PARAMOR:

rom PARADIGM STRUCTURE
o NATURAL LANGUAGE
MORPHOLOGY INDUCTION

Christian Monson

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA

Thesis Committee

Jaime Carbonell (Co-Chair)
Alon Lavie (Co-Chair)
Lori Levin

Ron Kaplan (CSO at PowerSet)

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy






For Melinda






Abstract

Most of the world’s natural languages have complex morphology. But the exgfense
building morphological analyzers by hand has prevented the development of morphologi-
cal analysis systems for the large majority of languages. Unsspérinduction tech-
niques, that learn from unannotated text data, can facilitatéetredopment of computa-
tional morphology systems for new languages. Such unsupervised morphologicasanalys
systems have been shown to help natural language processing tasksdrspeech rec-
ognition (Creutz, 2006) and information retrieval (Kurimo and Turunen, 2008 .the-
sis describes ParaMor, an unsupervised induction algorithm for leanmarnghological
paradigms from large collections of words in any natural langiRayadigms are sets of
mutually substitutable morphological operations that organize thextioihal morphol-
ogy of natural languages. ParaMor focuses on the most common morphgbogeess,
suffixation.

ParaMor learns paradigms in a three-step algorithm. Firstcall-centric search
scours a space of candidate partial paradigms for thosé wbssibly model suffixes of
true paradigms. Second, ParaMor merges selected candidatapgbat to model por-
tions of the same paradigm. And third, ParaMor discards thoderslughich most likely
do not model true paradigms. Based on the acquired paradigms, Panakl@egments

words into morphemes. ParaMor, by design, is particularly effeéir inflectional mor-



phology, while other systems, such as Morfessor (Creutz, 2006), betigfyidkeriva-
tional morphology. This thesis leverages the complementary strengtara¥ior and
Morfessor by adjoining the analyses from the two systems.

ParaMor and its combination with Morfessor participated in Morghallenge, a
peer operated competition for morphology analysis systems (Kurimondoyand Var-
jokallio, 2008). The Morpho Challenge competitions held in 2007 and 2008 evaluated
each system’s morphological analyses in five languages, English, Ggdfmaish, Turk-
ish, and Arabic. When ParaMor’s morphological analyses are mergethasin of Mor-
fessor, the resulting morpheme recall in all five languages is hilgaerthat of any sys-
tem which competed in either year’s Challenge; in Turkish, for exgniaraMor’s re-
call of 52.1% is twice that of the next highest system. This stexgl leads to Fscores

for morpheme identification above that of all systems in all languages buthenglis



Table of Contents

Y 013 1 = Lo PP PPPRPPPPR 5
LI L o1 [S3N0 1 @0 a1 (T o] £ R PPPRUUPRURR 7
F o LoV L= (o =T 0 0 =T o £ 9
LIST OF FIQUIES ...ttt ettt e e e e e e e e e e e e e e e st b e e e e e e e 11
(O aF=T o (=1 g AN [ 0] (o Yo [1 o 1o o ISR 15
1.1 The Structure of MOrpRoIOgY ........cuuuiiiiiiiiiiiiiiiiecee e 16
O I 1S RS O = 1T 0 PR PP 21
1.3 ParaMor: Paradigms across Morphology.............eeeeeeiiiiiiiiiiioiiiiiiiiiee 22
1.4 A Brief Reader's GUIAE ......ccoociiiiiiiiiiiiiiiiiceee e e e e e e e e 25
Chapter 2: A Literature Review of ParaMor's Predecessors..........covvvvvvvvviiiiiiiieeeeeeeeeeeene, 27
2.1 Finite State APPrOACNES ......cccoii it e e e e e e 28
P20 N R I 0T O g P = Vo = 1 [ TP 29
2.1.2 Unrestricted Finite State AUtOMALA..........ccovvieeeeiiiiiiiiiiiiiiieeeeeee e 31
2.2 MDL and Bayes’ Rule: Balancing Data Length against Model Complexity ....... 34
2.2.1 Measuring Morphology Models with Efficient Encodings .............cccccccvvunee. 36
2.2.2 Measuring Morphology Models with Probability Distributions..................... 39
2.3 Other Approaches to Unsupervised Morphology Induction............cccceeeiieieenee.n. 45
2.4 Discussion Of Related WOIK ........ccooviiiiiieiiiiiiiiiee et e e e e e a7
Chapter 3: Paradigm Identification with ParaMor..................oooviiiiiiii e, 49
3.1 A Search Space of Morphological Schemes.............o e, 50
.11 SCRNEIMES ..ttt e e e e e aaaas 50
3.1.2 SChemME NEIWOIKS .....ccoe e e e e e e e e e e e e e eeeeaennes 55
3.2 Searching the SCheme LattiCe........cccciiiiiiiiiiiiiieeer e 62
3.2.1 A Bird's Eye View of ParaMor’s Search Algorithm.................coooiiiiiiiinnnee. 62
3.2.2 ParaMor’s Initial Paradigm Search: The Algorithm.............ccccovviiicieennn. 66
3.2.3 ParaMor’s Bottom-Up Search in ACHON..........covviiiiiiiiiiiiiieeeee 69
3.2.4 The Construction of Scheme NetWOrKS ...........ciiiiiiiiiiiiiiieeeee 72
3.2.5 Upward SEArCH METIICS. .......uuuuiiiiiiiiiiiiiiiiiee e e e e 77
3.3 Summarizing the Search for Candidate Paradigms ............ccccceeeeiiiiiiiiiiiiiiiiceenn, 95



Chapter 4: Clustering and Filtering of Initial Paradigms.............ccoooiiiiiiiiiiiiiiiicciieeen 97

4.1 From Schemes to Comprehensive Models of Paradigms .............cccoevvvvvveviiiinnnnnns 97
4.1.1 A Sample of Initially-Selected Schemes.............cooo i 98
4.1.2 ParaMor’s Paradigm-Processing Pipeline..............ccoceceeiiiiiiii e 103

4.2 Training Corpus Clean-Up........oooiiiiiiiiiiiii e a e 105

4.3 Clustering of Partial Paradigms ...........uuuuuuiiiiiiiiiieeeeeeeeeeeeeeeeirs e e e e e e e e eeees 108
4.3.1 Three Challenges Face any Scheme-Clustering Algorithm.......................... 108
4.3.2 Clustering Large and Clustering Small............cccooviiiiiiiiiiiiiiiicinnee e 116
4.3.3 An Examination of ParaMor’'s Scheme-CIUSEerS...........cceeiiiiiiiieeiiiiiiiiiiiiins 116

4.4 Filtering of Merged CIUSTEIS.......cccoiiiieeeeee e e e e e 126
4.4.1 Filtering of Small SCheme-CIUSEErS..........oooi i 126
4.4.2 Morpheme Boundary Filtering ...........cceeieiiieeieiiiiieeeeeees e 130

4.5 ParaMor’s Paradigm MOEIS ......ccoooiiiiiiiiiiie e 142
4.5.1 ParaMor’s Final Scheme-Clusters as Viable Models of Paradigms............. 145
4.5.2 Paradigm Learning and Vocabulary Size ...........cooouuuiiiiiiiiiniieeeeeeeeeeeeeeeiiens 149

4.6 Scheme-Clusters in Languages Beyond Spanish........ccccccceeeeeiiiiiiiiceeiiiiiinn, 154

Chapter 5: Morphological SEgmMeNntation............coooeeeiiiiiiiiiiiiiiir s 159

5.1 The Segmentation AlGOrthm............ccoiiiiiiiii s 161

5.2 A Sample of ParaMor’'s Word SegmentationsS..........ccooevveeeeeeiiiiieeeeeiiiiiiieeeennn 163

5.3 Morpheme Segmentation Enables Evaluation............c.ccccevvvvviiiiiiiiiiiiie e, 168

Chapter 6: ParaMor and Morpho Challenge..............uuuuiiiiiiiiee e 171

6.1 Evaluation Methodology at Morpho Challenge 2007/2008.............ccccceeeeeeeeennnn. 172
6.1.1 The Linguistic Evaluation of Morpho Challenge 2007/2008 ....................... 173
6.1.2 The Task-Based Evaluation of Morpho Challenge 2007/2008..................... 177

6.2 AN ADIALION STUAY .eeiiiiiiiiiie e 178
6.3 Inflectional vs. Derivational MOrphology.......ccccoeeeeeeiiiiiiieeiiieese e, 187
6.4 Morpho Challenge 2007/2008 .........cccoiiiieieeeeiiieeeeeeeiee e e e e e e e e e e eeeaeeaaaaaaaes 189
6.4.1 Linguistic Evaluation Results from Morpho Challenge 2007/2008............. 190
6.4.2 The Task-Based Evaluation of Morpho Challenge 2007/2008..................... 196
Chapter 7: Conclusions and FUture WOrK ............oooiiiiiiiiiiiiiieeeeeeeee e 201
7.1 Improving the Core ParaMor AlgorithmsS........ccccoooeiiiiiiiiiices e 202
7.2 The Future of Unsupervised Morphology INduCtion ..............cccoovviiiiiiiiiiinnee, 206
7.2.1 Beyond SUFfIXAtiON .......cccooiiiiiiiiiiieeee e 206
7.2.2 Morphophonological Change...........ccuiiiiiiiiiiiii e 207
7.2.3 Mapping Morphemes t0 FEatUres ...........ccoovviiviiiiiiiiiiiiiie e 208
7.3 ParaMor: A Successful Morphology Induction Algorithm ... 209
=11 o] [ToTe ] =1 o] o ) V20U EPPPRPPR 211
Appendix A: A Summary of Common Spanish SUfIXES ...........eeeviiiiiiiiiis 221
Appendix B: Scheme Clustering, a Pseudo-Code Implementation ..................c.covvvnnee. 227



Acknowledgements

| am as lucky as a person can be to obtain a Ph.D. from the Languag®Ilbgies
Institute (LTI) at Carnegie Mellon University. While | dted this program with little
more than an interest in languages and computation, the people | thetlakl have
brought natural language processing to life. From the unparallelddrigaand mentor-
ing of professors like Pascual Masullo, Larry Wasserman, and Rsainfeld | learned
to appreciate, and begin to quantify natural language. And from fellownssudeluding
Katharina Probst, Ariadna Font Llitjos, and Erik Peterson | foundrthtatral language
processing is a worthwhile passion.

Still, whatever my desire for a degree in computational lingsisthis thesis never
would have happened without the support, encouragement, and work of my thrge facul
advisors: Jaime Carbonell, Alon Lavie, and Lori Levin. Many people informedhat
having three advisors was unworkable—one person telling you what to do ihefleiug
alone three! But in my particular situation, each advisor brought unique and indispensable
strengths: Jaime’s broad experience in cultivating and pruningsg thject, Alon’s
hands-on detailed work on algorithmic specifics, and Lori’s linguestjgertise were all
invaluable. Without input from each of my advisors, ParaMor would not have been born.

Looking beyond the technical aspects, | was utterly unable to compisténésis
were it not for the support and patience of my family. Thank you Monbaxdor being

my final line of support; Thank you Kurt and Mitzi for not kicking me outha&f house.



And without the encouragement of my wife, without her kind words and comphippns
| would have thrown in the towel long ago. Thank you, Melinda, for standingdeaten

when the will to continue was beyond my grasp. And James, Liesl, ard EEdiais your
needs and smiles that kept me trying.

— Christian

10



List of Figures

Figure 1.1 A fragment of the Spanish verbal paradigm..............ccccceeeeiiiiiiiien, 18
Figure 1.2 A finite state automaton fadministrar ..............coooeeiiiiiiiiiiiiiiieeeeeeenn 19
Figure 1.3 A portion of a morphology scheme network...............cccccceeiiieiiieeeeeennenn, 23
Figure 2.1A hub and a stretched hub in a finite state automaton.............................. 32
Figure 3.1Schemes from a small vocabulary..............ccccooeiiiiiiiiiiiicccee 53
Figure 3.2A morphology scheme network over a small vocabulary........................ 57
Figure 3.3A morphology scheme network over the Brown Corpus............c.ccc.evveeee. 59
Figure 3.4A morphology scheme network over a Spanish COrpus.......ccccccceeeeeeennnnn. 61

Figure 3.5A birds-eye conceptualization of ParaMor’s initial search algorithm...... 63

Figure 3.6 Pseudo-code implementing ParaMor’s initial search algorithm............... 68
Figure 3.7Eight search paths followed by ParaMor’s initial search algorithm......... 70
Figure 3.8Pseudo-code computing all most-specifics schemes from a corpus......... 75

Figure 3.9Pseudo-code computing the most-specific ancestors of each c-suffix......76

Figure 3.10Pseudo-code computing the c-stems of a scheme.............cccccoiiiiiinns 78
Figure 3.11Seven parents of theo.0s SChemMe...........ccooiiiiiiiiiicc e, 80
Figure 3.12Four expansions of thee0.0s SCheME...........ccvvvvieiiiiiiiiii e 83
Figure 3.13Six parent-evaluation MEetriCS..........cccooviiiiiiiiiiiiiiiiiiie e 86
Figure 3.14An oracle evaluation of six parent-evaluation metrics..................cecueeeee 93
Figure 4.1 A sample of initially-selected schemes...........ccccovviiiiiiiiieeeeeeeee, 100

11



Figure 4.2Six initial schemes that exhibit syncretism............cccccooeiiiiiiiiiiiieiinn, 110

Figure 4.3Five initial schemes licensed by the wagbyadas ..............ccccceeeennn. 114
Figure 4.4 Typical Spanish scheme-CIUSIErS............uuuuuiiiiiiiiiie e 118
Figure 4.5A portion of a scheme-Cluster tree............cciiiieiiiie e 121

Figure 4.6 Cluster count and suffix recall vary with the cluster size threshold....... 127
Figure 4.7 Six scheme-clusters discarded by ParaMor’s small-cluster filter..129...
Figure 4.8 Three scheme-clusters hypothesize morpheme boundaries.................... 132
Figure 4.9A character trie and corresponding scChemes............cccccvvvvvvvvvviiicicneeenn. 134

Figure 4.10Pseudo-code for a suffix-internal morpheme boundary error filter...... 137

Figure 4.11Three schemes hypothesize morpheme boundaries..............ccccevvvvneee. 138
Figure 4.12An illustration of ParaMor’s morpheme boundary error filters............ 141
Figure 4.13Pseudo-code for a stem-internal morpheme boundary error filter........ 143
Figure 4.14ParaMor’s paradigm-induction pipeline..............ccceeeieiiiiiieiiiiiiieeiieiiins 144
Figure 4.15Typical Spanish scheme-clusters (Figure 4.4 revisited)....................... 148
Figure 4.16Cluster count and suffix recall vary with vocabulary size.................... 151
Figure 4.17Scheme and scheme-cluster counts for six languages.............ccccceueee. 155

Figure 5.1Pseudo-code implementing ParaMor’s word segmentation algorithm... 162

Figure 5.2A sample of ParaMor’s morphological segmentations of Spanish......... 164
Figure 6.1An answer key in the style of a Morpho Challenge.............ccccceeeivniinnnns 174
Figure 6.2 Ablation study: Search, filtering, clustering impact segmentation......... 180
Figure 6.3Ablation study: A paradigm induction corpus of 20,000 types.............. 185
Figure 6.4ParaMor and inflectional vs. derivational morphology..........cccccc..oe..... 188
Figure 6.5Results from the Linguistic Evaluation of Morpho Challenge............... 192
Figure 6.6 Results from the Task-Based IR Evaluation of Morpho Challenge........ 198
Figure 6.7 Four reference algorithms for the Task-Based Evaluation..................... 198
Figure 7.1Feature detection from word-aligned translated sentences..................... 209
Figure A.1 Suffixes of thear inflection class of Spanish verbs..............ccccviiinnns 223
Figure A.2 Suffixes of theer inflection class of Spanish verbs.............cccoovvvvinnnnns 223
Figure A.3 Suffixes of ther inflection class of Spanish verbs..............cccceviiiinnnnns 224
Figure A.4 Suffixes of a paradigm fadtumber on nouns and adjectives............... 224

12



Figure A.5 Suffixes of a second paradigm féamber on nouns and adjectives... 224

Figure A.6 Suffixes of the cross-product paradigm@znder andNumber.......... 224
Figure A.7 Spanish pronominal CHLICS.........ccouuuiiiiiiiii e 225
Figure A.8 Frequent derivational suffixes of Spanish.............ccccciiiiiiiiii e, 225

13



14



Chapter 1: Introduction

Most natural languages exhibit inflectional morphology, that is, the suidates of
words change to express syntactic featuressrivs. Sheauns. Handling the inflectional
morphology of English in a natural language processing (NLP) systemlysstaaight-
forward. The vast majority of lexical items in English have fetlvan five surface forms.
But English has a particularly sparse inflectional system.nbisat all unusual for a lan-
guage to construct tens of unique inflected forms from a single &exa&nd many lan-
guages routinely inflect lexemes into hundreds, thousands, or even tens ohdsoofisa
unique forms! In these inflectional languages, computational systentiffarent as
speech recognition (Creutz, 2006), machine translation (Goldwater adbdkg, 2005;
Oflazer and El-Kahlout, 2007), and information retrieval (Kurimo @ndunen, 2008)
improve with careful morphological analysis.

Computational approaches for analyzing inflectional morphology categmiae

three groups. Morphology systems are either:

1. Hand-built,
2. Trained from examples of word forms correctly analyzed for morphology, or

3. Induced from morphologically unannotated text in an unsupervised fashion.

15



Presently, most computational applications take the first option, herwdh@g morpho-
logical facts. Unfortunately, manual description of morphology demandsrhexpertise
in a combination of linguistics and computation that is in short supplynény of the
world’s languages. The second option, training a morphological analyzeupeavised
fashion, suffers from a similar knowledge acquisition bottleneasrpliblogically ana-
lyzed training data must be specially prepared, i.e. segmented aretl]dibehuman ex-
perts. This thesis seeks to overcome the difficulties of knowlextgesition through lan-
guage independent unsupervised induction of morphological structure from readily

available unannotated machine-readable natural language text.

1.1 The Structure of Morphology

Natural language morphology supplies many language independent structural regu-
larities which unsupervised induction algorithms can exploit. This ghiegéntionally
leverages three such regularities to discover the morphology ofdondiManguages. The
first regularity is theparadigmaticopposition found in inflectional morphology. Para-
digmatically opposed inflections are mutually substitutable and thueclusive. Take,
for example, the Spanish wohdblar ‘to speak which belongs to the class of Spanish
ar-verbs. Spanishr-verbs inflect for the feature combinati@nd Person Present Indica-
tive with the suffixas, as inhablas ; but markist Person Present Indicative with a mu-
tually exclusive suffixo: hablo. Theo suffix substitutes in foas, and no verb form can
occur with both theas and theo suffixes simultaneouslyhablaso . Every set of para-
digmatically opposed inflectional suffixes is said to filparadigm In Spanish, thas
and theo suffixes fill a portion of the verbal paradigm. Because of itsctiappeal to
paradigmatic opposition, the unsupervised morphology induction algorithm deésgribe
this thesis is dubbe@araMor.

The second morphological regularity leveraged by ParaMor to uncover morphologi-
cal structure is theyntagmaticrelationship of lexemes. Natural languages with inflec-
tional morphology invariably possess classes of lexemes that dameacflected with

the same set of paradigmatically opposed morphemes. These ldasses @re in a syn-
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tagmatic relationship. Returning to Spaniah,regularar-verbs pablar, andar, cantar,
saltar, ...) use thes ando suffixes to marknd Person Present Indicative andist Per-

son Present Indicative respectively. Together, a particular set of paradigmatically op-
posed morphemes and the class of syntagmatically related stems@dbehat para-
digmatic morpheme set forms aflection-classof a paradigm of a language—in this
case thar inflection class of the Spanish verbal paradigm.

The third morphological regularity exploited by ParaMor follows from thadgig-
matic-syntagmatic structure of natural language morphology. The repeatfo mor-
phemes and stems in an inflection class constrainplibeeme sequencésat occur
within words. Specifically, while the phoneme sequence within a momplenestricted,
a range of possible phonemes is likely at a morpheme boundary: A nombeor-
phemes, each with possibly distinct initial phonemes, might follow acpir mor-
pheme.

Spanish non-finite verbs illustrate paradigmatic opposition ofphemnes, the syn-
tagmatic relationship between stems, inflection classes, garadiand phoneme se-
guence constraints. In the schema of Spanish non-finite forms tieetleree paradigms,
depicted as the three columns of Figlire. The first paradigm marks thgpe of a par-
ticular surface form. A Spanish verb can appear in exactly onereé Mon-Finite
Types: as aPast Participle, as aPresent Patrticiple, or in thelnfinitive. The three rows of
the Type columns in Figurd..1 represent the suffixes of these three paradigmatically op-
posed forms. If a Spanish verb occurs ®ast Participle, then the verb takes additional
suffixes from two paradigms. First, an obligatory suffix ma@ender: an a marks
Feminine, ano Masculine. Following the suffix of theGender paradigm, either &lural
suffix, s, appears or else there is no suffix at all. The lack of aricéxplural suffix
marksSingular. The Gender andNumber columns of Figurel.1 represent these addi-
tional two paradigms. In the left-hand table the feature valuabddiype, Gender, and
Number paradigms are given. The right-hand table presents surface fosuffieés re-
alizing the corresponding feature values in the left-hand table. sbpagibs which take

the exact suffixes appearing in the right-hand table belong to the sattagr inflec-
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Type Gender | Number Type Gender | Number
o Feminine | Singular a 0]
Past Participle ad
Masculine| Plural (0] S
Present Participle ando
Infinitive ar

Figure 1.1 Left: A fragment of the morphological structure of Spanish verbs. There are
three paradigms in this fragment. Each paradigm covers a single morphosyntactic
category: first, Type; second, Gender; and third, Number. Each of these three cate-
gories appears in a separate column; and features within one feature column, i.e.
within one paradigm, are mutually exclusive. Right: The suffixes of the Spanish inflec-

tion class of ar verbs which fill the cells of the paradigms in the left-hand figure.

tion class of Spanish verbs. Appendix A gives a more complete summérg phra-
digms and inflection classes of Spanish morphology.

To see the morphological structure of Figlirg in action, we need a particular Span-
ish lexeme: a lexeme suchasninistrar , which translates &e administer or manage
The formadministrar fills the Infinitive cell of theType paradigm in Figurd..1. Other
forms of this lexeme fill other cells of Figutel. The form filling thePast Participle cell
of the Type paradigm, thé=eminine cell of theGender paradigm, and thelural cell of
the Number paradigm isadministradas , a word which would refer to a group ©émi-
nine Gender nouns under administration. Each column of Figudetruly constitutes a
paradigm in that the cells of each column are mutually exclusivee-teeno way for
administrar (or any other Spanish lexeme) to appear simultaneously infihiéve and
in aPast Participle form: *admistradasar , *admistrardas .

The phoneme sequence constraints implied by these Spanish paradigges \ehesr
considering the full set of surface forms for the lexem®inistrar . Among the many

inflected forms ofadministrar arePast Participles in all four combinations osender

18



and Number: administrada , administradas , administrado , and administrados ; the
Present Participle andInfinitive non-finite forms described in Figulel: administrando ,
administrar ; and the many finite forms such as tt® Person Singular Indicative Pre-
sent Tense form administro . Figure1.2 shows these forms (as in Johnson and Mar-
tin, 2003) laid out graphically as a finite state automaton (FSAh Btate in this FSA
represents a character boundary, while the arcs are labeledharticiers from the sur-
face forms of the lexemadministrar . Morpheme-internal states are open circles in
Figure 1.2, while states at word-internal morpheme boundaries are solidsciMost
morpheme-internal states have exactly one arc entering and oneteng. éxicontrast,
states at morpheme boundaries tend to have multiple arcengraeteaving, or both—
the character (and phoneme) sequence is constrained within morphemeyd®dtee at
morpheme boundaries.

This discussion of the paradigmatic, syntagmatic, and phoneme sequeoteeof
natural language morphology has intentionally simplified the true rang@mhological
phenomena. Three sources of complexity deserve particular mentian.l&nguages

employ a wide variety of morphological processes. Among others, thespescef suf-

Figure 1.2: A Finite State Automaton (FSA) representing surface forms of the lexeme
administrar. Arcs represent characters; States are character boundaries. States at
morpheme boundaries typically have multiple arcs entering and/or exiting, while
states at character boundaries internal to morpheme boundaries typically have a

single entering and a single exiting arc.
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fixation, prefixation, infixation, reduplication, and template filling ptbduce surface
forms in some languages. Second, the application of word forming proodssesig-
gers phonological (or orthographic) change. These phonological chamgebsmaire a
straightforward concatenative treatment of morphology. And third, thehulmgical
structure of a word can be inherently ambiguous—that is, a singecsudrm of a lex-
eme may have more than one legitimate morphological analysis.

Despite the complexity of morphology, this thesis holds that a |lagfe of morpho-
logical structures can be represented as paradigms of mutualtijutgabke substrings. In
particular, sequences of affixes can be modeled by paradigm-likéusést Returning to
the example of Spanish verbal paradigms in Figuie theNumber paradigm on past
participles can be captured by the alternating pair of stareged@. Similarly, theGen-
der paradigm alternates between the striagsido. Additionally, and crucially for this
thesis, theNumber andGender paradigms combine to form an emergent cross-product
paradigm of four alternating strings; as, o, andos. Carrying the cross-product further,
the past participle endings alternate with the other verluhhgs, both non-finite and fi-
nite, yielding a large cross-product paradigm-like structure efrating strings which
include: ada, adas, ado, ados, ando, ar, o, etc. These emergent cross-product para-
digms each identify a single morpheme boundary within the larger parathgcture of
a language.

And with this brief introduction to morphology and paradigm structure wesdom

the formal claims of this thesis.
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1.2 Thesis Claims

The algorithms and discoveries contained in this thesis autdhmat@orphological
analysis of natural language by inducing structures, in an unsuperviseshfashich

closely correlate with inflectional paradigms. Additionally,

1. The discovered paradigmatic structures improve the word-to-morplegnees-

tation performance of a state-of-the-art unsupervised morphology analysis system.

2. The unsupervised paradigm discovery and word segmentation algorithmsamprov
this state-of-the-art performance for a diverse set of natmglages, including

German, Turkish, Finnish, and Arabic.

3. The paradigm discovery and improved word segmentation algorithms are

computationally tractable.

4. Augmenting a morphologically naive information retrieval (IR) systdgth the
induced morphological segmentations improves performance on an IR task. The
IR improvements hold across a range of morphologically concatenative lan-

guages.
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1.3 ParaMor: Paradigms across Mophology

The paradigmatic, syntagmatic, and phoneme sequence constraintsiraf fzn-
guage allow ParaMor, the unsupervised morphology induction algorithm delsicrithes
thesis, to first reconstruct the morphological structure of a laygguand to then decon-
struct word forms of that language into constituent morphemes. Théustsithat Pa-
raMor captures are sets of mutually replaceable word-finalgst which closely model
emergent paradigm cross-products—each paradigm cross-product identifginglea
morpheme boundary in a set of words.

This dissertation focuses on identifying suffix morphology. Two facts supipsrt t
choice. First, suffixation is a concatenative process and 86% ofoithés\languages use
concatenative morphology to inflect lexemes (Dryer, 2008). Second, 6486s# con-
catenative languages are predominantly suffixing, while another 17% epmglyation
and suffixation about equally, and only 19% are predominantly prefixing. In amt,ev
concentrating on suffixes is not a binding choice: the methods for sli$ibovery de-
tailed in this thesis can be straightforwardly adapted to peefiaad generalizations
could likely capture even non-concatenative morphological processes such a®imfixati

To reconstruct the cross-products of the paradigms of a languag®oPaefines
and searches a network of paradigmatically and syntagmaticabiyineglschemesof
candidate suffixes and candidate stems. ParaMor’s search algoatemmotivated by
the paradigmatic, syntagmatic, and phoneme sequence constraintsetisgusSec-
tion 1.1. Figurel.3 depicts a portion of a morphology scheme network automatically de-
rived from 100,000 words of the Brown Corpus of English (Francis, 1964). Eacim box i
Figure1.3 is a scheme, which lists nold a set of candidate suffixes, or c-suffixes, to-
gether with a list, intalics, of candidate stems, or c-stems. Each of the c-suffixes in a
scheme concatenates onto each of the c-stems in that schiemme goword found in the
input text. For instance, the scheme containing the c-suffi@.sdtes.ing , whered sig-
nifies a null suffix, is derived from the wordsldress , addressed , addresses , ad-
dressing , reach, reached, etc. In Figurel.3, the two highlighted scheme&.ed.es.ing
ande.ed.es.ing , represent valid paradigmatically opposed sets of suffixes that(tead

thographic) inflection classes of the English verbal paradigm. The ctiedidate
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P eedesing

not
stag
s sed ses sing @ ed es ing eedesing
addres —] address not
mis reach declar
ed esing
declar
pric

Figure 1.3: A portion of a morphology scheme network generated from 100,000 words
of the Brown corpus of English (Francis, 1964). The two schemes which model com-

plete verbal sub-classes are outlined in bold.

schemes in Figuré.3 are wrong or incomplete. Crucially note, however, that as an unsu-
pervised induction system ParaMor is not informed which schemessegyprirue para-
digms and which do not—separating the good scheme models from theelzadtlg the

task of ParaMor’s paradigm induction algorithms.

Chapter 3 details the construction of morphology scheme networks ovgesafihd
describes a network search procedure that identifies schem#s eamtain in aggregate
91% of all Spanish inflectional suffixes when training over a corpusOd@00 types.
However, many of the initially selected schemes do not represenparadigms; And of
those that do represent paradigms, most capture only a portion of setpguiadigm.
Hence, Chapter 4 describes algorithms to first merge candidat#igrarpieces into lar-
ger groups covering more of the affixes in a paradigm, and then toofiitehose candi-
dates which likely do not model true paradigms.

With a handle on the paradigm structures of a language, ParaMothasiesluced

morphological knowledge to segment word forms into likely morphemes|IRea& as
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models of paradigm cross-products, each scheme models a single notgherdary in
each surface form that contributes to that scheme. To segmemtdaform, ParaMor
simply matches the c-suffixes of each discovered scheme adwihgidrd and proposes

a single morpheme boundary at any match point. A pair of examples:

1. Assume ParaMor correctly identifies the English schened.es.ing from
Figurel.3. When requested to segment the weadhes , ParaMor finds that
the es c-suffix in the discovered scheme matches the word-final stdng
reaches . Hence, ParaMor segmemgsches asreach +es.

2. Since more than one paradigm cross-product may match a particutiarawor
word may be segmented at more than one position. The Spanishduond
istradas from Sectionl.1 contains three suffixead, a, ands. Presuming
that ParaMor correctly identifies three separate schemes;amtaining the
cross-product c-suffixadas, one containingas, and one containing, Pa-
raMor will match in turn each of these c-suffixes agaaastinistradas , and

will ultimately produce the correct segmentatiadministr +ad +a +s .

To evaluate morphological segmentation performance, ParaMor competea i
years of the Morpho Challenge competition series (Monson et al., ;20088b). The
Morpho Challenge competitions pit against one another algorithms desmukscover
the morphological structure of natural languages from nothing more d@hatext (Ku-
rimo, Turunen, and Varjokallio, 2008). Unsupervised morphology induction systems
were evaluated in two ways during the 2007 and 2008 Challenges. Fingjuiatically
motivated metric measured each system at the task of morphemtiéddeon (Kurimo,
Creutz, and Varjokallio, 2008; Kurimo and Varjokallio, 2008). Morpho Challenge 2007
evaluated systems’ morpheme identification over four languages: Engéisha@, Turk-
ish, and Finnish; while the 2008 Challenge added Arabic. Second, in a Tes#-Ba
evaluation, the organizers of Morpho Challenge augmented an informatienake(IR)
system with the morphological segmentations that each system prapusedeasured
mean average precision of the relevance of returned document@@ieutz, and Tu-

runen, 2007; Kurimo and Turunen, 2008).
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As a stand-alone system, ParaMor performed on par with state-aftth@super-
vised morphology induction systems at the Morpho Challenge competitionsiatedhl
for F, at morpheme identification, in English ParaMor outperformed aadtrsophisti-
cated reference induction algorithm, Morfessor-MAP (Creutz, 2006)ingiahird over-
all out of the eight participating algorithm families from @07 and 2008 competitions.
In Turkish, ParaMor identified a significantly higher proportion of tiuekish mor-
phemes than any other participating algorithm. This strong recalldalbeesolo ParaMor
algorithm first in i at morpheme identification for this language.

But ParaMor particularly shines when ParaMor’s morphological aealare ad-
joined to those of Morfessor-MAP. Where ParaMor focuses on disogvire paradig-
matic structure of inflectional suffixes, the Morfessor algorititentifies linear se-
quences of inflectional and derivational affixes—both prefixes andxsesaffiwith such
complementary algorithms, it is not surprising that combining segnararom the
ParaMor and Morfessor systems improves performance over dgbethan alone. In all
language tracks of the Challenge but English, the joint ParaMor-8sonrfeystem placed
first at morpheme identification. In English the joint system mowedecond. And in
Turkish, morpheme identification of the ParaMor-Morfessor systet3.5% higher ab-
solute than the next best submitted system, excluding ParaMor aldhe.lR competi-
tion, which only covered English, German, and Finnish, the combined ParaMor-
Morfessor system not only placed first in English and German, butaisistently out-

performed, in all three languages, a baseline IR algorithm of no morphologigadisnal

1.4 A Brief Reader’s Guide

The remainder of this thesis is organized as follows: Chaptéudes the ParaMor
algorithm in the field of prior work on unsupervised morphology induction. Chapters
and 4 present ParaMor’s core paradigm discovery algorithms. CHapiescribes Pa-
raMor’s word segmentation models. And Chapter 6 details ParaMaftapance in the

Morpho Challenge 2007 competition. Finally, Chapter 7 summarize®tigbutions of
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ParaMor and outlines future directions both specifically for araand more generally

for the broader field of unsupervised morphology induction.
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Chapter 2:
A Literature Review of
ParaMor’s Predecessors

The challenging task of unsupervised morphology induction has inspired a significant
body of work. This chapter highlights unsupervised morphology systems that agitlien
the design of or that contrast with ParaMor, the morphology inductiomsyiscribed
in this thesis. Two induction techniques have particularly impacteddtielopment of

ParaMor:

1. Finite State (FS) techniques, and
2. Minimum Description Length (MDL) techniques.

Sections2.1 and2.2 present, respectively, FS and MDL approaches to morphology in-
duction, emphasizing their influence on ParaMor. Se@i8rthen describes several mor-
phology induction systems which do not neatly fall in the FS or MDLpsabut which

are nevertheless relevant to the design of ParaMor. Finallyo8&cti synthesizes the

findings of the earlier discussion.
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2.1 Finite State Approaches

In 1955, Zellig Harris proposed to induce morphology in an unsupervised fashion by
modeling morphology as a finite state automaton (FSA). In this FSAchiwecters of
each word label the transition arcs and, consequently, states @&utthmaaton occur at
character boundaries. Coming early in the procession of modern méhaoasrphology
induction, Harris-style finite state techniques have been incogubiato a number of
unsupervised morphology induction systems, ParaMor included. ParaMor drawgeon f
state techniques at two points within its algorithms. Firstfitite state structure of mor-
phology impacts ParaMor’s initial organization of candidate partishdigms into a
search space (Sectidhl.2). And second, ParaMor identifies and removes the most
unlikely initially selected candidate paradigms using finite statdrtiques (Section
4.4.2).

Three facts motivate finite state automata as appropmaigels for unsupervised
morphology induction. First, the topology of a morphological FSA captures phoneme se
quence constraints in words. As was presented in Sektlpiphoneme choice is usually
constrained at character boundaries internal to a morphemedfigrisnore free at mor-
pheme boundaries. In a morphological FSA, a state with a single incohangcter arc
and from which there is a single outgoing arc is likely intetnad morpheme, while a
state with multiple incoming arcs and several competing outgoinghearikely occurs
at a morpheme boundary. As described further in Seétibd, it was this topological
motivation that Harris exploited in his 1955 system, and that ParaMor draws on.as well

A second motivation for modeling morphological structure with finiteestatomata
is that FSA succinctly capture the recurring nature of morphemesrgke sequence of
states in an FSA can represent many individual instances,np segparate words, of a
single morpheme. As described in Secth.2 below, the morphology system of Altun
and Johnson (2001) particularly builds on this succinctness property of fatieasito-
mata.

The third motivation for morphological FSA is theoretical: Most, if albt morpho-
logical operations are finite state in computational complexity (Raad Sproat, 2007).

Indeed, state-of-the-art solutions for building morphological systemslvie hand-
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writing rules which are then automatically compiled into finti#es networks (Beesley
and Karttunen, 2003; Sproat 1997).

The next two sub-sectiong.(.1 and?.1.2) describe specific unsupervised morphol-
ogy induction systems which use finite state approaches. S&cfidnbegins with the
simple finite state structures proposed by Harris, while Se@ib2 presents systems

which allow more complex arbitrary finite state automata.

2.1.1 The Character Trie

Harris (1955; 1967) and later Hafer and Weiss (1974) were thadigiopose and
then implement finite state unsupervised morphology induction systems—alttimygh
may not have thought in finite state terms themselves. Harris (b@85)es a morphol-
ogy analysis algorithm which he motivated by appeal to the phoneme soncesst
straint properties of finite state structures. Harris’ algarifirst builds character trees, or
tries, over corpus utterances. Tries are deterministic, acieiicun-minimized FSA. In
tries, Harris identifies those states for which the finiggestransition function is defined
for an unusually large number of characters in the alphabet. Theshibgastates repre-
sent likely word and morpheme boundaries.

Although Harris only ever implemented his algorithm to segment waortdsnnor-
phemes, he originally intended his algorithms to segment sentencegonds as Harris
(1967) notes, word-internal morpheme boundaries are much more diificétect with
the trie algorithm. The comparative challenge of word-internal morphemeidetsiems
from the fact that phoneme variation at morpheme boundaries lagglits from the
interplay of a limited repertoire of paradigmatically opposecatibnal morphemes. In
fact, as described in Sectidnl, word-internal phoneme sequence constraints can be
viewed as the phonetic manifestation of the morphological phenomena digpaatic
and syntagmatic variation.

Harris (1967), in a small scale mock-up, and Hafer and Weiss (18#pre exten-
sive guantitative experiments, report results at segmenting wordsnorphemes with

the trie-based algorithm. Word-to-morpheme segmentation is an obweasure of the
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correctness of an induced model of morphology. And a number of natural language proc
essing tasks, including machine translation, speech recognition, andatitor retrieval,
could potentially benefit from an initial simplifying step of segmmemtomplex surface
words into smaller recurring morphemes. Hafer and Weiss deiedl segmentation per-
formance when augmenting Harris’ basic algorithm with a varietigenfristics for de-
termining when the number of outgoing arcs is sufficient to postulat@gomheme
boundary at a trie node. Hafer and Weiss measure recall andigrgoesformance of
each heuristic when supplied with a corpus of 6,200 word types. Thentvavhich
achieves the highest measure of 75.4%, from a precision of 81.8% and recall of 70.0%,
combines results from both forward and backward tries and uses etdromasure the
branching factor of each node. Entropy captures not only the number of outgaitgitarc
also the fraction of words that follow each arc.

A number of systems, many of which are discussed in depth lates ichapter, em-
bed a Harris style trie algorithm as one step in a more corppbeess. Demberg (2007),
Goldsmith (2001; 2006), Schone and Jurafsky (2000; 2001), and Déjean (1998) all use
tries to construct initial lists of likely morphemes which theyntpeocess further. Bor-
dag (2008) extracts morphemes from tries built over sets of wordsdbat in similar
contexts. And Bernhard (2008) captures something akin to trie branchicejdwyating
word-internal letter transition probabilities. Both the Bord2§08) and the Bernhard
(2008) systems competed strongly in the Morpho Challenge competitR00@f along-
side the unsupervised morphology induction system described in this thasas/or.
Finally, the ParaMor system itself examines trie structtoagentify likely morpheme
boundaries. ParaMor builds local tries from the last characterandidate stems which
all occur in a corpus with the same set of candidate suffitashed. Following Hafer
and Weiss (1974), ParaMor measures the strength of candidate moliphemdaries as

the entropy of the relevant trie structures.
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2.1.2 Unrestricted Finite State Automata

From tries it is not a far step to modeling morphology with more gkfieita state
automata. A variety of methods have been proposed to induce FSA thay choskdl
morphology. The ParaMor algorithm of this thesis, for example, modetadghghology
of a language with a non-deterministic finite state automaton camjaanseparate state
to represent every set of word final strings which ends some set of word iniigé $tr a
particular corpus (see Secti8ri.2).

In contrast, Johnson and Martin (2003) suggest identifying morpheme boundaries by
examining properties of the minimal finite state automaton thatlgxacepts the word
types of a corpus. The minimal FSA can be generated straightforwesdiya Harris-
style trie by collapsing trie states from which precisely #messet of strings is accepted.
Like a trie, the minimal FSA is deterministic and acyclitgd #he branching properties of
its arcs encode phoneme succession constraints. In the minimah&8&yer, incoming
arcs also provide morphological information. Where every stateria has exactly one
incoming arc, each state,, in the minimal FSA has a potentially separate incoming arc
for each trie state which collapsed to fogn A state with two incoming arcs, for exam-
ple, indicates that there are at least two strings for wielttly the same set of final
strings completes word forms found in the corpus. Incoming arcs thus eacodgh
guide to syntagmatic variation, see Secfidh

Johnson and Martin combine the syntagmatic information captured by incamsg
with the phoneme sequence constraint information from outgoing arcs nersethe

words of a corpus into morphemes at exactly:

1. Hub states—states which possess both more than one incoming arc arkdamor
one outgoing arc, Figuiz1, left.

2. The last state of stretched hubs—sequences of states whizrgt gtate has mul-
tiple incoming arcs and the last state has multiple outgoing and the only
available path leads from the first to the last state of dlogience, Figur@.l,

right.
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Figure 2.1: A hub, left, and a stretched hub, right, in a finite state automaton

Stretched hubs likely model the boundaries of a paradigmaticallyedetst of mor-
phemes, where each related morpheme begins (or ends) with thelsaeter or char-
acter sequence. Johnson and Martin (2003) report that this simpkSéarching algo-
rithm segments words into morphemes with améasure of 0.600, from a precision of
0.919 and a recall of 0.445, over the texiTon Sawyerwhich, according to Manning
and Schitze (1999, p. 21), has 71,370 tokens and 8,018 types.

To improve segmentation recall, Johnson and Martin extend the HuliiBgaatgo-
rithm by introducing a morphologically motivated state merge operatiorgiiestates
in a minimized FSA generalizes or increases the setinfistthe FSA will accept. In this
case, Johnson and Martin merge all states that are eithegtiagcword final states, or
that are likely morpheme boundary states by virtue of possessing taiweascoming
arcs. This technique increasesnfeasure over the sarmiem Sawyecorpus to 0.720, by
bumping precision up slightly to 0.922 and significantly increasing recall to 0.590.

State merger is a broad technique for generalizing the languagetedtdy a FSA,
used not only in finite state learning algorithms designed for naamguage morphol-
ogy, but also in techniques for inducing arbitrary FSA. Much researclsAnreuction
focuses on learning the grammars of artificial languages. Langipfediar, and Price
(1998) present a state-merging algorithm designed to learn large rgngiemairated de-
terministic FSA from positive and negative data. Lang, Peadmuhd Price (1998) also
provides a brief overview of other work in FSA induction for ar@idanguages. Since
natural language morphology is considerably more constrained than randgnarkt
since natural languages typically only provide positive examples, aoikducing for-

mally defined subsets of general finite state automata from ysitita may be a bit
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more relevant here. Work in constrained FSA induction includes Mit$&0), who ex-

tends finite state k-tail induction, first introduced by Biermann andinkan (1972), with

a state merge operation. Similarly, Angluin (1982) presents an algoraiso based on
state merger, for the induction of k-reversible languages.

Altun and Johnson (2001) present a technique for FSA induction, again bsiiéten
merger, which is specifically motivated by natural language morphallogficicture. Al-
tun and Johnson induce finite state grammars for the English auxystgns and for
Turkish Morphology. Their algorithm begins from the forward trie oveetaof training
examples. At each step the algorithm applies one of two merge operé&ither any two
states,q, and q,, are merged, which then forces their children to be recursivelyetie
as well; or are-transition is introduced frong, to q,. To keep the resulting FSA deter-
ministic following ane-transition insertion, for all characteasfor which the FSA transi-
tion function is defined from botly, andq,, the states to whica leads are merged, to-
gether with their children recursively.

Each arc(qg,a) in the FSA induced by Altun and Johnson (2001) is associated with a
probability, initialized to the fraction of words which follow tl'(q, a) arc. These arc
probabilities define the probability of the set of training exampiegstr The training set
probability is combined with the prior probability of the FSA to givigagesian descrip-
tion length for any training set-FSA pair. Altun and Johnson’s greedydeafch algo-
rithm follows the minimum description length principle (MDL)—atkatep of the algo-
rithm, that state merge operation estransition insertion operation is performed which
most decreases the weighted sum of the log probability of the ind&#cird the log
probability of the observed data given the FSA. If no operation resudtgeduction in
the description length, grammar induction ends.

Being primarily interested in inducing FSA, Altun and Johnson do not actbeg)-
ment words into morphemes. Hence, quantitative comparison with othphohmgy in-
duction work is difficult. Altun and Johnson do report the behavior of the negaty
probability of Turkish test set data, and the number of learnipg saé&en by their algo-
rithm, each as the training set size increases. Using theseinegathey compare a ver-

sion of their algorithm without-transition insertion to the version that includes this op-
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eration. They find that their algorithm for FSA induction witlransitions achieves a

lower negative log probability in less learning steps from fewer training egampl

2.2 MDL and Bayes’ Rule: Balancing Data Length against
Model Complexity

The minimum description length (MDL) principle employed by Altun and John
son (2001) in a finite-state framework, as discussed in the previdimséas been used
extensively in non-finite-state approaches to unsupervised morphology induidtien.
MDL principle is a model selection strategy which suggests to chltbasenodel which

minimizes the sum of:

1. The size of an efficient encoding of the model, and

2. The length of the data encoded using the model.

In morphology induction, the MDL principle measures the efficienci witich a model
captures the recurring structures of morphology. Suppose an MDL morphologyanduct
system identifies a candidate morphological structure, such aslegtiorfal morpheme
or a paradigmatic set of morphemes. The MDL system willepllae discovered morpho-
logical structure into the model exactly when the structure oseliffisiently often in the
data that it saves space overall to keep just one copy of thaustructhe model and to
then store pointers into the model each time the structure occurs in the data.

Although ParaMor, the unsupervised morphology induction system described in this
thesis, directly measures neither the complexity of its madelshe length of the induc-
tion data given a model, ParaMor’s design was, nevertheless, tdéhlidry the MDL
morphology induction systems described in this section. In particulaiVBanaplicitly
aims to build compact models: The candidate paradigm schemes deffdection3.1.1
and the partial paradigm clusters of Secdad both densely describe large swaths of the
morphology of a language.

Closely related to the MDL principle is a particular applicatbBayes’ Rule from

statistics. Ifd is a fixed set of data amd a morphology model ranging over a set of pos-
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sible modelsM, then the most probable model given the dataaigmax,,, P(m|d . )
Applying Bayes’ Rule to this expression yields:

argmaxP(m|d) = argmaxP(d | m)P(m),

mM mOM

And taking the negative of the logarithm of both sides gives:

argmi{-logP(m|d)} = arr%rh?ir{[— logP(d | m)] +[-logP(m)]} .

mOM

Reinterpreting this equation, tf[elog P(m)] term is a reasonable measure of the length
of a model, while[— log P(d |m)] expresses the length of the induction data given the
model.

Despite the underlying close relationship between MDL and Bayee’ &ydroaches
to unsupervised morphology induction, a major division occurs in the publisheduie
between systems that employ one or the other methodology. S&Rohand2.2.2 re-
flect this division: Sectior2.2.1 describes unsupervised morphology systems that apply
the MDL principle directly by devising an efficient encoding for assl of morphology
models, while Sectio.2.2 presents systems that indirectly apply the MDL principle in
defining a probability distribution over a set of models, and then invoking Bayes’ Rule.

In addition to differing in their method for determining model and dexgth, the
systems described in Sectidh2.1 and?.2.2 differ in the specifics of their search strate-
gies. While the MDL principle can evaluate the strength of a mad#oes not suggest
how tofind a good model. The specific search strategy a system uses isdegklydent
on the details of the model family being explored. Se@idnpresented search strategies
used by morphology induction systems that model morphology with finiteasteimata.
And now Section2.2.1 and?2.2.2 describe search strategies employed by non-finite state
morphology systems. The details of system search strategiesl@arant to this thesis
work as Chapters 3 and 4 of this dissertation are largely devwtbeé specifics of Pa-
raMor’s search algorithms. Similarities and contrasts wéhaMor’'s search procedures
are highlighted both as individual systems are presented and alsmimasy in Sec-
tion 2.4.
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2.2.1 Measuring Morphology Models with Efficient Encodings

This survey of MDL-based unsupervised morphology induction systems begins with
those that measure model length by explicitly defining an efficientetnencoding. First
to propose the MDL principle for morphology induction was Brent, Murthy, and
Lundberg (1995; see also Brent, 1993). These authors use MDL to evaluaat laatur
guage morphology models of a simple, but elegant form. Their models describe a vocabu-

lary as a set of three lists:

1. Alist of stems
2. A list of suffixes, and

3. Alist of valid (stem, suffix) pairs

Each of these three lists is efficiently encoded. The sum détigehs of the first two en-
coded lists constitutes the model length, while the length of treklibti yields the size of
the data given the model. Consequently the sum of the lengths of alktiveded lists is
the full description length to be minimized. As the morphology model intBkurthy,
and Lundberg (1995) only allows for pairs of stems and suffixes, each casdptopose
at most one morpheme boundary per word.

Using this list-model of morphology to describe a vocabulary of wafdthere are
HWM possible models—far too many to exhaustively explore. Hence, Brenthyur
and Lundberg (1995) describes a heuristic search procedure to gesgdiise the model
space. First, each word final strirfgin the corpus is ranked according to the ratio of the
relative frequency of divided by the relative frequencies of each charactdr fach
word final string is then considered in turn, according to its heumnatik, and added to
the suffix list whenever doing so decreases the description lentita obrpus. When no
suffix can be added that reduces the description length further, aheh ssnsiders re-
moving a suffix from the suffix list. Suffixes are iterativelgded and removed until de-
scription length can no longer be lowered.

To evaluate their method, Brent, Murthy, and Lundberg (1995) examine tloé list
suffixes found by the algorithm when supplied with English word form lexicbwsri-

ous sizes. Any correctly identified inflectional or derivationsfig counts toward accu-
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racy. Their highest accuracy results are obtained when thethigonduces morphology
from a lexicon of 2000 types: the algorithm hypothesizes twenty suffikbsaw accu-
racy of 85%.

Baroni (2000; see also 2003) describes DDPL, an MDL inspired moadedbigfhol-
ogy induction similar to the Brent, Murthy, and Lundberg (1995) model. TheLDDP
model identifies prefixes instead of suffixes, uses a heuristiclsestrategy different
from Brent, Murthy, and Lundberg (1995), and treats the MDL principle em®ieguide
than an inviolable tenet. But most importantly, Baroni conducts a rigomopgieal
study showing that automatic morphological analyses found by DDPL dervedfl with
human judgments. He reports a Spearman correlation coefficient o(‘m)stSQ0.00]) for
the correlation of average human morphological complexity rating to EH&_analysis
on a set of 300 potentially prefixed words of.

Goldsmith (2001; 2006), in a system called Linguistica, extends the pngmesults
of MDL morphology induction by augmenting the basic model of Brent, Murthy, and
Lundberg (1995) to incorporate the paradigmatic and syntagmatic stradtmegural
language morphology. As discussed in Chapter 1, natural language inflectional mor
phemes belong to paradigmatic sets where all the morphemes iadigpaatic set are
mutually exclusive. Similarly, natural language lexemes belong t@gyattic classes
where all lexemes in the same syntagmatic class can betedflevith the same set of
paradigmatically opposed morphemes. While previous approaches to unsuperised
phology induction, including Déjean (1998), indirectly drew on the paradigmatic-
syntagmatic structure of morphology, Goldsmith’s Linguistica systemthe first to in-
tentionally model this important aspect of natural language morpholagioature. The
paradigm based algorithms of the ParaMor algorithm, as descriltbd ithesis, were
directly inspired by Goldsmith’s success at unsupervised morphology indwetien
modeling the paradigm.

The Linguistica system models the paradigmatic and syntagmati rattmatural
language morphology by defining teegnature A Goldsmith signature is a pair of sets
(T,F), T a set of ems and a set of sffixes, whereT andF satisfy the following three

conditions:
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1. For any stemin T and for any suffixX in F, t.f must be a word in the vocabulary,
2. Each word in the vocabulary must be generated by exactly one signature, and

3. Each stent occurs in the stem set of at most one signature

As in Brent, Murthy, and Lundberg (1995), a morphology model in Goldsmith’s
work consists of three lists. The first two are, as for Brelist af stems and a list of suf-
fixes. But, instead of a list containing each valid stem-sydéix, the third list in a Lin-
guistica morphology consists of signatures. Replacing the listl ofabdl stem-suffix
pairs with a list of signatures allows a signature model to patgntepresent natural
language morphology with a reduced description length. A description ldegthase
can occur because it takes less space to store a setagjragtitally opposed stems with
a set of paradigmatically opposed suffixes than it does to stor@dbs-product of the
two sets.

Following the MDL principle, Goldsmith efficiently encodes eachhef three lists
that form a signature model; and the sum of the encoded lifte imodel's description
length. Notice that, just as for Brent, Murthy, and Lundberg (1995), Goldsmmtbige-
mented morphology model can propose at most one morpheme boundary per word
type—although Goldsmith (2001) does discuss an extension to handle multple m
pheme boundaries.

To find signature models, Goldsmith (2001; see also 2006) proposes skfferant
search strategies. The most successful strategy seeds medbisevith signatures de-
rived from a Harris (1955) style trie algorithm. Then, a varietigeafristics suggest small
changes to the seed model. Whenever a change results in a lowgtidesiength the
change is accepted.

Goldsmith (2001) reports precision and recall results on segmen@ag alphabeti-

cally consecutive words from:

1. The more than 30,000 unique word forms in the first 500,000 tokens of the Brown
Corpus (Francis, 1964) of English: Precision: 0.860, Recall: 0.900,881.
2. A corpus of 350,000 French tokens: Precision: 0.870, Recall: 0.89m38B0.
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Goldsmith (2001) also gives qualitative results for Italian, Spaarsth,Latin suggesting
that the best signatures in the discovered morphology models generdlynccoherent

sets of paradigmatically opposed suffixes and syntagmatically opposed stems.

2.2.2 Measuring Morphology Models with Probability Distri butions

This sub-section contains an in-depth description of two morphology indisstsan
tems which exemplify the Bayes’ Rule approach to unsupervised morphologyionduct
Snover (2002) and Creutz (2006) each build morphology induction systemstlaefin-
ing a probability distribution over a family of morphology models and saamching for
the most probable model. And, as described below, both the Snover spstématabuilt

by Creutz directly influenced the development of ParaMor.

The Morphology Induction System of Matthew Snover

Snover (2002; c.f.: Snover and Brent, 2002; Snover, Jarosz, and Brent, 2002; Snover
and Brent, 2001) discusses a family of morphological induction systdnth,wike
Goldsmith’s Linguistica and like the ParaMor algorithm preseimdtis thesis, directly
model the paradigmatic and syntagmatic structure of natural languagology. But,
where Goldsmith measures the quality of a morphological modé$ amcoded length,
Snover invokes Bayes’ Rule—defining a probability function over a space of morphology
models and then searching for the highest probability model (see ritduiction to Sec-
tion 2.2).

Snover (2002) leverages paradigmatic and syntagmatic morpholstyiczture both
in his probabilistic morphology models and in the search strategespleys. To define

the probability of a model, Snover (2002) defines functions that assign probabilities to:

1. The stems in the model
2. The suffixes in the model

3. The assignment of stems to sets of suffixes called paradigms
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Assuming independence, Snover defines the probability of a morphology moaithel as
product of the probabilities of the stems, suffixes, and paradigms.

Like Goldsmith (2001; 2006), Snover only considers models of morphology where
each word and each stem belong to exactly one paradigm. Hence, theethiid ihe
above list is identical to Goldsmith’s definition of a signaturac&iSnover defines prob-
abilities for exactly the same three items that Goldsmith cagspigscription lengths for,
the relationship of Snover’'s models to Goldsmith’s is quite tight.

To find strong models of morphology Snover proposes two search procedilres:
Climbing SearcltandDirected SearchBoth strategies leverage the paradigmatic structure
of language in defining data structures similar to the morphology netvpooposed for
this thesis in Chapter 3.

The Hill Climbing Search follows the same philosophy as the MDEedasyorithms

of Brent, Murthy, and Lundberg (1995) and Goldsmith (2001; 2006): At each step,
Snover’s Hill Climbing Search algorithm proposes a new morphology modethvidi
only accepted if it improves the model score—But in Snover’'s casdelmscore is prob-
ability. The Hill Climbing search uses an abstract suffix netwdefined by inclusion
relations on sets of suffixes. Initially, the only network node to possgsstems is that
node containing just the null suffig. All vocabulary items are placed in tlgsnode.
Each step of the Hill Climbing Search proposes adjusting theerdumorphological
analysis by moving stems in batches to adjacent nodes that cexaaity one more or
one fewer suffixes. At each step, that batch move is acceptet winst improves the
probability score.

Snover’s probability model can only score morphology models where each word con-
tains at most a single morpheme boundary. The Hill Climbing Searahesnis single
boundary constraint is met by forcing each individual vocabulary woodlfoever con-
tribute to a single network node. Whenever a stem is moved to a meark@ode in
violation of the single boundary constraint, the Hill Climbing Searamulsaneously
moves a compensating stem to a new node elsewhere in the network.

Snover’s second search strategy, Directed Search, defines amiatsthsuffix net-

work where each node, or, in the terminology of Chapter 3, each scheime netivork
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inherently contains all the stems which form vocabulary words veith esuffix in that
node. In this fully instantiated network, a single word might contributevéoor more
scheme-nodes which advocate different morpheme boundaries—a situation whi
Snover’s probability model cannot evaluate. To build a global morphology rinadehe
probability modelcan evaluate, the Directed Search algorithm visits every node in the
suffix network and assigns a one-time probability score just fordgmentations sug-
gested by that node. The Directed Search algorithm then consticisadly consistent
morphology model by first discarding all but the topcoring nodes; and then, whenever
two remaining nodes disagree on the segmentation of a word, accéptsggmentation
from the better scoring node.

To evaluate the performance of his morphology induction algorithm, while agoidi
the problems that ambiguous morpheme boundaries present to word segmentat
Snover (2002) defines a pair of evaluation metrics to separatelgentify pairs of re-
lated words, and 2. Identify suffixes (where any suffix allomorphég@ed as correct).
Helpfully, Snover (2002) supplies not only the results of his own algoritteimg these
metrics but also the results of Goldsmith’s (2001) Linguistica. SH@@&2) achieves his
best overall performance when using the Directed Search strateggddhe Hill Climb-
ing Search. This combination outperforms Linguistica on both the sdfitification
metric as well as on the metric designed to identify pairslatiee words, and does so for
both English and Polish lexicons of up to 16,000 vocabulary items.

Hammarstrom (2006b; see also 2006a, 2007) presents a non-Bayes stelgaing a
rithm that involves a paradigm search strategy that is closkted to Snover’s. As in
Snover’s Directed Search, Hammarstrom defines a score for taofycsmdidate suffixes.
But where Snover scores a suffix set according to a probability riwatetonsiders both
the suffix set itself and the set of stems associated witrstifix set, Hammarstrom as-
signs a non-probabilistic score that is based on counts of stemsrthavdrds with pairs
of suffixes from the set. Having defined an objective function, Hantrbar's algorithm
searches for a set of suffixes that scores highly. Hammarstisigaich algorithm moves
from one set of suffixes to another in a fashion similar to Steouditl Climbing

Search—by adding or subtracting a single suffix in a greedy fashion. Hatminals
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search algorithm is crucially different from Snover’s in thatd@arstrom does not in-
stantiate the full search space of suffix sets, but only builds fharsens of the power
set network that his algorithm directly visits.

Hammarstrom’s paradigm search algorithm is one step in a lsygem designed to
stem words for information retrieval. To evaluate his system, Hastndm constructed
sets of words that share a stem and sets of words that do nots$tara in four lan-
guages: Maori (an isolating language), English, Swedish, and Kuku Y@dnghly suf-
fixing language). Hammarstrom finds that his algorithm is able totifgewords that
share a stem with accuracy above 90%.

ParaMor’s search strategies, described in Chapter 3 of this,these directly in-
spired by Snover’s work and have much in common with Hammarstrom’sndsiesig-
nificant similarity between Snover’s system and ParaMor contkeensearch space they
examine for paradigm models: the fully instantiated network that Sroorestructs for
his Directed Search is exactly the search space thaMBés initial paradigm search ex-
plores (see Chapter 3). The primary difference between Parab&atsh strategies and
those of Snover is that, where Snover must ensure his final morphology assgis at
most a single morpheme boundary to each word, ParaMor intentionallytperdivid-
ual words to participate in scheme-nodes that propose competing morpbentaries.
By allowing more than one morpheme boundary per word, ParaMor can analgoe sur
forms that contain more than two morphemes.

Other contrasts between ParaMor’s search strategies and dh&wover and of
Hammarstrém include: The scheme nodes in the network that is d&fm&dover’s Di-
rected Search algorithm, and that is implicit in Hammarstrémoik, are organized only
by suffix set inclusion relations and so Snover’s network is a subsdtabfSectior8.1.2
proposes for a general search space. Furthermore, the speciflus sirategies that
Snover, Hammarstrém, and the ParaMor algorithm use to searadettherks of candi-
date paradigms are radically different. Snover’s Directedc8eslgorithm is an exhaus-
tive search that evaluates each network node in isolation; Haminasstsearch algo-
rithm also assigns an intrinsic score to each node but seahghesttvork in a greedy

fashion; and ParaMor’s search algorithm, Sec8d is a greedy algorithm like Ham-
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marstrom'’s, but explores candidate paradigms by comparing each cartdidaegtwork
neighbors. Finally, unlike Snover’'s Directed Search algorithm, ndithermarstrom nor
ParaMor actually instantiate the full suffix network. Insteadsehalgorithms dynami-
cally construct only the needed portions of the full network. Dynamiganktconstruc-
tion allows ParaMor to induce paradigms over a vocabulary nearlytitmes larger than
the largest vocabulary Snover’s system handles. Snover, Jarosz, and2BG)t dis-
cusses the possibility of using a beam or best-first sear¢bgstri only search a subset
of the full suffix network when identifying the initial best scoring nodbes,does not re-

port results.

Mathias Creutz’'s Morfessor

In a series of papers culminating in a Ph.D. thesis (Creutz agasl.2002; Creutz,
2003; Creutz and Lagus, 2004; Creutz, 2006) Mathias Creutz builds a prodzdmkig-
morphology induction system he calls Morfessor that is tailored to agmfive lan-
guages. In languages like Finnish, Creutz's native language, long sequescéixes
agglutinate to form individual words. Morfessor’s ability to analyze waggltive struc-
tures inspired the ParaMor algorithm of this thesis to also actmusuffix sequences—
although the ParaMor and Morfessor algorithms use vastly differeahamisms to ad-
dress agglutination.

To begin, Creutz and Lagus (2002) extend a basic MDL morphology model (Brent,
Murthy, and Lundberg, 1995) to account for the morpheme sequences that aakdiypi
agglutinative languages. The extension of Creutz and Lagus (2002) defindBlan

model that consists of justo parts:

1. A list of morphs, character strings that likely represenphemnes, where a mor-
pheme could be a stem, prefix, or suffix; and

2. A list of morph sequences that result in valid word forms

By allowing each word to contain many morphs, Creutz and Lagus’ Morfegstam
neatly defies the single-suffix-per-word restriction found in so muetkwn unsuper-

vised morphology induction.
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The search space of agglutinative morphological models is large. EBadhype can
potentially contain as many morphemes as there are charactbeg imord. To rein in
the number of models actually considered, Creutz and Lagus (2002)gusedy search
strategy where each word is recursively segmented into twosstangnorphs, as long as
segmentation lowers the global description length.

Creutz (2003) improves Morfessor’'s morphology induction by moving from a tradi-
tional MDL framework, where models are evaluated according to éfietiently en-
coded size, to a probabilistic one, where model scores are compotediag to a gen-
erative probability model (and implicitly relying on Bayes' theoyehere Sno-
ver (2002) defines a paradigm-based probability model, Creutz (2003) probatuitit
is tailored for agglutinative morphology models, and does not considetigraratruc-
ture. Creutz (2003) does not modify the greedy recursive searclygthdbvefessor uses
to search for a strong morphology model.

Finally, Creutz and Lagus (2004) refine the agglutinative morphology miuasls
Morfessor selects by introducing three categories: prefix, stemuéind $he Morfessor
system assigns every identified morph to each of these three casegith a certain
probability. Creutz and Lagus then define a simple Hidden Markov MétMM) that
describes the probability of outputting any possible sequence of morpltetiiatms to
the regular expressiofprefix* stem suffix*)+

The morphology models described in this series of three papers wattitagively
improves upon the previous. Creutz and Lagus (2004) compares the full $doréys-
tem that uses morph categories to Goldsmith’s Linguistica usingsioreand recall
scores for word-to-morpheme segmentation. They report results over hgliikhEand
Finnish with a variety of corpus sizes. When the input is a Finnigtusaf 250,000 to-
kens or 65,000 types, the Morfessor category model achievescd® 64 from a preci-
sion of 0.81 and a recall of 0.53, while Linguistica only attains;af 6.56 from a preci-
sion of 0.76 and a recall of 0.44. On the other hand, Linguistica does@aof@oorly
on a similarly sized corpus of English (250,000 tokens, 20,000 types): Cneukagus’
Morfessor Category model:;:F0.73, precision: 0.70, recall: 0.77; Linguistica: 6.74,

precision: 0.68, recall: 0.80.
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2.3 Other Approaches to Unsupervised Morphology Inducton

Section2.1 and2.2 presented unsupervised morphology induction systems which di-
rectly influenced the design of the ParaMor algorithm in this th@$is section steps
back for a moment, examining systems that either take a rgditifilrent approach to
unsupervised morphology induction or that solve independent but closely natated
lems.

Let's begin with Schone and Jurafsky (2000), who pursue a very different ejpproa
to unsupervised morphology induction from ParaMor. Schone and Jurafsky natige th
addition to being orthographically similar, morphologically related wordssemilar se-
mantically. Their algorithm first acquires a list of pairspotential morphological vari-
ants (PPMV’s) by identifying, in a trie, pairs of vocabulary words #hatre an initial
string. This string similarity technique was earlier usedhi context of unsupervised
morphology induction by Jacquemin (1997) and Gaussier (1999). Schone and Jurafsky
apply latent semantic analysis (LSA) to score each PPMVangtbimantic distance. Pairs
measuring a small distance, those pairs whose potential vaeantsa occur where a
neighborhood of the nearest hundred words contains similar counts of indikighal
frequency forms, are then proposed as true morphological variants of one .anddter
work, Schone and Jurafsky (2001) extend their technique to identify not only sibiffikes
also prefixes and circumfixes. Schone and Jurafsky (2001) report tindtithalgorithm
significantly outperforms Goldsmith’s Linguistica at identifyirgtssof morphologically
related words.

Following a logic similar to Schone and Jurafsky (2000; 2001), Baroniabtk]
and Trost (2002) marry a mutual information derived semantic-basdédrdly measure
with an orthographic similarity measure to induce the citatiomgoof inflected words.
And in the information retrieval literature, where stemming étigms share much in
common with morphological analysis, Xu and Croft (1998) describe an unsupervised
stemmer induction algorithm that also has a flavor similacctwBe and Jurafsky’'s mor-
phology induction system. Xu and Croft start from sets of word forntshibaause they

share the same initial three characters, likely sharena Jthey then measure the signifi-
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cance of word form co-occurrence in windows of text. Word forms ftersame initial
string set that co-occur unusually often are placed in the same stem class.

Finally, this discussion concludes with a look at some work which beginsve
beyond simple word-to-morpheme segmentation. All of the unsupervised nagphol
induction systems presented thus far, including the ParaMor algorittins dfiesis, can-
not generalize beyond the word forms found in the induction corpus to hypothesize un-
seen inflected words. Consequently, the induction algorithms descritied ahapter are
suitable for morphological analysis but not for generation. Chan (206kK3 s close this
generation gap. Using Latent Dirichlet Allocation, a dimensionaditiuction technique,
Chan groups suffixes into paradigms and probabilistically assigns stethese para-
digms. Over preprocessed English and Spanish texts, where each individdahasor
been morphologically analyzed with the correct segmentation and suWigk @han’s
algorithm can perfectly reconstruct the suffix groupings of morphological paradigms.

In other work that looks beyond word segmentation, Wicentowski and Yarowsky
(Wicentowski, 2002; Yarowsky and Wicentowski, 2000; Yarowsky, Ngai, and Wicen-
towski, 2001) iteratively train a probabilistic model that iderdifiee citation form of an
inflected word from several individually unreliable measuresudfio: relative fre-
quency ratios of stems and inflected word forms, contextual sityilafr the candidate
forms, the orthographic similarity of the forms as measured bgighted Levenstein
distance, and in Yarowsky, Ngai, and Wicentowski (2001) a translingual lwitgarity
induced from a clever application of statistical machine tréoslatyle word alignment
probabilities.

Wicentowski’'s work stands out in the unsupervised morphology inductiontuitera
for explicitly modeling two important but rarely addressed morphologicahgrhena:
non-concatenative morphology and morphophonology. Wicentowski and Yarowsky’s
probabilistic model explicitly allows for non-concatenative stemrivatevowel changes
as well as phonologic stem-boundary alterations that may occur whenaiprefix or a
suffix attaches to a stem.

More recent work has taken up the thread of both non-concatenative morpalologi

processes and morphophonology. Xanthos (2007) builds an MDL-based morphology in-
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duction system specifically designed to identify the interstitiat-and-pattern morphol-
ogy of Semitic languages such as Arabic and Hebrew. While in otbw, Wemberg

(2007) takes a close look at morphophonology. Demberg’s system extracigofwvard

and backward tries, suffix clusters similar to Goldsmith’s gigies. Demberg then
measures the edit distance between suffixes in a cluster agsl that suffixes with a
small distance are often due to morphophonologic changes.

Probst (2003) pursues another less-studied aspect of unsupervised morpidthiogy i
tion: Unlike any other recent proposal, Probst’s unsupervised morphology indsygion
tem can assign morphosyntactic features lenber, Person, Tense, etc.) to induced
morphemes. Like Yarowsky, Ngai, and Wicentowski (2001), Probst usdsnmaacans-
lation word alignment probabilities to develop a morphological inductionraykiethe
second language in the translation pair. Probst draws information grhasgntactic
features from a lexicon that includes morphosyntactic feature iafeomfor the first
language in the pair and projects this feature information onto tlmmddanguage.
Probst’s work, as well as Chan’s and that of Yarowsky and Wicektsywtake small
steps outside the framework of unsupervised morphology induction by assunésg acc

to limited linguistic information.

2.4 Discussion of Related Work

ParaMor, the unsupervised morphology induction system described in ékis, th
fuses ideas from the unsupervised morphology induction approaches presetited i
previous three sections and then builds on them. Like Goldsmith’4;(2006) Linguis-
tica, ParaMor intentionally models paradigm structure; and lileaitZ's (2006) Morfes-
sor, ParaMor addresses agglutinative sequences of suffixes; ke aither, ParaMor
tacklesagglutinativesequencesf paradigmaticmorphemes. Similarly, ParaMor’s mor-
pheme search space is a synthesis of the paradigmatic/syntagrogthology structure
modeled by Snover (2002) on the one hand, and the finite state phoneme seguence
scription of morphology (Harris, 1955; Johnson and Martin, 2003) on the other.

In a related vein, while ParaMor does not model morphology in a minidescrip-
tion length (MDL) framework as Brent, Murthy, and Lundberg (1995), Bar200@),
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and Goldsmith (2001; 2006) do, and while ParaMor does not define a prdizafmbsiel

of morphology as Snover (2002) and Creutz (2003) do, ParaMor does acknowledge the
premise of these systems that a compact morphology model is desidbkd,Ithe basic
building blocks of the network search space defined in Chapter 3, sclaeas;ompact
representation of morphological structure.

The work proposed for this thesis does not directly extend every prorajgimgach
to unsupervised morphology described in the first three sectionssathtpter. For ex-
ample, ParaMor only models suffixing morphology, and does not follow Baroni (2000)
Schone and Jurafsky (2001) in addressing prefixes, or Xanthos (2007) inngouwi-
concatenative processes. ParaMor also postpones for future wartotieding of mor-
phophonologic change, as considered in Wicentowski (2002). Finally, the progiss ma
by Schone and Jurafsky (2000), Wicentowski (2002), and others on identifying morpho-
logically related word forms by analyzing their semantic and syotddtance is both
interesting and promising. While this thesis does not pursue thidialiremtegrating
semantic and syntactic information into ParaMor’s existing algositisnan exciting path
for future work on unsupervised morphology induction.

Clearly, ParaMor owes a great debt to previously proposed ideasidopervised
morphology induction. Without the example of previously built systems, ParaMod woul
not have been able to spearhead new work on topics including a comprelseasore
space of candidate paradigms, innovative measures to searcpait®ta how to trans-
form candidate paradigms that individually model a single morpheme bgunttamag-
glutinative analyses consisting of multiple morphemes. As the aayiters will show,
biasing the morphology induction problem with the paradigmatic, syntagraaticoho-
neme sequence structure inherent in natural language morphologysatbeul leg-up

needed for an unsupervised solution to the morphology induction problem.
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Chapter 3.
Paradigm ldentification
with ParaMor

This thesis describes and motivates ParaMor, an unsupervised mggpimaloction
algorithm. To uncover the organization of morphology within a specific langrage,
raMor leverages paradigms as the language independent structureiraf fEnguage
morphology. In particular ParaMor exploits paradigmatic and syntagmétonships
which hold cross-linguistically among affixes and lexical steespectively. The para-
digmatic and syntagmatic properties of natural language morphology vesenfed in

some detail in Sectioh.1. Briefly, an inflectional paradigm in morphology consists of:

1. A set of mutually substitutable, or paradigmatically related, affixes, and

2. A set of syntagmatically related stems whadihnflect with the affixes in 1.

This chapter describes and motivates ParaMor’s unsupervised siatednitially
isolate likely partial models of paradigmatic structures. Tiasal paradigm models are
partial in two ways. First, most of ParaMor’s initial model# only describe a subset of

the affixes in any particular paradigm. The clustering algordlescribed in Chapter 4 is
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specifically designed to join initial models that describe ssbskethe same underlying
paradigm. Second, while many natural languages combine several morgbdores a
single word, each of ParaMor’s paradigm models can only deszriiggle morpheme
boundary lying between a pair of morphemes. The word-to-morpheme segomeatat
gorithm described in Chapter 5 will recombine ParaMor’s individuaggm models to
segment a single word into more than two morphemes.

ParaMor’s paradigm discovery algorithms begin with the definitionsgfasch space
over natural groupings, or schemes, of paradigmatically and syntagiyattaied can-
didate suffixes and candidate stems (Sedidn. As Chapter 1 motivated, this thesis fo-
cuses on identifying suffix morphology. Then, with a clear view of theekespace, Pa-
raMor searches for those schemes which most likely model thegrarattucture of true

suffixes within the language, (SectidrR).

3.1 A Search Space of Morphological Schemes

3.1.1 Schemes

The constraints implied by the paradigmatic and syntagmatic strudtaegural lan-
guage can organize candidate suffixes and stems into the building blockseafch
space in which to identify language specific models of paradigims. thesis names
these building blockschemesas each is “an orderly combination of related parts” (The
American Heritage® Dictionary, 2000).

Scheme organization begins by proposing candidate morpheme boundariey at ever
character boundary in every word form in a corpus vocabulary. The sdie=®ad-ap-
proach to unsupervised morphology induction is designed to work on orthographies
which at least loosely code each phoneme in each word with atseglaaigacter; and, as
such, ParaMor’s induction approach does not extend to the standard writepsys
many East Asian languages, including Chinese and Japanese.

Languages often mark a specific feature value combination by ebypfioit chang-

ing the form of a stem. One way to describe these empty changitis &n attached null
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affix, @. To account for null suffixes, the set of candidate morpheme bountiei&a-
raMor algorithm proposes include the boundary after the final characeach word
form. Since this thesis focuses on identifying suffixes, it is asduimt each word form
contains a stem of at least one character. Hence, the boundarytbeffirst character of
each word form is not considered a candidate morpheme boundary.

Call each string that occurs before a candidate morpheme bounckangidate stem
or c-stem and each string after a proposed boundargaffix LetV be a set of strings—
avocabulary of word types. L&" be the set of all ctems generated from the vocabu-
lary and F¥ be the corresponding set of all dfixes. With these preliminaries, define a

schemeC to be a pair of sets of string3(, F.) satisfying the following four condi-

tions:
1. T, OTY, called the adherents Gf
2. F. OFY, called the exponents 6f
3. Ot OT.,O0f . OF,, t..f. OV
4. OtVOTY, if Of OF, t'.f. OV thent'OT,

The first three conditions require each of the agniatically related c-stems in a scheme
to combine with each of the paradigmatic c-suffbasthat scheme to form valid
vocabulary words. The fourth condition forces aesoh to contaimll of the syntagmatic
c-stems that form valid words with each of the daganatic c-suffixes in that scheme.
The number of c-stems if. is theadherent sizef C, and the number of c-suffixes in
F. is theparadigmatic levebf C.

At this point, it is worth noting two facts abouiet definition of a scheme. First, the
definition of a scheme allows a single word to cdwotte to two or more schemes which
divide the word differently into c-stem and c-skffAlthough seemingly inoccuous, the
fact that different schemes, derived from the sameabulary, can model different
morpheme boundaries in the same word will be thet&eParaMor’s ability to segment
words into sequences of agglutinative morphemesCéapter 5.

The second fact of note is that the fourth condiiio the definition of a scheme is

intentionally asymmetric. Condition four only retgs a scheme to contain all thistems
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that combine with all the-suffixesin the scheme, butot necessarily all the-suffixes
that combine with all the-stemsf a scheme.

This asymmetry in the scheme definition has tweréaching consequences. First,
the asymmetry creates a unique scheme for any\arg set of c-suffixes derived from a
vocabulary. This one-to-one correspondence betveaeh schemeC, and the set of
c-suffixes inC allows unambiguous reference to a scheme by itefse-suffixes. But
more importantly, it is the one-to-one correspomgebetween schemes and sets of
c-suffixes that permits, as discussed in Secdidn2, the organization of schemes into a
search space in which ParaMor identifies initialdidate paradigms.

The second consequence of the asymmetry in theitilefi of a scheme will impact
the search algorithm that ParaMor uses to findllikgaradigms (see SectioB.2).
Specifically, the assymmetric definition of a scleeimplies that any stem that is part of a

scheme(, must also be in every scheme that is built frosnlaset of the suffixes i@.

Schemes: An Example

To better understand how, in practice, schemesirstityc capture both the paradig-
matic and syntagmatic regularities of natural laaggimorphology, let us look at a few
illustrative schemes from a small example. Eachibdxigure3.1 contains a scheme de-
rived from one or more of the word forms listedra top of the figure. The vocabulary
of Figure3.1 mimics the vocabulary of a text corpus fromighly inflected language
where few, if any, lexemes will occur in the contplset of possible surface forms. Spe-
cifically, the vocabulary of Figur8.1 lacks the surface formaming of the lexeme
BLAME, solved of the lexemesoLve, and the root forroam of the lexemeaoawm.

Proposing, as ParaMor’s procedure does, morphemedaoies at every character
boundary in every word form necessarily producesymaliculous schemes such as the
paradigmatic level three schem®e.ames.amed , from the word formélame, blames ,
andblamed and the c-sterhl. Dispersed among the incorrect schemes, howereeglso
schemes that seem very reasonable, sughsasrom the c-stembslame andsolve .

Schemes are intended to capture both the paradgaral syntagmatic structure of

morphology. For example, the fact that the paradigpally related c-suffixe®, ands
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Vocabulary: blame solve
blames roams  solves
blamed roamed
roaming  solving
lame lames lamed | ame ames amed | me mes med | eesed @sd oams oamed oaming
b bl bla blam blame r
lame lames ame ames me mes ees s olve olves olving
b bl bla blam solv blame solve S
lame lamed ame amed me med eed ad
b bl bla blam blame
lames lamed ames amed mes med es ed sd seding eesing
b bl bla blam blame roam solv
lame ame me e sed eing
b bl bla blam solv roam solv
lames ames mes es s sing esing
b bl bla blam solv | blame roam solve |  roam solv
lamed ames med ed d eding ng
b bl ro bla roa blam roam |  blame roame roam roami solvi
7/ ing 9
blame blames blamed roams roamed roaming solve solves solving roam solv | roamin solvin

Figure 3.1: Some of the schemes, arranged in a systematic but arbitrary order, de-

rived from a small vocabulary (top). Each scheme is specified as a space delimited

set of c-suffix exponents in bold above a space delimited set of c-stem adherents

in italics

each concatenate onto both of the syntagmaticalfad c-stemsolve andblame sug-

gests that the c-stebfame should be an adherent of the schede—just as the given

definition of a scheme requires. But note thatdhesnes were limited to containing

c-stems that concatenaigly the c-suffixes in that scheme, then the c-siame could

not be part of thé&.s scheme, as the c-stdslame also occurs in the forfslamed .

Before moving on, observe two additional intricacief scheme generation. First,

while the schem@.s arises from the pairs of surface forr&fe , blames ) and 6olve

solves ), there is no way for the formams to contribute to th&.s scheme because the

surface formroam is not in this vocabulary. Second, as a resultrafliEh spelling rules,
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the schemea.d, generated from the pair of surface formiares, blamed ), is separate

from the scheme.ed, generated from the pair of surface form&ifns , roamed ).

One Scheme, One Morpheme Boundary

Behind each schemeg, is a set oficensingword forms W, which contribute c-stems
and c-suffixes t&. Each c-suffix inC which matches the tail of a licensing word W ,
segmentsv in exactly one position. Although it is theoretiggoossible for more than
one c-suffix ofC to match a particular licensing word fdrnin empirical schemes that
arise from natural language text, each wartypically matches just one c-suffix @.
Hence, a naturally occurring schen@&, models only a single morpheme boundary in
each wordv that license€.

But words in natural language may possess more dhanmorpheme boundary. In
Spanish, as discussed in Sectioh of the thesis introductio®ast Participles of verbs
contain either two or three morpheme boundaries: mundary after the verb stem and
before thePast Participle marker; one boundary between ®est Participle marker and
the Gender suffix; and, if thePast Participle is plural, a final morpheme boundary be-
tween theGender suffix and thePlural suffix, s; see Figurd..1 on p. 18.

Although a single scheme models just a single merghboundary in a particular
word, together separate schemes can model all ¢npphme boundaries of a word. In
SpanishPast Participles, thed.s scheme can model the paradigm for the optioiuah-
ber suffix, while another scheme,as.o.os, models thecross-productof the Gender
and Number paradigms, and yet another scheme, which incluldesc-suffixesada,
adas, ado, andados, models the cross-product of three paradigviesbal Form, Gen-
der, and Number. In one particular corpus containing 50,000 uniquerd types of
newswire Spanish, there are 5501 c-stem adherémte @.s scheme, 892 adherents of

thea.as.0.0s scheme, and 302 c-stems in Hua.adas.ado.ados scheme. Notice that it

Consider, for example, a hypothetical corpus volapucontaining just three wordsic, abc, and
abbc . These three words could give rise to the schbme containing the stema andab. Reconcate-
nating the stems and suffixes in this hypothetichleme gives the boundary annotated foardc, a+c,

ab+bc, andab+c—buta+bc andab+c are different segmentations of the same licensioglyabc .
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is only when a scheme models the final morphemendbany of the scheme’s licensing
words that a scheme can model an individual trawkti paradigm. When a scheme cap-
tures morpheme boundaries that are not word fihah the scheme’s c-suffixes encapsu-
late the cross-product of two or more traditionakphemes.

Although the only traditional paradigms that scheman directly model are word-
final, schemes still provide this thesis with asty model of natural language morphol-
ogy for two reasons. First, as noted in the previparagraph, while any particular
scheme cannot by itself model a single word-intepa@adigm, in concert, schemes can
identify agglutinative sequences of morphemes. &&cthe cross-product structures that
are captured by schemes retain the paradigmaticsanthgmatic properties of mutual
substitutability and mutual exclusivity that defitraditional inflectional paradigms. Just
as suffixes in a traditional paradigm can be irtarged on adherent stems to form sur-
face forms, the c-suffixes of a cross-product sehean be mutually substituted to form
valid surface forms with the adherent c-stems & sbheme: A traditional paradigm
might replace the finad in the Spanish word forradministradas with @ to yield the
valid formadministrada , while a scheme might suggest replacing the ttnaés-product
c-suffix as with o to form the grammatical Spanish word fosidministrado .

Ultimately, restricting each scheme to model alsimgorpheme boundary is compu-
tationally simpler than a model which allows mohart one morpheme boundary per
modeling unit. And, as Chapters 5 and 6 show, dlgos built on the simple scheme al-
low ParaMor to effectively analyze the morpholodyewven highly agglutinative lan-

guages such as Finnish and Turkish.

3.1.2 Scheme Networks

Looking at Figure3.1, it is clear there is structure among the werischemes. At
least two types of relations hold between schefiest, hierarchically, the c-suffixes of
one scheme may be a superset of the c-suffixexathar scheme. For example the
c-suffixes in the schemees.ed are a superset of the c-suffixes in the scheree. Sec-

ond, cutting across this hierarchical structuresmgemes which propose different mor-
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pheme boundaries within a set of word forms. Comphe schemesme.mes.med and
e.es.ed; each is derived from exactly the triple of womrhs blame, blames, and
blamed , but differ in the placement of the hypothesizearpheme boundary. Taken to-
gether the hierarchical c-suffix set inclusion tielas and the morpheme boundary rela-
tions impose a lattice structure on the spaceltérses.

Figure 3.2 diagrams a scheme lattice over an interestiget of the columns of
Figure3.1. Each box in Figurd.2 is a scheme, where, just as in Figeik the c-suffix
exponents are ihold and the c-stem adherents ardtafics. Hierarchical c-suffix set in-
clusion links, represented by solid lines{— ), cartreescheme to often more than one
parent and more than one child. The empty schewtepfotured in Figure.2), contain-
ing no c-suffixes and no c-stems, can be considdredhild of all schemes of paradig-
matic level 1 (including th& scheme). Horizontal morpheme boundary links, déshe
lines ¢----- ), connect schemes which hypothesize morphamndaries which differ by
a single character. In most schemes of Figu®e the c-suffixes all begin with the same
character. When all c-suffixes begin with the sarharacter, there can be just a single
morpheme boundary link leading to the right. Simiylaa morphology scheme network
contains a separate leftward link from a particsleneme for each character which ends
some c-stem in that scheme. The only scheme wighcgxmultiple left links in Figure
3.2 is@, which has depicted left links to the scherags, andd. A number of left links
emanating from the schemes in Fig@r2 are not shown; among other links absent from
the figure is the left link from the scheraes that would lead to the scheme.ves with
the adherendol. Sectiord.4.2 defines morpheme boundary links more expficit

The scheme network of FiguBe2 is a portion of the search space in which the P
raMor unsupervised morphology induction algorithmwd operate given the small vo-
cabulary of Figure.1. But it is important to note that the ParaMigioathm would not
necessarily instantiate every scheme node in Fig2.eThe number of schemes in a full
scheme network is the size of the powerset of éhekall word-final strings in the vo-
cabulary! Much too large to exhaustively searchwid for even moderately sized cor-

pora. As Section8.2.2 and3.2.4 discuss, ParaMor dynamically creates jussehmor-
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Figure 3.2: A portion of a morphology scheme network generated from the small ex-

ample vocabulary of Figure 3.1.
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tions of the scheme search space that are mobt tikeorrectly model true paradigms of
a language.

Two additional graphical examples, these generfitad naturally occurring text,
will help visualize scheme-based search spaceard-8)3 contains a portion of a search
space of schemes automatically generated from @0Ggkens of the Brown Corpus of
English (Francis, 1964); while FiguB4 diagrams a portion of a hierarchical latticerov
a Spanish newswire corpus of 1.23 million toker 80 types). As before, each box in
these networks is a scheme and the c-suffix expgenappear inbold. Since most
schemes contain more c-stem adherents than castdxkih a single scheme box, abbre-
viated lists of adherents appeariialics. The number immediately below the list of
c-suffixes is the total number of c-stem adheré@ms fall in that scheme.

The scheme network iFigure3.3 contains the paradigmatic level four schemescov
ing the English c-suffixe®.ed.ing.s . These four suffixes, which mark combinations of
Tense, Person, Number, andAspect, are the exponents of a true sub-class of the Eng-
lish verbal paradigm. This true paradigmatic schesv@mbedded in a lattice of less satis-
factory schemes. The right-most scheme in eachpwsits, in addition to true inflec-
tional suffixes of English, the derivational sufiix. Immediately belond.ed.ing.s, a
scheme comprising a subset of the suffixes of ke verbal sub-class appears, namely
@.ed.ing. To the left,d.ed.ing.s is connected tal.ded.ding.ds , a scheme which pro-
poses an alternative morpheme boundary for 19 ef b6 c-stems in the scheme
@.ed.ing.s .

Notice that since left links effectively slice ehete on each character in the orthog-
raphy, adherent count monotonically decreasedftailks are followed. Similarly, adhe-
rent count monotonically decreases as c-suffixirsdtision links are followed upward.
Consider again the hierarchically related scheghed.ing.s and@.ed.ing, which have
106 and 201 adherents respectively. Sincetlee.ing.s scheme adds the c-suffixto
the three c-suffixes already in tieed.ing scheme, only a subset of the c-stems which
concatenate the c-suffixe®, ed, anding also concatenate to produce a word form

found in this corpus of English. And so, only a setbof the c-stems in th#&.ed.ing
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Figure 3.3: A portion of a morphology scheme network generated from 100,000 to-
kens from the Brown Corpus of English. The scheme that most closely matches a

true verbal paradigm of English, @.ed.ing.s , is outlined in bold.
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scheme adhere to the sche@ed.ing.s. The decrease in adherent c-stem count when
moving upward through a scheme lattice is a corsaopiof the asymmetry in the defini-
tion of a scheme, see Sect®n.1.

Now turning to Figure3.4, this figure covers theender andNumber paradigms on
Spanish adjectival forms. As with SpaniBhast Participles, adjectives in Spanish mark
Number with the pair of paradigmatically opposed suffiseand @; and Gender with
the pair of strings ando. Together theGender and Number paradigms combine to
form an emergent cross-product paradigm of foweradtting stringsa, as, o, andos.

Figure3.4 contains:

1. The scheme containing the true Spanish expomérnke emergent cross-product
paradigm forGender andNumber: a.as.o0.0s. Thea.as.o.os scheme is outlined
in bold .

2. All possible schemes whose c-suffix exponents sarbsets ohf.as.o.os, e.g.
a.as.o, a.as.os, a.os, eftc.

3. The scheme.as.o.os.ualidad , together with its descendentsps.ualidad and
ualidad . The Spanish stringalidad is arguably a valid Spanish derivational suf-
fix, forming nouns from adjectival stems. But thepertoire of stems to which
ualidad can attach is severely limited. The sufididad does not form an inflec-

tional paradigm with the adjectival endirgsas, o, andos.
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a as 0 oS ualidad
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nuev nif puest much event
sefior unid suiz saque intellect

Figure 3.4: A hierarchical scheme-lattice search space automatically derived from a

Spanish newswire corpus of 50,000 unique types (1.23 million tokens). For clarity,

the scheme matching the productive adjectival paradigm of Spanish, a.as.0.0s, is

outlined in bold .
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3.2 Searching the Scheme Lattice

Given the framework of morphology scheme netwonkilireed in Sectior8.1, an un-
supervised search strategy can automatically iiyesthemes which plausibly model true
paradigms and their cross-products. Many searekegiies are likely capable of identify-
ing reasonable paradigmatic suffix sets in scheet@arks. Snover (2002), for example,
describes a successful search strategy over a wlogyhnetwork in which each network
node is assigned a global probability score (sesp@hn 2). In contrast, ParaMor’s search
strategy, presented in this section, gauges a sharalue by computing a local score,

non-probabilistic, over the scheme’s network neakb

3.2.1 A Bird's Eye View of ParaMor’s Search Algorithm

Figure 3.5 abstractly visualizes ParaMor’s initial seafoh partial paradigms. The
two dimensional area of Figu5 represents ParaMor’s lattice-structured sespelte.
Embedded in ParaMor’s search space are schemes wisogfixes match the suffixes of
true paradigms—in Figur8.5, the large circles, atop the shaded triangdgsibolize
these correct schemes. ParaMor’s paradigm seaedts $e find these correct schemes.
However, ParaMor is often unable to extract sugfitievidence from the input corpus
during this initial search phase to fully reconstrthe paradigms of a language. And so,
the primary goal of ParaMor’s initial search isitentify schemes whicindividually
model subsets of the suffixes in true paradigmd,wanichjointly cover as many correct
suffixes as possible. It will then be up to ParaMl@lustering algorithm, described in
Sectiond.3, to merge the initially selected scheme-modefsartial paradigms.

In a scheme lattice, the descendents of a schénage those schemes whose c-suffix
sets are subsets of the c-suffix seCinFigure3.5 conceptualizes the descendents of a
scheme as a cone projecting downward. In particthar shaded triangles in FiguBes,
headed by the large paradigm circles, represemnset whose c-suffix sets are subsets
of true paradigms. Hence, to model paradigmatitix@d, ParaMor’'s search algorithm

should seek to identify schemes within the shades. Moreover, ParaMor should pre-
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Figure 3.5: A conceptualization of ParaMor’s initial search for partial paradigms.

fer widely spaced schemes located high in theckttiso as to maximize c-suffix cover-
age.

To identify candidate partial paradigms, ParaMars a bottom-up search strategy.
(ParaMor will harness the horizontal morpheme bampdinks, which also connect net-
worked schemes in a later stage of the algoritte®, Sectiort.4.2). At the bottom of a
scheme network, and, conceptually, at the bottonfriglire 3.5, are the paradigmatic
level one schemes which contain a single c-suiiche A priori, ParaMor does not know
which sets of c-suffixes model paradigms, andlseititial search algorithm attempts to
grow models of paradigmatic suffix sets by stariwth single c-suffix schemes.

To ensure a wide spacing in the selection of sckefaraMor pursues a separate
upward search path froeachlevel-one scheme. By starting separate paths &bmdi-
vidual c-suffixes, ParaMor awards to every c-suffig chance for consideration as a true
suffix. This magnanimous policy is recall-centiRaraMor’s initial search hopes to find

scheme models of as many true suffixes as posdiweever, in starting a separate
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search path from each c-suffix, ParaMor also irsgedhe number of incorrectly selected
c-suffixes—many search paths begin from c-suffiwésch model no valid inflectional
suffix. ParaMor relies on a series of filters, ddsed in Chapter 4, to weed out the poorly
chosen initial schemes.

From each level one scheme, ParaMor follows a singward path. In a greedy
fashion, ParaMor selects a single c-suffix to amldhte current scheme. ParaMor limits
each upward search to a single greedy path for atatipnal reasons—the full search
space of candidate paradigm schemes is immensdodading all reasonable paths
quickly leads to an explosion in the number of pdthfollow (see Sectiod.2.4).

Returning to Figur&.5: Each jagged line in FiguBe5 is a search path ParaMor pur-
sues. Search paths originate at the bottom ofigiueef and move upward through the lat-
tice. The terminal schemes of each search patlkedday small circles in Figur@5, are
the final output of ParaMor’s initial search. SowmfeParaMor’s search paths originate
within a shaded triangle—these are paths that biegin a c-suffix that models a true
suffix in some paradigm. But other search pathsitably begin from c-suffixes that
model no suffix in the language. Furthermore, spaits which begin at schemes which
do model suffixes eventually take a wrong turnradticing an incorrect c-suffix and
thereby leaving the shadow of a true paradigm.

The final point to note from Figui®&5 concerns the left-most paradigm in the figure.
For several of the schemes which terminate seaatfsghat originate beneath the left-
most paradigm, Figur@.5 indicates c-suffix subset cones with dashesklifhe union of
the bases of these dashed cones closely coincitleshe base of the shaded cone of the
left-most paradigm. The base of each subset com@ios all schemes which contain just
a single c-suffix from the scheme at the cone’sxapéus, if the c-suffixes from the
schemes at the bases of the dashed cones weréedguhe resultant paradigm model
would closely match a true paradigm. This is eyaedraMor’s strategy: Sectigh3 will
describe a clustering algorithm that unites schewtesh each model subsets of suffixes

from individual paradigms.

64



Why a Bottom-Up Search?

The choice to design ParaMor’s initial paradigmniifecation algorithm as a re-
peated series of bottom-up search paths throughense network, a la Figu5, was
explicitly taken so as to leverage the paradigmatid syntagmatic structure that is cap-
tured by the vertical c-suffix set inclusion linkthe scheme network search space. At
the bottom of a network of schemes, syntagmatieialternations are evident but each
scheme contains only a single c-suffix. At suceesgi higher levels, the networked
schemes contain successively more paradigmatiopfipsed c-suffixes, but also succes-
sively fewer syntagmatic c-stems. ParaMor’s seatcditegy moves upward through the
network, trading off syntagmatic c-stem alternagidor paradigmatic alternations of
c-suffixes.

Consider the paradigmatic and syntagmatic structapgured by and between the
schemes of the Spanish network in Figa from p. 61. The schemes at the bottom of
this network each contain exactly one of the ciseffa, as, o, os, orualidad . The syn-
tagmatic c-stem evidence for those level 1 schemtésh model productive inflectional
suffixes of Spanish, namedy as, o, andos, is significantly greater than the syntagmatic
evidence for the unproductive derivational c-suftialidad : The a, as, o, and os
schemes contain 9020, 3182, 7520, and 3847 c-stespectively, while theialidad
scheme contains just 10 c-stems.

Moving up the network, paradigmatic-syntagmaticdéatfs strongly resonate.
Among the 3847 c-stems which allow the c-sufféxto attach, more than half, 2390, also
allow the c-suffixo to attach. In contrast, only 4 c-stems belongingh®os scheme
form a corpus word with the c-suffixalidad : namely, the c-stemact, cas, d, and
event. Adding the suffixa to the scheme.os again reduces the c-stem count, but only
by 41%, from 2390 to 1418; and addiag, just lowers the c-stem count by a further
37%, to 899. There is little syntagmatic evidermeadding c-suffixes beyond the four in
the schema.as.o.os . Adding the non-paradigmatic c-suffisalidad , for example, dras-
tically reduces the count of syntagmatic c-stems\®r 99%, to a meager 3.

It is insightful to consider why morphology schemetworks capture paradigmatic-

syntagmatic tradeoffs so succinctly. Take a padrco-suffix, f, which models a true in-
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flectional suffix (or cross-product of suffixes)idbegarding morphophonologic change,
the paradigmatic property of inflectional morphaotampliesf will be mutually substitut-
able for some distinct c-suffiX. Consequently, both andf’ will occur in a text corpus
attached to many of the same syntagmatically mleistems. In our example, whers

the c-suffixos andf’ the paradigmatically relatesl many c-stems to whicbs can at-
tach also allowo as a word-final string. Conversely, if thandf’ suffixes lack a para-
digmatic relationship in the morphological struetwf some language, then there is no a
priori reason to expedtandf’ to share c-stems: whéns os andf’ ualidad , a c-suffix
which is not paradigmatically opposed ds, few of the c-stems which permit as

c-suffix admitualidad .

3.2.2 ParaMor’s Initial Paradigm Search: The Algorithm

With the motivation and background presented inpgterious sub-section, the spe-
cifics of ParaMor’s search algorithm follow: Thettoon-up search treats each individual
non-null c-suffix (that is, all suffixes b#) as a potential gateway to a model of a true
paradigm cross-product. ParaMor considers eachsoffix- scheme in turn beginning
with that scheme containing the most c-stems, aoking toward one-suffix schemes
containing fewer c-stems. From each bottom schétaeaMor follows a single greedy
upward path from child to parent. As long as an aghpath takes at least one step, mak-
ing it to a scheme containing two or more altermati-suffixes, ParaMor’s search strat-
egy accepts the terminal scheme of the path asdelnod a portion of a morphological
paradigm.

To take each greedy upward search step, ParaMbridentifies the best scoring par-
ent of the current scheme according to a particstaring function. Sectio.2.5 will
propose and evaluate one reasonable class of memng function. ParaMor then ap-
plies two criteria to the highest scoring parertte Tirst criterion is a threshold on the
parent’s score. ParaMor’s upward search will onvento a parent whose score passes
the set threshold.
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The second criterion governing each search stgys helhalt upward search paths be-
fore judging parents’ worth becomes impossible.ndged in the second half of Section
3.2.1 above, c-stem counts monotonically decreagie wpward network moves. But
small adherent c-stem counts render statisticsatbsdss parents’ strength unreliable. Pa-
raMor’s policy is to not move to any scheme thagéslaot contain more c-stems than it
has c-suffixes. Moreover, this second halting doteserves ParaMor well for two addi-
tional reasons. First, requiring each path schenmeohtain more c-stems than c-suffixes
ensures high suffix recall by setting a low bardpward movement at the bottom of the
network. Hence, search paths which begin from selsemhose single c-suffix models a
rare but valid suffix, can often take at least apevard search step and manage to be se-
lected. Second, this halting criterion requires tiy@ scheme of search paths that climb
high in the network to contain a comparatively &amumber of c-stems. Reigning in
high-reaching search paths, before the c-stem dallattoo far, captures path-terminal
schemes which cover a large number of word types. later stage of ParaMor’s para-
digm identification algorithm, presented in Sectidi3.1 an®.3.2, these larger terminal
schemes effectively vacuum up the useful small¢hspthat result from the more rare
suffixes.

At times, ParaMor’s search algorithm can reachstime scheme along more than
one path. But, since ParaMor’s upward search froynparticular scheme is determinis-
tic, there is no need to retrace the same bestrpath than once. While it might be rea-
sonable to follow a next-best path each time arsehis re-encountered, ParaMor instead
simply abandons the redundant path. In practieelaige number of individual paths that
ParaMor follows ensures that ParaMor discoverghal prominent paradigms, without
the need for next-best searching.

Pseudo code for ParaMor’'s bottom-up initial seafoh candidate paradigmatic
schemes is given in Figu@6. The coresear ch() method callsear chOneG ee-
dyPat h( -) once for each scheme which contains a single exsitiost of the function
names in the pseudo code are self-explanatory,nbtg that the niti al i zeDy-

nam cNet wor k( -) method does not build the full scheme lattice. Tihigalization
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// Global initializations
dynamicSchemeNetwork = initial i zeDynam cNet wor k( corpus );
visitedSchemes = emptySet; // Keep track of all sc hemes in any path

I/ Follow a separate upward search path for each sc heme
/ that contains just a single c-suffix.
search(){
selectedSchemes = emptySet ;
levelOneSchemes = dynamicSchemeNetwork.  get NonNul | Level OneSchenes() ;
sortedLevelOneSchemes = sort ByDecr easi ngCSt emCount ( levelOneSchemes ) ;
foreach  (levelOneScheme in sortedLevelOneSchemes ) {
selectedScheme = sear chOneG eedyPat h( levelOneScheme ) ;
if (selectedScheme != null)
selectedSchemes. add( selectedScheme );

}

return selectedSchemes;

}

sear chOneG eedyPat h( levelOneScheme ) {
currentScheme = levelOneScheme;
while  (true) {
[ bestParentScheme, scoreOfBestParentScheme 1=
dynamicSchemeNetwork.
get Best Par ent ScheneW t hScor e( currentScheme ) ;

/I The two criteria a parent scheme must pass for
/I ParaMor to move upward
if ((scoreOfBestParentScheme < threshold) ||
('( DbestParentScheme. get Nunmber O CSt ens() >

bestParentScheme. get Nunber of CSuf f i xes())))
/I If the parent doesn’t qualify then, as long a s this search
/l path took at least one upward step, return th e current,

/I now terminal, scheme.
if (currentScheme. get Nunber Of CSuffixes() >1)
return currentScheme;
else
return  null ;

/I Abandon redundant paths
if (visitedSchemes. contai ns(bestParent ))
return  null ;

/[ Loop updates

visitedSchemes. add( bestParent );
currentScheme = bestParent;
} /1 End while

}

Figure 3.6: Pseudo-code implementing ParaMor’s initial search for scheme models of

partial paradigms.
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method merely prepares the necessary data stractina¢ enable ParaMor to quickly
build schemes as needed. Details on ParaMor’s dgnaetwork generation appear in
Section3.2.4.

Experiments with a range of languages, includingrggh, English, German, Finnish,
and Turkish, show that ParaMor’s bottom-up sealgbrahm takes less than 10 minutes
to complete, when given a paradigm induction corpmstaining 50,000 unique types.

ParaMor is currently implemented in Java and runa etandard Linux server.

3.2.3 ParaMor’s Bottom-Up Search in Action

Figure 3.7 contains a number of search paths that Par&owed when analyzing
a Spanish newswire corpus of 50,000 types and whkig one particular metric for par-
ent evaluation (See Secti@®.5 for a discussion of scheme parent-evaluatietrics).
Most of the paths in Figur®.7 are directly relevant to the analysis of thar$gh word
administradas . As mentioned in Chapter 1, the waadministradas is the Feminine
Plural Past Participle form of the verlkadministrar , ‘to administer or manage’. The word
administradas gives rise to many c-suffixes includingfradas , tradas, radas, adas,
das, as, s, andd. Of these candidate suffixesmarks Spanish plurals and is a word fi-
nal string of 10,662 word forms in this Spanishpem—more than one fifth of the unique
word forms in end irs! Additionally, in the wordadministradas , the left edges of the
word-final stringsas andadas occur at Spanish morpheme boundaries. All otheveld
c-suffixes incorrectly segmenidministradas : The c-suffixesradas, tradas, stradas,
etc. erroneously include part of the stem; The flixsulas, in the analysis of Spanish
morphology adopted by this thesis, places a morghaoandary internal to theast Par-
ticiple morphemead; and the null c-suffixd does not mark any morphosyntactic feature
on Spanish adjectives when it occafter a Plural suffix. Of course, while we can dis-
cuss which c-suffixes are reasonable and whicmatean unsupervised morphology in-
duction system has no a priori knowledge of Spamnmiiphology. ParaMor does not
know what strings are valid Spanish morphemes,isi¢taraMor aware of the feature

value meanings associated with morphemes.
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Figure 3.7: Eight search paths that ParaMor follows in search of schemes which likely model
inflectional paradigms. Search paths begin at the bottom of the figure and move upward.
All c-suffixes appear in bold . The underlined c-suffix in each scheme is the c-suffix added
by the most recent search step. Each scheme gives the number of adherent c-stems it
contains. Horizontal links between schemes connect sets of c-suffixes that differ only in

their initial character.
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Each search path of FiguBe7 begins at the bottom of the figure and procegss
wards from scheme to scheme. In Spanish, the nbrevauffix that can attach to the
most stems is; and so, the first search path ParaMor explorgibdroms. This first
search path is the right-most path shown in Figure At 5513 c-stems, the null c-suffix,
@, can attach to the largest number of c-stems tehwk can attach. The parent-
evaluation function gave th@.s scheme the highest score of any parent oftbeheme,
and the score @fi.s passed the parent score threshold. Consequdmljiyst search step
moves to the scheme which adgi$o the c-suffixs.

ParaMor’s parent-evaluation function then idensifthe parent scheme containing
the c-suffixr as the new parent with the highest score. Althauglother c-suffix can at-
tach to more c-stems to whishand@ can both attach, can only form corpus words in
combination with 281 or 5.1% of the 5513 c-stemsciitakes and@. Accordingly, the
score assigned by this particular parent-evaludtiontion to thed.s.r scheme falls be-
low the stipulated threshold; and ParaMor doesaddtr, or any other suffix, to the now
closed and selected partial paradig@. That ParaMor did not follow a path to tes.r
scheme is indicated in FiguBe7 by the horizontal bar above e scheme.

Continuing leftward from the-anchored search path in Figl8g, ParaMor follows
search paths from the c-suffixesn, es, andan in turn. The 71 c-suffix from which Pa-
raMor grows a partial paradigm iado. The search path fromado is the first path to
build a partial paradigm that includes the c-suffidas, a c-suffix potentially relevant
for an analysis of the worddministradas . Similarly, search paths fromado and
strado lead to partial paradigms which include, respetyivthe c-suffixesradas and
stradas —two c-suffixes which also occur iadministradas . The search path from
strado illustrates the second criterion that restrictsaRbor's upward search. From
strado , ParaMor adds four c-suffixes one at a tirseeada, stré, strar, andstradas .
Only seven c-stems form words when combined simglly all five of these c-suffixes.
Adding any additional c-suffix to these five brintjge c-stem count in this corpus down
at least to six. Since six c-stems is not more tharsix c-suffixes which would be in the
resulting parent scheme, ParaMor does not addth stsuffix—halting this upward

search path.
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3.2.4 The Construction of Scheme Networks

It is computationally impractical to build full mgiology scheme networks, both in
terms of space and time. The space and time coitipkexf full network creation are
directly related to the number of schemes in a agtwReturning to the definition of a
scheme in SectioB.1.1, each scheme contains a set of c-suffikeS,F"¥ , whereF" is
the set of all possible c-suffixes generated byoeatulary. Thus, the set of potential
schemes from some particular corpus is the expiaignkarge powerset ofF ¥ , with
Z‘FV‘ members. In practice, the vast majority of posdnichemes have no adherent
c-stems—that is, for mogt O F" there is no c-stem, such thatdf OF t.f is a word
form in the vocabulary. If a scheme has no adheratéms, then there is no evidence for
that scheme, and even an exhaustive network gereedgorithm would not need to ac-
tually create that scheme.

Unfortunately, the number of schemes whilchpossess adherent c-stems also grows
exponentially. The dominant term in the number diesnes with a non-zero c-stem
count comes from the non-empty scheme with theekrget of c-suffixes. In one corpus
of 50,000 unigue Spanish types, a scheme existshisma single adherent c-stem and
5816 c-suffixes. This one 58%evel scheme implies the existence of 2H*® of its de-
scendents. The number®® is truly astronomical, larger that0®®, or larger, by far,
than the number of hydrogen atoms in the observabieerse.

Because of the difficulty in pre-computing full rthe networks, during the initial
upward scheme search (described in SecthRd and3.2.2) any needed schemes are
calculated dynamically. The rest of this sectioelispout ParaMor’'s scheme-building

procedure in detail.

Most-Specific Schemes

ParaMor builds individual schemes dynamically fromest-specific schemekike
full-blooded schemes, each most-specific scheMe,is a pair of sets of strings,
(Tu, Fu): Ty, asetof c-stems, ang, a set of c-suffixes. Furthermore, as in the defini

tion of a scheme found in Secti@l.1, four conditions stipulate which c-stems and
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c-suffixes occur in each most-specific scheme. Tils three conditions for most-

specific schemes are identical to the first threeddions on full schemes:

1. T, OTY — whereT" is the set of all c-stems generated by a vocabulary
2. F, OFY — F"the set of all c-suffixes generated by a vocabulary

3. mt, oT,.of, OF,,t,.f, OV —V being the corpus vocabulary

But the fourth condition changes in the definitmfrmost-specific scheme. The new con-

dition is:
4. 0Ot, 0T, , -OfVOFY, 1‘VDFM such that,, VoV

This new fourth condition requires eagh UT,, to form vocabulary words with exactly
and only the c-suffixes irf,, (exactly the situation imagined in connection whilgure
3.1 for the c-sternlame and the schem@.s in Section3.1.1 on p. 53).

A consequence of this new fourth restriction thHecentiates most-specific schemes
from basic schemes is that each corpus c-stem ®dnuprecisely one most-specific
scheme: Suppose a c-sterelonged to two most-specific schemis= (T,, ,F,,) and
M'= (T, ,Fy), Fu #F,. SinceF,, #F,, without loss of generality, there must exist
f'OF, such thatf'OF, . And because OT,, , it follows thatt.f' 0V . But this situa-
tion violates the specification &l as a most-specific scheme: There exists a c-gtem i
T,, » namelyt, and a c-suffix that is not if,, , namely f ', that concatenate to form a vo-
cabulary item. Hencé,cannot be an element @f, . Andt cannot belong to botkl and
M',

The idea of the most-specific scheme has been peoppreviously: translating into
the terminology of this thesis, Demberg (2007) edoc-stems that are not surface types
themselves in most specific schemes. Furthermaréhe c-suffixes of a most-specific
schemeC, exactly specify the yield of the c-stemsGnthe states in the minimal (for-
ward) character-based finite state automaton tkattly accepts a vocabulary are in a
one-to-one correspondence with the set of mostifspechemes generated by that vo-
cabulary. And so, finite state approaches to mdggyinduction, such as Johnson and

Martin (2003), also implicitly compute most-specifichemes. But to my knowledge, no
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one has suggested dynamically generating full-feldgchemes from their most-specific

cousins, as is proposed here.

Computing Most-Specific Schemes

Since the number of most-specific schemes is baurad®ve by the number of
c-stems in a corpus, the number of most-specifieises grows much more slowly with
vocabulary size than does the total number of sesema network. In the 50,000 type
Spanish corpus from above, a mere 28,800 (exad)-apecific schemes occurred.

A two-part algorithm can quickly compute the setnudst-specific schemes from a
corpus. The first half of the algorithm associatash c-stent, with a set of c-suffixes,
F., where each c-suffix iR, forms a vocabulary word when combined witfio find F,
for eacht, ParaMor loops through each (c-ster-suffix f ) division of each vocabulary
word. Whenever ParaMor encounters a specific cssteRaraMor adds the correspond-
ing f c-suffix of the current pair td, . In the second half of the algorithm to compute th
set of most-specific schemes, ParaMor associatds waque set of c-suffixes;, that
was computed in the algorithm’s first half with tket of c-stems that individually
pointed to identical copies & Pseudo-code for the creation of most-specifiesws is
given in Figure3.8.

Overloading the | - | operator to denote bothitees a set and the length of a string,
the time complexity of this two-part algorithm t@ropute most-specific schemes is
O(M* ave,, |V +‘TV‘), where, as above/ is the vocabulary size aril’ is the set of all
c-stems generated from a vocabulary. In practiompating the most-specific schemes
from corpora of 50,000 types takes the current daypdementation of ParaMor less than
five minutes on a standard Linux server, with PasaBpending about equal time in the

first and second halves of the algorithm.

To Schemes from Most-Specific Schemes

From the full set of most specific schemes, th&ems, T, of any particular scheme,

C = (T., F.), can be directly computed. Since a single c-stam belong to multiple
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/I De fineac -stem,c - suffix pair
struct SegmentedWord {

cStem;

cSuffix;

b

/l Two structures in which to save the results of

/I the first and second halves of the algorithm

Hash<cStem, Set< cSuffix >> cStemToCSuffixes;
Hash<Set< cSuffix >, Set< cStem >> mostSpecificSchemes;

/I First Half: Find all c-suffixes that can attach to each c-stem.
foreach  (word in corpus.vocabulary ) {
Set< SegmentedWord > segmentations =corpus. get Al |l Segnment ati ons(word) ;
foreach (. segmentation in segmentations ) {
cStemsToCSuffixes { segmentation.cStem }. add( segmentation.cSuffix );
}
}
/Il Second Half: Find all c-stems of each c-suffix s et.
foreach (cStem in cStemsToCSuffixes ) {
cSuffixes = cStemToCSuffixes  {cStem};

mostSpecificSchemes { cSuffixes }.add(cStem);

}

Figure 3.8: Pseudo-code for computing most-specific schemes. Note that this code uses
curly braces ‘{ } to index into hashes. And as this algorithm is heavily dependent on
data structures, this code segment is strongly typed: pointy brackets ‘< >’ indicate the

data type that a hash or set may contain.

schemes but to only one most-specific scheme,-8teras of the&C scheme are scattered
among various most-specific schemes. Recall froendifinition of a scheme (Section
3.1.1) that the c-stems ifi. are all those c-stems which form words with alit(bot
only) the c-suffixes inF.. Let M = (T, , F,) be a most-specific scheme where
F. OF,, and lett,, OT,, . Since all c-stems i,, form words with all c-suffixes in
F., and sinceF. O F,,, t,, must form a word with all c-suffixes if.. Hence,t,, be-
longs inT. . The converse, that . O F,, thent,, does not belong ifi., follows from

similar logic. Consequently, to dynamically compdie, ParaMor must place i, all
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c-stems from all most-specific schemes whose axsaéits are (proper or improper) su-
persets off. .

Let ™ denote the set of all most-specific schemes whessffix sets are supersets
of F.. And in general, given a set of c-suffix€s,define 4" as the set of most specific
schemes whose c-suffixes are a (proper or impraagerset oF. To quickly compute
the c-stems of any particular scher@es (T., F.), ParaMor must efficiently compute
M | i.e. without exhaustively comparing. to the c-suffix set of every most specific
scheme.

Considera (}1 the set of all most-specific schemes whose c-ssfits containf . ,
for each c-suffix fo OF.. These V) are inexpensive to compute: for each most-
specific schemey = (T, , F,,), and for each c-suffixf,, OF,,, simply addV to the set
of all most-specific schemes thdf, occurs in. Furthermoreg'™} for any particular
c-suffix f¥ from a vocabulary need only be computed once.rEi§® gives pseudo-
code, that ParaMor calls just once, to computé? for all individual f¥ c-suffixes that

are generated by a corpus.

conmput eMost Speci fi cAncest or sO Al | Si ngl eCSuf f i xes( mostSpecificSchemes ) {

foreach (  mostSpecificScheme in mostSpecificSchemes ) {
foreach ( cSuffix in mostSpecificScheme.cSuffixes ) {
mostSpecificAncestors {cSuffix }.add( mostSpecificScheme ) ;
}
}
return mostSpecificAncestors;
}

Figure 3.9: Pseudo-code to compute M , the set of all most-specific schemes whose
set of c-suffixes include fY, where f" ranges over all c-suffixes generated by a cor-
pus. The pseudo-code refers to M) as the ancestors of fV: Imagining a network
of most-specific schemes mirroring the scheme networks of Section 3.1.2, the set
M) contains all the upward, or ancestor, most-specific schemes of the f" node.

As in Figure 3.8, curly braces ‘{} index hashes.
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But to dynamically compute the c-stems of a scheé@ve(T., F.), ParaMor’'s must
find " , the set of all most-specific schemes whose dxsaéfts are supersets 6%,
not individual <} . As the following Lemma showsy can be computed from the set

of all 9} where f. ranges over all c-suffixes iR :
Lemma (), ¢, V) = gy

To show ™ O ﬂfCDFC ) I the most-specific schemdO ™ , where
M = (T, ,F,), that is, if F, OF, , then Of. OF., f.OF,, and{f.}OF,.
And soOf OF,, M O, And thusM O, o m).

To show( ). or, M} 0 ™ : If the most-specific schemd [ o, MV,
whereM = (T,,, F,), then Of. OF., M Oa"). And By the def ofa",
Of. OF., {f.} OF, ; and of coursef, OF,, . But supposeM " , then there
must exist f. OF. such that f. OF, —a contradiction. SoM Owx™ and

(s, cre M "} O 9™ . The lemma has been proved.

In summary then, for any schei@e= (T., F.), with a specified c-suffix sef, the
c-stemsT, are the union of the c-stems from all most-speaiihemes inv ", that is,
Tc :UMDMFC T, , while the members of eachr™ are found by intersecting the pre-
computed sets of most-specific schemes inmiré“}, or M = ﬂf(:DFC Vel . The key is
that both the intersection step as well as theaatibn step take just linear time to com-
pute. Pseudo code for the full algorithm to dynaihyccompute a scheme from a set of

most-specific schemes is given in Fig@r&0.

3.2.5 Upward Search Metrics

As described in detail in SectioB82.1 and3.2.2 of this chapter, at each step of Pa-
raMor’s bottom-up search, the system selects, dirgss to select, a parent of the current

scheme as most likely to build on the paradigm remtiey the current scheme. A key
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conmput eTheCSt ens Of ASchene( cSuffixesOfScheme, mostSpecificAncestors ) {

Il Intersect the pre-computed sets of most-specifi ¢ scheme ancestors
/I of each individual c-suffix in cSuffixesOfSchem e.
mostSpecificAncestorsOfScheme = emptySet;
foreach ( cSuffix in cSuffixesOfScheme ) {

if ( mostSpecificAncestorsOfScheme == emptySet )

mostSpecificAncestorsOfScheme.
addAl | ( mostSpecificAncesors {cSuffix }) ; // Deep Copy

else {
foreach ( mostSpecificAncestor in mostSpecificAncestorsOfScheme ) {
if (! mostSpecificAncestors {cSuffix }.
cont ai nhs( mostSpecificAncesor )
mostSpecificAncestorsOfScheme. r enove( mostSpecificAncestor );
}
}
}
/I Compute the union all c-stems in all the most-s pecific scheme
/I ancestors of the scheme we are building.
foreach (  mostSpecificAncestor in mostSpecificAncestorsOfScheme ) {
cStemsOfScheme. add( mostSpecificAncestor.cStems );
}

return cStemsOfScheme;

}

Figure 3.10: Pseudo-code to dynamically compute the c-stems that belong to the
scheme containing the specific set of c-suffixes found in cSuffixesOfScheme . This
algorithm uses the relevant sets of most-specific schemes found in M{fv}, as pre-
computed in Figure 3.9, where fV is a c-suffix generated by the corpus. As in Figure
3.9, the #'""? are saved in the variable mostSpecificAncestors as a hash on

c-suffixes. Curly braces ‘{ } index into hashes.

element of ParaMor’s bottom-up search is the efaat of the parent-evaluation metric
used to select the most promising parent. The paretric must reliably determine
where and when to expand the current candidatediganausing only the limited infor-

mation available to an unsupervised induction sgstearaMor has no knowledge of, for

example, the part of speech or morphosyntactiaifeatthat individual words mark. In-
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stead, ParaMor’s parent-evaluation function mustkwioom co-occurrence statistics of
words and of word substrings, e.g. from c-suffid @astem counts in schemes.

Clearly, ParaMor’s parent-evaluation procedureatfiyempacts performance. A va-
riety of parent-evaluation measures are conceiyatam simple local measures to statis-
tical measures which take into consideration thees®s’ larger contexts. This section
investigates one class of localized metric and leales that, at least within this metric
class, a conceptually and computationally simplé&imgives as accurate an indication of

the paradigmatic worth of a parent scheme as nmrgplex and expensive metrics.

The Parent Selection Dilemma

To motivate the metrics under investigation, coasithie plight of an upward search
algorithm that has arrived at the.os scheme when searching through the Spanish mor-
phology scheme network of Figu@4 from p. 61. All three of the c-suffixes in the
a.0.os scheme model inflectional suffixes from the crpssduct paradigm oGender
and Number on Spanish adjectives. In Figuder on p. 70, the second upward search
path that ParaMor pursues brings ParaMor toaath®s scheme (the second search path
in Figure3.7 is the second path from the right). In bothuFég.4 and in Figur&.7, just
a single parent of the.o.os scheme is shown, namely thas.o.os scheme. But these
two figures cover only a portion of the full schemetwork derived from the 50,000
types in this Spanish corpus. In the full schenmevokk there are actually 20,949 parents
of thea.o.os scheme! The vast majority of the parents ofdlweos scheme occur with
just a single c-stem. However, 1,283 parents contt&b c-stems, 522 contain three
c-stems, and 330 contain four, etc.

Seven of the more likely parents of the.os scheme are shown in Figudel1l. Out
of nearly 21,000 parents, only one correctly buiasthis adjectival inflectional cross-
product paradigm oGender andNumber: The a.as.0.0s parent adds the c-suffixs,
which marksFeminine Plural. The parent scheme afo.os that has the second most
c-stem adherents, also shown in FigBrel, adds the c-suffixmente . Like the English
suffix ly, the Spanish suffixaymente derives adverbs from adjectives quite productively

The other parents of theo.os scheme given in Figurg.11 arise from c-suffixes that
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a.as.0.0s| [a.amente .0.0s| |a.ar.0.0s| |a.e.0.0s| [F.a.0.0s| [a.es.0.0s| [a.0.0s.ualidad
899 173 145 105 94 28 3
act democréatic cambi est buen fin act
futur médic estudi grup fin libr cas
nuev presunt marc muert primer muert d
religios segur pes pes uruguay pas
a.0.0S
1418
asiatic
encuentr
numeros
religios

Figure 3.11: Seven of the 20,949 parents of the a.0.0s scheme derived from the
same Spanish newswire corpus of 50,000 types as Figure 3.4. The c-suffix added

by each parent is underlined.

model verbal suffixes or that model derivationalrpiiemes. The verbal c-suffixes are
e, andes, while the derivational c-suffixes ageandualidad .

The primary reason for the fairly high c-stem cauaiong the ‘verbal’ parents of
the a.o0.0s scheme is that Spanish syncretically employs thegs a ando not only as
adjectival suffixes markingeminine andMasculine, respectively, but also as verbal suf-
fixes marking3rd Person and 1st Person Present Indicative. However, for a c-stem to
occur in a ‘verbal’ parent ad.o.os, such as.ar.0.0s, the c-stem must somehow com-
bine with os into a non-verbal Spanish word form—as the c-suwfi does not model
any verbal inflection. In the.ar.o.os scheme in Figureg.11, the four listed c-stems
cambi, estudi , marc, andpes model verb stems when they combine with the cheesf
a andar, but they model, often related, noun stems wheg tombine withos, and the
Spanish word formsambio , estudio , marco, andpeso can ambiguously be both verbs

and nouns.

80



Motivation for Paradigmatic-Syntagmatic Parent-Evaluation Metrics

The task laid before the parent-evaluation functioiParaMor’s bottom-up scheme
search algorithm is, then, to select, out of padigtthousands of candidates, at most a
single parent which best extends the paradigm reddey the current scheme. As de-
tailed in the second half of Secti8rR.1, ParaMor relies on the paradigmatic-syntagmat
frequency structure of scheme networks to makeethasent selection decisions.

To briefly recapitulate the paradigmatic-syntagmadtadeoffs captured in scheme
networks: suppose® is a set of suffixes which form a paradigm or pagen cross-
product. And letF O P be the set of c-suffixes in some scheme. Becdiessliffixes of
P are mutually substitutable, it is reasonable foeek that, in any given corpus, many of
the stems which occur witk will also occur with other suffixesf OP, f OF. Hence,
when moving upward through a scheme network amohgmes all of whose c-suffixes
belong to a single paradigm, adherent c-stem calmdsld fall only slowly. Conversely,
there is no reason to expect that some c-suffix P will form valid words with the

same c-stems that form words with c-suffixe®in

The C-Stem Ratio: A Simple and Effective Parent-Evimation Metric

Taking another look at Figui11, the parents of theeo.os scheme clearly display
paradigmatic and syntagmatic structure. More tha% @f the c-stems in the.o.os
scheme form a word with the c-suftis, a c-suffix which is paradigmatically tied &oo
andos through the Spanish adjectival paradigm. Only 1i%he c-stems ia.o.os form
corpus words with the c-suffiar, part of a productive inflectional verbal paradiguith
a ando. And only 0.2% of the c-stems in th®.os scheme form words with the deriva-
tional c-suffixualidad , which is not part of a productive inflectionalrpdigm with any
of the three c-suffixes, o oros.

Among all parents of tha.o.os scheme, the correct paradigmatic pareris.o.os,
retains by far the highest fraction of the child'stems. Parent-child c-stem ratios are
surprisingly reliable predictors of when a pareohesme builds on the paradigmatic
c-suffix interaction of that scheme, and when aepascheme breaks the paradigm. In-

deed, while the remainder of this chapter presamtsmotivates a variety of parent met-
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rics, an empirical evaluation discussed below (. €uggests that no examined metric

significantly outperforms the parent-child c-steatio at paradigm identification.

Parent-Evaluation Metrics beyond C-Stem Ratios

Parent-child c-stem ratios are a simple measura pérent scheme’s paradigmatic
strength, but it seems reasonable that a more stay@ted measure might more accu-
rately predict when a parent extends a child schrepaadigm. In particular, the c-stem
ratio metric does not at all account for the fdattsome suffixes occur less frequently
than others. In Spanish, for example, althoughdisgvational suffix(a)mente so pro-
ductively converts adjectives to adverbs that @isadigmatic behavior is nearly that of an
inflectional suffix, in naturally occurring textelatively few unique types end amente .

In comparison, the verbal infinitive suffixr is much more common. In one corpus of
50,000 unique types 1448 word forms endedrifut only 332 ended iamente. But

the parent-child c-stem ratio does not stronglyeddntiate between the parent of the
a.0.0s scheme which introduces the productive (de)adjalcti-suffix amente and the
parent which introduces the non-adjectival verbalffix ar. Referring to Figure3.11,
both the schemes.amente.o.os anda.ar.0.os have very nearly the same number of
c-stems, 173 and 145 respectively, and so havesmmijar parent-child c-stem ratios of
0.122 and 0.102. The higher frequencyaoforms ensures that a reasonable number of
c-stems adhere to thear.o.os scheme.

Five additional parent-evaluation metrics are dised below. All five incorporate
the frequency of the expansion c-suffix, that eyt incorporate the frequency of the
c-suffix introduced by the parent scheme under idenation. In a scheme network, the
frequency of the expansion scheme is found indgkiell1 scheme which contains the sin-
gle c-suffix which expands the current scheme.

Figure 3.12 depicts expansion schemes, with their c-steuéncies, for four par-
ents of thea.o.os scheme. These four parents were chosen to aicsixpo The expan-

sion schemes ares, amente, ar, andualidad , respectively the fourth member of the
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a.amente .0.0S a.ar.0.os
a.as.0.0 173 145 a.o.os.ualida
s democratic cambi d
899 médic estudi 3
act presunt marc act
futur segur pes cas
nuev - - d
religios i‘
a.0.0s
1418
asiatic
amente encuentr ar
332 numeros 1448
democratic religios cambi
frenetic habl
marcad i
as tranquil I;Telﬁgl;t ualidad
3182 10
caden act
emplead a.0.0sa.0.0$ a.0.0Sa.0.09 cas
nifi amenteg 173 159| 332 ar| 145 13031448 event
unid amente 1245 4842349668 ar| 1273 4727¥8552 intellect
141¢ 485825000( 141¢ 485825000( -
a.0.0SA.0.04 a.0.0Sa.0.08
as| 899 22833182 ual!dad 3 7 10
a8 519 4629916818 ualidad| 1415 4857549990
141€ 485825000( 141¢ 485825000(

Figure 3.12: Four parents of the a.0.0s scheme, together with the level 1 expansion
schemes which contain the single c-suffix which expands a.0.0s into the parent
scheme. Beneath each expansion scheme is a table of c-stem counts relevant to
a.0.0s and that parent. These schemes and c-stem counts come from a Spanish

newswire corpus of 50,000 types.
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adjectival cross-product paradigm, a productivedgesival derivational suffix, a verbal
suffix that is not paradigmatically relatedds, and an unproductive deadjectival deriva-

tional suffix.

The Dice Metric

There are many ways the c-stem information fromaegpn schemes might be ex-
ploited. One method is to average parent-expansistem ratios with parent-child
c-stem ratios. In tha.amente.o.os example, the ratio of c-stem counts from the parent
schemea.amente.o.os to the expansion schenaenente, at 173/332, can be averaged
with the ratio of c-stems from the parent schemehto child scheme.o.os, namely
173/1418. The bottom-up search of scheme netwakiscplarly seeks to avoid moving
to schemes that do not model paradigmatically edlatsuffixes. Taking the harmonic
mean of the parent-expansion and parent-childro-s#ios, as opposed to the arithmetic
mean, captures this conservative approach to upwearngement. Compared with the
arithmetic mean, the harmonic mean comes out clostire lower of a pair of numbers,
effectively dragging down a parent’s score if eitbestem ratio is low.

Interestingly, after a bit of algebra, it emergeatttaking the harmonic mean of the
parent-expansion and parent-child c-stem rati@gjisvalent to measuring the dice simi-
larity metric on the sets of c-stems present inctiéd and expansion schemes. The dice
metric, a standard measure of set similarity (Magrand Schutze, 1999, p. 299), is de-
fined as(2X n Y|)/(X| +|Y|), for any two arbitrary set¢ andY. In the context of schemes,
the intersection oK andY is the intersection of the c-stem sets of thedchild expansion
schemes—or exactly the c-stem set of the pareenseh

As hoped, the relative difference between the damres for thamente andar par-
ents is larger than the relative difference betwienparent-child c-stem ratios of these
parents. The dice scores are 0.198 and 0.101 damthnte andar parents respectively,
a difference of nearly a factor of two; as compandith the relative difference factor of
1.2 for the parent-child c-stem ratios of tireente andar parents. Note that it is mean-

ingless to directly compare the numeric value gfaaent-child c-stem ratio to the nu-
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meric value of the dice measure of the same part@-two scores operate on different
scales.

The parent-child c-stem ratio metric and the di@trim are the first two of six met-
rics that ParaMor investigated as potential guidiregrics for the vertical network search
described in Section8.2.1 and3.2.2. All six investigated metrics are summarized
Figure 3.13. Each row of this figure details a single meetAfter the metric’'s name
which appears in the first column, the second calgmes a brief description of the met-
ric, the third column contains the mathematicahfola for calculating that metric, and
the final four columns apply each row’s metric be four illustrative parent schemes of
thea.o.os scheme from Figur8.12: For example, the parent-child c-stem ratonfithe
a.0.0s scheme to tha.o.os.ualidad parent is given in the upper-right cell of Fig3ré3
as 0.002.

The variables in the mathematical notation of thedtcolumn of Figure3.13 refer to
c-stem counts of schemes involved in the evaluaifqgrarent schemes. For example, the
formula, in the first row of Figur8.13, to calculate a parent-child c-stem rati®/g,
whereP is the count of the c-stems in tharent scheme, ar@dis the count of c-stems in
the current scheme. Comparing the metric formulas intkie column of Figure8.13,
the parent-child c-stem ratio is by far the simplafsany metric ParaMor examined. In
addition toP andC, the formulas in Figur8.13 refer to two other variables:represents
the total number of c-stems that can attach t@tbeffix thatexpands the current scheme
into the parent (i.e. the c-stem adherent sizehef garadigmatic level onexpansion
scheme), an¥ is the size of th@ocabulary over which the network was built. The for
mula for the dice metric usé&sin addition toP andC: 2P/(C+E).

Pointwise Mutual Information as a Parent-EvaluationMetric

Of the six parent-evaluation metrics that ParaMangined, the four which remain
to be described all look at the occurrence of msten schemes from a probabilistic per-
spective. To convert c-stem counts into probabdgitiParaMor must estimate the total

number of c-stems which could conceivably occua Bingle scheme. ParaMor takes this
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Metric Explanation Formula = amerte o Uaidad
; [ - - P
Ratip ~ Ratio of parent c-stems to cur - 0.634 0.122 0.102 0.002
* rent c-stems C
S Harmonic mean of parent-child P z(p/C)(p/ E)
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D ratios * /C)+(P/
I| Pointwise
Pointwise M| between current P/V
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& Wald Test schemes are independent, the (P/V) B (C/V)(E /V)
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L2 Bernoulli standard normal: N(07)
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I Ratio of likelihood of expansion EY B (e} E)/ 5P
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Ratio of from current scheme tothe  —2log, = — = VECiP 3410 803 174 9.57
Bernoulli likelihood of expansion P 1- P E-P 1- E-P
scheme given dependence Cc Ie) V-C V-C

Figure 3.13: Six metrics which might gauge the paradigmatic unity of parent schemes during ParaMor’s search of a vertical mor-
phology scheme network. Each row describes a single metric. The top three metrics are heuristic measures of paradigmatic co-
herence. The bottom three metrics treat the current and expansion schemes as random variables and test their statistical correla-

tion. In the Formula column: C, E, and P are the c-stem counts of the Current, Expansion, and Parent schemes respec-

P E tively, while V is the size of the corpus Vocabulary. An expansion scheme heads each of the final four columns, which

each contain the value of that row’s metric applied from the a.0.0s scheme of Figure 3.12 to that column’s expansion

C V' scheme. The mini-table at left shows where C, E, P,and V fall in a 2x2 table of c-stem counts, a la Figure 3.12.
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upper limit to be the corpus vocabulary size. Whtis upper limit in hand, the maximum
likelihood estimate of the probability that a crstavill occur in a given schems§, is the
count of the adherent c-stemsSmver the size of the corpus vocabulary, or, inrtb&-
tion of Figure3.13,C/V. Note that the joint probability of finding a cest in the current
scheme and in the expansion scheme is just theapilap of a c-stem appearing in the
parent scheme.

The first parent-evaluation metric that makes usth® probabilistic view of c-stem
occurrence in schemes is pointwise mutual inforomatThe pointwise mutual informa-
tion between values of two random variables meastime amount by which uncertainty
in the first variable changes when a value fordgbeond has been observed. In the con-
text of morphological schemes, the pointwise muinfrmation registers the change in
the uncertainty of observing the expansion c-suffixen the c-suffixes in the current
scheme have been observed.

The formula for pointwise mutual information betwethe current and expansion
schemes is given on the third row of Fig3r&3. Like the dice measure, the pointwise
mutual information identifies a large differenceivibeen theamente parent and ther
parent (reference the final columns of Fig#&@&3). As Manning and Schitze (1999,
p. 181) observe, however, pointwise mutual inforaraincreases as the number of ob-
servations of a random variable decrease. And sheeexpansion schemeasente and
ualidad have comparatively low c-stem counts, the pointwisgual information score is
higher for theamente and ualidad parents than for the truly paradigmatis—
undesirable behavior for a metric guiding a sedhat must identify productive, and

therefore likely frequent, paradigmatic suffixes.

Three Statistical Tests for Parent-Evaluation Metrcs

While the three heuristic parent-evaluation metritamely parent-child c-stem ra-
tios, dice similarity, and pointwise mutual infortiee scores, seem intuitively reason-
able, it would be theoretically appealing if ParaMould base an upward search decision
on a statistical test of a parent’s worth. Jushsstatistical tests can be defined by view-

ing each c-stem in a scheme as a successful t@aboolean random variable.
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Taking the view of schemes as boolean random Jasalhe joint distribution of
pairs of schemes can be tabulated in 2x2 grids. grits beneath the four expansion
schemes of Figurg.12 hold the joint distribution of theeo.os scheme and the respective
expansion scheme. The first column of each tabigagms counts of adherent c-stems
that occur with all the c-suffixes in the currecheme; While the second column con-
tains an estimate of the number of c-stems whicmatoform corpus words with each
c-suffix of the current child scheme. Similarlyettable’s first row contains adherent
counts of c-stems that occur with the expansionffixs And the second row gives esti-
mates for the number of c-stems which do not catowdth the expansion suffix. Con-
sequently, the cell at the intersection of the fiosv and first column contains the adher-
ent stem count of the parent scheme.

The bottom row and the right-most column of each @&ble contain marginal adher-
ent counts. In particular, the bottom cell of tiretfcolumn contains the count of all the
c-stems that occur with all the c-suffixes in therent scheme. In mirror image, the
right-most cell of the first row contains the adk@rcount of all c-stems which occur
with the expansion c-suffix. The corpus vocabukirg, as the estimate of the total num-
ber of c-stems, is the marginal of the marginalerrscounts, and appears in the bottom
right-hand corner of each 2x2 table. A mini-tabldéhee bottom left of Figur8.13 sum-
marizes where to find the c-stem counts for theetur parent, and expansion schemes
together with the estimate of vocabulary size #x2 joint-distribution grid.

Treating sets of c-suffixes as boolean random kbesa we must ask what measur-
able property of random variables might indicate the c-suffixes of the current scheme
and the c-suffix of the expansion scheme belonthéosame paradigm. One answer is
correlation. As described both earlier in this mechs well as in SectioB.2.1, suffixes
which belong to the same paradigm are likely toehaecurred attached to the same
stems—this co-occurrence is statistical correlatidnnk of a big bag containing all pos-
sible c-stems. We reach our hand in, draw outt@mssand ask: Did the c-suffixes of the
current scheme all occur attached to this c-stem?t2 expansion c-suffix occur with

this c-stem? If the expansion c-suffix belongshe same paradigm as the c-suffixes in
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the current scheme, then the answer to both oéthesstions will often be the same, and
the random variables will be correlated.

A number of standard statistical tests are desigoetetect when two random vari-
ables are correlated. In designing ParaMor’s pagealuation metric, three statistical

tests were examined:

1. Pearson's? test,
2. The Wald test for the mean of a Bernoulli populatiand

3. A likelihood ratio test for independence of Binofmiandom variables

Pearson’sg/’ test is a nonparametric test designed for categjotiata, that is, data in
which each observed trial point can be categoraetdelonging to one of a finite number
of types. Pearson’s test compares the expected emuoflbccurrences of each category
with the observed number of occurrences of thagmay. In a 2x2 table, such as the ta-
bles of c-stem counts in FiguBel2, the four central cells in the table are thegories.
Pearson’s? test statistic relies on the observation thawid tandom variables are inde-
pendent, then the expected number of observatioaach cell is the product of the mar-
ginal probabilities along that cell’s row and coluniPearson’s test statistic for a 2x2 ta-
ble, given in the fourth row of Figu12, converges to thé distribution as the size of
the data increases. (DeGroot, 1986 p. 536).

The second statistical test investigated for Paravieertical scheme search is a
Wald test of the mean of a Bernoulli population g€l and Berger, 2002 p. 493). This
Wald test compares the observed number of c-stertigeiparent scheme to the number
which would be expected if the child c-suffixes dhd expansion c-suffixes were inde-
pendent. When the current and expansion schemasdegendent, the central limit theo-
rem implies that the statistic given in the fifthw of Figure3.13 converges to a standard
normal distribution.

Since the sum of Bernoulli random variables is moBiial distribution, we can view
the random variable which corresponds to any pdaicscheme as a Binomial. This is
the view taken by the final statistical test ParaMonsiders as a potential parent-

evaluation metric for the initial bottom-up schesearch. In this final test, the random
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variables corresponding to the current and expansahemes are measured for inde-
pendence using a likelihood ratio statistic fromndimg and Schitze (1999, p. 172).
When the current and expansion schemes are ngbendent, then the occurrence of a
c-stempt, in the current scheme will affect the probabitityatt appears in the expansion
scheme. On the other hand, if the current and estparschemeare independent, then
the occurrence of a c-ster,in the current scheme witiot affect the likelihood that
occurs in the expansion scheme. The denominattireoformula for the likelihood ratio
test statistic, given in the final row of Figusel3, describes the likelihood of current and
expansion schemes which are not independent; whelenumerator gives the independ-
ent case. Taking two times the negative log ofrti® of these likelihoods produces a
statistic that ig? distributed.

One caveat, both the likelihood ratio test and §@#sy” test only assess the inde-
pendence of the current and expansion schemescémnpot disambiguate between ran-
dom variables which are positively correlated aadables which are negatively corre-
lated. When c-suffixes are negatively correlatad @xtremely likely that they daot be-
long to the same paradigm. Clearly, ParaMor’s $eat@ategy should not move to parent
schemes whose expansion c-suffix is negativelyetated with the c-suffixes of the cur-
rent scheme. Negative correlation occurs when tisemved frequency of c-stems in a
parent scheme is less than the predicted frequassyming that the current and expan-
sion c-suffixes are independent. Thus, when evalgigiarent schemes with either the
likelihood ratio test or Pearsonys test, ParaMor explicitly checks for negative clarre
tion.

Returning to Figur8.13, the values of the three statistical testsHferfour parents of
thea.o.os scheme suggest that the tests are generally wedhMee. For each of the tests,
a larger score indicates that an expansion schem®ie likely to be correlated with the
current scheme—although, again, comparing the atesalcores of one test to the nu-
meric values from another test is meaninglessthidie statistical tests correctly score the
unproductive derivationalialidad scheme as the least likely of the four expansion
schemes to be correlated with the current schemd.each test gives a large margin of

difference between themente and thear parents. The only obvious misbehavior of any
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of these statistical tests is that Pearsgf’sest ranks the productive but derivational
amente parent as more likely than the inflectiomalparent to be correlated with the cur-

rent scheme.

An Empirical Comparison of Parent-Evaluation Metrics

To quantitatively compare parent-evaluation metatsheir ability to identify para-
digmatically coherent schemes, ParaMor performedracle experiment. This oracle
experiment places on an even playing field allgaxent-evaluation metrics summarized
in Figure3.13. Looking at Spanish data, the oracle evaloagsessed each metric at its
ability to identify schemes in which every c-suffsxstring identical to a suffix of some
single inflectional paradigm. The inflectional paigms of Spanish used as the oracle
answer key in this experiment were hand compliednfa standard Spanish textbook
(Gordon and Stillman, 1999), and are detailed ipexmlix A.

The methodology of the oracle experiment that Paralded to quantitatively com-
pare parent-evaluation metrics is as follows: Pamalsited every scheme that contained
only c-suffixes which model suffixes from a singldlectional paradigm—call such
schemesub-paradigm schemeEach parent of a sub-paradigm scheme is eitlseiba
paradigm scheme itself, or else the parent’'s dx&#fno longer form a subset of the suf-
fixes of a true paradigm. The oracle experimentiuatad each metric at its ability to
classify each parent of each sub-paradigm scheraithes being a sub-paradigm scheme
itself or as introducing a non-paradigmatic c-suffi

Notice that the oracle experiment does not diremtigluate parent metrics in the con-
text of the greedy upward search procedure destib8ections3.2.1 and3.2.2. Follow-
ing the methodology of this oracle experiment aflcavdirect comparison between par-
ent-evaluation metrics: where ParaMor’s greedyctesr not guaranteed to visit identical
sets of schemes when searching with different ugwaetrics or with different halting
thresholds, the oracle experiment described heakiates all metrics over the same set of
upward decisions.

Also, the non-greedy methodology of this oracle ezxpent necessitated using a

considerably smaller corpus than do other expetisnémat are reported in this thesis.
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Figure 3.14 gives results of the oracle evaluation oveompus of free-running Spanish
newswire text containing 6,975 unique types. A $rmoaipus is necessary because the
oracle experiment visitall parents ofall sub-paradigm schemes, and as is discussed in
Section3.2.4, a larger corpus creates a search spacis tioatlarge to fully instantiate.

To compare parent-evaluation metrics ParaMor mastof out threshold effects.
Each metric’s performance at identifying sub-pagadischemes varies with the cutoff
threshold below which a parent is believed to r@alsub-paradigm scheme. For exam-
ple, when considering the c-stem ratio metric #trashold of 0.5, ParaMor would take
as a sub-paradigm scheme any parent that contalaast half as many c-stems as the
current scheme. But if this threshold were lowdre0.25, then a parent need have only
one-quarter the number of c-stems as the chilé$s for a sub-paradigm scheme.

Moreover, while each of the six metrics descrilbethie previous section score each
parent scheme with a real value, the scores areanotalized. The ratio and dice metrics
produce scores between zero and one, Peargorgst and the Likelihood Ratio test pro-
duce non-negative scores, while the scores of ttiier anetrics can fall anywhere on the
real line. But even the scores of metrics whichidi¢he same range are not comparable.
Referencing Figur8.13, the ratio and dice metrics, for example, maduce very differ-
ent scores for the same parent scheme. Furthermbile, statistical theory can give a
confidence level to the absolute scores of theiosetinat are based on statistical tests, the
theory does not suggest what confidence level psaguiate for the task of paradigm de-
tection in scheme networks. The ratio, dice, anihtpase mutual information metrics
lack even an interpretation of confidence.

To remove threshold effects and fairly compare piae@aluation metrics, the oracle
experiment performs a peak-to-peak comparison. diaele evaluation measures the
precision, recall, and;Fof each metric over a range of threshold valués/amt to that
metric. And the maximumjFvalue each metric achieves is its final score.

Figure3.14 reports the peak Bcore for each of the six metrics presented m<bc-
tion. Two results are immediately clear. First,sad metrics consistently outperform the

baseline algorithm of considering every parent a¢ub-paradigm scheme to be a sub-
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Figure 3.14: A small-scale oracle evaluation of six metrics at the task of identifying
schemes where each c-suffix models a suffix in the same true inflectional para-
digm. Each bar reports the peak F; of its metric over a range of cutoffs appropriate

for that metric.

paradigm scheme. Although a seemingly weak basdinge always-move-up rule cor-
rectly classifies the paradigmatic integrity of sate parents with an Score above 70%.
The second result evident from Fig®44 is that the most simple metric, the parent-
child c-stem ratio, does surprisingly well, ideyitiig parent schemes which contain no
extra-paradigmatic suffixes just as consistentlyrese sophisticated tests, and outper-
forming all but one of the considered metrics. Phienary reason the parent-child c-stem

ratio performs so well appears to be that the natgdric is comparatively robust when
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data is sparse. In 79% of the oracle decisionsdhah metric faced, the parent scheme
had fewer than 5 c-stems!

Interestingly, Hammarstrom (2006b) has also fourad simple c-stem ratios are un-
expectedly effectively at identifying suffixes thaaradigmatically contrast. In the con-
text of a stemming algorithm designed for inforraatretrieval, Hammarstrom reports
that, in assessing the c-stem coherence of setsuifixes, he “has not had much success
with standard vector similarity measures.” Hamnréarst then turns to parent-child
c-stem ratios to define a novel measure of thengxtewhich c-suffixes share c-stems.
Hammarstrom’s metric, which, unfortunately, thia@de evaluation does not investigate,
looks only at parent-child c-stem ratios that ocatithe bottom of scheme networks,
namely, between paradigmatic level 2 and levelhkses.

In addition to strong performance in this oraclalastion, the parent-child c-stem
ratio has a second, unrelated, advantage over wtétics: simplicity of computation. In
taking each upward step, ParaMor’s bottom-up seprobedure, described in Sections
3.2.1 and3.2.2, greedily moves to that parent with the hggrezore. Hence, to find the
best greedy parent, ParaMor need not necessantpuie the scores of parent schemes,
all ParaMor must do is identify which parembuld have the highest score. As the c-stem
ratio metric does not incorporate the frequencythaf expansion c-suffix, and as the
number of c-stems in the current scheme does ranigeh the parent scheme with the
largest c-stem ratio is always that parent with riest c-stems—an easily computable
statistic.

On the basis of both the sturdy performance inoffaele evaluation, as well as the
simplicity and speed of identifying the parent wille largest c-stem ratio, all further ex-
periments in this thesis use the parent-child oisteetric to guide ParaMor’s vertical

search.

Setting the Halting Threshold in ParaMor’s Bottom-Up Search

Having settled on the parent-child c-stem ratiottees parent-evaluation metric of
choice, ParaMor must next select a threshold valwehich to halt upward search paths.

The oracle experiment described in this section dessgned to ascertain which parent-
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evaluation metric most accurately identifies pagaditic parents. Somewhat in contrast,
ParaMor’s greedy search algorithm, described irii@ex3.2.1 and3.2.2, prizes caution
ahead of accuracy. As discussed in Sec®i@il, ParaMor’s greedy search takes a sepa-
rate upward path from all individual single-c-syfchemes. Pursuing many paths in
parallel, it is likely that most c-suffixes that de a true suffix will be selected as part of
some path, thereby yielding high suffix recall. &dor then relies on a clustering algo-
rithm, described in Chapter 4, to bring togetheragmymatically related c-suffixes that
only appear in separate search paths. A cautidtiel isearch helps ParaMor to keep ini-
tially selected models of partial paradigms largede of non-paradigmatic c-suffixes.

The threshold value at which the parent-child eastatio achieved its peak ki the
oracle experiment of Figur&14 is 0.05. At this threshold, for ParaMor’s ghgsearch
to accept a parent scheme, the parent need onlkaicoone-twentieth the number of
c-stems as the current scheme. A qualitative exatimim of ParaMor’s selected schemes
suggests a threshold of 0.05 is not cautious enoOgkr a corpus of 50,000 Spanish
types, at the 0.05 threshold, ParaMor’s greedyckeslects many schemes that include
both inflectional paradigmatic c-suffixes and cfugfs that model only marginally pro-
ductive derivational suffixes. Hence, the remaindethis thesis sets the parent-child
c-stem ratio threshold at the more cautious vafiE2b.

It is possible that a threshold value of 0.25 is-eptimal for paradigm identification.
And future work should more carefully examine thgact that varying this threshold
has on morphological segmentation of words (Chap)erHowever, the quantitative
evaluations of Chapter 6 will show that the curregiting of 0.25 leads to morphological
segmentations of a diverse set of natural langutnggut-perform the segmentations of

state-of-the-art unsupervised morphology inductgstems.

3.3 Summarizing the Search for Candidate Paradigms

This chapter has presented the strategy that ParaMploys to identify initial can-
didate paradigms. This strategy has three mairsstépst, ParaMor organizes candidate

stems and candidate suffixes into natural groupiagschemes, that model potential in-
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flectional paradigms. Second, ParaMor relates therme groupings to one another, in
the process forming a network of candidates. Amdi tiParaMor searches the candidate
paradigm network in a recall-centric fashion fohemes which individually cover di-
verse portions of the paradigms of a language.

Although, as the next chapter will show quantitaliyy ParaMor’s initial paradigm
search successfully uncovers most suffixes of laggs like Spanish, the output of the
search is still far from a tight model of paradigtnucture. With ParaMor’s search fo-
cused on recall, many of the initially selecteddidate paradigms are erroneously se-
lected. And of those which are correct, many redutlgt cover overlapping portions of
the same paradigms. Overcoming these two shortgsnuhthe initial search procedure

is the topic of the next chapter.
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Chapter 4:
Clustering and Filtering
of Initial Paradigms

This chapter builds on the initial models of pagaaé that are selected by ParaMor’s
greedy bottom-up search strategy of Chapter 3.nfaki the initial set of scheme mod-
els, this chapter consolidates and purifies a feds®t of paradigm models. And, in turn,
the algorithms described in Chapter 5 wield theseised models to segment words into

morphemes.

4.1 From Schemes to Comprehensive Models of Paradigms

The bottom-up search strategy presented in Ch3ptea solid first step toward iden-
tifying useful models of productive inflectional paaigms. However, as Sectid@2.1
explains, ParaMor’s greedy bottom-up search styatagrowly focuses on finding partial
models of paradigms that, in aggregate, concentmateecall. ParaMor’s recall-centric
strategy of starting upward paths frat individual c-suffixes inevitably seeds some

paths with c-suffixes which do not model suffixésd while ParaMor’s initial scheme-
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models jointly recover many inflectional suffixaadividual schemes will likely cover
only portions of full linguistic paradigms. Sectidri.1 illustrates, by way of an extended
example, the successes and shortcomings of Parahhirally selected schemes, while
Sectiond.1.2 outlines the strategies that ParaMor takesitigate the shortcomings. Sec-
tions 4.2, 4.3, and4.4 then present each mitigation strategy in defad finally, Sec-

tions4.5 and4.6 analyzes the paradigm models that ParaMor aiéity produces.

4.1.1 A Sample of Initially-Selected Schemes

To better see the strengths of the schemes thaMBarinitially selects as paradigm
models, and to motivate the steps ParaMor takeseocome gaps in the initial models,
Figure4.1 presents a range of schemes selected durpgcaltrun of ParaMor’s bot-
tom-up search procedure, from Chapter 3. Each fdwgure4.1 lists a scheme selected
while searching over a Spanish newswire corpusOgd(® types using the parent-child
c-stem ratio metric at a halting threshold of 0(88e the final sub-section of Sec-
tion 3.2.5). On the far left of Figue 1, theRank column states the ordinal rank at which
that row’s scheme was selected during the searmobedure: thed.s scheme was the
terminal scheme of ParaMor’s' Lipward search path,as.o.os the terminal scheme of
the 2" path,ido.idos.ir.iré the 15999 etc. The right four columns of Figudel present
raw data on the selected schemes, giving the nuwibersuffixes in that scheme, the
c-suffixes themselves, the number of adherent msstef the scheme, and a sample of
those c-stems.

Between the rank on the left, and the scheme deadailthe right, are columns which
categorize the scheme on its success, or failomaodel a true paradigm of Spanish. Ap-
pendix A lists the inflectional paradigms of Spénimorphology. A dot appears in the
columns markedN, AbpJ, or VERB if multiple c-suffixes in a row’s scheme clearbpre-
sent suffixes in a paradigm of that part of spedtte verbal paradigm is further broken
down by inflection classir, er, andir. A dot appears in theerivATION column if at least

one c-suffix of a scheme models a derivationalisuff
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The remaining six columns of Figurkel classify the correctness of each row’s
scheme. Th&oob column of Figured.l, for example, is marked if the c-suffixes in a
scheme take the surface form of true suffixesidlhytselected schemes in Figutel that
correctly capture real paradigm suffixes are tfg 21 4" 5" 12" 3d" ad" 127",
135", 400", 1592" and 2008 selected schemes.

Most true inflectional suffixes of Spanish are mledeby some scheme that is se-
lected during the run of ParaMor’s initial searbhttis presented in Figu#el: The bot-
tom-up search identifies partial paradigms whicbfween them, contain 91% of all
string-unique suffixes of the Spanish verbal infl@tal paradigms, as summarized in
Appendix A. If we ignore as undiscoverable all suftrings which occurred at most
once in the Spanish newswire corpus, ParaMor’'sregesjumps to 97% of unique verbal

suffixes. In addition to verbal suffixes, ParaMdemtifies schemes which model:

1. Each of the two phonologically determined intilec classes that exprebsisim-
ber on nouns: theiselected scheme modelss, while the &' selected scheme
modelsd.es; and

2. The full adjectival cross-product paradigm@aihder andNumber, a.as.o0.0s, in

the 2" selected scheme.

But, while most true inflectional suffixes are mtate by some scheme selected in
the initial search, ParaMor’s initially selectedhemes also display two broad shortcom-

ings.

A First Shortcoming of Initial Schemes: Fragmentaton

No single initially selected scheme comprehensivatydels all the suffixes of the
larger Spanish paradigms. Instead, c-suffix modélgaradigm suffixes are fragmented
across large numbers of schemes. The largest sshiaeParaMor identifies from the
newswire corpus are thd'and 12 selected schemes: Shown in Figdrg, both of these
schemes contain 15 c-suffixes which model suffiixes thear inflection class of the
Spanish verbal paradigm. But the fatl inflection class has 36 unique surface suffixes.

In an agglutinative language like Turkish, the srpsoduct of several word-final para-
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Figure 4.1: Schemes selected by ParaMor’s initial bottom-up search algorithm over a Spanish corpus of 50,000 types. While some se-

lected schemes contain c-suffixes that correctly model paradigmatic suffixes, others are incorrect collections of word final strings.
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digms may have an effective size of hundreds angands of suffixes, and ParaMor will
only identify a minute fraction of these in any auheme.

In Figure4.1, theCompPLETE column is marked when a scheme contains separate
c-suffixes that correspond to each suffix of a gaya or paradigm cross-product. On the
other hand, if a scheme’s c-suffixes model suffieea paradigm of Spanish, but manage
to model only a portion of the full paradigm, thEigure4.1 has a dot in thBARTIAL
column. Among the many schemes in Figdrg which faithfully describe significant
partial fractions of legitimate paradigms are tHe 52", and 408 selected schemes.
These three schemes each contain c-suffixes whaelnly model suffixes from the verbal
ar paradigm—>but each contains c-suffixes that cooedpo only a subset of the suffixes
in the fullar inflection class. Notice that while some legitimatflectional suffixes occur
in only onear scheme, e.gaban andarse in the 8" selected scheme, other c-suffixes
appear in two or more schemes that modekthearadigm, e.ga, ados, 6. Indeed, the
ados c-suffix occurs in 31 schemes that were selectgohg this run of ParaMor’s initial
search. The search paths that identified thesecl3dnges each originate from a distinct
initial c-suffix, including such c-suffixes aan, en, acién, amos, etc.

Separate scheme patchworks cover the other irdlediasses of Spanish verbs as
well. For example, schemes modeling portions ofitfieflection class include the $p
135", 1592 and 2008 selected schemes. Consider the 1%82heme, which contains
four c-suffixes. Three of these c-suffixédo, idos, andir, occur in other schemes se-
lected during the initial search, while the uncommet Person Singular Future Tense
suffix iré is unique to the 1592selected scheme—in all the schemes selected dihiig
run of ParaMor’s initial bottom-up search, the ¢figuiré occurred in only one. Pa-
raMor’s recall-centric search has correctly ideetiftheiré suffix, but as yetré is iso-

lated from most other c-suffixes of thgparadigm.

A Second Shortcoming of Initial Schemes: Poor Pregion

The second broad shortcoming of ParaMor’s initedrsh strategy, apparent from
Figure4.1, is simply that many schemes do not satisfigtmodel Spanish morphologi-

cal suffixes. The vast majority of schemes witls thécond shortcoming belong to one of
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two sub-types. The first sub-type of unsatisfactpayadigm model comprises schemes
which systematically misanalyze word forms. Thegstesnatically incorrect schemes
come in two flavors: a scheme will either hypotkhesnorpheme boundaries in its licens-
ing words that fall internal to true steros a scheme will propose boundaries that are
consistently internal to suffixes.

Schemes which misanalyze morpheme boundaries urd-#gl are marked in the
ERROR: STEM-INTERNAL Or ERROR: SUFFIX-INTERNAL columns, and comprise th& 314",
11", 2d", 200", 1000", and 5008 selected schemes. Of these, tffeaBd 11" selected
schemes place a morpheme boundary at suffix-int@ostions, truncating the full suf-
fix forms: Compare the"3and 11" selected schemes with th8 &nd 13'. In symmetric
fashion, a significant fraction of the c-suffixesthe 168", 20", 200", 1000", and 5000
selected schemes hypothesize morpheme boundaritgeeiolicensing word forms inter-
nal to real Spanish stems. In placing morpheme deues internal to stems, these
schemes inadvertently include the final charaadéngerb stems as leading characters on
their c-suffixes. In a random sample of 100 Sparsishemes from the 8339 schemes
which the initial search strategy selected, 48 swte incorrectly placed morpheme
boundaries stem-internally, while one scheme hygm#ed morpheme boundaries at lo-
cations inside the suffixes of the scheme’s liceg$orms.

The second sub-type of unsatisfactory paradigm m@damplified in Figuret.1 oc-
curs when a scheme’s c-suffixes are related ndigdbgnging to the same paradigm, but
rather by a chance string similarity of surfaceety@chemes which arise from chance
string collisions are marked in tlE®ROR: CHANCE column of Figuret.1, and include the
20", 100", 3000", and 4008 selected schemes. In the random sample of 100m&zhe
selected by ParaMor’s initial bottom-up searchy#®e schemes produced from a chance
similarity between word types.

These chance schemes are typically small alongdistinct dimensions. First, the
string lengths of the c-stems and c-suffixes of¢hehance schemes are often quite short.
The longest c-stem of the 08elected scheme is two characters long; while bugh
100" and the 3000 selected schemes contain the null c-suffixyhich has length zero.

That ParaMor might erroneously select schemes Becafl their short c-stem and
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c-suffix lengths is easily explained combinatogialWhile the inventory of possible
strings grows exponentially with the length of thieing, there just aren’t very many
length-one or length-two strings. Within the regted space of short strings, it should
come as no surprise when a variety of (often stwest)ffixes happen to occur attached to
the same set of very short c-stems.

Schemes arising through a chance string similafityord types are small on a sec-
ond dimension as well. Chance schemes typicallyatoriew c-stems, and, by virtue of
the details of ParaMor’s search procedure (sedde®2.2), even fewer c-suffixes. For
example, the 300bselected scheme contains just three c-stems amd-suffixes. The
evidence for this 308Dscheme arises, then, from a scant six (short)stypemelyii, a
Chinese namdp, a Spanish determiner and pronouaran, part of an abbreviation for
‘Manchester United’ in a listing of soccer statisti lizano, a Spanish namégzano, a
Spanish word meaning ‘leafy’; ameanzano , Spanish for ‘apple tree’.

Schemes formed from a chance string similarity featypes, such as the 3008e-
lected scheme, are particularly prevalent amongrsels chosen later in the search pro-
cedure, where search paths originate from levalhkrmes whose single c-suffix is less
frequent. Although there are less frequent c-saffithat do correctly model portions of
true paradigms (including the c-suffire, which led to the paradigmatically coherent
1592' selected scheme, see above) the vast majoritgssfftequent c-suffixes do not
model true suffixes. And because the inventory ofdvfinal strings in a moderately
sized corpus is enormous, some few of the manyadlaic-suffixes happen to be inter-

changeable with some other c-suffix on some fekel§i short) c-stems of the corpus.

4.1.2 ParaMor’s Paradigm-Processing Pipeline

This chapter describes the algorithms ParaMor admptemedy the two shortcom-
ings of ParaMor’s initially selected schemes thatenidentified in Sectiod.1.1. To con-
solidate the patchwork modeling of paradigms ancbioal free c-suffixes into structures
which more fully model complete paradigms, Paralsldapts an unsupervised clustering

algorithm to automatically group related schemesaMvhile, to remove schemes which

103



fail to model true suffixes, ParaMor takes a twonmed approach: First, a clean-up of
the training data reduces the incidence of chamagasity between strings, and second,
targeted filtering algorithms identify and discaahemes which likely fail to model para-
digms.

To organize these additional steps of paradigmtifieation, ParaMor adopts a pipe-
line architecture. ParaMor’s initial morphology wetk search algorithm, described in
Chapter 3, becomes one step in this pipeline. Namfor must decide where to add the
pipeline step that will cluster schemes which mquations of the same paradigm, and
where to add steps that will reduce the inciderigeamrrectly selected schemes.

At first blush, it might seem most sound to plateps that remove incorrectly se-
lected schemes ahead of any scheme-clustering stiégrall, why cluster schemes
which do not model correct suffixes? At best, @usig incorrect schemes seems a waste
of effort; at worst, bogus schemes might confoural ¢lustering of legitimate schemes.
But removing schemes before they are clustered$asvn dangers. Most notably, a dis-
carded correct scheme can never be recoverede Iflidtraction of incorrect schemes
could be overcome, corralling schemes into moniclplaradigm models might safeguard
individual useful schemes from imperfect schemietfthg algorithms. And by the same
token, scheme filters can also mistake incorrebeses for legitimate models of para-
digms. Hence, if a clustering algorithm could plasgether such misanalyses as tffe 3
and 11" selected schemes from Figutel, which both model the same incorrect mor-
pheme boundaries in their licensing types, thestehing incorrect schemes might actu-
ally facilitate identification and removal of misalyzed schemes.

As Sectiond.3 explains, ParaMor’s clustering algorithm canfact, accommodate
schemes which hypothesize incorrect morpheme boigsdédut has more difficulty with
non-paradigmatic schemes which are the result ahoh string similarity. To retain a
high recall of true suffixes within the frameworkaopipeline architecture, ParaMor takes
steps which reduce the inventory of selected scheanly when necessary. Sectibr2
describes a technique that vastly reduces the nuofbselected schemes which result
from chance string similarity, while insignificaptimpacting correctly selected schemes.

Section4.3 then describes ParaMor’s scheme-clusteringigign And Sectiord.4 pre-
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sents two classes of filtering algorithm which reieemaining incorrectly selected, but

now clustered, schemes.

4.2 Training Corpus Clean-Up

ParaMor’s clustering algorithm (Sectidn3) is specifically tailored to leverage the
paradigmatic structure of schemes, and, as sudhsisted to schemes which do not ex-
hibit a regular paradigmatic alternation. Schembgkresult from chance similarities in
word forms pointedly lack such paradigmatic struetiarhus ParaMor seeks to remove
chance schemes before the scheme-clustering step.

As mentioned in Sectiod.1.1, the string lengths of the c-suffixes anderrs of
chance schemes are typically quite short. Andefdksuffixes and c-stems of a scheme
are short, then the underlying types which licethgescheme are also short. These facts
suggest the simple data clean up step of exclusliogt types from the vocabulary that
ParaMor uses to induce paradigms. As described miamily, placing this simple word-
length requirement on the paradigm-induction votatywvirtually eliminates the entire
category of chance scheme.

For all of the languages considered in this thBsiaMor has raw text corpora avail-
able that are much larger than the 50,000 typed tmeparadigm induction. Conse-
guently, for the experiments reported in this theflaraMor does not merely remove
short types from the induction vocabulary, but aeps each short word with a new
longer word. ParaMor’s word-to-morpheme segmemadilgorithm, presented in Chap-
ter 5, is independent of the set of types from Wwlschemes and scheme-clusters are
built. Consequently, removing short types fromniag does not preclude these same
short types from being analyzed as containing ipleltnorphemes during segmentation.

The string length below which words are removeadnfitbe paradigm-induction vo-
cabulary is a free parameter. ParaMor is desigoadentify the productive inflectional
paradigms of a language. Unless a productive pgmads restricted to occur only with
short stems, a possible but unusual scenario (hstie English adjectival comparative,

c.f. fasterbut *exquisitel), we can expect a productive paradigm to occun witeason-
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able number of longer stems in a corpus. HencgNrarr needn’t be overly concerned
about discarding short types. A qualitative exatiomaof Spanish data suggested exclud-
ing types 5 characters or less in length. All expents reported in this thesis which ex-

clude short types only permit types longer thas $hcharacter cutoff.

An Evaluation of Schemes from a Vocabulary that Excides Short Types

When restricted to a corpus containing types lortilgan 5 characters in length, the
schemes that ParaMor selects during the initiakcbgahase are remarkably similar to the
schemes that ParaMor’s search algorithm selects ae®rpus containing types of all
lengths—except for the notable absence of inconieahce schemes. In a random sample
of 100 schemes selected by ParaMor over a typeHergstricted corpus of Spanish
newswire containing 50,000 unique word forms, ahlgychemes resulted from a chance
similarity of word forms—this is down from 40 chanschemes in a random sample of
100 schemes selected from a corpus unrestrictegtgerlength.

The 3008 selected scheme.zano, shown in Figuret.1 and discussed in the final
sub-section of Sectiof.1.1, is an example of the kind of scheme Parad/egarch algo-
rithm no longer selects once a type-length regincts in place. The&d.zano scheme
contains just three c-stenis:lo, andman. Because th@.zano scheme contains the null
c-suffix, @, the three surface word typess,lo, andman, are among those that license
this scheme. And because all three of these waektare not longer than 5 characters in
length, all three are excluded from the Spanislagigm induction corpus. Removing
these three types strips tezano scheme of all evidence for th# c-suffix, and the
3000" scheme cannot be selected by the search algorithm.

In all, ParaMor’s search algorithm selects 1430eieschemes, 6909 vs. 8339 when
training over a type-length restricted corpus. Heeveincluding additional long types in
the paradigm-induction vocabulary can actually éase the fragmentation of true para-
digms across schemes. For example, the numberhehss that contain the c-suffix
ados which models a suffix from thar verbal paradigm of Spanish, increases from 31

to 40 when restricting the paradigm-induction cerpucontain no short word types.
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Because the training corpus has changed, scheneesesefrom a corpus restricted
for type length are often not identical to scherselected from an unrestricted corpus.
But, in Spanish, ParaMor continues to identify sebs which model the major inflection
classes of nouns, adjectives, and verbs. Moreowiéh one notable exception, the
schemes which model these major paradigms of Spaoistain numbers of c-suffixes
that are similar to the numbers of c-suffixes ofresponding schemes induced over an
unrestricted corpus.

From the type-lengthinrestricted corpus, ParaMor directly models #hes inflec-
tion class oNumber on Spanish nouns with the sche@es (see Figurel.1 on p. 100);
But from the corpus that is restricted for typegtm ParaMor only models the two suf-
fixes @ andes of this less common nominal paradigm in combimatoth derivational
suffixes: in schemes lik@.es.idad.idades.mente . In Spanish, although nouns, such as
fin ‘end’, pluralize by adding asms suffix, fines, many words which end ies cannot
strip off thates to form a new surface form. For example, to foneSingular of thePlu-
ral adjectivegrandes ‘big’, only thes is removed, yielding the worgtande . It so hap-
pens that in the type-length restricted Spanispuonly 751 of the 3045 word strings
which end ires can remove thats to form a new word that occurred in the Spanigh co
pus. And 751 out of 3045 is 24.7%—just short of 26e0% c-stem ratio threshold used
in the upward search algorithm. Additionally, sitbe ParaMor search strategy does not
begin any search path from tl# scheme, the only search paths which include the
c-suffixes@ andes necessarily begin from some third c-suffix—like tlagérly produc-
tive derivation suffixdad . Theidad suffix is the Spanish analogue of the English deriv
tional suffixity. As Chapter 5 discusses, ParaMor can still anallggemorphology of
inflected forms despite the distracting presencel@ifivational suffixes in a scheme.
Thus, although ParaMor is no longer able to idgritie @.es scheme in isolation, the
type-length restriction does not cause ParaMooge the ability to morphologically ana-

lyze Spanish nouns that malural with es.
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4.3 Clustering of Partial Paradigms

With the careful weeding of the paradigm-inductaampus described in the previous
section, ParaMor largely avoids selecting schembilwarise through chance string
similarity. And with the non-paradigmatic chancénesmes out of the way, ParaMor is
free to apply a clustering algorithm so as to grpapadigmatically related schemes that
hypothesize compatible morpheme boundaries.

As an unsupervised algorithm, ParaMor must useraupervised clustering algo-
rithm to merge schemes. A variety of unsuperviskdtering algorithms exist, from
k-means to self-organizing kohonen maps. ParaMarisent clustering algorithm is an
adaptation of bottom-up agglomerative clusteringgoTreasons underlie the choice of
bottom-up agglomerative clustering. First, aggloetige clustering is simple, there are

just two steps:

1. Clustering begins with each item, i.e. schemthis application, as its own sepa-
rate cluster; and
2. At each time step, unless a halting criteriomgt, that pair of clusters which is

most similar is merged to form a new cluster.

The second reason ParaMor adopts bottom-up agghdineclustering is that the al-
gorithm produces a tree structure that can be exadrbby hand. And as the remainder of
this section describes, careful examination of seheluster trees directly led to adapta-
tions of vanilla agglomerative clustering which aconodate the unique structure of

paradigmatic schemes.

4.3.1 Three Challenges Face any Scheme-Clustering Alganiin

ParaMor’'s scheme-clustering algorithm must addtésse challenges that arise
when schemes are the items being clustered. Twioeothree challenges concern intrin-
sic properties of linguistic paradigms; and twalw three involve schemes as computa-

tional models of paradigms. First, the purely liisgia challenge: morphological syncre-
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tism. Common cross-linguistically, syncretism oscwhen distinct paradigms in a single
language contain surface-identical suffixes. Sytsre implies there will be schemes
which should not be merged even though they comstaime identical c-suffixes.

Second, ParaMor faces the wholly computationallehgé of deciding when to halt
clustering. Whenever possible, an unsupervisedrighgo, such as ParaMor, would like
to avoid introducing free parameters that must $mwebe tuned. To decide when to
stop merging clusters, bottom-up agglomerativetehusy typically uses a free parame-
ter: Clustering ends when the similarity score st the pair of most similar clusters
falls below a threshold. To avoid introducing thisable halting parameter, it is desir-
able to devise a threshold-free method tailoredh® peculiarities of paradigmatic
schemes.

The third challenge ParaMor must overcome has logiuistic and computational
roots: competing schemes may hypothesize rival hene boundaries in a common set
of surface types, but such competing schemes simailde merged into the same cluster
as they are distinct models of morphological sttt Different individual schemes hy-
pothesize different morpheme boundaries in a simgied type both for the computa-
tional reason that ParaMor does not know, a pnanere the correct morpheme bounda-
ries lie, but also because, in natural languagephmogical agglutination allows a single
word type to legitimately contain more than one ph@me boundary. The following sub-
sections motivate and present adaptations to thie battom-up agglomerative clustering

algorithm that address these three challenges.

The First Challenge: Syncretism

Some examples will help elucidate the first chajkefacing ParaMor’s clustering al-
gorithm: surface identical c-suffixes in distin@rpdigms, or syncretism. Figude? lists
six syncretic schemes taken from Figdté: As a refresher, the schemes in Figle
were selected by ParaMor’s initial search over angh corpus of 50,000 types unre-
stricted for type length.

In Spanish, verbs that belong to #reparadigm systematically share many inflec-
tional suffixes with verbs of thie paradigm. In Figurd.2 the 38, 135" and 2008 se-
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Figure 4.2: An excerpt from Figure 4.1. Six schemes selected by ParaMor’s initial bot-
tom-up search algorithm that exhibit syncretism in the ar, er, and ir inflection classes

of the Spanish verbal paradigm.

lected schemes all contain only c-suffixes whichdeisuffixes found in both ther and
their inflection classes. But grammars of Spanish sifidguish between aer and anr
inflection class becausa andir verbs do not sharall inflectional suffixes. In Figure
4.2, the 12% selected scheme contains the c-suffixesra, anderia which all only oc-
cur oner verbs, while the 1532 selected scheme contains the c-suffikemdiré which
only occur attached t verbs. A scheme-clustering algorithm must not @lée 127
and 1592 selected schemes into the same cluster, but stistelad produce distinct
clusters to model ther andir inflection classes.

More insidious than the suffix overlap between #neandir inflection classes of
Spanish verbs, is the overlap between the venbaiflection class on the one hand and
theer andir inflection classes on the other. While sharedasm#rfsuffixes in ther andir
inflection classes consistently mark identical s#tsnorphosyntactic features, most suf-
fixes whose forms are identical across é¢hend theer/ir inflection classes mardtiffer-
ent morphosyntactic features. Tlresent Tense suffixesas, a, amos, andan mark
various Person-Number features in thdndicative Mood on ar verbs butSubjunctive
Mood on er andir verbs. Converselys, e, emos (imos onir verbs), ancen mark In-
dicative Mood on er verbs, but these-forms markSubjunctive on ar verbs. Of course,

ParaMor is unaware of morphosyntactic features,sanan appeal to syntactic features is
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irrelevant to ParaMor’s current algorithms. Butaclg, ParaMor must carefully consider
the 12" and 30" selected schemes (Figute?), which ultimately model ther ander/ir
classes respectively, but which contain the c-sefé anden in common.

Syncretic paradigm overlap is widespread in langadmeyond Spanish. In English,
many nouns form their pluralith the suffixs, but verbs can also take arsuffix, mark-
ing 3rd Person Present Tense. Important for the evaluation of the work in thgesis,
paradigm overlap also occurs in German, Finnishiki$h, and Arabic which, together
with English, comprise the evaluation languagethefMorpho Challenge competitions
(see Chapter 6). When modeling the inflectionabgeyms of English, Spanish, German,
Finnish, Turkish, Arabic or any other language,a®&r must retain distinct models of
each paradigm, though some of their suffixes mighstring identical.

Suffix string identity overlap between paradigmss tdirect implications for the
scheme similarity measure ParaMor employs duringteting. Bottom-up agglomerative
clustering, like most unsupervised clustering atgars, decides which items belong in
the same cluster by measuring similarity betweeah @among the items being clustered.
To cluster schemes, ParaMor must define a simyjléetween pairs of scheme-clusters.
Perhaps the most intuitive measure of scheme sitgyilavould compare schemes’
c-suffix sets. But because a suffix surface forny mppear in more than one paradigm,
comparing c-suffix sets alone could spuriously gsgghat schemes which model distinct
but syncretic paradigms be merged.

Two facts about paradigm structure can rescue foxshdsed scheme similarity
measures from the complication of paradigm overkigst, as a robust rule of thumb,
while two paradigms may share the surface formsnaf or more suffix, each paradigm
will also contain suffixes the other does not. Erample, although thar, er, andir in-
flection classes of the Spanish verbal paradigne lsaffixes in common, each contains
suffixes which the others do not—the infinitive fxés ar, er, andir themselves
uniquely distinguish each inflection class. Sinijtarin English, although verbal and
nominal paradigms share the strings a suffix, the verbal paradigm contains the suf-
fixesing anded which the nominal paradigm does not; and the nohpasadigm con-

tains suffix surface forms which the verbal paradigoes not: the English possessive
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ending, which appears after the optioNalmber suffix, yields the orthographic para-
digm cross-product form&, s’'s, ands’, which are unique to nouns.

The second useful fact about paradigm structurecra aid a clustering algorithm is
that a single lexical item can only belong to ag@rparadigm. In Spanish, any particular
verb will belong to exactly one of the three inflen classesar, er, orir. In the Spanish
newswire corpus of 50,000 types that Figdr2 is built from, for example, no c-stem
forms a word type by attaching the c-suffidkas while also forming a separate word by
attachingdas: The c-suffixesadas andidas mark thePast Participle Feminine Plural in
the ar and in their/er inflection classes respectively. Sinadas andidas share no
c-stem, it is reasonable to propose tidds andidas belong to distinct paradigms and
that the 12 selected scheme, which containtas, and the 38 selected scheme, which
containsdas (see Figuret.2), should not be merged

These two facts about paradigm structure lead Paradpermit no scheme-cluster
to be formed which would contain a pair of c-sugBxwhich share no c-stems. The gen-
eral technique of preventing induced clusters foamtaining items that are significantly
dissimilar is known as discriminative clusteringar&@Mor easily calculates the set of
c-stems that two c-suffixe$; andf,, have in common by revisiting the morphology
scheme network used in the initial search for adatei schemes, see Chapter 3. The level
2 network scheme subsumifhgandf, exactly holds the c-stems which form words with
bothf, andf,. Typically, thef; . f, scheme will be empty of c-stems exactly when, euth
loss of generalityf; is a c-suffix that is unique to a paradigm to wificdoes not belong.
Note that since the initial search will only selschemes containing a positive number of
c-stems, iff; andf, are not mutually substitutable on at least oneemsthen no single
selected scheme can contain biethndf..

ParaMor’s discriminative clustering requirementttbaery pair of c-suffixes in a
cluster share some c-stem is not foolproof. Fifstllp the general rule that distinct para-
digms contain some distinct surface suffix is ndarsguage universal. Even in Spanish,
the two suffixes in the paradigm NLimber on adjectivesare identical to the suffixes of

the largest inflection class of tiMumber paradigm omouns—both paradigms contain
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exactly the two suffixe® ands. And, indeed, both adjectives and nouns appe&ain
raMor’s final cluster which contains tiges scheme.

At the same time, it is also possible for two lekxitems that participate in two dif-
ferent paradigms to have surface-identical stemgriglish, many verbal lexical items
have a nominal counterpatti run vs.a run, a table vs.to table, etc. And in Spanish,
where stems do not readily convert part-of-speeithowt a change in the form of the
stem, there are still lexical collisions. Among tmest egregious collisions are pairs of
unrelated Spanish verbs whose stems are surfangcalebut which belong to distinct
inflectional paradigmsparar ‘to stop’ vs.parir ‘to give birth,” crear ‘to create’ vscreer
‘to believe.” Thus, pairs of c-suffixes that unityudistinguish paradigms, such as the in-
finitive endingsar andir, orar ander, can still share c-stems.

In practice, pairs of stem-identical lexical iterage rare enough, and paradigm
unique suffixes common enough, that with the dmstrative restriction on clustering in
place ParaMor is able to identify paradigms. Néwddss, when a paradigm has no dis-
tinguishing suffix, or when two distinct paradigrmmgntain many lexemes with surface-
identical stems, ParaMor struggles to preventrdisfparadigms from merging—this is a

clear area for future research.

The Second Challenge: Halting ParaMor’s Clustering

In addition to helping keep distinct paradigms safg ParaMor’s discriminative re-
striction on the c-suffixes which can belong tdwster also provides a principled halting
criterion that avoids the introduction of an ariyr similarity cutoff parameter. ParaMor
allows agglomerative clustering to proceed untitgireg any pair of clusters would place
into the same cluster two c-suffixes that share+stem. Thus, discriminatively restrict-
ing clustering by c-suffixes solves two of the #hidhallenges facing a scheme-clustering

algorithm.

The Third Challenge: Isolating Distinct Morpheme Baundaries

Now ParaMor must solve the third challenge: To cmdlesce schemes that model

competing morpheme boundary hypotheses. Consigefth2", 3¢ 5" and 13' se-
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Figure 4.3: An excerpt from Figure 4.1. Five schemes licensed by the word apoyadas .

lected schemes, as first presented in Figuteand repeated in Figude3 for conven-
ience. Each of these five schemes is licensed éBpganish wordpoyadas ‘supported
(Adjectival Feminine Plural)’: The f' selected scheme contains the c-stgwyada and

the c-suffixs, the 2° scheme has the c-staqpoyad and the c-suffixas, the 3 contains
apoya anddas, while the 8' and 13' selected schemes each contain the c-stemy and

the c-suffixadas. Between them, these five schemes model, correciiycorrectly, four
distinct morpheme boundaries in the same wapdyada+s , apoyad+as , apoya+das ,

and apoy+adas . As the %' and 13' selected schemes hypothesize the same boundary,
apoy+adas , it is reasonable to consider placing this paisaiemes in a single cluster.
The other schemes licensed dpoyadas each hypothesize distinct morpheme bounda-
ries and should remain in separate clusters.

Now consider the implications for a scheme sintjametric that arise from compe-
tition between schemes over their morpheme bounkdgpptheses. Since schemes pos-
sess syntagmatic information in their sets of agliec-stems, it seems reasonable to add
information from c-stems to information from c-skéfs when evaluating scheme simi-
larity. It also seems reasonable to give c-stemlaiity and c-suffix similarity approxi-
mately equal weight. Fair representation of c-stamd c-suffixes is of concern as the
number of c-stems can far outstrip the number siiffixes in a scheme: thé' s5cheme
selected in the ParaMor run of Figut& contains just two c-suffixes but more than five

thousand c-stems.
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To fairly weight syntagmatic and paradigmatic imh@tion in a scheme similarity
metric, ParaMor compares schemes based on thefsetsrd types which license each
scheme. Comparing schemes by their sets of licgrigmes weights the aggregate evi-
dence from c-stems equally with the aggregate ecieldrom c-suffixes because each
licensing type consists of one c-stem and one fixsiut, because a single word, such
asapoyadas , may license two or more schemes which hypothadigiinct morpheme
boundaries, directly measuring scheme similaritycbynparing sets of licensing word
types could erroneously merge schemes sudsaanda.as.o.os which model distinct
morpheme boundaries in many of the same words!

To address the problem of separating schemes whiotiel distinct morpheme
boundaries, ParaMor annotates each licensing tygach scheme with the morpheme
boundary proposed by that scheme. For example M@arannotates the licensing type
apoyadas as apoyada+s for the @.s scheme, but aspoyad+as for the a.as.o0.0s
scheme. Then, to compute the similarity betweenpairyof schemes, ParaMor measures
the similarity between the pair's sets of morphdraendary annotated types. Morpheme
boundary annotated types retain the naturalnesseasuring scheme similarity through
sets of licensing word types, while distinguishipgtween schemes that model distinct
morpheme boundaries,

To measure the similarity between pairs of schelmsters, as opposed to pairs of
lone schemes, ParaMor must specify for each cltiséeset of morpheme boundary an-
notated word types the cluster covers. There ateast two reasonable ways to define
the set of boundary annotated types covered bysterl First, ParaMor could define this
set as the union of the sets of morpheme boundargtated types which belong to any
individual scheme in the cluster. Alternatively,rédor could define a cluster's set of
morpheme boundary annotated types as the crossgirofiall c-stems and all c-suffixes
contained in any scheme in the cluster. ParaMas fgtthe more conservative first op-
tion. By allotting to each cluster just those mapwie boundary annotated types which
explicitly license some selected scheme, ParaMaraguees that reconcatenating the
c-stem and c-suffix portions of any boundary anteataype in any cluster will produce a

word that directly occurred in the paradigm indostcorpus.
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As long as scheme-cluster similarity is measuneer gets of morpheme boundary
annotated licensing types, ParaMor’s performancelustering schemes is not signifi-
cantly affected by the particular set similaritytneused. For the experiments reported
in this thesis, ParaMor relies on the cosine meidfiset similarity. The formula for the

cosine similarity of two arbitrary sets andy is: |X n Y|/QX||Y|)1’2.

4.3.2 Clustering Large and Clustering Small

To finish out the description of ParaMor’s clusterialgorithm, this section presents
an adaptation that ParaMor makes to the basic agghiive clustering algorithm that
prevents schemes which are all individually liceh&y very few types from joining
forces to form a single larger cluster. The adamtatlescribed in this section has a rela-
tively mild impact on the final set of scheme-crstthat ParaMor induces. However,
this section’s adaptation is described for compless, as all experiments reported in this
thesis take this step.

Because individual schemes that receive suppomt few licensing types may still
introduce valid c-suffixes, ParaMor does not wansimply discard all small selected
schemes. Instead, ParaMor leverages larger selscteames to rope in the valid small
schemes. Specifically, ParaMor requires at leastlarge scheme for each small scheme
a cluster contains, where the size of a schemeegsured as the number of unique mor-
pheme boundary annotated word forms that licens€éhig threshold size above which
schemes are considered large is a free parametetegcribed in Sectich4, the scheme
size threshold is reused during ParaMor’s filterst@ge. Sectiod.4.1 details the setting

of this scheme size threshold.

4.3.3 An Examination of ParaMor’'s Scheme-Clusters

By tailoring bottom-up agglomerative clusteringsahemes with first, a discrimina-

tive restriction over the c-suffixes a cluster ncaytain, and second, a similarity measure
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over sets of morpheme boundary annotated typeaMearsolves the three challenges

that face a scheme-clustering algorithm. ParaMor:

1. Recognizes syncretic c-suffix overlap in paradig

2. Halts the agglomerative clustering algorithmhwiit introducing a free parame-
ter, and

3. Preserves the differing morpheme boundary hygsath proposed by competing
schemes.

As a technical summary of ParaMor’s scheme-clusgesigorithm, Appendix B contains
a pseudo-code implementation of bottom-up agglotiveraclustering adapted for
schemes as described in Sectidr&1 and4.3.2. This section focuses instead on illustrat-
ing the output of ParaMor’'s agglomerative clustgraigorithm by looking at clusters
built over Spanish selected schemes.

But first a note on the runtime complexity of Pa@M clustering algorithm: In the
worst case, standard bottom-up agglomerative ciagteuns inO(n°) time, wheren is
the number of items to be clustered. In practibe,discriminative and scheme-size re-
strictions ParaMor places on clustering signifigaspeed up computation. The current
Java implementation of ParaMor’s scheme-clusteaigprithm completes operation
within ten minutes when clustering schemes induitech a corpus of 50,000 unique
word types.

Figure4.4 contains typical scheme-clusters that ParaMidd® after the three pipe-

lined steps of:

1. Data clean-up (Secti@gh2),
2. Initial scheme selection from a morphology retChapter 3), and
3. Scheme clustering (SectiohS.1 and4.3.2).

Like Figure4.1 found on p. 100, Figu#e4 was built from a Spanish newswire corpus of
50,000 types, but all word types in the corpus fmhich the clusters in Figuee4 were

built are longer than five characters. Becausecthmpus underlying Figurd.l is not
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Figure 4.4: Typical clusters produced by ParaMor over a Spanish corpus of 50,000 types each longer than 5 characters.
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identical to the corpus backing Figutel, the schemes from which the clusters of Figure
4.4 were built are not identical to the schemes&igure 4.1. But most schemes from
Figure4.1 have a close counterpart among the scheme#$ whbidribute to the clusters
of Figure4.4. For example, Figuré.1 contains &.s scheme, modeling the most fre-
guent inflection class dflumber on Spanish nouns and adjectives@& scheme also
contributes to the first cluster given in Figdrd, but where th&.s scheme of Figurd.1
contains 5501 c-stems, ti@es scheme contributing to thé'tluster of Figuret.4 has a
c-stem count of 5399. Note that only full clustare shown in Figurd.4, not thed.s
scheme, or any other scheme, in isolation. As amatkample of similarity between the
schemes of Figuré.4 and those of Figuek1, turn to the third cluster of Figuded. This
third cluster contains a scheme modeGehder andNumber on Spanish adjectives that
consists of the same c-suffixes as tH8 gelected scheme in Figukl, namely
a.as.0.0s .

Further correspondences between the clusters afrdé-i§4 and the schemes of
Figure 4.1 are given in the second column of Figdrd, labeledCORRESPONDS TO
FIGURE 4.1. If the cluster of a row of Figur 4 contains a scheme whose set of c-suffixes
is identical, or nearly identical, to that of a eote in Figurel.1, then the rank of the cor-
responding scheme of Figudel is given outright in th€orrREsSPONDS column of Figure
4.4; if the majority of the c-suffixes of a schemkFigure4.1 appear in a cluster of
Figure4.4, but no particular scheme in that cluster dyxairresponds to the scheme of
Figure4.1, then theCorrReESPONDS column of Figuret.4 gives the rank of the Figudel
scheme in parentheses.

The clusters in Figurd.4 are sorted by the number of unique morphemadany
annotated surface types which license schemesedfltister—this number of unique li-
censing types appears in the third column of Figude Because most c-stems do not oc-
cur in all of a cluster’'s schemes, the number ofjum licensing types of a cluster is not
simply the number of c-suffixes multiplied by themmber of c-stems in the cluster. The
fourth column of Figuret.4 gives the number of schemes which merged tm fibiat
row’s cluster. The only other column of Figutel which does not also appear in Figure

4.1 is the column labeleflLLo. The ALLo. column is marked with a dot when a row’s
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cluster models an allomorphic alternation. Clustaesked in theALLo. column are dis-
cussed further in Sectigh4.2. For additional explanation of the other ocuhs of Figure
4.4, reference their description in Sectibfh.1.

Zooming in close on one scheme-cluster, Figlukecontains a portion of the cluster-
ing tree for the scheme-cluster from Figdré with the % most licensing types—a clus-
ter covering suffixes which attach 4o verbs. The cluster tree in Figudes is of course
binary, as it was formed through bottom-up agglatiee clustering. Schemes in Figure
4.5 appear in solid boxes, while intermediate eltsstonsisting of more than one scheme
are in dotted boxes. Each scheme or cluster Issfull set of c-suffixes it contains,
where a cluster contains all c-suffixes that apgeaany scheme it subsumes. Leaf
schemes also report their full sets of c-stems;dnsters state the cosine similarity be-
tween the sets of boundary annotated licensingstgbehe cluster’s two children. It is
interesting to note that similarity scores do natnetonically decrease moving up the
tree structure of a particular cluster. Non-dedrepsimilarities are a consequence of
computing similarities over sets of objects, irstbase sets of morpheme boundary anno-
tated types, which atgnionedup the tree.

The bottom-most cluster of Figude5, which covers 343 types, is built directly from
two schemes. Two additional schemes then mergerimwtith the bottom-most cluster.
Finally, the top-most cluster of Figu#e5 is built from the merger of two clusters which
already have internal structure. The full clusteetcontinues upward beyond the small
branch shown in Figuré.5 until the cluster contains 23 schemes. AlthoeghaMor can
form clusters from children which do not both imtuge novel c-suffixes, each child of
each cluster in Figuré.5 brings to its parent some c-suffix not foundhie parent’s other
child. In each intermediate cluster of Figut&, any c-suffix which does not occur in
both children is underlined.

Keeping in mind Figures 4.4 and 4.5, examine Paravitheme-clusters in light of
the two broad shortcomings of the initially selelctechemes, as discussed in Sec-

tion4.1.1, namely:

1. The fragmentation of language paradigms acr@ss/racheme models, and

2. The poor precision of selected models againdgédying paradigms.
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Figure 4.5: A portion of a cluster tree ParaMor built from schemes selected during a
search run over 50,000 Spanish types longer than 5 characters. This cluster tree
was constructed using ParaMor’s bottom-up agglomerative clustering algorithm

adapted for schemes as described in
pears in a solid box; each intermediate

Sections 4.3.1 and 4.3.2. Each scheme ap-
cluster in a dotted box. The c-suffixes of each

scheme or cluster of schemes are in bold, c-stems are in italics. Each c-suffix in a

cluster which uniquely originates in one

child is underlined.
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Clustering Improves Fragmentation

ParaMor’'s scheme clustering was specifically desigto address the patchwork
fragmentation of paradigms across schemes. Oneeafbst striking features of Figure
4.4 are the clusters which merge schemes thatlyjoamd correctly model significant
fractions of a single large Spanish paradigm.

One such significant joint model is the clusterhvitie 4" largest number of licensing
types. A portion of this @ largest cluster appears in the cluster-tree ofifeig.5. All
told, the &' cluster contains 41 c-suffixes, more than any rosiceeme-cluster. These 41
c-suffixes model Spanish suffixes which attaclatwerb stems: 7 c-suffixes model ag-
glutinative sequences of a non-finite inflectiosaffix followed by a pronominal clitic,
namely:arla, arlas, arlo, arlos , arme, arse, andandose ; 9 of the c-suffixes are various
surface forms of the relatively productive derigall suffixesaciéon, ador, andante;
And more than half of the c-suffixes in this cluséee inflectional suffixes in ther in-
flection class proper: This™4cluster contains 24 c-suffixes which model inflecal ar
suffixes, as presented in Appendix A; while oneitalthal c-suffix, ase, is a less com-
mon alternate form of th8rd Person Singular Past Subjunctive. Counting just the 24
c-suffixes, the & scheme-cluster contains 64.9% of the 37 uniquéaseiforms found
among the suffixes of thar inflection class of Spanish verbs that is listedAjppen-
dix A. Among the 24 inflectional suffixes are aflthe 3rd Person endings for botltsin-
gular and Plural Number for all sevenTense-Mood combinations that are marked in
Spanish. Thesérd Person endings area, an, 6, aron, aba, aban, ara, aran, aria, arian,

e, en, ara, andaran. Since newswire is largely written 8nd Person, it is to be expected
that the3rd Person morphology is most readily identified from a newssmcorpus.

Focusing in on one suffix of ther verbal paradigmados, an example suffix fol-
lowed throughout this chapter, clustering redudes ftagmentation of this one suffix
across partial paradigms. Before clustering, tiseiftix ados occurred in 40 schemes,
after clustering it is present in just 13 distictisters. Clearly, ParaMor’s clustering al-
gorithm has considerably consolidated the fragnientedels of the Spanisir verbal

paradigm that were output by the initial bottomsgheme search.
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Thear inflection class is the most frequent of the thhegular Spanish verbal inflec-
tion classes, and so is most completely identiigd?araMor. But the clusters with the
11" and 17" most licensing types cover, respectively, theand ir inflection classes
nearly as completely as th® dluster covers thar paradigm: The 11 cluster models 19
of the 37 unique inflectional suffixes in tlee inflection class, 4 inflection+clitic se-
quences, and 6 derivational suffixes; And th& tluster contains 14 of the 36 unique
surface forms of inflectional suffixes in the inflection class, 4 inflection+clitic se-

guences, and 2 derivational suffixes.

Cluster Precision

Now consider how the clusters of Figurd stack up against the second broad short-
coming of ParaMor’s initially selected schemes: tiieny original schemes that did not
model paradigms. First, the data clean-up stemritbesl in Sectiort.2, which excludes
short types from ParaMor’s paradigm-induction cetpurtually eliminated the first sub-
class of unsatisfactory schemes, namely those ssheinich resulted from chance string
similarities between word types. None of the schelasters in Figurd.4, for example,
are built from schemes that arise from chance &dallisions.

Although ParaMor now avoids constructing non-payagitic schemes that result
from accidental string similarities, because Paréd/lbottom-up scheme search begins
an upward path from each individual c-suffix, frequor infrequent (Sectiod.2.2), the
initial search algorithm constructs many schemed #hie licensed by very few word
types. Some of these small schemes are absorbedangter clusters, but ParaMor’s
c-suffix discriminative restriction on scheme chrgtg (Sectiord.3.1), in combination
with ParaMor’s heuristic restriction on the numbésmall schemes which a cluster may
contain (Sectior.3.2), prevents the majority of these small sclefmam joining any
cluster. From the 6909 original schemes that Paraddlects when training on a corpus
of types longer than 5 characters, clustering sajuces the total number of separate
paradigm models to 6087 scheme-clusters.

The last six rows of Figur4.4 all contain ‘clusters’ consisting of just agisnscheme

that was prevented from merging with any other swheAll six singleton clusters are
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licensed by no more than 35 word types. And nonthefclusters correctly models in-
flectional affixes of Spanish. Five of the six detgn clusters misanalyze the morpheme
boundaries in their few types, while the clustethvihe 30 most licensing types treats
a set of unproductive verbal prefixes as c-stettaginmg valid verlbstemsnto the c-suffix
set. Sectiort.4.1, directly addresses ParaMor’s strategy foroneng the many small in-
correct singleton clusters that the clustering edoce produces.

In addition to the large number of incorrect singteclusters, many initially created
clusters misanalyze morpheme boundaries. But tlhmes@rect morpheme boundary
models are expected: As described in Sectidr2, ParaMor intentionally postpones dis-
carding schemes which hypothesize unlikely morphdmendaries until after the
schemes have been clustered, in the hope thaeghgimight aggregate schemes which
all model the same incorrect boundaries. Half ef ¢tusters in Figurd.4 hypothesize
inferior morpheme boundaries in their licensingelypThe largest such cluster is the
cluster with the ¥ most licensing types. Like thé'2selected scheme of Figudel
which it subsumes, thé'®cluster places morpheme boundaries aftemtiiewel which
begins most suffixes in the inflection class. And exactly as hoped, th& @uster has
nicely unified schemes which all hypothesize th@meanorpheme boundaries in a large
set of types—only this time, the hypothesized beuied happen to be incorrect. Section
4.4.2 describes steps of ParaMor’s pipeline whpecsically remove clusters which hy-

pothesize incorrect morpheme boundaries.

A New Shortcoming: Overgeneralization

Before moving on to a discussion of the algoritiPasaMor employs to improve the
c-suffix precision of scheme-clusters, note thastring introduces a new shortcoming
into ParaMor’s models of paradigms: overgenerabrattach scheme;, is a computa-
tional model that the specific set of c-stems astiffixes ofC are paradigmatically re-
lated. When ParaMor merg€sto a second schemé;, the paradigmatic relationship of
the c-stems and c-suffixes Gfis generalized to include the c-stems and c-sedfiafC’
as well. Sometimes a merger’'s generalization id feeihded, and sometimes it is mis-

placed. When bot& andC’ model inflectional affixes of the same paradigmsgntacti-

124



cally similar stems, then the c-stems@tisually do combine to form valid words with
the c-suffixes ofC". For example, the suffixag andimos are regular inflectional suf-
fixes of their inflection class of Spanish verbs. Although theutfis iré never occurs in
any selected scheme with the c-suffros, and although the Spanish wanagmplimos
‘we carry outnever occurs in the Spanish corpus from whicha®ar learns paradigms,
the cluster of Figurd.4 with the 21 most licensing types places the c-suffiiésand
imos in the same cluster together with the c-steumpl —correctly predicting that
cumplimos is a valid Spanish word form.

On the other hand, when a c-suffixpof some schemé&;, models a syntactically or
idiosyncratically restricted suffix, it is unlikelthat f forms valid words with all the
c-stems of a merged clust@t. Consider the *lscheme-cluster of Figu#e4 which joins
the schem@.s with the schemeg.mente.s andmenente.mente . The c-suffixesd and
s mark Singular and Plural Number, respectively, on nouns and adjectives; The suffix
(2)mente productively converts an adjective into an advedimething like the suffiky
in English; and the strinmenente is simply a misspelling. Where ti#s scheme con-
tains 5399 c-stems, the schengemente.s contains 253, and the schenmee-
nente.mente contains just 3 candidate stenisevitable , unani, and tnica. The f'
scheme-cluster of Figur&.4 contains many Spanish c-stems that represéytnonns,
includinghombro ‘shoulder listed in theC-Stem column of Figuret.4. These nominal
c-stems originate in th&.s scheme and do not form legitimate Spanish advieybat-
tachingmente : *hombromente ‘*shoulderly. Furthermore, productively assuming that
the c-suffixmenente can attach to any candidate stem is wrong. Thaslthcluster has
overgeneralizedh merging these three schemes.

Overgeneralization is endemic to all clusteringoatpms, not just unsupervised bot-
tom-up agglomerative clustering of schemes. Anthenparticular case of scheme clus-
tering, it would be difficult for any unsupervisetethod to reliably distinguish between
infrequent inflectional affixes on the one hand aedsonably frequent derivational af-
fixes, such asnente, on the other. Chapters 5 and 6 of this thesisritesapplying Pa-
raMor’s induced scheme-clusters to a morphologcallysis task: Specifically ParaMor

segments word forms into constituent morphemes.bBtdre ParaMor could be applied
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to a generation task that would propose novelféuth words, the problem of overgener-

alization in scheme-clusters would need to be sslyoaddressed.

4.4 Filtering of Merged Clusters

With most valid schemes having found a safe hamea ¢luster with other schemes
that model the same paradigm, ParaMor focuses prowing precision by removing er-
roneous scheme-clusters. ParaMor applies two daddéters to cull out unwanted clus-
ters. These two filter classes address the two irengatypes of cluster-precision error
described in SectioA.3.3, p. 116. The first filter class, detailedSaction4.4.1, targets
the many scheme-clusters with support from only lieensing types. The second class
of filter, presented in Sectiod.4.2 identifies and removes remaining scheme-@lsist

which hypothesize incorrect morpheme boundaries.

4.4.1 Filtering of Small Scheme-clusters

ParaMor’s first class of filtering algorithm consif just a single procedure which
straightforwardly removes large numbers of errosesmall clusters: the filter discards
all clusters that are licensed by less than a ietdshumber of morpheme boundary an-
notated word types. To minimize the number of fpaeameters in ParaMor, the thresh-
old below which this filter discards small clustésstied to the clustering threshold de-
scribed in Sectior.3.2, which restricts the number of small schethes may join a
cluster to be no more than the number of largeraelan the cluster. These two thresh-
olds can be reasonably tied together for two readeinst, both thresholds limit the influ-
ence of small erroneous schemes. Second, bothhdidssmeasure the size of a cluster as
its number of licensing morpheme-boundary annotgeels.

Figure4.6 graphs the number of clusters that ParaMottifteshover a Spanish cor-

pus after first clustering schemes with a particsktting,k, of the cluster-size threshold
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Figure 4.6: The number of clusters and their recall of unique Spanish suffixes as the
scheme-cluster size threshold varies. The graph marker of each function at the
threshold value of 37 unique licensing types is larger in size because it is this value of

37 which ParaMor uses in experiments reported in this thesis.

and then filtering out those clusters which are lim#nsed by at least word types.
Figure4.6 also contains a plot of suffix recall as a tiorc of these tied thresholds. Pa-
raMor calculates suffix recall by counting the nanbf string-unique surface forms of
Spanish inflectional suffixes, as given in Appendixthat appear in any identified clus-
ter. The technique described in this section fonaeng small clusters was developed
before ParaMor adopted the practice of only trgrom longer word types; and Figure
4.6 presents the cluster count and suffix recaltesiover a corpus that includes types of
all lengths. Figurel.6 presents results over corpora that are naiceest by type length
because it is from the unrestricted corpus datathigathreshold for small cluster filtering

was set to the value which ParaMor uses in expeitgnéroughout this thesis. As noted
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below, over a Spanish corpus that only includesgyipnger than 5 characters, the effect
of filtering by licensing type count is similar.

Looking at Figured.6, as the size threshold increases, the numbgusters that Pa-
raMor retains quickly drops. But suffix recall ordiowly falls during the steep decline in
cluster count: ParaMor is therefore discarding tgdsbgus schemes containing illicit
suffixes. Because recall degrades gracefully, Kaetesize threshold below which clus-
ters are discarded should have a relatively mifi@ceon the paradigms that ParaMor
induces. At a threshold size of 37 morpheme-boyndanotated licensing word types,
ParaMor retains more than 80% of the string-uniopflectional suffixes of Spanish,
while significantly reducing the number of clustdrat ParaMor selects.

At this threshold value of 37, all but 137 of th®lZ clusters that formed from the
8339 originally selected schemes are removed, 2088eduction in the number of clus-
ters. Note that the vertical scale on Figdi@ goes only to 1000 clusters. Counting in an-
other way, before filtering, the scheme-clusterataimed 9896 unique c-suffixes, and
after filtering just 1399, an 85.9% reduction. Teeall of unique inflectional suffixes at
a threshold value of 37 licensing types is 81.684,Joout of 87. Except where otherwise
noted, all experiments reported in this thesisauskister-size threshold of 37.

Before filtering schemes for the number of licegsiypes they contain, 92.0% of the
unique suffixes of Spanish morphology appeared assuaffix in some scheme-cluster.
But this automatically derived value of 92.0%, 6rd@ 87, is somewhat misleading. At a
threshold value of 37, nine unique c-suffixes whak string identical to true Spanish
suffixes are lost. But six of the nine lost unigusuffixes appear in schemes that do not
model Spanish inflectional suffixes. For examplee @-suffix that is removed during
cluster size filtering i®rias, which is string identical to and Person Singular Present
Conditional Spanish verbal suffix. But the c-suffixias appears in only one cluster—a
cluster which clearly does not model Spanish veflb& cluster in whiclerias occurs
consists of the single schemda.erias.o.0s with its c-stemsescud.ganad.grad.libr.-
mercad . Although the c-suffixesgria, erias, ando are all string identical to suffixes in
the Spanister verbal paradigm, ithis scheme these c-suffixes do not arise from verbal

licensing forms: Reconcatenating c-stems and éx®&sff most word forms which both
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license this cluster and enderia or erias, like libreria /librerias ‘library/libraries’ and
ganaderia /ganaderias ‘ranchranche§ are not verbs but nouns; And forms with the
o/os endings, likelibro/libros ‘book/book'sand ganado/ganados ‘cattle (sg/pl)’, are
derivationally related nouns. After ignoring c-sxés which appear in schemes where
the c-suffix does not model a Spanish inflectiadfix given in Appendix A, only three
true c-suffixes are lost during this first filtegstep that removes small clusters.

When training from a Spanish corpus that consietgedy of types longer than 5
characters in length, the numbers follow a simgattern to those given for the unre-
stricted corpus: Before clustering, ParaMor idégif6909 schemes; this is reduced to
6087 after clustering; and after filtering at aegtrold of 37, only 150 clusters remain.
The recall of unique suffixes, when training ove6panish corpus restricted for type
length, are identical to the values over the uniestl corpus: 92.0% before filtering and
81.6% after, although, oddly, ParaMor does noteeittlentify or filter exactly the same
set of inflectional suffixes. Of the clusters pmasel in Figuret.4, the six clusters in the
last six rows, repeated here as Figdiré, each contains fewer than 37 licensing types,
and each is therefore discarded.
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¥ IS 92 ol
2|82 &3] |VErs| L fof_ C-SUFFIXES C-STEMS
“lkés*|shal,. |&E3[8|E L
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10000 - | 15 |1 ° 3 dismo dista distas 5 bu ovie parti perio perre
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Figure 4.7: An excerpt from Figure 4.4: Six scheme-clusters that are removed by Pa-
raMor's small-cluster filter. Each removed cluster is licensed by fewer than the
threshold number of licensing types, 37. The third column gives the number of types

that license each scheme-cluster.
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And finally, when inducing paradigms over a corpestricted by word-length, para-
digm fragmentation improves for the particular sufif the ar inflection class that this
chapter follows: After filtering, 7 clusters remanit of the original 13 clusters which
contained the c-suffibados. Two of the six discarded clusters that contaios are
clearly correctly discarded as they are amongéhedurviving clusters which arise from
chance string similarities between word types. l@f additional four clusters containing
ados that ParaMor removes, each models at least oaéiviedyy unproductive deriva-
tional suffix. The discarded clustedo.ados.amento.amentos.ando , for example, con-
tains c-suffixes which model the inflectional syéfs ado, ados, andando, but also c-
suffixes modeling forms of the derivational suféimento /amentos , which forms nouns
from somear verbs. As ParaMor is designed to identify prodigctnflectional morphol-
ogy, it is not unreasonable or unexpected thatmehdusters modeling unproductive

derivational suffixes are lost.

4.4.2 Morpheme Boundary Filtering

In Spanish, as described in Sectibd.1, filtering scheme-clusters by thresholding
the number of types that must license each clasgestically reduces the number of clus-
ters that ParaMor proposes as models for infleatiparadigms. From the thousands of
initially created scheme-clusters, type-licenseeffihg leaves fewer than two hundred.
This is progress in the right direction. But as8gla has less than ten productive inflec-
tional paradigms, see Appendix A, ParaMor stilltihasver estimates the number of
Spanish paradigms.

A hand analysis of scheme-clusters reveals thatéyer type of erroneous cluster
which persists after size filtering are those dustthat incorrectly model morpheme
boundaries. After training and filtering over a Bish corpus of 50,000 types that are
each longer than 5 characters in length, exactlystheme-clusters remain. And of these
150 clusters, more than two-thirds, 108, hypotteeaiz incorrect morpheme boundary in
their licensing types. That misplaced morpheme Hatias are the major source of error

in the remaining scheme-clusters is not surpridihgrpheme boundary errors comprised
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one of the major error classes of the initiallyeséd schemes identified in Sectibi. 1.
And thus far in ParaMor’s processing pipeline ngoathm has specifically dealt with
boundary errors. Indeed, as described in Sedtidrl, ParaMor has intentionally post-
poned the removal of schemes and scheme-cluseriypothesize incorrect morpheme

boundaries until after ParaMor’s scheme-clustesieg.

The Problem: Mutual Substitutability

ParaMor’s initial bottom-up morphology network sgastrategy, described in Chap-
ter 3, is designed to detect the hallmark of irftewal paradigms in natural language:
mutual substitutability between sets of affixeswdger, when the c-suffixes of a scheme
break not at a morpheme boundary, but rather atsdraracter boundary internal to a
true morpheme, the incorrect c-suffixes are sometistill mutually substitutable. Figure
4.8 contains three scheme-clusters, built over aniSp corpus, that illustrate non-
paradigmatic mutual substitutability. The scheméd-igure 4.8 were first shown in
Figure 4.4. The scheme-cluster on th& rbw of Figure4.8 incorrectly hypothesizes a
morpheme boundary that is after theowel which begins many inflectional and deriva-
tional ar verb suffixes. In placing the morpheme boundargréfiea, this scheme-cluster
cannot capture the full paradigmafverbs. Compare, for example, the cluster on ffe 2
row of Figure4.8, which includes inflectional suffixes such @adst Person Singular
Present Indicative andé 1st Person Singular Past Indicative which do not begin witla.
Nevertheless, the (incorrect) c-suffixes which appe the i row’s cluster are mutually
substitutable: in the Spanish woadministrados ‘administered(Adjectival Masculine
Plural)’, the erroneously segmented c-suffos can be replaced by to form the Span-
ish word administra ‘administer (3rd Person Singular Present Indicative)’, or by the
c-suffix da to formadministrada ‘(Adjectival Feminine Singular)’, etc.

Similarly, the scheme-cluster on th€ ®w of Figure4.8 models some of the many
Spanish adjective stems which end,imbierto ‘open’, cierto ‘certain’, pront.o ‘quick’
etc.—but this cluster incorrectly prepends thelfinaf these adjective stems to the adjec-
tival suffixes, forming c-suffixes such as; tas, andto. And these prepended c-suffixes

are mutually substitutable on adjectives whose stend int: abierto becomesbiertas
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Figure 4.8: An excerpt from Figure 4.4. The rank 2 cluster hypothesizes a morpheme
boundary internal to true suffixes; the rank 4 cluster correctly models morpheme
boundaries that immediately follow verbal stems; while the rank 10 cluster models

boundaries internal to stems.

whento is replaced byas. Encountering schemes like those that contribwiténé clus-
ters on the %t and & rows of Figure4.8, ParaMor’s initial search strategy discovers mu
tual substitutability and erroneously selects them®rrectly segmented c-suffix sets.
Since ParaMor cannot rely on mutual substitutabdit suffixes to identify correct mor-

pheme boundaries, ParaMor turns to a secondargaieaistic of paradigms.

The Solution: Letter Successor Variety

The secondary characteristic that ParaMor adaptsrder to identify and discard
those scheme-clusters which hypothesize incorrecpheme boundaries listter succes-
sor variety. Letter successor variety is an idea that wasiraily proposed by Harris
(1955). Take any string Let F be the set of strings such that for eachl F, t.f is a
word form of a particular natural language. Hanaged that when the right edgetdélls
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at a morpheme boundary, the string$itypically begin in a wide variety of characters;
but whent divides a word form at a character boundary irsteta a morpheme, any le-
gitimate word final string must first complete taigoneously split morpheme, and so will
begin with the same character. This argument silyiteolds when the roles ofandf are
reversed.

Harris harnesses this idea of letter successoetyany first placing a corpus vocabu-
lary into a character tree, or trie, and then psopp morpheme boundaries after trie
nodes that allow many different characters to imatety follow. Consider Harris’ algo-
rithm over a small English vocabulary consistingloé twelve word formseest, rests,
resting , retreat , retreats , retreating , retry , retries , retrying , roam, roams , androam-
ing. The upper portion of Figu# 9 places these twelve English words in a triee hot-
tom branch of the trie begimso-a-m. Three branches follow the in roam, one branch
to each of the trie node& i, ands. Harris suggests that such a high branching faator
dicates there may be a morpheme boundary afies-m. The trie in Figuret.9 is a for-
ward trie in which all vocabulary items share atnoode on the left. A vocabulary also

defines a backward trie that begins with the fotaracter of each vocabulary item.

Adapting Letter Successor Variety to Schemes

Interestingly there is a close correspondence lBtwieie nodes and ParaMor
schemes. Each circled sub-trie of the trie in thedortion of Figuret.9 corresponds to
one of the four schemes in the bottom-right portdthe figure. For example, the right-
branching children of thg node inretry form a sub-trie consisting @ andi-n-g, but
this same sub-trie is also found following th@ode inrest, thet node inretreat, and the
m node inroam . ParaMor conflates all these sub-tries into tinglsi schem&.ing with
the four adherent c-stemsst, retreat , retry , androam . Notice that the number of leaves
in a sub-trie corresponds to the paradigmatic @ixsldvel of a scheme, e.g. the level 3
schemad.ing.s corresponds to a sub-trie with three leaves entiedrie path#, i-n-g,
ands. Similarly, the number of sub-tries which conflateform a single scheme corre-

sponds to the number of adherent c-stems belongitige scheme.
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Just as schemes are analogues of trie hodes, Pac@ddink schemes in a fashion
analogous to transition links between nodes in &wdvand backward tries. Transition
links emanating to the right from a particular soeeC, will be analogues of the transi-
tion links in a forward trie, and links to the lefinalogues of transition links in a back-
ward trie. To define forward scheme links from hesoe,C, let the setF, consist of all
c-suffixes ofC which begin with the saménharacterh. Striph from each c-suffix inF,
forming a new set of c-suffixess-. Link C to the scheme containing exactly the set of
c-suffixes F.. Schemes whose c-suffixes all begin with the saimaracter, such as
t.ting.ts andt.ting, have exactly one rightward path that links to shheme where that
leading character has been stripped from all dxadf For example, in Figur¢.9 the
t.ting.ts scheme is linked to th@&.ing.s scheme.

Leftward links among schemes are defined by rengréine roles of c-stems and
c-suffixes as follows: for each charactkeyrwhich ends a c-stem in a particular scheme,
C, a separate link tak€3to a new scheme whehestarts all c-suffixes. For example, the
@.ing.s scheme contains the c-stemst andretreat, which both end in the character
hence there is a link from th#ing.s scheme to theting.ts scheme. Note that when all
the c-suffixes of a schem€, begin with the same character, the rightward fiokn C to
some schemd’, exactly corresponds to a leftward link fr&@hto C.

Drawing on the correlation between character taied scheme networks, ParaMor
ports Harris’ trie based morpheme boundary idaaifon algorithm quite directly into
the space of schemes and scheme-clusters. Justrias identifies morpheme boundaries
by examining the variety of the branches emandtioigp a trie node, ParaMor identifies
morpheme boundaries by examining the variety inttigestyle scheme links. ParaMor
employs two filters which examine trie-style schdinks: the first filter seeks to identify
scheme-clusters, like the cluster on tRledw of Figure4.8, whose morpheme boundary
hypotheses are placed inside true suffixes; whike $econd filter removes scheme-
clusters that hypothesize stem-internal morphemendiaries, as the cluster on th8 3

row of Figure4.8 does.
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Filtering Suffix-Internal Morpheme Boundary Errors

To identify scheme-clusters whose morpheme bountgpptheses are incorrectly
suffix-internal, ParaMor’s first boundary filter @xmines the Harris-style letter successor
variety of the leftward trie links of the schemesai cluster. When a scheme places its
morpheme boundaries at locations that are intéonalie suffixesleftward trie links lead
back toward the stem and back toward the correcplneone boundary of each licensing
type.

Following Hafer and Weiss (1974) in a trie algamtiand Goldsmith (2001; 2006) in
a paradigm-based system, ParaMor measures lettegssor variety using entropy. Each
leftward scheme link, can be weighted by the number of c-stems ingbaéme whose
final character advocatésIn Figure4.9 two c-stems in th@.ing.s scheme end in the
charactet, and thus the leftward link frof.ing.s to t.ting.ts receives a weight of two.
ParaMor then measures the entropy of the distohutif the c-stem weighted links. A
leftward link entropy close to zero indicates ttreg c-stems of a scheme have little vari-
ety in their final character; And minimal charactariety is the sign of a boundary hy-
pothesis placed at a morpheme-internal position.

To judge whether a cluster of schemes hypothesinaacorrect morpheme bound-
ary, ParaMor’s suffix-internal boundary filter exa@s the leftward link entropy of each
scheme in each cluster. Each scheme with a leftWikdentropy below a threshold is
flagged as an error. And if at least half of theesnes in a cluster are flagged, then Pa-
raMor’s suffix-internal error filter discards theluster. ParaMor’s suffix-internal filter is
conservative in discarding schemes. ParaMor ugbseahold value, 0.5, over the left-
ward link entropy that only flags a scheme as daitg a boundary error when virtually
all of a scheme’s c-stems end in the same chardatgpire 4.10is a pseudo-code im-
plementation of ParaMor’s algorithm to filter owtffix-internal morpheme boundary er-

rors.

Filtering Stem-Internal Morpheme Boundary Errors

ParaMor employs a second morpheme boundary fidtadéntify scheme-clusters

which incorrectly hypothesize boundaries that anternal to the stems of the words
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Fi | t er Suf fi xI nt er nal Boundar yEr r or s( schemeClusters ) {
foreach (  schemeCluster in schemeClusters ) {
countOfErrorSchemes =0;
countOfNonErrorSchemes =0;

foreach ( scheme in schemeCluster ) {
if ( |ikel yModel O AMor phenelLef t Edge( scheme))
countOfNonErrorSchemes ++;
else
countOfErrorSchemes ++;

if ( countOfErrorSchemes >= countOfNonErrorSchemes ) {

schemeClusters. r enove( schemeCluster );
}
return schemeClusters;
}
/l Measure the entropy of a scheme’s leftward trie- style links
i kel yModel OF AMor phenelef t Edge( scheme) {
foreach (  cStem in scheme.cStems ) {
stemFinalChars {cStem. fi nal Char ()}++ ;
}
if (  entropy(stemFinalChars )> threshold )
return  true ;
else
return false ;
}

Figure 4.10: A pseudo-code implementation of ParaMor’s algorithm to filter out scheme-
clusters that likely hypothesize morpheme boundaries for their licensing types that fall

internal to true suffixes.

which license the cluster. This filter over stertemmal boundary errors is designed to
remove schemes like that found on th&@w of Figure4.11, where the final of true
Spanish stems has been stripped away and erropelded to the front of all c-suffixes
in the scheme.

But consider ParaMor’s quandary when examiningrttoepheme boundaries pro-
posed by the schemes on tfieahd 3 rows of Figure4.11. The schemes on th& dnd
2" rows of Figure4.11 are taken from Figurel on p. 100, which lists schemes selected
in one particular Spanish run of ParaMor’s inisaheme-search procedure. The scheme

on the & row of Figure4.11 is a valid scheme which ParaMor could havecseti, but
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did not. The schemes on th& dnd 3 rows of Figure4.11 both attempt to model inflec-
tional suffixes of the verbalr paradigm. The potentially selected Bw scheme arises
from the same word types which license tfierdw’s scheme, but proposes different
morpheme boundaries in this set of words. And iddéds somewhat ambiguous where
to place the morpheme boundary in Spanish versofAthe c-stems of the®1row’s
scheme end with the characterbut all of the c-suffixes of the%row’s scheme begin
with the charactea. While traditional grammarians would likely prefére boundaries
hypothesized by the scheme on tffer8w, many linguists would argue that the inflec-
tional suffix of a Spanish verb begins after therelsteristic vowel, as the™Irow’s
scheme suggests. ParaMor adopts a pragmatic vieem \there is ambiguity about a
morpheme boundary, ParaMor retains the left-masaeable boundary. In Figudell,
it is the scheme on thé“3ow that proposes the left-most boundary thabissistent with
the word forms which license thé' and the § rows’ schemes. So ParaMor should dis-
card the 1 row scheme.

Biasing ParaMor’'s morpheme boundary filters towprdferring the left-most rea-
sonable boundary requires that a filter designeddéemtify misplaced stem-internal
boundaries cannot merely be the mirror image ofstfiéix-internal error filter. As de-

scribed in the previous sub-section, the suffiefindl boundary error filter will note the
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Figure 4.11: The first two rows contain schemes first encountered in Figure 4.1. The

final row is a valid scheme not selected by ParaMor.
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low entropy of the c-stem-final character distribntamong the c-stems of the scheme
on the ' row of Figure4.11; consequently the suffix-internal error filteill flag the T
row’s scheme as hypothesizing an incorrect morpheouadary. If the stem-internal er-
ror filter were simply the mirror image of the suffnternal filter, then, because all of the
c-suffixes of the *§ row’s scheme begin with the same character, therse on the 3
row of Figure4.11would also be flagged as not modeling a correct morpheme deoyh
ParaMor’s stem-internal error filter achieves asyetignfrom the suffix-internal filter by
examining both rightward and leftward scheme linksleed, the core subroutine of the
suffix-internal error filter, that measures therepy of leftward scheme links, is called
from within ParaMor’s stem-internal filter.

The first requirement that a schen@, must meet to be flagged as a stem-internal
boundary error is that all the c-suffixes Gxmust begin with the same character, or
equivalently, that the entropy in the distributiointhe initial characters of’s c-suffixes
must be zero. When all the c-suffixesbegin with the same character, ParaMor strips
that character from each c-suffix@and examines the schen@, that contains exactly
the stripped set of c-suffixes. For example, sialt¢he c-suffixes in the scheme on the
3" row of Figure4.11 begin with the character a.aba.aban.ada.adas.ado.ados.an.-
ando.ar.ara.aron.arse.ard.aran , ParaMor’s stem-internal boundary error filterldals
the single rightward path along the charaetdp the scheme found on thé& fiow of
Figure4.11, namelyd.ba.ban.da.das.do.dos.n.ndo.r.ra.ron.rse.rad.ran . Similarly, be-
cause all of the c-suffixes that belong to the s#hen the 2 row of Figure4.11 begin
with the character. ta.tamente.tas.to.tos , ParaMor examines the schemamente.as.-
0.0S.

Once ParaMor has identified@ scheme that lies along an unambiguous rightward
scheme link, ParaMor considers the likelihood t@Gats the left edge of a morpheme
boundary. IfC’ does fall at a likely morpheme boundary then Panadilscards the origi-
nal C scheme—ParaMor assumes that the origihalisplaced the morpheme boundary a
little bit to the left of the correct location, adentally moving inside a true stem. To as-
sess the likelihood th&'’ correctly models the left edge of a morpheme banndPa-

raMor simply asks theuffixinternal morpheme boundary error filter to meagteeen-
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tropy of the leftward distribution of c-stem-fingtharacters o€’. For example, whe@ is
the scheme on the"2row of Figure4.11 andC' is the scheme.amente.as.0.0s (a
scheme which correctly models morpheme boundahiasdivide adjectival stems and
suffixes) the suffix-internal boundary error filtBnds thatC’ does indeed mark a mor-
pheme boundary—and ga.tamente.tas.to.tos is rightly flagged as erroneously hy-
pothesizing a stem-internal morpheme boundary. €@y, wherC is the scheme on
the 3% row of Figure4.11 andC' is the £ row’s scheme, the'Brow’s scheme wilhot be
discarded, because the suffix-internal error filtdt not flag the £' row’s scheme as ly-
ing at a morpheme boundary—the c-stems of theov scheme end in a wide variety of
characters.

The scheme on thé%row of Figure4.11 has mis-hypothesized morpheme bounda-
ries exactly one character inside the stems dicegsing types. But it is not uncommon
for ParaMor to select schemes that clip two or nubra@acters off the tail of each stem.
To catch stem-internal boundary errors that areguladeep inside stems, ParaMor fol-
lows chains of rightward scheme links. SpecificallyaraMor can reach a scheme along
a non-branching rightward path that scores asedylileft edge of a morpheme boundary,
then the original scheme is discarded.

Two examples will help illustrate rightward scheof&ins in the stem-internal filter.
First, as mentioned, when ParaMor’s stem-internalr dilter evaluates the scheme from
the 39 row of Figure4.11, the filter first visits the scheme on tiféraw of Figure4.11
and decides that the'Tow’s scheme does not model a morpheme boundaryhis
point, the stem-internal error filter attempts tdpsoff yet another character from the
front of the c-suffixes that belong to thé fow’s scheme. But the c-suffixes of the
scheme on the®lrow of Figure4.11 do not all begin with the same character:riig
c-suffix, @, begins with the null character, the c-suffix begins withb, the c-suffixda
with d, etc. Since multiple rightward paths emanate ftoenf' row’s scheme, the stem-
internal error filter cannot examine any more sckgnmAnd, as the stem-internal filter
encountered no rightward scheme with high leftwardropy, ParaMor accepts the
schemea.aba.aban.ada.adas.ado.ados.an.ando.ar.ara.aron.ar se.ard.aran as model-

ing a valid morpheme boundary.
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Suffix-Internal Errors

Both of these schemes have little variety in their
distributions of c-stem-final characters. Indeed both
of these schemes have just a single leftward link. A

distribution with little variety will have low entropy.

Stem-Internal Error

Although this scheme has high entropy
in its distribution of c-stem-final charac- A Morpheme Boundary
ters (i.e. many leftward links) and so
might be mistaken for a morpheme
boundary, it has little variety among the
characters which occur c-suffix initially.
Indeed a non-branching rightward path
leads to the double-circled scheme
which is the left edge of a morpheme
boundary.

The double-circled scheme that forms
the left edge of this ambiguous mor-
pheme boundary, or stretched hub
(Johnson and Martin, 2003), is the mor-
pheme boundary that ParaMor ulti-
mately retains.

Figure 4.12: An illustration of ParaMor’'s morpheme boundary error filters. In this
diagram, each circle represents a scheme. Schemes are connected along
transition links that follow c-stem-final characters to the left and c-suffix-initial
characters to the right. ParaMor examines schemes’ transition-link distributions

to decide which schemes most likely model true morpheme boundaries.

As a second example of rightward scheme chainssigenthe diagram in Figure
4.12. Each circle in this diagram abstractly repnes a scheme. With its multiple left-
ward scheme links and consequent high leftwardopgirthe double-circled scheme in
the center of the figure is correctly identifiedaasorpheme boundary. Although the far-
left scheme-circle in Figurd.12 also has high leftward entropy, a non-brargigath

leads rightward. To determine that the far-leftesub is in fact a stem-internal boundary
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error, ParaMor’s stem-internal filter must followd rightward links to reach the double-
circled scheme.

In summary, ParaMor will flag a schentg, as likely hypothesizing an erroneous
stem-internal morpheme boundary if there existerabranching rightward path fro@
leading to a schemé€’, such that ParaMor believé€X falls at the left edge of a correct
morpheme. Like the suffix-internal morpheme bougdanror filter, to discard a cluster
of schemes, the stem-internal error filter mugg fh@lf of the schemes in a cluster as hy-
pothesizing an incorrect morpheme boundary. Figui& contains a pseudo-code im-
plementation of ParaMor’s stem-internal morphemenidary error filter. The computa-
tional expense of all three of ParaMor’s filterimgorithms is negligible—the run time of
each is linear in the number of scheme-clustersotsider. The small-cluster filter and

both morpheme boundary error filters conclude thealyses in a matter of seconds.

4.5 ParaMor’s Paradigm Models

Section 4.4 completes the description of all steps in Panéd paradigm
identification pipeline. The description of ParaRégpipeline began in Chapter 3 with the
initial scheme search and continued in this chaptdr scheme clustering and filtering.
Figure4.14 is a graphical representation of ParaMor'®lpyed paradigm discovery al-
gorithms. Beginning at the top of the figure: A robingual natural language corpus is
screened of all words 5 characters or less in ke(fs¢ctiord.2). From the new corpus of
longer types, ParaMor searches a network of cateljplradigms, or schemes, for those
which most likely model true inflectional paradigif@hapter 3). The many overlapping
and fragmented scheme models of partial paradigenghan clustered into unified mod-
els of individual inflectional paradigms (Sectid8). And finally, three filtering algo-
rithms remove those clusters which, upon closgodnoton, no longer appear to model
inflectional paradigms: one filter removes smatigieton clusters; while two others ex-
amine for errors the morpheme boundaries thattbygogsed scheme-clusters hypothesize

in their licensing types. After these six stepsaRor outputs a relatively small and co-
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Fi | t er St erl nt er nal Boundar yEr r or s( schemeClusters ) {
foreach (  schemeCluster in schemeClusters ) {
[ countOfErrorSchemes, countOfNonErrorSchemes] =[O0, OF;
foreach ( scheme in schemeCluster ){
if ( boundaryl sLi kel ySt em nt er nal ( scheme))
countOfErrorSchemes ++;
else
countOfNonErrorSchemes ++;

if ( countOfErrorSchemes >= countOfNonErrorSchemes )

schemeClusters. r enove( schemeCluster );
}
return schemeClusters;
}
/l'If an unbranching rightward path exists from ‘sc heme’, follow the
/I path until either 1) the path forks or 2) we rea ch a scheme that is
/I likely the left edge of a morpheme—i.e. we reach a scheme with high
/I leftward entropy. If we do reach a scheme that i s a likely left edge
/I of a morpheme then return ‘true’, that is, retur n that ‘scheme’
/l'likely models an incorrect stem-internal morphem e boundary.
boundaryl sLi kel ySt enl nt er nal ( scheme) {
currentScheme = scheme;
while ( currentScheme. al | CSuf fi xesBegi nW t hSaneNonNul | Char act er () {
foreach ( cSuffix in currentScheme.cSuffixes ) {
rightwardCSuffixes. add( cSuffix. renoveFirst Character() ;
}
currentScheme =
dynamicSchemeNetwork. gener at eSchene( rightwardCSuffixes );
if ( 1ikel yModel O AMor phenelLef t Edge( currentScheme ))
return true ;
}
return false
}

Figure 4.13: A pseudo-code implementation of ParaMor’s algorithm to filter out scheme-
clusters that likely hypothesize morpheme boundaries for their licensing types that fall

internal to true stems.

herent set of scheme-clusters which it believesahtie inflectional paradigms of a lan-
guage.

The remainder of this section assesses the quédlaraMor’s Spanish paradigm in-
duction performance after the full set of pipelineduction steps has been taken. Section
4.5.1 concludes the in-depth examination of Par&viSpanish paradigm models that

began in SectioA.1.1: Where Sectiof.1.1 discussed the initial schemes that ParaMor’s
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bottom-up search procedure produces, Sedtibrl takes a detailed look at ParaMor’s
final set of filtered Spanish scheme-clusters. i8eet.5.2 then presents an experiment
over Spanish data that measures the robustnessafBr's paradigm building pipeline
to a reduction in the size of the induction corpBsection4.6 in this chapter, together
with Chapters 5 and 6, will broaden the evaluat@dnParaMor to include English,

German, Finnish, Turkish, and Arabic.

Raw Text

Data Cleanup:
xclude Short Types
Scheme Search

Scheme Clustering

Licensing Type
Count Filter

Suffix-Internal
orpheme Boundary
Stem-Internal
Morpheme Boundary

NS

Paradigm Models:
Scheme-Clusters

Section 4.2

Chapter 3

Section 4.3

Section 4.4.1
Filters < Section 4.4.2

Section 4.4.2

Figure 4.14: The steps of ParaMor’'s data processing pipeline: Together scheme
search, clustering, and filtering transform raw natural language text into models of

inflectional paradigms consisting of clusters of schemes.
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4.5.1 ParaMor’s Final Scheme-Clusters as Viable Models dParadigms

This section evaluates the final scheme-clusteed BParaMor produces over a
Spanish newswire corpus of 50,000. As describe8leiction4.4.1, after scheme search,
scheme clustering, and the filtering out of smaheme-clusters, ParaMor retains 150
scheme-clusters. Of these 150, the stem-interreakafiix-internal morpheme boundary
error filters remove all but 42; And of the 108 swfe-clusters which hypothesized an
incorrect morpheme boundary only 12 are not dishtay the morpheme boundary fil-
ters. Unfortunately, ParaMor’s morpheme boundargrefiltering does have collateral
damage: Recall of string-unique Spanish suffixegpsirfrom 81.6% to 69.0%. All to-
gether, 11 unique c-suffixes that are string idmtio Spanish inflectional suffixes given
in Appendix A no longer appear in any cluster fhataMor retains.

Four of these unique c-suffixes were only founctlusters which did not model a
Spanish paradigm. Consider the fate of the c-sidfex which is string identical to the
verbal er/ir suffix that marks2" Person Singular Past Indicative. The only cluster in
which the c-suffixiste occurs isiste.isten.istencia.istente.istentes.istiendo.istir -
istié.istia —a cluster which ParaMor’s stem-internal morphemenaary error filter cor-
rectly deletes. Thisste -containing cluster is an incorrect segmentatiorvetb forms
whose stems end in the striisg. Among the licensing types of thige -containing clus-

ter areconsiste , existe , persiste , etc. Where this scheme-cluster hypothesizesdbe s

mentations areons +iste , ex +iste, etc., the correct segmentations of these words re
moves only the word-fina, an inflectional morpheme which mark% Person Singular
Present Indicative.

But, unfortunately, 7 of the 11 lost unique c-st#8 model true Spanish suffixes. All
7 of these lost c-suffixes model Spanish pronomifiaits. And all 7 were lost when the
only cluster which modeled these Spanish clitics wamoved by the suffix-internal
morpheme boundary error filter. The specific clustat was removed i€.a.emos.la.-
las.le.lo.los.me.on.se.d.an.ia.ian . In this cluster, the c-suffixds, las, le, lo, los, me,
andse are all pronominal clitics, the c-suff@ correctly captures the fact that not all
Spanish verbs occur with a clitic pronoun, and faining c-suffixes are incorrect

segmentations of verbal inflectional suffixes.
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While it is worrisome that an entire category ofBish suffix can be discarded with
a single mistake, Spanish clitics had two countsresj them. First, ParaMor was not de-
signed to retrieve rare paradigms, but pronomihat< are very rare in formal Spanish
newswire text. And second, the pronominal clitidsicki do occur in newswire text al-
most exclusively occur after an infinitive morphemsuallyar. Exacerbating the prob-
lem, the c-suffixes which appear alongside thecsliin this cluster are incorrect suffix-
internal segmentations whose c-stems also end &s so many c-stems in th&.a.-
emos.la.las.le.lo.los.me.on.se.4.4n.ia.ian  cluster end im, the suffix-internal boundary-
error filter believes thicluster to hypothesize an erroneous morpheme boynBa-
raMor’s bias toward preferring the left-most pldusi morpheme boundary will fail
whenever the c-suffixes of a cluster consisterdljoiv the same suffix, or even when
they consistently follow the same set of suffixesich all happen to end with the same
character. This is a weakness of ParaMor’s curaégarithm. Note however, that Pa-
raMor retains clusters that contain c-suffixes tihatdel cross-product sequences of ver-
bal inflectional suffix + clitic. For example, tung to Figure4.15, one cluster that Pa-
raMor retains is the scheme-cluster on tfler@w of Figure4.15. This 4 row cluster
contains such inflectional suffix + clitic crosseguct c-suffixes asarla, arse, andan-
dose.

Figure4.15 is a reprint of Figurd.4 from p. 118 which contained a sampling of 17
clusters that ParaMor constructed from initialljested schemes before any filtering.
Keeping in mind ParaMor’s full paradigm inductioipgline, here are the fates of the
scheme-clusters first introduced in Figdrd: The cluster on the top row of Figutet
(or Figure4.15) models the most prevalent inflection classliwhber on Spanish nouns
and adjectives, containing the schems. This T cluster is correctly retained after all
filtering steps. The @ scheme-cluster in Figuré.15 incorrectly places a morpheme
boundary after the epenthetic voweeWwnhich leads off most suffixes in tha inflection
class. ParaMor’s suffix-internal morpheme boundampr filter correctly and success-
fully removes this ' cluster. ParaMor correctly retains the schemetetason the 3,
4" 7" and & rows of Figuret.15. These clusters have respectively fAe48, 11", and

17" most licensing types of any cluster that ParaMoids. The &' scheme-cluster cov-
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ers the scheme,.as.o.os, which models the cross-product ®énder andNumber on
Spanish adjectives, and which was tH& gelected scheme during ParaMor’s initial
search. The other candidate suffixes in this cfust#ude a version of the adverbial suf-
fix (a)mente, and a number of derivational suffixes that cohaejectives to nouns. The
4" 11" and 17" scheme-clusters in Figu#el5 are correct collections of inflectional and
derivational suffixes that correspond to, respetyivthe verbahr, er, andir paradigms.

The 8" scheme-cluster in Figure15 segments a Spanish nominalization internally.
But ParaMor’'s morpheme boundary filters are unss&fcd at removing this scheme-
cluster because this Spanish nominalization stiffix four allomorphssion, cion, sién,
andcion . The 8" scheme-cluster places a morpheme boundary imnedizefore the
in these allomorphs. The suffix-internal morphenoairidary error filter is unable to re-
move the cluster because some c-stems erdwhile others end ire, increasing the
leftward link entropy. But the stem-internal boundarror filter is also unable to remove
the cluster, because, from a majority of the scleenfethis cluster, after following a
rightward link through the initial of these c-suffixes, ParaMor’s stem-internal efittar
reaches a scheme that, although still morphemenigiehas two rightward trie-style
paths, one following the characteand one following the charactér

In fact, the largest class of errors in ParaMagimaining 42 scheme-clusters consists
of clusters which, like the"5cluster, involve allomorphic variation in theirseem or
c-suffix sets: Thirteen final clusters contain allarphic errors. In Figurd.15, in addi-
tion to the &' cluster, the cluster on th& @ow, ranked 2% for the size of its set of licens-
ing types, is also led astray by an allomorphieratition—this time it is the stem that has
multiple allomorphic surface forms. In the orthqgmg of some Spanish verbs, stem-final
¢ allomorphically becomesc. The 2% cluster hypothesizes a morpheme boundary to the
left of the true stem boundary, erroneously inalgdstem-final characters within its
c-suffixes. The only way ParaMor can model an atigghic stem change is by expand-
ing the c-suffixes of a scheme or cluster to ineltite variable portion of the verb stems.

Both the ' cluster and the Jicluster are marked in theLLo. column of Figuret.15.
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Figure 4.15: Figure 4.4 Revisited: Typical clusters produced by ParaMor over a Spanish corpus of 50,000 types.
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Nearing the end of Figur#e 15, the scheme-cluster on tHeréw of Figure4.15, with
the 1¢" most licensing types and the scheme-cluster od@eow, with the 108 most
licensing types hypothesize morpheme boundarieadjactives at stem-internal posi-
tions. Both the 1B and the 108 clusters are rightly removed by ParaMor’s steresimal
morpheme boundary error filter. Correctly, neithibe suffix-internal nor the stem-
internal morpheme boundary filter removes the sehehster with the 123 most li-
censing types, which mode®ural Number on nouns. Finally, as mentioned in Section
4.4.1, the last six scheme-clusters in Figdrgs are correctly removed by ParaMor’s
cluster size filter that looks at the number oétising types in a cluster.

In summary, of the scheme-clusters in FigliEs (and Figurd.4), ParaMor retains
only those clusters with thé'13¢9, 4" 5" 11" 17" 21% and 122" most licensing word
types; and of these, all but th& &and 2% exactly model true Spanish morphological
paradigm. Overall, the scheme-clusters that ParadModuces as models of Spanish
paradigms are generally quite reasonable. In thesecof ParaMor’s paradigm induction
pipeline, ParaMor builds models of all major infieaal paradigms of Spanish including:
both major sub-paradigms markidnmber on nouns, the paradigm cross-product of
Gender and Number on adjectives, and all three sub-paradigms of Spaverbs. In
Chapter 5, ParaMor will take the paradigms that lawét for any particular natural

language and morphologically segment word-formihaf language.

4.5.2 Paradigm Learning and Vocabulary Size

As a final examination of the paradigms that ParaMalds from a Spanish corpus,
this section considers the lower limit of the vadaby size from which ParaMor can
confidently learn morphological paradigm structié¢here the majority of this and the
previous chapter held the vocabulary size constadtfocused on devising strong algo-
rithms for identifying the paradigms of a languagean unsupervised fashion, this sec-
tion takes ParaMor’s full paradigm identificatioipgline as given (see Figurel4 on

p. 144) and investigates the effects of limiting #ize of the vocabulary.
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While ParaMor’s algorithms are accepted as givieis, tocabulary experiment still
requires careful consideration of how to set Pandd/foee parameters. ParaMor has four
free parameters: one parameter thresholds the scbestem ratios in ParaMor’s bottom-
up initial search phase; one parameter sets thiepgnvalue at which ParaMor discards
scheme-clusters that seem to model incorrect marphH®oundaries; one parameter sets
the minimum word length for the vocabulary; andafiy, one parameter thresholds the
minimum number of word types which must licenselaesne-cluster. Of these four, the
only parameter which need vary with vocabulary szihe cutoff on the minimum num-
ber of word types that a cluster must containhhegholding a ratio of c-stems, the pa-
rameter controlling ParaMor bottom-up search ieiehtly agnostic to absolute counts;
as described in Secti@gh4.2 the threshold over morpheme boundary ersoadréady set
conservatively; and this experiment will leave weroted the requirement that all input
words be at least five characters long. The clusger threshold, on the other haaden-
sitive to vocabulary size—with fewer types in timeluction vocabulary, a scheme built
from the same c-suffix set will likely have fewetheerent c-stems. And, indeed empiri-
cally, when the cluster size threshold is lefthat value set in Sectich4.1, namely 37,
ParaMor removes an unreasonable number of scharsted at lower vocabulary sizes.
Hence, for this experiment, the cluster size thokkis linearly scaled with vocabulary
size such that at a vocabulary of zero types th&tet size threshold would also be zero.

This section uses two metrics to evaluate ParaMmgi$ormance at identifying the
suffixes of true paradigms. First, to gauge sucaessicovering suffixes, ParaMor’s final
scheme-clusters are measured for global recallpainiSh inflectional suffixes, where
global recall is defined as the recall in any schatuster of any string-unique suffix
from a true paradigm. Second, to evaluate ParaMdnility to succinctly group suffixes
into paradigms, this section reports the final nandf clusters ParaMor identifies.

It is reasonable to expect suffix recall to dromswhat as the size of the induction
vocabulary falls simply because in a smaller votalyuthe more rare suffixes may sim-
ply not occur. The more serious question for Pamalavhether there is a vocabulary
size at which ParaMor’s morphology induction algarns break down; a lower limit on

vocabulary size where ParaMor is unable to idergifgn those suffixes whiako occur
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in the data. Similarly, in measuring the numbeclosters ParaMor produces, the objec-

tive is to discover a vocabulary size at which Remabegins to fail at reliably grouping

suffixes into paradigms. ParaMor’s final clustemuebwould reveal a failure to form

paradigms if, as vocabulary size decreased, thdauof clusters grew unreasonably.

Figure 4.16 plots ParaMor’s paradigm identification penfiance over a corpus of

Spanish as the vocabulary size varies down frofA0&0types to 5,000. Three separate

series are plotted in Figu#el6. The bottom, dashed, line reports ParaMonal ftluster

count at each vocabulary size, while the two uflipes report recall scores. The central,
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Figure 4.16: A learning curve — Spanish morpheme recall and the number of paradigm-

clusters ParaMor identifies as the vocabulary size varies from 50,000 down to 5,000.

Achievable Recall is calculated out of those valid Spanish suffixes which occur at

least twice in the induction vocabulary as word-final strings.
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solid, line is ParaMor’s global recall of all sghunique Spanish suffixes. The upper,
dashed, line gives ParaMor’s global recall of alffizes that occurred as a word-final
string on at least two types in that vocabulary-seaems reasonable to allow any mor-
phology induction system to discount as noise tlsgphemes that only occur once in a
corpus. Note, however, that when the induction atary is varied, as in this experi-
ment, the set of suffixes that occur at least tviicéhe vocabulary will change. In par-
ticular, because the smaller vocabularies in theament are subsets of the larger vo-
cabularies, the set of achievable suffixes can dalyrease as the vocabulary size shrinks.
Also, since the number of achievable suffixes walver be larger than the full set of suf-
fixes in a language, achievable recall will near helow the strict global recall.

Look first at the central solid global suffix recaurve in Figure4.16. While suffix
recall does fall as vocabulary size decreasedathis initially gradual. Reducing the vo-
cabulary size from 50,000 types to 20,000 resulnly an 8.0% absolute drop in global
recall: from 67.8% to 59.8%. Reducing the vocalyutaze further begins a more precipi-
tous decline in recall. Moving from 20,000 to 1®M0@cabulary types reduces recall by
10.4% absolute, down to 49.4%; and then moving@6®Greduces recall by an additional
13.8% absolute, falling all the way to 35.6%.

ParaMor’s performance aichievablerecall supports the conclusion that ParaMor’s
morphology induction algorithms are less robudirating Spanish suffixes when the vo-
cabulary size is below 20,000 types. From 50,0p@gydown to 20,000 achievable recall
declines only 4.5% absolute. But then, like globadall, when provided with 10,000
unique types, achievable recall falls significamtipre steeply, by 8.6%; and again by an
additional 11.2% when moving to 5,000 types. In BhraMor identifies less than half,
just 47.7%, of all true suffix strings that occwrrevo or more times in the corpus of
5,000 unique types. At these smaller vocabulargssiParaMor’s algorithms are no
longer able to find even those suffixes tha present in the corpus.

For ParaMor to find a suffix there must be paradiicmand syntagmatic evidence
for that suffix. At a minimum, ParaMor’s initial aeh strategy cannot identify any

c-suffix as likely modeling a true suffix without:
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1. The syntagmatic evidence of the c-suffix appwpmttached to at least three
c-stems, and without
2. The paradigmatic evidence of those same thiteras all accepting some other

c-suffix.

At vocabulary sizes below 20,000 types in Sparisése paradigmatic and syntagmatic
requirements are just not met.

Turn now to ParaMor’s performance at grouping gefiinto paradigms. Empiri-
cally, as the vocabulary size decreases from 5Qyi¥}s, the number of clusters that Pa-
raMor groups the selected c-suffixes into first m®wp from 41 to 50 and then back
down to 31. But examining this empirical behaviortwo halves reveals an interesting
behavior: When the vocabulary size is above 20{§p@s ParaMor’s cluster count is
relatively stable between 41 and 50; Then, as)suétall falls off at vocabulary sizes
below 20,000, the number of clusters that ParaMentifies also drops. At the smaller
vocabulary sizes, the number of clusters roughlipvics the number of identified suf-
fixes. It may be that ParaMor is reasonably grogpmiio paradigms those suffixes that
ParaMor is able to identify. Indeed, although indiial clusters contain fewer c-suffixes
and c-stems when induced from a small vocabulagyaditative analysis of ParaMor’s
Spanish scheme-clusters could find no significafier@nce in the paradigmatic coher-
ence of individual clusters formed from 50,000 Jmdary types and those formed from
5,000.

Although paradigmatic coherence of scheme-clustees not significantly change at
smaller vocabulary sizes, there is one cruciakbd#iice between the clusters formed from
large and those formed at small vocabularies—hist diifference is a failure of suffix
identification not a failure of paradigm groupig.smaller vocabulary sizes, clusters for
some paradigms are simply missing. At 10,000 tythese is no paradigm that corre-
sponds to th&.es paradigm that markSlumber on Spanish nouns, and at 5,000 types
ParaMor also finds no scheme-cluster to model tlsogxes of the Spanishi verbal
paradigm that are not shared with grgparadigm.

In summary then, the preceding analysis finds talgast for Spanish, to identify a

significant fraction of the suffixes of a languaggguires a corpus of at least 20,000
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unique types. However, with some confidence, ParaMth organize the suffixes that
are identified into reasonable paradigm-like strucsyreven for very small vocabulary
sizes. All of the analysis in this section has beegr Spanish. For languages with a mor-
phological system different than that of Spanisimay be that a vocabulary larger than
20,000 is necessary. Secti6rR investigates the question of the necessarybubagy

size for English and German.

4.6 Scheme-Clusters in Languages Beyond Spanish

Thus far, this thesis has described ParaMor’'s pedace at paradigm identification
by closely examining the paradigm models that Parakbnstructs when analyzing
Spanish text. But ParaMor’s unsupervised inductioethods are intended to enable
paradigm discovery in any language. Quantitatiasgessing the quality of ParaMor’s
induced paradigms for a language, as has beenfdoi@panish throughout Chapters 3
and 4, requires compiling by hand a definitivecf@he paradigms of a language. Decid-
ing on a single set of productive inflectional ghgans can be difficult even for a lan-
guage with relatively straightforward morphologycBuAppendix A describes the chal-
lenge of deciding whether Spanish pronominal ditice inflectional paradigms. More-
over, for an agglutinative language like Turkidhe tombinatorial number of potential
suffix sequences makes a single list of paradigosssproducts extremely unwieldy.
Hence, rather than separately define paradigmfeetsach language that ParaMor ana-
lyzes in this thesis, Chapter 5 will apply ParaMdriduced paradigm models to the task
of word-to-morpheme segmentation. And Chapter 6 ewipirically evaluate ParaMor’s
morphological segmentations in English, Germannisim Turkish, and Arabic.

Nevertheless, it is enlightening to look at a fdabgl statistics describing the kinds
of scheme-clusters that ParaMor builds over a rarfigenguages. Figuré.17 tabulates,
for all six natural languages examined in this #hethe counts of schemes (or scheme-
clusters) that ParaMor constructs after each stdparaMor’s paradigm induction pipe-

line.
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# of

Schemes / Clusters Spanish English German [Finnish Turkish  Arabic

Search 8339 8767 10778 | 10774 10340 | 12528
Excluding 6909 6733 9851 | 10495 9618 | 14247
Short Types
Clustering 6087 6396 9145 8797 6898 12744
Small Clus ter 150 193 206 280 258 87
Filtering
Morpheme Boundary 42 40 48 116 100 27

Filtering

Figure 4.17: The number of schemes or scheme-clusters that ParaMor produces for
six languages after each search, clustering, or filtering step in ParaMor’s paradigm

induction pipeline.

The six languages in Figuel7, Spanish, English, German, Finnish, Turkisid a
Arabic, fall into three general categories. Fi&panish, English, and German have rela-
tively simple morphological structure that is prihasuffixing. Of these first three lan-
guages, English has the least inflectional morpigland German has the added compli-
cation of productive, written, compounding. Theaetgroup of languages examined for
this thesis encompasses Finnish and Turkish: Tiweséanguages have rich morphologi-
cal structures of agglutinative suffixes. In aggative languages multiple affixes (suf-
fixes in the case of Finnish and Turkish) can oarua single surface word form one af-
ter the next. Finally, among this set of six langgg Arabic is in a class by itself. Like
Finnish and Turkish, Arabic has a rich morphologsteucture. But Arabic words contain
not only suffixes, but also prefixes and templatiorphology that interleaves sequences
of vowels and consonants to form new words.

The scheme and cluster counts of FigdE/ reflect this three-way classification of

these six languages. The counts for Spanish, Englisd German are roughly similar. In
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particular, the final sets of scheme-clusters tataMor produces for these three lan-
guages are in a similar range, 42 for Spanish,ndBnglish, and 48 for German. The
higher counts of German schemes and scheme-cluktgreccur on the first three rows
of Figure 4.17, before ParaMor’'s ‘Small Cluster Filtering'e3ion4.4.1) and ‘Mor-
pheme Boundary Filtering’ (Secti@nh4.2) steps, are primarily due to schemes thatmod
morpheme boundaries between compound nouns. But cammpounding does not ex-
hibit the same paradigmatic regularities as initex@l morphology and many of the
compounding scheme-clusters are discarded durirejvieer's filtering steps.

The scheme and cluster counts for the agglutindéimguages Finnish and Turkish
are also quite similar to one another. ParaMortcessing of both languages finishes
with cluster counts about double those for Spartstglish, or German, at or just above
100. Considering that Finnish and Turkish have nuamaplex morphological structures
than Spanish, English, or German, it is to be etqukthat ParaMor requires additional
scheme-clusters to adequately describe the morgyalibthese two languages.

Finally, ParaMor’s scheme-cluster counts for Arafoidow a pattern unlike that for
any of the other languages. Initially, ParaMor’'stbm-up scheme-search procedure se-
lects more schemes for Arabic than for any otheguage. But most of these schemes
are discarded in thé"4ow of Figure4.17 by ParaMor’s ‘Small Cluster Filtering’ (Sec-
tion 4.4.1). And ParaMor ultimately retains the fewedtesne-clusters for Arabic out of
any language, just 27. The many clusters that Paralécards for Arabic primarily at-
tempt to model morpheme boundaries betwaefixesand stems. These erroneous pre-
fix models place prefixes into schemes’ c-stem artbstems into schemes’ c-suffix sets.
While ParaMor’s initial search finds enough ‘paradatic’ evidence to select these pre-
fixational schemes, ParaMor’s paradigmatic clustgmlgorithm is unable to meaning-
fully group them, and consequently the vast majooit these schemes are removed by
ParaMor’s filtering steps.

This preliminary look at ParaMor’s performance atgaigm identification for lan-
guages beyond Spanish is preparation for their rextensive evaluation in the next two
chapters. Chapter 5 will lay the groundwork, defihe methodology to segment words

into constituent morphemes that uses the schenséeclmodels of paradigms that Pa-
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raMor produces when following the paradigm inductmpeline described in Chapters 3
and 4. Chapter 6 then reports quantitative evalnatof ParaMor’s morphological seg-

mentations.
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Chapter 5:
Morphological
Segmentation

Chapters 3 and 4 presented the steps of ParaManggligm discovery pipeline. This
chapter and the next will apply ParaMor’s inducedapligms to the natural language
processing task of morphological word segmentatidre job of a morphological seg-
mentation algorithm is to break full form wordsmabrpheme boundaries. For example,
the correct segmentation of the Spanish vemalar would beapoy +ar . Thisapoy +ar
segmentation is correct because in the vaprayar ‘to support, the stemapoy carries
the lexical meaning oSupport, while thear marksinfinitive. Crucially, however, a mor-
phological segmentation algorithm is not requiredassociate morphosyntactic features
with the morpheme pieces that it proposes: Whemseating the wordcpoyar a word-
to-morpheme algorithm is not asked to notate thammg of the stemapoy, nor must a
segmentation algorithm state thatsignifies thdnfinitive.

While not a full morphological analysis from a lingtic perspective, morphological
segmentation can nonetheless advance performarmceanety of natural language proc-

essing tasks. Oflazer and El-Kahlout (2007) impravé&urkish-English statistical ma-
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chine translation system by morphologically segmmenfTurkish. The morphological

segmentation system that Oflazer and El-Kahloutisdeand-built. In contrast, Creutz
(2006) significantly improves a Finnish speech ggution system using an unsupervised
morphology induction system called Morfessor to pmamlogically segment the training

data for the speech system’s language model. Lstigally naive word stemming, a
crude form of morphological segmentation, is atemdard in information retrieval. And

Section6.4.2 of this thesis discusses a simple embeddingacaMor’'s unsupervised

morphological segmentations into an informatioriegal system that gives promising
results.

For two reasons, the paradigm models that Paravtmtuges are well-suited to the
task of word-to-morpheme segmentation. First, wR&aMor can identify morpheme
segments within word forms, ParaMor is unable tvjgle a more complete morphosyn-
tactic analysis of words: ParaMor does not assecmatrphosyntactic features with the
c-suffixes in each discovered cluster. ParaMor mikglow that the c-suffiar attaches to
a class of c-stems includirsgoy, but ParaMor does not know thedoy carries the lexi-
cal meaning ofsupport, or even that thepoy-class of c-stems models Spanish verbs;
nor does ParaMor know that the suffix forms thelnfinitive. Second, ParaMor’s para-
digm models are best suited to morphological tdgkes segmentation, that analyze word
forms, as opposed to generation tasks that prapms&l surface forms. As noted in Sec-
tion 4.3.3, most of ParaMor’s clusters contain c-suffixehich do not form valid surface
words with all the c-stems in the cluster. Thesalid (c-stem, c-suffix) pairs are incor-
rect generalizations that would hurt performanca morphological generation task.

Despite the suitability of ParaMor’'s scheme-clusterdels of paradigms to the task
of morphological segmentation, ParaMor’'s segmesnagigorithm must be carefully de-
vised so as to segment a wide range of words. Ewargh clustering introduces some-
times erroneous model generalization, the scheosterk that ParaMor produces remain
highly specific. By associating a set of c-suffixeh a particular set of c-stems, a strict
interpretation of ParaMor’s paradigm models wowddstrain ParaMor’s analyses only to
the word types covered by each (c-stem, c-suffat) m the scheme-cluster. Sectisri

proposes a segmentation algorithm that succesgjeltgralizes overly specific scheme-
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clusters to morphologically segment the wide raofjerord forms that occur in a large

corpus.

5.1 The Segmentation Algorithm

Two principles guide ParaMor’s approach to morppmal segmentation. First, Pa-
raMor only segments word forms when the discoverdeme-clusters hold paradigmatic
evidence of a morpheme boundary. Second, ParaMegsnentation algorithm must
generalize beyond the specific set of types whiodnke individual scheme-clusters. In
particular, ParaMor will be able to segment worpety which did not occur in the data
from which ParaMor induced its scheme-clusters.

ParaMor’'s segmentation algorithm is perhaps thetsmsple paradigm inspired
segmentation algorithm possible that can generdigend the specific set of licensing
types in each scheme-cluster. To segment any wgrBaraMor examines all segmenta-
tions ofw into an initial non-null stent, and a final non-null suffixf, such that.f = w.
For each such stem + suffix segmentatiowdParaMor identifies all scheme-clustets,
that containf as a c-suffix. If there is some second c-suffix,in C such that.f’ is a
word form found either in the corpus from which &dor induced its scheme-clusters or
else found in the corpus of text that ParaMor isdgment, then ParaMor segmemtise-
tweent andf.

The rationale behind ParaMor’s segmentation algoriis that sincé andf’ are mu-
tually substitutable suffixes from the same indupadadigm model, ParaMor has found
paradigmatic evidence of a morpheme boundary. Matethe c-suffiX’ need not arise
from the same original schemefabut merely from the same scheme-clu§ter

If ParaMor finds no complex analysis, then Parapl@mposesv itself as the analysis
of the word. On the other hand, if ParaMor discevapre than one potential morpheme
boundary inw, ParaMor accepts them all—producing a single aealyform ofw con-
taining multiple morpheme boundaries. Figbré gives a pseudo-code implementation

of ParaMor’s word-to-morpheme segmentation algorith
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Il the subst ri ng(String, startindex, endindex) method works as foll OoWws:
1 subst ri ng(“abcde”, 0, 2) yields “ab”
1 subst ri ng(“abcde”, 2, 5) yields “cde”
I
segment Wor ds(
words, schemeClusters, paradigminductionCorpus, cor pusToSegment ) {

foreach ( word in words ) {

morphemeBoundarylndexes = emptySet ;

wordLength = word. | engt h();
for ( charindex =1 ;charindex <= wordLength-1; charindex ++) {
stem = substring(word, O,charindex );
suffix = subst ri ng(word, charlndex, word. I engt h()) ;

foreach (  schemeCluster in schemeClusters ) {
foreach ( cSuffix in schemeCluster ){
if ( cSuffix ==suffix ){
foreach ( cSuffixPrime in schemeCluster ) {
if ( cSuffixPrime I= cSuffix ) {
possibleWord =stem + cSuffixPrime;
if ( paradigminductionCorpus. cont ai ns( possibleWord ) ||
corpusToSegment. cont ai ns( possibleWord )) {
morphemeBoundarylndexes. add( charindex );
1313131313} 3}/ end for (charindex = 1...’

/I segmentedWords is a hash on each word to an ar ray which holds
/I the morphemes of the word.
startindex =0;
foreach  ( boundarylndex in morphemeBoundaries ) {
morpheme = subst ri ng(word, startindex, boundarylndex );
segmentedWords  {word } . add( morpheme) ;
startindex = boundaryIndex;

}

/I And add the final segment of the word as a fin al morpheme
morpheme = subst ri ng( word, startindex, word. | engt h() ;
segmentedWords {word }. add( morpheme) ;

}

return  segmentedWords;

}

Figure 5.1: Pseudo-code implementing ParaMor’s word segmentation algorithm.
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5.2 A Sample of ParaMor’s Word Segmentations

Figure5.2 contains examples of Spanish word-to-morphesgenentations that Pa-
raMor produces. ParaMor segmented the word fornmtagafre5.2 using scheme-cluster
models of paradigms that were induced over the sameswire corpus of 50,000 types
used throughout Chapters 3 and 4. But the segmevadeds in Figures.2 come from a
larger newswire corpus of 100,000 types which idekithe 50,000 type corpus as a sub-
set. Each row of Figurg.2 contains segmentation information about a singdrd. The
word forms of the first thirteen rows of Figute2 were hand selected to illustrate the
range of analyses that ParaMor’s segmentation ithigois capable of. And then, to pro-
vide a flavor for the typical segmentations thata®éor outputs, the forms in the last six
rows of Figure5.2 were randomly selected from the words in Par&vieegmentation
corpus of 100,000 unique word forms.

Starting with the leftmost column, each row of Fgb.2 specifies:

The row number;

A particular Spanish word which ParaMor segmgnte
An English gloss for that word form;

The word’s correct morphological segmentation;

A full morphosyntactic analysis of the Spanistravform;
Each separate morpheme boundary that ParaMahasat

ParaMor’s full segmentation of the word; and

© N o o kM DN PR

The rank of one or more scheme-clusters whiokige paradigmatic support for
ParaMor’s segmentation of that row’s word form.

Elaborating on the"8column of Figures.2: Whenever a scheme-cluster from Figure 4.4
on p. 118 leads ParaMor to propose a morpheme boyind Figure5.2, then the rank of
the Figured.4 cluster is given in the final column of Fig&r2. In the few cases where no
Figure4.4 cluster supports a morpheme boundary thawisgsed in Figur&.2, then the

rank of a supporting cluster appears in parenthédasy morpheme boundaries that Pa-
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Word Correct Morphosyntactic Individual ParaMor’s Cluster
Row Form Gloss Segmentation Analysis Boundaries Segmentation Rank
1 sacerdote priest sacerdote sacerdote sacerdote sacerdote -
2 sacerdotes priests sacerdote +s sacerdote +pl sacerdote + s sacerdote +s 1
3 regulares ordinary regular +es ordinary +pl regular +es regular +es 122
4 chancho filthy chanch +o chancho +masc chanch +o chanch +o 3
L P . . incégnit +as, P
g 5 incognitas unknown incognit +a +s incognito +fem +pl incognita +s incognit +a +s 1,3
5| 6 descarrilaremos we will be derailed descarril +aremos  descarrilar +1pl.fut.indic | descarril +aremos descarril +aremos 4
(i
o] 7 accidentarse to have an accident accident +ar +se accidentarse +inf +reflex accident +arse accident +arse 4
§ wrong, mistaken . err +ados
> 8 errados (Masculine Plural) err +ad +o0 +s errar +adj +masc +pl errad +o0s err +ad +o0 +s 1,3,4
> errado +s
E 9 agradezco | thank agradec +o agradecer +1sg.pres.indic agrade +zco agrade +zco 21
17 _ . - agrade +cimos -
=]
= 10 agradecimos we thank agradec +imos  agradecer +1pl.past.indic agradec +imos agrade +c +imos 17,21
. . . - antel +acion -
11 antelacion (in) advance antel( +)acion antelar +cion.N antelac +i6n antel +ac +ién 4,5
12 tanteador storekeeper tante( +)ador tantear +ador.N tante +ador tante +ador 4
13 vete he/she should veto vet +e vetar +3sg.pres.subjunc vet +e vet +e 4
14 bambamg not a Spanish word bambamg bambamg bambamg bambamg -
3l 15  clausurara he/Shsuvé'g con- clausur +ara clausurar +3sg.fut.indic clausur +ara clausur +ara 4
© .
D . , , . hospit +al :
% 16 hospital hospital hospital hospital hospital +| hospit +a +l (7), (42)
> . . invest +ido
€l 17 investido 'nvested (Masculine 00 1ig 4o investor +adj +masc investi +do invest +i +d +o > 11, 17,
o Singular) . (28)
S invested +o
[ .
§ 18 pacificamente peaceably pacific +amente pacificamente BZE:R(C: ; imgmg pacific +a +mente 1, 3, 122
19 sabiduria wisdom sabiduria sabiduria sabiduria sabiduria -

Figure 5.2: Morphological segmentations of some Spanish word forms produced by ParaMor over a corpus of 100,000 types.
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raMor proposes gain paradigmatic support from twenore scheme-clusters. For any
particular morpheme boundary, Fig&r@ only lists the rank of more than one supporting
cluster when each supporting cluster appears iaré#y4.

The T' row of Figure5.2 contains ParaMor’s segmentation of the monohenyc
word form sacerdote ‘priest. ParaMor's segmentation algorithm correctly amaly
sacerdote as containing no morpheme boundaries. THe@®v of Figure5.2 segments
sacerdotes ‘priests. Since both the word formsacerdote andsacerdotes occurred in
the Spanish corpora, and because ParaMor contartseane-cluster which contains both
of the c-suffixess and@, namely the cluster from Figue4 with rank 1, ParaMor de-
tects sufficient paradigmatic evidence to succdlgstuiggest a morpheme boundary be-
fore the finals in sacerdotes , giving sacerdote +s . ParaMor similarly correctly seg-
ments the formegulares ‘ordinary (Plural)’ before the finaks, giving regular +es , us-
ing the rank 122 scheme-cluster; and the fonancho ‘filthy (Masculine Singular)’ be-
fore the finalo, yieldingchanch +o , by drawing on the rank 3 cluster.

The particular formsacerdote , sacerdotes , regulares , andchancho of the first
four rows in Figureb.2 illustrate the ability of ParaMor’s segmentataigorithms to cor-
rectly generalize. The formsacerdote andsacerdotes directly contribute to th&.s
scheme that participates in the rank 1 schemeerludtFigure4.4. And so to segment
sacerdotes required no generalization whatsoever. On therdthed, the c-stemegu-
lar does not occur in the rank 122 scheme-clustertt@nd-stenthanch does not occur
in the rank 3 cluster, but ParaMor was yet ablgdneralize from the rank 122 cluster
and the rank 3 cluster to properly segment the vionehs regulares andchancho re-
spectively. ParaMor segmentesjulares because: 1. The rank 122 scheme-cluster con-
tains thed and thees c-suffixes; and 2. The word formegular andregulares both oc-
cur in the corpus from which ParaMor learned itsesge-clusters. The occurrence of
regular andregulares provides the paradigmatic evidence that ParaMauires to sug-
gest segmentation. ParaMor’s justification for segtimgchancho is similar to the rea-
soning behindegulares but takes generalization one step further—the fohamcho
did not occur in the corpus from which ParaMor ioeldl paradigms, but only occurred in

the larger corpus of 100,000 word types that Paraddgments.
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The 8" row of Figure5.2 illustrates ParaMor’s ability to segment a Engord into
more than two morphemes. The fifth row containsRtueal Feminine form of the Span-
ish adjectiveincégnito ‘unknowrt incégnitas . The Gender is marked by the in this
form, while Plural Number is marked in the finas. And so, the correct segmentation
contains three morphemes and two morpheme bousdamégnit +a +s . ParaMor’s
scheme-cluster models of paradigms successfullytifgeboth morpheme boundaries in
the wordincognitas . Unfortunately, ParaMor’'s segmentation algoritemot always so
perfect when it proposes multiple morpheme bourdain the segmentation of the word
form agradecimos ‘we thankas agrade +c +imos , on row ten of Figur®.2, while the
morpheme boundary before the firabs is reasonable, the characteis rightfully part
of this verb’s stem and should not be segmented# suffix.

The 6" row of Figure5.2 gives an example of the rank 4 scheme-cluster Figure
4.4 correctly segmenting a Spanish verb; the raskh®eme-cluster, capturing suffixes
from the Spanish verbal paradigm, contains more c-suffixes than any othester that
ParaMor induces over this Spanish corpus. TheoW in Figure5.2 is an example of Pa-
raMor’s failure to analyze Spanish pronominal ctitiAs discussed in Sectidrb.1, Pa-
raMor’s suffix-internal morpheme boundary errotefil mistakenly discards the scheme-
cluster which contains the majority of Spanishicdit Where there should be a morpheme
boundary before the reflexive clitee, in accidentar +se , ParaMor places none. Pa-
raMor’s correct segmentation of the adjectival yerbados ‘wrong (Masculine Plural)’
aserr +ad +o +s, on row 8 of Figuré&.2 contrasts with the incorrect oversegmentation o
another adjectival verlipvestido ‘investedMasculine Singular)’ asinvest +i +d +o , on
the table’s 17 row. In the segmentation afvestido , there should be no morpheme
boundary between the characteasndd.

The 9", 10", and 1% rows of Figure5.2 illustrate some of the incorrect segmenta-
tions that ParaMor produces from scheme-clustelishwinvolve allomorphic variation.
The 9" and 18 rows contain thest Person Singular Present Indicative and thelst Per-
son Plural Past Indicative forms, respectively, of the Spanish verpadecer ‘to thank
The stem of the verlgradecer has two written surface forms: before suffixes wahie-

gin with the back vowela ando, the stenagradezc occurs; but, before the front vowels
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e andi, the stem isagradec. In fact, thisc/zc alternation is a feature of a reasonably
sized minority of Spanish verbs, and hence, th& gdncluster of Figurd.4 attempts to
model this stem alternation by fusing the varigdtean material to the front of c-suffixes.
Thus, where thest Person Singular Present Indicative morpheme iso, ParaMor re-
moveszco, giving agrade +zco ; and where the morpheme markihst Person Plural
Past Indicative in er verbs (likeagradecer ) is imos, ParaMor identifies both a c-suffix
that matches the corretthos morpheme but also a c-suffix that matcle@sos, ulti-
mately producing the oversegmented fagrade +c +imos .

In contrast to the varying stems of the word foimshe 9" and 16' rows of Figure
5.2, it is the suffix ofantelacién , on the 11 row, that appears in distinct allomorphic
surface forms in different words. As discussed eéct®n4.5.1, the four related suffixes
cién, sién, cion, andsion confound ParaMor's morpheme boundary error fil®ursh
that ParaMor is unable to remove th® Enked scheme-cluster which contains the
c-suffix i6n. The consequence of ParaMor’s failure to deteist torpheme boundary
error in the scheme-cluster paradigm models is tt@twordantelaciéon is incorrectly
oversegmented before the word-final strifwg, yieldingantel +ac +ién .

ParaMor was designed to identify inflectional maptes. Consequently, most of Pa-
raMor’s segmentations in Figuge2 split off inflectional suffixes. The segmenteis that
ParaMor gives for the word forms of the™and 12 rows of Figureb.2, however, seg-
ment the derivational morphemasién andador respectively. The suffiacion forms
abstract nouns from verbs, whédor is the agentive.

Also, the short word formete, ‘veto 3rd Person Singular Present Subjunctive)’ on
the table’s 18 row, is correctly segmented by ParaMor even thatsyfour characters
excluded it from the corpus from which ParaMor ioeld scheme-clusters.

The final six rows of Figuré.2 place ParaMor in the wild, giving segmentatioha
small random sample of Spanish words. ParaMor sstaéy leaves unsegmented the
Indonesian proper nam@ambamg and the monomorphemic Spanish waabiduria
‘wisdom. ParaMor correctly segments the verbal fatlausurara ‘conclude(3rd Per-
son Singular Future Indicative)’ as clausur +ara ; but oversegments the three forhas-

pital ‘hospital, investido , ‘invested Adjectival Masculine Singular)’ and pacificamente
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‘peaceably The oversegmentations of bativestido andpacificamente occur because
of morpheme boundary errors that ParaMor makesevditempting to model legitimate
morphemes: thé\djectival Masculine Singular suffix ido on er andir verbs, and the
productive adjectival suffiamente, respectively.

But the double mis-segmentation of the monomorpbéspital , ashospit +a +l ,
is conspicuous. Both of the mis-hypothesized margheboundaries in the word
hospital , that beforeal and that before the final charactefel), occur because of an
incorrect overgeneralization in ParaMor’'s segmemtaalgorithm. The boundary before
the word-final stringal occurs when ParaMor incorrectly applies a cludtat tontains,
among other c-suffixes, the adjectival c-suffia¢$Adjectival Singular’ andales ‘Adjec-
tival Plural’. This adjectival cluster is derived from Spanwbrds that includecciden-
tal ‘accidental(Adjectival Singular)’ and accidentales_ ‘accidental (Adjectival Plural)’).
Because the Spanish notnspital happens to end in the character sequehcand
because the plural form dfospital_ is hospitales , ParaMor’s segmentation algorithm
overgeneralizes to apply thaljectival cluster to segment @oun In a similar fashion,
ParaMor places a boundary before the final charadtehospital because of a cluster
that contains incorrect suffix-internal segmentagiof these same adjectivlandales

suffixes—the incorrect cluster contains the c-s@affi andles.

5.3 Morpheme Segmentation Enables Evaluation

ParaMor’s word-to-morpheme segmentation algoritidefined in this chapter,
provides a practical way to evaluate, for a rangmguages, the quality of ParaMor’s
scheme-cluster models of natural language morpieabgparadigms. Cannonical
morphological analyses are available for the wasfisnany natural languages; And
ParaMor’s morphological segmentations can be dyremimpared to these cannonical
analyses. Moreover, for a number of natural langupgpcessing applications, it is
possible to replace raw word-forms with morpholagisegmentations and to then
measure the (hopefully positive) impact of using g#egmented forms. Chapter 6 will

evaluate ParaMor’s induced scheme-cluster modgdsu@idigms both against cannonical
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morphological analyses as well as by embeddingNRara morphological segmenta-

tions in an information retrieval system.
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Chapter 6:
ParaMor and
Morpho Challenge

With the development, in Chapter 5, of an unsugeximorphological segmentation
algorithm, the ParaMor morphology induction systesm now analyze the morphology
of individual words. To evaluate ParaMor’s wordamrpheme segmentations, ParaMor
competed in two years of the Morpho Challenge cditipe series. In May 2007 and
again in June 2008, the Adaptive Informatics Rege&enter at the Helsinki University
of Technology sponsored a Morpho Challenge. Thies®f Challenges pits against one
another algorithms that, like ParaMor, are desigiwediscover the morphological struc-
ture of natural languages from nothing more thawn text (Kurimo, Turunen, and Varjo-
kallio, 2008). Evaluating ParaMor through partitipa in the Morpho Challenge compe-
titions permits direct comparison of ParaMor’'s mulogical analyses to the analyses
produced by other state-of-the-art unsuperviseghmogy induction systems.

The remainder of this chapter is structured a®¥t Sectior6.1 will describe the

evaluation methodology used in the 2007 and 2008pkto Challenge competitions.

171



Then, using the evaluation methodology of Morph@li&mge, Section6.2 and6.3 ex-
amine ParaMor’s performance at morphological segatiem from two perspectives:
Section6.2, an ablation study, weighs the contributioret tsach of ParaMor’'s major
sub-algorithms separately make toward the finalpheme segmentations that ParaMor
produces; And SectioB.3 considers ParaMor’s ability to identify inflestal, as opposed
to derivational, morphology. Finally, Sectié presents ParaMor’s performance in the

Morpho Challenge competitions proper.

6.1 Evaluation Methodology at Morpho Challenge 2007/2(®

The Morpho Challenge competitions of 2007 and 2808raised participating algo-
rithms on their morphological analyses of five laages: English, German, Finnish,
Turkish, and Arabic. As the ParaMor algorithm waseloped while analyzing Spanish
data, participation in the Morpho Challenge contfmets will allow ParaMor to show
language independence.

ParaMor’s induction algorithms were specificallysidgmed around the natural orga-
nizing structure of inflectional morphology: theradigm (see Chapters 1 and 3). Hence,
ParaMor will likely be able to learn the inflectainstructure of languages other than
Spanish. However, ParaMor has several free parasneted it is conceivable that pa-
rameter settings that produce strong paradigm madoel Spanish will yield imperfect
paradigms for other languages. Nevertheless, gdamaMor’s parameters anew for each
separate language would void ParaMor status asampervised algorithm. Hence, for
all languages, ParaMor holds parameters at themgetivhich produce reasonal@pan-
ish suffix sets, as determined in Chapters 3 and étid®e6.4 will demonstrate that these
parameter settings do, in fact, reasonably trarteféine languages of the Morpho Chal-
lenge competitions.

For each of the five language tracks in the cortipatithe Morpho Challenge orga-
nizing committee provided text corpora with vocalvyl sizes much larger than the
50,000 Spanish types that the ParaMor algorithme weveloped over. The English cor-
pus contains nearly 385,000 unique types; the Gerooapus, 1.26 million types; Fin-
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nish, 2.21 million; Turkish, 617,000; while the Afa corpus is the smallest, with just
under 143,000 unique types. To increase the ligelithat ParaMor’s parameter settings
will transfer from Spanish to other language coapdétaraMor keeps the size of the para-
digm induction vocabulary constant at 50,000 typesParaMor has a choice over which
types to place in the paradigm induction vocabul®graMor selects, from each larger
language corpus, the 50,000 most frequent wordstyipat pass ParaMor’s string-length
criterion (Sectiod.2). Once ParaMor has learned paradigm modelslafiguage from
the 50,000 most frequent types, ParaMor segmahtdhe word types in the Morpho
Challenge corpus for that language, following thethndology of Chapter 5.

The Morpho Challenge competitions held in 2007 26@8 scored each contending
algorithm’s morphological analyses in two wayssEia Linguistic Evaluation measured
a system’s morpheme identification against an angweg of morphologically analyzed
word forms (Kurimo and Varjokallio, 2008; Kurimoy&litz, and Varjokallio, 2008). And
second, a Task-Based Evaluation embedded eachtlaiger morphological analyses in
an information retrieval (IR) system (Kurimo andriimen, 2008; Kurimo, Creutz, and
Turunen, 2007). Sectiors1.1 ands.1.2 describe the Linguistic and Task-Based Evalua

tion procedures of the Morpho Challenge competstionturn.

6.1.1 The Linguistic Evaluation of Morpho Challenge 20072008

While the majority of the unsupervised morphologgiuction systems, including Pa-
raMor, which have participated in Morpho Challermgenpetitions, perform simple mor-
phological segmentation, the Linguistic Evaluataiithe 2007 and 2008 Morpho Chal-
lenge competitions was not purely a word segmemtd#sk. In both years, the Linguistic
Evaluation compared each system’s automatic moogfcal analyses against an answer
key containing the full morphological analysis etch word form. Although a more chal-
lenging standard than word-to-morpheme segmentagiaduating an unsupervised mor-
phology induction system against full morphosyntaeinalyses is less arbitrary than
evaluating against an artificial segmentation séade-Only in an idealized world are

morphemes consistently strung together in a purehcatenative fashion. In actual natu-
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WORD MORPHOSYNTACTIC PARAMOR’S

FORM GLoss ANALYSIS SEGMENTATION
sacerdote priest sacerdote sacerdote
sacerdotes priests sacerdote +pl sacerdote +s

regulares ordinary ordinary +pl regular +es
agradezco | thank agradecer +1sg.pres.indic agrade +zco
agradecimos we thank agradecer +1pl.past.indic agrade +c +imos

Figure 6.1: Full morphosyntactic analyses in the style found in the answer
keys of the Linguistic Evaluation at Morpho Challenge, together with Pa-
raMor’'s Morphological segmentations of five Spanish word forms. Pa-
raMor produced these segmentations when analyzing a Spanish corpus

of 100,000 unique types.

ral languages, morphophonological processes oftange the surface form of both stem
and affix morphemes at the time of affixation; andreover, in a language like Arabic,
morphemes are often non-concatenative to begin, wathdering the idea of a gold-
standard morphological segmentation meaningless.

The morphosyntactic answer keys of Morpho Challeargen the same format as the
analyses found in thHdORPHOSYNTACTIC ANALYSIS column of Figures.1. Extracted from
Figure5.2, the rows and columns of Figusel contain morphological analyses of five
Spanish words. The analyses in t@RPHOSYNTACTIC ANALYSIS column of Figures.1,
and the analyses of words in a Morpho Challengaankey, contain one or more lexi-
cal stems and zero or more inflectional or derorai morpheme feature markers. Both
stems and feature markers are strings: featurearsabave a leading". In addition to
the Morpho Challenge style morphosyntactic analyeesach of five Spanish words,
Figure6.1 gives an English gloss of the Spanish wordthedmorphological segmenta-
tion that ParaMor produces for the word.

As a morphosyntactic answer key, distinct surfacen$s of the same morpheme are
marked with the same lexical stem or feature marker example, Spanish builds the
Plural of sacerdote ‘priest’ by appending an, while Plural is marked on the Spanish

form regular with es. But in both cases, a Morpho Challenge style masphtactic an-
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swer key would marflural with the same feature markerpt in Figure6.1. The orga-
nizing committee of Morpho Challenge designed thgdistic answer keys for each lan-
guage to contain feature markers for all and onlyphosyntactic features that are
overtly marked in a word form. Sin&ngular forms are unmarked on Spanish nouns, the
Morpho Challenge style analysis of the weederdote in Figure6.1 does not contain a
feature marker indicating thaacerdote is Singular. Also important for the ParaMor al-
gorithm is that the morphosyntactic answer keysHerLinguistic Evaluation of Morpho
Challenge analyze not only inflectional but alseiwgional morphology (See Section
6.3).

Against each morphosyntactic answer key, the LstguiEvaluation of Morpho
Challenge assessed systems’ precision and recaleatifying the stems and feature
markers of each word form. But to calculate theseipion and recall scores, the Morpho
Challenge Linguistic Evaluation must account foe fact that label names assigned to
stems and to feature markers are arbitrary. InrEigLl, morphosyntactic analyses mark
Plural Number with the space-saving feature market, but another human annotator
might have preferred the more verbegéural —in fact, any unique string would suffice.

Since the names of feature markers, and stemsrhiteary, the Linguistic Evalua-
tion of Morpho Challenge does not require each pestused morphology analysis sys-
tem to guess the particular names used in the arsye Instead, to measure recall, the
automatic Linguistic Evaluation selects a large hanmof word pairs such that each word
pair shares a morpheme in the answer key. Theidraof these word pairs which also
share a morpheme in a system’s automatic analggee Morpho Challenge recall score
for that system. Precision is measured analogoaslgrge number of word pairs are se-
lected where each pair shares a morpheme in tloenatitally analyzed words. Out of
these pairs, the number of pairs that share a rearphn the answer key is the precision.

To illustrate the scoring methodology of the Lirgjid Evaluation of Morpho Chal-
lenge, consider a recall evaluation of the Spawsids in Figures.1. To calculate recall,
the Linguistic Evaluation routine might select ftaars of words: 4gradezco , agradeci-
mos) and 6acerdotes , regulares ) for sharing in the answer key the stegradecer

and the feature markepl, respectively. ParaMor would get recall creditifsr‘agrade
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its ‘agrade +zco’ and agrade +c +imos ' segmentations as these segmentations share
the morpheme stringgrade . Note here that the stem in the answer kgyadecer , is
different from the stem ParaMor suggesigrade, but ParaMor still receives recall
credit. On the other hand, ParaMor would not gealiecredit for the facerdotes , regu-

lares) pair, as ParaMor’'s segmentatidsacerdote +s ' and‘regular +es ' do not con-

tain any common pieces.

It is possible for a word pair to share more thaa morpheme. In this case the Lin-
guistic Evaluation of Morpho Challenge credits ateyn’s precision or recall with a frac-
tional count of correctly identified morphemes. fexample, suppose the morphological
answer key for a language states that a word pairw,) shares two morphemes in
common, but a particular morphological analysideysanalyzesv; andw, to share just
one morpheme. In this situation, the denominatdhefrecall calculation increments by a
full word pair, while the numerator is incrementadone-half a pair—for finding one of
the two morphemes.

The Linguistic Evaluation of Morpho Challenge afsmrmalizes precision and recall
scores when a surface word has multiple analysé&snbt uncommon for a single word
type to be ambiguous between two or more morphcédganalyses: considehé
dances’ wheredances is a3rd Person Singular verb and the dances ' wheredances is
a Plural noun. Because morphology can be inherently ambiguite Morpho Challenge

Linguistic Evaluation permits for each word:

1. Multiple morphological analyses in the answey fa& a language, and

2. A morphological analysis system to propose rtioa@ one analysis.

The probability with which the Morpho Challenge guistic Evaluation selects any par-
ticular word,w, for participation in a morpheme-sharing word hiring the calculations
of precision and recall is proportional to the nembf morphological analyses that
has—the more ambiguous morphological analyses #rerefw, the more pairs that
will appear in. To reduce the influence that ambiggiword forms have on precision and
recall, the Linguistic Evaluation down-weights waqudirs that contain the ambiguous

wordw by a factor again proportional to the number @lgses that exist fow.
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Once a precision and a recall score has been atddylthe Morpho Challenge Lin-
guistic Evaluation uses;Fthe harmonic mean of precision and recall, asglesoverall
performance measure for each algorithm and eaduéaye. The official specification of
the Linguistic Evaluation procedure for the 200d 2008 Morpho Challenge competi-

tions appears in Kurimo, Creutz, and Varjokallio@g).

6.1.2 The Task-Based Evaluation of Morpho Challenge 2002008

The 2007 and 2008 Morpho Challenge competitionarnzad the Linguistic Evalua-
tion described in the previous sub-section aganBask-Based Evaluation in which the
morphological analyses of each competing unsupssivieorphology induction system
are embedded in an information retrieval (IR) syst@he Task-Based IR Evaluation
consists of queries over a language specific didle®f newswire articles. To measure
the effect that a particular morphological analysigorithm has on newswire IR, the
Task-Based Evaluation replaces all word forms ligjaéries and all documents with their
morphological decompositions, according to thatyammsalgorithm.

Separate IR tasks were run for English, German Famaish, but not Turkish or Ara-
bic. For each language, the IR task made at ldasfugries over collections ranging in
size from 55,000 (Finnish) to 300,000 (German)chkas. The evaluation data included
20,000 or more binary relevance assessments forlaaguage. The IR Evaluation em-
ployed the LEMUR toolkit (Ogilvie and Callan, 2002) state-of-the-art retrieval suite;
and used okapi term weighting (Robertson, 1994)adcount for stopwords, terms in
each run with a frequency above a threshold, 75(@0Binnish, 150,000 for English and
German, were discarded. The performance of eachiriRvas measured with Uninterpo-
lated Average Precision. For additional detailsh@nIR Evaluation of Morpho Challenge

please reference Kurimo and Turunen (2008) andnkariCreutz, and Turunen (2007).
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6.2 An Ablation Study

Before delving into the official results of the Mdio Challenge competitions from
2007 and 2008, this section uses the Morpho Clgdlevaluation methodology to ex-
plore the contributions that each major sub-pidceasaMor’s paradigm induction algo-
rithm makes toward ParaMor’s final word segmentetid?araMor’s algorithm for unsu-
pervised paradigm induction consists of the pigelisub-algorithms described in Chap-
ters 3 and 4, and summarized in Sectldn At a high level, ParaMor’s paradigm induc-

tion breaks down into three major steps:

1. The initial search for scheme-models of paradigmsjescribed in Chapter 3;
2. The agglomerative scheme-clustering algorithm, ildetan Sectiord.3; and
3. The filtering procedures, Sectiods?2 and4.4, that were designed to both limit

the creation of and to then discard unlikely pagadmodels.

To examine the separate impacts that the seansteahg, and filtering algorithms
each have on morphological word segmentations,siision evaluates the English and
German word segmentations that four configuratiointhese three sub-algorithms pro-
duce. All four configurations begin with ParaMoistial search: ParaMor's scheme
search procedure is prerequisite to both clusteaimgyfiltering. The first of the four con-
figurations consists solely of the initial searskipping entirely both the clustering and
all filtering procedures. The second configurattusters schemes, but does not filter out
the poorer candidates. The third configuratiorefdtout unlikely candidate paradigms,
but does not cluster the initially selected schemtscoherent paradigmatic groups. And
the fourth configuration applies the full suitealfjorithms: first searching for candidate
schemes, then clustering the candidates into colaset! paradigms, and finally filtering
out the least promising clusters.

A few further specifics on the experimental setu@ i@ order. To begin, although
Chapter 4 presented four distinct procedures dedigm filter out less desirable paradigm
models, this section only measures their aggregif¢et. In addition to the cluster-size

filter that removes clusters with support from féeensing types (Sectiofh.4.1), and the
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two filters designed to detect and discard schemigsh hypothesize incorrect mor-
pheme boundaries (Secti@gh4.2), this experiment counts as a filtering athon the
technique described in Sectidr? that requires all word types in the paradigduation
corpus to consist of more than a threshold numbeharacters. The corpus word length
requirement is categorized as a filtering algorithere because it was specifically de-
signed to eliminate (i.e. filter) the productionsashemes that result from accidental string
similarities between corpus word types, see Sedtidn

Also concerning experimental setup: The order iniclvhParaMor invokes the
scheme-search, filtering, and clustering algorithenthe fixed order presented in Figure
4.14 of Sectiont.5. Specifically, the filtering step of excludisgort types from the para-
digm induction vocabulary always occurs immediatetyore ParaMor’s scheme search;
ParaMor’s clustering algorithm is run just followischeme search; and after clustering,
ParaMor removes scheme-clusters that have suppaontfew licensing word types, dis-
cards scheme-clusters that propose morpheme boesdaffix-internally, and discards
clusters whose boundaries fall stem-internally—hiat torder. When a specific experimen-
tal configuration omits the clustering or filteristeps, the clustering algorithm or all fil-
tering procedures are simply skipped in the pigelin

Figure 6.2 tabulates ParaMor’'s Morpho Challenge-style ipre@, recall, and F
scores for word segmentation of English and Geramater each of the four search-clus-
ter-filter configurations. After each precisionca#l, or /. value, Figures.2 gives (in pa-
rentheses) the standard deviation for that valbe. Standard deviation values were ob-
tained by calculating precision, recall, andsEores on multiple non-overlapping sets of
1000 feature-sharing word pairs. For each expetiat@onfiguration of Figuré.2 and
for each language, ParaMor applied the paradigmuciiiah pipeline to a corpus of 50,000
unique word types. With the resultant models of photogical paradigms, ParaMor then
segmented the same full data used in the MorphdleDige 2007/2008 competitions: an
English corpus containing almost 385,000 uniquedsoand a German corpus of 1.26
million types.

The top two lines of Figur6.2 are the experimental configurations that exelbd-

raMor’s filtering steps, while the lower two rowsclude filtering. And the top-most row
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F.

P

German

R

Fi

14.2 (x0.5)
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13.1(0.4)

13.1(0.4)

78.6 (+1.0)

78.6 (+1.0)

22.5 (20.5)

22.5 (0.6)

63.0 (:1.0)

57.2(#11)

47.8 (x1.3)

48.8 (#1.3)

54.3 (x0.9)

52.7 (20.9)

48.4 (x0.9)

54.1(+1.0)

41.6 (x1.0)

38.9 (1.0)

44.7 (£0.6)

45.2 (0.6)

Figure 6.2: An ablation study. ParaMor’s Precision, Recall, and F; scores (and their
standard deviations in parentheses) at word-to-morpheme segmentation using four
configurations of ParaMor’'s scheme search, clustering, and filtering algorithms. A dot
in the Search, Cluster, or Filter columns indicates that the relevant step(s) in Pa-
raMor’s paradigm induction pipeline took part in that configuration. Paradigm models

were induced using corpora of 50,000 unique word types.

of Figure6.2 gives the word-to-morpheme segmentation pedaooa that ParaMor at-

tains in the absence of both the clustering anllt@ting procedures. In this search-only
configuration ParaMor’s scheme search algorithnmtifles paradigm models that have
high recall and low precision: recall near 80% wptiecision in the mid-teens. That Pa-
raMor’s initially selected schemes trade high merpk boundary recall for low preci-

sion is not unexpected. In beginning separate kgaaths from all individual c-suffixes,

a bias toward high recall, at the expense of pi@atisvas intentionally built into Pa-

raMor’s search procedure (See Sec8ad?).

Now consider the effect that scheme clustering drad?araMor’s performance at
morphological segmentation. ParaMor’s clusteringpathm was designed to group to-
gether all c-suffixes that belong to the same pgradParticularly relevant for this word
segmentation experiment is the fact that clusteceng join pairs of c-suffixes into a sin-
gle paradigm that did not co-occur in any individseheme. Recall that ParaMor seg-

ments words exactly when a pair of c-suffixes t@bccur in a scheme-cluster are mu-
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tually interchangeable on some c-stem from a corphberefore, increasing the number
of c-suffixes which co-occur in paradigm models garease the number of morpheme
boundaries that ParaMor places. More frequent setatien may translate into higher
recall but may also lower precision. With ParaMa@é&gmentation recall already quite
high, it is questionable how much clustering caaigrove recall. Empirically, in the ab-

sence of filtering, ParaMor’s clustering algorithvas a negligible effect on both preci-
sion and recall. Apparently, most common pairs ngliEh and German c-suffixes al-

ready co-occur in some scheme.

In contrast to ParaMor’s clustering step, scherteriing has a significant effect on
ParaMor’'s morpheme segmentation performance. Thadjgpn filtration steps were de-
signed to increase the initially low precision @fr&Mor’'s selected schemes (See Section
4.3.3). ParaMor’s filtering algorithms reduce thember of morpheme boundaries that
ParaMor hypothesizes; And with such low initial @sgon, as long as a reasonable ma-
jority of the morpheme boundaries that ParaMor drage the incorrect ones, precision
will increase. ParaMor’s filtering algorithms witlecrease the number of morpheme
boundaries that ParaMor proposes in two ways.,kirdividual erroneous c-suffixes can
be entirely eliminated from ParaMor’s paradigm medehen all schemes or scheme-
clusters that contain a particular c-suffix are oged—if a c-suffix doesn’t exit, then it
can’'t match against the tail of a word. Second{ ps clustering can join pairs of
c-suffixes into a paradigmatic relationship, delgta scheme or a scheme-cluster can re-
move the hypothesis that a particular pair of dkse$ are paradigmatically related. And
lacking paradigmatic evidence, ParaMor will be deal® propose certain morpheme
boundaries. Of course, ParaMor’s filtration aldamt are imperfect, so it is likely that
some correct schemes and some correct c-suffiXebeniliscarded—decreasing recall.

The F'and & rows of Figures.2 contain the configurations of ParaMor’s paratlig
induction steps that contrast in paradigm filteringhe absence of scheme clustering. In
both English and German, precision rises signifigawwhen scheme filtering is added:
from 14.2% to 63.0% in English, and from 13.1% 848 in German: These are im-
provements of 48.8% and 35.3% absolute for Englrsth German respectively. Unfortu-

nately, among the paradigm models that are disdaldeing the scheme filtering steps
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are a significant number of models that proposeecomorpheme boundaries: recall de-
clines from 82.8% to 47.8% in English and from #8.6 41.6% in German, absolute
percentage falls of 35.0% and 37.0% respectively.b@ance, however, after filtering,
the harmonic mean of precision and recall immensalyroves for both languagesi F
approximately doubles in each case to 54.3% fotifimgnd to 44.7% for German.

Now compare the final two rows of Figuse2. Both of these experimental configura-
tions invoke both the search and the filtering ireeg, but the next-to-last row has no
clustering while the final row does merge schenhesEnglish, as was the case when
moving from the non-clustering to the clusteringnfoguration without filtering (top two
rows), precision falls and recall rises—althougé thagnitudes of the changes in recall
and particularly precision are significantly greatethe presence of ParaMor’s filtering
routines.

However, while in English precision falls and récases when introducing Pa-
raMor’s scheme-clustering algorithm in the preseoicie filtering routines, interactions
between ParaMor’s clustering algorithm and filtgrisgorithm make it possible for re-
call to fall and precision to rise, as happensisa torpus of German. During clustering, a
schemeC, which alone is not removed by ParaMor’'s morphdémendary error filters,
can form a cluster with schemes that ParaMor deésve mark morpheme boundaries.
When ParaMor’'s morpheme boundary error filters 8886 or more of the schemes in a
cluster as hypothesizing a morpheme boundary, ltister is removed—consequently, in
the presence of ParaMor’s scheme clusteringCteeheme will now be filtered from Pa-
raMor’s set of paradigm models. @ was the basis of hypothesized morpheme bounda-
ries, then these boundaries will not be proposeevParaMor’s filtering algorithms are
run after clustering. Hence, recall can drop and precisiss r

In German, the schen#n fills the role of theC scheme in the previous paragraph.
A word-final n can mark a variety of morphosyntactic feature&a@mman includinglu-
ral Number and/orDative Case on nouns. The stems of many, but not all, Germarusvo
which inflect with a finaln end ine, c.f. Auge ‘eye(Singular)’ becomesAugen_ ‘eye
(Plural)’, but Fenster_ ‘window (Singular Nominative)' can inflect toFenstern_ ‘window

(Plural Dative)'. Because the c-stems of tien scheme end in a sufficient variety of
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characters, thé.n scheme is not flagged as modeling an incorrecphene boundary
by ParaMor’s suffix-internal morpheme boundary erfitter. However, during Pa-
raMor’'s scheme-clustering phase, tl@en scheme is merged with several more-
specialized schemes whose sets of c-stems endsesatiuin the charactes. ParaMor
flags these now-mergeetschemes as incorrectly hypothesizing morpheme demigs
that lie internal to true suffixes, and t#en scheme is consequently removed.

Significantly for German, thed.n scheme introduces some 133,891 morpheme
boundaries into the 1.26 million unique German \gotidat ParaMor segments! More
than 10% of German words endrinand alternate with a surface form that lacksrthe
Thus, the choice to include or discard this single scheme from among ParaMor’s
paradigm models has a significant impact on theipien and recall scores that ParaMor
receives for morphological segmentation. Compatimg two experimental configura-
tions on the bottom two rows of Figuée2: when ParaMor filters but does not cluster
schemes (thus retaining tl@en scheme) recall lies at 41.6% and precision at%48hut
when ParaMor both clusters schemes and filtersethglting clusters (in the process los-
ing the@.n scheme), recall of course falls to 38.9% (as Parais! unable to correctly
analyze words likéugen ) but precision also rises considerably, to 54.1%.

ParaMor’s precision significantly increases whem@n scheme is removed because
in many German words a final does not constitute a morpheme. One common error
caused by thé.n scheme occurs in German verbs. Consider threectefl forms of one
particular verbspielen ‘play (Infinitive)’, spiele ‘play (1st Person Present Indicative)’,
andspielt ‘play (3rd Person Past Indicative)’. The correct morphological analysis of the
verbspielen treats the stringpiel as the verb stem and segments off the infinitive-mo
phemeen, i.e. spiel +en . However, the existence of the fospiele incorrectly allows
the @.n scheme to segmespilen asspiele +n. Overall, the significant increase in Pa-
raMor’s precision leads to a slight increase iridf German when schemes are clustered
in addition to being filtered.

While scheme clustering increasesifr German, in English, ParaMor’s clustering
algorithm actually lowers jFin the presence of scheme filtering, from 54.3%yvnido

52.7%. The scheme-clustering procedure manageaide English recall only slightly,
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from 47.8% to 48.8%, while significantly loweringeggision through the introduction of
many incorrect overgeneralized morpheme boundaRescision falls from 63.0% to
57.2%

As the ultimate effect of ParaMor’'s scheme-clusigralgorithm on [ can differ
from language to language, it is difficult to distevhether scheme clustering is fully ap-
propriate for the word segmentation task. Howegzction4.3.3 demonstrated that
scheme clustering significantly reduces the nundfeseparate partial paradigm models
that ParaMor produces. Because of this clear remuat paradigm fragmentation, Pa-
raMor’'s word segmentation submissions to the Mor@hallenge competition (Section
6.4) are produced when including the scheme-clumstealgorithm in ParaMor’s para-

digm induction pipeline.

Limiting the Vocabulary

As a second look at the individual contributionattRaraMor’s major sub-algorithms
make toward morphological segmentation, consideal®ar’'s performance when induc-
ing paradigm models from a much smaller corpus. \Wlad other word-to-morpheme
segmentation experiments in this thesis run ParaVimradigm induction algorithms
over corpora of 50,000 unique word types, the tesalFigure6.3 were obtained from a
corpus of 20,000 types. Like Figuse2, Figures.3 reports precision, recall, anggeores
(and the value of one standard deviation in pass&s$) for morphological segmentations
of English and German for four configurations ofdhor’'s scheme-search, clustering,
and filtering algorithms. The smaller corpus siz€®,000 unique types was chosen be-
cause the experiments in Secti®.2 demonstrated that in Spanish the quality af P
raMor’s induced paradigm models begins to quicldgrade below a vocabulary size of
20,000.

Before turning to the experimental results, itrigportant to keep in mind that both
this experiment over corpora of 20,000 types aad ofi Figure6.2 over 50,000 types, as
well as all other word segmentation experiment®ntepl in this thesis, segment words
over corpora that are much larger than the corpama which paradigms are initially

learned. The large size of the segmentation cagpumsportant because the more unique
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Figure 6.3: An ablation study when inducing paradigm models over 20,000 unique word
types. ParaMor’s Precision, Recall, and F; scores (and their standard deviations in
parentheses) at word-to-morpheme segmentation using four configurations of Pa-

raMor’s scheme search, clustering, and filtering algorithms. (See also Figure 6.2).

word types that are present in the segmentatiopusothe more likely that a particular
lexeme will occur in more than one inflected fonoviding the paradigmatic evidence
that ParaMor requires to propose a morpheme boun&gr holding the segmentation
corpus fixed, this experiment evaluates the qualftyParaMor’s induced paradigms, as
applied to the word-segmentation task, when the sfzhe paradigm induction vocabu-
lary is reduced.

Overall, ParaMor’s word segmentation algorithmamarkably resilient to a reduc-
tion in the size of the paradigm induction corplusparticular, the Fscores for the full
ParaMor algorithm of search, clustering, and fiftgrat a vocabulary of 20,000 types
(Figure 6.3) are within two standard deviations of thesEores for paradigms trained
over 50,000 types (Figu®2). In German, Fis slightly lower at 44.7% vs. 45.2%; And
in English, k is actually higher when paradigms are learned filensmaller vocabulary
of 20,000 types, 53.8% vs. 52.7%.

This increase in English;fat word segmentation reflects small increase®th pre-
cision (from 57.2% to 57.6%) and in recall (from.8% to 50.6%) when learning para-

digms from a smaller corpus. At first blush, in@esin recall, let alone precision and F
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are counterintuitive for paradigm induction ovesraaller data set. It would seem that
ParaMor should find fewer total c-suffixes fromraadler corpus, and that this smaller set
of c-suffixes should propose fewer morpheme bouadatf this smaller set of discov-
ered c-suffixes is more focused, then precisiorhiniigcrease, but surely recall should go
down. Indeed, a consistent pattern of lower resxadres at smaller vocabulary sizes does
occur among the experimental configurations thahadbinclude ParaMor’s filtering al-
gorithms: Recall is at least 5% absolute higherbfoth English and German in the top
two rows of Figures.2 than in the top two rows of Figuée3. However, in three of the
four experiments that include ParaMor’s filterinlgaithms (the bottom two rows of
Figures 6.2 and 6.3), the morpheme recall is higlean vocabulary size is smaller.

These recall statistics suggest that ParaMor’sriiily algorithms are behaving in a
less aggressive fashion at lower vocabulary si&esliscussed in Sectigh5.2, ParaMor
has one parameter that is not invariant to vocapdee. The filtering algorithm that
discards scheme-clusters which are not licensed byfficient number of word forms
(Section4.4.1) employs a threshold that must be adjustél the size of the vocabulary.
To compensate for the change in vocabulary sizee#periments in this section set the
cluster-size threshold using the same procedutbeasxperiments in Sectigh5.2: the
cluster-size threshold is linearly scaled with tloeabulary. In the Spanish experiments
of Section4.5.2, the linear adjustment of the cluster-sizeghold was sufficient to en-
sure that the number of unique correct c-suffixesalered by ParaMor should decrease
with vocabulary size. But empirically, a linear lseg of the cluster-size filtering thresh-
old does not prevent the inventory of discoveremiifixes in English and German from
increasing at lower vocabulary sizes. And hencsglréncreases.

Now look beyond the morphology segmentation scthas the full ParaMor algo-
rithm achieves in the small-vocabulary scenarid-igiure 6.3 to the experimental con-
figurations that omit the scheme clustering oefilig steps, or both. The segmentation
scores of these other experimental configuratiensal a pattern broadly similar to that
of the larger vocabulary experiments from Figér@: When filtering is omitted, Pa-
raMor’'s segmentation recall is high, precision lamd clustering has little effect. And

again, as when learning from the larger vocabularyoking ParaMor’s filtering algo-
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rithms brings recall and precision into closer haé&a At the smaller vocabulary size of
20,000 words types, ParaMor attains a maximyracere, for both English and German,

when ParaMor’s full suite of search, clustering] &ltering algorithms is applied.

6.3 Inflectional vs. Derivational Morphology

As mentioned in Sectiof.1.1 the Linguistic Evaluation of Morpho Challereyeplic-
itly requires analyzing both inflectional and dational morphology. But ParaMor is de-
signed to discover paradigms—the organizationaictitre ofinflectional morphology.
The experiment of Figur6.4 makes concrete ParaMor’s relative strengthlextifying
inflectional morphology and relative weakness atlying derivational morphology.

Figure 6.4 contains Morpho Challenge style linguistic eragibns of English and
German. For English and German, the official anskeys used in the 2007 and 2008
Morpho Challenge competitions were created fromwtigely available Celex morpho-
logical database (Burnage, 1990). To create theia@fiMorpho Challenge answer keys,
the Morpho Challenge organization extracted fronkeCéoth the inflectional and the
derivational structure of word forms. For the expent in Figures.4, | constructed from
Celex two Morpho Challenge style answer keys foglEh and two for German. First,
because the Morpho Challenge organization did elease their official answer key, |
built an answer key for each language very simdathe official Morpho Challenge an-
swer keys where each word form is analyzed for lnftectional and derivational mor-
phology. Second, | constructed from Celex answes Ker both English and Germen
which contain analyses of only inflectional morpbgy.

From the 50,000 most frequent types in the Morphallénge English and German
data that pass ParaMor’s word-length restricti@e (Sectior.2), ParaMor built scheme-
cluster models of paradigms. And then Fig6ré evaluates ParaMor’'s morphological
segmentations against both the answer key whictacmnonly inflectional morphology
and against the answer key which contains infleeli@nd derivational morphology. As

described in Sectiof.2, a minor modification to the Morpho Challeng®ring script
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allowed the calculation of standard deviations. $tandard deviation of;fs reported in
theo column of Figures.4.

Figure 6.4 reveals that ParaMor attains remarkably higlalteof inflectional mor-
phemes for both English, at 70.1%, and for Gernaar§6.5%. When evaluated against
analyses which include both inflectional and ddrorsal morphemes, ParaMor’'s mor-
pheme recall scores are 20 to 30 absolute percem@igts lower, English: 48.8% and
German: 38.9%.

In addition to evaluating ParaMor’s segmentatidrigure 6.4 evaluates segmenta-
tions produced by a morphology analysis systemedaMorfessor Categories-MAP
v0.9.2 (Creutz, 2006). Morfessor is a state-ofdhteminimally supervised morphology
induction algorithm that has no bias toward idemmtij inflectional morphology. To ob-
tain Morfessor's segmentations of the English ardn@&an Morpho Challenge data used
in this experiment, | downloaded the freely avd#aldorfessor program and ran Morfes-
sor over the data myself. Morfessor has a single frarameter. To make for stiff compe-
tition, Figure6.4 reports results for Morfessor at that paramsgéting which maximized

F1 in each separate evaluation scenario.

Inflectional Only Inflectional & Derivational

English German English German
P R FL 6| P R FL o P R F, o|P R F o

ParaMor 140270.1 51.0 0.9|37.6 66.5 48.0 0.8|57.2 488 52.7 0.9|54.1 38.9 452 0.6

Morfessor |53 470 499 1.3(387 442 412 08|73.6 340 465 1.1(66.9 37.1 47.7 0.7

Figure 6.4: ParaMor segmentations compared to Morfessor’'s (Creutz, 2006) evaluated
for Precision, Recall, F;, and standard deviation of F;, &, in four scenarios. Segmen-
tations over English and German are each evaluated against correct morphological
analyses consisting, on the left, of inflectional morphology only, and on the right, of

both inflectional and derivational morphology.
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Morfessor's unsupervised morphology induction atbons, described briefly in
Chapter 2, are quite different from ParaMor’s. WhitaraMor focuses on identifying
productive paradigms of usually inflectional suéfsx Morfessor is designed to identify
agglutinative sequences of morphemes. Looking gurEi6.4, Morfessor's strength
emerges to be the accurate identification of margse both inflectional and derivation-
al. In English and in German, Morfessor’s precisigrainst the answer key that contains
both inflectional and derivational morphology igrsficantly higher than ParaMor’s.
And, as compared with ParaMor, a significant portxd the morphemes that Morfessor
identifies are derivational. Morfessor’s relatiieeagth at identifying derivational mor-
phemes is particularly clear in German. Against @eman answer key of inflectional
and derivational morphology, Morfessor’s precisisrhigher than ParaMor’s; but Pa-
raMor has a precision comparable to Morfessor’smildentifying just inflectional mor-
phemes—indicating that many of the morphemes Msdiesorrectly identifies are deri-
vational. Similarly, while both ParaMor and Morfesscore lower at recall when re-
quired to identify derivational morphology in addit to inflectional; Morfessor’s recall
falls much less than ParaMor’'s—indicating that mahorfessor’s suggested segmen-
tations which were dragging down precision agatinstinflection-only answer key were
actually modeling valid derivational morphemes.

Clearly, the ParaMor and Morfessor morphology iniunc systems focus on very
different areas of morphology. These two systerogiglementary nature suggests pool-
ing their morphological segmentations—a suggestiat will be realized in Section
6.4.1.

6.4 Morpho Challenge 2007/2008

Where the ablation study of Secti@?2 clarified the contributions of the sub-
components of the ParaMor algorithm toward morpijicll segmentation, and Section
6.3 examined ParaMor's relative performance amiegrinflectional and derivational
morphological structure, this section focuses om filll ParaMor algorithm under the
strict requirements of the Morpho Challenge contipets held in 2007 and 2008. In
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these two years of the Morpho Challenge, systemgpeted in a Linguistic Evaluation of
up to five languages: English, German, Finnish kiBlr, and Arabic; and in a Task-
Based Information Retrieval (IR) Evaluation in upthree languages: English, German,
and Finnish. The scores from both the Linguistid aask-Based Evaluations of the 2008

competition are directly comparable to scores ftben2007 Challenge because:

1. Both the Linguistic and Task-Based IR Evaluaiosed the same methodology in
the 2007 and 2008 competitions; and moreover,
2. The more recent 2008 challenge scored systeras the same corpora and

against the same answer keys as the 2007 competitio

While comparing systems from the 2007 and the 2008ho Challenge competitions is
reasonable, comparing the scores of even the sgstens across different languages is
meaningless. Each language has radically diffem@rphological structure and the Lin-
guistic Evaluation uses different morphologicallynatated answer keys for each lan-
guage.

An early prototype of the ParaMor morphology indoctalgorithm competed in
Morpho Challenge 2007 (Monson et al., 2008a). Arafully developed ParaMor algo-
rithm participated in the 2008 Challenge (Monsoralet 2008b). Only ParaMor’s im-
proved performance from the 2008 Challenge is tepdor ParaMor in this thesis. In the
Morpho Challenge held in 2008, ParaMor took padlirfive language tracks of the Lin-
guistic Evaluation, and in all three language tsackthe Task-Based IR Evaluation. The
next two sub-sections detail ParaMor’s performaimcéhe Linguistic and Task-Based

Evaluations respectively.

6.4.1 Linguistic Evaluation Results from Morpho Challenge2007/2008

Figure6.5 summarizes ParaMor’s performance in the LirtguBvaluation of Mor-
pho Challenge 2008 and places ParaMor’s resultstive context of the best performing
systems from the 2007 and 2008 Challenges. Figibreontains the precision (P), recall

(R), and k scores of nine individual unsupervised morphologiuction algorithms for
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the five languages of the Linguistic Evaluationx $f the nine systems in Figu&5
competed in Morpho Challenge 2008, while threeesyistparticipated in the 2007 chal-
lenge. Of the six systems from Figué which competed in the 2008 challenge, three
are systems that Monson et al. (2008b) submittédewhree are systems built and sub-
mitted by others. The three systems which Monsoal.e{2008b) entered in Morpho
Challenge 2008 are:

1. The ParaMor system alone™{2olumn of Figures.5),

2. An instance of the unsupervised morphology itidac system Morfessor
(Creutz, 2006) which | trained myself{8olumn), and

3. A joint ParaMor-Morfessor system which combities analyses of 1. and 2.%(1

column of Figures.5).

The joint ParaMor-Morfessor system was developelgvterage the complementary
strengths of the ParaMor and Morfessor systemsinssvered in Sectiof.3: ParaMor
excels at identifying inflectional morphology, whithe Morfessor system discovers the
most regular and frequent morphological structofes language, whether inflectional or
derivational. And as discussed in Secttéh.1, the Morpho Challenge competition per-
mits a system to submit more than one (ostensilyiguous) analysis of a single word.
The ParaMor-Morfessor system joins analyses froma¥?ar and Morfessor by simply
adding Morfessor’'s segmentation of each word t@Mar's segmentation as a separate,
ambiguous, analysis.

The ParaMor algorithm has several free parametatscbntrol the paradigm discov-
ery phase. These parameters were set to valuepritdiiced reasonable Spanish para-
digms. The parameters were then frozen beforeileathe morphology of the languages
in the Morpho Challenge. In the experiments whidjoim ParaMor and Morfessor analy-
ses, Morfessor’s single free parameter was optiniae F, separately for English, Ger-
man, and Turkish. To optimize Morfessor’'s paraméiethese three languages, morpho-
logical answer keys were constructed from pre-ggstnorphological data and tools.

The source for the English and German morphologicalver keys was the Celex data-
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MONSON ET AL. (2008b) OTHER AUTHORS
2008 2008 2007

ParaMor + ParaMor Morfessor Morfes sor Zeman Kohonen |Bernhard Bordag Pitler

Morfessor MAP
% P 50.6 58.5 77.2 82.2 53.0 834 61.6 59.7 747
8 R 63.3 48.1 34.0 331 42.1 13.4 60.0 321 40.6
L'ZJ Fy 56.3 52.8 47.2 47.2 46.9 231 60.8 41.8 526
> P 49.5 53.4 67.2 67.6 53.1 87.9 49.1 60.5 -
% R 59.5 38.2 36.8 36.9 28.4 7.4 57.4 41.6 -
Or| 541 44.5 47.6 47.8 370 137 529 493 -
- P 49.8 46.4 77.4 76.8 58.5 92.6 59.7 71.3 -
é R 47.3 34.4 21.5 27.5 20.5 6.9 40.4 24.4 -
L F.| 48.5 39.5 33.7 40.6 30.3 12.8 482 364 -
T P 51.9 56.7 73.9 76.4 65.8 93.3 73.7 81.3 -
é) R 52.1 39.4 26.1 245 18.8 6.2 14.8 17.6 -
'2 Fi 52.0 46.5 38.5 371 29.2 11.5 24.7 28.9 -
%) P 79.8 78.6 90.4 90.2 77.2 - - - -
% R 27.5 85 21.0 21.0 12.7 - - - -
< Fil 40.9 15.4 34.0 34.0 21.9 - - - -

Figure 6.5: Results from the Linguistic Evaluation of Morpho Challenge. The unsu-

pervised morphology induction systems which appear in this table are the nine

best-performing systems from the 2008 and 2007 challenges. Systems partici-

pated in up to 5 language tracks. In each language track all participating systems

were scored at Precision, Recall, and F; of morpheme identification. The ground

truth against which Morpho Challenge compares systems in the Linguistic

Evaluation is a morphologically analyzed answer key that includes both inflec-

tional and derivational morphology. For each language track, the system or sys-

tems which place first at F; by a statistically significant margin appear in bold .
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base (Burnage, 1990); while in Turkish, a handtbudrphological analyzer provided by
Kemal Oflazer was used as the basis of a morphmdbgnswer key. Having limited ac-
cess to morphologically annotated Finnish and Aralata, Morfessor's parameter was
not directly optimized for these languages. InsteadFinnish and Arabic both have rich
morphological systems, Morfessor's segmentationgHese two languages were gener-
ated using the parameter value which performed tweshe morphologically complex
Turkish language.

The six systems from Figu@5 that were prepared by groups other than Moeson
al. (2008b) are those systems with the top comgeberformances in the Linguistic
Evaluation of the Morpho Challenge competitionafr@007 and 2008. The system la-
beled Morfessor MAP is a second instance of theesdorfessor algorithm that |
trained, submitted, and joined with ParaMor. B¢ orfessor MAP submission was
prepared by Kurimo and Varjokallio (2008) and likeises a different parameter setting
for each language from the settings used in my &sdr submissions. A change in pa-
rameter setting can sometimes result in quite wiffe performance for Morfessor,
c.f. Finnish. The remaining five systems, foundha right-most columns of Figu&5,
bear the names of their principle authors. If nplétiversions of a single algorithm com-
peted in the 2007 and/or 2008 Morpho Challenge) the scores reported in Figuseb
are from the algorithm variant which attained tighlst k score.

Because the number of morpheme-sharing word gaatswere used to calculate the
precision and recall scores in the Linguistic Eafibn of Morpho Challenge was quite
large, most score differences between systemsguar&6.5 are statistically significant.
All F differences of more than 0.5 between systems wtichpeted in Morpho Chal-
lenge 2007 are statistically significant (KurimageGtz, and Varjokallio, 2008); and simi-
larly, all F, differences of more than 0.5 among the Morpho IEhgk 2008 systems are
also statistically significant (Kurimo and Varjokal 2008).

To begin the examination of the results of the Lisgc Evaluation of Morpho Chal-
lenge, turn to the " column of Figure6.5 and examine the precision, recall, and F
scores that the ParaMor algorithm achieves alanallllanguage tracks but Arabic, Pa-

raMor holds its own against the state-of-the-agupervised morphology induction sys-
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tems which competed in Morpho Challenge. Against $ix best-performing systems
from the 2007 and 2008 Morpho Challenge compettitiat were not prepared by Mon-
son et al. (2008b), and looking at, Fhe ParaMor algorithm places first in Turkishtwit
46.5%, second in English with 52.8%, third in Fsimiat 39.5%, and fourth in German
with 44.5%.

Although ParaMor’s recall scores are consistertlyer than precision for each lan-
guage (in English precision is 58.5% vs. a redadl®1%, in German precision is 53.4%
and recall 38.2%, etc.), the precision and recates of the lone ParaMor algorithm are
often more balanced than the scores of other sgstearaMor’s balance in precision and
recall is particularly noticeable in Turkish, whehe morpheme recall of other unsuper-
vised systems is anomalously low. In Turkish, theead between ParaMor’s precision,
56.7%, and recall, 39.4%, is 17.3 percentage pointsontrast, the smallest spread in
any competing system is 47.0 percentage pointsarZzeman (2008) system. ParaMor’s
focus on a recall-centric morphology induction maere (see Chapter 3) and on a
segmentation procedure that can propose more thamaorpheme boundary in a single
word (see Chapter 5) pays strong dividends whemyzing the highly agglutinative
Turkish language.

Although ParaMor alone performs respectably, wien ParaMor’s analyses are ad-
joined with Morfessor’s that ParaMor shines. In @an, Finnish, Turkish, and Arabic,
the combined ParaMor-Morfessor system achievesitfigest r of any system which
competed in the 2007 or 2008 Challenges. And inligimgthe joint ParaMor-Morfessor
system places a strong second. It is the precstone of the joint ParaMor-Morfessor
system that drags the English tnder that of the first place system, Bernhard&O0In
Finnish, the Bernhard system'’s 8 likely not statistically different from that olfie Pa-
raMor-Morfessor system.

The joint ParaMor-Morfessor system attains its Bigh scores by balancing preci-
sion and recall. The trend for precision to be a&bwacall that was noted for ParaMor is
even more pronounced in the Morfessor system: Medies lowest precision and highest

recall scores both occur in German: 67.2% precisioth 47.6% recall. Because of the
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elevated precision scores in both ParaMor and Mede a boost in the harmonic mean
of precision and recall can be achieved by saorgiprecision for a decent gain in recall.

This tradeoff of precision for recall is exactlycamplished by adjoining the morpho-
logical segmentations that are proposed by theMRarand Morfessor systems. Combin-
ing the analyses of any two systems will incre&getotal number of morphemes in the
analysis of each word—likely lowering precision lpaissibly increasing recall. But Sec-
tion 6.3 suggests that the morphological analyses bHefPtaraMor and Morfessor sys-
tems propose are particularly suited for joinirge mostly inflectional morphemes that
ParaMor identifies differ substantially from thexnaf inflectional and derivational mor-
phemes that Morfessor induces. Hence, although icomgbParaMor’s analyses with
those from Morfessor almost always hurts precisiorgll five languages, the improve-
ment in recall significantly boosts Bver that of either ParaMor or Morfessor alone.

The performance of the ParaMor-Morfessor systeparsicularly striking in Turkish
and in Arabic. In Turkish, the recall of the joP&raMor-Morfessor system is double that
of all non-ParaMor Turkish systems. This high relesds to an improvement in Bver
the next best system, Morfessor alone, of 13.5%latesor 22.0% relative.

Contrasting with ParaMor’s strong performance akigh, the language that the lone
ParaMor algorithm performs most poorly at is AraliMew to Morpho Challenge in
2008, Arabic’s morphology is distinctly differembm that of the other four languages in
the challenge. Arabic morphology differs most nbtab possessing templatic morphol-
ogy, where a consonantal root is interleaved witivels to produce specific surface
forms. Equally important, from ParaMor’s perspeetiis that Arabic is the only language
in Morpho Challenge with significant prefixationoNonly does Arabic verbal morphol-
ogy include inflectional prefixes, but Arabic ortiraphy also attaches a number of com-
mon determiners and prepositions directly ontowhigten form of the following word.
These attached function words act as prepositiotext. With no strategy for identifying
prefixes, let alone templatic morphology, the PavalMIgorithm recovers just 8.5% of
the morphemes in the Arabic words. Such low remalls ParaMor’s Fdown to 15.4%.

It is some small consolation that no lone unsugevimorphology induction system re-

covered even a quarter of the morphemes in theideadswer key.
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Despite ParaMor’s own poor performance at uncogetiie morphological structure
of Arabic, when ParaMor’s analyses are presentetbmbination with Morfessor’s the
increase in recall between the two systems is ipedist additive. Morfessor’s Arabic Re-
call is 21.0%, ParaMor’s is 8.5%, and the recathef joint ParaMor-Morfessor system is
27.5%. This significant jump in recall implies vditfle overlap between the morphemes
which the ParaMor and Morfessor systems identifheWrecall scores are depressed, an
increase in recall implies an increase in And indeed, the ParaMor-Morfessor system
receives the highest IBf any system which analyzed Arabic morphology.

In the near term, since prefixes are the mirrorgenaf suffixes, a simple augmenta-
tion of ParaMor’s algorithms could allow analysispoefixation. The ability to identify
prefixes would not only improve morpheme recallArabic, but help identify German

verbal prefixes, and English derivational prefiassvell.

6.4.2 The Task-Based Evaluation of Morpho Challenge 2002008

The Task-Based Information Retrieval (IR) Evaluasicof the 2007 and the 2008
Challenge covered three languages: English, Geraraoh,Finnish. To measure the im-
pact that a morphology analysis system has on ay$km, the Morpho Challenge com-
petition replaced all words in all documents anérags from each IR corpus with the
morphological analyses the morphology system sugdesthat language. In both years
of the Morpho Challenge the same information retdieorpus and query set were used,
making results from 2007 comparable with resulsnfr2008. The Morpho Challenge
organizing committee did not measure the statisg@gnificance of average precision
scores in the IR Evaluation. Additional detailstbe procedure used in the Task-Based
IR Evaluation of Morpho Challenge are given in 8t6.1.2 as well as in Kurimo and
Turunen (2008) and Kurimo, Creutz, and Turunen 7200

Figures 6.6 and 6.7 contain the results of the ‘Besded IR Evaluations of Morpho
Challenge 2007 and 2008. Figuses contains the average precision IR scores fer th
eight best performing systems from the 2007 and@20@llenges; while Figur@.7 con-

tains average precision scores for four baselingicaenamely:
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1. No MorpHOLOGY: IR experiments run over the raw documents andiegier

2. SNowsALL (PoRrRTER): All words in each document and query are stemnsugu
the Snowball package of language stemmers. Inake of English, the Snowball
stemmer is the Porter stemmer;

3. ANSWER KEY: Document and query words are replaced with theirpimological
analyses from the answer keys that were used ir_ithguistic Evaluation of
Morpho Challenge. Note that the answer keys useabdri_inguistic Evaluations
contain only a subset of the full set of word tyfmed in the IR corpora; and

4. Two-LeveL: Each word is replaced with the morphological asialyprovided by a
hand-built rule-based morphological analysis systsm hand-built morphologi-

cal analysis system was evaluated for German.

In the IR Evaluation of Morpho Challenge, the Paoalgystem alone placed third in
English, while the combined ParaMor-Morfessor systgaced first in English and Ger-
man, and fourth in Finnish. The IR Evaluation islack-box experiment, and so it is not
completely clear why the ParaMor-Morfessor systamed worse in the Finnish track.
The most likely explanation is that replacing eacitd in each document and query with
both the ParaMoind the Morfessor analyses is inappropriate for audagg with com-
plex morphology such as Finnish. It is unfortunéiat Morpho Challenge did not con-
duct IR experiments for the morphologically complBxrkish and Arabic languages. It
would be particularly interesting to see ParaMdRsperformance on Turkish, which,
like Finnish, is agglutinative.

The ParaMor systems also perform well in comparigpnhe baseline algorithms of
Figure6.7. Most notably, in all languages, both the |®a@aMor algorithm and the joint
ParaMor-Morfessor system improve on the averageigpom scores the IR system
achieves when no morphological analysis is perfacrivéith no morphological analysis,
the IR system scores 32.9% average precision fglidkn 35.1% for German and 35.2%
for Finnish; while the joint ParaMor-Morfessor st scores 39.9% for English, 47.3%

for German, and 46.7% for Finnish.
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MONSON ET AL. (2008) OTHER AUTHORS
2008 2008 2007
I\P/I?)rr?g/,l,c;): ParaMor Morfessor MosleAssor “gc;;iﬁizr McNamee | Bernhard Bordag
ENGLISH| 39.9 39.3 36.4 37.1 38.6 36.3 39.4 34.3
GERMAN| 47.3 36.3 46.7 46.4 46.6 43.9 47.3 431
FINNISH 46.7 39.7 46.8 44.4 44.3 49.2 492 431

Figure 6.6: Average precision scores for unsupervised morphology induction systems

which participated in the Information Retrieval (IR) Evaluation of Morpho Challenge.

The unsupervised morphology induction systems which appear in this table are the

eight best systems from the 2008 and 2007 challenges. Systems participated in up

to three language tracks. The best performing system(s) for each track appear in

bold font.

MORPII\I-BLOGY S(E(O)\QIESS_ ANSWER KEY TwoO- LEVEL
ENGLISH 32.9 40.8 37.3 39.6
GERMAN 35.1 38.7 33.5
FINNISH 35.2 42.8 43.1 49.8

Figure 6.7: Average precision scores of four reference algorithms for

the Information Retrieval (IR) Evaluation of Morpho Challenge.
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The best performing unsupervised systems, inclutfiag?araMor-Morfessor system,
also outperform the baselimenswer KEy scenario: demonstrating that imperfect mor-
phological analysis performed by unsupervised malgaly induction systems can trump
perfect analysis of a subset of the words founa task. ParaMor and the other unsuper-
vised systems face stiffer competition in the tvemdi-built morphological baselines that
have some generalization capaci8yowsALL (PORTER) and Two-LEVEL. The Porter
stemmer has the best average precision of any oheip@nst English; but unsupervised
systems, the joint ParaMor-Morfessor system amdregni outperform the Snowball
rule-based stemmers for both German and Finnisi. fAally, although the hand-built
two-level morphological analyzer improves averagecigion more than any unsuper-
vised induction method does in Finnish; the joiatdMor-Morfessor system edges out

the hand-built English morphological analysis syste
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Chapter 7:
Conclusions and
Future Work

ParaMor, the unsupervised induction system devdldpethis thesis automatically
discovers the morphological paradigms of naturagleage from unannotated text in a
three step process. First, ParaMor lays out a splacandidate partial paradigms and ap-
plies a recall-centric search strategy to that sg@hapter 3). Second, ParaMor merges
candidate paradigms that likely describe portidrtfi® same true paradigm (Secti®3).
And third, ParaMor culls out the least likely cattaties (Sectiond.24.2and4.4). With a
firm grasp on the paradigmatic structure of a patér language, ParaMor then segments
individual words of that language exactly when ¢hes paradigmatic evidence that a
word adheres to a discovered paradigm (Chapter 5).

ParaMor’s identified paradigmatic models organindlectional morphology by
grouping mutually substitutable suffixes into pagaatlike structures. With its focus on
inflectional paradigms, ParaMor contrasts with otlvesupervised morphology induction
systems, such as Morfessor (Creutz, 2006), whiek s identify all morpheme types
whether inflectional or derivational. With their phasis on very different aspects of

morphology, ParaMor’s morphological analyses argdly complementary to those of a
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system like Morfessor. And this thesis leveragesitidividual strengths of the general
purpose morphology induction system Morfessor dradinflection specific system Pa-
raMor by combining the analyses from the two systeno a single joint analysis.

The combined ParaMor-Morfessor system competetien2007 and 2008 Morpho
Challenge competitions, which evaluated unsupesvimerphology induction systems at
morpheme identification. In four of the five langeatracks of the 2007/2008 Morpho
Challenge competitions, in German, Finnish, Turkiahd in Arabic, the ParaMor-
Morfessor system achieved andeore for morpheme identification at or above tiall
other systems which competed. The primary reasoth&combined ParaMor-Morfessor
system’s success at morpheme identification istitsng morpheme recall. In Turkish,
the combined system’s recall, at 52.1%, is twie tf the next highest system.

Results from the Morpho Challenge competitions alsggest that the ParaMor mor-
phology analysis system is helpful in higher-lewaltural language processing tasks.
Augmenting an Information Retrieval (IR) systemiwihe morphological analyses that
are proposed by the ParaMor system alone signtiicanproves average precision over
a morphologically naive baseline. ParaMor’s improeat over the baseline IR scores
occurs in all three languages of the Task-BaseBu&uation at Morpho Challenge. Fur-
thermore, the IR average precision scores of th¢ ParaMor-Morfessor system place
first among all competing systems in English andnGan.

Despite ParaMor’s successes, this thesis, natucaliyd not exhaustively investigate
all areas of the ParaMor algorithm. Nor could thissis explore every aspect of unsuper-
vised morphology induction in general. The next wections outline particular sugges-
tions for extending ParaMor and specific recomméada to all who will pursue unsu-

pervised morphology induction in the future.

7.1 Improving the Core ParaMor Algorithms

Developing ParaMor’s large suite of algorithms res@@ated prioritizing implementa-
tion. The foremost priority for this thesis wascteate a complete system that could both

identify paradigms and then segment word forms oddnhately, focusing on the full Pa-
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raMor system required limiting the investigationboith the paradigm identification algo-
rithm as well as the segmentation algorithm indnaitly. Beginning with the paradigm
identification algorithm and moving toward the semtation algorithm, five specific
pieces of ParaMor’s current algorithms warrantifertwork.

First, although ParaMor’'s scheme-clustering algong of Sectiort.3 significantly
reduce the fragmentation of true paradigms acrasaNror’s paradigm models, the final
scheme-clusters remain disjointed. For example,ngntbe 42 scheme-clusters that Pa-
raMor outputs over a training corpus of 50,000 $arnypes, nine separate clusters
model portions of ther inflection class of Spanish verbs. But ParaMor waable to
merge these nine clusters because ParaMor’s ccdlied discriminative restriction on
clustering, described in Sectigh3.1, prevents any cluster from containing a @dir
c-suffixes that are not mutually substitutable bteast one c-stem. The verbal c-suffixes
andoles andarme, for example, which are each built of a non-finiexb suffix in com-
bination with a pronominal clitic, did not bothath to any single c-stem in this Spanish
corpus. Although both théndoles and thearme c-suffixes belong to thar inflection
class, any one ParaMor cluster is prevented fromtag@ing them simultaneously. In fail-
ing to merge models which clearly describe portiofithe same paradigm, ParaMor does
not capture the full generality and power of pagats.

In a similar vein, ParaMor’s clustering restricsoprevent distinct inflection classes
of the same paradigm from coalescing. For exanipl8panish ParaMor keeps separate
those scheme-clusters that model &heverbal inflection class from those clusters that
model theer inflection class of verbs, which are separatedrafam models of ther
inflection class. On the one hand, it was an imb&al choice to prevent ParaMor from
merging distinct inflection classes of the sameeaulythg paradigm: Although all verbs
in Spanish inflect for the same morphosyntacti¢uess, verbs which adhere to distinct
inflection classes use distinct suffixes to mark same feature sets, and sometimes even
use the same surface suffix to mark distinct sefeatures (see Chapter 4). While it is
clearly important, then, to somehow distinguishwiastn distinct inflection classes, Pa-

raMor’s separated models prevent the segmentatibtige 3rd Person Singular Present
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Indicative Spanish word formbebe ‘she drinks’ andhabla ‘she speaks’asbeb + e and
habl + a respectively, from containing matching suffixes.

The second area of ParaMor that warrants furthek wgoa scaling up of ParaMor’s
paradigm identification algorithms from the relaliy small vocabulary size of 50,000
unique types to the orders of magnitude larger boleaies used in the Morpho Chal-
lenge competitions. While ParaMor’'s segmentatiggothms can segment arbitrarily
large corpora, in this thesis ParaMor included asin®0,000 types from any corpus in
the paradigm induction vocabulary. There is no ifigant barrier to scaling up Pa-
raMor’s paradigm identification algorithms to largeocabulary sizes. Each step in Pa-
raMor’s paradigm induction pipeline will scale wikarger vocabularies: ParaMor’s on-
demand instantiation of the morphology scheme nétvatiows the scheme search pro-
cedure to scale reasonably with vocabulary sizh brotime and space complexity. And
bottom-up agglomerative scheme clustering is astwoubic in time with the number of
initial schemes. The primary reason this thesisndidscale up ParaMor’s paradigm iden-
tification algorithms is that ParaMor’s parametersre set over the smaller vocabulary
size, and time did not permit empirical adjustmainthe parameter settings to accommo-
date larger vocabularies.

In contrast to scaling up ParaMor’s paradigm idexaiion phase, the third ParaMor-
specific question this thesis does not answer v8 RaraMor’s segmentation algorithms
scale down to smaller vocabulary sizes. The lathervocabulary that ParaMor seg-
ments, the more likely ParaMor will be to find este that a word belongs to a particu-
lar paradigm. The vocabularies of the language ararjin the Morpho Challenge 2007
and 2008 competitions were very large. But an uestiged morphology induction sys-
tem might be most useful for languages with limiteedchine readable data available.
Thus, it will be important to scale ParaMor’s segtagion algorithms down to smaller
vocabulary sizes. In ParaMor’s current morphologgsgmentation algorithm, a word-
final string,f, of a particular word formy, must be mutually substitutable with another
c-suffix of a paradigm before ParaMor will placenarpheme boundary iw beforef.

Perhaps in scenarios where more limited data isladn@, ParaMor's morphological
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segmentation algorithm should require less evidehata stem adheres to a particular
paradigm before segmenting.

A fourth area that this thesis did not fully intigate is the effect that ParaMor’'s
four free parameters have on ParaMor’s ultimate pmological segmentations. Pa-
raMor’s free parameters directly control the indiparadigms. ParaMor’s first parame-
ter is the cutoff in the morphology scheme netwselrch on when a parent scheme is
deemed likely to correctly extend the coveragehef ¢urrent scheme (Chapter 3). The
second parameter is the lower boundary on thegsieimgth of the word forms used in the
paradigm induction corpus (Sectidt). The third parameter decides when to discard a
scheme-cluster based on the number of word typsshame-cluster covers (Section
4.4.1). And the fourth parameter governs the sdffigrnal and stem-internal morpheme
boundary error filters (Sectioh4.2). ParaMor’s four free parameters were sebgpax-
amining word-to-morpheme segmentations, but by éxagn the candidate paradigms,
I.e. schemes and scheme-clusters, that ParaMdedrea

The chronological development of ParaMor’s coreoatijms largely followed the
order of ParaMor’s processing pipeline. In paréculParaMor’'s word-to-morpheme
segmentation algorithm was only developed afteaMar’s paradigm identification al-
gorithms were in place. Hence, no experiments threceasured changes in word seg-
mentation quality as ParaMor’'s parameters variesl. déscribed in Sectiof.3, Pa-
raMor’s free parameters were intentionally set eximize the recall of inflectional mor-
phemes. Only empirical experimentation could deteent a more restrictive search pa-
rameter or more aggressive filtering of schemetehgswould significantly improve Pa-
raMor’s precision at the word-to-morpheme segmematiask without severely hurting
recall.

Finally, this thesis leaves to future work the depment of a more satisfactory ap-
proach for combining the segmentations of ParaMut Blorfessor. The current algo-
rithm does not attempt, for any particular wordnterge the morphological segmenta-
tions from the two systems. Instead, the procedscribed in this thesis simply sug-
gests each system’s segmentation as an alterraatalgsis. A more sophisticated system

could select from among the morpheme boundarigsatteasuggested by the two sys-
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tems, and produce a single unified segmentatiofadt) a general purpose solution to the
problem of combining segmentations that come fromitiple morphology analysis algo-
rithms could be used to combine segmentations pextllby additional unsupervised

morphology induction systems beyond ParaMor andféésor.

7.2 The Future of Unsupervised Morphology Induction

This section looks beyond specific extensions te BaraMor algorithm to the
broader picture of the steps future unsupervisegphwdogy induction systems must take.
The field of unsupervised morphology inductiontiff & its infancy. Although unsuper-
vised morphology induction is a large and complesbfem, implemented systems al-
most universally focus on a narrow slice of the nsimple forms of morphology. Three
areas where very little work has been done on nuogly induction from an unsuper-

vised perspective are:

1. Morphological processes other than suffixation,
2. Morphophonemics, and

3. Mapping from morphemes to morphosyntactic fesstur

The next three sub-sections examine these undersareas in turn.

7.2.1 Beyond Suffixation

This thesis joins most other unsupervised morpholaduction work in addressing
the most prevalent morphological process, sufforatMWhile other morphological proc-
esses play an important role in many language8Bxatibn plays a significant role in the
morphology of nearly all the world’s languages,ludgiing those that also employ other
morphological processes (Dryer, 2008). Still, sw#fion is only the most common mor-

phological process among many, including: prefomtiinfixation, reduplication, vowel
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and consonant mutation, templatic morphology (aArabic), as well as suprasegmental
changes such as tone or stress.

The next step in the field of unsupervised morpgplomduction will be to address
these additional morphological processes. To dagemost promising work on unsuper-
vised induction of non-concatenative morphologyMgentowski (2002), which explic-
itly assumes an underlying morphology that is natfy concatenative. However, most
work on unsupervised induction of morphology hasug®ed on concatenative processes.
Morfessor (Creutz, 2006), for example, agnosticdibcovers any concatenative morpho-
logical processes. Indeed, ParaMor could be easthnded to analyze the concatenative
operation of prefixation by treating initial subsgs of words as candidate prefixes in

paradigmatic relationships and final substringthassyntagmatic candidate stems.

7.2.2 Morphophonological Change

Not only does ParaMor restrict morphological anialye suffixation, ParaMor also
requires the modeled suffixation to be purely coecative. But in fact, suffixation is of-
ten not strictly concatenative. Suffixation, likk morphological processes, can be ac-
companied by phonologic changes. Even English’#dunmorphology is rife with ex-
amples of morphophonology: many nouns voice a firiehtive before the plural, i.e.
wolf becomesvolvesnot*wolfs. But more can change than just the word final ooast:
both Finnish and Turkish, evaluated in the 2007 2008 Morpho Challenge competi-
tions, have vowel harmony where vowels in a suffiange to match vowels in the stem.

Although Wicentowski (2002), again ahead of its¢jrand Goldwater and Johnson
(2004) begin to approach the unsupervised learafngorphophonology, most current
generation unsupervised morphology induction systeim not address morphophonol-
ogy. In particular, neither ParaMor nor MorfessGrgutz, 2006) model morphophonol-
ogy in a systematic fashion. A logical next steptfee ParaMor algorithm would be to
extend the definition of a scheme from a strictaatanation of c-stems and c-suffixes to

allow for phonological change when a stem and afexjoined.
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7.2.3 Mapping Morphemes to Features

Finally, isolating the stem of a word by identifgiand separating off inflectional
suffixes, as ParaMor does, constitutes only tte $tep of full morphological analysis. A
full analysis must also specify the set of morpmbagtic features marked by each identi-
fied affix. Probst (2003) is the only prior attenhi@m aware of to automatically associate
induced suffixes with morphosyntactic features sasRerson, Number, or Tense. Be-
ing able to map morphosyntactic features onto disie morphemes would be particu-
larly useful for syntactic transfer based machna@glation, where unification rules over
morphosyntactic features restrict the set of applie translation rules.

Deriving a mapping from surface morphemes to masphtactic features requires
knowledge of the grammatical features that exishenspecific language. Ongoing work
in the Language Technologies Institute at Carnbtglon University (Clark, Frederking,
and Levin, 2008) plans to acquire this knowledggraimmatical features through a proc-
ess of feature detection. Figurel pictures the general process of feature detecti
where a bilingual informant aligns the words inrpaof translated of sentences. In this
example, a bilingual informant translates the twwlish sentences “The tree fell” and
“The trees fell” into Spanish. The feature detatsystem then compares sets of features
that are associated with the English sentencdsigure7.1, the feature detection system
would find that the morphosyntactic feature struesuassociated with this pair of sen-
tences are identical except for one feature valle-Subject Number. To discover
whetherSubject Number is marked in Spanish, the feature detection systempares
the Spanish words which are aligned to the heatthet@ependent, and to the governor of
the sentence subject. During these comparisontedtere detections system learns that
Subject Number is marked in all three possible locations, i.e.tlom headarbol vs. ar-
boles, on the dependenEl vs. Los, and on the governarayé vs. cayeron, because
each of these surface string pairs differ. And nawith knowledge of what features are
marked in Spanish, c-suffixes liks on arboles , and@ on arbol(g) can be associated

with Singular andPlural Number.
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((TENSE past) (LEXICAL-ASPECT activity)
(SUBJ ((NUM sg) (PERSON 3sg) ...)))

((TENSE past) (LEXICAL-ASPECT activity) ...
(SUBJ ((NUM pl) (PERSON 3sg) ...)))

VP VP
Det N \Vj Det N \%
| | |
The tree fell The trees fell
| | |
El arbol@ cayo Los arboles cayeron

L

Subject Number marked in 3 places:

1. on N head with @=sg, es=pl,
2. on dependent Det with El=sg, Los=pl, and
3. on governing V with 6=sg, eron=pl

Figure 7.1: A General schema for feature detection from word-aligned translated sen-

tences and associated feature structures.

7.3 ParaMor: A Successful Morphology Induction Algorithm

This thesis has empirically shown that the inheparadigmatic organization of in-

flectional morphemes can be leveraged to inducertbgphological structure of natural
languages in an unsupervised fashion. With algmstspecifically tailored to the unique
structure of natural language morphology, as themse-search and scheme-clustering
procedures of Chapters 3 and 4 are, the ParaMt@rsyis able to recover models of the

paradigmatic relationships that exist between iifledtional morphemes of a language.
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This thesis validated the quality of the discovepadadigmatic models both by direct
comparison of the induced paradigm models agaiastiftrafted paradigm descriptions
(Chapter 4) and by ParaMor’s improvements on si&tbe-art performance in the Mor-
pho Challenge competitions held in 2007 and 200&f@er 6).

210



Bibliography

Altun, Yasemin, and Mark Johnson. 2001. Inducing $fth e-Transitions Using Mini-
mum Description LengthFinite State Methods in Natural Language Processing

Workshop at ESSL] Helsinki, Finland.

The American Heritage® Dictionary of the Englishngaage 2000. Fourth Edition,
Houghton Mifflin Company.

Angluin, Dana. 1982. Inference of Reversible Lamggsalournal of the ACM29.3, 741-
765.

Baroni, Marco. 2000Distributional Cues in Morpheme Discovery: A Congtianal
Model and Empirical Evidenc@h.D. Thesis in Linguistics, Los Angeles, Univigrs

of California, Los Angeles.

Baroni, Marco, Johannes Matiasek, and Harald T@3@2. Unsupervised Discovery of
Morphologically Related Words Based on Orthograpdmc Semantic Similarity.
ACL Special Interest Group in Computational Phogglon Cooperation with the
ACL Special Interest Group in Natural Language lreag (SIGPHON/SIGNLL)
Philadelphia, Pennsylvania, 48-57.

211



Baroni, Marco. 2003. Distribution-driven Morphemeé&bvery: A Computational/Exper-

imental StudyYearbook of Morphology

Beesley, Kenneth R., and Lauri Karttunen. 2@08ite State MorphologyCSLI Publica-

tions, Palo Alto, California.

Bernhard, Delphine. 2008. Simple Morpheme LabellingUnsupervised Morpheme
Analysis. Lecture Notes in Computer Scienc&: \®orkshop of the Cross-Language
Evaluation Forum, CLEF 2007, Revised Selected PapBudapest, Hungary,
Springer, 5152/2008, 873-880.

Biermann, A. W., and J. A. Feldman. 1972. On that&gsis of Finite-State Machines
from Samples of Their BehaviolEEE Transactions on Computer€-21.6, 592-
597.

Bordag, Stefan. 2008. Unsupervised and Knowledge-Morpheme Segmentation and
Analysis.Lecture Notes in Computer Scienc&: \®orkshop of the Cross-Language
Evaluation Forum, CLEF 2007, Revised Selected PapBudapest, Hungary,
Springer, 5152/2008, 881-891.

Brent, Michael. 1993. Minimal Generative Explanaso A Middle Ground between
Neurons and Triggergognitive Science Societyniversity of Colorado-Boulder,

Lawrence Erlbaum Associates, Inc., 28-36.

Brent, Michael R., Sreerama K. Murthy, and Andremndberg. 1995. Discovering Mor-
phemic Suffixes: A Case Study in MDL Inductidrhe Fifth International Workshop

on Atrtificial Intelligence and Statistic&ort Lauderdale, Florida.

Burnage, Gavin. 199@elex—A Guide for User$§pringer, Centre for Lexical informa-

tion, Nijmegen, the Netherlands.

Casella, George, and Roger L. Berger. 2@atistical InferenceSecond Edition, Dux-

bury, Thomson Learning Inc.

212



Chan, Erwin. 2006. Learning Probabilistic ParadigorsMorphology in a Latent Class
Model. ACL Special Interest Group on Computational PhoggldNew York City,
New York, 69-78.

Clark, Jonathan H., Robert Frederking, and Loriihex2008. Inductive Detection of
Language Features via Clustering Minimal Pairs: dmlWFeature-Rich Grammars in
Machine TranslationWorkshop on Syntax and Structure in Translatior5{§%t the
Association for Computational Linguistics (ACCOolumbus, Ohio, 78-86.

Creutz, Mathias, and Krista Lagus. 2002. Unsuped/Biscovery of Morpheme#&CL
Special Interest Group in Computational Phonologycooperation with the ACL
Special Interest Group in Natural Language Learn{(S§GPHON/SIGNLL)Phila-
delphia, Pennsylvania, 21-30.

Creutz, Mathias. 2003. Unsupervised Segmentatiowaifds Using Prior Distributions
of Morph Length and Frequencyrhe Association for Computations Linguistics

(ACL), Sapporo, Japan.

Creutz, Mathias, and Krista Lagus. 2004. Inductba Simple Morphology for Highly-
Inflecting LanguagesACL Special Interest Group in Computational Phogg|o

Barcelona, Spain, 43-51.

Creutz, Mathias. 2006nduction of the Morphology of Natural Language:dupervised
Morpheme Segmentation with Application to Autom&peech RecognitioPh.D.
Thesis, Computer and Information Science, Repor8,[Helsinki, University of

Technology, Espoo, Finland.

DeGroot, Morris H. 1989Probability and StatisticsSecond Edition, Reading, Massa-
chusetts, Addison-Wesley Publishing Company.

213



Déjean, Hervé. 1998. Morphemes as Necessary Cofmeftructures Discovery from
Untagged CorpordNew Methods in Language Processing and Computdtidatu-
ral Language Learning (NeMLaP/CoNLL) Workshop oma@egms and Grounding
in Language Learninged. Powers, David M. W., 295-298.

Demberg, Vera, Helmut Schmid, and Gregor Mohle@72®honological Constraints and
Morphological Preprocessing for Grapheme-to-Phon&oaversion.Association

for Computational Linguistics (ACLPrague, Czech Republic.

Dryer, Matthew S. 2008. Prefixing vs. Suffixing lmflectional Morphology. In: Haspel-
math, Martin, David Gil, and Bernard Comrie (EdBhe World Atlas of Language
Structures Online Munich: Max Planck Digital Library, Chapter 26.v&ilable

online at <http://wals.info/features/26>. Accessaddecember 17, 2008.

Francis, W. Nelson. 1964 Standard Sample of Present-Day English for Usk @igi-
tal ComputersReport to the U.S. Office of Education on CoopeeaResearch Pro-

ject No. E-007, Brown University, Providence, Rhdsland.

Gaussier, Eric. 1999. Unsupervised Learning of &gidnal Morphology from Inflec-
tional LexiconsUnsupervised Learning in Natural Language Procegsin ACL'99

Workshop University of Maryland.

Goldsmith, John. 2001. Unsupervised Learning of Maphology of a Natural Lan-
guage Computational Linguistic27.2, 153-198.

Goldsmith, John. 2006. An Algorithm for the Unsupsed Learning of Morphology.
Natural Language Engineering2.4, 335-351.

Goldwater, Sharon, and Mark Johnson. 2004. PrioBayesian Learning of Phonologi-
cal Rules.ACL Special Interest Group in Computational PhoggloBarcelona,
Spain, 35-42.

214



Goldwater, Sharon, and David McClosky. 2005. Imprg\Statistical MT through Mor-
phological AnalysisEmpirical Methods in Natural Language Processiv@ncou-

ver, Canada.

Gordon, Ronni L., and David M. Stillman. 199%he Ultimate Spanish Review and Prac-

tice. Passport Books, Chicago, lllinois.

Hafer, Margaret A., and Stephen F. Weiss. 1974.d/@gmentation by Letter Successor
Varieties.Information Storage and Retrievdl0.11/12, 371-385.

Hammarstrém, Harald. 2006a. A Naive Theory of Adfion and an Algorithm for Ex-
traction.ACL Special Interest Group on Computational PhoggldNew York City,
New York, 79-88.

Hammarstrom, Harald. 2006b. Poor Man’s Stemmingsupervised Recognition of
Same-Stem Wordénformation Retrieval Technology: Proceedings & Third Asia

Information Retrieval Symposium, AIRS 20Bhgapore, 323-337.

Hammarstrém, Harald. 200@nsupervised Learning of Morphology: Survey, Moéél,
gorithm and ExperimentsThesis for the Degree of Licentiate of EnginegyriDe-
partment of Computing Science, Chalmers Universftyechnology and Géteborg

University, Goteborg, Sweden.

Harris, Zellig. 1955. From Phoneme to Morphetanguage 31.2, 190-222, Reprinted
in Harris (1970).

Harris, Zellig. 1967. Morpheme Boundaries within M& Report on a Computer Test.
Transformations and Discourse Analysis Pap&mspartment of Linguistics, Univer-

sity of Pennsylvania, Reprinted in Harris (1970).

Harris, Zellig. 1970Papers in Structural and Transformational Linguidtsl. D. Reidel,
Dordrecht.

215



Jacquemin, Christian. 1997. Guessing Morphologgnfiicerms and Corpor&IGIR '97:
Proceedings of the 20th Annual International ACNGIR Conference on Research
and Development in Information RetrievBhiladelphia, Pennsylvania, ACM Press,
156-165.

Johnson, Howard, and Joel Martin. 2003. Unsupedvisearning of Morphology for
English and InuktitutHuman Language Technology Conference / North Aeric
Chapter of the Association for Computational Lirggais (HLT-NAACL)Edmonton,

Canada.

Kurimo, Mikko, Mathias Creutz, and Ville Turunen0@. Unsupervised Morpheme
Analysis Evaluation by IR Experiments — Morpho Gérade 2007 Working Notes
for the CLEF 2007 WorkshpBudapest, Hungary.

Kurimo, Mikko, Mathias Creutz, and Matti Varjokalli2008. Morpho Challenge Evalua-
tion Using a Linguistic Gold Standartlecture Notes in Computer Sciencé” 8
Workshop of the Cross-Language Evaluation ForumElER007, Revised Selected
Papers Budapest, Hungary, Springer, 5152/2008, 864-872.

Kurimo, Mikko, and Matti Varjokallio. 2008. Unsupeésed Morpheme Analysis Evalua-
tion by a Comparison to a Linguistic Gold StandardMorpho Challenge 2008.
Working Notes for the CLEF 2008 Workshégarhus, Denmark.

Kurimo, Mikko, and Ville Turunen. 2008. Unsupendsklorpheme Analysis Evaluation
by IR Experiments — Morpho Challenge 2008orking Notes for the CLEF 2008

Workshop Aarhus, Denmark.

Kurimo, Mikko, Ville Turunen, and Matti Varjokallio2008.Unsupervised Morpheme
Analysis—Morpho Challenge 2008http://www.cis.hut.fi/morphochallenge2008/>,

Accessed on December 10, 2008.

216



Lang, Kevin J., Barak A. Pearlmutter, and RodneyAce. 1998. Results of the Abbad-
ingo One DFA Learning Competition and New Evideboeven State Merging Al-
gorithm. ICGI '98: The 4th International Colloquium on Grammcal Inference

Springer-Verlag.

Manning, Christopher D., and Hinrich Schitze. 199@undations of Statistical Natural

Language Processinghe MIT Press, Cambridge, Massachusetts.

McNamee, Paul. 2008. Retrieval Experiments at Mor@hallenge 2008V orking Notes
for the CLEF 2008 Workshoparhus, Denmark.

Miclet, Laurent. 1980. Regular Inference with aldGustering MethodIEEE Transac-
tions on Systems, Man, and Cybernetics SN 1, 737-743.

Monson, Christian, Alon Lavie, Jaime Carbonell, dradi Levin. 2004. Unsupervised
Induction of Natural Language Morphology Inflecti@tassesACL Special Interest
Group in Computational Phonology (SIGPHQBparcelona, Spain, 52-61.

Monson, Christian, Jaime Carbonell, Alon Lavie, &mwdi Levin. 2007. ParaMor: Mini-
mally Supervised Induction of Paradigm Structuréd Blorphological AnalysisACL
Special Interest Group in Computational Morphologiyd Phonology (SIGMOR-
PHON), Prague, Czech Republic, 117-125.

Monson, Christian, Jaime Carbonell, Alon Lavie, &wdi Levin. 2008a. ParaMor: Find-
ing Paradigms across Morphologyecture Notes in Computer Scienc& ®/ork-
shop of the Cross-Language Evaluation Forum, CLEB72 Revised Selected Pa-
pers Budapest, Hungary, Springer, 5152/2008, 900-907.

Monson, Christian, Jaime Carbonell, Alon Lavie, amdi Levin. 2008b. ParaMor and
Morpho Challenge 2008WNorking Notes for the CLEF 2008 Workshdgarhus,

Denmark.

217



Monson, Christian, Alon Lavie, Jaime Carbonell, & Levin. 2008c. Evaluating an
Agglutinative Segmentation Model for ParaM&CL Special Interest Group in
Computational Morphology and Phonology (SIGMORPHQBYHlumbus, Ohio, 49-
58.

Oflazer, Kemal, andlknur Durgar El-Kahlout. 2007. Exploring Differefepresenta-
tional Units in English-to-Turkish Statistical Mank Translation.Statistical Ma-

chine Translation Workshop at ACRrague, Czech Republic.

Ogilvie, Paul, and Jamie Callan. 2002. Experimé&iggg the Lemur ToolkitThe 2001
Text Retrieval Conference (TREC 20Q0103-108, National Institute of Standards
and Technology, Special Publication, 500-250.

Probst, Katharina. 2003. Using 'Smart' BilinguadjBction to Feature-Tag a Monolingual
Dictionary. Computational Natural Language Learning (CoNLEdmonton, Can-

ada.

Roark, Brian, and Richard Sproat. 20@C@mputational Approaches to Morphology and

Syntax Oxford University Press Inc., New York.

Robertson, S. E., S. Walker, S. Jones, M. M. Hakn&®aulieu, and M. Gatford. 1994.
Okapi at TREC-3The Third Text Retrieval Conference (TREC-3)

Schone, Patrick, and Daniel Jurafsky. 2000. KnogdeHree Induction of Morphology
Using Latent Semantic Analysi€omputational Language Learning (CoNIL.L)s-
bon, Portugal, 67-72.

Schone, Patrick, and Daniel Jurafsky. 2001. KnogdeBree Induction of Inflectional
Morphologies.North American Chapter of the Association for Cotapanal Lin-
guistics (NAACL)Pittsburgh, Pennsylvania, 183-191.

Snover, Matthew G., and Michael R. Brent. 2001. &/&sian Model for Morpheme and
Paradigm IdentificationAssociation for Computational Linguistics (ACIpulouse,

France, Morgan Kaufmann.

218



Snover, Matthew G. 2002n Unsupervised Knowledge Free Algorithm for tharbang
of Morphology in Natural LanguageSever Institute of Technology, Computer Sci-

ence, Saint Louis, Missouri, Washington UniversifyS. Thesis.

Snover, Matthew G., Gaja E. Jarosz, and Micha@rBnt. 2002. Unsupervised Learning
of Morphology Using a Novel Directed Search Alglnit Taking the First Step.
ACL Special Interest Group in Computational Phogglon cooperation with the
ACL Special Interest Group in Natural Language lreag (SIGPHON/SIGNLL)
University of Pennsylvania, Philadelphia, Pennsyilaa Association for Computa-

tional Linguistics, 11-20.

Snover, Matthew G., and Michael R. Brent. 2002. raldabilistic Model for Learning
Concatenative MorphologyNeural Information Processing Systems Foundation
(NIPS)

Sproat, Richard. (Ed.). 199Fultilingual Text-to-Speech Synthesis: The Bell d &lp-
proach Kluwer Academic Publishers, Dordrecht, The Ndtreds.

Wicentowski, Richard. 2002Modelling and Learning Multilingual Inflectional Me
phology in a Minimally Supervised FramewoBh.D. Thesis, Baltimore, Maryland,

The Johns Hopkins University.

Xanthos, Aris. 2007Apprentissage automatique de la morphologie: Le d&s struc-

tures racine-schemeh.D. Thesis, Université de Lausanne.

Xu, Jinxi, and W. Bruce Croft. 1998. Corpus-Baséen8ning Using Co-occurrence of
Word VariantsACM Transactions on Information Systems (TO18)1, 61-81.

Yarowsky, David, and Richard Wicentowski. 2000. Mially Supervised Morphologi-
cal Analysis by Multimodal AlignmentAssociation for Computational Linguistics
(ACL).

219



Yarowsky, David, Grace Ngai, and Richard WicentawgK01. Inducing Multilingual
Text Analysis Tools via Robust Projection acrosgg#éd CorporaHuman Lan-

guage Technology Research (HLT)

Zeman, Daniel. 2008. Using Unsupervised Paradigmuisition for PrefixesWorking
Notes for the CLEF 2008 Workshdyarhus, Denmark.

220



Appendix A:

A Summary of Common
Spanish Suffixes

This appendix provides the basic knowledge of Sgramiorphology needed to un-
derstand the examples which appear in the main bbthyis thesis. Spanish has both in-
flectional and derivational morphology. Since PaoaNs designed to identify the basic
organizational unit of inflectional morphology, naiy the paradigm, this appendix pri-
marily describes the inflectional morphology of 8is&. However, Figure A.8, at the end
of this appendix, lists a few common derivationaffiges of Spanish, including most
derivational suffixes which occur in examples irstthesis. This guide to Spanish mor-
phological paradigms is based on Gordon and Still{i®99), an intermediate Spanish
textbook.

Figures A.1 through A.7 present sets of infleaiosuffixes and word-final clitics
that together describe the inflectional morpholadySpanish. Figures A.1 through A.3

describe the inflectional morphology of SpanishbgeVerbal suffixes in Spanish mark
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combinations ofTense, Aspect, and Mood together withSubject Number, Subject
Person, and in the case of past participleGender feature. The verbal paradigm has
three inflection classes. The inflection classethefverbal paradigm are morphologically
stipulated—neither phonology nor syntax determiwegch inflection class a particular
lexical verb belongs to.

Figures A.4 and A.5 give the two phonologically ditioned inflection classes of the
Number paradigm on Spanish nouns. These two inflectiassgs marlSingular verses
Plural on nouns, adjectives, and pastrticiples. Figure A.6 contains the four suffixes
which constitute the cross-product of the adjettNember andGender paradigms.

In addition to the inflectional suffixes of Figur@sl through A.6, Spanish has a sys-
tem of pronominal clitics which mimic true inflegtial morphemes in Spanish orthogra-
phy. Spanish pronominal clitics are written asragls orthographic word when they oc-
cur immediately following a non-finite verb formh@&re are three sets of pronominal cli-
tics in Spanish which each masquerade as a segmnadigm: one set of clitics marks
Accusative Case, anothemDative Case, and a third clitic set contains reflexive pronsun
Figure A.7 presents the three sets of Spanish pmora clitics. Although rare, it is pos-
sible for a single non-finite Spanish verb formattach clitics from each separate set of
pronominal clitics. In a Spanish written word tleantained a clitic from each pronomi-
nal clitic set, the order of the clitics would &ccusative, Dative, Reflexive—this is the
order in which the columns of clitics appear inUfgA.7.

At times the main body of this thesis refers to se¢ of string unique inflectional
Spanish suffixes (see for example Secdohl). The Spanish suffixes which contribute
to this set of inflectional suffixes are the sudaorms which appear in Figures A.1
through A.7.
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Infinitive ar

Present Participle ando

Singular  Plural
Past Participle Feminine ada adas
Masculine ado ados
1st 2nd 3rd 1st 2nd or 3rd
Person Person Person Person Person
Singular Singular Singular Plural Plural
Present Indicative o] as a amos an
Past Indicative Perfect € aste o] amos aron
Past Indicative Imperfect aba abas aba abamos aban
Future Indicative aré aras ara aremos aran
Conditional aria arias aria arfamos arian
Subjunctive Perfect e es e emos en
Subjunctive Imperfect ara aras ara aramos aran
Figure A.1: The suffixes of the ar inflection class of Spanish verbs
Infinitive er
Present Participle | iendo
Singular  Plural
Past Participle Feminine ida idas
Masculine ido idos
1st 2nd 3rd lst 2nd or 3rd
Person Person Person Person Person
Singular Singular Singular Plural Plural
Present Indicative o] es e emos en
Past Indicative Perfect i iste i0 imos ieron
Past Indicative Imperfect ia ias ia iamos fan
Future Indicative eré eras era eremos eran
Conditional eria erias eria eriamos erian
Subjunctive Perfect a as a amos an
Subjunctive Imperfect iera ieras iera iéramos ieran

Figure A.2: The suffixes of the er inflection class of Spanish verbs
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Infinitive

Present Participle

iendo

Singular  Plural
Past Participle Feminine ida idas
Masculine ido idos
1st 2nd 3rd 1st 2nd or 3rd
Person Person Person Person Person
Singular Singular Singular Plural Plural
Present Indicative o] es e imos en
Past Indicative Perfect i iste i6 imos ieron
Past Indicative Imperfect ia ias ia iamos fan
Future Indicative iré irds ird iremos iran
Conditional iria irfas irfa irlamos irfan
Subjunctive Perfect a as a amos an
Subjunctive Imperfect iera ieras iera iéramos ieran

Figure A.3: The suffixes of the ir inflection class of Spanish verbs

Singular /]

Plural S

Singular

@

Plural

es

Figures A.4 and A.5: The suffixes of the two

inflection classes of the Spanish paradigm

for Number on nouns and adjectives

Masculine Feminine

Singular 0

a

Plural 0s

as

Figure A.6: The suffixes of the

cross-product of the adjectival

Gender and Number

digms.

para-
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Masculine

Feminine

Masculine

Feminine

1% Person
Singular

2" Person
Singular

3" Person
Singular

1% Person
Plural

2nd or3 rd
Person
Plural

Accusative Dative Reflexive
me me me
te te te
lo
le se
la
nos nos nos
los
les se
las

Figure A.7: The pronominal clitics which appear in Spanish orthogra-

phy as three separate paradigms of suffixes.

Inflected Surface Forms

Derivati'onal that Appear in Examples Meaning

Suffix in this Thesis
ador ador, adores, adora, adoras Verb — Noun, Agentive of ar verbs
idor idor, idores, idora, idoras Verb — Noun, Agentive of er and ir verbs
acion acion, cion, sion, aciones, etc. Verb — Noun, Abstract noun

amente amente, mente Adjective — Adverb
idad idad, idades Adjective — Noun
izar izacion Noun — Verb

Figure A.8: A few of the most frequent derivational suffixes of Spanish.
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Appendix B:

Scheme Clustering,
the Pseudo-Code

Pseudo-code implementing ParaMor’'s scheme-clugteaigorithm as described in
Section4.3. At base ParaMor employs a bottom-up agglonveraiustering algorithm.
However, Sectiond.3.1 and.3.2 describe several adaptations to the basiomggative
algorithm that aid the clustering of scheme-moaélparadigms. All of the adaptations
discussed in Sectionrs3.1 and4.3.2 are present in the pseudo-code that begirtheon

next page.
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M
/I The Data Structure of a Scheme-Cluster //
M

/I Each cluster is one of two types:

Il 1) A leaf cluster is a wrapper for a scheme

/I 2) A compound cluster is a cluster that result

/I two child clusters. Each child cluster of a

/I either be a leaf cluster or a compound clus

I

Il Leaf clusters and compound clusters inherit comm
// the base Cluster struct.

struct  Cluster {

/I For every ‘small’ scheme a CompoundCluster cont

/I CompoundCluster must contain one ‘large’ scheme

/I 4.3.2). Hence, each cluster, whether a Leaf or a Co
Il keeps track of the number of ‘large’ and small’

/I contains.

largeSchemeCount =0;

smallSchemeCount =0;

/I Each Cluster keeps track of the set of morpheme

I/l word types that license the Cluster

licensingBoundaryAnnotatedTypes =null ;
b

struct  Leaf subStructOf Cluster  {
scheme =null

}

struct  CompoundCluster  subStructOf Cluster {
childA  =null
childB  =null

}

I T
/I The Bottom-Up Agglomerative Scheme-Clustering Al
W T

cl ust er Bot t omJp( schemes) {
clusters = bui | dLeaf O ust er s( schemes) ;
while (true) {

s from the merger of
compound cluster can
ter itself.

on properties from

ains, that

(See Section
mpoundCluster,

schemes it

-boundary annotated

i
gorithm //
it

[ bestClusterA, bestClusterB ] = findd ustersToMerge(clusters );

/I Stop clustering when there is no pair of clust
/I permitted to merge.
if ( bestClusterA == null)
return  clusters;

newCluster = nmer ge( bestClusterA, bestClusterB
clusters. renoveAl | ( bestClusterA, bestClusterB
clusters. add( newCluster );
}
}

228

ers that are



bui | dLeaf d ust er s( schemes) {
foreach ( scheme in schemes) {

leaf =new Leaf() ;
leaf.scheme = scheme;
if ( scheme.numberOfLicensingWords >=threshold ) {
leaf.largeSchemeCount =1;
}else {
leaf.smallSchemeCount =1;
}

foreach ( cSuffix in scheme.cSuffixes ) {
foreach (  cStem in scheme.cStems ) {

leaf.licensingBoundaryAnnotatedTypes. add( cStem.'+’.cSuffix
}
leafClusters. add( leaf );

return  leafClusters;

}

fi ndd ust ersToMer ge( clusters ) {
bestClusterScore =null ;
clusterToMergeA, clusterToMergeB =null ;
foreach ( clusterA  in clusters ){
foreach ( clusterB  greaterThan  clusterA  in clusters ){
if ( isMergePermtted(clusterA, clusterB NA
score =
cosi ne( clusterA.licensingBoundaryAnnotatedTypes,
clusterB.licensingBoundaryAnnotatedType s);
if ( score > bestClusterScore ) {
bestClusterScore = score;
clusterToMergeA = clusterA,;
clusterToMergeB = clusterB;

}
}
}

return [ clusterToMergeA, clusterToMergeB 1;

}

nmer ge( clusterA, clusterB ) {
newCluster =new CompoundCluster () ;

newCluster.childA = clusterA,;
newCluster.childB = clusterB;
newCluster.largeSchemeCount =

clusterA.largeSchemeCount + clusterB.largeSchemeCount;
newCluster.smallSchemeCount =

clusterA.smallSchemeCount + clusterB.smallSchemeCount;
newCluster.licensingBoundaryAnnotatedTypes =

uni on( clusterA.licensingBoundaryAnnotatedTypes,
clusterB.licensingBoundaryAnnotatedTypes );

return newCluster;
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i sMer gePer ni tt ed( clusterA, clusterB ) {

/I There are two restrictions on clustering
/)

/I Restriction 1: ParaMor discriminatively require s that each pair
/I of c-suffixes in each cluster be able to form words that
/I occurred in the paradigm induction corpus by separately

/I attaching to a common c-stem.
foreach ( cSuffixA  in clusterA ){
foreach ( cSuffixB  in clusterB ) {

schemeOfTwoCSuffixes =
dynamicSchemeNetwork. gener at eSchene( cSuffixA, cSuffixB );
if ( schemeOfTwoCSuffixes.cStems.size ==0)
return false ;
}
}
/I Restriction 2: ParaMor requires that there be at least as many
/I ‘large’ schemes as there are ‘small’ schemes in each cluster.
if ( clusterA.smallSchemeCount + clusterB.smallSchemeCount )>
( clusterA.largeSchemeCount + clusterB.largeSchemeCount N {

return false ;

}

return true ;

230



