown in Table 4.9 and Figure 4.3, learning the graph edgghits gives preferable
performance to the all-purpose uniform-weighted graphksvalStatistical significance
could not be obtained due to the small number of examplese Bahgs that were assigned
high weights by weight tuning are, for exampées-term-invandalias. Reranking gave
similar results as the initial graph walk. We conjecturet fearning a reranking model
could benefit from a larger training set. Finally, the patimstrained graph walks gave the
best performance and perfect accuracy, where a relevaritadazess has been identified
at the top rank for every meeting description.

4.4.4 Alias Finding

The task of alias finding is defined as the retrieval okaflail-addressepertaining to an
individual (or a mailing-group). The query may consist gbersonnode, or the corre-
sponding namé&rm(see also Section 4.2). In the experiments conducted, wsdsnthe
latter settings.

Datasets

We evaluate the task of alias finding using two corpora, aaléétin Table 4.10. For both
corpora, we use a manually labeled list of email-addressadi per person. All of the
examples considered refer to individual users (as oppasethtling lists) that have two
to five email-addresses. In the experiments, we requireulhsdt of email-addresses to
be retrieved given the person’s name. Elsewhere, we havensthe settings in which the
guery included the person’s full name represented as teyrhe &in easier problem [94].
In addition, querying by the person’s first name only may lsteiaand more convenient
for an end user and can be used also when a user is not certaititae full name.

89

| MAP | Accuracy

Meetings

String similarity 0.55 0.67
Gw: Uniform weights| 0.61 0.83
Gw: Learned weights 0.55 0.67
Gw: Path constrained 0.68 0.83

Gw: Reranked 0.59 0.83
Personal
String similarity 0.54 0.69

Gw: Uniform weights| 0.72 0.77
Gw: Learned weights 0.73 0.77
Gw: Path constrained 0.74 0.96
Gw: Reranked 0.63 0.85

Table 4.11: Alias Finding Results

Baseline: String matching

As a baseline, we use here the string matching approachildesgearlier (Section 4.4.3).
The results of applying string matching are given in Tabl&l4in terms of MAP and
accuracy, and in Figure 4.4, as an 11-point precisionsfreca/e. String matching is
successful in this case in identifying email-addressetsatesimilar to the person’s first
name. There are, however, email-addresses that are stmadast name only, or to that
are not similar to neither the person’s first or last name h$nstances bound the recall of
this approach.

Graph walks

We apply a 3-step walk. In addition to the previously destiedge types (Table 4.1),
we add here to the graph schema links that denote stringesityibetweeremail-address
nodes. Specifically, email-address pairs for which strimglarity is higher than a thresh-
old are linked over twestring similarity symmetrical directed edges. In general, graph
walks are expected to be effective in realizing co-occureenformation and retrieving
highly used email-address nodes. However, rarely usedl-aadiesses may be harder
to find using graph walks. Incorporating string matchingitite graph links should thus
increase graph walk recall.

As shown, the performance of the graph walk is better thangstnatching for both

90

1 T T T T T T T T T
c
Q
72
(8]
g
a
0.2 |)
O] 1 | 1 | | | L .
0 010203040506070809 1
Recall
1 - -J-- T T T J‘ T T T T
0.8 ‘K)
0 . .
o String sim. ———
€ 04 L GwUniform -------- i
a " | Gw:Learned -
Rerank
0.2 - PCW --------)
0 1 1 1 1 1 | | L .

0 010203040506 0.70809 1
Recall

Figure 4.4: Person to email-address mapping: Precisicalireurve

corpora. It results in MAP of 0.61 and 0.72 for the Meetingd &me Personal corpora
respectively, compared with 0.55 and 0.54 using string hiagc Some relevant paths in
a 3-step walk are as follows:

as—term 1 alias .
e term — person— email-address

has-term ! /has-subj-term 1 sent-to/ from—email .
e term — message — email-address

has-term ! /has-subj-term1 sent-to/ from alias .
e term — message — person— email-address

In addition, similarity edges can be added as a “tail” to trevpus paths. Thatis, once

91

the graph walk reaches an email address node, the next steagates some probability
mass to similar email-address nodes over “similar-strexdges.

Learning

As shown, learning the graph edge weights resulted in caap@performance to the
graph walks with uniform weights. While particular edge ssares are meaningful for
the alias finding task, weight tuning only uses local infoliora We conjecture that this
limits performance in this case.

For reranking, we useédge bigranfeatures in the reported experiments. Reranking
performance was comparable to the initial graph walks. ¢/sitige-trigram features (and
adding feature selection to avoid overfitting in this larfgature space) may yield better
performance.

Finally, the path constrained walks gave the best resultsdth datasets. This reflects
the information carried in the full paths traversed.

The differences between the methods were not found to hstitally significant.

4.5 Effect of Query Length

The tasks reviewed in Section 4.4 are modeled as queriesdh&din a small number of
term nodes, a message, or a meeting node. This section eegi@auple of additional
tasks, where the query include$adder node. Each folder node is associated with many
messages, such that probability spreads rapidly in thearktwSpecifically, the tasks
discussed include the prediction of persons future invaket in an ongoing project (rep-
resented by a folder), and message foldering and trackiegirgf present the experiments
and their results. This section concludes with a discussion

4.5.1 Predicting Person-Activity Future Involvement

In the person-activity prediction task we are givelioladerthat is associated with a project
activity as a query. The entities retrieved are of tygpeail-address We assume that the
email messages in the folder provide textual and socialor&tevidence, which allows the
prediction of persons likely to get involved in the projatthe future. In the experiments,
we consider a snapshot of an email corpus at a particulat poitime. Predictions are

evaluated based on the email traffic that took place lateme.t

92

corpora dataset

date files nodes edges #persarfelder #known #targets

KaminskiV. Feb 1,01 1193 10005 102984 61{ London 111 19
Beck S. Oct1,00 1334 12944 174886 63b Europe 144 33
Kitchen L. Sep 1,01 1065 11762 149274 55p Portland 106 25
East-power 156 14

Mexico 49 9

Farmer D. Jull,00 741 7354 64556 336 Ces 55 13
Wellhead 38 9

Table 4.12: Activity-person prediction corpora and datassails.

Datasets

We evaluate this task using the saved email of four diffeEambn employees. Each of
the individual mailboxes was truncated at a particular poirtime (individual to each
user, adapted to their individual periods of activity). Tinailboxes include foldering
information, as created by the users. For each folder, uf tm@st recent messages are
maintained. (This allows both efficiency in maintaining @rhétory and also keeps the
corpus up-to-date.) That is, for each user we consider askoapf his or her mailbox,
where history is limited. The relevant corpora statistmsthe four users are presented in
Table 4.12.

The dataset consists of seven folders, drawn from the destdorpora, that are as-
sociated with project activity. Table 4.12 details for edsliler the number of persons
that are already associated with the messages in the fojd#érebcorpus snapshot date
(‘known’). In the experiments, a query is defined as the ne@geasenting the subject
folder, and all of the entities of typemail-addresgthe size of this set for each corpus is
detailed in the column named ‘persons’ in the table) areednkOnly addresses which
are have not appeared in the subject folder prior to the fihpisne stamp are considered
valid answers. The number of correct answers for each cosmigen in the table, in the
‘targets’ columr

93

] Folder \ Cosine\ DP \ Gw:Uniform | Gw:Learned \ PCW \

London 0 0 0.05 - -
Europe 0 0 0.12 0.12 0.09
Portland 0.28 | 0.28 0.12 0.12 0.36
East-power| 0.07 0 0 0 0
Mexico 0 0 0.11 0.11 0.22
CES 0 0 0.08 0.15 0
Wellhead 0.22 0 0 0 0

Table 4.13: Person-activity prediction results: Recalbakr20

Baseline: TF-IDF

A different approach previously suggested in the persarfarination management do-
main is to model the various entities using word distribogid98]. According to this
approach, the word distribution assigned toeamail-addres®ntity, for example, reflects
the word frequencies in the messages sent by, and receivithbgmail-address. We
representolder (and more generallyactivity) entities in the same fashion; that is, as an
average of the word frequencies of the messages associdtethe/ folder. Inter-entity
similarity can then be estimated by the dot product or cosimalarity between pairs of
word distribution vectors. In our experiments, we matchTRelDF weighted word dis-
tribution representing the folder with the distributiomst describe each of the relevant
email-address entities.

The results are shown in Table 4.13. It is reasonable thatett@mmending system
will present a relatively short ranked set of email addregse names) to the user. We
therefore evaluate performance in terms of recall at thedogs, considering the top 20
rated nodes. Recall is measured by the ratio of email-adebastrieved at the top 20
ranks that indeed appeared in the folder later in time. Famgle, there are 25 persons
(email-addresses) known to get associated with the “Rattlbolder after the considered
snapshot date (Table 4.12); if exactly 7 correct email-esis are included in the top 20
email-addresses retrieved given the folder “Portland” gaexy, then the recall at the top
20 ranks is 0.28 .

Given the TF-IDF weighted representations, we ranked eatlesses by both co-
sine and dot-product (DP) similarity. Cosine similarity ggweferable results, where at
least one correct email-address was predicted for threleeogight folders. Dot-product

5The number of valid predictions for each corpus is therefloeenumber of ‘persons’, where the number
of ‘known’ entities is subtracted.

94

similarity performance was inferior, resulting in posdtikecall at the top 20 ranks only for
one of the folders.

Graph walks

We applied graph walks &f= 4 steps for this task. As shown in Table 4.13, the graph walk
method gives better predictions for four out of the seveddd compared with cosine
similarity, which is preferable for the three remainingdeis.

Learning

The Londonfolder was used for training the models. Learning the gragdeeveights
led to improved recall at rank 20 for one of the test foldeengely, for the Ces’ folder,
increasing the number of predicted email-addresses wit@riop 20 ranks from one to
two email-addresses).

We did not apply reranking in this case, as there was onlg lithining data available.
Path-constrained walks, however, led to improvementsviordf the folders and some-
what degraded performance for two other folders. Overlé, gath constrained walks
performance was better than its cosine similarity courtergHighly predictive paths in
the constructed path-tree included:

in—folder1 sent- from/to—email . sent-to—email 1
e folder — message — email-address™ — message
sent-to—email .

— email-address

in—folder? has-term has-term1 sent-to—email .
e folder — message — term — messagé — email-address

This shows that both social network information and texewatlence were found infor-
mative for this task.

Overall, while the task of predicting future involvementparsons from the enterprise
in an ongoing activity is challenging, the results indictitat several correct predictions
are likely to be included in short lists introduced to usé&snsider also that our form of
evaluation is strict, and it is possible that email-addgsgpersons) predicted, who have
not in fact appeared in the folder later in time, may be infatiue.

In addition to quantifiable performance, a potential adagatof the graph walk meth-
ods is that they can provide an explanation about the prpgon relationship in the

95

corpora dataset

files folders nodes edgesfolder files examples

Kaminski V. 859 33 8925 81728 Conferences 80 10
London 80 10

Resumes 80 10

Stanford 27 8

Beck S. 1131 89 12149 146746 Congratulations 28 5
Recruiting 61 10

Europe 80 10

Kitchen L. 1085 32 11758 142432HR 80 10
East-power 80 10

Farmer D. 635 16 6741 52968 Wellhead 80 10

Table 4.14: Message foldering and tracking: corpora analsgatetails.

corpus. That is, the primary paths leading from a folder teeesgn, including the tra-
versed relation types, can be presented to the user. Anretma mechanism should
be useful in motivating recommendations to a user who isoresy familiar with the
corpus.

4.5.2 Message Foldering and Tracking

In the message foldering task, we are interested in rankiigjirey user-createtblders

by their relevancy to a givemessage We also consider the inverse problem: ranking
untaggedmessagedy their similarity to a giverfolder. The folders considered denote
user activities. (Other eclectic folders, such as “sesag” folder, etc. are ignored.) A
more detailed description of these tasks is given in Sedtian

Datasets

We consider the same corpora constructed for the task eftggierson prediction (Sec-
tion 4.5.1). These corpora consist of the saved email of Ennon employees, drawn
from the Enron corpus. For the evaluation of the messageffiolg and tracking tasks, we
consider folders that reflect a project or recurring activithe modified corpora statistics
for the four users are presented in Table 4.14.

Overall, the dataset includes 10 different folders for aéins. For each of these folders,
we consider the consequent “future” messages in each f(idét past the corpus snap-

96

Folder Cosine| DP | G:U | GiIL | PCW
Conferences 0.79 041|054 - -
London 0.95 0.90| 0.93] - -
Resumes 0.85 0.72] 0.62 | - -
Stanford 1.00 0.94| 0.81] - -
Congratulations| 0.47 0.27| 0.53 | 0.53| 0.36
Recruiting 0.88 0.73]| 0.83| 0.82| 0.84
Europe 1.00 0.55] 0.90| 1.00| 0.95
HR 0.58 0.17| 0.53| 0.57| 0.45
East-power 0.95 0.50| 0.77] 0.67 | 0.79
Wellhead 0.76 0.69| 0.95| 1.00| 1.00

Table 4.15: Message foldering results: MAP

shot date). In the graph representation, the test messegéslad to all of the relevant
entities in the graph (persons, email-addresses, tern)s €hese messages, however, are
disconnected from the associated folder. Our goal is therdover the message-folder
links. Since in the Enron email corpora a message is attachedingle folder, the actual
folder assigned to a message is considered as a single tcansaeer to each query in the
foldering task. The inverse problem is addressed in a sirffalshion. In this case the
folder forms the query, and all of the test messages pemntaioi the folder are the correct
answers. Table 4.14 details the folder names and the nunflbestanessages per each
folder. The number of candidate folders to be ranked in th#efing task is detailed in
the ‘folders’ column. The number of test messages per faklgiven in the ‘examples’
column. (In foldering, each test message is representedseparate query; in message
tagging, each query represents a folder, and the test nessaegjthe relevant answers.)

Baseline: TFIDF

As a baseline, we generate inter-entity similarity scang¢leé vector space, similarly to the
baseline for the person prediction task described in thaque section. In this paradigm,
a folder is represented as a TF-IDF weighted vector, whidhesaverage of the vector
representations of all of the messages associated wittottlerf Folders are ranked for
each test message, and all messages are ranked for a giden(fok the foldering task

and the message tracking task, respectively) using cosimethas dot-product similarity

measures.

The results of the foldering task are presented in Table ih.1&rms of mean average

97

Folder Cosine| DP | G:U | GiIL | PCW
Conferences 0.34 0.15| 0.04 | - -
London 0.34 0.08| 0.01 | - -
Resumes 0.35 0.08| 0.32] - -
Stanford 0.99 0.12| 0.13 - -
Congratulations| 0.37 0.02| 0.06 | 0.05| 0.06
Recruiting 0.50 0.09| 0.11| 0.11| 0.43
Europe 0.27 0.05| 0.04 | 0.05]| 0.25
HR 0.26 0.06 | 0.03| 0.03| 0.07
East-power 0.97 0.43| 0.12| 0.12| 0.34
Wellhead 0.60 0.09| 0.08 | 0.09| 0.27

Table 4.16: Message tracking results: MAP

precision. As shown, performance using cosine similamggvery good results for all
folders. Dot-product similarity (which is identical to tleesine similarity measure, except
for message length normalization) gives reasonable pedoce, but not as good as the
cosine measure.

The results of the inverse folder-message tracking tasgrasented in Table 4.16. For
this task, the cosine similarity measure results in surgylg good performance, consid-
ering the large number of candidate messages being rankéusicase, the performance
of the dot-product similarity is far behind its cosine campiart. This suggests that long
messages are ranked higher with the dot-product measuszeadlength normalization
in the cosine measure accounts for this factor.

Graph walks

We applied graph walks of lengih= 4 for both tasks.

As shown, the performance of graph walks for the folderirgl {@able 4.15) is com-
parable to cosine similarity in most cases, and somewhatenvora few instances. The
graph walk results are superior to dot-product similarity.

In the case of message tracking, however, the results ate djfferent (Table 4.16).
The graph walk gives poor performance compared with theneosimilarity measure.
Interestingly, the graph walk results are comparable tepdotluct similarity for most
examples.

A possible explanation for the major difference in perfoneeof the graph walk be-

98

tween the two tasks is as follows. Lets assume that the foideruiting” is characterized
by frequent use of the term “recruit” in the messages linkeitl in thefolderingtask, the
graph walk propagates probability mass from the query nEg@esenting a message, to
the terms that appear in the message within one walk stefelnéxt steps of the walk,
probability mass is conveyed from these terms to other ngessand then to folder nodes.
Should the original message include the term “recruit’s term node (which is assigned
the same weight as other terms included in that messagejamiley most of its allocated
probability to files that are associated with the folder fugting”. Other, less predictive
terms, on the other hand, will distribute their probabitityfiles that are associated with
various folders, resulting in smaller contributions pddés. In the inverse task, the graph
walk starts with doldernode. Probability is then propagated to the messages |tokibe
folder. In the next graph walk step, each (uniformly weightaessage node, distributes
its probability to the terms it contains. This means thatjfient terms, that appear in a
large number of messages, are likely to be assigned highhtgeigsimilarly, the graph
walk is biased in favor of long messages. This suggests thairtdl stop word elimina-
tion (which was already performed in constructing the gjagbwnweighting high-degree
nodes may be beneficial in this case.

Learning

In learning, theKaminskicorpus, including four folders, was allocated for trainjmgy-
poses. Testing took place using the remaining corpora.

Learning the graph edge weights resulted in overall min@ravements of the results
for both foldering and message tracking. We conjecturegtegih topology dominates the
graph weights, especially for the task of message tracking.

We did not apply reranking to this problem. We do believe tleainking can be
helpful, especially if specialized features are used; kaneple, features that encode the
IDF value of traverseterms or the length of the ranked messages. This is left for future
work.

Finally, path-constrained walks resulted in major improeats for the message track-
ing task. (although, not reaching the level of performarad@eved using cosine similar-
ity). Paths in the path-tree that were associated with hagitipe probability to reach a
target node included:

in—foldert sent-to—email/sent- from—email . sent- from—email*
e folder — message — email-address —
message

99

in—folder1 has-term as—term! sent from 1
e folder — message — term —— person — message

in—folder?! sent-to—email . alias™? sent- from—1
e folder — message — email-address— person — mes-
sage

in—folder! has-term has-term!

e folder — message — term T —> message

These paths include social network connectivity (see tisetfiree patterns), as well
as shared content evidence (the last pattern above).

45.3 Discussion

In this section, we reviewed the graph walk performance feetaf activity centric tasks.
Performance was found to be inferior to TF-IDF based eniityilarity for two tasks,
where the queries includddidernodes. Each folder in the experimental corpora is highly-
connected, being linked to a large numbenwssagaodes. The effective query therefore
corresponds to a wide distribution over the graph nodeshiesd two tasks. In such cir-
cumstances, the graph walk tends to reflect the global steuictf the graph, rather than
local relatedness phenomenon [131, 104]. In other wor@sbidis towards central nodes
in the graph is more prominent once probability is alreadeag in the graph. Thus,
nodes that are highly-connected in the graph are assiggldrnportance, and the results
get somewhat disassociated from the query. While PersexaiiageRank applies expo-
nential decay with the distance from the query nodes in daleraintain the association
to the query, a large query corresponds to a relatively landpgraph as its starting point.

In general, a modified edge weighting scheme may improvepagnce. For exam-
ple, Tong et-al [132] have proposed to normalize the gragafsition matrix based on node
degree, such that high-drgree nodes are more stronglyipedésee Section 2.4.1). Other
weighting schemas, such as TF-IDF node weighting embeddé#uki transition matrix,
may be useful. We leave this for future work.

4.6 Related Work

In this section we first discuss works that are related togreisinformation processing
in general. We then proceed to reviewing previous work esévor each of the tasks
studied.

100

There has been an increased interest in applying machingrgaechniques, or ar-
tificial intelligence in general, to the area of personabmiation management in recent
years. In particular, a variety of email-related tasks Hmeen studied with the goal of facil-
itating email management and utilizing the informationt tiessides in email corpora. Ex-
ample tasks include email foldering [9], automatic findirigeperts at the enterprise us-
ing email resources [8, 106], recommendation of recipiéorta given message [22, 103],
identifying possible email leakage to wrong recipients|[2hd more.

Naturally, email, as well as other entities at the work stasuch as documents, calen-
dars and webpages, correspond to different facets of widgniseractivities Research
has been conducted concerning activity-centered coklaioor [53], and methods have
been developed with the goal of identifying threads of ai¢is based on the contents
of emails and documents that people are working on [81, 2@le problem of classi-
fying email messages into activities has been studied aks[4&]l Mitchell et-al [98]
have suggested a framework for the automatic extractiorsef activities, based on the
user’'s email, calendar, and the entire workstation cordeo¢ssible via Google Desktop
Search. In the work of Belloti et-al [11, 12], a user interfag&suggested that is adapted
to activity management. Their goal is to support commorviigs such as organizing a
meeting, planning a trip or conducting a performance revasnwvell as other user-defined
activities, side by side with existing email functions. Téeggested interface, named
Activity-Centered Task Assistant (ACTA), was designed tateen efficient personal in-
formation management environment and provide context aagdafor machine learning
and automation techniques. For example, it is desired #lavant emails, people, and
email addresses be suggested to a user when viewing a mestiteyl to a particular ac-
tivity on their calendar. The activity-centered contexaearch problems described in this
chapter can naturally complement frameworks such as ACTA.

Unlike most previous works, the graph walk framework preesspersonal informa-
tion as semi-structured data, where meta-data is repegsenplicitly, as well as inter-
entity relations. There are only few previous works in theriture that integrate meta-data
and text in email. One example examines clustering usindipheitypes of interactions
in co-occurrence data [10]. Another work [2] proposes a la@sed approach for email
classification. They represent an individual email messagestructured graph, including
both content and header, and find a graph profile for eachrfaltmoming messages are
classified into folders using graph matching techniques.

Another advantage of the graph walk paradigm compared witarapproaches, is
that it addresses various tasks similarly. That is, the santerlying graph, interface
and query language are used for multiple tasks. Previouksatogated individual tasks
separately, adapting data representation and usingefhtffenethods per task.

101

In what follows we describe earlier works for each of the sasicluded in this case
study.

Person name disambiguatiomhe task of person name disambiguation has been stud-
ied in the field of social networks and applied also to emaiade.g., [88, 38]). Diehl
et-al have suggested to perform name disambiguation inlersiag traffic information,
as derived from the email headers [38]. In their approachndidate set is first generated,
including network references with identical names to thm@anentions, for which at least
one email communication has been observed with the senkey. then suggest a scoring
formula based on the counts of message exchange betweeoagalitiate and the sender,
or between each candidate and all of the message recipsemisnarizing over different
ranges of history. Our approach differs from theirs maimiythat it allows the integra-
tion of email content and a timeline in addition to sociaMm@&k information in a unified
framework. In addition, rather than evaluate a pre-filtexeitbf candidates (thus bounding
recall), we use the graph walk to rank all of the graph nodesgjusetwork topology.

Recently, Elsayed et-al [43] proposed a generative modetefsolving name men-
tions in email. The model suggested can be thought of as aid@egmodel over a set
of personal references. They annotated a subset of the Eorpas with person names,
mapping them to their email-addresses and nicknames (asel@fom email salutations
and signatures) to learn these preferences. In the expgsmenducted, persons that have
a first name or nickname that exactly matches the name meargoconsidered as candi-
dates for matching. Aontextual spacef a name mentiom is defined as a mixture of
4 types of contexts: the email message; all messages in thesponding thread; discus-
sions that some or all of the message participants (sendaeanivers) joined or initiated
at around the date of the considered message; and mess#geassimilar topic that were
delivered around the same time. Each name mention is thelvegsbased on the learned
person—email-address—nickname mappings. Overall, t&ided approach is specific to
the subject problem, and does not employ learning. In amgithcorporating other types
of evidence such as lexical similarity or meeting objectpinees manual adaptation of the
model.

Threading.Lewis and Knowles [84] considered email threading as aenedtiproblem.
They applied text matching methods to the textual portidmsessages. More specifically,
they suggested a strategy of using the quotation of a messag@uery and matching it
against the unquoted part of a target message. Yeh et-gdl¢xthd this approach. They
suggest using string similarity metrics and a heuristioatgm to reassemble threads in
the absence of header information. In addition to messageibsimilarity they con-
sider heuristics, such as subject, timestamp, and seadipignt relationships between
two messages. They also introduce a time window constrairéduce the search scope

102

in the corpus. In contrast with these works, the graph wakngwork is generic, and
does not rely on manually encoded world knowledge. Insteadning allows to adapt the
general graph walks to the special characteristics of treathing task.

In general, we note that the threading information learmetthé graph can be useful
in learning other related sequential information. For egkanthread information was also
used in the chaining of sequential speech acts [20].

Finding meeting attendeeVe are not aware of previous works exploring the task of
finding a set of relevant meeting attendees, in planning datipg a meeting. Previous
research focused mainly on automatic meeting schedul@@, [@7]. Our work facilitates
semi-automatic construction of a meeting attendees’wkich is a preliminary step to
meeting scheduling. Aauthor-recipient-topifART) generative model has been recently
suggested [89] for clustering persons by their inter-gnty, assuming a joint model of
email recipients and topic. This approach may be adaptecktbqt relevant persons given
text. Another recent work [98] uses desktop search to ceebégy-of-words representation
of email messages, and also of persons and meetings. Aorgdalihis method, cosine
or another similarity measure between the bag-of-wordsesgmtation of a meeting and a
person could be used to identify relevant meeting attendees difference between their
approach and ours is that we consider the data structureloating entity relationships;
that is, we can tune the importance of particular relatiams], optimize performance for
the task. In addition, in order to achieve high performaneetor-based similarity mea-
sures require sufficient data. This may be an obstacle giver sieeting descriptions.

Alias finding. The task of finding a person’s set of email-addresses in anl eora
pus given the personisameis novel as well. This task is related, however, to the task of
identifying email aliases (given an email-address) in gasr Previous works explored
the information residing in social network co-occurrenfmeshis task, which resulted in
performance better than random [62], and attempted to qurdmcial network informa-
tion and string similarity measures for this task [63]. Opp@ach allows integration of
header information and string similarity measures, as agkmail content and time in a
unified framework.

Message foldering and trackinglhe foldering task [61] has been considered in the
past. Previous works applied algorithms such as TF-IDF J[LTher works have ad-
dressed foldering as a classification problem, with the gbalassifying an email mes-
sage to a single relevant folder. Good classification resuéire obtained using Naive
Bayes, MaxEnt and SVM [9]. In addition, a graph matching teghe was applied for
classifying incoming messages into folders [2]. Our apphoia foldering is related to
semi-supervised classification is graphs, where prolalislidistributed randomly in the
graph, reaching nodes that denote classes (folder) witérdift intensities (see Section

103

2.4.4). We are not aware of previous works that consideredntrerse task, of message
foldering.

Activity-person predictionThere has been much interest recently in the task of expert
finding given email corpora and other person-document &ssmas. Several researchers
have employed a language modeling approach for this prof8e06]. While content
is important to the prediction of person involvement in ajgcg our results show that
social network information is more crucial for this task. diner similar task studied
is finding relevant recipients for a given message or a mgetimitation. It has been
shown recently that a simple K-nearest-neighbors apprga&s good performance for
this problem [22]. In the settings considered, however, duery’ pertains to a single
message, and partial information about the recipientsadable. In the task defined as
predicting future person’s involvement in an activity, tnailable information is a whole
folder. As was the case for other tasks described thus famthin difference between
other works and our framework is that we do not pre-processi#ta, adapting a model
for this specific problem. On the other hand, the graph fraonkwdoes not apply fine text
processing compared with language models.

Liben-Nowell and Kleinberg [85] investigated a genericatetl problem, predicting
the appearance of new interactions in an evolving sociatstre. Given a snapshot of
a social network at a given time, they were interested in rately predicting the edges
that would be added to the network during a subsequent titeevad. The approaches
used in this work included measures for analyzing node priyiin networks, assuming
that new links are hinted at by the topology of the network. pigroal evaluation in the
domain of collaboration between researchers showed that $afficiently narrow set of
researchers considered, e.g., researchers who publisé gatne conferences, almost any
author can collaborate with almost any other author, ane ts@ems to be a strong random
component to new collaborations. Specifically, the linkdoceon methods applied could
not beat random guessing by a factor of more than about seveur work, we consider
structured networks, where relations are typed and didede study a different problem,
and find our results to be encouraging.

4.7 Summary

We have presented a schema for representing personal atfomwith a graph. In this
schema, meta-data that is available as structured fieltle indader of email messages and
meeting entries is included as typed entities connectell hafieled and directed edges.
Associated text is represented as a bag-of-word in the graph

104

We have shown that different tasks in the personal informnathanagement domain
can be phrased in terms of entity similarity and addresseguasges in our framework.
Graph walk performance on these tasks was evaluated usiigusaorpora, including
corpora extracted from the public Enron email collectione Wave shown that graph
walks yield preferable performance to alternative methodasost cases.

A major advantage of the graph walk approach is that it irtegr social informa-
tion, content and temporal evidence in evaluating entilyteeiness. The tasks evaluated
demonstrate additional strengths of the graph walk framiewim particular, theperson
name disambiguatiotask is an example of contextual search, wheessagenformation
that is readily available from the user’'s environment isduseenhance the query. This
information was shown to assist in person disambiguationther tasks, we have demon-
strated the modularity of the graph representation, wharatons in the graph layout
are easily accommodated. The taskpoédicting meeting attendeefr example, uti-
lized meeting and email messages interactions in the g&iptilarly, folders that denote
user activities were included in the graph for tbilering message trackingndactivity-
person predictiotasks. In the task dadlias finding we also have added string similarity
edges to the graph. Nevertheless, the underlying graph etagconstructed per task, as
the graph representation is general and is independene thsks performed.

The basic graph walk models co occurrence and graph topahdggmation in gen-
erating initial results. Learning, using relatively smedits of labeled examples and a set
of generic features, allowed us to further optimize the graplk results per task. We
have shown that the different learning methods improve taplgwalk performance in
most cases. While weight tuning proved to be usually effectieranking and the path
constrained walks, which use global information about trepl walk, yielded superior
results than weight tuning for some of the tasks. For ingan@ found that high-level
information about the edge sequences traversed in the gvajiwas very informative
for the threadingtask, alias findingetc. In addition, reranking using specialized string
similarity features improved the results for therson name disambiguatidask.

We found that ‘long’ queries, which refer to a large set of e®dh the graph, are
challenging in this framework, as the bias towards highligrected nodes embedded in
the random graph walk paradigm is more prominent in thesmgst General techniques
that penalize high-degree nodes are expected to improvgréipd walk performance. In
addition, we are interested in exploring ways of integigtims approach with language-
modeling approaches for document representation and dadwetrieval. Formally, this

can be done straightforwardly by appropriately definingiFhL t|¢) for the edge type
¢ =has-termto correspond to the probability férassigned by a language model for the

documend, and by defining Rt LN d|¢) for the edge typé =in-file to reflect the prob-

105

ability of the documend given the query term

Another venue of future work is modeling of a timeline in thimmework. Itis straight-
forward for example to add edges between date nodes acgdalimme proximity, thus
modeling a timeline as required additional graph walk steps

106

Chapter 5

Case Study: Applications of Parsed Text

In the PIM graph schema presented in Chapter 4, text was esgegkas a bag-of-words. It
is desirable, however, to utilize the information residinghe syntactic structure binding
words in text processing tasks. In this chapter, we suggespresent text as an entity-
relation graph that includes sentences and their underiy@pendency structures. Given
this representation, we will be interested in processisgd#hat involve word similarity in
the graph. Previous works have applied graph walks to dragtiamof semantic similar-
ity in graphs, which were carefully designed and manualheti) and included WordNet
[47] inter-word relations [136, 33, 65]. While these and otfesearchers have used lexi-
cons such as WordNet to evaluate similarity between wohdgsethas been much interest
in extracting a word similarity measure directly from textrgora (e.g., [127, 101]). We
suggest processing dependency parse trees within theadyé@enework of directed la-
beled graphs. We construct a graph that directly represertspus of structured (parsed)
text. In the suggested graph scheme, nodes denote wordseaghited edges represent
the dependency relations between them. We apply graph wal#erive an inter-word
similarity (relatedness) measure. We further apply th@Elkearning techniques available
to improve the derived corpus-based similarity measures.

The graph representation and the set of graph walk sinyilar#asures are empirically
evaluated on the task ebordinate termextractiont from small to moderately sized cor-
pora, where we compare them against vector-based modelsdiimg a state-of-the-art
syntactic distributional similarity method [101]. It is@ln that the graph walk based ap-
proach gives preferable results for the smaller datasetsqamparable otherwise), where
learning yields significant gains in performance. We alssent results for the extracting

LIn particular, we focus on the extraction of named entitgsts.

107

word synonyms from a corpus, which are consistent with tfiesiengs.

Below we first outline our proposed scheme for representirgpanidency-parsed text
corpus as a graph (Section 5.1). We next discuss the coteddmeraction task, and how
it can be processed as queries in the graph (Section 5.2)sdthiegs and results of an
empirical evaluation are detailed in Sections 5.3 and 5Ms ¢hapter concludes a review
of related work (Section 5.5) and a summary.

5.1 Parsed Text as a Graph

In recent years, there has been an increasing interestig dspendency parses for arange
of NLP tasks, including machine translation, relation agtion and question answering

(e.g., [127, 139]). Such applications benefit particulémtyn having access to dependen-
cies between words, since these provide information abdigate-argument structure

that is not readily available from phrase structure pargeshe same time, dependency

parsers of higher quality and speed are becoming available.

A typed dependency parse tree consists of directed linkegdast words, where depen-
dencies are labeled with the relevant grammatical relgi@og., subject indirect object
etc). We suggest representing a text corpus as a conneeigltl gfrdependency structures,
according to the scheme shown in Figure 5.1. The graph showeifigure includes the
dependency analysis of two sentences: “boys like playirty @il kinds of cars”, and
“girls like playing with dolls”. In the graph, each word mén is represented as a node,
which includes the index of the sentence in which it appessyell as its position within
the sentence. Word mentions are marked as circles in thefidgie “type” of each word
— henceforth daermnode — is denoted by a square in the figure. Each word mention is
linked to the corresponding term; for example, the noddeeiliand “likey” represent
distinct word mentions and both nodes are linked totdren “like”. For every edge in
the graph, we add another edge in the opposite directionstmmin in the figure); for
example, an link exists from “likg to “girls 1" with an edge labeled as “nsubj-inv”. The
resulting graph is highly interconnected and cyclic.

We will apply graph walks to derive an extended measure oiaiity, or relatedness,
between worderms(as defined above). For example, starting from the terms'givie
will reach the semantically related term “boys” via the éaling two paths:

mention nsubj
—

. . t . tion,. nsub j-inverse t
girls1 == like1 M jike M Mike2 " S S oy g 2® ™

girls ys2”——""boys, and
., _mention _. nsubj,. partmod . as—term . mention .
girls — girls1 —’likel "— "playingl™~— "playing —" playing

nsub j-inverse as-term
—

boys2™>—""boys .

partmod-inverse
2 —

like2

108

nsubj partmod prep.with

memmmmamnmmnady K [eesemmaaa
[0)]
=
=
]
o
=
>
o
w
(9]
5]
=
w

det prep.of

Figure 5.1: A joint graph of dependency structures

Intuitively, in a graph representing a large corpus, terha aire more semantically
related will be linked by a larger number of connecting patimsaddition, shorter con-
necting paths may be in general more meaningful. The grapk peaadigm addresses
both of these requirements. Further, different edge tyapgsyell as the paths traversed,
are expected to have varying importance in different tygesard similarity (for exam-
ple, verbs and nouns are associated with different corviygbiatterns). These issues are
addressed using learning.

5.2 Text Processing Tasks as Queries

We evaluate the induced graph-based similarity measucetharext representation schema
on the task otoordinate ternextraction. Coordinate terms are defined as a symmetric se-
mantic relations between words that share a hypernym insatinas. For exampl®jolf is

a coordinate term alog and dog is a coordinate term of wolf, since both are instante
canine Similarly, named entities of the same class are considerbd coordinate terms.
For instanceNew-YorkParisandRomeare all instances of @ity name Coordinate terms
reflect a particular type of word similarity (relatedness)d are therefore an appropriate
test case for our framework.

In general, automatic extraction of coordinate terms, dsag®ther inter-word seman-

109

tic relations, is required for the automatic constructibword thesaurus and databases of
world knowledge. While coordinate term extraction is ofteld@ssed by a rule-based
(templates) approach [59], rule based extraction is bemptad for very large corpora
such as the Web, where information is highly redundant aadigion oriented extraction
gives good results. In this test case, we focus on relatseigll corpora. Small limited
text collections may correspond to documents residing oarsgmal desktop, email col-
lections, discussion groups and other specialized sets@frdents. In limited-size text
collections word mentions may be scarce, and ‘deeper’ tetgssing methods should
yield higher recall.

In this test case, we evaluate the extractiorcity namesand person names$rom
small to medium corpora of newswire data. The task definediénexperiments is to
retrieve a ranked list of city or person names given a smalbtseeds. This task is
implemented in the graph as a query, where we let the quetrjbdison Vg be uniform over
the given seeds (and zero elsewhere). Ideally, the regutinked list will be populated
with many additional city or person names. Since namediest{NES) such as cities
and persons often contain more than one token (e.g., “NeW”Yor “William Cohen”)
we apply available tools to first segment the text, and alsatity named entity spans.
Text segmentation and named entity recognition are bothsieedied problems, and there
are various tools available that are sufficiently fast f@ fine-processing of limited size
corpora. Given NE chunks, it is possible to filter the quesuits by node type ="named
entity”. We apply this filter in the experiments. Otherwisgsults can be filtered based on
by part-of-speech tags, capitalization patterns etc.

Notice that high-quality retrieved lists, in which the tagnks are densely populated
with correctly identified coordinate terms, can supporttarativebootstrappingprocess.
That is, given an initial seed and a retrieval mechanism,sistem can automatically
select additional seeds using the produced ranked listlsieaquerythe corpus, with the
goal of increasing coverage. We did not attempt bootstra@etion in the experiments
conducted.

General wordsynonym extractiors another task considered in this test case. ldenti-
fying semantic relations between words using parsed textwell studied problem. We
are interested in applying the graph walk techniques taaek8ynonymous words. The
query distributiorvy will consist in this case of the term of interest. The objeetsieved
can be of a general type,=term It is also possible to query for onlyouns verbsetc.,
according to the query word and the user intentions.

110

Corpus words nodes edges unique NEs
MUC 140K 82K 244K 3K
MUC+AP 2,440K 1,030K 3,550K 36K
BNC+AP 1,333K 462K 1,731K -

Table 5.1: Corpus statistics

5.3 Experimental Corpora

The following corpora are used in the experiments.

MUC-6. We use the training set portion of the MUC-6 corpus [MUC6]. TheC
corpus contains articles of the Wall Street journal, andlly fnnotated with named entity
tags.

Associated press (APAnother corpus used consists of articles of the Associateskp
extracted from the AQUAINT corpus [14]. The AQUAINT corpuxludes automatically
generated, noisy, named entity tags.

British National Corpus (BNC)Finally, we use a subset of the British National Cor-
pus [19]. The full BNC corpus is a 100-million word collectiah samples of written
and spoken language from multiple sources, designed tesept a wide cross-section
of contemporary British English. We use this corpus for thalation of the synonym
extraction task.

All corpora were parsed using the Stanford dependency pEE?. Statistics of the
experimental corpora constructed and their corresporgtiaggh representations are given
in Table 5.1. The MUC corpus is relatively small, containatgput 140 thousand words.
A corpus constructed that included the union of MUC data ananaom subset of the
AP experimental corpus (MUC+AP) is substantially largemtaming about 2.5 million
words. The number of uniqgue named entities annotated indmtbora is detailed in the
“unique NEs” column in the table.

The BNC+AP corpus contains mainly texts from the BNC corpus, @lsag a small
addition of sentences from the AP corpus, including a tdtabout 1.3 million words.

Additional details regarding the considerations in corpaigstruction are provided in
the experimental settings description.

2http://nip.stanford.edu/software/lex-parser.shtrahtences longer than 70 words omitted.

111

5.4 Experiments and Results

We evaluate performance using graph walks witiformedge weight®, i.e.,0, = 0, V/,
and also for graph walks where the edge weights have beed.tuiVe apply the same
weight tuning procedure described in the previous chafiReranking is applied on top
of the modified graph walk results in this case, using thenkediedge weights. Path trees
were learned using the top positive, and the top negatiaddgled nodes. (In general,
we required the number of positive and negative exampleg toatanced.) All models
were trained using examples allocated for training andigipurposes. Performance was
evaluated on the separate test examples. In all of the expets reported in this chapter
we applied a reset probabilify= 0.5.

The research described in this chapter is perhaps mostddiaisyntax-based vector
space models, which derive a notion of semantic similaraynf statistics associated with
a parsed corpus [55, 86, 101]. In most cases, these modalgucirvectors to represent
each wordw;. Every element in the vector af; corresponds to particular “context;
representing a numeric count or an indication of whethieoccurred in context. A
“context” can refer to simple co-occurrence with anotherowe;, to a particular syntactic
relation to another word (e.g., a relation of “direct objeotw;), etc. Given these word
vectors, inter-word similarity is evaluated using somerappate similarity measure for
the vector space, such as cosine vector similaritljms similarity [86] that was designed
for this domain.

Recently, Pad and Lapata [101] have suggested an extended syntactior\sace
model calleddependency vecto(®V). In this model, rather than simple counts, the com-
ponents of a word vector consist weighted scoresvhich combine both co-occurrence
frequency and the importance of a context (i.e., the syictdependency patterns connect-
ing the word mentions). They considered two different coinbased weighting schemes:
a length weighting scheme, assigning lower weight to word co-o@nce over longer
connecting paths (computed as inverse of path length); moblaguenessveighting hier-
archy [73], assigning higher weight to paths that includengnatically salient relations.
Another parameter controlling the computed scores in tin@mework limits the set of
considered paths to a manually designed set, represergitaus types of linguistic in-
teresting phenomena. In an evaluation of word pair sintylasased on statistics from
a corpus of about 100 million words, they showed improvesewer several previous
vector space models.

In the experiments, we therefore compare the graph walkewaork against the main
two following models.

112

Co-occurrence modele compare against a vector-based bag-of-words co-ocmare
model. The co-occurrence model represents a traditiopabaph, where text is processed
as a stream of words rather than as syntactic structures. -@caarrence vector-space
model was applied using a window of two tokens to the right tantthe left of the focus
word. Inter-word similarity was evaluated using cosineiknty, where the underlying
co-occurrence counts were normalized by log-likelihodbrid 01].

Dependency vectors (DWVe compare graph walks alsodependency vectqrbeing
a state-of-the-art syntactic vector-based model. In imgleting this method, we used
code made available by the authrwhere we converted the underlying syntactic patterns
to the Stanford dependency parser conventions. The pagesratthe DV method were
set based on a cross validation evaluation (using the cityerextraction train set queries,
and the MUC+AP corpus). Themediumset of dependency paths and thiglique edge
weighting scheme were found to perform best. We experindewtth cosine as well as
the Lin similarity measure in combination with the depermevectors method.

In applying the vector-space based methods, we computeiksiynscore between
everycandidate from the corpus and each of the query terms, andtteeage these scores
(as the query distributions are uniform) to construct a eahlist.

Below, we present the experimental evaluation of the coatditerm extraction and
the word synonyms extraction tasks in detail (Sectionslsaad 5.4.2, respectively). For
every task, we describe the datasets constructed, theésesuhe vector-space models,
and the results of graph walks and learning in the graph watkéwork. Finally, we draw
conclusions from the experiments regarding the framework.

5.4.1 Coordinate Term Extraction

In the coordinate extraction task, queries include a smatilver of seed examples rep-
resenting a named entity class of interest. We require thieved nodes to be of type
T =named entity using the available corpus annotations. The empiricaluatian in-
cludes the extraction of named entities that are instaniceisyandpersonnames.

In what follows we describe the experimental datasets, hadxperimental settings
for each of the evaluated approaches. We then briefly reviewnodels generated by the
learning methods, present the results and discuss theveblseends.

8 http://www.coli.uni-saarland.de/ pado/dv.html|

113

Datasets

The MUC-6 collection provides gold standard annotationsarhed entities (NEs) and
their types—e.g., “New York” is annotated as “Location”. rRbe city name extraction
experiments, we hand-labeled all location NEs as to whekisgrwere city names. Over-
all, we identified 185 unique city names in the corfusVe then generated 10 queries
comprised of cities’ names. Each query includes 4 city nasedscted randomly accord-
ing to the distribution of city name mentions in the MUC-6 agsp For the person name
extraction task, we also generated 10 queries. Each quelydes 4 randomly selected
person names included in the MUC-6 corpus. For every datasatse 5 labeled queries
for training and tuning purposes, and reserve the rematigeries for testing.

In addition to the small MUC-6 corpus we constructed a largepas, by adding to
the MUC-6 corpus parsed articles extracted from the AQUAINTpas (MUC+AP). The
AQUAINT corpus has been annotated with named entities aaiioaily, so it includes
noisy tags; nevertheless, we process queries in the ttph grdhe same manner described
above. The same queries were applied to both corpora.

Experimental Setup

Details regarding the experimental settings of each of pipeaaches considered are given
below.

Vector-Space Similarity. We evaluated the co occurrence model (CO) and the de-

pendency vector model using the test queries on both carporating the considered set
of candidates to named entities allows us to reduce the $itteeao-occurrence matrix

maintained by the vector models, thus overcoming memonyirepent constraints. In the
larger MUC+AP corpus, however, the number of candidatesrteatl to be evaluated is
very large (Table 5.1). We therefore show the results ofyapglthe vector-space models
to the top, high-quality, entities retrieved with rerarkiior this corpus. (We process the
union of the top 200 results per each query; that is, 1,008idates are ranked overall.)

Graph Walks. We first set the length of the graph wadkusing cross-validation over
the training queries using varying walk lengths. We fourat tieyond = 6 improvements
in mean average precision were small. We therefor& se6.

Weight tuning. Weight tuning was trained using the training set and two dez#
target nodes for each task.

Reranking. In reranking, we evaluate specialized feature templatéssmdomain, as

4The list was not normalized—e.qg., it includes synonyms likew York” and “N.Y”.

114

follows.

Edge label sequence$hese features indicate whether a particular sequencegef ed
labels/; occurred, in a particular order, within the set of paths ilegdo the target node
zj. Here we consider full paths from query to target. (Howewear,removed the edges
mentionandas-termfrom the feature description, such that the remaining edgaences
are mostly bigrams.)

Lexical unigrams. The lexical unigram features indicate whether a word mentio
whose lexical value i was traversed in the set of paths leading;fo

For example, for the query term “girl” in the graph depictaedFigure 5.1, the tar-
get node “boys” is described by the features (denotedeanire-name.feature-valpe
sequence.nsubj.nsubj-ifwherementionandas-termedges are omitted)lexical.“like”
etc. In addition, we applied th®ource-counteature (see Section 3.3.2).

We set a count cutoff (of 3) to the reranking features in otdeavoid over-fitting.
Reranking was applied to the top 200 ranked nodes output bgrtpEh walk using the
tuned edge weights. (We computed the features indepegdsrithe graph walk, using
the path unfolding procedure, as described in Section.3.3.3

Path Constrained Walk. Finally, path-trees were constructed using the top 20 cbrre
nodes and 20 incorrect nodes retrieved by the uniformly e graph walk. Labels
indicating the relevancy of each node retrieved were avalto us in the MUC corpus.
In the MUC+AP corpus, however, we could not readily identiggative examples. For
this corpus, we therefore considered nodes not known to treat@answers as incorrect
responses; i.e., the training data in this case is noisy.hénekperiments, we apply a
threshold of 0.5 to the path constrained graph walk method.

Learned Models

Following is a short description of the models learned inglietuning, reranking and the
path constrained walks.

Applying weight tuning, high weights were assigned to edge$ such asonj-and
prep-inandprep-from nn, apposandamodfor the city extraction task. For person extrac-
tion, prominent edge types includedbj obj, possandnn. The latter preferences align
well with the linguistically motivated weights of the deEmcy vectors model.

High weights were assigned by the reranking model in thematye extraction task to
lexical features such as “based” and “downtown”; and to dalgeams such as “prep-in-
Inverse—conj-and” or “nn-Inverse-nn”.

115

In the path trees constrcuted, positive highly predictathp included many symmetric
paths. For example, in the city extraction task, predigbagerns included the following
symmentric paths:

...—conjandlnverse- ...—.conjand— ...
...—prepininverse— ...—.prepin — ...

Results

Figure 5.2 gives results for the city name (top) and the persone (bottom) extraction
tasks. The given curves show precision as a function of rartke ranked list, down to
rank 100. (We hand-labeled all the top-ranked results asheethver they are city names
or person names.) The figure shows the results for the MUCusofieft), and for the
MUC+AP corpus (right).

The figures included the resulting curves using the co-eeage model (CO), apply-
ing a cosine similarity; and using the syntactic vectoregpBV model, where the Lin
similarity measure was applied (DV:Lin). (Performance loé DV model using cosine
similarity was found comparable or inferior to using the lnmeasure, and was omitted
from the figure for clarity.) Out of the vector-based modéhg co-occurrence model is
preferable for the city name extraction task. The syntat#gendency vectors model, on
the other hand, gives substantially better performancgéoson name extraction. We
conjecture that city name mentions are less structureceimitidlerlying text. In addition,
the syntactic weighting scheme of the DV model is probablyoptimal in the case of city
names. For example, tle®njunctionrelation was found highly indicative for city names
(see below). However, this relation is not emphasized byDeveighting schema. As
expected, the performance of the vector-based models i®ua@ with the size of the cor-
pus [130]. Overall, the vector-space models demonstraid gerformance for the larger
MUC+AP corpus, but only mediocre performance for the smalelC corpus.

The results of applying graph walks with uniform weights al®wn in Figure 5.2
(Gw:Uniform). The performance of graph walks is inferiorttee vector space model
for the city name extraction task. For person name extnactiee graph walks achieve
higher recall than the co occurrence model, but lower acguaithe top ranks. Studying
the results, we found that due to the exponential decay oa#r lgength embedded in
the graph walk paradigm, named entities linked to the queder over a large number
of longer paths were often ranked below other nodes conmdot¢he query over few
short paths. In the problem settings considered, howeweredong connecting paths are
more meaningful than shorter arbitrary connecting patt®r éxample, in Figure 5.1,

116

MUC MUC+AP
1 B T T T T T T T T T 1 T T T T T T T T
| Gw:Uniform ——
0.9 1= 1 08 b Gw:Learned
L] 8w CO --ooo-- 7
0.8 | ; DV:Lin
s 07} § c) PCW o |
2 2 06 [t Rerank -
g 06| - 8
T 05 - a O0AF e T T
0.4 - . T
”--".“'\":-‘C::_‘, 0.2 I o “-.“".-:;:—
0.3 N P e Nl T T
0.2 [| | | I | | | 1 | 0 / | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Rank Rank
a. City name extraction
1 T T T T T T T T T 1 T T T T T T T T T
K e T ——
c c
§e) §e)
2 RO,
[8] [8]
e e
a a
01 ! | | | | | | | | | 0 ! | | | | | | | | |
0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
Rank Rank

b. Person nhame extraction

Figure 5.2: Test results: Precision at the top 100 ranksthi®icity name extraction task

(top) and person name extraction task (bottom).

117

we consider “girls” to be more similar to “boys” than to the ndplaying” and the path
between “girls” and “boys” to be more significant, althougk path that connects “girls”
to “playing” is shorter in length.)

We next discuss learning results, and show how learningvalto promote nodes that
are distant, yet connected to the query over a large numimeeahingful paths. Figure 5.2
shows the precision-at-rank curves for the graph walk ntetiging the learned weights
(Gw:Learned), the same graph walks with reranking (Reran&ad a path-constrained
graph-walk (PCW).

Several trends can be observed from the results. Firstyphgvalk using the learned
edge weights consistently outperforms the graph walk witifioom weights. Reranking
and the path-constrained graph walk, however, yield sapegsults. Both of these learn-
ing methods utilize high-level features compared with tregpf walk and weight tuning,
which can only consider local information. In particulahile the graph walk paradigm
assigns lower importance to longer connecting paths, kergrand the path-constrained
walker allow to discard short yet irrelevant paths, andebgreliminate errors at the top
ranks of the retrieved lists.

Contrasting the graph-based methods with the vector-base@ls) the difference in
performance in favor of reranking and the path constrainaéswcan be attributed to two
factors. The first factor is learning, which optimizes pemiance for the underlying data.
A second factor is the incorporation of non-local inforroati which allows to consider
high-level properties of the traversed paths. The diffeeeim performance between the
graph-walk and vector based approaches narrows with the§the corpus, as the vector
based methods improve given more statistics.

5.4.2 General Word Similarity

In the previous section, we used the framework to extractle/tnat are related by being
coordinate terms. In particular, our experiments focusedamed entities. In this section,
we consider the extraction of synonyms, given general wofets example, given the
queryVq = {term="movie” }, we are interested in retrieving list of entities of typeterm
(or T =noun, and expect to get synonymous words, liken, appear at the top of the list
retrieved.

Below we describe the experimental datasets and a set afnamaly results.

118

Datasets

We collected pairs of word synonyms from teaching matefiagoreign students. We
then constructed an experimental corpus by extractinggeeas that contain these words.
Specifically, we extracted all of the relevant sentencas fite BNC corpus. (The number
of extracted sentences was bound to 2,000 per word.) Faguaént words, we extracted
additional example sentences from the AP corpus. (Sentameoat was complemented
to 300 per word, where applicable.) The constructed corBbEG+AP, is based on 1.3
million words overll. The corpus statistics are given in [Eab.1.

We distinguish between nouns, adjectives and verbs. TaBldeiails the synonyms
pairs. For each part-of-speech type, we use 10 synonym gmmseries. (the term men-
tioned first for each pair is the query, and the other termmscered as a correct answer.)
The remaining synonym pairs were used as test queries.

Experimental Setup

We applied a simple co-occurrence model (CO) that does natidenthe syntactic rela-
tions available in the parse structure, using cosine siityiland applying log-likelihood
normalization. In addition, we applied the dependency arsctnodel, using a simple
cosine similarity measure (DV:Cos); using a cosine sintifaneasure, where the statis-
tics have been first normalized by log-likelihood (DV:Cos-#nd using the Lin similarity
metric (DV:Lin).

For scalability reasons, rather than index all of the wordthe corpus in the vector
space models, we consider the top 400 words retrieved byhgnatks (with uniform
weights) per query. (That is, the union of the top resultsglequeries is indexed.)

We applied graph walks, using walk lendtk- 6 and uniform weights (Gw:Uniform).
Path-trees were generated using the correct node and thectmpect node per each of
the training queries. (In this case, training data is n@syit is possible that the top term
retrieved is semantically related to the query word.) Weliadga threshold of 0.5 to the
path constrained walks (PCW). Finally, reranking was appl&dg the features described
for the coordinate term extraction task. Since the graptkswaklded poor performance
in this case (a discussion of the results follows), we appkganking on top of the results
obtained using the path constrained walks in this case.

119

Training examples

Test examples

Adjectives

contemporary : modern
immediate : instant
lethal : deadly
particular : specific
deliberate : planned
gay : homosexual
dubious : doubtful
infamous : notorious
imperative : vital

lucid : clear

infrequent : rare
dedicated : committed
necessary : essential
pressing : urgent
informal : casual
isolated : lonely
legitimate : valid
constant : fixed
exact : precise
economic ; profitable
essential : fundamental
attractive : appealing
intelligent : clever
prosperous : affluent

Nouns commencement : graduatignmurderer : assassin
convention : conference disaster : catastrophe
destiny : fate discount : reduction
hunger : starvation impediment : obstacle
hypothesis : speculation homicide : murder
material : fabric measure : degree
movie : film interplay : interaction
possibility : opportunity inflow : influx
remorse : regret meeting : assembly
association : organization | ballot : poll

bid : tender
comfort : consolation
Verbs answered : replied oversee : supervise

conform : comply
disappeared : vanished
cited : quoted
diminished : decreased
enquire : investigate
evaluated : assessed
inspected : examined
renewed : resumed

demonstrated : protested

120

received : got
admitted : confessed
began : started

closes : shuts

confine : restrict
disclose : reveal
illustrate : demonstrate
assure : guarantee
illuminated : clarified
nominated : appointed
responded : replied
renewed : resumed

Table 5.2: Word synonym pairs: train and test examples

CO | DV:Cos | DV:Cos-ll | DV:Lin | Gw:Uniform | PCW | Rerank(PCW)
Adjectives| 0.07 | 0.18 0.21 0.41 0.08 0.34 | 0.34
Nouns 0.05| 0.21 0.29 0.55 0.01 0.17 | 0.36
Verbs 0.04| 0.13 0.22 0.45 0.01 0.40 | 0.27
All 0.05| 0.17 0.24 0.47 0.04 0.31 | 0.33

Table 5.3: General word synonyms extraction results: MAP

Results

Results are presented in Table 5.3 in terms of mean averagsipre While we evalu-
ate performance using our self constructed experimentplspthe results are consistent
with similar experiments reported in the literature [101]hat is, the model of depen-
dency vectors, which considers syntactic relations (DV)@osomputing co occurrence
weights outperforms the simple co occurrence model (CO)irgdpre-processing of log-
likelihood normalization of the statistics improved thefpemance of the dependency vec-
tors model further. Lastly, using the Lin measure, spexgalifor this model for inter-word
similarity, in combination with dependency vectors reachigh levels of performance.

As shown in the table, the results of graph walk without leagrare relatively poor
(these results are comparable to the results of applyingeaamilarity). We conjecture
that as was the case in coordinate term extraction, herehtopreference of the graph
walks for nodes that are close to the query node is unjustifibd path constrained walks
improve performance significantly, by directing the walksfollow meaningful paths.
Reranking improved the path constrained walks for the nowerigs, but hurt perfor-
mance for the verb queries. It is possible that speciallygtesl reranking features that
are adapted to this problem can improve reranking perfocenalm general, we observed
that the graph walks, as well as the path-constrained watksjiased towards words that
are frequent. It is therefore desired to lower the effectighinode connectivity (using
manipulation of the transition matrix, for example [1328gsSection 2.4.2).

Overall, the path constrained walks and reranking give rsgdx@st performance in
the reported results. The performance of learning are riise the syntactic model of
dependency vectors using cosine similarity and log-lil@did normalization, for example.
Notice that graph walks were in fact used in the experimesss areliminary mechanism
for retrieving relevant candidates, to be processed bydh®yspace models.

121

5.5 Related Work

This work is not the first to apply graph walks to obtain a notaf semantic similar-
ity for NLP problems. Toutanova et-al [136] constructed @eclied graph, where nodes
represented words, and the edges denoted various typetehiord semantic relations,
extracted from WordNet. They applied graph walks to infereasure of word similarity.
The semantic similarity scores obtained were used for éxdmoothing for the task of
prepositional word attachment. Recently, Hughes and Ran@ifjecpnstructed a simi-
lar graph, representing various types of word relationmfiordNet, and compared the
random-walk generated similarity measure to similarityegsments from human-subject
trials. Another work in the field of information retrieval @yed random walks in a
graph that included word relations from WordNet and othsoueces as well as corpus co-
occurrence based measures, for query expansion [33].dchlapter we consideorpus-
basedword similarity measures, using syntactic information. Wiprrevious works were
tailored to extract a particular flavor of word similarityjtiwthe goal of improving the
performance of a specific end application, we use learnimgre the generated similarity
measure per task. In the experiments reported, we wereynaiatested in comparing the
graph walk performance against corpus-based vector-spadels that use parsed text as
their input. Itis straight-forward, however, to add exenmresources such as WordNet rela-
tions to the graph, thus integrating corpus-based anddesicThis is a possible direction
for future research.

There have been multiple works that applied PageRank stglghgalks for natural
language applications; i.e., using node centrality (osfige) scores. For example, it has
been suggested to construct text graphs for automaticuaxtmrization, where nodes are
sentences and (undirected and weighted) links are drawvebatsimilar sentences [44,
92]. In these graphs, sentences assigned high centratitgsare considered as salient,
and are used to construct an automatically generated symrvihalcea [91] applied
graph walks also for the task of word sense disambiguatiba.uSed a separate graph per
sentence, in which nodes represented the possible Worghkts of the contained words,
and directed edges between the synset nodes denoted teesimilarity, weighted by the
overlap in the synset definitions in WordNet. Graph walksigshe PageRank paradigm
were then used to select the most probable synset per womlrkmowledge the research
presented in this chapter is novel in representing a corpagiaaph that includes syntactic
information (in particular, dependency-parsed text), endovel in exploring the use of
random-walk similarity on such a graph. Compared with thevabentioned works, our
goal is not to deduce centrality scores, but to learn interevgimilarity measures.

We note that graphs derived from individual parsed sentehaege been widely used.

122

For example, Snow et al [127] used dependency paths in ardésttact hyponyms from a
corpus of parsed text. In particular, they extracted pastérom the parse tree of sentences
in which hyponym word pairs co-appeared, and trained a hyporlassifier using these
patterns as features. Overall, they created a featureolexi€ about 70,000 dependency
paths, consisting of frequent dependency paths that ctbetween noun pairs in their
corpus. The authors indicated that due to data sparsityatioeof relevant sentences in the
corpus was low. In contrast, we represent text corpora asrented graph of dependency
structures, where the graph walk traverses both within-caosis-sentence paths.

Dependency paths of individual sentences have been usetbalgeneral relation ex-
traction. Culotta and Sorenson [36] explore the detectiahdassification of instances
of relations, where relations correspond to meaningfuheations between two entities
(e.g., “based-in”, “member”, “spouse”). They represertteelation instance as a depen-
dency tree, augmented with features for each node, incugtamt-of-speech tags, entity
type, WordNet synsets etc. For each pair of entities in aepeet the smallest common
subtree in the dependency tree that includes both enstiesind. Based on the hypothesis
that instances containing similar relations share sinsildrstructures in their dependency
trees, the authors propose kernel functions that estirhatsitnilarity between the sub-
trees. Empirical evaluation results showed that the treegte@pproach outperformed a
bag-of-words kernel, implying that the structural infotioa represented in the tree kernel
is useful for the relation extraction problem. Bunescu aneiMy [17] observed that the
information required to assert a relationship between tamed entities in the same sen-
tence is typically captured by the shortest path betweetwbesntities in the undirected
version of the dependency graph, where words are taggeguatiof-speech, entity type
and other features. They propose a kernel which captures product of the common
features in the shortest paths, using it with SVM to classéw instances.

The graph representation we suggest may be used for geaki@mn extraction. The
rich feature set encoded by the described kernels can beseied in the graph (for
example, using part-of-speech walkable nodes and edgesiN&blinks etc.). Relevant
features can also be fed to reranker. Rather than addressl#tiem extraction problem
as a classification problem, graph walks would approach & &asnking (or, retrieval)
problem. General relation extraction is a challenging [@oh and it is a direction for
future exploration.

123

5.6 Summary

In this chapter we have explored a novel but natural reptasen for a corpus of dependency-
parsed text, as a labeled directed graph. We have evalusadgk of coordinate term
extraction using this representation, and shown that &sis ¢an be performed using sim-
ilarity queries in the general-purpose graph-walk baseshglanguage. Further, we have
successfully applied the learning techniques availabtdénframework. In this domain,
path information and other global features proved to be fi@dakcompared with the local
graph walks and weight tuning.

Empirical evaluation of the coordinate term extractiorktasggest that the graph-
based framework performs better than state-of-the-atiovspace models given small
corpora. We therefore find that the suggested model is seiifabdeep (syntactic) pro-
cessing of small specialized corpora. Preliminary evaduabdf general word synonymy
gave consistent results.

The framework presented can be enhanced in several waysingtance, WordNet
edges and morphology relations can be readily encoded igriaph. Finally, we believe
that this framework can be applied for the extraction of nepecialized notions of word
relatedness, as in general relation extraction.

124

Chapter 6

Design and Scalability Considerations

The test cases studied vary in multiple dimensions, inolgidhe graph schema, the tasks
considered and the relevant corpora sizes. Given this empetal setup, we are interested
in drawing some conclusions regarding high-level systerampaters and design choices.
In the first part of this chapter, we evaluate the effect ofgfagh walk parameters, includ-
ing the walk length, the reset probability and variants ef ginaph walk schema (Section
6.1). We then discuss learning, where the performance ointtieidual techniques, as
well as their combination, are evaluated empirically (#&c6.2). In Section 6.3 we dis-
cuss scalability issues, and detail the experimental quergessing times. In addition, the
impact of the path constrained walks on the graph walk psioggime is evaluated. Fi-
nally, a discussion of related research is included (Se&id) that focuses on algorithms
developed for scaling up Personalized PageRank graph esarch

6.1 Graph walk parameters

The graph walk framework (as described in Chapter 2) inclidesparameters: the re-
set probabilityy; and, as we perforrfinite graph walks, another parameter is the length
of the walkk. In this section we evaluate empirically the effect of thpaeameters on
performance. In addition, several variants of the graplk\vsahema (Section 2.2.3) are
evaluated.

125

Precision

Precision

City name extraction

0-7 T T T T T I T T 0-7 T T T T
k=a —

0.6 k=5 - 0.6 _
K6 ----oo-
K=7 o . 05 |
k=8 .
k=9 - - 0.4

0.3

Precision

. 0.2

. \ 7] 01
0 | LR e ! Ly 0

0 0102 0304 05 06 07 08 0.9

Recall
Person name extraction
07 T T T T T T T T 07 T T T T
k=6 --------
K=7 o . 0.6
k=8
k=9 -- - 0.5) —
e - 3 0.4 -
ey Q q
0.3 b . T g 03¢f i
i " o [
0.2 - . 0.2 - .
01| Ly . 01f I
O | | | | I | | | O | | | |
0 01 0203040506 07 08 0.9 0 0.04 0.08 0.12 0.16 0.2
Recall Recall

Figure 6.1: Precision-recall curves varying the walk |érigiior city name extraction (top)
and person name extraction (bottom). The left graphs sheviuthcurves, and the right
graphs focus on the top of the lists (down to recall 0.2). €hesults were all generated
using the MUC corpus.

126

Corpus [k=2 k=3 k=4 k=5 k=6 k=7 k=8
Person name disambiguation

M.Game | 0.65 0.67 0.66 0.66 0.67 0.67 0.67
Sager 0.67 056 056 056 056 056 0.56
Shapiro | 0.61 046 0.44 043 043 043 0.43
Threading
M.Game | 0.53 052 050 050 050 049 0.49
Germany| 0.55 056 0.49 049 049 048 047
Farmer | 0.65 0.64 058 058 057 0.56 0.56
Alias finding

Meetings| 0.60 0.72 0.73 0.73 0.73 0.72 0.72
Personal | 0.58 0.61 0.62 0.63 0.63 0.63 0.63

Table 6.1: Results (MAP) of applying graph walks using unifadge weights, varying
the graph walk length parametefy = 0.5).

6.1.1 Walk Length

We evaluated the performance of the person name disamhagu#itireading and alias
finding tasks, using eight datasets in total, for varyingkdahgthk. The results, in terms
of mean average precision, are shown in Table 6.1. For ewa&®set, the best results
are marked in bold. As shown, performance for the person rdisaenbiguation task is
similar for the management game corpus, given differeniesabfk. In the case of the
two Enron datasets, however, the performance on the peesuge disambiguation task is
substantially better for a short walk lengt=€ 2), where it converges to an inferior result
for longer walks. In the threading task, performance isdvdtir short walks of length
k =2 ork = 3 across all corpora. Finally, for the alias finding taskyé¢hie a substantial
improvement increasing the walk length frdm- 2 tok = 3, and performance converges
for longer walks. In all of the experiments, performancevesged for walks longer than
k = 8 steps.

These results support our approach of conducting finitegnaghks, rather than infinite
walks, in two ways. First, Personalized PageRank graph walkserge within a small
number of iterations, as indeed shown by the empirical teswalks over a small number
of steps therefore provide a very good approximation of it&#iwalks. Secondly, and
perhaps more interestingly, the results show that limitegky walks give a more accurate
similarity measure in some cases. This means that givewiagskocal indication of inter-
entity similarity (as reflected by the set of their connegtoaths), propagating similarity
in the graph over longer walks may introduce noise to the igged similarity metric. On

127

the other hand, we find that the graph walk should be long dntwu@gllow the traversal
of all acyclic meaningful paths from the query to the targetles. (Obviously, acyclic
paths are the shortest way to reach a target node over aypartsequence of edges.)
In other words, graph walks that are too short will hurt rechl the alias finding task,
for example, some of the target nodes can be reached in tyws §tan the query node.
However, additional relevant nodes can be reached oves pla#th are three steps away
overall. A walk of three steps therefore gives better penfmce in this case. Once all of
the relevant nodes have been reached for the first time byrdphgvalk, the benefit in
continuing the walk is marginal in the experiments repotterk, or hurts performance in
some of the cases, as mentioned above.

In another set of experiments, we evaluated the effect ofveddk length parameter in
the language domain. In this domain, every query is as®utiaith a large number of
correct answers (see Section 5.4.1). The mean averagsiprein this case is therefore
fairly low (since many correct answers that are not reacladribute zeros to the overall
mean average precision score). On the other hand, the MUglLigas fully annotated,
allowing us to show results in terms of a precision-recatieuor this corpus. Figure
6.1 shows the precision-recall curve for the city name exitva task (top) and the person
name extraction task (bottom) for the MUC corpus. The left pathe figure show the
full curve for the two tasks; the right part focuses on thedbthe lists retrieved (down to
recall of 0.2).

The top left graph in Figure 6.1 demonstrates clearly thatgasing the graph walk
length increases recall. For both tasks, short walks wkete- 4 yielded poor recall.
(For the person name extraction task, recall was near zedothe corresponding curves
were eliminated from the figure.) The reason for the low deicathese cases is that
there are relatively few relevant nodes that can be reachedshort connecting paths in
this domain. For example, the short path “contains — codj-arcontainsinv” models a
conjunction relation between words appearing in the samtesee. This type of evidence
is relatively scarce, and occurs more frequently for citynea than for person names
in the experimental corpora. The majority of meaningfulhgadre of length six in the
graph. (E.g., the path that models a common direct objecinaegt is of length six, etc.)
Increasing the walk beyorkd= 6 in this domain improves recall, as shown in the figure;
however, the additional nodes reached in a longer walk arergly added at the bottom
of the retrieved list, due to the exponential decay embedddte walk.

In conclusion, the length of the graph watkshould allow the graph walk to reach
graph nodes over a variety of meaningful paths. As a ruleeftiomb, it is recommended
that the walk length allows traversal of the full set of (d@)cconnecting paths to a tar-
get node. It is straight-forward to tune the walk length pagter using a set of tuning

128

Corpus [k |y=015 y=03 y=05 y=07 y=085
Person name disambiguation

M.Game | 2 | 0.66 0.67 0.65 0.66 0.66
Sager 0.67 0.67 0.67 0.67 0.67
Shapiro 0.60 0.61 0.61 0.61 0.61
Threading

M.Game | 2 | 0.53 0.53 0.53 0.53 0.53
Germany 0.55 0.55 0.55 0.55 0.55
Farmer 0.65 0.65 0.65 0.65 0.65
Alias finding

Meetings| 3 | 0.60 0.60 0.60 0.60 0.60
Personal 0.67 0.67 0.67 0.67 0.67

Table 6.2: Results (MAP) of applying graph walks using unifadge weights, varying
the reset probability.

examples.

6.1.2 Reset Probability

In all of the experiments reported thus far, the reset pritibalvas set toy = 0.5. Table

6.2 shows the results of varyirygor multiple tasks and corpora in terms of mean average
precision. The table shows that changingas negligible effect on the actual produced
rankings. These results are in line with previous findingsysng that while this param-
eter affects the actual scores assigned to the graph naakses not change the output
relative rankings [102].

6.1.3 Graph walk variants

As described in Section 2.2.3, there are several varianggagfh walk schemas that re-
searchers have applied in the past in performing randomhgraytks to extract similarity
in graphs. In the experiments conducted so far, we adopteééhnsonalized PageRank
graph walk model, where the outgoing edge weights from ead@ngode were normal-
ized to form a probability distribution. In this section, wmvide experimental results us-
ing closely related graph walk schemes. More specificalyewaluatdazy graph walks,
comparing them to Personalized PageRank graph walks. Imtyewalk schema, the

129

Corpus [Gw Gw® LGw LGw'
Person name disambiguation
M.Game | 0.65 0.68 0.66 0.68
Sager 0.67 0.69 0.68 0.68
Shapiro | 0.61 0.62 0.61 0.62
Threading
M.Game | 0.53 0.62 0.53 0.62
Germany| 0.55 0.56 0.55 0.56
Farmer | 0.65 0.65 0.65 0.65
Alias finding

Meetings| 0.61 0.60 0.60 0.59
Personal | 0.72 0.71 0.69 0.70

Table 6.3: Results (MAP) of applying a lazy graph walk varidr®w), and a different
scheme for assigning the random transitions in the graphrfisuperscript).

random walker stays at the current node with probabjiayeach step of the walk, or con-
tinues to the neighboring nodes with the remaining prolighiWWe evaluate lazy walks
usingy = 0.5. In addition, we evaluate two edge weighting schemas ijucation with
each of the models. In the weighting scheme used in the erpats so far, each outgoing
edge from node is assigned a typical edge weight by its type, and the wallakspan
edge at random according to its weight (Formula 2.7). Angplessible weighting scheme
assumes that the walker first picks an edge type at randorof the set of outgoing edge
types available at each node (S(x), per section 2.2.3)ngive edge type, a specific edge
is then selected uniformly (Formula 2.8). We refer to theeladchema asvo-stagegraph
walk!

Table 6.3 gives the results for the combinations of the twikwaradigms and the two
edge weighting schema. The Personalized PageRank grapb avalklenoted as ‘Gw’ in
the table, and the lazy graph walk variant is denoted as ‘LGlie ‘two-stage’ graph
walk variant is marked with the superscript The edge weights were assigned uniformly
in the experiments.

Overall, the different variants have very limited effect thie results. More specifi-
cally, the lazy graph walks and Personalized PageRank avendlocgenerate very similar
rankings (as reflected by the mean average precision méga3ime two-stage weighting
scheme gives noticeably better results for one of the eigtatsets.

LIn our implementation, the weights of the outgoing edge $yqre normalized at each nodevhere the
total outgoing weight fronx is computed as S(x), defined in Section 2.2.3.

130

6.2 Learning

As discussed in Chapter 4, several researchers have sujgesEmes for adjusting the
set of edge weights using hill-climbing methods in the Peatimed PageRank settings
[39, 100, 4]. We have shown, however, that high-level infation, such as the edge
sequencesncountered in traveling from the source nodes to a targd,ran be useful
in evaluating the node inter-relatedness. Adjusting tla@lyparameters based on “local”
information only may be thus sub-optimal. (The notion oftglband local information
has been introduced in Section 3.5.)

The reranking approach parameterizes the graph walk wigh af sepresentative fea-
tures, which allows one to capture certain global properiethe graph walk. However,
this representation loses some quantitative informationgared with exact gradient com-
puting. The path constrained walk approach considers glofamation in the form of
edge sequences as well. Compared to reranking, path coestraalks have more impact
on the graph walk procedure; on the other hand, a more restrspace of features is con-
sidered in this method. In Section 3.5 we discussed thetqtiadi differences between the
learning approaches in detail. Here, we present and discapgical comparative results
(Section 6.2.1).

It is possible to combine several learning methods. In paldt, it is straight-forward
to apply weight tuning and reranking as a pipeline, whereotput of the graph walk
with the set of tuned weights is provided to the reranker.il&nhg, path constrained walks
can be used to generate an initial ranking to be processdwbgtanker. In Section 6.2.2,
we provide empirical results for the utility of these learnembinations.

Finally, Section 6.2.3 discusses the effect of the threklagiplied to the path con-
strained walks in terms of performance (mean average jwagivased on a set of relevant
empirical results.

6.2.1 Local vs. Global Learning

In this section, we compare every pair of the learning methnderms of performance.
The discussion is based on empirical results of the persoe niisambiguation and thread-
ing tasks, evaluated on six datasets.

131

Corpus | Gw:Random| Gw:Learned| Rrkewr | Rrkg,r | Rrkewr | Rk,
Person name disambiguation

M.Game | 0.61 0.67 0.63 0.83 0.65 0.85t
Sager 0.65 0.81° 0.72 0.89 0.72 0.83
Shapiro | 0.70 0.80 0.52 0.75 0.52 0.79
Threading

M.Game | 0.52 0.59 0.75t |- 0.74t | -
Germany| 0.51 0.55 0.66't | - 0.68t | -
Farmer | 0.68 0.72 0.83t |- 0.871 | -

Table 6.4. Performance comparison (MAP) of graph walks wihdom weights
(Gw:Random), weight tuning (Gw:Learned), reranking usimgee sequence features
(Rrkew.r) and the combination of weight tuning and reranking (®¥k). Reranking using
the full set of features is denoted as Rrk

Reranking vs. weight tuning.

We compare the gradient descent method and reranking asvollSince the gradient
descent algorithm is prone to converge to local minima, weth& algorithm for every
task and corpus (train set) combination for 5 randomly geteerinitial graph edge weight
parameter set®, out of which we considered the parameters for which thedrestresult

is reached by the gradient algorith@®. The output of this procedure is a modified set
of weights©®; we then applied graph walks usi@f to evaluate performance on the test
set queries.

Re-ranking was trained separately, using bothtthe anddevelopmensets, where
for comparison reasons, the same set of initial random gedle weight®©° was used
to generate the graph walk output. Thus, both methods ar@a@d against the same
baseline. (Conversely, in the previous experiments repant€hapter 4, re-ranking was
given the output of the graph walk with uniform weights.) leeery example, the top 50
nodes were re-ranked.

We are interested in comparing reranking with edge weigtibtpasalternativelearn-
ing methods that improve on graph walk performance. Theifeatthat we use for rerank-
ing will be therefore derived from the set of paths leadingvery candidate node (that is,
the same information available to the error backpropagalgorithm is used), describ-
ing non-local properties of these paths. In particulardbmesidered features incluéelge
label bigramsand thesource counfeature. As defined in Section 3.3.2, the latter feature
indicates the number of different source nodes in the sebohecting paths leading to

132

Corpus | Gw:Uniform [PCW | Rrkgwu | Rrkg,, | Rrkecw | Rrkicy
Person name disambiguation

M.Game | 0.65 0.65 | 0.65 0.85t | 0.69 0.84't
Sager 0.67 0.76 | 0.72 0.82 0.68 0.89°%
Shapiro | 0.61 0.62 | 0.52 0.78t | 0.65 0.77%
Threading

M.Game | 0.53 0.73 | 0.73 - 0.75 -
Germany| 0.55 0.65 | 0.72 - 0.67 -
Farmer | 0.65 0.76" | 0.83 - 0.85 -

Table 6.5: Performance comparison (MAP) of graph walks withiform weights
(Gw:Uniform), path constrained walk (PCW), reranking usirige sequence features
(Rrkewu) and the combination of path constrained walks and rergnkRrkgy:L).
Reranking using the full set of features is denoted as Rrk

the candidate node. The results of reranking using the étibsfeatures designed for the
considered tasks (see Chapter 4) are given as well.

Table 6.4 includes mean average precision results fqoengon name disambiguation
task (applying the contextual version, where queries sbdifile and term nodes) and
threading using the relevant corpora. The table includes the evaluatf graph walk
with the baseline set of randomized weigB(Gw:Random). It also gives the results of
applying graph walks with the learned set of edge weights:[@arned); reranking of the
graph walk results using the initial edge weigB§ where only path-describing features
are used (RrgwRr). Results using the full set of reranking features are alstuded in
the table (in the columns Rgk and Rrk, .). Results that were found significantly
different, using a two-sided Wilcoxon test at 95% confidelesel, are marked with an
asterisk, with respect to the random weights baseline. Babalt were found significantly
different than the weight tuning performance are marketl witlagger in the table.

The results show that weight tuning is more effective thaanking in using graph
walk information for the person name disambiguation task.t&o of the corpora, weight
tuning gives a significantly better result than the basejnagh walk, whereas the improve-
ments of the reranking method are not significant. In one ocarsaking performance is
inferior to the baseline (for th8hapirodataset). For the threading task, however, rerank-
ing gives significantly better results for all datasets ggath information only, compared
with both the baseline and weight tuning.

There are several reasons for the observed trends. In thadihg task, an adjacent
message in a thread is often a reply-to message, where geredpcomes the sender and

133

vice versa, etc. This composite relation is captured by edgams such asent-te— sent-
from-inverse The gradient descent, however, does not model multi-stependencies,
and therefore yields smaller improvements for this taskh&person name disambigua-
tion task, on the other hand, it appears that name resoligtinsised on entity associations
(co-occurrences), and edge sequence specification is $efsl in this case. As shown
in the table, however, using a richer set of features in kengn namely string similarity
measures, allows reranking to eliminate noisy nodes framahked list, yielding superior
performance to weight tuning.

In addition, we refer the reader to the results reportedezddr the city name and
person name extraction tasks (Figure 5.2). In the domairardgul text there are dozens
of different edge types. While weight tuning improved thepdravalk performance com-
pared to using uniform weights, reranking gave superiarlite$o weight tuning across all
tasks and corpora in this domain. There may be a couple of reasons explaining this
behavior. First, gradient descent is more likely to readallaninima in an environment
that includes a large number of variables (as the error seiti@ecomes even less smooth).
Another reason, which is supported by the subject matténaisedge sequences are very
meaningful in determining the relevance of words in a paisetire.

We therefore conclude that reranking, while losing somentjtadive data that is con-
sidered by the weight tuning algorithm, leads to preferabsallts compared with weight
tuning for various tasks, due to its modeling of global prtips of the walk and its capac-
ity for representing additional relevant features.

Path constrained walks vs. weight tuning.

Table 6.5 gives results for applying path constrained widkbe same tasks and datasets.
In the experiments we constructed path trees using the tdpsn@nked by graph walks
with uniform weights (denoted as G:Uniform). We appliedhpednstrained walks using
a threshold of 0, i.e., considering all paths. The resultsppflying the path constrained
walks are shown in the Table (PCW). Results that were found taghbéisantly different
from the graph walks with uniform weights are marked with ateesk.

Contrasting the constrained graph walk and weight tuninglt®$G:Learned in Ta-
ble 6.4) reveals similar trends, as observed with rerankirigat is, weight tuning gives
preferable results for the person name disambiguationwasireas for threading, the path
constrained walks yield better results for all datasetss @bain supports our claim about
the importance of modeling edge sequence information &kstauch as threading.

Referring to the results in the domain of text representgftogure 5.2) — also in this

134

case, the trends are consistent with our conclusions ab@areely, the path constrained
walks give much better performance than weight tuning. &gein shows the importance
of modeling edge sequences rather than local informatiothfe domain.

Path constrained walks vs. reranking.

Table 6.5 details the outcome mean average precision obnpeirfg path constrained
walks (PCW), as well as reranking the output of the baselinptgvealks using uniform
weights. Results for applying reranking using graph walkcdbsg features only (see
above) are denoted as Ryl. The performance of reranking using the full set of features
is given in the Rrg,, column.

Overall, the performance of path constrained walks andking, using path describ-
ing features only, is comparable. Reranking using stringlaiity and thesource-count
feature (Rrk,,), however, gives superior results for the person name digaration task.
Indeed, the path constrained walk approach is more resdrastd less ‘global’ then rerank-
ing, as it cannot not accommodate external sources of irdtom (such as string similar-
ity in this case) or model properties of the set of paths coting to a node (such as the
source-counteature), as opposed to individual paths.

In the language domain, the performance of path constrawvedkls and reranking
(where the reranking featured included both edge sequeaterés and lexical informa-
tion) was shown to be roughly comparable. In this domain,relggaphs are larger, the
path constrained walks also have the utility of improving gnaph walk scalability. The
contribution of the path constrained walks to scalabiktgiscussed later in Section 6.3.

6.2.2 Combining Learning Methods

Reranking can be affected by the quality of the input rankst lin two ways. First,
as reranking is applied to the tdp nodes, its recall is limited by the number of correct
answers retrieved by the initial ranker in the gositions. Secondly, the original node
score assigned by the initial ranker to the output nodesad as a feature by the reranker.
Therefore, better initial scoring should contribute algdhe reranking process. In this
section, we consider the setting where the graph walk raskare first improved using
learning, and then reranking is applied to the modified rdrists.

We combined weight tuning and reranking, as follows: gragtkings were generated
using the set of weights as modified by the gradient lea®&r, then, reranking was
applied given these output ranked lists. The results aengiv Table 6.4. The combined

135

approach, where reranking uses graph walk describingriestis denoted by ‘Riky .
Results of reranking using the full feature set are given exablumn named ‘Rik,, .
Results that are significantly better than weight tuning aaeked with a dagger.

Similarly, we consider the ‘concatenation’ of path consied walks and reranking.
Table 6.5 includes the results of the combined approachyemeranking using graph
walk describing features is denoted as ‘R, and reranking using the full feature set
is denoted as ‘R,

Overall, the performance of the combined approach is bettsvmparable to applying
reranking on top of the graph walks using random weights ¢rnd ‘RrI%*:R, in Table
6.4) or uniform weights (‘Rrk.y and ‘Rrk},,, in Table 6.5). In both sets of experiments,
the combined approach gives the best results for three dfixn@atasets. In the case of
weight tuning and reranking combination, the combined aggin significantly improves
upon weight tuning for one of the datasets. For the path cainsd walks and reranking
combination, the pipeline approach is significantly bettb@n the path constrained walks
for the three person name disambiguation datasets.

We conclude that reranking, given ranked lists of sufficgumlity and adequate fea-
tures, is relatively insensitive to small perturbationghia initially ranked lists. However,
significantly improving the initial ranking process, anemhreranking the output list, is
likely to boost the final result.

6.2.3 PCW thresholding

In this section we are interested in evaluating the effegadh constrained walks thresh-
olding on performance. Table 6.6 shows the performancesgp#th constrained walks in
terms of mean average precision for the thresholds of 0 (PE;\8b@sidering all the paths

in the corresponding path tree; 0.5 (PCW:0.5), followinghpahat lead to a majority of

relevant nodes only; and 0.8 (PCW:0.8), following paths kkatl to a strong majority of

relevant nodes. We note that separate path tree were cctestnoer each corpus, using
the training and development examples.

According to the results, a threshold of 0.5 is roughly corapke to a threshold of
0 across all datasets. A threshold of 0.8 captured very femotpaths using the person
name disambiguation and threading describing path treegh ptobability paths were
included in the two path trees corresponding to the alids tasl a threshold of 0.8 yielded
comparable or somewhat degraded performance for this task.

Figure 6.2 gives the results of applying path constrainel@swaith varying threshold
to the task of city name extraction, using the MUC corpusgeimis of a precision-recall

136

Corpus | G:U | PCW:0| PCW:0.5| PCW:0.8
Person name disambiguation

M.Game | 0.65| 0.65 0.74 0.00
Sager 0.67| 0.65 0.65 0.00
Shapiro | 0.71| 0.76 0.79 0.00
Threading

M.Game | 0.53| 0.65 0.64 0.10
Germany| 0.55| 0.76 0.73 0.00
Farmer | 0.65| 0.62 0.63 0.00
Alias finding

Meetings| 0.61| 0.68 0.66 0.58
Personal | 0.72| 0.74 0.63 0.63

Table 6.6: A comparison of path constrained walks perfogeafor different thresholds
(MAP).

curve. The figure gives also the performance of graph walkk wniform weights as
reference. In this domain, the constrained graph walk pgmadominates the graph walk.
As discussed earlier (Section 5.4.1), the preference eddakid the graph walk paradigm
for nodes that are proximate to the query, is only partialistified in this domain, and
therefore incorporates noise at the top of the lists rezdevlhis phenomenon accounts
for the relative success of path constrained walks in thimalo, where this approach
directs the graph walk towards longer meaningful paths.

Comparing performance for different thresholds, as degiictd=igure 6.2 shows that
applying higher threshold to the path constrained walkdegadmproved performance in
this case. It is also shown that the higher threshold yieleelooverall recall, as expected
due to narrowing path coverage.

In general, our conclusion is that eliminating paths asgedi with low probability of
reaching relevant target nodes from the path tree can ottestiperformance. The utility
of applying a threshold of a particular value is domain-chej@nt, and should be tuned as
a system parameter.

6.3 Scalability

In general, the paradigm of Personalized PageRank (andrigsws) poses a major scala-
bility challenge. While the PageRank algorithm [102] coraeggs to ssinglesteady-state

137

1 T T T T T
Graph walk ——
TS PCW:0
08 W PCW:0.5 - .
i PCW:0.8 -
& 06 .
(8]
g
£ i
T i}
R St
: T
0 1 1 | ¢ 1 1
0 005 01 015 02 025 0.3

Recall

Figure 6.2: Precison-recall performance for city nameastion from the MUC corpus for
path constrained walks with varying thresholds, and graglkswvith uniform weights.

node distribution, which need only be updated infrequentiyPersonalized PageRank
different distributions are associated with each possjokry/preference vectdf,.

There are two distinct approaches for applying the persmetPageRank framework.
The first approach is to compute the personalized views atdime. This requires an
iterative computation over the graph, where response tarimeéar with respect to the
number of iterations and the number of edges travetséaiother approach for imple-
menting Personalized PageRank is an ‘offline’ computatidrere personalized views are
pre-processed and stored. Pre-processing of all persavas (queries) possible is in-
feasible due to time and space constraints, as ther®@® different queries possible
for graphs withn vertices and the necessary index database size of a fulbpoRaized
PageRank algorithm ©(n?) [48].

A variety of techniques have been discussed in the litezghat address the computa-
tional aspects of personalized PageRank. For example ategsearchers have suggested
efficient indexing of a reduced set of pre-computed PersmewhPageRank vectors, trad-
ing some decrease in precision with significant savings atsmnd improved response
times. We review these and other relevant methods in SeGtbn

We next give details about our implementation of the graplkwacluding empirical
guery processing time per our experimental corpora. Wealgth discuss the effect of the
path constrained walk on processing time and memory regein¢s.

2The complexity of online iterative graph walk is O(Ek), wadg is the number of graph edges [105].

138

6.3.1 Implementation Details and Running Times

Table 6.7 shows the average processing time per query ftaske of person name disam-
biguation, threading and alias finding, where the walk lengtries fromk = 2 tok = 8.

The sizes of the experimental corpora range from 6K to 14kespdnd from 60K to about
200K edges (see Chapter 4). The results were obtained usmmmaadity PC with 4GB

of RAM, where graph information has been loaded to memory.hénexperiments, we
observed the processing time per quénaveraged over the queries in the test set of each
dataset. We obtained five such observations in repeatedfounghich we report the av-
erage:z?zlti/S. In addition, we report the corresponding standard dewigshown in
brackets).

As shown in the table, the average processing times incredis¢he number of walk
stepsk, and with the number of graph edges. (For example, longeregging times are
required for the Shapiro corpus compared with the smalleragament game corpus).
The cardinality of the query distributiow, affects processing time as well, as the number
of nodes expanded in the graph walk equals the union of nadiésd/in a separate graph
walk from every individual query node. Thus, processingesnare longer for the two-
node person name disambiguation queries for any diveampared with the single-node
threading queries, both using the management game corpus.

The times given in Table 6.7 are satisfying for real-timelaagions. In particular, we
have shown earlier in this chapter (Section 6.1.1) thattglraph walks yield performance
that is preferable or comparable to longer walks in this dantdhort walks of 2 or 3 steps
require an average processing time of a small fraction otarsk

The option of online computation may be less desirable garger graphs when real-
time response is required. Table 6.8 includes the averagpegsing time (and their stan-
dard deviation, in brackets) of graph walks of lengta 6 for the city name and person
name extraction tasks, in the column named ‘Graph walksgufie 6.3 gives a graphi-
cal display of the processing times; see the ‘Graph walkhpset.) We remind the reader
that the each of the queries constructed per these taskslefdur graph nodes, compared
with a single query node in threading and two query nodesamp#rson name disambigua-
tion task. As discussed above, this factor adds to the simgad the graph walk. The
average processing times are stated in the table per theveblacompact MUC corpus
(which includes about 80K nodes and 245K edges).

To evaluate performance on large graphs, we constructed thtermediate size cor-
pora that include MUC, and a part of the AP corpus: one of thespoca includes a
quarter of the AP corpus (MUC+1/4AP); the second corpus spoeds to about half of
the AP corpus (MUC+1/2AP); and the third corpus includes MW@ about three quar-

139

Corpus k=2

k=3

k=4

k=5

k=6

k=7

k=8

Person name disambiguation

M.Game 0.02 (0.01)
Sager 0.08 (0.02)
Shapiro 0.11(0.01)

0.15 (0.01)
0.38 (0.01)
0.64 (0.01)

0.44 (0.03)
0.94 (0.04)
1.56 (0.06)

0.74 (0.04)
1.52 (0.04)
2.42 (0.02)

1.03 (0.07)
2.12 (0.06)
3.43 (0.10)

1.38 (0.05)
2.79 (0.08)
4.27 (0.12)

(Q.63)
(8.09)
(6.2Q)

Threading

M.Game 0.03(0.01)
Germany 0.09 (0.01)
Farmer 0.08 (0.00)

0.14 (0.00)
0.33(0.03)
0.38 (0.01)

0.43(0.01)
0.97 (0.02)
1.24 (0.06)

0.77 (0.02)
1.97 (0.06)
2.32 (0.06)

1.12 (0.03)
2.70 (0.08)
3.45 (0.08)

1.46 (0.03)
3.56 (0.26)
4.54 (0.20)

(0.08)
(0.48)
(6.38)

Alias finding

Meetings 0.03 (0.01)
Personal 0.02 (0.00)

0.08 (0.02)
0.11(0.02)

0.16 (0.01)
0.39 (0.01)

0.30 (0.01)
0.99 (0.02)

0.46 (0.06)
1.66 (0.05)

0.60 (0.07)
2.26 (0.10)

(0.00)
(2.88)

Table 6.7: Average query processing time and standard tiavigecs] per dataset and
different walk lengttk.

ters of the AP corpus. The number of nodes and edges of eguirscare included in Table
6.8.

We limited ourselves to these moderate-sized corpus faoreaof convenience. The
implementation used for the other experiments in this thissnot optimized for memory
usage; in particular, the memory required to store each edfgerly large, including a
string to label the edge type and a string identifier for thstidation node. The strings
used as labels are also fairly long (meaningful) labelsctvig convenient for debugging
and development, but expensive in memory usage. Two lggavere used for manipulat-
ing this graph, and the memory-based implementation usexgteres edges in standard
Java library data structures, which add an additional leffetemory overhead (e.g., Java
stores strings in unicode, not ascii). As a consequencepémaory-based implementation
could not load the entire MUC+AP graph in the available addisgmce of our (32-bit)
machine. While more memory-efficient implementation cowddainly be produced - or
alternatively, the experiments could be conducted on a madahith larger address space
- we leave this task as a subject for future work, and for nonpsy extrapolate the per-
formance of such an implementation from moderate-sizeake#ts.

While the MUC corpus is larger than the email corpora, and thengdistribution
includes more nodes, query processing time is only 0.4 skscon average for the person
name extraction task and 0.8 seconds on average for theamtyge mextraction task. The
difference in processing times between the two tasks is dwelarger number of city
name occurrences in the corpus. (Most of the person namiessl@ttin the experimental

140

Corpus nodes [K] edges [Kﬂ Graph walk PCW:0 PCW:0.5 PCW:0/8
City name extraction

MUC 82 244 0.8(0.1) 18(0.1) 1.7(0.1) 0.5(0.1)
MUC+1/4AP 326 1,077 3.3(0.5) 10.3(0.4) 6.7(0.3) 5.3(0.4)
MUC+1/2AP 564 1,910 7.8(0.3) 20.0(0.7) 13.0(0.5) 10.3(0.7)
MUC+3/4AP 785 2,682| 11.3(0.9) - - -
Person name extraction

MUC 82 244 0.4(0.0) 06(.1) 05(.00 0.2(0.1)
MUC+1/4AP 326 1,077 0.6(0.1) 25(0.5) 18(0.2) 1.7(0.3)
MUC+1/2AP 564 1,910 09(0.1) 41(0.6) 22(0.5) 24(0.1)
MUC+3/4AP 785 2,682 2.0(0.9) - - -

Table 6.8: Average query processing time and standard tawvipsecs] for the named
entity coordinate extraction tasks, using graph wallk ef 6 steps and path constrained
graph walk with varying thresholds.

datasets correspond to only few mentions in the corpus, thatha smaller number of
edges is traversed.)

As shown in Table 6.8 and Figure 6.3, the average query psowesimes for the
larger corpora get substantially longer, up to 11.3 secamdaverage per query for the
MUC+3/4AP corpus and the city name extraction task. In gdnéra implementation
scheme applied in our experiments can be improved by usittgrbeachinery as well as
by distributed computing. We therefore expect processimgd to be shorter using opti-
mized systems, as well as using algorithms that approxithatgraph walk (see Section
6.4).

Rather than process the graph walk using the machine’s meih@also possible to
store the graphs in secondary memory. We used the openestat@base package Sleep-
ycat [Sleepycat] to store the user-defined nodes and eddss. allowed us to execute
the graph walk for the large MUC+AP corpus. The cumulative berrof nodes visited
at each step of the graph walk for MUC, MUC+1/4AP, MUC+1/2AP amel MUC+AP
corpora are presented in Figure 6.4 (logarithm scale). Asvshin the figure, the overall
number of nodes visited increases roughly by a factor of\&rga double sized corpus.
(The MUC corpus, which is characterized by somewhat differemed entity distribu-
tion, can be considered as an outlier.) The figure also shiosmighe graph walks for the
city name queries spread more in the graph, compared witoperame queries.

Next we discuss the effect of the path constrained walks alaksity.

141

Run time [Sec]

City name extraction

Person name extraction

25 T T T T T 25 T T T T T
Graph Walk +——+—
L _ L PCW:0
20 —_ 20 PCW:0.5 +-----
b PCW:0.8 &
15 - 9 15 F
¢ Q
. I £
10 t - = 10 F
=]
% @
5 - 0 - 5 - -
£
% S ® T
0 B | | | | o L% 1 1+ | alll |
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
No. of edges [K] No. of edges [K]

Figure 6.3: Average query processing time and standarctieni[secs] for the named
entity coordinate extraction tasks, using graph walk ef 6 steps and path constrained
graph walk with varying thresholds. (A graphical displayTable 6.8.)

6.3.2 Impact of Path Constrained Walks on Scalability.

Table 6.8 shows the empirical average query processingsfiaggplying the path con-
strained walk with no threshold (PCW:0); with a threshold & (PCW:0.5); and with a
high threshold (PCW:0.8) on these corpdrdhe average processing times required for
the execution of unconstrained graph walk are given in theneo named ‘Graph walk’.
Figure 6.3 gives a respective graphical display of theseqasing times. The reported
results indicate that longer processing times are requised) the path constrained walks,
compared with the unconstrained graph walks. As expediedyrocessing times shorten
as the threshold applied increases.

In Figure 6.5, on the other hand, it is shown that the numberodks visited at each
step of the walk starts dropping kt= 4 using the path constrained walks. (In practice,
graph nodes that do not have an outgoing edge associated wigih probability edge in
the path tree are discarded.) Constraining the graph walklkmaf a path tree reduces
the number of nodes (and edges) traversed in the walk, faraexeasons. First and
foremost, the path trees constructed in our experimentsudicyclic paths. In addition,

3Results of the path constrained walk for the MUC+3/4AP ataeported due to high memory require-
ments, as discussed later in this section.

142

Nodes visited [log2]

City name extraction Person name extraction

18 [T T T T T _—____" 18 [T T T T T]
A MUC —+—

16 - - - — 16 mMuc+1/4AP]

14 - ¥ 14 IMUC+1/2AP e
2 MUCHAP ----e- - .-

12 5 12+

10 £ 10
0

8 > 8
(%]

6 % 6

4 zZ 4

2 2

0 | | | | | 0 | | | | |

0 1 2 3 4 5 6 0 1 2 3 4 5 6
Walk steps Walk steps

Figure 6.4: The cumulative number of nodes visited at eaghaftthe graph walk, for the
city name extraction and person name extraction datasetsidreasingly larger corpora.

the path tree represents the paths that correspond to thetigs observed in the set of
training examples, thus other arbitrarily possible patiessdiminated. Finally, applying a
threshold on the probabilities associated with the path égiges above which the graph
walk is terminated, eliminates more (possibly frequenthpa

While the path constrained walks limit the number of nodesl @iges) that are tra-
versed in the walk, we note that the path constrained wallsire the processing of all
combinations of a node and its unique histories (repredeagegraph node and path tree
node pairs, see Section 3.4). In the experiments reportdabie 6.8 and Figure 6.3,
these added processing requirements overcome the saviage dode pruning in terms
of running time. In addition, maintaining graph and pattetr®de pairs requires addi-
tional memory in comparison to the unconstrained walk. &fee, we conclude that path
constrained walks, while contributing to performance olae in practice an additional
computational cost. However, path constrained walks gpeced to save on processing
times in case that the graph is accessed from a secondary mmeinothat case, node
pruning can affect the expense involved in disk access.

143

Nodes visited [log2]

City name extraction

Person name extraction

18 18 -
Graph walk —+—

16 16 PCW:0]

14 14 PCW:0.5 ---%--- =

1 1 PCW:0.7 //_

10

Nodes visited [log2]

oON b~ O O

Walk steps Walk steps

Figure 6.5: The cumulative number of nodes visited at eagh st the graph walk us-
ing the MUC+AP corpus, for city name extraction and personenariraction, applying
unconstrained graph walk and path constrained walk (PCW)waitying thresholds.

6.4 Related Work

As mentioned earlier, the paradigm of Personalized PageRapkres a power iteration
computation given a query, which may correspond to impeattesponse times. Alter-
natively, a large set of ‘personalized’ distributions camloe-processed, where computing
and storing distribution vectors for all possible querieede combinations) is infeasi-
ble. In order to alleviate the scalability problem, one ntastefore either exploit special
features of the web graph or relax the exact problem to anoappate one [133]. This
section reviews the efforts made to address this scalabligllenge. The related research
reviewed includes techniques for pre-computing and sgaireduced number of Person-
alized PageRank vectors, sampling of the graph walk, andezffimatrix multiplication
and inversion operations. Our main focus is on algorithmeeld@ed in the context of
Personalized PageRank.

Scalable Storage of Personalized PageRank Vectors

Haveliwala [57] suggested the topic biased PageRank modreahis implementation
of the model applied restricted personalization. Thatsspart of offline preprocessing,

144

a small number (16) of topic-sensitive PageRank vectors generated. At query time,
the similarity of the query to each of the pre-indexed topi@s calculated. The final
node scores were then computed using a linear combinatithre adpic-sensitive vectors,
weighted by the similarity of the query to each topic.

Kamvar et-al [68] later suggested tBéockRankmodel. This model is adapted to the
Web and restricts personalization to hosts. The authorg pat that the web link graph
has a nested block structure: most hyperlinks link pages loostaito other pages on the
same host. They exploit this structure by computing locgeRank scores within each
host, and combining these local PageRank scores based angbetance of each host.
In this work, the Personalized PageRank model is modified thattrather than reset the
walk to a biased distribution of webpages, a random surfasgimed to be choosing
hosts. The personalization vector therefore becomes i@bdisdn over different hosts in
this case.

Jeh and Widom [67] presented theearity theorem which proved to be a funda-
mental tool for scalable personalization. Informally, timearity theorem states that the
solution to a linear combination of preference (query) ¥exiti; andus is the same linear
combination of the corresponding Personalized PageRari@rgg®PVs)1 andv,. This
means that if PPVs are available for some preference vedtees PPVs can be easily
computed for any combination of these vectors. Jeh and Withemefore suggested to
encode personalized views as partial vectors. In their yithekset of personalized vectors
was restricted to a set of hub noddsselected as those more important for personaliza-
tion. The size oH can be viewed as the available degree of personalizatiorhéfuto
compute a large number of hub vectors efficiently, the hulbove@re decomposed into
partial vectors and a skeleton, components from which hglove can be constructed at
guery time. One partial vector is computed for each hub pagehich encodes the part
of the hub vector unique tp. The complement to the partial vectors is the hubs skeleton,
which captures the interrelationships among hub vectotse duthors present dynamic
programming iterative algorithms for computing the pastectors.

Balmin et-al presented the ObjectRank model [7], which waseored with apply-
ing personalized PageRank to the setting of retrieval frdatiomal datasets. The authors
have pointed out that in this case it is not recommended tacegersonalization to a set
of hub nodes [67], since any node of the database may be gdtiuda query. Instead, a
Personalized PageRank vector is computed in the ObjectRad&lrfay each word in the
corpus vocabulary. A few monotone score-combining fumsir multi-word queries are
suggested by the authors. They also propose a method faringdBersonalized PageR-
ank vectors computation time for 'almost-acyclic’ grapitiarther, to save cache space,
the ObjectRank implementation truncates elements smakber $ome threshold from the

145

produced vectors.

Sampling of the Graph Walk

Fogaras et-al [48] were interested in their work in achig\irl personalization, enabling
online serving of personalization queries for any set ofaso(hs opposed to Jeh and
Widom [67], who restricted personalization to a set of hudex). They precompufen-
gerprintsper each of the graph nodes, and store them in a databdsegehprint pathof

a vertexu is defined as a random walk starting fremThe authors exploit the graph walk
representation as a geometric distribution (i.e., aftehestiep the walker takes a further
step with probability - y and ends with probability, see Equation 2.6). Angerprintof

a nodeu is defined as the ending vertex of a fingerprint pati.oAs a random variable,
the fingerprint ofu has the distribution of the Personalized PageRank vectar dthe
authors suggest a Monte Carlo algorithm to compute apprdgivedues of personalized
PageRank, where for each nageN independent fingerprints are produced by simulating
N independent random walks starting fram The Personalized PageRank vector dor
is approximated with the distribution of the correspondimgerprints, and indexed in a
dataset. The output ranking is computed at query time fremrttiexed fingerprints using
the linearity theorem. In order to increase the precisiothefapproximated vectors, the
authors suggest to use the fingerprints generated for tighlais ofu (somewhat sim-
ilarly to the dynamic programming approach suggested byaiehWidom [67]). The
authors suggest also sampling finite graph walks. That s¢ead of allowing very long
fingerprint paths, they suggest to drop all fingerprints &rtgan length..

Using sampling trades full personalization with precisiblowever, the authors show
that a relatively small number of fingerprints allows to migtish between the high,
medium and low ranked nodes in the fully computed PersosélizageRank scores. (In
particular, experiments conducted on 80 million webpagesNa= 1,000 yielded good
performance.) The order of the low ranked nodes is usuatlgsaccurate using sampling.
It is argued that PageRank itself was shown to be unstabl@diow ranked nodes, in the
sense that a small perturbation of the graph can cause aovemahked node to move to
the middle of the ranking [83].

Recently, Chakrabarti [23] has suggested an algorithm nanudiREink for comput-
ing personalized PageRank scores in entity-relation graphare edges are directed and
typed. The algorithm indexes fingerprints (following Fagmet-al, [48]) for a small frac-
tion of nodes, chosen using query log statistics. Accorthrtge proposed approach, only
‘entity’ nodes (where textual information is excluded) pre-loaded, to form a skeleton of
the graph. Given a keyword query, the query words are instadtas nodes in the graph,

146

which are linked to the entity nodes in which the words appéagraph walk starting
from the query nodes spreads over a small ‘active sub-gragtich is bounded by node
distance (or, in our terminology — by the number of walk stepad otherwise by nodes
for which the personalized PageRank score has been indexezk tBe active subgraph
is set up, scored are propagated from the indexed nodeséo mdlles in the subgraph,
using a dynamic programming computation [67]. In this walkements in the fingerprint
vectors smaller than a threshold are pruned, where expetanesults have confirmed
that this operation has minimal effect on accuracy. In surgntlais method approximates
the Personalized PageRank vectors due to indexing of selacies only, sampling of
the graph walk and pruning the resultant personalized v&cio addition, computation
is limited to a sub-graph, such that the graph walk is appnaxed locally. Experimental
results have shown this approach to be preferable to ObjektR& implementation in
terms of pre-processing time, indexing space and onlingctation time.

Scalable Matrix Operations

The graph walk can be executed using implementations ofix@ierations. The area of

accelerating matrix multiplication is well studied, an@té are various techniques avail-
able that reduce this opreration complexity and processing. We review several rele-

vant examples that pertain to the Personalized PageRanttigiera

Kamvar et-al [69] suggested the techniquegaidratic extrapolatiorthat is applied
periodically to enhance the convergence of PageRank usengithple power iteration
method (i.e., iterative matrix multiplication). The autbalaim that quadratic extrapola-
tion eliminates the bottleneck for the power method, nantetysecond and third eigen-
vector components in every iteration, thus boosting thectiffeness of the simple power
method.

Sun et-al [128] suggest a matrix multiplication approxiimatfor the Personalized
PageRank settings. They utilize the fact that real graph®@anized in a block-wise
structure (i.e., communities). Using this property of ttansition matrix, they propose to
perform random walk with restart (i.e., Personalized Pag&Ranly on the partition of
the graph that contains the query node; that is, they suggesitput a local estimation
of the Personalized PageRank vector. Tong et-al [133] suggesnhanced approach,
which allows a global estimation of the Personalized PagkReantors. They are inter-
ested in evaluating the stationary distribution of the Bleatized PageRank graph walk
process. The stationary distribution can be found by sghaitinear system problem (this
method is alternative to the power iteration approach),re/laeamatrix inversion operation
is required. Once the inverse matrix is computed and stohedPersonalized PageRank

147

vectors for every given query can be efficiently computedeal-time. The matrix in-
version and storing, however, requires quadratic spacecabit pre-computation. The
authors alleviate this scalability problem by considetimg block-wise structure property
of the graph, as well as linear correlations that often ex@sbss rows and columns of
the adjacency matrix. Specifically, they suggest to partithe adjacency matrix, and
pre-compute and store the inversion of each partition eratian the full matrix. Given
a low-rank approximation of the cross-partition links, algl evaluation of the Person-
alized PageRank distribution can be obtained. Given a qoaty,a few matrix-vector
multiplication operations are required. Experimentauhessshow that this approximation
preserves high quality of the computed values, and achlégésspeed ups in comparison
with the iterative approach. The algorithm results in maporings in pre-computation and
storage costs, compared with a straight-forward inversidhe full original matrix.

Finally, Cohen and Lewis [26] have suggested a general #hgorior approximating
large matrix multiplication. They propose a sampling aidyn that identifies high-values
entries of matrix products, without full computation of theduct. In their method, the
expected values of the scores are equal to the true valuevthdt be obtained with
the full computation. The variance of the scores dependser{relative) value of the
entry, and decreases for high-value entries. That is, #igorithm returns exact scores
for the top ranked entries. Simply put, in the suggestedralgo the matrices product
is represented as a graph, where the edge weights of this gragalculated backwards,
measuring the impact of the multiplication representedrbg@ge on the end result. The
multiplication graph is then sampled from, where each sarapiounts to a random walk
on the graph. According to the authors, this method is pdeity effective for dense
matrices. Otherwise, for sparse matrices, where only ghec¢oring instances are needed
and exact values are not necessary, other methods arebdaifecluding: compressing
inverted files, using lower precision arithmetic, ignorsmme parts of inverted lists and
limiting the number of document score accumulators manethi

6.4.1 Summary

In this chapter, we conducted comparative experimentsfiierent framework parameters
and design choices.

Based on empirical evidence, we find that finite (and relatigbbrt) graph walks are
preferable in some cases to infinite walks, i.e. to the statip state probabilities. The
graph walk length should be sufficient, however, to reach¢levant nodes in the graph.
The edge weighting schema used also affected the graph edtirmance in some cases.

148

The comparative evaluation of the various learning methgiden in this chapter
showed that global features are useful for some problemgaiticular, path informa-
tion was shown to be highly informative in the language dormahere local graph walks
and weight tuning assigned high weights to proximate yetauant nodes.

In terms of scalability, we have shown that the path consdaiwalks approach im-
proves query processing times significantly, where most@ptaths followed by the base
(unconstrained) graph walks are effectively pruned dutiregwalk. We have also shown
that applying a threshold to the path constrained graph waeliema can improve both
accuracy and scalability.

The processing times, given short walk lengtfand medium-sized corpora, were
shown to be fast and appropriate for online settings. Intemdiwe have discussed re-
lated research concerned with improving the scalabilityhaf Personalized PageRank
paradigm for larger graphs. A majority of the algorithmscdissed can be readily imple-
mented within our framework.

149

150

Chapter 7

Conclusion

7.1 The Framework

This thesis presents a general framework for inducing adagimilarity measures in het-
erogenous data represented as an entity-relation grapipt@t®y. The framework builds
on existing graph-walk based paradigms that generate me=ast structural similarity
between entities in the graph. In particular, the PerspedlPageRank paradigm is used
throughout this thesis; yet, other graph walk variants, &agy graph walks, can be readily
applied. Previously, researchers have applied graph walkg carefully designed graphs
with the goal of solving specific problems. In contrast, tihissis claims and shows that
given a general representation of the data that is not eaggddor a specific task, multiple
tasks can be defined and performed as queries in this frark@siog the same underlying
graph.

The graph walk paradigm has many desired properties in congpentity similarity
in graphs and it is shown that finite graph walks give goodqrerance in response to
various queries in many cases. However, if labeled instantentity relations in the
graph are available, then learning can be applied to fudbdapt the similarity measure
produced by the graph walk to the relation sought. Prewputshas been suggested to
tune parametric edge weights in the graph, such the protyatbddw in the graph walk
process is biased towards the nodes considered as corsyetranto the query. In this
thesis, two additional approaches were proposed: rergnkimd path constrained walks
(Chapter 3). Unlike weight tuning, both of these methods carsicler global informa-
tion about the graph walk. In reranking, discriminativerteag can be applied to reorder
the rankings generated by an initial graph walk using higlelléeatures; for example,

151

these features can describe the set of paths traversedcinimgaa target node from the
query distribution. We proposed generic features that ingidbal properties of the graph
walk, including the sequences of edges traversed. In theqmaistrained walk approach,
the edge weight parameters are conditioned on the histotlyeoivalk, and are updated
dynamically based on edge sequence features. The learretigpds of weight tuning,

reranking and path constrained walks have different charatcs in terms of scope, ap-
plicability and impact (Sections 3.5 and 6.2.1). In somesasombining local and global
learning is advantageous (Section 6.2.2).

The scalability of graph walks in general, and PersonalRadeRank in particular,
has received much attention in recent years, with the goar@fiding a fast response
to a query (Section 6.4). Most of this research is orthogomahis thesis and can be
readily incorporated into the framework’s implementatiolmterestingly, the empirical
results reported show that conducting short finite graptksved both computationally
efficient and also provides better accuracy in some casei@¢86.1.1).

7.2 Case Studies

The thesis presents a case study in the domain of persoaahiation management. It was
shown that multiple tasks in this domain can be addressddronly as queries, including
novel problems such as person name disambiguation, medterglees recommendation;
as well known tasks such as threading and alias finding (@edti2). In most cases,
learning led to improvements in performance. In partigutagh level information about
the graph walk was found to be useful, where reranking angb#itle constrained walks
methods outperformed the weight tuning approach (Sectibn 4

A second domain studied in the thesis is the processing afpus®f parsed sentences
represented as a graph (Section 5.1). Applying graph walksduce a measure of inter-
word similarity gave mediocre results in this case. We fotmat in this domain, the
assumption embedded in the graph walks, that proximatesrer@emore relevant, is often
false. In particular, in this domain nodes reached overip&tige sequences were more
relevant than proximate nodes connected over unmeanirejéions. While graph walks
are not ideal in such settings, the global learning methodmely reranking and path
constrained walks, gave excellent results (Section 5.4).

Comparing the framework of adaptive graph walks to statéiefart vector-space
methods on the task of coordinate term extraction from phtset, showed the frame-
work to be preferable for small and medium text corpora (8r&.4).

152

In general, tasks corresponding to “long” queries appetrdx biased in the exper-
iments towards nodes that are highly connected in the gragei experiments (Section
4.5). This phenomenon is known in the literature, and cardoeessed to some extent by
down weighting transitions in the graph towards such no8est{on 2.4.1).

Overall, the case studies demonstrate that multiple tasksdiven domain can be
successfully processed using this proposed framework. tdsies included in the thesis
can be theoretically represented within related paradigush as statistical relational
learning (Section 2.4.6). However, while statistical tielaal learning is more general, we
find that the graph-walk based framework allows better délaand is more suited for
search settings, as of today (Appendix C).

7.3 Future Directions

There are many directions in which the framework presentadbe extended; in what
follows, we detail several possible venues of future redear

Framework. The graph walk representation only accommodates binagy-aritity
relations. It is an open question if and how the proposeddraonk can account for n-ary
relations. As an example, consider a graph representatidrecsentences “Mary likes
ice-cream in winter”, “Andy like ice-cream in winter”, “Jamhas ice-cream” and “Jamie
likes tea in winter”. For a query that includes "Mary”, theagh walk will find Jamie and
Andy to be equally relevant, since the set of the correspmndonnecting paths in both
cases is identical. However, the combination of the argusndikes”, “ice-cream” and
“in winter” is more indicative of similarity to "Mary” thentteir appearance in isolation.
In the framework described in the thesis, it may be possibddel n-ary relations as
features in reranking; i.e., in addition to the paths tragdr properties of the values of
the nodes traversed can be considered. The features madéleded to be general, or
selected carefully, in order to avoid boosting the corresiitg feature space. Another
possible solution is to represent tuples (e.g., the contibmaf "ice-cream” "winter”) as
nodes; this approach will involve an additional computagiccost.

In Section 2.3.2, we argued that the graph representatiorodular, where multiple
information sources can be added to the graph. Presumatdinganodes and edges
provides more evidence for entity similarity in the graphgahus is expected to have a
positive effect on the similarity measures produced. Orother hand, it is possible that
adding irrelevant or noisy information can degrade peréorae. An open question is in
what circumstances and due to which factors adding infaomatanhurt performance.

153

Learning. In terms of learning, we would like to modify the path consteal graph
walk approach such that it can consider diverse types ofifeat The path constrained
walks have been shown to improve performance due to the denagion of path infor-
mation during the graph walk process. However, the featemgsedded in the path con-
strained walk method are limited to modeling informatiomaithe edge sequences tra-
versed. Itis therefore desired to incorporate richer tygfdsgh level features in the graph
walk process (similarly to reranking); for example, it mayleneficial to consider various
properties of the graph nodes traversed during the walk.s&ipte approach in this regard
is to train a separate classifier per each of the verticesifetirned path tree. In addition,
in order to account for features that are scarce, smootbitigniques that are adjusted to
the graph settings may be useful.

Further, the learning settings that are assumed in thisstibaa be relaxed and allow
additional types of user feedback; that is, rather thaniden®inary signals about a node
relevancy, relative node preferences or other forms oftfaekl may be provided. The
learning procedures that are described in this thesis @dbrto be adjusted accordingly.

Another interesting venue for future work is learning totdhe structure of the graph
over time. Suppose that ongoing user feedback indicatésthabset of the edge types
in the graph is consistently uninformative. These edgesbeapruned from the graph,
resulting potentially in savings in query processing tiraesvell as reduced noise levels
in the graph walk process. Similarly, one may be interestétlard-coding” relationships
between entities in the graph that are known to be closedyedl(for example, according
to user feedback; or, based on relevant results from andib@ain). Adding links to
the graph may improve the quality of response to future gserA policy of modifying
the underlying graph structure should be evaluated withtsgt, where the graph should
remain general in order to provide good performance givbitrary queries.

A related question is if and how predictive models that aaerled for one task can be
used to leverage performance for other tasks in a given dorSaippose that a sufficiently
large set of labeled examples is available for one task, biytanfew or no examples are
available for another type of relation sought. It is an opaesgion, to what extent the
similarities in the graph are general and can be sharedrémsferred across different
tasks; for example, the edge weight parameters that aresléan one task may be helpful
for other tasks. Correspondingly, relevant mechanismef@rhging learning across tasks
are required.

Applications.In terms of applications, while the evaluation of the frarogwfocused
on providing a single ranked list in response to a query, dneesquerying mechanism can
be used in dootstrappingprocess. In bootstrapping, the results retrieved in respom
gueries are used for automatically creating new querigs, thhe goal of machine-driven

154

construction of a knowledge base. In order to avoid divectgan bootstrapping due to
noisy responses, it may be desired to control the ratio batvweecision and recall of
the responses to a query. The path constrained graph walothgtoposed provides a
coarse solution to this issue using its threshold mechanisnaddition, evaluating and
controlling the reliability, or confidence, of the predidte@milarity measure can be useful.

155

156

Appendix A

Symbols and Definitions

For the reader’s convenience, following are the symbolsd us¢his thesis and their defi-
nitions! Table A.1 includes symbols related to the graph walk frantevand Table A.2
lists the symbols that are related to the learning settingsaéggorithms.

Symbol Definition

G a graph

XY, Z graph nodes

N the number of graph nodes in total

1(X) the type of entity represented by nade

14 edge (relation) type

L the set of all edge types

0, parametric weight of edgé

© the set of graph edge weight parameters

Ly the set of edge types from nodd¢o y

S the set of outgoing edge types from node

M the transition matrix

Pr(x —y) | the probability of reaching nodefrom nodex over a single time step
Y reset probability

k number of graph walk steps

Tout the type of nodes retrieved, as specified in a query

\ query distribution, as specified in a query

Vi score distribution over graph nodes after a graph walksiéps is performed.

Table A.1: Symbols related to the graph walk framework armd thefinitions.

1These definitions hold throughout the thesis unless stafgitigly otherwise.

157

Definition

err,
Uz(t+1)

F(z,a)
QAx—%2)
Fd<Z)

example query

a set of relevant answers corresponding to qegery

the output ranked list generated per exangle

the node located at rankin list [;

the score assigned to nod@ a ranked list

an optimal score assumed for a target nodea ranked list

the error for a target nodein a ranked list

the set of graph nodes that are traversed attstep, in route to target nodeat stepk
learning rate of gradient descent

reranking featuré

the value of featurdy per nodez

a real-value weight associated with featkrie a reranking function
the set of feature weights in a reranking function

the value of the ranking function for node

the probability of stopping ain graph walk originating fronX of lengthd

a partial ranking function for node computed up to graph walk step
path-tree

a node in path tre@

edge sequence

the count ofp within the paths leading to correct nodes considered by
the count ofp within the paths leading to nodes assumed to be incorrect,
considered byr

an estimate of the probability of reaching a correct node following

Table A.2: Symbols related to learning and their definitions

158

Appendix B

Evaluation Metrics

The graph walk search framework, as well as the baselineadsttnat we compare it to,
all generate a ranked list of entities. As in traditional @iment retrieval settings, every
query is mapped to a set of relevant “correct” answers. Bttiesis we use the following
evaluation metrics:

Mean Average Precision (MAPLonsider a ranked list that hascorrect entries at
ranksks, ..., ks, and assume that the end user will scan down the list of assavet stop
at some particular “target answek” that he or she finds to be of interest. One would
like the density of correct answers up to ragko be high: to formalize this, define the
precision at rank kpredk), to be the number of correct entries up to rdnklivided by
k—i.e., the precision of the list up to ram&. Thenon-interpolated average precisiaf
the ranking is simply the average pfeq k) for each positiork; that holds a correct entry:

S
AveragePrecision- ~ lerec(ki)
n.&

As an example, consider a ranked list of items, where thesitagimanks 1,2,5 are correct
and those at ranks 3,4 are not. The precision at ranks 1 ange?sefjO, and the precision
at the next correct item is 0.6 (since there are 3 correct ersshefore rank 5). The non-
interpolated average precision on this ranked list is {ius1+0.6) /3= 0.87. The Mean
Average Precision (MAP) is the average of the non-inteteolaverage precision scores,
over multiple rankings (queries).

In our ranking systems, it may happen that some correct assghe not appear in
the ranked list (i.e., they are assigned zero probability)this case, we follow standard

L In case that the ranking results include blocks of items tighsame score, a node’s rank is counted as
the average rank of the “block”.

159

practice and definpredk;) for that answer to be zero. (Continuing our example, if there
were a fourth answer that did not appear anywhere on theHest, the average precision
would be(1+1+0.6+0)/4 = 0.65.) If there are no correct answers for a problem, we
define the average precision of any ranking to be 1.0.

Elsewhere, it has been noted thmedk;) can be viewed as a ratim actyal/ M opt.
wherem opt is the number of entries the user must examine to find-thecorrect entry
in an optimal ranked list, andh actual is the analogous number for the actual ranked list
[143]. Thus, non-interpolated average precision can adaterpreted as a measure of the
additional work imposed on the user by a suboptimal rankiegg—an average precision
of 0.5 means that the user must examine twice as many lisésis needed, on average.

Mean Reciprocal Rank (MRRReciprocal rank is the reciprocal of the rank of the first
relevant answer for each query. Thus, the MRR for the examp@ng@bove is 1. The
mean reciprocal rank is the average of the reciprocal ramalifqueries in the evaluation
set. Note that if all queries have a single correct answer, MRIRMAP are equal.

Accuracy. This measure denotes the percentage of queries for whictophigeem in
the ranked list contains a relevant answer.

11-point interpolated precision-recall curvelhe interpolated precision at a certain
recall levelr is defined as the highest precision found for any recall IEvelr:

pinter(r> = maxp(r’)
r'>r
The 11-point curve shows the interpolated precision meakat 11 recall levels (0,0.1,
...,1.0), where it is averaged over the set of evaluatedegieWwhile the MAP measure is
a single score (which is biased towards performance at theattks of the retrieved lists),
a precision-recall curve gives a detailed and graphicaV wieperformance.

160

Appendix C

Markov Logic Networks: Empirical
Comparison

An overview of the Markov Logic Networks (MLNSs) paradigm isvgn in Section 2.4.6.
In this appendix, we describe the results of applying Markmic to the task of email
threading.

We use the open-source Alchemy system [78] to conduct therempnts. Table C.1
includes an MLN model designed for the threading probleme fiitst part of the model
details the predicates that are used in the email domairesmonding to the graph schema
described in Table 4.1 (where the relations involving nmggtiare excluded). The instan-
tiated predicates encode the structure of the graph, ardksaded as evidence predicates
in a separate data file. For example, an edge of $@mé-tofrom message pito person p
is represented by the evidence predicate: sentagpf). Predicates that are not explicitly
instantiated as evidence will be assumed to be false.

Our model of the threading problem involves to a single gtasdicate rule: threadf,n).
In the description of the training data, the labeled threadioates are provided. Given the
test portion of the data, the likelihood of the thread prat#id being true will be evaluated.

The last part of the model shown in Table C.1 includes the rtias connect the
evidence (attribute) predicates with the class predic&t@. example, consider the rule
Vxvy has-ternix,z)A has-ternty,z) = threadx,y).) This rule is denoted in the Markov
logic model as: ‘hasTermng, t1) A hasTermiy, t1) = thread (mn, np). The rules applied
have been designed manually, based on the models learnkd ®atning methods in our
framework. Automatic learning of a model given examplesupported in Alchemy;
however, we have not evaluated this approach.

161

Predicates:

has-subject-term (msg, term)
has-term (msg, term)

sent-to-email (msg, email-address)
sent-from-email (msg, email-address)
sent-to (msg, person)

sent-from (msg, person)

alias (person, email-address)

as-term (person, term)

sent-on-date (msg, date)

thread (msg, msg)

A single predicate rule:

I thread (m1, m2)

Rules connecting attribute match predicates to class match predates:

hasTerm iy, t;) A hasTerm iy, t1) = thread (g, ny)
hasSubjectTermmty, t1) A hasSubjectTerrnt, t1) = thread (g, mp)
sentFromEmailrty, ;) A sentToEmail iy, e1) = thread (g, ny)
sentFromEmailrfy, e;) A sentFromEmailrfy, 1) = thread (g, mp)
sentToEmail iy, ;) A sentFromEmailrfy, 1) = thread (ng, my)
sentToEmail fny, ;) A sentToEmail fp,e;) = thread (g, ny)
sentFrom iy, p1) A sentTo (rp, p1) = thread (g, Ny)
sentTo (m, p1) A sentTo (rp, p1) = thread (g, ny)
sentOnDaterfy, di) A sentOnDater(y, d;) = thread (g, ny)

Table C.1: A Markov Logic Network suggested that models thesage threading prob-
lem.

162

Experiments were conducted using the management game @matis (where reply
lines have been discarded). First, rule weights were lelariiben, in the inference step,
real-value scores were assigned to all of the class predpaits, designating the confi-
dence of the model in each predicate being true. A a rankeddis constructed based on
these scores for every query in the test set.

The yielded test set result for this corpus was 0.69 in mea&nage precision. In
comparison, graph walks using uniform weights gave MAP 880graph walks using the
learned set of edge weights resulted in MAP of 0.59; and, l#nking and the path con-
strained walks resulted in MAP of 0.73 (as detailed in Tablg.4Since information about
relevant rules was manually predefined in the MLN schema Jesnthing was applied to
tune the weights of these rules, the results produced usibysvshould be compared
against the latter learning approaches. Overall, perfoomas comparable between the
two paradigms for this task and corpus.

Learning the rules weights required about 5 minutes in Altyausing a commodity
PC. We applied the lazy SAT algorithm for inference. Infeeenger all message pairs in
the corpus (corresponding to a total of 8 pfedicates, as there are 817 distinct messages
in the management game corpus) required about 5 hours andnd@esoverall. This
corresponds to about 0.03 seconds per individual querly, tivét graph walk process. The
query response times for the threading queries using thageanent game corpus using
our framework were similar (see Table 6.7).

In another set of experiments, we were not able to apply ilegrin Alchemy to the
threading model using the larger Enron corpora (see TaBl&ecause of memory con-
straints in the phase of network grounding.

Based on this limited set of experiments, we find that the gtzgded framework
demonstrates higher scalability on the evaluated corpora.

As discussed earlier, an advantage of the graph-walk framels that while learning
improves results for pre-defined tasks, the framework caeigge results also for ad-hoc
queries, applying graph walks with no learning. The Markogi¢ networks paradigm
on the other hand requires rule learning (or expert knovdgdg a pre-requisite, since
different network structures are defined per task (i.e.ef@ry model); in the graph-walk
framework, a fixed graph is used for multiple tasks.

Overall, we believe that the proposed framework is more @pyate in search set-
tings, where arbitrary queries are possible. Our experisnguggest that the graph walk
framework is more scalable as it can handle larger corpora.

163

164

Bibliography

[1] Lada A. Adamic and Eytan Adar. Friends and neighbors @wtleb. Social Net-
works 25(3), 2003. 2.4.1

[2] Manu Aery and Sharma Chakravarthy. emailsift: Email sifisation based on
structure and content. Ii€DM, 2005. 4.6

[3] Alekh Agarwal and Soumen Chakrabarti. Learning randortksvto rank nodes in
graphs. INCML, 2007. 3.6.1

[4] Alekh Agarwal, Soumen Chakrabarti, and Sunny Aggarwaarning to rank net-
worked entities. I'KDD, 2006. 1.2, 3, 3.1, 3.6.1, 3.6.2, 6.2

[5] Shivani Agarwal. Ranking on graph data. ML, 2006. 3.6.1

[6] Kemafor Anyanwu, Angela Maduko, and Aamit Sheth. Serkrdanking complex
relationship search results on the semantic webViW\W 2005. 1

[7] Andrey Balmin, Vagelis Hristidis, and Yannis Papakonsitaou. ObjectRank:
Authority-based keyword search in databasesVIDB, 2004. 2.2.3, 2.2.3, 2.4.3,
3.6.2,6.4,6.4

[8] Krisztian Balog, Leif Azzopardi, and Maarten de Rijke. F@ models for expert
finding in enterprise corpora. BIGIR 2006. 4.2, 4.6

[9] R. Bekkerman, A. McCallum, and G. Huang. Automatic catezgiion of email
into folders: Benchmark experiments on enron and sri corporBechnical Report,
Computer Science department, IR-42804. 4.2, 4.6

[10] Ron Bekkerman, Ran El-Yaniv, and Andrew McCallum. Multiyndistributional
clustering via pairwise interactions. I6ML, 2005. 4.6

165

[11] V. Bellotti and J. D. Thornton. Managing activities with/-ACTA: Taskvista and
activity-centered task assistant. Personal Information Management Workshop,
SIGIR 2006. 4.6

[12] V. Bellotti, J. D. Thornton, A. Chin, D. J. Schiano, and No@&l. TV-ACTA: embed-
ding an activity-centered interface for task managemestiail. InCEAS 2007.
4.1,4.6

[13] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumeal¢abarti, and S. Su-
darshan. Keyword searching and browsing in databases bsimigs. InICDE,
2002. 2.2.4,2.4.3

[14] Matthew W. Bilotti, Paul Ogilvie, Jamie Callan, and Erigybérg. Structured re-
trieval for question answering. BIGIR 2007. 5.3

[15] R. Braz, E. Amir, and D. Roth. Lifted first-order probaliisinference. INJCAI,
2005. 2.4.6

[16] Sergey Brin and Lawrence Page. The anatomy of a larde-bgaertextual web
search engineComputer Networks and ISDN Syste(3, 1998. 2.2.1

[17] Razvan C. Bunescu and Raymond J. Mooney. A shortest patmdepey kernel
for relation extraction. IHLT-EMNLP, 2005. 3.6.3, 5.5

[18] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt@® Nicole Hamilton,
and Greg Hullende. Learning to rank using gradient des¢enn€ML, 2005. 3.1

[19] Lou Burnard.Users Guide for the British National CorpuBritish National Corpus
Consortium, Oxford University Computing Service, Oxford, UK95. 5.3

[20] Vitor R. Carvalho and William W. Cohen. On the collectivassification of email
"speech acts”. IISIGIR 2005. 4.4.2,4.6

[21] Vitor R. Carvalho and William W. Cohen. Preventing infortoa leaks in email.
In SDM, 2007. 4.6

[22] Vitor R. Carvalho and William W. Cohen. Ranking users foelhgent message
addressing. ECIR 2008. 4.2, 4.6

[23] Soumen Chakrabarti. Dynamic personalized pageranktityeelation graphs. In
WWW 2007. 6.4

166

[24] Huan Chang and David Cohn. Learning to create customiméftbaty lists. In
ICML, 2000. 3.6.1

[25] Eugene Charniak and Mark Johnson. Coarse-to-fine n-tzgstng and maxent
discriminative reranking. IACL, 2005. 3.3, 3.6.3

[26] Edith Cohen and David D. Lewis. Approximating matrix mplication for pattern
recognition tasksJournal of Algorithms30(2), 1999. 6.4

[27] William W. Cohen. Data integration using similarity j& and a word-based infor-
mation representation languag&CM Transactions on Information Systerh8(3):
288-321, 2000. 1

[28] William W. Cohen and Einat Minkov. A graph-search franoelwfor associating
gene identifiers with document8MC Bioinformatics 7(440), 2006. 2.2.1, 2.2.1,
2.2.3,2.2.3,3.3.1,3.33

[29] William W. Cohen, Pradeep Ravikumar, and Stephen FignbArcomparison of
string distance metrics for name-matching taskdIWEB, 2003. 4.4.1, 4.4.3

[30] William W. Cohen, Robert E. Schapire, and Yoram Singearbéng to order things.
Journal of Artificial Intelligence Research (JAIR):243-270, 1999. 3.3

[31] Michael Collins. Ranking algorithms for named-entityraxtion: Boosting and the
voted perceptron. IACL, 2002. 3.3, 3.6.3

[32] Michael Collins and Terry Koo. Discriminative rerangifor natural language pars-
ing. Computational Linguistics31(1):25-69, 2005. 3.3, 3.3.1, 3.5, 3.6.3

[33] Kevyn Collins-Thompson and Jamie Callan. Query expanagng random walk
models. INCIKM, 2005. 1, 2.3.2,2.4.3,5,5.5

[34] Thomas H. Cormen, Charles E. Leiserson, Ronald L. RivedtCdiff Stein. Intro-
duction to AlgorithmsIT Press and McGraw-Hill, 1990. 2.4.1

[35] Fabio Crestani. Application of spreading activatiooheiques in information re-
trieval. Artificial Intelligence Reviewl1(6), 1997. 2.4.5

[36] Aron Culotta and Jeffery Sorensen. Dependency treegkefar relation extraction.
In ACL, 2004. 3.6.3,5.5

[37] Marie-Catherine de Marneffe, Bill MacCartney, and Chyéter D. Manning. Gen-
erating typed dependency parses from phrase structurespdrd REC 2006. 5.3

167

[38] Christopher P. Diehl, Lise Getoor, and Galileo Namatané reference resolution
in organizational email archives. BIAM, 2006. 4.6

[39] Michelangelo Diligenti, Marco Gori, and Marco MagginiLearning web page
scores by error back-propagation.ldCAI, 2005. 1.2, 3, 3.2, 3.2, 3.2, 3.5,6.2

[40] Pedro Domingos, Stanley Kok, Hoifung Poon, Matthew Riclson, and Parag
Singla. Unifying logical and statistical ai. AAI, 2006. 2.4.6, 2.4.6

[41] Peter G. Doyle and J. Laurie SneRandom Walks and Electrical Networkdath-
ematical Association of America, 1984. 2.4.2

[42] M. Dredze, T. Lau, and N. Kushmerick. Automatically s3&ying emails into ac-
tivities. In1UI, 2006. 4.6

[43] Tamer Elsayed, Douglas W. Oard, , and Galileo NamataolRieg) personal names
in email using context expansion. HLT-ACL, 2008. 4.6

[44] Gunes Erkan and Dragomir R. Radev. Lexpagerank: Prestige kirdocument
text summarization. IEMNLP, 2004. 5.5

[45] S. E. Fahlman.NETL: A System for Representing and Using Real-World Knowl-
edge MIT Press, Cambridge, MA, 1979. 2.4.5

[46] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discpwd connection sub-
graphs. IrKDD, 2004. 2.4.1,2.4.2,2.4.3

[47] Christiane FellbaumWordNet: An electronic lexical databas®IT Press, 1998.
2.3.1,2.3.2,5

[48] D. Fogaras, B. Rcz, K. Csalogny, , and T. Sads. Towards scaling fully personal-
ized pagerank: Algorithms, lower bounds, and experimdntsrnet Mathematics
2(3), 2005. 2.2.1,2.2.1,6.3,6.4

[49] Francois Fouss and Jean-Michel Renders. Random-walk@@tion of similarities
between nodes of a graph with application to collaborataa®mmendationlEEE
Transactions on Knowledge and Data Engineeribg(3), 2007. 2.3.1

[50] Yoav Freund and Robert E. Schapire. Large margin classidin using the percep-
tron algorithm.Machine Learning37(3), 1999. 3.3.1

[51] Nir Friedman, Lise Getoor, Daphne Koller, and Avi P&ff Learning probabilistic
relational models. IhWJCAI, 1999. 2.4.6

168

[52] L. Getoor and B. TaskarStatistical relational learning MIT Press, Cambridge
MA, 2007. 2.4.6

[53] W. Geyer, J. Vogel, L. Cheng, and M. Muller. Supportingiaty-centric collabo-
ration through peer-to-peer shared objectsAGM GROUR 2003. 4.6

[54] Roy Goldman, Narayanan Shivakumar, Suresh Venkatasdotian, and Hector
Garcia-Molina. Proximity search in databasesVUDB, 1998. 2.4.3

[55] Gregory Grefenstette Explorations in Automatic Thesaurus Discoverlluwer
Academic Publishers, Dordrecht, 1994. 5.4

[56] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmnodasam. Xrank:
Ranked keyword search over xml documentsSIBGMOD, 2003. 1, 2.4.3, 3.6.2

[57] Taher H. Haveliwala. Topic-sensitive PageRankWwW 2002. 1, 2.2.1, 6.4

[58] Jingrui He, Mingjing Li, Hong-Jiang Zhang, Hanghangn@o and Changshui
Zhang. Manifold-ranking based image retrieval MM, 2004. 2.3.2

[59] Marti Hearst. Automatic acquisition of hyponyms froarge text corpora. I€OL-
ING, 1992. 5.2

[60] Marti Hearst. Texttiling: Segmenting text into mufiaragraph subtopic passages.
Computational Linguistic23(1):33-64, 1997. 1

[61] S. Henderson. Genre, task, topic and time: facets adquerl digital document
management. I€HI, 2005. 4.2, 4.6

[62] Ralph Holzer, Bradely Malin, and Latanya Sweeney. Emiglsadetection using
social network analysis. IbinkKDD, 2005. 4, 4.6

[63] Paul Hsiung, Andrew Moore, Daniel Neill, and Jeff Scidee. Alias detection
in link data sets. IrProceedings of the International Conference on Intelligenc
Analysis May 2005. 4, 4.6

[64] Liang Huang. Forest reranking: Discriminative pagsimith non-local features. In
ACL, 2008. 3.6.3

[65] Thad Hughes and Daniel Ramage. Lexical semantic retatsiwith random graph
walks. INEMNLP, 2007. 2.3.2, 5, 5.5

169

[66] Glen Jeh and Jennifer Widom. Simrank: A measure of siratcontext similarity.
In SIGKDD, 2002. 2.4.2

[67] Glen Jeh and Jennifer Widom. Scaling personalized vealoch. InWWW 2003.
22.1,64,64

[68] Sepandar D. Kamvar, Taher H. Haveliwala, ChristopheManning, and Gene H.
Golub. Exploiting the block structure of the web for compagti In Stanford Uni-
versity Technical Repqr2003. 6.4

[69] Sepandar D. Kamvar, Taher H. Haveliwala, ChristopheMBnning, and Gene H.
Golub. Extrapolation methods for accelerating pageramkpedgations. Invww;,
2003. 6.4

[70] Hillol Kargupta, Anupam Joshi, Krishnamoorthy Sivakar, and Yelena Yesha.
Data Mining: Next Generation Challenges and Future DireciorMIT/AAAI
Press, 2004. 4

[71] N. Katoh, T. Ibaraki, , and H. Mine. An efficient algonithfor k shortest simple
paths.Networks 12, 1982. 2.4.2

[72] Leo Katz. A new status index derived from sociometrialgsis. Psychometrika
18(1), 1953. 2.4.1

[73] Edward Keenan and Bernard Comrie. Noun phrase accefysidid universal
grammar.Linguistic Inquiry, 8, 1977. 5.4

[74] K. Kersting and L. De Raedt. Towards combining inductiogic programming
with bayesian networks. In.P, 2001. 2.4.6

[75] John Kleinberg. Authoritative sources in a hyperlidkenvironment. INSODA
1998. 1, 3.6.1

[76] Brown Klimt and Yiming Yang. The enron corpus: A new da&taf®r email classi-
fication research. IECML, 2004. 4.2, 4.3

[77] S. Kok and P. Domingos. Learning the structure of marlagic networks. In
ICML, 2005. 2.4.6

[78] S. Kok, P. Singla, M. Richardson, and P. Domingos. Thhety system for statis-
tical relational ai. IrDepartment of Computer Science and Engineering, University
of Washington, Technical Report. http://www.cs.washingttunai/alchemy2005.
2.4.6,C

170

[79] R. I. Kondor and J. Lafferty. Diffusion kernels on grasd other discrete struc-
tures. InICML, 2002. 2.4.4

[80] Y. Koren, S. C. North, and C. Wolinsky. Measuring and egtirag proximity in
networks. InKDD, 2006. 2.2.4,2.4.1,2.4.2

[81] N.Kushmerick and T. Lau. Automated email activity mgament: an unsupervised
learning approach. 1tUJl, 2005. 4.6

[82] E.L. Lehmann.Testing statistical hypotheséd/iley, 1959. 4.4

[83] R. Lempel and S. Moran. Rank stability and rank similaoityink-based web rank-
ing algorithms in authority-connected graphsformation Retrieval 8(2), 2005.
6.4

[84] David E. Lewis and Kimberly A. Knowles. Threading elextic mail: A prelimi-
nary study.Information Processing and Managemeh®97. 4.2, 4.6

[85] Liben-Nowell and J. Kleinberg. The link prediction flem for social networks.
In CIKM, 2003. 2.4.1,2.4.1,2.4.2,4.6

[86] Dekang Lin. Automatic retrieval and clustering of slaniwords. INCOLING-ACL,
1998. 5.4

[87] D. Lowd and P. Domingos. Efficient weight learning fornkav logic networks. In
PKDD, 2007. 2.4.6

[88] Bradely Malin, Edoardo M. Airoldi, and Kathleen M. Carley social network
analysis model for name disambiguation in listdournal of Computational and
Mathematical Organization Theorg1(2), 2005. 4.6

[89] Andrew McCallum, Andres Corrada-Emmanuel, and Xuerungvaropic and role
discovery in social networks. IICAI, 2005. 4, 4.6

[90] J.M Mclnerney, K. G. Haines, S. Biafore, and R. Hecht-Bkgl. Back propagation
error surfaces can have local minima.litternational Joint Conference on Neural
Networks (IJCNN)1989. 3.2

[91] Rada Mihalcea. Unsupervised large-vocabulary wordgeetisambiguation with
graph-based algorithms for sequence data labelinglLINEMNLP, 2005. 5.5

[92] Rada Mihalcea and Paul Tarau. Textrank: Bringing ordeo itexts. In
HLT/EMNLP, 2004. 5.5

171

[93] L. Mihalkova and R. J. Mooney. Bottom-up learning of marlogic network
structure. INCML, 2007. 2.4.6

[94] Einat Minkov and William W. Cohen. An email and meetingiatant using graph
walks. INCEAS 2006. 4.4.3,4.4.4

[95] Einat Minkov, William W. Cohen, and Andrew Y. Ng. Conteatisearch and name
disambiguation in email using graphs. 3GIR 2006. 1, 1.1, 2.2.3, 2.2.3, 2.2.3

[96] Einat Minkov, Richard Wang, and William Cohen. Extragtimersonal names from
emails: Applying named entity recognition to informal telxt HLT-EMNLP, 2005.
43,441

[97] Tom Mitchell, Rich Caruana, Dayne Freitag, John McDetmand David
Zabowski. Experience with a learning personal assist@ummunications of the
ACM, 37(7), 1994. 4.6

[98] Tom Mitchell, Sophie Wang, Yifen Huang, and Adam Cheygéktracting knowl-
edge about users activities from raw workstation conteltsAAAl, 2006. 4.5.1,
4.6

[MUC6] MUCSG6. Proceedings of the sixth message understandinfecence (muc-6). In
Morgan Kaufmann Publishers, Inc. Columbia, MarylantB95. 5.3

[99] J. Neville and D. Jensen. Dependency networks foricglat data. INCDM, 2004.
2.4.6

[100] Zaiging Nie, Yuanzhi Zhang, Ji-Rong Wen, and Wei-Ying.MObject-level rank-
ing: Bringing order to web objects. WWW 2005. 1.2, 3.6.2, 6.2

[101] Sebastian Padand Mirella Lapata. Dependency-based construction obeém
space modelsComputational Linguistics33(2), 2007. 1.3, 5, 5.4,5.4.2

[102] Larry Page, Sergey Brin, R. Motwani, and T. Winograd. pagerank citation rank-
ing: Bringing order to the web. IMechnical Report, Computer Science department,
Stanford University1998. 1, 2.2.1,2.2.1,2.3.1,6.1.2, 6.3

[103] Chris Pal and Andrew McCallum. Cc prediction with gragathicodels. INCEAS
2006. 4.6

[104] C. R. Palmer and C. Faloutsos. Electricity based extesinalarity of categorical
attributes. INPAKDD, 2003. 2.2.4,2.4.2,4.5.3

172

[105] Jia-Yu Pan, Hyung-Jeong Yang, Christos FaloutsospPamar Duygulu. Automatic
multimedia cross-modal correlation discoveryKBD, 2004. 2.3.2,2.4.3, 2

[106] D. Petkova and W. B. Croft. Hierarchical language modetsexpert finding in
enterprise corpora. IfCTAI, 2006. 4.2, 4.6

[107] H. Poon and P. Domingos. Sound and efficient inferenitke probabilistic and
deterministic dependencies. ARAI, 2006. 2.4.6

[108] Vasin Punyakanok, Dan Roth, Wen tau Yih, and Dav Zimama&ntic role labeling
via integer linear programming inference. @OLING, 2004. 3.6.3

[109] M. R. Quillian. Semantic memory. In M. Minsky (Ed.), Semantic information p
cessing MIT Press, Cambridge, MA, 1968. 2.4.5

[110] C. Ramakrishnan, W. Milnor, M. Perry, and A. Sheth. Disaing informative
connection subgraphs in multi-relational graphSIGKDD Explorations Special
Issue on Link Mining2005. 2.4.3

[111] M. Richardson and P. Domingos. Markov logic network&achine Learning62
(1-2), 2006. 2.4.6,2.4.6,2.4.6

[112] Matthew Richardson and Pedro Domingos. The intelligemfer: Probabilistic
combination of link and content information in PageRankNIRS 2002. 2.2.1

[113] B.D. Ripley. Pattern Recognition and Neural Network€ambridge University
Press, 1996. 3.2

[114] D. Rumelhart, J. McClelland, and PDP Research Gr&gpallel Distributed Pro-
cessing: exploration in the microstructure of cognitioMIT Press, Cambridge,
MA, 1986. 2.4.5

[115] Gerard Salton and Michael J. McGillintroduction to Modern Information Re-
trieval. McGraw-Hill, 1983. 2.4.1

[116] Gerard Salton, Amit Singhal, Mandar Mitra, and Chris Bag. Automatic text
structuring and summarizatiodnformation Processing and ManagemgeB8(2):
193-208, 1997. 1

[117] Jacques Savoy. Bayesian inference networks and spgeactivation in hypertext
systemsInformation Processing and Manageme?8(3), 1992. 2.3.1

173

[118] Robert E. Schapire and Yoram Singer. Improved boos8lgprithms using
confidence-rated predictionsachine Learning37(3):297-336, 1999. 3.3.1

[119] R. Segal and J. Kephart. Incremental learning in swaftin ICML, 2000. 4.2, 4.6

[120] Sandip Sen. Developing an automated distributedingsthedulerlEEE Expert
12(4), 1997. 4.6

[121] Libin Shen and Aravind K. Joshi. An svm based votingpaiitnm with application
to parse reranking. IGONLL, 2003. 3.3.1

[122] Libin Shen and Aravind K. Joshi. Ranking and rerankintipywerceptronMachine
Learning 60(1-3), 2005. 3.3.1, 3.3.1

[123] Libin Shen, Anoop Sarkar, , and Franz Josef Och. Dnsictive reranking for
machine translation. IRLT-NAACL, 2005. 3.6.3

[124] P. Singla and P. Domingos. Discriminative traininghedirkov logic networks. In
AAA| 2005. 2.4.6

[125] P. Singla and P. Domingos. Memory-efficient inferenceelational domains. In
AAA| 2006. 2.4.6

[Sleepycat] Sleepycat. Sleepycat software. http://whesmycat.com. 6.3.1

[126] Henry Small. Co-citation in the scientific literaturA: new measure of the rela-
tionship between two documentdournal of the American Society for Information
Science24, 1973. 2.3.1

[127] Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. Learniygtactic patterns for
automatic hypernym discovery. MIPS 2005. 3.6.3,5,5.1,5.5

[128] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neididmd formation and
anomaly detection in bipartite graphs. I®DM, 2005. 6.4

[129] Martin Szummer and Tommi Jaakkola. Clustering and iefiicuse of unlabeled
examples. INNIPS 2001. 2.3.2,2.4.4

[130] Egidio Terraand C. L. A. Clarke. Frequency estimatestatistical word similarity
measures. INAACL 2003. 5.4.1

[131] Naftali Tishby and Noam Slonim. Data clustering by kaian relaxation and the
information bottleneck method. NIPS 2000. 2.3.2,2.4.4,4.5.3

174

[132] Hanghang Tong and Christos Faloutsos. Center-pieagraphs: Problem defini-
tion and fast solutions. IKDD, 2006. 2.4.2,4.5.3,5.4.2

[133] Hanghang Tong, Christos Faloutsos, and Jia-Yu Part.réadom walk with restart
and its applications. IfCDM, 2006. 6.4, 6.4

[134] Hanghang Tong, Yehuda Koren, and Christos Faloutsast. direction-aware prox-
imity for graph mining. InKDD, 2007. 2.4.2

[135] Kristina Toutanova, Aria Haghighi, and Christopheranning. Joint learning
improves semantic role labeling. ACL, 2005. 3.6.3

[136] Kristina Toutanova, Christopher D. Manning, and AndM Ng. Learning random
walk models for inducing word dependency distributionslGML, 2004. 1, 2.2.1,
23.2,243,3,3.6.2,5,55

[137] Ah Chung Tsoi, Gianni Morini, , Franco Scarselli, Maskilagenbuchner, and
Marco Maggini. Adaptive ranking of web pages.WAWWW 2003. 3.1, 3.6.1

[138] Raymond J. Mooney Tuyen N. Huynh. Discriminative stauwe and parameter
learning for markov logic networks. ICML, 2008. 2.4.6

[139] Mengqiu Wang, Noah A. Smith, and Teruko Mitamura. Wlheathe jeopardy
model? a quasi-synchronous grammar for gaEMINLP-CONLL, 2007. 5.1

[140] Wensi Xi, Edward Allan Fox, Weiguo Patrick Fan, Benyuwadly, Zheng Chen, Jun
Yan, and Dong Zhuang. Simfusion: Measuring similarity gaimified relationship
matrix. InSIGIR 2005. 1

[141] Y. Yang and C.G. Chute. An example-based mapping metbraext classification
and retrieval ACM Transactions on Information Systerh(3), 1994. 1

[142] Jen-Yuan Yeh and Aaron Harnly. Email thread reassgm&ihg similarity match-
ing. In CEAS 2006. 4.6

[143] ChengXiang Zhai, William W. Cohen, , and John Lafferty. yBed independent
relevance: Methods and evaluation metrics for subtoprexetl. InNIPS 2001. B

[144] Dengyong Zhou, Bernhard Scholkopf, and Thomas Hofma8emi-supervised
learning on directed graphs. MIPS 2005. 2.4.4

[145] Dengyong Zhou, Jason Weston, Arthur Gretton, OliBeusquet, and Bernhard
Schblkopf. Ranking on data manifolds. MIPS 2004. 2.4.4

175

[146] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. nb&supervised learning
using gaussian fields and harmonic functionslGML, 2003. 2.4.4

176

