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Abstract

The work in this thesis is motivated by the problem of navigating the content of a collection of related

documents, which is cumbersome if only a list of documents is given. Automatically structuring the content

organization of a dataset by identifying topically cohesive segments and linking segments describing the

same topic addresses this issue. Previous work deals with this problem by using a multi-document joint

model for segmentation and topic identification at the dataset level, a perspective we also take. This multi-

document approach to segmentation contrasts with approaches that segment documents individually. The

advantage of a multi-document model is that segmentation is leveraged by repeated descriptions of the same

topic across different documents. We continue this line of work by hypothesizing that vocabulary relation-

ships between different segments can be used to obtain a more accurate segmentation and topic segment

identification. We also hypothesize that documents that share the same modality (video transcripts, Power-

Point, etc.) have similar characteristics that could be modeled to obtain a better performance in these tasks.

To study the previous hypothesis, we propose BeamSeg, a joint model for multi-document segmentation

and topic identification where it is assumed that segments have vocabulary usage relationships. BeamSeg

implements segmentation and topic identification in an unsupervised Bayesian setting by drawing from the

same multinomial language model segments with the same topic. Contrary to previous work, we assume that

language models are not independent since the vocabulary changes in consecutive segments are expected

to be smooth and not abrupt. We achieve this by putting a dynamic Dirichlet prior over the language mod-

els that takes into account data contributions from other topics. Additionally, we encode in BeamSeg that

documents with different modalities have similar segment length characteristics, and, thus, each modality

has its segment length prior. To better understand the performance advantages of the proposed joint model

approach, we compare BeamSeg to a pipeline approach (performing segmentation and topic identification

sequentially). In this context, we extend two single-document models to the multi-document case and pro-

pose a graph-community detection approach to topic identification. In order to test our hypothesis, we carry

out a data collection task, as datasets from previous works have few documents with short segments, leav-

ing little room to observe vocabulary relationships. The evaluation using the collected dataset shows that

BeamSeg obtains the best results affording this way practical improvements in both segmentation and topic

identification and corroborating our hypothesis.
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1Introduction

1.1 Motivation

Documents exhibit an implicit content organization that aggregates related text passages in topically

coherent segments. This content organization emerges by placing boundaries in a document where topic

shifts occur. The text between consecutive boundaries corresponds to a topic segment. Understanding this

document structure enables efficient content navigation. This has become more relevant with the number of

available documents in the Web. The current information landscape has also enabled access to documents

describing the same subject, providing alternative views or complementary information. This is advanta-

geous in a variety of scenarios. For example, students have at their disposal several learning materials from

different modalities (video lectures, textbooks, etc.), and might need to find a particular segment that best

suits their learning needs. Finding such documents is an easy task since search engines are capable of return-

ing documents conveying related information. However, if search engines are effective in retrieving these

documents, the task of putting them into a coherent picture remains a challenge (Shahaf et al., 2012). The

research topic of this thesis, automatically finding document segments – text segmentation – and identifying

which ones discuss the same topic – topic identification – addresses this challenge.

Text segmentation approaches rely on the lexical cohesion theory (Halliday and Hasan, 1976), which

postulates that discourse structure is correlated with the use of cohesive vocabulary. Thus, topic segments

can be identified by detecting vocabulary changes. Research in text segmentation traditionally uses the con-

tent of isolated documents to recover topic boundaries (the single-document approach), despite the better

results that can be obtained when considering segmentation as a global phenomenon in a collection docu-

ments (the multi-document approach) (Jeong and Titov, 2010). The intuition is that repeated discussions of

a topic (Figure 1.1), in different documents, better define it, and, consequently, leverage the segmentation.

This might not be so relevant when topic boundaries are clear-cut, such as in news broadcasts, but it is rele-

vant for documents with tightly related segments, where an overcharging topic is described. For example, in

the scenario of learning materials, segmenting one document might be a complicated task, as abrupt changes

in the vocabulary are not frequent. Thus, looking at different documents can help identifying the different
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topics. This also makes an argument for text segmentation and topic identification to be jointly modeled

since they are related problems. Jeong and Titov (2010) proposed such a joint modeling approach, but some

shortcomings exist. One of the problems is that their joint model assumes that repeated topics exist in a vac-

uum, disregarding interactions between segments chained together to describe an overarching topic. Another

shortcoming is the assumption that all documents have the same modality while different modalities have

particular segment length properties. For example, we expect that Power Point (PPT) documents to have

shorter segments than video lectures. In this thesis, we study how these properties manifest in a collection

of related documents and if they can be used to improve text segmentation and topic identification.

Just as we introduced average
velocity we now describe average
acceleration. When velocity
changes ... over time. ... introduce
an average acceleration ... The
average acceleration between time
t2 minus t1. The dimension are ...
secs per time squared.

Acceleration We say ... changing
velocity are “accelerating”
Acceleration is the “Rate of change
of velocity”. You hit the accelerator
to speed up (It’s true you also hit ...
friction is slowing ...) Average
acceleration Unit of acceleration:
m/s2 Meters per second squared

The acceleration of a particle ...
rate of change of velocity ... time.
Average acceleration ... is v2-v1
t2-t1. Acceleration may be
positive, negative or zero. Zero
acceleration means we have
constant velocity... direction and
the acceleration need not coincide.

Figure 1.1: Examples of segment excerpts from video, slide presentation, and PDF documents, respectively,
in the acceleration topic. Words in bold depict the shared vocabulary across segments.

1.2 Thesis Statement

Most approaches consider segmentation at the single-document level. This is a narrow perspective of

the segmentation phenomenon since it does not allow to study how different documents describing the same

subject structure their topic segments. Another consequence is that if we want to identify the topics between

segments in different documents it is necessary to have another algorithm that performs this task a posteriori

– pipeline approach. This is depicted in Figure 1.2a where from the result of the (single-document) text

segmentation step it is not possible to deduce the topic relations (all colors are different).

In this thesis, we take the multi-document segmentation stance instead, which segments a collection

of documents by leveraging topic segment repetitions in the dataset. This perspective entails that topic

identification at the segment level needs to be performed since we need to know which segments share

similar lexical cohesion properties – joint model approach. This is shown in Figure 1.2b where we can see

that the model outputs a topic segment structure in a single step. With this approach, we can study the

hypothesis that segmentation can be improved by assuming that lexical cohesion is similar across segments

that describe the same topic in different documents. Therefore, we also hypothesize that this joint approach

to the multi-document segmentation and topic identification is beneficial.
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(a) Pipeline approach.

(b) Joint model approach.

Figure 1.2: Different approaches to the tasks of text segmentation and topic identification. Changes in color
correspond to segment boundaries. Segments with a matching color describe the same topic

Setting up our work in a joint approach allows us to study novel research paths. A path we also explore is

the hypothesis that vocabulary usage relationships between segments are similar across documents describ-

ing the same topic. For example, if some word is heavily used in one segment, it is likely that it continues to

appear in the following one, though less frequently. We illustrate this in Figure 1.3, where each vertical bar

is a segments language model distribution. If there is no vocabulary relationship the language models are

random (Figure 1.3a) but what we want to explore is the assumption that some underlying structure exists

(Figure 1.3b). Modeling such interactions can improve topic segmentation algorithms. This assumption

has been studied for the single-document approach (Eisenstein, 2009; Du et al., 2013), but whether it holds

for multi-document segmentation remains an open research question. Even if lexical cohesion is observed

across documents, there might be constraints related to the modality of the document that make the seg-

mentation task harder. For example, segments from video transcripts are longer than segments from a slide

presentation. Determining how to properly deal with such constraints is also a goal of this thesis.
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(a) Topics generated independently.
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(b) Topics generated by a dynamic prior.

Figure 1.3: In the figures above the different colors in the bar graph represent word distributions of segment
language models (topics). Thus, each color represents a word in the vocabulary. The height of the bars
depicts the corresponding word probability.
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Given the previous context, we formulate the overarching research hypothesis of this thesis as follows:

- If multi-document segmentation and topic identification are jointly modelled, then the tasks can be

more accurately performed.

- If we model segment vocabulary usage relationships and segment length properties based on document

modality, then multi-document segmentation and topic identification can be more accurately performed.

The first difficulty in studying our hypothesis is the lack of evaluation resources since multi-document

segmentation is an under-explored research area. To overcome this limitation, we collect data where multi-

document segmentation can be observed at a larger scale and in different document modalities. We also

study how human judges annotate the dataset. By building an appropriate evaluation framework more solid

conclusions can be drawn about the progress of proposed techniques and a more reliable measure of progress

in the research area can be achieved. Ultimately, this leads to a better understanding of underlying the natural

language phenomena that occurs when structuring discourse in topically coherent segments.

To better determine if our first research hypothesis holds, we compare a joint model approach to multi-

document segmentation and topic identification to a pipeline approach. Such approaches do not exist in

a multi-document setting. Therefore, we extend two existing single-document models to afford multi-

document segmentation. To enable topic identification, we propose a graph-community detection approach

that takes a segmentation as input and determines which segments share the same topic.

We study our second research hypothesis we propose BeamSeg, an unsupervised Bayesian joint model

for text segmentation and topic identification. By using a probabilistic approach, we encode assumptions

on how input data was generated. In this context, BeamSeg implements lexical cohesion by assuming that

good segmentations spread their probability mass on a restrict set of words. In the probabilistic setting,

segmentation is cast as the problem of finding the latent variables parameter configuration that best explains

the observed data. The BeamSeg model assumes that each sentence has a latent topic assignment. In turn,

topics correspond to word distribution language models. Segments emerge by having consecutive sentences

with the same topic. To afford multi-document segmentation, the model assumes that topics can be shared

across documents. This topic sharing aspect lends the generative process to a joint model for multi-document

segmentation and topic identification. Thus, topic identification is performed by realizing which segments

are assigned to the same topic. Following Bayesian approaches, in BeamSeg we assign priors to the language

models word distributions. By conditioning the priors on modality and assuming that language models

are not independently drawn from the prior, we study how document modality and segment vocabulary

relationships impact multi-document segmentation and topic identification. We compare BeamSeg with
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existing single and multi-document joint models as well as a pipeline approach with our model extensions

and graph-community detection algorithm in the collected dataset, contributing this way to answer the raised

scientific questions, and, consequently, advance the state-of-the-art in this research area.

From the previous research context, we highlight the following contributions resulting from this thesis:

• A dataset suitable for evaluation of multi-document segmentation at a large scale (Mota et al., 2018b).

• Improvement of single-document models results by extending them to the multi-document case (Mota

et al., 2016).

• Improvement of results obtained in a pipeline approach to topic identification using the proposed

graph-community detection algorithm (Mota et al., 2018a).

• Improvement of results obtained by state-of-the-art segmentation algorithm using the proposed joint

model of segmentation a topic identification that takes into account segment vocabulary relationships

and segment length properties.

1.3 Thesis Overview

The remaining of this thesis is structured as follows:

• Chapter 2 provides the research context for this work. It focuses on describing the linguistic per-

spective of segmentation-related phenomenon and how algorithms can use its constructs to obtain

accurate segmentations. Then, we describe the two types of approaches to the segmentation task:

lexical similarity-based and probabilistic approaches.

• Chapter 3 discusses the limitations of the available segmentation and topic identification datasets. To

address such limitations we carried out a data collection task and performed an annotator agreement

study on the collected data.

• Chapter 4 describes the novel work developed in this thesis. It is comprised of three parts: extending

existing single-document models to multi-document, a graph-community detection approach to topic

identification, and a multi-document joint model for segmentation and topic identification (the main

focus of the thesis).
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• Chapter 5 describes the segmentation experiments where we determine if the multi-document ap-

proach performs better than the single-document approach. In this process, we also investigate how

different models are able to adapt to datasets containing different document modalities.

• Chapter 6 describes the topic identification experiments where we compare pipeline strategies (seg-

mentation and topic identification tasks decoupled) and joint model approaches (segmentation and

topic identification tasks performed simultaneously).

• Chapter 7 provides a summary of the contributions of this thesis as well as possible future research

directions to be explored.



2Research Context

The design of systems to recover document segmentation boundaries is grounded in linguistic theory.

In this chapter, we provide an overview of such theories and how they relate to segmentation (Section 2.1).

Then, we survey the literature and describe existing approaches to text segmentation (Section 2.2).

2.1 Lexical Cohesion Theory

An overarching pillar of segmentation algorithms, regardless of implementation, are the linguistic con-

structs in cohesion theory (Halliday and Hasan, 1976). This theory postulates that grammatical and lexical

links within sentences hold a text together and give it meaning, differentiating coherent text from a random

set of sentences. From a grammatical point of view, cohesion is achieved through devices of reference,

substitution, ellipsis, and conjunction. At the lexical level, cohesion is formed by means of word repetition.

By using lexical cohesion properties, algorithms can detect segment boundaries since the use of a consistent

vocabulary indicates topic continuity and changes in the vocabulary indicate that a new topic has started.

To demonstrate lexical cohesion in a segmentation scenario, we provide an example in Figure 2.1 show-

ing two video transcript segments from a Physics class. Segment lexical cohesion is observed in the words

that characterize segments. For example, the words ‘speed’ and ‘instantaneous’ are used frequently and

exclusively in their corresponding segments. This makes sense since the segments describe the ‘average

speed’ and ‘instantaneous velocity’ topics. Another interesting word repetition behavior can be observed in

the word ‘velocity’, which is used in both segments but more frequently in the second one. This suggests

that words usage changes smoothly rather than abruptly, which motivates our approach to model vocabulary

usage relationships between topics. This is further corroborated when looking at the full document since we

can observe that previous segments do not use this word at all and later segments show a frequency decrease.

The lexical cohesion properties of segments can be used to automatically recover segment boundaries

by finding topically relevant words that frequently occur in a continuous span of text. Despite being a

relatively simple and intuitive principle, in practice, it is powerful, which explains why it is at the core of all
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There is a very big difference in physics between speed and velocity. The average velocity
between time t1 and t5 is zero but the average speed is not. The average speed is defined
as the distance traveled divided by the time that it takes to travel that distance. Now, what
is the distance that the object traveled between time t1 and time t5? Well, the object started
at a position here on this x axis and then it went up, reached the highest point here so I’ll
make a drawing for you here. It reached the highest point here, then it went down. And
then when it went here it went up again and comes down again and it ’s back. And in or-
der to find the average speed you would now have to know exactly what this distance is add
up this distance add up this distance and this distance. And if that distance altogether were,
for instance, 300 meters and if the time between t1 and t5 were three seconds then the average
speed would be 300 meters divided by three seconds. That would be 100 meters per second
so the average speed would be 100 meters per second yet the average velocity would be zero.
====================================================================
If you look at the location t3 and t2 and I bring t3 closer and closer to t2 then this angle of alpha
will increase and I can go to the extreme that I bring t3 almost right at t2. The angle of alpha will
then be tangential to this point. This will then be my angle of alpha. And now you will understand
how we define the instantaneous velocity at time t which is different from an average velocity
between two time intervals. The instantaneous velocity, v and I pick a random time, t equals the
limiting case for x measured at time t plus delta t minus x measured at time t divided by delta
t and I do that for delta t goes to zero. ... If it is negative, however, when you’re here then it
is a negative velocity. And if the angle of alpha is zero then the velocity is zero. So if we now
look at this plot we can search for the times that the velocity is zero so you have to look for the
derivative being zero. That means the angle alpha being zero. Clearly, here the velocity is zero. So
those are the times that the velocity is zero. What are the times that the velocity is positive? Well,
it’s positive here. The velocity’s positive here still positive, positive, becomes negative negative,
positive, zero, negative. So that’s the definition of v, instantaneous velocity.

Figure 2.1: Lexical cohesion example in two segments. Highlighted words depict word repetition behaviors
patterns that characterize the segments.

segmentation approaches. In addition to lexical cohesion, grammatical properties of texts can be used in the

context of a segmentation task. For example, anaphors preserve topic continuity, because the same object is

being referred. Also, some particular lexical items and cue words can be indicative of segment boundaries,

since they tend to signal references, substitutions, and conjunctions. These can be identified during the

preprocessing stage and later be used as features in segmentation algorithms. In this thesis, we focus on the

syntactic aspect of the lexical cohesion theory since it better suits the fully unsupervised proposed approach.

2.2 Text Segmentation

Following the lexical cohesion theory, text segmentation algorithms work by identifying spans of text

where prominent changes in vocabulary occur. The main difference between segmentation methods is how

lexical cohesion is implemented: some resort to lexical similarity (Section 2.2.1); the remaining follow a

probabilistic approach (Section 2.2.2).
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2.2.1 Lexical Similarity Approaches

A common way to address natural language processing tasks is through the notion of entity similarity.

For a document segmentation task, entities typically correspond to consecutive utterances in a document

with a word count vector representation. However, other text units can also be considered, such as para-

graphs. The similarity of two utterances u1 and u2 is then measured using the cosine similarity function:

S(u1, u2) =
u1 · u2

||u1||×||u2||
, (2.1)

where u1 · u2 is the dot product of the utterances vector representations and ||ui|| is the L2 norm of ui. Fol-

lowing lexical cohesion, lexical similarity approaches assume that the vocabulary distribution of segments is

homogeneous. Then, using the previous text similarity definition, segments are discovered by finding high

similarity regions of documents. The algorithms we describe below follow this lexical similarity approach

in a single-document segmentation context.

A classic method using the above setup is TextTiling (Hearst, 1997), which assumes that segment

boundaries are found when consecutive sentences have a low similarity value. This is determined not only

by the similarity value itself but also by its tendency to increase or decrease when examining the similarity

plot of all utterances in a document. Segments are then identified by finding the minimum values in the plot.

An empirically defined cutoff threshold tunes the granularity of the segmentation. The threshold specifies

the minimum similarity value for which segmentation boundaries are accepted. The evaluation of TextTiling

was carried out in articles from science magazines. A 71 and 59% precision and recall scores were obtained,

improving a random baseline by 21 and 8%, respectively.

Several other works built on the TextTiling approach (Galley et al., 2003; Balagopalan et al., 2012; Shah

et al., 2015). For example, LCseg (Galley et al., 2003) uses the same algorithm but weights the utterance

vectors. The weights are computed based on the notion of lexical chains. A lexical chain exists for each word

in the vocabulary and is constructed to consist of all repetitions ranging from the first to the last appearance of

the word in the document. The chains are then broken in subchains if the distance between two consecutive

words is longer than an empirically defined threshold. Subchains are then weighted based on two criteria:

compactness and frequency. Higher weights are assigned when the subchain is short (compactness) and

contains a high percentage of the words in the corresponding text span (frequency). LCseg also incorporates

features related to multi-party discourse segmentation. These features include cue phrases, speaker change,

silences, and overlapping speech. LCseg was evaluated in the ICSI meeting corpus (Janin et al., 2003) using

the WindowDiff (WD) metric (Pevzner and Hearst, 2002), which is a penalty metric between 0 and 1 (the



10 CHAPTER 2. RESEARCH CONTEXT

lower, the better). WD slides a window across the document and compares the number of hypothesized

segments with the reference. The higher the discrepancy is between the number of segments in a window,

the higher will be the penalty. LCseg obtained an average WD of 0.35, improving by 22.92% a baseline

using the C99 algorithm (the segmentation approach we describe next).

The C99 algorithm (Choi, 2000) uses lexical similarity differently. The goal of the approach is to use a

local context to refine a matrix built from the similarity of all possible pairs of utterances in the document.

The refinement process ranks each entry of the matrix with the number of neighbors that have a lower

similarity value. This provides a smoothing effect, which makes segments stand out (Figure 2.2). Then, a

divisive clustering approach obtains the final segmentation. Choi evaluated C99 in a set of documents built

by putting together sentences from different documents; in these artificially built documents, sentences from

the same source correspond to segments. The results show precision scores between 88 and 91%, improving

TextTiling between 32 and 39%. More recently, a new similarity metric, Content Vector Segmentation

(CVS), based on the average value of the word embeddings of a segment, is used in the C99 algorithm (Alemi

and Ginsparg, 2015). This representation is based on the average value of the word embeddings of a segment.

When compared with the bag-of-words representation (also using the C99 algorithm) improvements were

obtained in Choi’s dataset.

(a) Raw utterance similarty matrix. (b) Smoothed utterance similarty matrix.

Figure 2.2: The figures above (Choi, 2000) show the smoothing effect of applying a neighbor rank-based
transformation to a similarity matrix. Darker shades depict lower similarity values, and lighter ones high
similarity values.

In another line of research, Wang et al. (2017) combined a learning to rank framework and a CNN

neural network to learn a semantic coherence ranking function between text pairs. This function explores

two partial ordering relations of coherence between text pairs that are expected to hold. The first one states

that the coherence score of text pairs from different documents is lower than those from the same document.

The second one states that the coherence score of text pairs from different paragraphs is lower than those



2.2. TEXT SEGMENTATION 11

from the same paragraph. Using the previous formulations, a learning to rank task is setup with a ranking

function σ(w · tpi) → yi, where tpi denotes a text pair, σ is the sigmoid function, yi is the semantic

coherence real value, and w is a weight vector. The neural network uses two symmetric CNN models to

learn the representations of tpi text pairs based on word embeddings. Given a number of target segments T ,

the final segmentation is determined by the T utterances with the lowest semantic coherence scores. Despite

being a promising approach, state-of-the-art results were not achieved in the dataset provided by Jeong and

Titov (2010), which contains documents in the domains of news articles, biographies, lectures (English as a

second language podcasts), and biology (class assignment reports).

Also following an approach using neural networks, is the SECTOR algorithm (Arnold et al., 2019),

which uses a topic embedding trained based on utterance topic classification. Following the network archi-

tecture from Koshorek et al. (2018), two stacked LSTM (Hochreiter and Schmidhuber, 1997) layers are used

to decode word embedding representation of utterances. The output of the LSTMs is fed to a ‘bottleneck’

topic embedding layer. The last layer of the network is a softmax activation layer that provides the predicted

utterance topic label. To recover segmentation, a TextTiling approach is applied to the topic embedding

layer. This is done by computing the cosine difference between consecutive topic embedding vectors and

looking for minimum values based on a predefined threshold. To improve accuracy, dimensionality reduc-

tion using PCA and Gaussian smoothing are applied (Ziou and Tabbone, 1998). The evaluation was carried

in a dataset of Wikipedia articles about disease and cities. The reference segmentation is based on existing

section headers. The approach improves C99 by 0.11 in WD. It should be noted that this is a fully super-

vised segmentation approach where it is necessary to both train on domain specific data and provide the

target number of topics. Thus, for each new domain, it necessary to collect segmented data for training.

This problem is further aggravated by the amount data required to train LSTM-based architectures for seg-

mentation. We argue that while these approaches provide valuable insights about how neural networks can

learn to solve segmentation in a supervised fashion, they are have little practical value. The contradiction

is that if you need to rely on existing markers to obtain enough segmentation training data then you do not

need a segmentation algorithm.

The previous approaches suffer from the problem of only modeling local textual dependencies. In ad-

dition, relying on a cutoff threshold for segmentation is also disadvantageous, since documents can exhibit

both sharp and attenuated topic transitions throughout the text. Malioutov and Barzilay (2006) and Kazant-

seva and Szpakowicz (2011) propose dealing with these problems by explicitly modeling long-distance

relationships between utterances in a document. In this context, Malioutov and Barzilay (2006) developed

MinCut, an algorithm that frames segmentation in a graph-partitioning task. This is done by abstracting



12 CHAPTER 2. RESEARCH CONTEXT

text into a weighted undirected graph G = {V,E}, where V is the set of nodes corresponding to utterances

and the edges E represent the connections between all utterances in the document. The weight of the edge

between two utterance nodes u1 and u2 corresponds to their lexical similarity S(u1, u2) (Equation 2.1).

The edges model long-distance relationships since they connect all sentences to every other sentence in the

document. Given this setup, MinCut optimizes the k-way normalized cut criterion:

Ncutk(V ) =
cut(A1, V −A1)

vol(A1)
+ ...+

cut(Ak, V −Ak)
vol(Ak)

, (2.2)

where k is the target number of segments, Ak is a set of nodes, cut(A,B) =
∑

u∈A,v∈B S(u, v), and

vol(A) =
∑

u∈A,v∈V S(u, v). The cut and vol functions ensure that two partitions are not only maximally

different from each other but also that the intra-partition similarity is maximal. The optimization task is

carried out by resorting to a dynamic programing algorithm. The approach was shown to be more effective

than C99 in two test cases. One using a dataset with video lecture transcripts from Physics classes, and

another with slide presentations about Artificial Intelligence. MinCut obtained WD averages of 0.34 and

0.41 in these domains, while C99 obtained 0.38 and 0.42, respectively. MinCut also segmented Choi’s

dataset but underperformed when compared to C99, with an 11% decrease. The explanation for this result

is that long-distance relationships do not exist at all in Choi’s dataset, because it was built artificially.

Affinity Propagation Segmentation (APS) (Kazantseva and Szpakowicz, 2011) also models long dis-

tances relationships but uses affinity propagation clustering (Frey and Dueck, 2007), an approach based

on a factor graph framework. A factor graph is comprised of a node variables for each pair of utterances.

The functions (factors) associated with each node assign a similarity value to a the node and ensure a lin-

ear segmentation of the document. The blueprint of the algorithm is to maximize a multi-variate function

by approximating it through a sum of simpler functions. The sum-algorithm (Bishop, 2006), a message

passing-based procedure, is then used to find a configuration of variables that maximizes the objective func-

tion. APS obtained state-of-the-art results in the previously mentioned Artificial Intelligence domain, with

a WD average of 0.4, improving the MinCut approach by 4%. An evaluation of a dataset with fiction books

was also carried out. In this scenario, APS obtained a 0.35 WD average, a 3% higher score than MinCut.

2.2.2 Probabilistic Approaches

Probabilistic approaches to segmentation follow a topic modeling approach, with a setup that closely

relates to Latent Dirichlet Allocation (LDA) (Blei et al., 2003). In the LDA model, it is assumed that words

in a document are generated from a set of topics. These topics correspond to Categorical distributions over
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the vocabulary, commonly referred to as language models. Another assumption is that documents have their

own topic proportions, which models how likely it is for a topic to occur in a document. Topic proportions

also correspond to Categorical distributions, but over the set of possible topics. Having topic proportions

entails that each document is composed of a mixture of topics, that is, words in the same document are

generated from different topics. A Bayesian setup follows by using parametrized Dirichlet priors on both

language models and topic proportions. Formally, the LDA model is described by the plate diagram in

Figure 2.3, which encodes the following generative process1:

1. For each topic k ∈ {1, ...,K}, draw word distribution φk ∼ Dirichlet(β).

2. For each document d ∈ {1, ..., D},

(a) Draw topic proportions θd ∼ Dirichlet(α).

(b) For each word position i ∈ {1, ..., N} in d:

i. Draw topic:

zd,i ∼ Categorical(θd)

ii. Draw word:

wd,i ∼ Categorical(φzwd,i )

φkβ

wd,iα θd zd,i

Figure 2.3: Plate diagram for the LDA model.

By examining the model setup, we can observe that to find useful topics sparsity is a necessary property.

This means that topics have a set of words with a high likelihood, while the rest of the vocabulary rarely

appears. For example, if we consider the topic of sports, it is likely that words such as ‘game’, ‘team’, ‘win’,

or ‘ball’ frequently occur under this topic. A similar analogy can be made for topic proportions since we do

not expect that a document discusses all topics, but instead focuses on just a few of them. This goes hand in

1We adopt the notational convention where variables denoted by Greek letters correspond to probability distributions. When the
variables are uppercase they correspond to a set. Latin uppercase letters correspond denote size.
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hand with the Dirichlet priors since its parameters can be set up to encourage a high likelihood of generating

distributions with most of the probability mass concentrated in a few topics. Another reason for using

Dirichlet priors is that they enjoy conjugacy properties when combined with the Categorical distribution,

meaning that the resulting distribution is also Dirichlet. This is convenient since it simplifies the inference

step in which we are determining the best parameter configuration of the unobserved variables2 (non-shaded

nodes in plate notation) that explains the observed data.

The original LDA model does not lend itself to segmentation, but its modeling assumptions still make

sense in this task. The same sparsity characteristics we want for LDA topics can be used to implement

lexical cohesion in a probabilistic setting. In the context of segmentation, this means we can achieve lexical

cohesion if higher segmentation likelihoods have probability mass concentrated in a narrow subset of words.

This can be done by constraining the inherent topics to the linear discourse structure. This is the core

assumption of the probabilistic approaches we describe next, for both the single-document (Section 2.2.2.1)

and multi-document (Section 2.2.2.2) cases.

2.2.2.1 Single-Document Segmentation

An example of a single-document segmentation approach using a topic modeling perspective is

PLDA (Purver et al., 2006), where topic proportions are shared by sentences within the same segment.

Words are generated by first drawing topics from segment topic proportions and then getting the actual word

from the language model associated with that topic, which resembles LDA’s generative process. Segmen-

tation is determined through a binary topic shift variable associated with each sentence. The topic shift

variables act as flipping a coin for each utterance in the document. If the result is heads, a new segment

begins, and new segment topic proportions are drawn for this new segment. Topic shift variables are mod-

eled with Bernoulli distributions, and a Beta prior is assumed. The beta prior variable allows encoding

prior knowledge regarding the possible length of the segments. PLDA was evaluated in the ICSI meeting

dataset. Comparable results to LCseg were obtained, with a 1% increase in performance. Later in this thesis

(Section 4.2.2), we proposed an extension to PLDA for the multi-document segmentation case.

Structured Topic Model (STM) (Du et al., 2013) builds on the PLDA model by explicitly assuming that

there is a topic structure between segments. Text passages in a segment still share the same topic distribution,

but these are encouraged to be similar via a hierarchical prior. The intuition is that topic segment propor-

tions are high level variations of document topic proportions. This captures how segment topic proportions

2Also commonly referred as latent or hidden variables in the literature.
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relate to each other, instead of being independently generated, like in PLDA. In this context, segment topic

proportions are generated from a Pitman-Yor Process (PYP) (Pitman and Yor, 1997). PYPs act like distri-

bution generators, similarly to a Dirichlet, but allow to control how similar the distributions are to an input

base distribution. In STM a document has its base distribution drawn from a Dirichlet, which is then fed to

the PYP. The output of PYP is the final segment topic proportions. STM was evaluated in four different

domains and benchmarked with C99, PLDA, APS, MinCut, and Bayesseg (an approach we describe later).

The domains were the ICSI dataset, fiction books, election debates, and a clinical textbook. State-of-the-art

results were obtained in all domains, except for the fiction domain, where Bayesseg performs best. The

average WD results ranged from 0.38 and 0.26, obtaining improvements between 0.005 and 0.02.

Other works that also follow the PLDA research line include Nguyen et al. (2012), Riedl and Biemann

(2012), and Jameel and Lam (2013). The SITS model (Nguyen et al., 2012) follows the PLDA approach but

assumes that each text passage is associated with a speaker identity that is attached to the topic shift variable

as supervising information. SITS further assumes speakers have different topic change probabilities and

models them through a prior on topic shift variables. The model was evaluated in the ICSI and election

debates datasets, but it does not improve STM. TopicTiling (Riedl and Biemann, 2012) uses LDA as a

preprocessing step, where utterances are used as textual units instead of documents. The obtained topic

assignments counts are then used as input for the TextTiling algorithm. The results on Choi’s dataset show

that TopicTiling could not achieve state-of-art results if the experimental conditions did not provide the

target number of segments. Lastly, NTSeg (Jameel and Lam, 2013) focuses on breaking the typical topic

modeling bag-of-words assumption by preserving word orderings of sentences. NTSeg was evaluated in the

Physics dataset and the clinical textbook, but state-of-art results could also not be achieved.

The previous probabilistic approaches are mixed-membership models since words in the same segments

can belong to different topics. Bayesseg (Eisenstein and Barzilay, 2008) takes a different modeling perspec-

tive on segmentation by casting it in a mixture model. This means all words belonging to the same segment

are assumed to have been generated from a single word distribution language model (topic). A direct conse-

quence of this approach is that a binary topic shift variable is not necessary since segmentation boundaries

match precisely the places in the document where a topic change occurs. The topics continue to be assumed

to have been generated from a Dirichlet prior. Given the previous setting, we can integrate out the language

models. Therefore, the only remaining latent variables are topic assignments defining the segment structure

of a document. This allows Bayesseg to perform inference using a maximum likelihood procedure. The

procedure is based on a dynamic programing algorithm that efficiently explores the segmentation space and

finds the latent variable configuration that maximizes the joint likelihood. This contrasts with the other
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approaches described thus far, which resort to Gibbs Sampling for inference. In the mixed-membership set-

ting, there are two types of latent variables (topic shift and topic assignment variables), making an approach

like the one in Bayesseg intractable. The advantage of Gibbs Sampling though is that it accesses the true

posterior of the model, which leads to better parameter estimations. Bayesseg was originally evaluated in

the ICSI dataset and a clinical textbook. WD averages of 0.31 and 0.35 were obtained, respectively. These

results improved the LCseg baseline by 0.1 and 0.03. Later in this thesis (Section 4.2.1), we proposed an

extension to Bayesseg for the multi-document segmentation case.

HierBayes (Eisenstein, 2009) is a follow-up work from Bayesseg, where segmentation is treated as a

multi-scale lexical cohesion phenomenon. This means some words can frequently occur in a specific set of

segments. In extreme cases, some words occur throughout the whole document, and others are segment spe-

cific. This setting lends itself to view segmentation as a hierarchical structure rather than a linear structure.

To model a hierarchical structure, HierBayes organizes language models in a pyramid shape (Figure 2.4).

The higher levels of the pyramid model words that span through larger parts of the document and lower-

levels explain local sets of words. Inference is carried out in a two-step iterative process. First, a dynamic

programming procedure finds the hierarchical segmentation that yields the highest likelihood, similar to

Bayesseg. The main difference is that the likelihood is computed in a variational inference setting where

each word is assigned a variational parameter representing the hierarchy level latent variables. The second

step updates the variational parameters according to the current state of the segmentation. This segmenta-

tion/update loop continues until convergence. In the reported experiments HierBayes outperformed the best

baseline, Bayesseg, with a 5.3% WD improvement when segmenting a clinical textbook.

Figure 2.4: HierBayes hierarchical structure example for a document with length T . The structure describes
the document with two main segments (θ6 and θ7), which can be further be broken down into three (θ1, θ2,
and θ3) and two (θ4 and θ5) more fine grained segments, respectively.
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2.2.2.2 Multi-Document Segmentation

Thus far, the described probabilistic segmentation research work does not afford multi-document seg-

mentation nor topic identification, the main goals of this thesis. To the best of our knowledge, the only

work that addresses these issues is the MultiSeg model (Jeong and Titov, 2010). The model can be seen

as a hybrid between a mixture and mixed membership model. At the document level, a topic proportions

variable explains how likely is a topic to occur in the document. The model then constrains segments to

have a single topic. MultiSeg assumes that documents are generated by two different types of topics: local

and global. Local topics are associated with a single segment specific to a document. Global topics can be

shared across all documents, allowing multi-document segmentation and topic identification to be achieved.

Both types of topics are generated from topic proportion variables obtained from a Dirichlet Process (DP)

prior. The full generative process of MultiSeg is described as follows:

1. Draw global topic proportion α ∼ DP(α0)

2. For each topic k ∈ K:

(a) Draw global language model φk ∼ Dirichlet(φ0)

3. For each document d ∈ D:

(a) Draw local topic proportion βd ∼ DP(βd0)

(b) For each topic j ∈ K:

i. Draw local language model ψdj ∼ Dirichlet(ψd0)

(c) Draw ηd ∼ Beta(ηd0)

(d) For each utterance u ∈ d:

i. Chose topic type zdu.t ∼ Bernoulli(ηd)

ii. If zdu.t = SHARED then chose topic zdu.l ∼ α;

generate words xdu ∼ Categorical(φzdu.l)

iii. Otherwise, chose topic zdu ∼ βd;

generate words xdu ∼ Categorical(ψd
zdu.l

)

From the description of the generative process, we can see that MultiSeg manages the use of global

and local topics with a Bernoulli distributed variable. Depending on the zdu.t topic type drawn from the

Bernoulli, the corresponding global or local topic proportions (α or βd) will then generate a topic for the
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utterance. It should be noted that the only goal of the DP is to determine the number of existing local and

global topics. This contrasts with the use of PYP in STM, where it is possible to both determine the number

of topics as well as encourage topic proportion similarity. The difference is that MultiSeg directly uses the

draws from the DP as topic proportions while STM uses another Dirichlet prior to obtain hyperparameters

that are used as input of PYP. The evaluation was carried out in four different domains: biology student

reports, news articles, biographies, and English as a Second Language (ESL) podcasts. The evaluation

showed WD improvements ranging from 1.8% to 17.8% compared to a Bayesseg baseline. The results in

topic identification evaluation showed F1 improvements between 18.9 and 30% over a pipeline approach

using k-means clustering. These results provide evidence that the tasks should be modeled jointly.

2.2.3 Conclusions

After describing the research context, we conclude that the tasks of multi-document segmentation and

topic identification are not very well studied research lines in the document segmentation area. Despite

these problems lending themselves to a probabilistic framework, existing approaches, with the exception of

MultiSeg, cannot be used to model segmentation in this perspective. In mixed memberships models, topics

are shared across segments, but each of them is comprised of several topics generated from their individual

segment topic proportions, and, thus, no topic similarity can be directly extracted. Mixture models in a

single-document segmentation context assume that each segment is generated by an individual topic, which

does not allow topic identification. Despite MultiSeg being a multi-document model, it assumes that all

segments are independent of each other. Under these conditions, it is not possible to study our vocabulary

relationship across segments in different documents hypothesis. This motivates us to propose a model that

encodes such assumptions, and, consequently, allows to obtain answers for our research questions.



3Dataset Collection

Motivated by the lack of resources to evaluate multi-document segmentation and topic identification,

especially in the context of documents that develop an overarching topic, we carried out a data collection

task. We start this chapter by describing existing datasets and discuss their limitations (Section 3.1). Then,

we describe the methodology used to gather a suitable dataset to evaluate the tasks (Section 3.2). Finally,

in Sections 3.3 and 3.4, we perform an inter-annotator agreement study to evaluate to what degree human

judges agree on segmentation and topic identification.

3.1 Available Datasets

The available datasets for document segmentation focus on the single-document case, which does not

translate well for the multi-document segmentation. This is because multi-document segmentation models

assume that the same topics are discussed in several different documents. The datasets for single-document

segmentation do not have this property. Although they might have an overarching domain, the topics dis-

cussed in the segments are inherently different. For example, Malioutov and Barzilay (2006) provide a

dataset in the Physics domain. Despite all documents being in the same overarching domain, the subjects

are different. For example, the topics described in the segments from the ‘Hooke’s Law’ subject are not the

same as in the ‘Work and Energy’ subject (the following lesson). Therefore, the segments describe different

topics as well. What is needed for evaluating multi-document segmentation are documents describing simi-

lar topic segments, which we refer as related documents. It should be noted that this neither implies that all

documents have all topics, nor that they are all described at the same level of detail.

The discussion below focuses on the datasets from the following works: Choi (2000), Janin et al. (2003),

Kazantseva and Szpakowicz (2011), Eisenstein (2009), Malioutov and Barzilay (2006), Ward et al. (2013),

Joty et al. (2013), and Jeong and Titov (2010).

A dataset typically used to evaluate segmentation is the one developed by Choi (2000). This is an

artificial dataset comprised of the first n sentences from different documents from the Brown corpus (Francis

and Kucera, 1979). This corpus contains documents from 500 sources categorized by domain (politics,
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sports, etc.). In total, 700 artificial documents were generated, each with ten segments, and using a value

of n between three and eleven. The problem is that topic boundaries correspond to abrupt changes in the

vocabulary, which does not capture the topic development aspect where word usage changes smoothly.

The ICSI dataset (Janin et al., 2003) consists of multi-party meetings from various research groups,

such as the natural language processing and internet architectures groups. In total, the dataset contains 75

meeting transcripts, of which 25 were manually segmented. The average number of segments per documents

is five. The problem with the dataset is that the meetings mostly discuss ongoing research projects for which

it is hard to find related documents. For instance, the meetings of the natural language processing group

concern the building of the ICSI dataset itself. Later, Hsueh et al. (2006) extended the annotations in this

dataset to further divide the existing segments into finer-grained topics, but the problem remains.

Kazantseva and Szpakowicz (2011) provided a dataset with 22 chapters from a XIX century novel, The

Moonstone by Wilkie Collins. The chapters have an average length of 53.85 paragraphs, with an average

of 5.8 segments each, and were annotated by groups between four and six annotators. Annotators were

instructed to segment the chapters into episodes, in order to create an outline for the chapter. Given the

inherent uniqueness of a book novel, it not possible to find segments describing the same topic.

In an educational setting, Eisenstein (2009) used a medical textbook (Walker, Dallas, and Willis 1990)

to evaluate topic segmentation. The goal was to split each chapter in their sections. This dataset contains

227 chapters, with 1136 sections (an average of 5 per chapter). Each chapter includes an average of 140

sentences, giving an average of 28 sentences per segment. No related documents are available in this corpus.

Also in the educational setting, Malioutov and Barzilay (2006) provided two lecture datasets in the

domains of Artificial Intelligence (22 lectures with 5.9 segments in average) and Physics (33 lectures with

12.3 segments in average). Considering the former, topic boundaries in each video transcript were based on

the slide changes occurring in the video. Therefore, these boundaries may not correspond to topics. In the

latter case, documents were manually segmented by four annotators. In both cases, each lecture has its own

domain, thus, multi-document topic segmentation models cannot be evaluated using this data.

The Similar Segments in Social Speech (4S) task Ward et al. (2013) provided a corpus with topically

related segments. The task is defined as receiving an audio segment of interest and returning an ordered list

of jump-in points for regions similar to it. By doing so, whenever a relevant piece of information is found,

other related information can also be accessed efficiently. For this purpose, a corpus of dialogs among

university students was created. The dataset has 26 dialogs with 309 minutes in total (1697 segments).

Dialogs were annotated by four annotators, though the same dialog was not annotated by more than one
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annotator. Topic identification of the segments is also available. What makes the 4S corpus unsuitable for

our tasks is that there is no general subject in the individual documents (for example, the same document

can talk about internships, family, movies, etc.). This is the same issue described in Choi’s dataset.

Joty et al. (2013) studied topic segmentation and labeling in asynchronous conversations, that is, con-

versations that do not require right-now attention. The provided dataset contains 40 email threads from the

World Wide Web Consortium with an average number of 2.5 segments per thread. Although each email

thread has repeated topic discussions, several unrelated topics also occur in a single thread. This has the

same pitfalls identified in both 4S and Choi’s datasets: segments can be easily distinguished, which do not

allow an accurate evaluation. In addition, the dataset contains 20 conversations, with an average of 10.8 seg-

ments each, from the technology-related news website Slashdot. In this domain, a document corresponds to

the sequence of comments made by users regarding a news article. This scope is much different from the

one we want to target in this thesis: how documents describing in detail some subject are structured.

Considering multi-document model evaluation, the available datasets have limitations. Mul-

tiseg (Jeong and Titov, 2010) was evaluated in four different domains: News, Biography, Re-

port, and Podcast. To create the News domain, document clusters were collected from the sci-

ence and technology section in news.google.com. The data for the Biography domain comes

from four websites: en.wikipedia.org, simple.wikipedia.org, biography.com, and

notablebiographies.com. The Report domain consists of reports describing a plant growth lab,

an assignment for a biology class (Sun et al., 2007). The Podcast domain, corresponds to the English as

a second language podcast (Noh et al., 2010). Each episode consists of two documents: a story and an a

podcast lecture with a teacher and a student discussing the meaning and usage of English expressions ap-

pearing in the story. The goal was to divide the lecture transcript into discourse units. Topic identification of

the segments is available for all domains. Table 3.1 provides statistics for each individual domain. Despite

the high number of documents, it is important to notice that what we care about the most is the number of

documents per subject (RelatedDocs column). In this perspective, each subject has, in fact, few documents.

The only exception is the Report domain, but the number of segments per document is low.

Domain #Subjects #Documents RelatedDocs (x) Segments (x) #Topics

News 50 184 3.7 3.0 220
Biography 30 120 4.0 8.1 405
Report 1 160 80.0 2.4 2
Podcast 200 400 2.0 18.2 3819

Table 3.1: Dataset statistics from Jeong and Titov (2010). The symbol x indicates an average.
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3.2 Learning Materials Dataset

Given the limitations of available datasets, we carried out a data collection task to obtain a dataset

where topic development could be observed across related documents. During this process, we target a

dataset representing the needs of a real-world user. For this purpose, we adopt the scenario of a student, who

needs to read about different subjects in some domain. Therefore, he retrieves several documents covering

those subjects from the web and briefly decides which ones should be part of the collection. We implement

this scenario by gathering related documents from different modalities from the web, using a web scraping

approach. The approach consists in extracting keywords (Bougouin et al., 2013) from seed documents and

submitting them to the following search engines: Google, Bing, Yahoo, and DuckDuckGo. Working from

the top retrieved results down, documents are added to the dataset by balancing the number of documents

from each modality as much as possible. All unrelated documents were discarded. The main content of the

documents was extracted to a text file using available software1,2,3. In what concerns videos, we extracted

the corresponding subtitles.

The previous process was first carried out to collect a small scale dataset in the subject of Adelson-

Velsky and Landis (AVL) trees (Adelson-Velsky and Landis, 1962), a topic often found in Computer Science

curricula. Instead of using a seed document, the keywords ‘AVL trees’ were submitted to the search engines.

A summary of the statistics of the dataset is in Table 3.2, in which:

• #Docs is the number of documents.

• |Doc| is the average length of a document in sentences.

• #Seg is the average number of segments per document.

• |Seg| is the average length of a segment in sentences.

• #Words is the average number of words per segment.

• #Topics is the number of topics.

• |Vocab| is the length of the vocabulary.

All of the documents refer to the topic of AVL trees except for one HTML document, a Wikipedia

article, which specifically addresses tree rotations (an essential operation in AVL trees). The corpus was

1https://github.com/codelucas/newspaper
2https://tika.apache.org/
3https://rg3.github.io/youtube-dl/
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segmented into topically cohesive segments by the author of the thesis, who has taught AVL trees in an

Algorithms and Data Structures course. General rules of thumb provided in other studies (Galley et al., 2003;

Kazantseva and Szpakowicz, 2011; Malioutov and Barzilay, 2006) were followed, namely: a) Segments

should be cohesive and self-contained; b) Segments should contribute to the understanding of the content

organization of the document. In total, 86 segmentation boundaries and 17 topics were annotated, from a

corpus containing 3181 sentences.

#Docs |Doc| #Seg |Seg| #Words #Topics |Vocab|

PPT 5 202.2±69.2 7±1.2 33.4±1.4 1402.0±683.5 6 776
HTML 2 68.5±0.7 7±1.4 10.6±5.8 1195.5±221.3 5 536

Video 3 675.6±77.4 11±5.5 64.2±57.9 6396.3±307.1 8 1265

Table 3.2: AVL trees dataset statistics.

Moving to a larger scale data collection task, we wanted to have a variety of subjects to test the robust-

ness of segmentation algorithms. Another aspect taken into consideration is to use seed documents from a

dataset that is already familiar, and that has been validated by the segmentation research community. In this

context, we chose seven documents, from the Physics lectures dataset (Malioutov and Barzilay, 2006), to be

used as seed documents. The following documents were used:

• L02 - Introduction to Kinematics

• L03 - Vectors

• L06 - Newton’s Laws

• L08 - Frictional Forces

• L10 - Hooke’s Law

• L11 - Work and Energy

• L20 - Angular Momentum

After gathering the documents using the previous web scraping approach, we followed the same manual

segmentation task performed for the AVL trees. Statistics regarding the Physics lecture dataset can be found

in Tables 3.3 and 3.4 (dataset by subject and by modality, respectively).

Given the size of the collected dataset, we achieve the goal of affording a more thorough evaluation of

multi-document segmentation and topic identification, overcoming, to some extent, the problems identified
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Subject #Docs |Doc| #Seg |Seg| #Words #Topics |Vocab|

L02 19 150.84±119.2 4.8 ±2.6 31.5 ±27.3 508.5 ±454.9 27 3210
L03 21 128.38 ±97.3 5.3 ±2.2 24.3 ±23.1 358.6 ±387.7 12 3170
L06 20 176.6 ±121.9 6.1 ±2.9 28.9 ±30.0 421.4 ±468.2 17 4142
L08 19 133.6 ±115.8 4.7 ±3.2 28.2 ±32.4 455.2 ±562.7 21 3154
L10 20 108.3 ±97.80 4.3 ±3.5 25.2 ±30.2 411.9 ±467.1 17 2951
L11 21 164.8 ±109.6 6.7 ±4.4 24.7 ±23.1 378.3 ±398.5 15 4153
L20 21 114.5 ±100.8 4.7 ±2.6 24.5 ±20.5 477.5 ±481.0 26 3892

Table 3.3: Physics dataset by subject.

#Docs |Doc| #Seg |Seg| #Words #Topics |Vocab|

HTML 60 96.4 ±81.3 2.5 ±2.3 20.5 ±17.5 367.5 ±330.2 85 6614
PPT 27 176.4 ±80.9 8.1 ±3.9 21.8 ±17.8 197.9 ±163.5 62 4401
PDF 15 169.1 ±110.4 7.5 ±1.9 22.65 ±10.6 490.3 ±251.9 32 5349

Video 39 168.7 ±142.8 3.2 ±2.6 52.23 ±42.7 888.40 ±673 55 4176

Table 3.4: Physics dataset by modality.

in existing datasets. Contrary to the datasets surveyed in Section 3.1 (Table 3.5), our learning materials

dataset was tailored for testing multi-document segmentation models in collections of related documents

from different modalities. In total, we gathered 151 documents in 8 different subjects (7 in the Physics’

domain plus the AVL Trees domain). In the Physics domain, each subject has around 20 documents, with

an average number of 5 segments per document in a total of 739 segments, which makes it larger than the

other datasets, apart from Choi’s, Eisenstein and Minwoo datasets. However, Choi’s dataset is artificially

generated; the 227 documents from Eisenstein are the chapters of a single book; Minwoo’s dataset is com-

posed of documents on four different domains that either do not have a high number of related documents

or the number of segments is low (the Report dataset).

Dataset Content #Documents #Segments

Choi News 700 7000
ICSI Meeting transcripts 25 188
The Moonstone Book Novel 22 128
Eisenstein Medical textbook 227 1136
Malioutov Lectures 55 536
4S Student dialogs 26 1697
Shafiq Emails and News 60 316
Minwoo* Varied 864 9188

Table 3.5: Existing datasets with document segmentations. The dataset marked with ‘*’ can be used for
multi-document segmentation evaluation.



3.3. HUMAN SEGMENTATION AGREEMENT STUDY 25

3.3 Human Segmentation Agreement Study

In order to study how different human judges segment our dataset, three more annotators were asked to

annotate 16 documents (4 for each different modality) from the ‘Introduction to Kinematics’ and ‘Hooke’s

Laws’ subjects. For each subject, 8 documents were annotated. One of the judges annotated 16 documents.

The remaining two annotated 8 documents each. Two of the new annotators also have a background in

Computer Science, and the other has a Mechanical Engineering background. The annotators were given a

deadline of two weeks to complete the annotation task. None of the annotators were monetarily compen-

sated. Although the annotation was carried out in the text file version of the documents, a link to the original

format (PPT, video, etc.) was provided. No particular order of the document was imposed to the annotators

and they were free to revise annotations before committing to a final segmentation.

Again, the guidelines closely followed previous similar studies (Galley et al., 2003; Malioutov and

Barzilay, 2006; Kazantseva and Szpakowicz, 2011), and explained the concept of a topic segment in a non-

technical way4. Examples and counter-examples of document segmentations were provided. In addition,

and similarly to Malioutov and Barzilay (2006), we asked annotators to give a short description of each

segment. The idea is that if it is hard to come up with a description or if it is similar to the previous segment,

then, probably, the boundary should not exist. No expected number of segments was provided. Finally, we

asked annotators to indicate if they were certain (or not) about the boundary annotation. This procedure has

not been done in previous studies, but it incentivizes annotators to indicate boundaries in case of uncertainty.

We consider that uncertainty in the annotation is related to annotators having doubts if their segmentation

matches the target level of granularity. By investigating the role of uncertainty in the annotation process, we

can better determine if annotators are converging to the same segmentation.

3.3.1 Inter-Annotator Agreement Metrics

Previous agreement studies (Janin et al., 2003; Malioutov and Barzilay, 2006) have used the standard

segmentation metrics to evaluate inter-annotator agreement, namely Pk (Beeferman et al., 1999) and WD

(WindowDiff) (Pevzner and Hearst, 2002). These measures are preferable to the precision and recall used

in classification. The problem of evaluating segmentation with classification metrics is the required strict

match between hypothesis and reference. For example, precision and recall would indicate that a hypothesis

with boundaries close to the appropriate location is worst than a ‘degenerate’ segmentation that places

a boundary in all possible locations. A relaxation of the precision and recall that allows the boundaries

4A copy of the instructions can be found in Appendix C.
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to be placed within some constant-sized window from the reference does not solve the problem. In this

case, it would not be possible to distinguish a precisely accurate segmentation from another that always puts

boundaries close to the reference. Agreement coefficients used in other annotation tasks, such as Cronbach’s

α (Cronbach, 1951), Scott’s π (Scott, 1955), Cohen’s k (Cohen, 1960), Fleiss k (Shrout and Fleiss, 1979),

and Krippendorff’s α (Krippendorff, 2004), fall under the same pitfalls as the classification metrics.

Given the previous context, the Pk metric was developed by Beeferman et al. (1999). The intuition for

this metric is that a segmentation is better than another when it has a higher probability of correctly distin-

guishing whether two words belong to the same segment or not. Therefore, Pk corresponds to a probability,

and, thus, lower values are preferable. Pk is derived from the following, more general, formulation:

PD(ref, hyp) =
∑

1≤i≤j≤n
D(i, j)

(
δref (i, j) ⊕̄ δhyp(i, j)

)
, (3.1)

where ref is the reference segmentation of a corpus of nwords, hyp is output segmentation of an algorithm,

and δ is the indicator function, which returns 1 if the words i and j belong to the same segment and zero

otherwise. The operator ⊕̄ is the XNOR function (‘both’ or ‘neither’), and the D function is a distance

probability distribution over all possible distances between two randomly chosen words chosen. If D is

a uniform distribution, then the metric is too forgiving, since the majority of the distances will be large,

and, for these cases, even naive segmenters will perform accurately. It has been shown that using PD =

Pk (Beeferman et al., 1999) (meaning that all probability mass is concentrated in a single fixed distance, k),

yields a good evaluation metric for the segmentation task. In practice, this corresponds to defining a window

with size k and using it to sweep the corpus while checking if words are correctly classified. By using this

scheme, the notion of ‘close to correct boundary’ is captured in a principled way by smoothly penalizing

segmenters that place boundaries that are not quite right, and by scaling with the segmenter’s degradation.

Although Pk is a better segmentation evaluation metric than precision and recall, it still has drawbacks.

Namely, it penalizes false negatives more heavily than false positives, over-penalizes ‘near-misses’, and is

affected by the segment size distribution (Pevzner and Hearst, 2002). In dealing with these problems, a

modification of the metric, WD, was proposed by Pevzner and Hearst (2002). The difference is that, in each

window, the penalty is difference between the number of boundaries in ref and in hyp, instead of the binary

assessment of whether the words are in the same segment or not. WD is formalized as follows:

WD(ref, hyp) =
1

N − k

N−k∑
i=1

|ref − hyp|6= 0, (3.2)

where N is the document length and k the window size. WD is a penalty score from 0 (best value) to 1.
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Despite improving the Pk metric, WD introduces the problem of biasing better results towards seg-

mentations with fewer segments (Fournier, 2013). In dealing with this issue, Fournier (2013) proposed the

Boundary Edit Distance (BED) metric. BED models segmentation differences using additions/deletions

(full misses), and transpositions (near misses). A transposition occurs if the annotated boundaries are off by

at most n sentences. By explicitly defining what constitutes a full miss and near-miss situations, it is possible

to operate at the individual utterance level (potential boundary). This avoids the problem of window-based

metrics where we are looking at two windows without any context of the segments where they belong to.

For example, we might have two windows without any boundary and give full credit when the underlying

segments are actually quite different. This is the main cause of the bias problem in WD. The BED metric is

a score between 0 and 1 (the best value) and is assigned depending on the number of boundary matches and

edit operations needed to make the segmentations equal. The BED metric is defined as follows:

BED(ref, hyp, nt) = 1− |AD|+Tw
|AD|+|T |+|BM |

, (3.3)

where nt is the maximum distance that boundaries may span to be considered transpositions, AD is the set

of addition/deletions, T the set of transpositions, Tw is a transposition penalty weight, and BM the set of

matching boundaries. Tw models the severity of a transposition my making the penalty harsher for larger n.

In practice, this is done by dividing the distance between the boundaries by nt and adding a constant value.

To use BED for annotator agreement, Fournier (2013) integrates it in the kFleiss coefficient (the multi-

annotator version of π (Shrout and Fleiss, 1979)). This is possible because BED is symmetric, unlike Pk or

WD. The metrics are combined by using the pairwise mean BED in kFleiss. This coefficient is based on

the observed agreement (Aobs), corrected for chance by the expected agreement (Aexp). When there is no

agreement kFleiss returns 0, and for complete agreement it returns 1. kFleiss is calculated as follows:

kFleiss =
Aobs −Aexp

1−Aexp
(3.4)

Adapting Aobs and Aexp to use the BED metric, kBED, results in:

ABobs =
1(
C
2

) C−1∑
m=1

C∑
n=m+1

∑
d∈D|d|BED(sdm, sdn)∑

d∈D|sd|−1

ABexp =

∑
c∈C

∑
i∈I |sdc|

C
∑

d∈D|d|−1

kBED =
ABobs −ABexp

1−Aexp
, (3.5)
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where c is an annotator from the set of annotators C, d is a document from a dataset D, |d| is the size of d

(in utterances), sdc is the segmentation of d provided by annotator c, and |sdc| is the number of segments

in d annotated by c. In the carried out agreement study, we report WD, kBED, and kFleiss to compare our

results with previous agreement studies.

3.3.2 Inter-Annotator Agreement Results

The number of obtained certain/uncertain boundaries for each individual annotator, for each subject,

is presented in Tables 3.6 and 3.7. The second annotator, A2, was the one responsible for annotating the

whole collection. In total, 240 segment boundaries were annotated, from which 47 were marked as uncertain

(19.6% of the total).

#Certain #Uncertain

A1 23 23
A2 36 8
A3 37 2

Table 3.6: Number of certain and uncertain an-
notations for L02 documents.

#Certain #Uncertain

A2 35 5
A3 37 5
A4 25 4

Table 3.7: Number of certain and uncertain an-
notations for L10 documents.

Considering that we have certain and uncertain boundaries, and in order to bring ‘crowd wisdom’ to

the annotation process, uncertain boundaries marked by a single annotator were discarded. The intuition

was the following: if only one annotator marks a boundary as uncertain, then it is plausible to assume that

the boundary may not exist. On the other hand, if multiple annotators mark a boundary as uncertain, it is

plausible to assume that it exists. Tables 3.8 and 3.9 show the inter-annotator agreement results using the

previously described metrics, for each subject. For completeness, we also report the agreement results using

the strict metric kFleiss.

kBED WD kFleiss

HTML 0.81±0.20 0.20 ±0.1 0.89 ±0.11

PPT 0.58±0.02 0.17±0.1 0.70±0.04

PDF 0.40±0.01 0.20 ±0.1 0.55 ±0.02

Video 0.67±0.30 0.36±0.1 0.75±0.25

Table 3.8: Inter-annotator agreement in L02 documents.

Despite the differences in the results between kBED and kFleiss, ranging between 0.08 and 0.12, both

metrics provide a similar view of the agreement obtained in the annotation tasks. What stands out from

these results is that kFleiss yield higher agreement than kBED when previous reports showed an opposite
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kBED WD kFleiss

HTML 0.91±0.09 0.11±0.00 0.95±0.05

PPT 0.55±0.15 0.26±0.11 0.67±0.15

PDF 0.61±0.12 0.18±0.20 0.73±0.09

Video 0.43±0.29 0.21±0.06 0.53±0.29

Table 3.9: Inter-annotator agreement in L10 documents.

behavior (Fournier, 2013). This is related to the fact that we removed uncertain boundaries marked by a

single annotator. Regarding the WD results, they do not entirely agree on which is the hardest and easiest

modality to annotate when compared with the other agreement metrics. For example, in L02 the kBED

results indicate that HTML documents obtained higher agreement and PDF the lowest. For WD, the high-

est agreement is obtained in PPTs and the lowest in Video transcripts documents, although the difference

between PPT and HTML is only 3%. Less ranking discrepancies were observed in the L10 case. Only the

ranking of PPT and PDF is not consistent. On a manual qualitative analysis of the annotations, we noted that

kBED better translates the agreement differences across media sources. This is in line with Fournier (2013),

where it is argued that WD overinflates its agreement results for sparse segmentations, which is indeed the

case for documents that show inconsistencies across evaluation metrics.

kBED results are higher than the values reported in other datasets. In total, we obtained a 0.65 aver-

age agreement, whereas Fournier (2013) and Kazantseva and Szpakowicz (2011) obtained 0.44 and 0.30,

respectively. A similar scenario is found when comparing WD results. We obtained a 0.21 average WD,

which is better than the 0.35 in Janin et al. (2003) and 0.34 in Malioutov and Barzilay (2006). Some of the

differences between our annotation task and the previous ones, which might explain the different results, are

the nature of the target documents and how segments are annotated. Our dataset is comprised of learning

material documents which have a less ambiguous topic structure than the book chapters of the romance

in Kazantseva and Szpakowicz (2011). Our annotation task is also simpler than the one in Malioutov and

Barzilay (2006), which added extra cognitive load by requiring the identification of major and minor topics.

3.3.3 Dealing with Uncertainty

Previous results were calculated considering that uncertain boundaries marked by a single annotator are

discarded (from now on the No Uncertainty Singleton (No-Single-U) scenario). In order to study the impact

of uncertain boundaries, we conducted another study, in which two other scenarios were considered:

• All Annotations (All): all boundaries (certain or uncertain) are considered.

• No Uncertainty (No-U): all uncertain annotations are discarded.
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Figure 3.1 shows what percentage of annotators included a particular boundary in their segmentation

for each version of the annotations dataset and each individual subject.
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(a) Annotations of the L02 documents.
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Figure 3.1: Box plots for the percentage of annotators assigning a topic boundary.

For the L02 case (Figure 3.1a), we can see that the No-U scenario is the one with more disagreement

among annotators, since most boundaries were annotated by 33% and 67% of the annotators, and only in

a few cases there is complete agreement. This result contrasts with the All and No-Single-U annotations,

where a higher percentage exists, as most boundaries were annotated by two annotators. Moreover, a sig-

nificant portion of the distribution has 100% agreement. The difference between All and No-Single-U is

the median value. In No-Single-U the median is 67%, and, thus, there are more cases where at least two

annotators specified a boundary.

The differences between the annotation datasets for L10 are not as prominent as before (Figure 3.1b).

In all scenarios, a median value of 67% was obtained. The difference is that the No-Single-U annotations do

not have as many lower percentage values as the remaining. These different results in L02 and L10 suggest

that some subjects might be harder to segment than others. This was hinted before when looking at the

number of uncertain boundaries used in L02 and L10 (Tables 3.6 and 3.7). For the latter case, a much more

varied number on uncertain boundaries was used, even though two of the annotators remained the same

across subjects. This argues in favor of the proposed annotation scheme which allows a post-analysis of the

annotations that better translates the actual agreement between annotators.
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3.3.4 Qualitative Analysis

To better understand the disagreement patterns, Figure 3.2 shows a plot with the annotated boundaries

in a PDF document with a low agreement (kBED = 0.4) from the L02 subject. Despite the low agreement,

it is possible to observe that there is a set of boundaries for which all the three annotators agree (the vertical

lines with three different colors). This indicates that some topical shifts are more prominent than others.

Figure 3.2: PDF document annotations in a document from the L02 subject.

Figure 3.2 also illustrates “near miss” situations, in which the boundaries chosen by the annotators

are close (the vertical lines with different colors are near to one another). This is due to the difficulty in

perceiving if a text span is concluding the current segment or introducing the following one. This usually

happens when a text span compares and contrast concepts from the previous and next segments.

From Figure 3.2 it is also possible to see that different levels of granularity still exist in some anno-

tations. Annotator A1 provided a finer level of granularity than the remaining ones. For example, he con-

sidered two different segments of ‘Average Velocity’ and ‘Instantaneous Velocity’, whereas the remaining

annotators considered a single segment (‘Velocity’).

The granularity issue observed in our study has also been reported in previous works (Passonneau and

Litman, 1997; Kazantseva and Szpakowicz, 2011; Fournier, 2013), and pointed out as the main reason for

the low inter-annotator agreement when compared to other annotation tasks. These annotation differences

stem from the different views in what the segmentation granularity should be, and not necessarily with the

difficulty in identifying topics in a document. Also, this is not the general case for all topic segments: as

discussed before, there is a considerable number of prominent topic shifts for which the annotators agree.

To give an intuition of why annotators disagree, Figure 3.3 shows the textual representation of the be-

ginning of the PDF document from Figure 3.2. This is an example where the three annotators had different

segmentation perceptions regarding the concept of average speed. Annotator A1 marked a dedicated seg-

ment for this concept, showing a finer level of granularity, whereas A2 and A3 agglomerated it with the next

and previous segments, respectively. This demonstrates the ambiguity that can be encountered during the

segmentation annotation task. Even when not considering average speed in a single segment, it is debat-
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able if whether it is more related to the distance segment (the previous) or to the average velocity segment

(the next). Despite these hard to judge cases, Figure 3.3 also shows examples where prominent topic shifts

occur. For example, all annotators marked a first segment and described it as introduction. Another interest-

ing observation is that all annotators considered position and displacement/distance to be part of the same

segment. This indicates that segments are constructs that can contain several concepts that together form a

cohesive piece of information.

3.4 Human Topic Identification Agreement Study

The inter-annotator agreement for topic identification was carried out as a clustering task. Annotators

were instructed to group segments if they shared the same topic. Since it is possible that a single segment

contains multiple topics we allow annotators to have a segment in multiple clusters. The instructions also

specified that an exact semantic match in the content of two segments is not necessary in order to consider

that they share a topic. Therefore, some segments can develop a topic more than others and still belong

to the same cluster. Following the previous segmentation annotation task, examples and counter-examples

of these cases were provided in the instructions. Annotators provide topic identification judgments in the

same document segmentations. A setup where annotators use their own document segmentations would be

possible if we consider topic identification judgments at the utterance level. The problem is that differences

in the segmentation would carry over to the agreement in the topic identification annotation. Therefore, we

opted for the segment level setup. No particular order of the segments was imposed, but the annotators were

recommended to sequentially annotate the segments following the order they appear in the documents. Also,

no target number of topics was provided. A copy of the annotation instructions is in Appendix D.

The annotations were performed in 9 documents with 55 segments from the ‘Introduction to Kinemat-

ics’ subject (L02) by two annotators (A2 and A3 from the segmentation annotation task). The modality

distribution is as follows: 2 HTML (8 segments), 2 PPT (17 segments), 2 PDF (17 segments), and 3 video

(13 segments) documents.

3.4.1 Inter-Annotator Agreement Metrics

Given the previously described clustering setting, we use the standard overlapping clustering metric B3

to evaluate inter-annotator agreement (Amigó et al., 2009). A similar setup was used to assess agreement of

Wikipedia articles topic clustering (Ahn et al., 2011), but studies comparing topic identification of segments

provided by human judges, to the best of our knowledge, do not exist. Contrary to other standard metrics
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==========================================
2: Kinematics: Describing motion.
Our first goal is understanding the motion of objects.
The first step is simple: merely DESCRIBING the motion of things.
1) We’ll only talk about “particles”: point like objects, whose structure is
irrelevant.
2) We’ll work in one dimension, e.g. a train moving back and forth on a
straight track.
To describe motion, we need a few basic concepts, quantities, and definitions.
We’ll use English language words but define them mathematically when
possible.
You’ll see that words like ”velocity, acceleration, force, energy, momentum
(which are often sloppy), are, in physics, totally distinct and well defined.
========================================== (A1, A2, A3)
1) POSITION: Where is the object?
You need a reference frame to describe position.
A reference frame means a choice of axis and coordinate system: where is the
origin, what units will we use to measure length, which direction will we call
positive?
It’s a convention, YOU choose the reference frame.
In 1-D horizontal motion, I will usually pick an origin, and let the positive
direction be to the right, like in a number line.
Position has a SIGN in 1-D: x=+2.5 and x=-2.5 are totally different positions.
2) TIME: When does an event occur?
You need a reference frame here too: when do you define ”t=0” to occur?
I label time by ”t”, which is an INSTANT or POINT in time.
3a) DISPLACEMENT: This is the net CHANGE in position.
x = +2 m : the object has moved 2 meters to the right
The Greek letter there is a ”Delta”, it always means ”change” in this class.
x = -2 m means something different, the object has moved 2 meters to the left.
3b) DISTANCE.
The total length of the path the object has traveled.
It’s different from displacement in several ways.
It’s a positive number, a scalar.
If an object moves forward 2 meters and then back 2 meters, the DISTANCE
traveled is 4 meters, but the displacement is zero!
Mathematically: x = x final - x initial
Position and displacement are useful, but when describing motion, you often
care about more, e.g. how fast it’s moving.
========================================== (A1, A3)
4a) AVERAGE SPEED = (distance traveled)/(time taken).
This is always +, it’s called a scalar.
In the previous example, if we started at t=0, and then point x2 was reached at
20s, point x3 at 30s, and the end was at 60s, then average speed = (60 m)/(60
sec) = 1 m/s.
========================================== (A1, A2)

Figure 3.3: Excerpt of an annotated PDF document. At the end of each segment boundary line, we indicate
who were the annotators that marked the boundary.
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(Purity, Inverse Purity, Entropy, Folkes and Mallows, and Rand Index), the B3 metric has been shown to

comply with four crucial constraints that characterize clustering similarity (Amigó et al., 2009):

• Cluster homogeneity: clusters must be homogeneous, i.e., they should not mix items belonging to

different classes.

• Cluster completeness: items belonging to the same class should be grouped in the same cluster.

• Rag Bag constraint: adding items to a bad cluster is less harmful than adding items to a good cluster.

• Cluster Size vs. Quantity: a small error in a big cluster should be preferable to a large number of

small errors in small clusters.

The B3 metric decomposes the clustering evaluation in item-wise Precision (Pre) and Recall (Rec)

(Figure 3.4). Precision represents the fraction of items within a cluster that belong to the cluster’s class. The

recall of an item represents how many items within the item’s class appear in the cluster. The overall B3

precision and recall are the averaged precision and recall of all items in the clustering. The final B3 metric

is obtained by combining precision and recall:

B3 =
1

α( 1
Pre) + (1− α)( 1

Rec)
(3.6)

In our experiments, we set α = 0.5, which corresponds to the F1 score version of B3.

We also used the kFleiss score, described in Section 3.3.1, since it is a more standard agreement metric.

In order to use kFleiss, it is necessary to provide a list of individual items for the annotators to judge rather

than the raw clustering. This was done by computing all pairwise combinations of segments.

4.4 Evaluation metrics based on edit distance
In [Pantel and Lin, 2002], an evaluation metric based on transformation rulesis presented, which opens a new family of metrics. The quality of a clusteringdistribution is related with the number of transformation rules that must beapplied to obtain the ideal distribution (one cluster for each category). Thisset of rules includes merging two clusters and moving an item from one clusterto another. Their metric (which we do not fully reproduce here for lack ofspace) lacks to satisfy constraints 1 and 3 (see counterexamples in Figure 11).Indeed, metrics based on edit distance cannot satisfy the Rag Bag constraint:independently from where we introduce the noisy item, the distance edit isalways one movement, and therefore the quality of both distributions will alwaysbe the same.
4.5 BCubed: a mixed family of metrics
We have seen that none of previous metric families satisfy all our formal restric-tions. The most problematic constraints is Rag Bag, which is not satis�ed by anyof them. However, BCubed precision and recall metrics [Bagga and Baldwin, 1998]satisfy all constraints. Unlike Purity or Entropy metrics, which compute inde-pendently the quality of each cluster and category, BCubed metrics decomposethe evaluation process estimating the precision and recall associated to eachitem in the distribution. The item precision represents how many items in thesame cluster belong to its category. Symmetrically, the recall associated to oneitem represents how many items from its category appear in its cluster. Figure10 illustrates how the precision and recall of one item is computed by BCubedmetrics.

Figure 10: Example of computing the BCubed precision and recall for one item

13

Figure 3.4: Example of calculating the B3 precision and recall of a point (Amigó et al., 2009).
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3.4.2 Inter-Annotator Agreement Results

The inter-annotator agreement results (Table 3.10) show that the annotators agreed reasonably on the

topic identification of segments. For the B3 metric there are no guidelines regarding what high inter-

annotator agreement values are, and, thus, we compare it with a baseline where segments are randomly

assigned to topics. We obtained B3 = 0.84, a 0.53 increase over the baseline, indicating that the overall

clustering of the two annotators was similar. Regarding the kFleiss score, a high agreement value was ob-

tained (0.78). Despite indicating that annotators had a high agreement, this result must be interpreted with

caution. Looking at the confusion matrix (Table 3.11) we can see that there is a class imbalance problem

since most of the items correspond to pairs of segments for which the annotators agreed they should not

belong to the same topic. We can see the effects of this imbalance when looking at the raw agreement

percentage, which drops from 96.4% to 66.7% when discarding the true positive cases. Discarding the true

positives is not an ideal solution since the disagreement cases would bias the coefficient towards a high

disagreement. Because the clustering setting was translated into an item classification setting, the number

of disagreement cases is high since a single segment topic difference will generate multiple disagreement

items (one for each other segment in that topic).

kFleiss B3 B3
baseline

0.78 0.84 0.31

Table 3.10: Inter-annotator agreement for topic identification.

A2
A3

+ -

+ 106 26
- 27 1326

Table 3.11: Topic identification confusion matrix.

We also investigate what is the impact of modality in the topic identification annotation task. That is, if

we observe differences when comparing the agreement in segments with the same (intra-)modality or with

different (inter-)modality (Table 3.12). In general, the PPT modality obtained the lowest results in both

metrics and in both inter and intra-modality segments. The difference ranges between 0.12 and 0.37, for

kFleiss, and 0.04 and 0.13, for B3. This indicates that PPT documents are harder to annotate. The results

in other segment modality combinations were much closer. In these cases, the highest B3 differences are

between HTML and HTML-PPT, and Video and PPT-Video (0.09 difference).
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kFleiss B3

HTML 0.88 0.94
PPT 0.56 0.81
PDF 0.88 0.94

Video 0.78 0.88

HTML-PPT 0.93 0.85
HTML-PDF 0.76 0.92

HTML-Video 0.84 0.90
PPT-PDF 0.77 0.85

PPT-Video 0.68 0.79
PDF-Video 0.81 0.88

Table 3.12: Inter-annotator agreement for modality-based topic identification.

3.4.3 Qualitative Analysis

We now carry out a qualitative analysis of the segment topic identification in order to study possible

agreement/disagreement patterns on an empirical basis. In Tables 3.13 and 3.14, we provide the topic de-

scriptions and how many segments where assigned to that topic by each annotator. The number of identified

topics is similar between the annotators (17 and 18, for A2 and A3, respectively). From the topic descrip-

tions, we can observe that, in general, the annotators agreed on which topics are described in the segments.

One noticeable difference is the exercise topics which only exist in the annotations from A3. For the ‘Ex-

ample Exercises‘ topic there is a correspondence in A2’s annotations with the ‘Position Time Plot’ topic;

another example of different topic descriptions for the same segment cluster is the ‘Average Velocity’ (A2)

and ‘Velocity’ (A3) topics. The ‘Examples Exercises Free Fall Gravity‘ case is different since it is not just

a matter of assigning different topic descriptors. This topic together with ‘Free Fall Gravity’ corresponds

to A2’s single cluster ‘Free Falling Objects’. Therefore, we can see that A3 made a deliberate decision in

separating exercise-related segments from more descriptive ones, while A2 put them together on the same

topic. The reason for these differences is that the exercise segments include detailed descriptions of the

concepts needed to solve the exercises.

Analyzing the segments annotated with more than one topic also allows understanding the topic identi-

fication process of the annotators. A2 annotated 11 segments with more than one topic, where 9 segments

had 2 topics, and the remaining 2 had 3 topics. This topic overlapping is related to the coupling of related

concepts in the same segments. One example is the average and instantaneous velocity concepts for which

some segments describe them in isolation while in others they are described in a coupled manner, which is

a way to emphasize to students that these are distinct concepts. This makes us conclude that some degree of

decoupling between segmentation and the topics present is possible. Therefore, the same vocabulary used
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Table 3.13: A2 topic identification annotations.

Topic Description #Segs

Reference Point 2
Motion Rest 1

Displacement 5
Distance Traveled 3

Velocity and Speed Definition 1
Instantaneous Velocity 5

Instantaneous and Average Speed 6
Average Velocity 6

Position Time Plot 5
Acceleration Definition 6

Instantaneous Acceleration 5
Average Acceleration 7

Acceleration Direction 1
Free Falling Objects 6

General Equation of Motion 5
Velocity Plot Constant Acceleration 3

Circular Motion 1

Table 3.14: A3 topic identification annotations.

Topic Description #Segs

Motion 1
Reference Point 1

Displacement 6
Velocity 6

Instantaneous Velocity 3
Speed 2

Speed Average 6
Acceleration Definition 8

Instantaneous Acceleration 5
Average Acceleration 4

Constant Acceleration 2
Formalization Equations 7

Free Fall Gravity 4
Graphical Representation 2

Circular Motion 1
Example Exercises 6

Exercises Free Fall Gravity 3
Exercise Average Velocity 1

to describe two different topics can be interwoven in such a way that it can originate a single segment or

two distinct segments. The topic overlapping annotations from A3 presents the previous patterns as well.

A3 has 9 different segments with more than 1 topics (7 segments with 2 topics, 1 with 3 topics, and 1 with

4 topics). The main difference is again in the exercise-related topics where A3 related those segments with

the descriptive counterparts, which did not happen with A2 since they were all in one cluster.

Despite the previously identified differences, the overall qualitative analyses is inline with the inter-

annotator agreement scores and corroborates the hypothesis that it is indeed possible for human judges to

agree on topic identification judgments between different segments. Given the inter-annotator-agreement

results and the analyses presented in this chapter, we conclude that the collected dataset is suitable to carry

out a performance evaluation of the models we propose in Chapter 4 in the multi-document segmentation

and topic identification tasks.
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4Proposed Solution

Before starting to describe the proposed solution, we provide a general background overview on

Bayesian probabilistic modeling needed in Section 4.1 to put in context the remaining sections. To test

the hypothesis that a joint model is an effective approach to multi-document segmentation and topic iden-

tification, we want to compare it with other approaches that perform the tasks in a pipeline fashion. In this

context, we extend the Bayesseg and PLDA models to the multi-document segmentation case in a non-joint

model approach (Section 4.2) and also propose a graph-community approach to the topic identification (Sec-

tion 4.3). Finally, in Section 4.4, we describe our main proposed approach, BeamSeg, which jointly models

multi-document segmentation and topic identification by assuming that vocabulary usage relationships be-

tween segments exists and that topics are shared across different documents.

4.1 Bayesian Modeling Background

In the following sections, we provide a high-level overview of the Bayesian perspective on probability.

4.1.1 Hypothesis Estimation

The probabilistic graphical models framework (Koller and Friedman, 2009) allows to encode indepen-

dence relationships between random variables. By analyzing the structure of the graphical model, one can

quantify the probability of a hypothesis z given observed data X , p(z|X ). With the specification of the

model and observed data, we can perform inference to choose the ‘best’ hypothesis, according to some def-

inition of best. The definition of z is application dependent and corresponds to the unobserved variables of

the model. For example, in LDA, hypotheses are the parameterizations of word probability distributions and

word topic assignments. In this thesis, we are interested in evaluating different segmentation hypothesis.

Following a Bayesian approach, we resort to Bayes rule to obtain the expression for p(z|X ):

p(z|X ) =
p(X|z)p(z)
p(X )

(4.1)
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Equation 4.1 is described in literature as the posterior distribution of p(z|X ). The numerator of the

expression is referred to as the joint probability distribution, and its form depends on the structure of the

probabilistic graphical model. It is composed of two terms, the likelihood, p(X|z), and the prior p(z). The

likelihood determines how good z is at explaining the observed data X , and the prior expresses how well z

matches our expectations of what a good hypothesis looks like. In this context, the prior acts like a learning

bias which we can tune to have a stronger or weaker influence on the probability of p(z|X ). This determines

the balance between the observed data and the prior. A strong prior will require more evidence in the data

to contradict our pre-existing belief of what a good hypothesis is. A weak or non-informative prior, in the

sense that it does not favor any particular type of hypothesis, requires few evidence to accept a hypothesis.

One procedure to learn to select the best hypothesis z is maximum likelihood estimation (MLE). As the

name implies, the procedure chooses the hypothesis that maximizes the likelihood term:

z̃MLE = argmax
z

p(X|z) (4.2)

To illustrate how MLE works, we will use the standard coin flipping example. Consider we observe a

coin flip sequence X = HHHTT (H = heads and T = tails) and we want to find a good estimate for the

probability of getting heads, z. In a MLE scenario, this means we are looking for the hypothesis value z̃MLE

that is most likely to have generated the observed data. This simply amounts to performing counts on the

data and normalize the probabilities to sum to one, yielding z̃MLE = 3
5 , in this example. It should be noted

that the absence of a prior term in MLE is equivalent to assuming that all hypotheses are equally probable.

Another possibility to learn to select the best hypothesis is with the maximum a posteriori (MAP)

framework:

z̃MAP = argmax
z

p(z|X )

= argmax
z

p(X|z)p(z)
p(X )

= argmax
z

p(X|z)p(z), (4.3)

where the denominator can be ignored, since it is a constant across the argmaxz operator. The advantage

of MAP is that prior knowledge about the hypothesis can be encoded through p(z). Resuming the previous

example, we might have reasons to believe that the coin is rigged and produces more tails than head flips.

To express this prior belief, p(z) can be set to favor values z < 0.5. The more heavily biased the prior

distribution is, the more evidence in the data is necessary to contradict our prior belief that the coin is unfair.
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The previous approaches only consider individual point estimates of z in order to decide the most likely

hypothesis. This is what the argmaxz operator of Equations 4.2 and 4.3 implies since it can be interpreted

as trying all possible z values individually and return the one with the highest likelihood. In contrast, the

full posterior is, in fact, a true probability distribution over the possible values of z. This allows computing

the expected value of the distribution, which fulfills the goal of incorporating as much information as we

have from the posterior in the estimate. The expected value is defined as follows:

E[f(z)] =
∑
z∈Z

f(z)p(z) (4.4)

E[f(z)] =

∫
f(z)p(z)dz, (4.5)

for the discrete and continuous cases, respectively. Z is the set of discrete values z can take, and p(z) is the

probability distribution over possible values of z. In the coin example, f(z) = p(y|z), and p(z) = p(z|X );

where p(y|z) is the probability of prediction y (heads in the coin example) given the hypothesis z. Under

these condition we can no longer ignore the denominator p(X ) in Equation 4.1, the evidence term:

p(X ) =

∫
p(X|z)p(z)dz (4.6)

The evidence term corresponds to integrating over all possible values (or summing in the discrete case).

Essentially it acts like a normalizing term for the posterior distribution. When using MAP estimates, we get

a kind of unnormalized score for the hypothesis, but what we really want is the normalized version in order

to have a true probability distribution to take expected values. Only this way we fully take into account prior

knowledge regarding z and the interactions it has with the observed data X . Concluding this line of thought,

imagine we get a coin flip sequence X = TTT. The MLE estimate would be z̃MLE = 0, since we did not

observe any heads. If we use the expected value of a posterior distribution of z, assuming a non-informative

prior, we obtain the following expression (for simplicity we omit the derivation details):

E[p(y|z)] =
#H + 1

#H + #T + 2
(4.7)

where #H and #T are the number of observed heads and tails respectively. Plugging in the observed data,

we get E[p(y|z)] = 0.2. Intuitively, this is a better estimate than z̃MLE = 0, since we would think with

such little data we were just unlucky when flipping the coin. The problem of MLE is that it tends to accept

extreme data too easily. Despite this toy example, it does illustrate why generally we should prefer to use

expected values for hypothesis estimation.
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4.1.2 Inference with Gibbs Sampling

As we concluded in the previous section, a better approach to inference should use the full posterior

distribution. In practice, there is one caveat to being able to do this, which is the computation of the evidence

term p(X ). Models used in real applications are too complex to afford an analytical solution to p(X ), such as

the one for the coin flip toy problem. This motivates the approach to inference using Gibbs sampling (Grif-

fiths and Steyvers, 2004; Robert and Casella, 2005; Papanikolaou et al., 2017; Terenin et al., 2019), which

gives assess to the posterior while bypassing the problem of computing the evidence term. The intuition

for Gibbs sampling is that we sample from a distribution that asymptotically follows p(z|X ), which does

not require p(X ) to be computed. This is done by sampling points from f(z) according to p(z|X ). After

gathering N samples, we can compute the expectation as follows:

E[f(z)] = lim
N→∞

1

N

N∑
t

f(zt), (4.8)

which resembles the average value of the collected samples. This is similar to the definition of the expected

value, without p(z). In fact, p(z) is implicit since we assume the samples are collected according to p(z|X ).

This allows collecting samples from the regions of posterior with the highest probability. Therefore, for the

Gibbs sampling approach to be effective, it is necessary to ensure we spend more time collecting samples

from such regions of interest.

Now we need to define how to sample according to p(z). Different approaches to address this problem

are possible, such as rejection sampling, adaptive rejection sampling, Metropolis-Hasting, and importance

sampling (Bishop, 2006). We will focus on the Gibbs sampling approach, an instance of a Markov Chain

Monte Carlo (MCMC) algorithm (Robert and Casella, 2005). In this framework, the z’s are viewed as points

in a state space that we want to explore in such way that the likelihood of visiting some z is proportional to

p(z). In this context, we are making probabilistic choices about which z to visit next, the Monte Carlo part

of the algorithm. The Markov Chain part stems from assuming that next visited state, zt+1, only depends

on the current state, zt. In Gibbs sampling instead of choosing a state out of all possible states, we change

one variable from zt, while the remaining ones are fixed. For example, a Gibbs sampler for LDA would

not choose a state out of all possible combinations of topic assignments, instead, it would choose one-word

topic assignment from zt. Samples from the target distribution are obtained as follows:

zt+1
i ∼ p(zti |zt+1

1 , ..., zt+1
i−1 , z

t
i+1, ..., z

t
k), (4.9)
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where zk corresponds to one of the variables of the model. It should be noted that the indexes in the

conditional probability expression define that we are sampling a new value for zt+1
i based on the values of

all other variables. Moreover, as soon as a new value is sampled, it is used when sampling the next variable.

A full iteration of the Gibbs sampler corresponds to sample all zk variables, obtaining the new full state

sample f(zt+1). The process is repeated N times, and the results averaged in the end. As iterations take

place, we start getting closer to the region of the posterior distribution we are interested in, and consequently,

the samples will get better. Therefore, ifN is large enough, we will obtain a good estimate for the parameters

of our model. Another important property of the sampling expression (Equation 4.9) is that after applying

the conditional probability definition, we obtain in the numerator the expression of the joint probability of

the model, and, in the denominator, the joint minus zti . This is how we avoid computing the evidence term

since it gets canceled in the expression.

4.1.3 Inference with Variational Inference

In this section, we give a high-level overview of the Variational Inference (VI) approach to the posterior

inference problem (Jordan et al., 1999; Wainwright and Jordan, 2008). VI frames inference as an optimiza-

tion problem, as opposed to a sampling algorithm like Gibbs sampling. The argument that favors the use of

VI is scalability since it can be faster than Gibbs sampling. The downside of VI is that it does not enjoy the

theoretical properties of Gibbs sampling, in the sense that it is an approximation of the posterior distribution.

Under what conditions the VI approximation is good is still an open research question. The main idea in

VI is to define a family of variational distributions Q over the model’s latent variables z. Each q(z) ∈ Q

is parametrized by variational parameters and is a candidate approximation to the exact posterior. Thus, the

goal of the optimization is to find the q∗(z) that is closer to the target posterior distribution, the one with the

best parametrization. Closeness is measured by the KL divergence to the posterior distribution:

q∗(z) = argmin
q(z)∈Q

KL(q(z)||p(z|X )) (4.10)

Solving the optimization problem in Equation 4.10 is intractable since it still requires to compute the

evidence term. This is observed when applying the definition of KL to Equation 4.10:

KL(q(z)||p(z|X )) = E
[

log
q(z)

p(z|X )

]
= E[log q(z)]− E[log p(z|X )]

= E[log q(z)]− E[log p(z,X )] + log p(X ) (4.11)
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VI addresses this problem by minimizing a related objective function, the evidence lower bound

(ELBO). The ELBO is equivalent to the negative KL divergence, differing only by a constant:

ELBO(q) = E[log p(z,X )]− E[log q(z)] (4.12)

To fully specify the optimization problem we need to define the variational distribution family Q. Var-

ious possibilities exist (Saul and Jordan, 1995; Salimans and Knowles, 2013), but we will focus on the

mean-field variational family since it is the approach we use later. The main assumption in mean-field

variational inference is that the latent variables are independent. Thus, they are generally defined as follows:

q(z) =

m∏
j=1

qj(zj) (4.13)

From Equation 4.13 we see that each zj has its own individual variational parameters, qj(zj), making

them independent of each other. Another thing to notice from Equation 4.13 is that it does not model

the observed data. The connection to the data only appears when maximizing the ELBO, through the

E[log p(z,X )] term. Equation 4.13 defines a generic mean-field variational distribution. Applying this

to an actual model requires the specification of a parametric form. For example, in LDA, we can define

Categorical variational parameters for the topic assignments since these are Categorical as well.

With the previous setup in place, the missing piece is how to actually perform the optimization task.

Again, different approaches to this problem exist (Hoffman et al., 2010; Ranganath et al., 2014; Srivastava

and Sutton, 2017; Zhu et al., 2018; Chien and Lee, 2018), but we will only give some intuition for the

coordinate ascent mean-field variational inference (CAVI) approach. CAVI is an iterative algorithm which

optimizes each variational parameter individually while holding the others fixed. This is done by taking the

gradient of the ELBO with respect to an individual variational parameter qj(zj), set it equal to zero, and

solve for the new value. An iteration of the algorithm corresponds to making a pass at all qj(zj) parameters

and update them. At the end of each iteration, the ELBO is computed to monitor convergence. This

procedure corresponds to going uphill on the ELBO until a local minimum is found.

4.2 Extending Single-Document Segmentation Models

In this section, we extend Bayesseg and PLDA (both described in Section 2.2.2) to multi-document

segmentation. The goal is to study how approaches only modeling multi-document segmentation perform.
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4.2.1 Bayesseg for Multi-Document Segmentation

We start by describing the original Bayesseg model, a probabilistic approach to single-document seg-

mentation, where the core idea is to assume that segments with the same topic are drawn from the same

Categorical language model1. The formalization of the generative process is as follows:

1. For each utterance u ∈ {1, ..., U} in d:

(a) If su 6= su−1 draw word distribution:

φsu ∼ Dirichlet(β).

(b) Draw words:

xu ∼ Categorical(φsu)

The previous process defines that all u utterances in a segment s have their bag-of-words representation

xu drawn from a Categorical language model φsu ; where su is the hidden segment assignment variable of u.

Language models are drawn from a Dirichlet prior parametrized by β. The model constrains segmentations

to yield linear segmentations. This induces higher likelihood segmentations to have language models con-

centrating probability mass on a small subset of the vocabulary. Conversely, low likelihood segmentations

spread the probability mass on a broader set of words. This modeling behavior is attuned with the lexical

cohesion theory.

Using a Dirichlet prior in the previous setup allows us to encode assumptions about how language

models should look like. We expect the segment language models to be sparse, meaning that only a small

subset of the words has a high probability. This goes hand in hand with the lexical cohesion assumption

where topic segments tend to heavily favor some part of the vocabulary. By appropriately setting the β

parameters, it is possible to achieve this behavior. Another reason for using a Dirichlet prior is the fact that

it is conjugate to the Categorical distribution (the result of multiplying both distributions is also Dirichlet

distributed). As we will see in the derivations below, this has mathematical convinces that cannot be achieved

with other similar distributions such as the Logit-normal distribution (Atchison and Shen, 1980).

After having fully specified the model, we define the joint likelihood is as follows2:

p(X|S,Φ, β) =

U∏
u=1

p(xu|φsu)p(Φ|β), (4.14)

1A summary of the mathematical notation can be found in Appendix A, Table A.1
2We adopt the notational convention where bold variables correspond to vectors.
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where X is the set of bag-of-words representations of all U utterances in a document, Φ is the set of hidden

language models, and S is a set of variables that relates xu to its corresponding segment, φsu . To avoid

searching the full space of language models, a marginalizing process is carried out by appealing to conju-

gacy between the Categorical language models and the Dirichlet prior. This allows the conjugate Dirichlet

distribution to integrate to one, leaving the marginalized joint likelihood expression with the normalizing

constants. Using the probability density function definition of a Dirichlet distribution,

Dirichlet(β) =
Γ(
∑W

i=1 βi)∏W
i=1 Γ(βi)

, (4.15)

the derivation for marginalizing language model φ from segment s is as follows:

p(X|s, β) =

∫
p(X|s, φ)p(φ|β)dφ

=

∫ W∏
w=1

φn
s
w
w

(Γ(Wβ)

Γ(β)W

) W∏
w=1

φβ−1
w dφ

=

∫ (Γ(Wβ)

Γ(β)W

) W∏
w=1

φn
s
w+β−1
w dφ

=
Γ(Wβ)

Γ(β)W

∏W
w=1 Γ(nsw + β)

Γ(
∑W

w=1 n
s
w +Wβ)

∫
Γ(
∑W

w=1 n
s
w +Wβ)∏W

w=1 Γ(nsw + β)

W∏
w=1

φn
s
w+β−1
w dφ

=
Γ(Wβ)

Γ(β)W

∏W
w=1 Γ(nsw + β)

Γ(
∑W

w=1 n
s
w +Wβ)

, (4.16)

whereW is the size of the vocabulary, nsw is the count of wordw in s, and Γ corresponds to the Gamma func-

tion. Although Equation B.6 only accounts for a single segment, it can be easily extended to provide the joint

likelihood of the full document segmentation by applying it to each segment and multiplying the individual

results. During inference Bayesseg finds the segmentation S that maximizes the likelihood of the joint dis-

tribution of the model. Therefore, inference amounts to finding the segmentation Ŝ = argmaxS p(X|S, β),

a MAP approach under a uniform prior.

In the previous setup, the language models are marginalized out and since only one document is given

as input an exhaustive exploration of the segmentation state space is possible. This is done using a matrix

(Figure 4.1) where each (ui, uj) entry corresponds to the likelihood of a segment that begins on the ui

utterance and ends at uj . For example, entry (u2, u4) contains the likelihood value obtained by using

Equation B.6 considering just u2, u3, and u4. The values in the matrix correspond to the joint likelihood

of a single segment hypothesis. To find the best overall segmentation, a dynamic programming approach is

used. The algorithm works by finding the best segmentations up to an utterance ui. In each iteration, the next
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u1 u2 u3 u4 . . . un
u1

u2

u3

u4
...
un

Fig. 4.1: Segment likelihood matrix.

utterance is added and the best segmentation is found for the augmented set of utterances. The algorithm

keeps track of the best segmentations at each iteration since they are needed in subsequent iterations. This

is the dynamic programing aspect of the procedure. The first iteration of the algorithm computes the value

for the (u1, u1) entry, which corresponds to the likelihood of having a segment with just utterance u1.

Obtaining this value is trivial since only one segmentation is possible. The next iteration computes the best

segmentation up to utterance u2 using the second line of the matrix. Since there are two entries on this

line, two segmentations are possible: one with a segment containing u1 and u2 (segment s1−2), and another

with a segment containing u2 (segment s2−2) plus the best previous segmentation. The likelihood of the

first segmentation corresponds to the value on the (u2, u1) entry. The likelihood value for the latter case

corresponds to the sum of the (u1, u1) and (u2, u1) entries. The algorithm terminates when the last entry

of the matrix is reached, meaning that the best segmentation for the full document was found. The final

segmentation is decoded by backtracking the highest likelihood points.

Having described the original Bayesseg, we now detail our extended approach to include information

from other documents based on a lexical similarity approach, the Bayesseg-MD algorithm. One of the

difficulties in Bayesseg is that it computes likelihoods for language models using few data since segments

generally do not contain many sentences. To address this problem, we add the counts from similar utterances

from other documents in the collection. The underlying assumption is that similar sentences are likely

to come from the same language model, and, thus, using them can help obtain better segment likelihood

estimates. The most similar utterances are chosen according to the following recursive function:

Usm(si,j) =


Nmax
u′∈D

cos(usi , u
′) , if i = j

Nmax
u′∈D

cos(usi , u
′) ∪ Usm(si+1,j) , if i < j

(4.17)

where si,j is a segment spanning from the ith to the jth utterances in a target document (with i ≤ j,∀i,j),

usi is the ith utterance from segment si,j , u′ is an utterance from the set of documents in dataset D, and
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Nmax is an operator that returns the top N arguments that maximize some function, in our case the cosine

similarity function between two utterances. Using this function we rewrite Equation B.6 as follows:

p(X|sij , β) =
Γ(Wβ)

Γ(β)W

∏W
w=1 Γ(nsw + n

Usm(si,j)
w + β)

Γ(
W∑
w=1

nsw + n
Usm(si,j)
w +Wβ)

, (4.18)

where i and j are the first and last sentences in segment si,j , and nUsm(si,j)
w are the counts of word w in

the set of utterances given by Usm(si,j). It should be noted that not all words from Usm(si,j) are added

to the segment word counts, only the top-40% highest tf-idf values. The goal is to use only words that

are relevant for all documents in D. This avoids introducing noise from words that are too document or

modality specific.

4.2.2 PLDA for Multi-Document Segmentation

Similarly to before, we now describe how we have extended PLDA (Purver et al., 2006), to a multi-

document segmentation model, which we refer as PLDA-MD3.

In the original PLDA, each utterance u in the document is associated with a binary switching variable

cu. Segmentation is defined by the sequence of all c variables. For example, if c = (0, 0, 0, 1, 0, 1, 0),

three different segments exist, with the utterances aggregated in the following way: {1, 2, 3}, {4, 5}, {6, 7}.

The probability of starting a new segment is defined as π, p(cu = 1) = π. Associated to utterance u is a

topic proportions variable θu. Utterances belonging to the same segment have the same topic proportions.

Therefore, if cu = 0, then θu = θu−1. When a new segment starts, cu = 1, new topic proportions θu are

drawn from a Dirichlet prior.

In our PLDA-MD extension, we need to consider that the variables need to take into account a collection

of documents, D, rather than a single document. In this context, we now have cd,u topic shift variables

for each u utterance in each document d ∈ D. The probability of starting a new topic is now also per

document, πd. This makes a modeling assumption that different documents can have different expected

segment lengths, which is a reasonable assumption given that documents can have different modalities. For

example, textbooks are much more verbose than presentation slides, and, thus, their segments should be

lengthier as well. Each segment in each document has its own θd,u segment topics proportions variable.

The last modification is to assume, now, that for each k in a set of topics K, the corresponding φk language

3A summary of the used mathematical notation can be found in Appendix A, Table A.2.
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models are shared among all documents. Given the previous setup, an utterance u is generated by sampling

a topic assignment zwu,i for each word wu,i in u, according to topic proportions θd,u. Depending on the

drawn topic, wu,i is sampled from the corresponding topic φzwu,i . The πd and φk variables are generated

from Beta and Dirichlet priors, with γ and β parameters, respectively. Having defined all variables of the

model, we obtain the corresponding joint distribution and dependency structure depicted in Figure 4.1. The

summary of the generative model of PLDA-MD is:

1. For each topic k ∈ {1, ...,K}, draw word distribution φk ∼ Dirichlet(β).

2. For each document d ∈ {1, ..., D},

(a) Draw topic segment probability πd ∼ Beta(γ).

(b) For each utterance u ∈ {1, ..., U} in d:

i. Draw segment indicator:

cd,u ∼ Bernoulli(πd)

ii. Draw topic proportions:

θd,u ∼ Dirichlet(α), if cd,u = 1, otherwise θd,u = θd,u−1.

(c) For each word wu,i ∈ {1, ...,Wu} in u,

i. Draw topic:

zwu,i ∼ Categorical(θd,u)

ii. Draw word:

wu,i ∼ Categorical(φzwu,i )

In Figure 4.1, it is possible to observe that the D plate encodes that the same language models generate

the segments from all documents in the dataset, meaning that they are shared across segments in different

documents. It also makes explicit that each document has an individual expected segment length. These are

the two multi-document aspects of PLDA-MD.
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Figure 4.1: Plate diagram for the PLDA-MD model.

4.2.2.1 Inference

Given the PLDA-MD model specification, inference is carried out by evaluating the posterior distribu-

tion to find the parameter configuration that best explains the observed data w. Our approach to inference

resorts to Gibbs sampling. The complete derivations for the Gibbs sampler can be found in Appendix B, as

we only present a summary of the approach in this section.

We start by simplifying the posterior distribution by integrating out some of the parameters, namely

π, θ, and φ. The remaining variables are the topic assignments z and the topic shift variables c. By applying

Bayes rule we obtain the following expression for the posterior:

p(z, c|w) =
p(w|z)p(z|c)p(c)∑
z,c p(w|z)p(z|c)p(c)

(4.19)

Integrating out π gives p(c) the following expression:

p(c) =

∫
p(c|π)p(π|γ)dπ (4.20)

=

(
Γ(2γ)

Γ(γ)2

)D D∏
d=1

Γ(nd1 + γ)Γ(nd0 + γ)

Γ(Nd + 2γ)
,
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where ndx is number of cd,u = x variables in d, and Nd is the number of segments in d. Similarly, we derive

the expression for p(w|z):

p(w|z) =

∫
p(w|z, φ)p(φ|β)dφ (4.21)

=

(
Γ(Wβ)

Γ(β)W

)K K∏
k=1

∏W
w=1 Γ(nkD,w + β)

Γ(nkD +Wβ)
,

where nkD,w is the number of times word w was assigned topic k in the document collection D, and nkD is

the frequency of topic k in D. Finally, evaluating p(z|c) results in:

p(z|c) =

∫
p(z|θ)p(θ|c, α)dθ (4.22)

=

(
Γ(Kα)

Γ(α)K

)nD1 D∏
d=1

∏
u∈Ud,1

∏K
k=1 Γ(nkd,Su + α)

Γ(n·d,Su +Kα)
,

where nD1 is the total number of segments in D, u ∈ Ud,1 is the set of utterances such that cd,u = 1, nkd,Su is

the frequency of topic k in the segment Su of document d, and n·d,Su is the total number of words in Su.

By combining Equations 4.20, 4.21, and 4.22, we obtain the joint distribution expression of the model,

which corresponds to the numerator of Equation 4.19. The problem is the intractable sum in the denominator

of the equation. To address this problem we resort to Gibbs sampling. To build the Gibbs sampler we need

to derive sampling equations for the z and c latent variables. This is done by sampling a single variable

given all the remaining ones. We start by defining how to sample a topic assignment variable zd,wu,i given

all other z¬(d,wu,i), and c variables:

p(zd,wu,i = k|z¬(d,wu,i), c,w) =
nkD,wu,i + β

nkD +Wβ

nkd,Su + α

n·d,Su +Kα
, (4.23)

where all counts in the n terms exclude zd,wu,i . To derive Equation 4.23 we take advantage of the fact

that p(c) remains the same when excluding zd,wu,i , thus, it cancels out, leaving only two factors from

Equations 4.21 and 4.22. The final Equation 4.23 has two factors that determine the sampling probability

of a topic assignment. The first factor expresses that a word wu,i is more likely to be assigned topic t if we

observe similar assignments in D. The second factor pushes the topic assignments towards topics that are

more frequently seen in the segment where wu,i belongs to.

The cd,u variables determine if a new segment is going to start. When sampling cd,u given c¬(d,u), z,

and w, we need to consider the merging and splitting of segments separately. The expression we obtain is
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in Equation 4.24, where Sxu is the resulting segmentation when considering cd,u = x, and all counts exclude

cd,u. To derive this expression it is crucial to note that cd,u only affects the Su segment, and, thus, everything

else cancels out. In the split case, a new segment is introduced, hence the S1
u−1 factor in the expression.

From Equation 4.24 we can see that sampling cd,u in the context of a document collection D only depends

on segment boundaries counts and word topic assignments in d. Therefore, the multi-document aspect of

PLDA-MD only affects the sampling of z. Also, when sampling cd,u two factors come into play. The first

one indicates how likely cd,u = x is, considering only the distribution of the other c labels in d. This means

that the more non-boundary utterances we have, the more this factor tends to push cd,u to 0. The second

factor works as a measure of how much the segmentation Sxu “likes” cd,u. A merge is more likely to occur

(cd,u = 0) if the words of the resulting segment better fit the underlying topic distributions of the segments.

This is analogous for the split case.

p(cd,u = x|c¬(d,u), z,w) =


nd0+γ

Nd+2γ−1

∏K
k=1 Γ(nk

d,S0u
+α)

Γ(n·
d,S0u

+Kα)
, x = 0

nd1+γ
Nd+2γ−1

Γ(Kα)
Γ(α)K

∏K
k=1 Γ(nk

d,S1u−1

+α)

Γ(n·
d,S1u−1

+Kα)

∏K
t=1 Γ(nk

d,S1u
+α)

Γ(n·
d,S1u

+Kα)
, x = 1

(4.24)

Given the derived sampling equation, the Gibbs sampler procedure for PLDA-MD consists of going

through all cd,u and zd,wu,i variables and sample new values according to Equations 4.23 and 4.24. A full

pass on the variables corresponds to one iteration of Gibbs sampler, where a new state (sample) of the chain

is obtained. We run the Gibbs sampler for N iteration and average all the collected samples to obtain the

final values for the latent variables c and z.

4.2.2.2 A Cache Scheme for Gibbs Sampling

Gibbs sampling is known for being computationally expensive. This is related to the number of itera-

tions it requires to converge. Also, the cost of each iteration grows with the number of variables we need

to sample. This might be not so relevant in single-document segmentation, but it is for multi-document

segmentation. The more documents we have in the collection, the bigger are the z and c sets. This problem

is further aggravated when the Gibbs sampling equations are complex and expensive to compute as well,

which is the case of Equations 4.23 and 4.24. In the literature, it is possible to find different strategies to

speed up the Gibbs sampling process. One strategy is to use a fixed order of sampling variables to encourage

a faster convergence of the Gibbs sampler, as opposed to the standard random order (Chen and H. Ip, 2014;

He et al., 2016). Another strategy is to keep track of all already computed sampling probabilities in a cache
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structure to avoid complex computations (Bidyuk and Dechter, 2006; Terenin et al., 2015). In this context,

we propose a novel caching scheme that combines both ideas. We use a fixed order for sampling the z and

c variables that stimulates hits in a small-sized cache. This allows us to overcome the limitations of the

previous work, where the overhead of querying and updating the cache is considerable.

From the definition of Equation 4.22 it is possible to see that we only require the topic counts of word

wu,i in D and in Su. Therefore, when sampling wu,i under the following conditions:

• wu,i = wu,i−1.

• zwu,i = zwu,i−1 .

• zwu,i−1 did not change topic when sampled.

• wu,i and wu,i−1 belong to the same segment.

we can use the same topic probabilities of wu,i−1. This observation makes the Gibbs sampler lend itself to a

caching scheme where the topic probabilities used to sample zwu,i are memorized. To maximize the number

of times these conditions are met, we sample z by word type and order of occurrence in the document

collection. By sampling words according to this order, we are increasing the chances of consecutively

sampling two words with the same topic, because words from the vocabulary should tend to have the same

topic in the same segment. Consequently, we have a higher chance of having a cache hit.

A similar caching approach can also be applied when sampling c. The sampling of c = 0 in Equa-

tion 4.24 states that we only need to know the topic counts of the corresponding segment and the number of

non-boundary utterances in the document. Thus, this sampling probability is the same for two consecutive

utterances in the same segment. In this context, we can cache this sampling probability and chose a sampling

order of c according to the utterance sequence in the document. The end result is a sampling scheme that

stimulates cache hits since it is likely that a segment is composed of several utterances.

For the previous cache scheme to be effective, it is necessary to impose a fixed order to sample the

variables. In the literature, this is defined as a systematic scan order of variables, as opposed to a random

scan order. One concern when using this type of strategy is if the Gibbs sampler converges slower when

compared with a random scan order. It is still a conjecture whether there is a bound on the convergence time

between these two scan orders for a given model (He et al., 2016). Therefore, it is not possible to guarantee

that we can interchangeably use them without sacrificing performance. In Section 5.2, we will delve into

this issue by empirically analyzing both scan orders under the PLDA-MD model.
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4.3 Graph-Community Detection for Topic Identification

The graph-community detection framework allows to find organizational principals in graphs, affording

a better understanding of how objects in a graph interact and relate to each other (Backstrom et al., 2006;

Yang et al., 2013). This is achieved by grouping nodes in communities. There are various application where

determining the community structure of a graph is desirable, for example, in social networks, communities

correspond to groups of friends who attended the same school (Leskovec and Mcauley, 2012); in protein

interaction networks, communities are functional modules of interacting proteins (Ahn et al., 2010); in

co-authorship graphs, communities correspond to scientific disciplines (Girvan and Newman, 2002). In

graph-community detection, there are two types of features can be used. One corresponds to the known

attributes of a node. For example, we can use the users’ social network profile to characterize his node. The

second type of feature comes from the set of connections between the nodes of the graph. For example, we

can connect users if they are friends in a social network. This is what allows graph-community detection

algorithms to find communities based on the network structure, which contrasts with clustering approaches

where important relationships are not considered since only the node attributes are modeled.

In the graph-community detection framework, it is possible to explore different properties of the graph

to find relevant communities. Below, we summarize the approach of the different algorithms that will be

used in the experiments:

Label Propagation (LP) (Raghavan et al., 2007): starts with each node assigned to a different commu-

nity (label). At each iteration, nodes are assigned with the most frequent label among its neighbors. Ties are

broken uniformly and randomly. The algorithm terminates when there are no changes in the labels.

Bigclam (Yang and Leskovec, 2013): optimizes the likelihood community membership metric.

Clauset-Newman-Moore (CNM) (Clauset et al., 2004a): based on the modularity criterion. High

modularity nodes have dense intra-community connections and sparse inter-community connections. The

algorithm evaluates the modularity when removing a node from its community and placing it in its neighbors.

If the modularity increases, the node is reassigned. The process stops if there are no reassignments.

Louvain (Blondel et al., 2008): similar to the previous algorithm, with the difference that, at the end of

each iteration, builds a new graph by merging all nodes in the same community.

Leading Eigenvector (Newman, 2006): the algorithm starts by having all nodes belonging to the same

community. In each iteration, the graph is split into the two communities that increase the modularity the

most. The split is determined by evaluating the leading eigenvector of the modularity matrix.
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Fast Greedy (Clauset et al., 2004b): the algorithm starts with each node assigned to a different com-

munity. The algorithm works by merging nodes in single element communities with other communities if

the modularity of the graph increases.

Walktraps (Pons, 2006): the algorithm is based on random walks. A random walk means that we

start at a node, we pick a neighbor at random and move to it, then repeat the procedure. By repeating this

procedure, it is possible to compute statistics about the visited nodes. The statistics are summarized in a

transition matrix, which expresses the probability of going from one node to another through a random walk

of length t. Using the distance metric, graph-community detection is then approached as a clustering task.

An effective graph-community detection method to find a structured organization of documents is de-

scribed in Shahaf et al. (2012). We now propose a similar approach to the task of topic identification across

segments from different documents. This allows to study how a pipeline strategy compares to jointly mod-

eling segmentation and topic identification. The graph-community detection problem in the context of topic

identification is formalized as follows:

Input: a weighted co-occurrence graph Gco = (W,E), where W is the set of nodes and E the set of edges.

W corresponds to the set of words from a given set S of document segments. An edge (wi, wj) exists

if words wi and wj occur in some segment Si ∈ S.

Output: a mapping from each word wi ∈W to a particular community c ∈ 1, ..., C.

Appropriately setting the weights w(i, j) of the edge is a topic of research in the proposed topic identi-

fication framework. Depending on how these weights are set, different word communities can be obtained.

Therefore, it is necessary to develop an appropriate weighting scheme for the cross-document topic relation-

ship identification task. We hypothesize that having all word co-occurrence contribute in the same way to a

weighted score might not be suitable. Therefore, we propose the following tf-idf -based weighting schemes:

• Count: the number of times the words co-occurred in different segments (equivalent to Shahaf et al.

(2012)).

• Best tf-idf : the sum of the highest tf-idf values of the words.

• Count + Best tf-idf : the sum of the previous weights.

• Count + Avg tf-idf : the sum of the count weight and the sum of the average tf-idf values of the words.
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After obtaining the word-communities, we need to map them to segments. Segments that get mapped to

the same word community are considered to have the same topic. This is done based on a scoring function

between a segment and a community. More formally:

argmax
c∈C

score(seg, c), (4.25)

where C is the set of communities in Gco, and seg is the set of words in a segment. Different formulations

of the score function can be designed. We considered the following scoring functions:

scorec(seg, c) =
|seg ∩ c|
|c|

, (4.26)

scoreseg(seg, c) =
|seg ∩ c|
|seg|

, (4.27)

scoretfif (seg, c) =

|seg∩c|∑
wi

tfidf(wi)

seg∑
wi

tfidf(wi)

(4.28)

The first two functions count the common words between the segment and the community. The score

is normalized either by the total number of words in c or seg. The previous functions treat all words in the

same way. Therefore, we also define a function that makes words contribute according to their relevance,

scoretfidf . The difference is that common words have a score corresponding to their normalized tf-idf value.

Our proposed approach is generic since it is not tied to any particular community detection algorithm.

Therefore, we survey multiple algorithms to find the most suitable one for the topic identification task.

4.4 BeamSeg Segmentation

In the following sections, we describe our main proposed model, BeamSeg, a Bayesian unsupervised

generative model to address the tasks of breaking documents into incoherent segments and identifying sim-

ilar topics. The previous model extensions only deal with multi-document segmentation. We now assume

that both tasks are related, and, thus, there are advantages in modeling both problems jointly. Moreover, the

model leverages segmentation and topic identification by assuming that segment vocabulary usage relation-

ships exist and that segment length properties should modeled at the document modality level4.

4A summary of the notation description used in the mathematical expressions can be found in Appendix A, Table A.3
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4.4.1 Bayesian Model for Multi-Document Segmentation

In BeamSeg, all u utterances with a topic k have their bag-of-words representation xu drawn from lan-

guage model φzu ; where zu is the hidden topic assignment of u. This is in the same spirit as topic modeling

approaches such as LDA (Blei et al., 2003), but here the inherent topics are constrained to yield linear seg-

mentations by having topics occurring at most once per document. This constraint induces higher likelihood

segmentations to have language models concentrating probability mass on a small subset of the vocabulary.

Conversely, low likelihood segmentations spread the probability mass on a broader set of words. This mod-

eling behavior is akin to the lexical cohesion theory. Multi-document segmentation emerges by assuming

that topics can be shared across documents. The advantage of this perspective is that we can use segment

length properties of similar documents (Section 4.4.2) and better estimate language models with samples

from all documents (Section 4.4.3). To model interactions between lexical distributions, we use a dynamic

prior which assumes that the mean word probabilities change smoothly across topics (Section 4.4.4).

During inference, we want to find the hidden language models Φ and the topic assignments z that

maximize the likelihood of the joint distribution of the model. Since we only care about segmentation, this

process can be simplified by marginalizing out Φ (Section 4.4.3). This enables search to be carried out only

in the segmentation space. The linear segmentation constraint has been used to make inference tractable by

exhaustively exploring the segmentation space to obtain the exact MAP estimation (Eisenstein and Barzilay,

2008). Therefore, inference amounts to finding the segmentation ẑ = argmaxz p(X|z)p(z). We also follow

this MAP estimation approach to inference, but given a multi-document setting, this approach is not feasible,

as the segments can share topics. We address this by using a beam search algorithm during inference, which

allows the segmentation procedure to recover from early mistakes (Section 4.4.5).

4.4.2 Segment Length Prior

The ẑ = argmaxz p(X|z)p(z) expression we want to maximize to obtain the most likely segmentation

puts a prior, p(z), on the segment length of the target documents. Given the approach of searching the

segmentation space only during inference, we can plug in different segment length priors to see how they

behave during the segmentation task. One of such distribution is the Beta-Bernoulli, which has been used

before in the PLDA model (Purver et al., 2006) and also in our PLDA-MD extension (Section 4.2.2):

p(z) =

(
Γ(2γ)

Γ(γ)2

)D D∏
d=1

Γ(nd1 + γ)Γ(nd0 + γ)

Γ(Ud + 2γ)
, (4.29)
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We also propose a Gamma-Poisson distributed segment length prior. In this setup, we assume that the

document topic shift probabilities π are drawn from a Gamma prior parameterized by α and β:

p(π|α, β) =
D∏
d=1

βα

Γ(α)
πα−1
d e−βπd

=

(
βα

Γ(α)

)D D∏
d=1

πα−1
d e−βπd (4.30)

p(z|π) is the probability of the utterances being a segment boundary given the topic shift probabilities.

These are Poisson distributed and defined as follows:

p(z|π) =

D∏
d=1

πn
d
1e−Udπ (4.31)

Putting the two equations together yields:

p(z|π)p(π|α, β) =

(
βα

Γ(α)

)D D∏
d=1

πn
d
1e−Udππα−1

d e−βπd

=

(
βα

Γ(α)

)D D∏
d=1

πn
d
1+α−1e−(Ud+β)πdπ (4.32)

Noting that Equation 4.32 is also a Gamma distribution, we can see that the Gamma and Poisson

distributions are conjugate. Therefore, can we use a marginalization process where the parameters are

integrated out as follows:

p(z) =

∫
p(z|π)p(π|α, β)dπ

=

(
βα

Γ(α)

)D D∏
d=1

∫
πn

d
1+α−1e−(Ud+β)πdπd

=

(
βα

Γ(α)

)D D∏
d=1

Γ(nd1 + α)

(Ud + β)n
d
1+α

∫
(Ud + β)n

d
1+α

Γ(nd1 + α)
πn

d
1+α−1e−(Ud+β)πdπd

=

(
βα

Γ(α)

)D D∏
d=1

Γ(nd1 + α)

(Ud + β)n
d
1+α

(4.33)

Applying the priors based on the document modality can be done if we the modality is known a priori,

which is the approach we take. It is only necessary to have individual hyperparameters for each modality

and apply them according to the document for which we are computing the segmentation likelihood.
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4.4.3 Language Models

Using the previous setup, we define the joint likelihood as follows:

p(X|z,Φ) =

U∏
u

p(xu|φzu)

K∏
k

p(φk|β)

=
K∏
k

p(φk|β)
∏

{u:zu=k}

p(xu|φk)

=
(Γ(Wβ)

Γ(β)W

)K K∏
k=1

W∏
w=1

φβ−1
k,w φ

nkU,w
k,w

=
(Γ(Wβ)

Γ(β)W

)K K∏
k=1

W∏
w=1

φ
nkU,w+β−1

k,w , (4.34)

where X is the set of all U utterances in the document collection; K is the number of topics; and β are the

Dirichlet prior parameters from which Φ is drawn.

Since we only care about segmentation and topic identification, inference can be simplified by analyt-

ically marginalizing out the hidden language models Φ. This enables search to be carried out only in the

segmentation space. The marginalization process is performed by appealing to the conjugacy between Cate-

gorical language models and the Dirichlet prior. This allows the conjugate Dirichlet distribution to integrate

to one, leaving the marginalized joint likelihood expression with the normalizing constants:

p(X|z) =

∫
p(X|z,Φ)p(Φ|β)dΦ

=

∫ (Γ(Wβ)

Γ(β)W

)K K∏
k=1

W∏
w=1

φ
nkU,w+β−1

k,w dφk

=
(Γ(Wβ)

Γ(β)W

)K K∏
k=1

∏W
w=1 Γ(nkU,w + β)

Γ(nkU +Wβ)

∫
Γ(nkU +Wβ)∏W
w=1 Γ(nkU,w + β)

W∏
w=1

φ
nkU,w+β−1

k,w dφk

=
(Γ(Wβ)

Γ(β)W

)K K∏
k=1

∏W
w=1 Γ(nkU,w + β)

Γ(nkU +Wβ)
, (4.35)

where W is the vocabulary set; nkU,w is number of times word w is assigned topic k in all U utterances

of the document collection; nkU is number of times topic k appears in U ; and the symbol Γ refers to the

Gamma function. The resulting expression in Equation 4.35 corresponds to the product of the individual

topic likelihoods, comprised of segments from different documents.
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4.4.4 Dynamic Language Model Prior

The previously described prior assumes that language model draws are exchangeable. Therefore, they

are independent of each other and cannot encode dynamic relationship between them. In a segmentation

scenario where documents follow an overarching subject, this may not be a reasonable assumption. We

hypothesize that, in these cases, language models change smoothly across topics by establishing a dynamic

between the previous and the current prior parameters. This modeling of topics as a time series can be

found in other works (Blei and Lafferty, 2006a,b; He et al., 2017; Huang, 2018; Jahnichen et al., 2018).

In BeamSeg, we adopt a perspective similar to topic tracking (Watanabe et al., 2011) to model such topic

interactions. Similarly to topic tracking, we factor the β prior parameters in αkφ̂k′ , a precision and mean

word probabilities parameters. Assuming some fixedtopic order, k indexes the parameters of a topic, and k′

the parameters of the previous one. The αk precision represents the persistence of word usage throughout

topics. The φ̂k parameters model the language model dynamics by assuming that the mean word probabil-

ities at k are the same as those at k′. Our approach entails that a single chain of language models is used,

affording multi-document segmentation. This contrasts with the multiple chains in the original topic track-

ing model. Another difference is that topic tracking assumes a given segmentation based on a fixed-length

window. This is because the goal of the model is to find good language models and not segment documents.

To compute the likelihood of the joint under this prior it is necessary to determine the parameters for all

k ∈ K. This is a two-fold process, where we first update the αk precision parameter using the expression

derived from Minka (2000):

αk = αk

W∑
w=1

φ̂k′w(Ψ(nkU,w + αkφ̂k′w)−Ψ(αkφ̂k′w))

Ψ(nkU + αk)−Ψ(αk)
, (4.36)

where Ψ is the digamma function. Then, we update the mean word probability parameters:

φ̂kw =
nkU,w + αkφ̂k′w

nkU + αk
(4.37)

The update equations are sequentially applied according to the considered topic ordering. By following

this process we can deal with long-range dependencies by taking into account the data contribution at each

k. Finally, we plug-in the obtained prior parameters in the join likelihood formula in Equation 4.35:

p(X|z) =

K∏
k=1

Γ(
∑W

w=1 αkφ̂kw)∏W
w=1 Γ(αkφ̂kw)

K∏
k=1

∏W
w=1 Γ(nkU,w + αkφ̂kw)

Γ(nkU +
∑W

w=1 αkφ̂kw)
, (4.38)
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The presented language model prior assumes that a single topic ordering exists. Consequently, ideally

all document would have the same topic ordering, but in practice they do not. However, we still expect that

a significant fraction of the topic order is shared in different documents. Whether this simplification still

allows to improve segmentation and topic identification is a subject we study in the experiments.

4.4.5 Inference

Having specified the model, we now turn to the inference problem. We study two different approaches to

inference: MAP and VI. Another alternative for inference would be Gibbs sampling. However, the difficulty

in applying it to our model is in its slow convergence to the stationary distribution, due to the tight coupling

of the hidden variables induced by the linear segmentation constraint in a multi-document scenario. In the

next sections, we demonstrate that the MAP approach affords an approximation that can be implemented in

practice and that VI is not suitable for a multi-document segmentation and topic identification scenario.

4.4.5.1 Maximum a Posteriori and Beam Search

During inference, we want to find the hidden set of language models Φ and the topic vector assignment

z that maximize the likelihood of the joint distribution of the model. Since the language models were

marginalized out, inference amounts to finding the segmentation ẑ = argmaxz p(X|z)p(z). Using the

marginalized joint likelihood, an approximation of ẑ can be obtained using a beam search algorithm.

Following the approach in BayeSeg (Eisenstein and Barzilay, 2008), inference is carried out as an

optimization problem, where the target segmentation maximizes the objective function defined by the joint

likelihood in Equation 4.35. Contrary to the single-document BayeSeg model, we assume that language

models aggregate segments from different documents, making an exhaustive exploration of the segmentation

space intractable. We address this problem by combining beam search and a greedy segmentation procedure.

We define z∗j as the segmentation that maximizes the objective function up to utterance j. Considering the

topic assignment zj = k and the previous segmentation zj−1, the value for the objective function is written,

s(k, j, zj−1) = p({x0...xj}|zj−1, zj = k) (4.39)

Using a recursive definition, we obtain the optimal segmentation using:

z∗j = argmax
k∈K

s(k, j, z∗j−1) (4.40)
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This is a greedy sampling approach since it makes incremental decisions when finding the highest

likelihood segmentation. This is error-prone since we might need to take into account subsequent utterances

to discover higher likelihood configurations. Moreover, once a mistake is made there is no way to recover. To

address this problem, we add beam search to the algorithm by keeping track of all topic assignments, instead

of just the highest likelihood one. At the end of each recursive step, we prune the top-b segmentations. To

run the greedy sampler, we iteratively slide a window of length l in each document, following the utterance

order of the documents. By using this process, we are able to take into account utterances from the whole

collection before reaching the end of a document, which enables multi-document topic segments to emerge.

4.4.5.2 Variational Inference and Beam Search

In this section, we propose an alternative inference method. The goal is to approximate the posterior

distribution of the model instead of finding the parameters that maximize the joint. The advantage is that we

can use as much information as possible from observed data to better estimate parameters. To this end, we

use Variational Inference (VI) with a mean-field approach. The setup uses the same marginalization process

of the latent variables as before, and, thus, we use collapsed VI (Teh et al., 2007), which leverage insights

from collapsed Gibbs sampling. For example, in LDA, working in a collapsed space affords better mixing

times when compared to a Gibbs sampler that samples all latent variables. This suggests that there is a

coupling between the variables and the parameters. By marginalizing out the parameters, new dependencies

between latent variables are introduced, but these are spread out over many latent variables. The implication

is that the dependency between any two latent variables is expected to be small. This is a scenario suitable

for mean-field VI: a particular variable interacts with the remaining variables only through the chosen family

of variational distributions, making the impact of any single variable very small (Teh et al., 2007).

The attractive theoretical advantages and the fact that this VI setup has been successfully used for

segmentation (Eisenstein, 2009) motivated us to pursue a similar approach in BeamSeg. As we will detail

later, it turns out that this VI setup is not suitable for our model. Nonetheless, we provide the derivations

that led to this conclusion. One note before moving on the derivations: to simplify the notation we will use

the β prior, but the dynamic prior described in Section 4.4.4 can be added by substituting β with αkφ̂k′w.

We now describe the mean-field VI setup for the latent variables z, the only ones remaining after

marginalization. First, we define the variational distribution family q(z) ∈ Q:

q(z) =

D∏
d=1

d∏
i=1

q(zd,i|γd,i), (4.41)
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where the topic assignment q(zd,i|γd,i) has Categorical parameters γd,i with dimensionK. It should be noted

that we are placing variational parameters on each word i in document d, whereas before we were directly

plugging in the word counts from a full utterance. This a consequence of estimating the full posterior, where

we want to know what is the probability of the words belonging to each of the topics. The variational

distribution q(z) is fully factorized, and, thus, all variational parameters are assumed to be independent of

each other. For optimizing the ELBO we use the CAVI approach, previously introduced in Section 4.1.3.

The goal of this approach is to obtain the variational parameters update equations and iteratively apply them

until convergence. The first step consists in rewriting the ELBO using iterated expectation and absorbing

into a constant the terms that do not depend on the variational factor qd,i(zd,i):

ELBO(qd,i(zd,i)) = Ed,i[E¬d,i[log p(zd,i, z¬d,i,x)]]− Ed,i[log qd,i(zd,i)] + const. (4.42)

Then, we take the gradient with respect to individual variational parameters γkd,i, which results in:

γkd,i = qd,i(zd,i = k) =
exp(Eq(z¬d,i)[log p(zd,i = k|x, z¬d,i, β)])∑K
k′ exp(Eq(z¬d,i)[log p(zd,i = k′|x, z¬d,i, β)])

(4.43)

We now work on the log p(zd,i = k|x, z¬d,i, β) expression from Equation 4.43. The expression is

simplified because the numerator and the denominator only differ on the zd,i variable, which is similar to

the approach in the derivations for the Gibbs sampler in PLDA-MD. The derivation starts by using the

conditional probability rule, revealing the expression for the joint probability distribution of the model. The

complete derivations for the joint have been presented before (Section 4.4.3), and, thus, we gloss over its

details now. The rest of the derivation is presented below:

log(p(zd,i = k|z¬d,i,x, β)) = log
(p(zkd,i, z¬d,i,x, β)

p(z¬d,i,x, β)

)

= log

( ∏K
k′ C

∏W
w=1 Γ(n

Dk
w +β)

Γ(
∑W
w=1 n

Dk
w +β)∏K

k′ C
∏W
w=1 Γ(n

Dk,¬d,i
w +β)

Γ(
∑W
w=1 n

Dk,¬d,i
w +β)

)

= log

( ∏W
w=1 Γ(n

Dk
w +β)

Γ(
∑W
w=1 n

Dk+β
w )∏W

w=1 Γ(n
Dk,¬d,i
w +β)

Γ(
∑W
w=1 n

Dk,¬d,i
w +β)

)

= log

( ∏W
w=1 Γ(nDkw + β)∏W

w=1 Γ(n
Dk,¬d,i
w + β)

Γ(
∑W

w=1 n
Dk,¬d,i
w + β)

Γ(
∑W

w=1 n
Dk
w + β)

)
, (4.44)
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where nDkw is the number of k topic assignments to word w in datasetD, and nDk,¬d,iw is similar but excludes

the ith word of d from the counts. We simplify the first factor in Equation 4.44 using Γ(n) = (n−1)Γ(n−1):

∏W
w=1 Γ(nDkw + β)∏W

w=1 Γ(n
Dk,¬d,i
w + β)

=
Γ(nDkwd,i + β)

Γ(n
Dk,¬d,i
wd,i + β)

=
Γ(nDkwd,i + β)

Γ(nDkwd,i + β − 1)

=
Γ(nDkwd,i + β − 1)(nDkwd,i + β − 1)

Γ(nDkwd,i + β − 1)

= nDkwd,i + β − 1 (4.45)

A similar process is carried out for the second factor of Equation 4.44:

Γ(
∑W

w=1 n
Dk,¬d,i
w + β)

Γ(
∑W

w=1 n
Dk
w + β)

=
Γ((
∑W

w=1 n
Dk
w + β)− 1)

Γ((
∑W

w=1 n
Dk
w + β)− 1)((

∑W
w=1 n

Dk
w + β)− 1)

=
1

(
∑W

w=1 n
Dk
w + β)− 1

=
1

nDk· +Wβ − 1
, (4.46)

where nDk· is total number of times topic k appears in D. Plugging in the factors back yields:

log(p(zd,i = k|z¬d,i,x, β)) = log

(
nDkwd,i + β − 1

nDk· +Wβ − 1

)
= log(nDkwd,i + β − 1)− log(nDk· +Wβ − 1) (4.47)

The final expression for the variational parameters update is then,

γkd,i =
exp(Eq(z¬d,i))[log(nDkwd,i + β − 1)− log(nDk· +Wβ − 1)]

exp(
∑K

k′=1 Eq(z¬d,i))[log(n
Dk′
wd,i + β − 1)− log(n

Dk′· +Wβ − 1]
(4.48)

Computing the exact expectations in Equation 4.48 is computationally expensive. In the collapsed VI

framework this problem is addressed using a Gaussian approximation, which has a much lower computa-

tional cost. Assuming that nDwd,i � 0, and noting that nDk,¬d,iwd,i =
∑D

d=1

∑d
i′=0,i′ 6=i 1(zd,i′ = k) is a sum of

a large number independent Bernoulli variables 1(zd,i′ = k) with mean parameter γkd,i′ , an accurate approx-

imation by a Gaussian can be made. Under these assumptions, the mean and the variance are given by the
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sum of the means and the variances of the individual Bernoulli variables:

nDkwd,i + β − 1 = n
Dk,¬d,i
wd,i + β (4.49)

Eq[n
Dk,¬d,i
wd,i ] =

D∑
d=1

d∑
i′=1,i′ 6=i

γkd,i′δ(wd,i, wd,i′) (4.50)

Varq[n
Dk,¬d,i
wd,i ] =

D∑
d=1

d∑
i′=1,i′ 6=i

(1− γkd,i′)δ(wd,i, wd,i′) (4.51)

Using the previous derivation, we can approximate Eq[log(n
Dk,¬d,i
wd,i + β)] factor from Equation 4.48

with a second-order Taylor expansion:

Eq[log(n
Dk,¬d,i
wd,i + β)] ≈ log(β + Eq[n

Dk,¬d,i
wd,i ])−

Varq[n
Dk,¬d,i
wd,i ]

2(βw + Eq[n
Dk,¬d,i
wd,i ])2

(4.52)

A similar setting is found for nDk· , and, thus, a Gaussian approximation can also be made:

E[n
U ′k· ] =

D∑
d=1

d∑
i′=1,i′ 6=i

γk
′
d,i′ (4.53)

Var[n
U ′k· ] =

D∑
d=1

d∑
i′=1,i′ 6=i

γk
′
d,i′(1− γk

′
d,i′) (4.54)

Then, using again a second-order Taylor expansion, we obtain for log(nDk· +Wβ):

Eq[log(nDk· +Wβ)] ≈ log(Wβ + E[nDk· ])− Var[nDk· ]

2(Wβ + E[nDk· ])2
(4.55)

Plugging in the approximation from Equations 4.52 and 4.53 back to variational parameters update

Equation 4.48 yields the final expression:

γkd,i ∝ (βw + Eq[n
Dk,¬d,i
wd,i ])(Wβ + E[nDk· ])−1 exp

(
−

Varq[n
Dk,¬d,i
wd,i ]

2(βw + Eq[n
Dk,¬d,i
wd,i ])2

+
Var[nDk· ]

2(Wβ + E[nDk· ])2

)
(4.56)

Notice that in the resulting update expression derived above zkd,i only depends on zk¬d,i through the

n
Dk,¬d,i
wd,i and nDk· counts. This makes the case for arguing that the variables are only weakly dependent on

each other. In such settings, variational inference is expected to be accurate (Teh et al., 2007), since we can
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safely replace the latent variables by independent variational parameters.

The final procedure for multi-document segmentation and topic identification iterates between segment-

ing documents based on the current state of the variational parameters and then reestimate them based on

the obtained segmentation. The overall blueprint of the procedure is similar to the hierarchical segmentation

procedure in Eisenstein (2009), although important differences exist. To segment the documents we use the

dynamic programming approach described in Section 4.2.1. Since we are in a VI setup, the expression for

the joint probability takes into account the variational parameters:

p(X|z, γ) =
(Γ(Wβ)

Γ(β)W

)K K∏
k=1

∏W
w=1 Γ(nDkw γDkw + β)

Γ(nDk· γDk· +Wβ)
, (4.57)

where γDkw is the sum of all kth components of the γkd,i variational parameters for all words that match w.

Essentially what happens in the previous rewriting of the joint is that we are scaling the word counts using

γkd,i as weights.

4.4.5.3 Why VI is unsuitable for Multi-Document Segmentation and Topic Identification

The problem with this approach is that it is not possible to compute different likelihoods for different

segmentations since we would always add the same scaled words counts to different topics. This contrasts

with the hierarchical segmentation scenario because the variational parameters model the assignments of

words to the different levels of the hierarchy. Thus, when computing the likelihood of the hierarchical

segmentation, the segments counts are scaled according to the variational parameters, yielding different

likelihoods for different segmentations. In our case, to observe different likelihood estimations we need

to commit to a segmentation at each iteration of the dynamic programming algorithm. The segmentation

likelihood in each cell of the matrix is then the sum of committed segmentations up to that utterance, plus the

scaled likelihood of the segment currently being considered. After computing segmentation likelihoods for

a line of the matrix, the cell with the highest value will provide a new segmentation to be committed. This

brings up another problem, which is the fact that we do not have a straightforward way of assigning segments

to topics since we only have the value of the variational parameters of each word. Ultimately, all these

difficulties led us to believe that this VI setup is not suitable for a multi-document segmentation scenario.

We still did some experiments with a procedure that assigns segments to the topic with the highest sum of

variational parameters values. This type of solution is not suitable since few words with high variational

parameters values bias the inference procedure to the corresponding topic. Furthermore, these high values

do not change much with the variational updates during the dynamic programming procedure. This is
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problematic because the iterations are computationally expensive. More standard VI setups are efficient

because they only require the variational update step. In our case, we need to find the best segmentation,

which is done by using a dynamic programing procedure. This overhead makes this two-step procedure hard

to scale. Under these conditions, the segmentation quality was low, and we abandoned this research line.
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5Segmentation Evaluation

Having collected a suitable dataset (Chapter 3) and proposed multi-document segmentation mod-

els (Chapter 4), we can now compare the performance of single and multi-document (joint and non-joint)

segmentation models. This evaluation also allows to test our hypothesis that modeling segment vocabulary

usage relationships and segment length characteristics at the document level can improve segmentation. In

this context, we perform three segmentation-related experiments. For these experiments, we define the eval-

uation metrics in Section 5.1. In the first experiment, we investigate how using a caching scheme in a Gibbs

sampler in PLDA-MD influences the segmentation results in a synthetic dataset (Section 5.2). Then, we

analyze how existing single and multi-document models perform in our learning materials dataset. Finally,

we evaluate the performance of the proposed BeamSeg algorithm according to different prior assumptions

based on language model independence and document modality (Section 5.4).

5.1 Evaluation Metrics

To evaluate segmentation, we considered the standard evaluation metrics for this task, which have been

discussed and described in Section 3.3.2. We report the WD score since it is a widely used metric in the

literature and deals with the drawbacks of the Pk metric. For consistency, we take the output segmenta-

tions from all systems and evaluate them using the same software (the python module segeval (Fournier,

2013)). For the window size, we use the recommended average segment length of the reference.

5.2 PLDA-MD Gibbs Sampling

In Section 4.2.2, we proposed a caching scheme to speed up the computation of the Gibbs sampling

equations. The caching scheme requires a systematic (fix) scan order to sample the variables. This raises

the question if such restriction affects the convergence of the Gibbs sampler. Therefore, in this experiment,

we compare the convergence of a Gibbs sampler for PLDA-MD using a random scan order and a systematic

scan order. If the convergence is not affected, we can expect that the segmentation is also not affected.
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5.2.1 Experimental Setup

To control this experiment as much as possible, such that the only variable interfering is the scan order,

we generate a synthetic dataset using PLD-MD generative process. Following this process, we obtain a

dataset with 50 documents, 15000 sentences, and 75000 words from a vocabulary with size 100. In order to

generate related documents, the same topic proportions were reused across different documents. We fixed

the hyperparameters of the model to: α = 0.7, β = 0.7, γ1 = 0.2, and γ2 = 101. The reason for choosing

these α and β values was to obtain topic proportions with multiple topic spikes, instead of having a single

topic with high probability, which would make the segmentation task easier. The γ were set such that the

majority of sentences would have cd,u = 0, while still allowing some variability in the expected segment

length. Using these parameters in the generative model a total of 223 segments were obtained. The Gibbs

sampler was then run for 10000 iterations with burn-in and lag of 1000. The burn-in period corresponds

to the first iterations of the sampler and since its estimates are not accurate they are discarded. The lag

value determines the frequency samples are collected (after the burn-in period). The goal is to avoid auto-

correlation problems that would occur if we collected samples at every iteration of the sampler. In the end,

cd,u variables were considered as segment boundaries if their expected value has higher than a threshold

of 0.8. The convergence is assessed by monitoring the log likelihood of the segmentation according to

the model at each iteration of the Gibbs sampler. Another metric we monitor in this experiment is WD.

It is expected that if the scan order of the variables impact on the Gibbs sampler is small, the obtained

segmentations should be similar. To determine if PLDA-MD is an effective multi-document segmentation

strategy, we also compare it with its single-document counterpart PLDA.

5.2.2 Experimental Results

Figure 5.1 shows the log likelihood of the current segmentation state throughout the Gibbs sampling

iterations. When comparing PLDA-MD and PLDA-MD-c (the caching scheme version for Gibbs sampling),

we can see that the segmentation log-likelihood values are close throughout the sampling process. This is

evidence that choosing a random or a systematic scan order of the variables does not impact the solution

found by the Gibbs sampler. Thus, we can use the caching scheme without sacrificing performance. This

is further corroborated by the WD scores from Table 5.1, where the performance of PLDA-MD and PLDA-

MD-c is similar. Given the previous close likelihood and WD, we argue that both samplers are converging to

1We presented PLDA-MD with a single γ hyperparameter (symmetric prior) for notational convenience but it can be trivially
extended for the non-symmetric version using γ1 and γ2.
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the exact same solution. Despite the slightly better performance of PLDA-MD-c (a 0.01 WD improvement),

with more data or more iterations, we expect that both samplers find the same segmentations.

Comparing PLDA-MD-c with PLDA, it is also possible to observe that the latter has a consistently

higher segmentation likelihood. This indicates that PLDA-MD-c finds better solutions. Further evidence

of this is found when comparing the WD scores. These scores show that PLDA-MD-c has a 4% increase

in performance compared to PLDA. In 42 out of 50 tests cases WD performance gains of up to 10% are

observed. Only in five test cases, the final segmentation for both models was exactly the same. These results

show that it is indeed possible to leverage segmentation on multiple related documents. A closer look at

the segmentation results showed that most gains are obtained in smaller segments. This is inline with the

difference between the two models. That is, the advantage of PLDA-MD-c is that if a segment is too short to

accurately determine its topic portions, the model still takes into account possibly similar segments in other

documents. Another result from this experiment is that the cache version of the multi-document model

achieves similar WD results. This corroborates that the sampling order of the variables does not impact the

segmentation given the same number of Gibbs sampling iterations.

Figure 5.1: Joint probability of the models during Gibbs sampling.

PLDA PLDA-MD PLDA-MD-c

WD 0.33 ± 0.06 0.29 ± 0.06 0.28 ± 0.07

Table 5.1: Average WD scores in the synthetic dataset.

To determine the impact of the caching scheme on the Gibbs sampler’s execution time, we plot how

long each iteration takes in Figure 5.2. By using cache, the total execution is cut down from 232.2 hours

to 110.9 hours, a 52.2% reduction. This makes the Gibbs sampler much more scalable, which is especially

relevant in our scenario with a collection of related documents. From the plot, we also gain insight into
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how the variables are changing during the sampling procedure. We can observe that considerable changes

in the state do not often occur since the time to perform each iteration does not vary considerably. This

means we can take advantage of caching using the proposed systematic scan order of the variables. There

are, however, some exceptions. For example, close to iteration 6000 we can see a period where iterations

are taking longer. This is related to the Gibbs sampler finding a better region of the state space to explore.

Such periods are not long, and we quickly get back to executing iterations efficiently.

Figure 5.2: Time to perform each Gibbs sampling iteration.

5.3 Benchmark Segmentation

The goal of this experiment is to both determine the baseline results for the BeamSeg proposed approach

as well as observing how single and multi-document models perform in a variety of domains.

5.3.1 Experimental Setup

In this experiment, we test several state-of-the-art segmentation algorithms and compare them with our

multi-document extensions Bayesseg-MD (Section 4.2.1) and PLDA-MD (Section 4.2.2)). This way we can

also study the impact that multi-document models have on the results. The best results from this experiment

will serve as a baseline for the proposed BeamSeg model in Section 5.4. In order to cover lexical similarity

and probabilistic approaches in single-document model approaches, we tested the following algorithms:

Bayesseg, PLDA, CVS, C99, MinCut, and MultiSeg.



5.3. BENCHMARK SEGMENTATION 73

As discussed in Section 3.1, the only existing dataset that targets multi-document segmentation is the

one provided by Jeong and Titov (2010). We test the algorithms in the Biography, and News domains. We

left out the Reports domain due to its fix two segment document structure and the Podcast domain because

it only tracks speaker changes. Finally, we also test the algorithms with our learning materials dataset in the

AVL trees and Physics domains (Section 3.2), achieving this way a broader domain coverage and testing the

algorithms in documents with a strong topic development aspect.

The hyperparameter setup of the models was carried out on a development set. For the Biography,

and News domains we picked one of the subjects and all of its documents since each subject has few

documents. We did not carry out hyperparameter tuning in these domains for MultiSeg. Instead, we used

the configuration that the authors used in their experiments. For the Physics domain, the development set

corresponds to a sample of ten documents from one of the subjects. For tuning the hyperparameters to

test in the AVL trees domain, we also used a development set from the Physics domain since both datasets

are composed of documents with pedagogical content. The Gibbs sampling for PLDA and PLDA-MD

run for 20000 iterations with a burn-in period of 1000 iterations and a lag value of 200 iterations. The

cd,u utterance variables were considered segment boundaries if a value of 0.8 or higher was obtained. The

PLDA-MD model uses the caching feature during Gibbs sampling. The CVS model used the 300 dimensions

GloVe (Pennington et al., 2014) word embeddings.

5.3.2 Experimental Results

In the discussion of the experimental results below, we depict the best WD results in bold in each of the

corresponding tables.

From the WD averages results in Table 5.2, we can observe that Mincut obtains the best overall per-

formance. As we mentioned previously, Mincut requires the number of expected segments to be known a

priori, which provides an advantage in document adaptation over algorithms that do not require such pa-

rameter. This advantage can be observed in Mincut’s results consistency across domains while the other

algorithms results oscillate more; given these circumstances, we will disregard Mincut’s performance in the

remaining of the result analyses. Looking at the results in each domain we can see that the best performing

algorithm varies: Multiseg performs better in the Biography domain (a 0.05 WD difference the second best

algorithm, Bayesseg-MD); CVS in the News domain (a 0.05 difference over MultiSeg); Bayesseg-MD in

the AVL domain (a 0.01 difference to PLDA-MD); Bayesseg in the Physics domain (a 0.01 WD difference

over CVS, PLDA-MD, and Bayesseg-MD).
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Biography News AVL Physics

Random 0.52± 0.1 0.52±0.1 0.51±0.01 0.52±0.02

Mincut 0.39± 0.1 0.37±0.2 0.37±0.10 0.36±0.1

C99 0.61±0.2 0.49±0.3 0.59±0.20 0.54±0.2

CVS 0.54± 0.2 0.42±0.2 0.45±0.10 0.43±0.2

TextTiling 0.73± 0.2 0.63±0.2 0.47±0.10 0.49±0.2

Bayesseg 0.53±0.2 0.51±0.3 0.39±0.10 0.42±0.2

Bayesseg-MD 0.42±0.2 0.59±0.2 0.37±0.10 0.43±0.2

PLDA 0.58±0.2 0.53±0.3 0.55±0.20 0.49±0.2

PLDA-MD 0.54±0.2 0.54±0.3 0.38±0.10 0.44±0.2

MultiSeg 0.37±0.2 0.47±0.3 0.41±0.03 0.44±0.1

Table 5.2: Average WD scores. In bold, are the best results for each domain (excluding Mincut’s results).

Looking at the results from the perspective of single- vs. multi-document models, we can see that the

best approach is domain dependent. Single-document models perform better in the News domain (CVS with

a 0.05 WD difference to the best multi-document model, MultiSeg) and in the Physics domain (Bayesseg

with a 0.01 WD difference to Bayesseg-MD). Multi-document models perform better in the Biography,

and AVL domains. The WD results improvements are 0.16 (comparing MultiSeg and Bayesseg), 0.23

(Bayesseg-MD and CVS), and 0.02 (Bayesseg-MD and Bayesseg), respectively. Comparing the Baysseg-

MD and PLDA-MD extensions with its single-document counterparts we can see improvements across most

of the domains. The exception is the News domains (both Baysseg-MD and PLDA-MD) and the Physics

domain (only Baysseg-MD). For the News domain, Baysseg-MD and PLDA-MD made the results worse by

0.08 and 0.01 WD margins. For the Physics domains, the difference between Baysseg-MD and Baysseg is

0.01. Despite multi-document models not strictly outperform single-document models, these results indicate

that our hypothesis of using information from all documents to perform the segmentation task is a feasible

strategy under specific scenarios.

Comparing the performance of the algorithms across domains, we can observe that generally worse WD

scores are obtained in Jeong and Titov (2010) datasets. For example, TextTiling, Bayesseg, PLDA-MD have

all of their worst results in these datasets. CVS, C99, and PLDA have a similar pattern with the difference

that they are still able to perform well in the News domain. Another indicator of the underperformance of

the algorithms in Jeong and Titov (2010) datasets is the number of results that are worse than the random

baseline (16 out of 24). The exception to all the previous algorithms is MultiSeg, where the opposite

occurred, that is, generally worse results were obtained in the AVL and Physics domains (the exception is

the News domain).



5.3. BENCHMARK SEGMENTATION 75

5.3.3 Domain Analysis

To understand these domain differences we provide some document examples of the Biography, and

News domains (Figures 5.3, and 5.4, respectively). From these documents, we can observe that most seg-

ments are short, and, consequently, there is no much opportunity for lexical cohesion to be observed. In the

Biography document example, segments resemble a list of biographical facts instead of developing a topic

in a more cohesive manner. For example, the document puts the marriage and separation of Princess Diana

and Prince Charles in two distinct segments. These phenomenons continue to occur in the News domain

where we can see short segments with a subtle topic change. For example, the second and third utterances

of the News document mention how income is distributed among the different entities involved in the pro-

cess of selling eBooks through the Google Editions platform but are in different segments. Again, these

characteristics contribute to the results difference between them and the AVL and Physics datasets across

the different segmentation algorithms.

===================================================================
Diana, Princess of Wales was one of the most famous women in the world.
Diana was born on 1 July 1961 as Diana Frances Spencer. Her father was Lord Spencer. She

left school when she was 16 and moved to London when she was 17.
===================================================================

In 1981 Diana married Prince Charles at St. Paul’s Cathedral. They had two sons, Prince
William and Prince Henry.
===================================================================

Charles and Diana separated in 1992 and they divorced in 1996. Diana said Camilla Parker-
Bowles was responsible for the problems with her marriage.
===================================================================

Princess Diana was well known for her charity work. She campaigned to end land mines.
She also helped to make the lives of people with AIDS better.
===================================================================

Diana and her boyfriend, Dodi Al-Fayed, died in a car crash in Paris on 31 August 1997.
Many people left flowers, candles, cards and personal messages for her in public places. She
had a big funeral in London.
===================================================================

Diana’s full title, while married, was Her Royal Highness The Princess Charles Philip
Arthur George, Princess of Wales and Countess of Chester, Duchess of Cornwall, Duchess
of Rothesay, Countess of Carrick, Baroness of Renfrew, Lady of the Isles, Princess of Scotland.
===================================================================

Figure 5.3: Example of a document in the Biography domain.
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===================================================================
Google confirmed that Google Editions is ready for launch this summer. This is a ’buy any-

where, read anywhere’ eBooks service that allows users to download eBooks on mobile phones,
eBook readers and PC. Announced last year at the Frankfurt Book Fair, Google Editions will
have about half a million eBooks available for purchase and download by late June or July.

Chris Palma, Google’s manager of strategic-partner development, announced the time-table for
Google’s plans at the publishing-industry panel in New York yesterday, reported The Wall Street
Journal. Google Editions will be an Amazon-like eBook store that will offer about 5,00,000
eBooks to users. Publishers get to keep 63 percent of income from the eBooks sold while Google
retains 37 percent.
===================================================================

Users can also buy eBooks from Amazon as well as Barnes & Nobles through Google Editions.
In that case, the publisher gets just 45 percent while Google gets to retain 55 percent of income.
Apart from that, even independent book retailers would be allowed to sell Google Editions at
their own sites.

Just when Apple is anticipating high growth of its iBook Store, Google is getting ready to roll
out Google Editions. However, Google’s idea is to access Google Editions from any browser and
thus create an ”open ecosystem” in the eBook market. Publishers will have a greater control over
how their books are being sold.
===================================================================

Google has chosen the right time to launch Google Editions service with variety of tablets and
mobile Internet devices emerging in the market. However, with Android on its side, we’re sure
Google will ensure something is packed in for Android OS phone based users.
===================================================================

For more on Google Editions, we’ll have to wait till the end of June or July.
===================================================================

Figure 5.4: Example of a document in the News domain.
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5.3.4 Document Modality Results

We also analyze the performance consistency of the algorithms according to the different document

modalities in the AVL and Physics domains (Tables 5.3 and 5.4). For some of the algorithms we can observe

that the results are modality consistent in both domains. For example, C99 and PLDA-MD perform better

in the HTML and MultiSeg in video transcript documents; C99 obtains higher average WD results, ranging

from 0.01 to 0.33, when compared to other modalities; PLDA-MD performs better with WD differences

between 0.01 and 0.17; MultiSeg’s result differences range from 0.01 to 0.11. It is also possible to observe

the inverse pattern, that is, algorithms consistently underperforming in a modality. This is case of TextTiling,

which performed worst in the video modality in both domains (differences between 0.29 an 0.15) and also

CVS for HTML documents (differences between 0.26 an 0.02). For the Bayesseg and Bayesseg-MD the

results were generally more balanced. The most noticeable exception are the video documents for the

Physics domains where both algorithms performed worse than in the AVL domain, but, for the remaining

modalities, the results difference is not as prominent. Regarding the PDF modality, which only exists in

the Physics domain, it poses more difficulties to the PLDA and PLDA-MD algorithms since it is where they

perform worst (both have a 0.08 WD difference to the second worst modality). Given these different types of

tendencies, it is possible that interactions between the modality of a document and segmentation algorithms

exist. Therefore, it is plausible that incorporating information targeting specific modalities improves the

segmentation results.

HTML PPT Video

C99 0.48±0.10 0.50±0.20 0.81±0.20

CVS 0.59±0.10 0.38±0.10 0.44±0.06

TextTiling 0.42±0.04 0.39±0.03 0.59±0.20

Bayesseg 0.41±0.04 0.39±0.20 0.39±0.01

Bayesseg-MD 0.41±0.05 0.38±0.10 0.34±0.10

PLDA 0.39±0.04 0.58±0.20 0.61±0.30

PLDA-MD 0.35±0.04 0.39±0.10 0.38±0.04

MultiSeg 0.43±0.03 0.41±0.03 0.40±0.01

Table 5.3: Average WD scores for each document modality in the AVL domain.

To understand if there is a bias of the segmentation algorithms to over/undersegment documents in dif-

ferent domains we look at the average segment count difference between hypothesis and reference segmen-

tations in Table 5.5. Negative values indicate that the hypothesis contains less segments than the reference,

while positive values indicate the opposite. The number of hypothesized segments is generally not far off

from the number of segments in the references, which means that the WD are mostly influenced by bound-
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HTML PPT PDF Video

C99 0.49±0.20 0.51±0.10 0.57±0.20 0.64±0.27

CVS 0.47±0.10 0.45±0.10 0.43±0.10 0.33±0.20

TextTiling 0.43±0.20 0.44±0.10 0.44±0.10 0.68±0.20

Bayesseg 0.41±0.20 0.43±0.10 0.42±0.10 0.47±0.20

Bayesseg-MD 0.41±0.20 0.39±0.10 0.44±0.10 0.49±0.20

PLDA 0.42±0.30 0.54±0.10 0.62±0.20 0.52±0.30

PLDA-MD 0.41±0.10 0.44±0.10 0.52±0.20 0.43±0.20

MultiSeg 0.47±0.06 0.45±0.05 0.44±0.05 0.36±0.10

Table 5.4: Average WD scores for each document modality in the Physics domain.

ary misplacement. Another observation is that being closer to the number of segments in the references is

not always correlated with a better quality segmentation. One example is CVS, which has a closer number

of segments in the News domain but the WD scores are higher. Looking at these results also allows us

to understand what transformations occur in the segmentations when the multi-document model extensions

are applied. For the PLDA case, we can observe that improvements can occur when PLDA-MD outputs

more and less segments than PLDA. In the Biography domain PLDA-MD has more segments than PLDA,

whereas in the AVL and Physics domains the opposite occurs. Similar interactions can be found between

Bayesseg and Bayesseg-MD as well. This means that the multi-document improvements are not limited to

always adding/removing segments since they are dynamic and adapt to the input data.

Biography News AVL Physics

C99 -4.8±5.3 -1.6±1.7 13.6±24.2 3.20±12.2

CVS -0.8±1.1 -0.2±0.6 1.0±0.9 0.42±1.0

TextTiling 16.9±20.2 1.5±2.1 18.2±20.3 11.1±12.1

Bayesseg -2.9±4.2 1.5±1.9 -1.6±5.6 1.50±3.6

Bayesseg-MD 2.70±3.9 3.3±2.5 -3.9±3.6 -1.5±1.9

PLDA 0.30±6.8 -0.1±2.0 13.0±28.3 2.8±8.3

PLDA-MD 3.60±6.8 0.6±2.4 -4.1±5.1 1.1±3.9

MultiSeg 1.90±3.1 1.8±1.9 -4.4±4.7 -0.3±2.4

Table 5.5: Average segment count difference between hypothesis and reference.

The overall conclusion is that it is indeed possible to improve results using multi-document segmen-

tation. Despite this positive result, it should be noticed that multi-document approaches were not able to

consistently get better results. The characteristics of the domain, particularly how lexical manifests and

what the target segmentation is, play an important role. Therefore, some algorithms are a better fit for seg-

menting datasets with particular characteristics. A similar observation can be made regarding the results

based on document modality since the result consistency of the models also varies along this dimension.
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5.4 BeamSeg Segmentation

We now carry out segmentation experiments using BeamSeg and compare them with the previously

established baseline results in order to determine if it is an effective approach to segmentation.

5.4.1 Experimental Setup

In the scope of the BeamSeg model, we want to investigate the role of two factors in segmentation: the

impact of using the proposed dynamic language model prior vs. an independent language model prior, and

the influence of the segment duration prior and its application based on modality. We perform experiments

that test two different types of segment length prior: Beta-Bernoulli, and Gamma-Poisson. Each prior is

tested by having a single prior variable for all documents in the dataset or by having individual variables

conditioned on document modality. The experimental setup regarding datasets and hyperparameters setup

follows the one described in Section 5.3.1.

5.4.2 Experimental Results

The following sections report and analyze BeamSeg’s results in the available multi-document segmen-

tation datasets (Jeong and Titov, 2010) and our learning materials dataset.

5.4.2.1 Available Datasets Results

We start by analyzing BeamSeg’s results on the three datasets from Jeong and Titov (2010) (Table 5.6).

For convenience, during the discussion of the results, we refer the language model prior as the LM prior,

and the segment length prior as the SL prior. From the results, we can observe that no single combination

of LM prior and SL prior obtained the best results in all three datasets. For the Biography domain, the best

results were obtained when using a dynamic and Gamma-Poisson priors, which improved the WD average

in 0.08 when compared to the independent LM prior version. The improvements stem from the dynamic

LM prior being able to output more segments. The problem with the independent LM prior is that it outputs

a single segment for 80% of the documents. This undersegmentation problem can also be observed in

Table 5.7, where the average segment count difference between the hypothesis and reference are negative.

By using a dynamic LM prior, the average number of segments increases 4.2, and the number of single-

segment documents drops to 16.4%. Given the result improvements, we can conclude that some of these

new segments are close to the reference. For the Beta-Bernoulli case, we can also see result improvements
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from the independent to the dynamic LM prior, although they are smaller, 0.01 in WD average. In this

case, the differences in the number of segments and the number of single-segment documents are not as

prominent as in the Gamma-Poisson prior. The segment count difference increases 1.3, and the number of

single-segment document decreases 0.08%.

LM Prior SL Prior Biography News

Independent
Beta-Bernoulli 0.54±0.2 0.46±0.3

Gamma-Poisson 0.58±0.2 0.46±0.3

Dynamic
Beta-Bernoulli 0.53±0.2 0.47±0.3

Gamma-Poisson 0.49±0.2 0.51±0.3

Baseline 0.37±0.2 0.42±0.2

Table 5.6: BeamSeg average WD scores in Jeong and Titov (2010) datasets. The algorithms in the baseline
results are MultiSeg, CVS, and Bayesseg-MD for the Biography, and News domains, respectively.

LM Prior SL Prior Biography News

Independent
Beta-Bernoulli -5.9±3.9 0.4±1.5

Gamma-Poisson -7.0±3.8 -1.9±1.2

Dynamic
Beta-Bernoulli -4.6±3.4 -1.1±1.4

Gamma-Poisson -2.8±3.6 -1.4±1.9

Table 5.7: BeamSeg average segment count difference between hypothesis and reference.

In the News dataset, we see that moving from an independent to dynamic LM prior can make results

worse. This occurs in the Gamma-Poisson and Beta-Bernoulli priors with 0.05 and 0.01 WD increases,

respectively. This is related to the number of single-segment documents. In the Beta-Bernoulli prior, a

56.9% increase of single-segment documents can be observed. For the Gamma-Poisson, the number of

single-segment documents is already high (91.8%) for the independent LM prior, and the trend carries over

to the dynamic version (84.1%). This shows that the dynamic prior is not able to output more segments in

the News domain, and, thus, improvements similar to the Biography domain could not be obtained.

From the previous results, we can see that BeamSeg does not perform better than the baseline results

obtained in Section 5.3. The differences in WD to the best baseline results are 0.12, and 0.05 for the

Biography, and Newsdomains, respectively. Therefore, it is not a suitable approach for these domains where

there is not much topic development within the document segments.
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5.4.2.2 Learning Materials Datasets Results

We now carry out a result analysis of the AVL and Physics datasets. Recalling that these datasets have

documents from four possible modalities (HTML, PPT, PDF, and video), we study how applying the SL

prior conditioned on document modality influences segmentation. Table 5.8 shows the obtained average

WD results. A first observation is the fact that different SL prior scopes work better with particular types of

LM prior. For example, in the Beta-Bernoulli and Gamma-Poisson cases, the dynamic LM prior always has

better results when using a SL prior conditioned to the document modality than with using the same prior for

the whole dataset. The WD improvements are 0.06 and 0.12 for the AVL and Physics domains, respectively.

Looking at the results of the independent LM prior we see that the WD scores of the modality SL prior

are generally worse than the ones obtained when using the dataset version. For the Gamma-Poisson, the

results are 0.03 and 0.01 higher, in the AVL and Physics domains, respectively. Similar behavior can be

seen with the Beta-Bernoulli in the AVL domain were the WD increases 0.01 (in the Physics domain, the

results actually improve by a 0.03 WD margin). The main difference between reference and hypothesis

segmentations is that the reference contains more segments (Table 5.9). This is a general tendency for all

the tested prior configurations. From this data, we can also observe that some prior configuration exhibit

a particular pattern. For example, when using an independent LM prior with the Gamma-Poisson, the

modality scope increases the number of obtained segments. Switching to the dynamic LM prior we can see

the opposite effect, the number of segments decreases. Therefore, one of the reasons for this particular prior

configuration to obtain the best WD results is its ability to remove incorrect segments. In the Beta-Bernoulli

case, the behavior is different, as the segment count difference always decreases. This shows that different

types of interactions between the priors exist and these influence the obtained segmentation in different

ways, and, thus, choosing a suitable configuration is essential to obtain the best results.

Given the close scores of Baysseg-MD and BeamSeg in the AVL domain, we analyze the individual

WD document scores in Table 5.10. From these results, we can see that BeamSeg has better results in five

out of the ten documents, one tie, and two documents where the WD difference is only 0.01. This leaves

Bayesseg-MD to perform significantly better than BeamSeg only in two test cases. Therefore, despite the

close WD average scores, BeamSeg is more consistent than Bayesseg-MD in the majority of the test cases.

Similarly to the AVL domain, we also carry out a more fine-grained analysis of the WD results of Beam-

Seg and the Bayesseg baseline in the Physics domain. Taking into account that the number of documents in

the Physics domains is high, we aggregate the results by subject. In Table 5.11, we observe that BeamSeg

performs better in three subjects, has worse results in two subjects, and the same results in the other two

subjects. At the document level, BeamSeg has better results in 66 documents, worse results than Bayesseg
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LM Prior SL Prior Scope AVL Physics

Independent
Beta-Bernoulli

D 0.39±0.10 0.45±0.10

M 0.40±0.10 0.42±0.10

Gamma-Poisson
D 0.40±0.10 0.41±0.10

M 0.43±0.10 0.42±0.10

Dynamic
Beta-Bernoulli

D 0.44±0.10 0.54±0.20

M 0.38±0.10 0.42±0.10

Gamma-Poisson
D 0.38±0.10 0.47±0.20

M 0.37±0.10 0.40±0.10

Baseline 0.37±0.10 0.42±0.20

Table 5.8: BeamSeg dataset prior average WD scores. The scope column indicates if the SL prior was
applied based on the documents’ modality (M) or if it was the same for the whole dataset (D). The algorithms
in the baseline results are Bayesseg-MD, and Bayesseg for the AVL and Physics domains, respectively.

LM Prior SL Prior Scope AVL Physics

Independent
Beta-Bernoulli

D -4.3±2.7 -1.4±2.5

M -5.7±2.6 -2.3±2.3

Gamma-Poisson
D -5.9±2.9 -2.7±2.1

M -4.9±2.4 -0.3±6.1

Dynamic
Beta-Bernoulli

D -0.8±4.3 3.3±6.7

M -4.7±3.3 -1.1±2.9

Gamma-Poisson
D -1.8±4.3 0.8±4.4

M -4.9±4.2 -2.3±1.9

Table 5.9: BeamSeg average segment count difference between hypothesis and reference.

in 51 documents, and the same results as Bayesseg in the other 34 documents. Therefore, BeamSeg has

15 more documents where it outperforms Bayesseg. This indicates that the result improvements are spread

across different test cases rather than having a large result difference in a particular test case.

To have a better grasp how the scope of SL prior (dataset or modality) influences the results, we present

the average WD scores aggregated by document modality in Tables 5.12 and 5.13. When comparing the

WD results of the dynamic LM prior we can see that there is an overall tendency for the WD to improve

when using the modality-based prior instead of the dataset prior. The only exception are PPT documents in

the AVL domain when using the Gamma-Poisson prior. In this case, the best results are actually obtained by

the independent LM prior with a 0.04 WD difference. This does not happen in the Physics domain where

the pattern of using the dynamic LM with a modality-based Gamma-Poisson obtains the best results for

PPT documents. Also in the Physics domain, we can observe that for the video modality the best results

occur when using an independent LM prior and a SL prior at the dataset level (a 0.08 WD difference to
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WD

Modality Bayesseg-MD BeamSeg

Doc1 HTML 0.49 0.42
Doc2 HTML 0.39 0.30
Doc3 PPT 0.29 0.37
Doc4 PPT 0.39 0.40
Doc5 PPT 0.48 0.36
Doc6 PPT 0.43 0.29
Doc7 PPT 0.40 0.56
Doc8 Video 0.27 0.28
Doc9 Video 0.42 0.34
Doc10 Video 0.42 0.42

Table 5.10: WD document scores in the AVL domain.

Subject Bayesseg BeamSeg

L02 0.39±0.16 0.39±0.09

L03 0.45±0.16 0.42±0.09

L06 0.45±0.15 0.41±0.10

L08 0.36±0.16 0.36±0.11

L10 0.38±0.15 0.41±0.06

L11 0.35±0.25 0.43±0.22

L20 0.48±0.17 0.43±0.14

Table 5.11: WD scores aggregated by subject in the Physics domain.

the dynamic LM prior version). Based on the previous result improvements when using a modality-based

SL prior, we corroborate our hypothesis that documents sharing the same modality have similar segment

length characteristics that are worth abstracting on the segmentation model. We also conclude that in order

to obtain these modeling advantages it is necessary to use suitable priors, which we determined to be the

dynamic LM prior and a Gamma-Poisson SL prior.

Summing up the conclusions of the previous experiments, one of the key observations is that the per-

formance of the segmentation models depends on the lexical cohesion characteristics of the domain. This

is corroborated by the fact that three different segmentation algorithms performed better in the four tested

domains. Two of the algorithms are multi-document models, which makes a favorable argument for us-

ing this approach over single-document segmentation. BeamSeg turned out to not be suitable for domains

where there is not much topic development in each segment (the Biography, and News domains), and, con-

sequently, lexical cohesion is not prominent. The AVL and Physics domains have different characteristics;

the segments are longer, making more room for lexical cohesion to be formed, and relate to each other. In

this setup, BeamSeg’s modeling assumptions are effective in obtaining state-of-the-art results. In the AVL
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LM Prior SL Prior Scope HTML PPT Video

Independent

Beta-Bernoulli
D 0.43±0.01 0.37±0.10 0.40±0.03

M 0.43±0.01 0.39±0.10 0.39±0.01

Gamma-Poisson
D 0.41±0.02 0.41±0.1 0.39±0.01

M 0.42±0.05 0.39±0.08 0.51±0.10

Dynamic

Beta-Bernoulli
D 0.39±0.10 0.45±0.10 0.42±0.05

M 0.38±0.04 0.39±0.1 0.39±0.01

Gamma-Poisson
D 0.37±0.10 0.39±0.10 0.36±0.02

M 0.36±0.10 0.41±0.10 0.31±0.03

Baseline 0.35±0.04 0.38±0.10 0.34±0.10

Table 5.12: BeamSeg average WD scores for each document modality in the AVL trees domain. The
algorithms in the baseline results are PLDA-MD (HTML), and Bayesseg-MD (PPT and Video). It should
be noted that for PPT documents CVS obtained a similar WD average.

LM Prior SL Prior Scope HTML PPT PDF Video

Independent
Beta-Bernoulli

D 0.44±0.10 0.46±0.10 0.48±0.10 0.45±0.20

M 0.41±0.10 0.43±0.10 0.47±0.10 0.39±0.20

Gamma-Poisson
D 0.40±0.10 0.42±0.10 0.47±0.10 0.35±0.20

M 0.40±0.10 0.41±0.10 0.57±0.10 0.38±0.10

Dynamic
Beta-Bernoulli

D 0.51±0.20 0.53±0.10 0.50±0.10 0.64±0.20

M 0.41±0.10 0.42±0.10 0.46±0.10 0.41±0.20

Gamma-Poisson
D 0.43±0.10 0.48±0.10 0.55±0.30 0.47±0.10

M 0.40±0.10 0.39±0.10 0.40±0.10 0.43±0.20

Baseline 0.41±0.10 0.39±0.10 0.42±0.10 0.33±0.20

Table 5.13: BeamSeg average WD scores for each document modality in the Physics domain. The algo-
rithms in the baseline results are Bayesseg-MD (HTML and PPT), Bayesseg (PDF), and CVS (Video). It
should be noted that for the HTML documents Bayesseg and PLDA-MD obtained a similar WD average.

domain, the average WD results are similar to the best baseline (Bayesseg-MD) and is able to obtain better

results in more individual test cases. In the Physics domain, the average WD results improve 0.02 compared

to the best baseline (Bayesseg) and obtains best results in 15 more documents than the baseline. Choosing

an effective SL prior and applying it on a document’s modality-basis is crucial to obtain the best results.

According to our experiments, the Gamma-Poisson is a better prior than the Beta-Bernoulli. Under these

conditions, we can observe the positive impact that the dynamic LM prior modeling assumption has in the

results. The improvements in average WD are 0.03 and 0.02 when compared with the independent LM prior

version, for the AVL and Physics domains, respectively. This indicates that the BeamSeg model is able to

model datasets where document segments are related to each other by assuming that the underlying language

models have a dynamic structure instead of being independently drawn from a Dirichlet distribution.
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5.4.3 Qualitative Analysis

In this section, we perform a qualitative analysis of the segmentations obtained using the BeamSeg

model. The goal is to understand in more detail how BeamSeg behaves in different documents with the

different LM and SL prior configurations. To this end, we visually represent the document segmentations

and describe the underlying content of the segments.

5.4.3.1 Biography Domain

Figure 5.5 shows two segmentation examples in the Biography domain obtained using BeamSeg and

MultiSeg (the best performing algorithm in this domain). These examples illustrate the general segmen-

tation pattern of the algorithms and the corresponding segmentation quality differences. BeamSeg outputs

fewer segments than MultiSeg, which is a disadvantage in this domain since it is characterized by documents

with a high number of short segments (Figure 5.5a). The test cases where BeamSeg is able to outperform

MultiSeg are documents with a lower number of segments and when MultiSeg outputs many non-existent

boundaries (Figure 5.5b). It should be noticed that, despite the provided examples showing that both Beam-

Seg and MultiSeg are generally precise in their boundary placement, it is also possible to find degenerated

segmentations where boundaries are incorrectly placed by both algorithms. When comparing the content

of the segments we can see that sometimes a topic has a dedicated segment in a document and others it is

part of a larger segment. Examples of this situation can be found in the Barack Obama biography docu-

ments from Figure 5.5. For instance, the fifth segment in Figure 5.5a describes a book published by Barack

Obama. This topic is also referred in the fourth segment of the document in Figure 5.5b, where the main

topic is Barack Obama’s transfer to Columbia University, which is also the topic of the fourth segment of

the document in Figure 5.5a. MultiSeg deals with this aspect of the target segmentation by assigning topics

that only occur in that particular topic (local topics). In theory, BeamSeg can also output local topics, but

not explicitly modeling them makes the model prefer having a larger segment in this situation.

5.4.3.2 News Domain

As mentioned before, in the News domain, BeamSeg outputs single-segment documents in the majority

of the test cases. Moreover, inspecting segmentations within the same subject shows that BeamSeg also

assigns the same topic label to the majority of the segments. In Figure 5.6a, we can see a document where

BeamSeg failed to identify most of the segment boundaries. This is a document describing how people are

not careful in protecting their private information on social media. The segment that BeamSeg identifies talks
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Sentences

Reference
BeamSeg-D-GP
MultiSeg

(a) Segmentation of a document from the en.wikipedia.org website.

Sentences

Reference
BeamSeg-D-GP
MultiSeg

(b) Segmentation of a document from the biography.com website.

Figure 5.5: Segmentation examples in two different documents about Barack Obama.

about a survey related to this private information topic and the following one is advise for people to protect

themselves regarding this issue. In the reference, the advice is split into a list of bullet points originating

segments where lexical cohesion does not develop much. Given the previous condition, BeamSeg identifies

most of the documents in a subject with the same topic. The single-document model CVS, which obtained

the best results in this domain, is able to identify these nuanced segment boundaries better. It should be

noted though that it is also possible to find degenerated segmentations output by CVS corresponding to

single-segment documents or with frequent boundary misplacement, such as the one in Figure 5.6b.

Sentences

Reference
BeamSeg-D-GP
CVS

(a) Segmentation of a document from the news.google.com website.

Sentences

Reference
BeamSeg-D-GP
CVS

(b) Segmentation of a document from the news.google.com website.

Figure 5.6: Segmentation examples in two different documents from the News domain.
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5.4.3.3 AVL Trees Domain

We now focus on the segmentation differences of the various prior configurations tested with BeamSeg

across different document modalities in the AVL domain. Segmentation examples can be found in Fig-

ure 5.7, where the prior configurations were abbreviated as follows: the first letter defines the type of LM

prior – independent (I) or dynamic (D) – GP refers to the Gamma-Poisson SL prior, and the last letter to

the scope of the SL prior – dataset (D) or modality (M). Looking at the segmentations, we can see that the

major difference between the independent and dynamic LM priors is the number of output segments. When

using the independent LM prior the number of obtained segments is low, especially when using the SL prior

at the dataset level. This can be seen in Figures 5.7a and 5.7c. For the modality-based SL prior, longer

documents have more segments, but these tend not to be accurate boundaries (Figure 5.7b). When using the

dynamic LM prior the number of segments increases throughout all test cases. We can also observe different

behaviors at the SL prior level. The dataset-based SL prior makes BeamSeg output more segments than the

modality-based version. In some cases, like the segmentation in Figure 5.7a, it does allow to discover accu-

rate segments that the modality prior does not detect. However, in the majority of the cases it ends up placing

many non-existent boundaries such as in the segmentation of Figure 5.7b. Despite the modality-based SL

prior not finding that many segments, the identified ones tend to be accurate. This makes sense since the

over-segmentation of the dataset SL prior might be related with the bias it creates towards documents with

short segments and the modality prior is able to adjust to a wider variety of documents, and, thus, originate

segments based on language usage. Looking at the topics in the segments identified by BeamSeg, using

the best prior configuration (BeamSeg-D-GP-M), we observe several situations where the fix topic ordering

assumption impacts negatively the segmentation discovered by model. We observe that for some document

a topic segment is correctly identified, while in others it is put together with other topics in a large segment.

This is related to the fact that some documents share at least some of the topic order, while others have a very

different one. For such scenarios, BeamSeg merges segments if the language does not change significantly.

An example of this situation is the AVL trees node deletion topic (second to last segment in Figure 5.7b and

third to last segment in Figure 5.7c in the reference segmentation). For the former case, BeamSeg was not

able to identify the topic segment whereas in the latter it identified the topic correctly.

5.4.3.4 Physics Domain

The segmentations in the Physics domain maintain the same patterns of the AVL domain, reinforcing the

previous findings at a larger scale. Figure 5.8 show different examples for each of the tested modalities. In

the examples, we observe that independent LM priors output fewer segments than dynamic LM priors. Also,
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Sentences
Reference
BeamSeg-D-GP-M

BeamSeg-D-GP-D
BeamSeg-I-GP-M

BeamSeg-I-GP-D

(a) Segmentation of an HTML document from the AVL domain.

Sentences
Reference
BeamSeg-D-GP-M

BeamSeg-D-GP-D
BeamSeg-I-GP-M

BeamSeg-I-GP-D

(b) Segmentation of a video document from the AVL domain.

Sentences
Reference
BeamSeg-D-GP-M

BeamSeg-D-GP-D
BeamSeg-I-GP-M

BeamSeg-I-GP-D

(c) Segmentation of a PPT document from the AVL domain.

Figure 5.7: Document segmentation examples.

the dataset SL prior oversegments documents while the modality-based is more precise in the segmentation.

One of the differences in the Physics domains is that we find more equations. The variables of the equations

function as regular words, and since they get repeated constantly during a formula derivation that can span

through several sentences, BeamSeg mistakes them for a segment. This is the case for some of the extra

segments placed by BeamSeg in the fifth segment of the reference in Figure 5.8a. The problem of the

topic order can also be observed in this domain. For example, BeamSeg identifies a segment describing

instantaneous velocity in Figure 5.8 (the second segment) but there are other documents where this topic

is merged in a larger segment. This problem of topic order is exacerbated in the Physics domain since the

topic intersections between documents can be very different.
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With the presented qualitative analysis of BeamSeg segmentations in all of the tested domains, we were

able to observe how different factors impact the results. The interplay between domain characteristics, the

target segmentation, and the modeling assumptions at the prior level in the BeamSeg model impacts the

output segmentations. Therefore, choosing the correct prior assumptions according to what is expected to

occur in the data is important to be able to obtain a segmentation that can be as accurate as possible.
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Sentences
Reference
BeamSeg-D-GP-M

BeamSeg-D-GP-D
BeamSeg-I-GP-M

BeamSeg-I-GP-D

(a) Segmentation of an HTML document from the Physics domain.

Sentences
Reference
BeamSeg-D-GP-M

BeamSeg-D-GP-D
BeamSeg-I-GP-M

BeamSeg-I-GP-D

(b) Segmentation of a video document from the Physics domain.

Sentences
Reference
BeamSeg-D-GP-M

BeamSeg-D-GP-D
BeamSeg-I-GP-M

BeamSeg-I-GP-D

(c) Segmentation of a PPT document from the Physics domain.

Sentences
Reference
BeamSeg-D-GP-M

BeamSeg-D-GP-D
BeamSeg-I-GP-M

BeamSeg-I-GP-D

(d) Segmentation of a PDF document from the Physics domain.

Figure 5.8: Document segmentation examples.



6Topic Identification

Evaluation

In this chapter, we want to determine if a joint model of segmentation and topic identification improves

the results of a pipeline strategy (performing the two tasks sequentially). Therefore, we compare graph-

community detection algorithm results (Section 6.1) with the ones obtained by BeamSeg (Section 6.2).

6.1 Pipeline Approach to Topic Identification

In Section 4.3, we proposed a graph-community detection algorithm for topic identification that finds

word communities and assign segments with a scoring function. In this section, we evaluate this approach.

6.1.1 Experimental Setup

We survey the following graph-community detection algorithms: Label Propagation (LP) (Raghavan

et al., 2007), Bigclam (Yang and Leskovec, 2013), CNM (Clauset et al., 2004a), Louvain (Blondel et al.,

2008), Leading Eigenvector (Newman, 2006), Fast Greedy (Clauset et al., 2004b), and Walktraps (Pons,

2006). Since topic identification can be framed as a problem of clustering segments, we use as a baseline

for the pipeline strategy the following clustering algorithms:

Agglomerative clustering (Maimon and Rokach, 2005): a hierarchical clustering that uses a bottom-

up approach, considering, in the beginning, all points as individual clusters. The procedure consists of a

series of iterations, and, in each of them, two clusters are merged. Therefore, in each step, it is necessary to

decide which clusters to merge, which is done by using a similarity measure and criterion function.

k-means (Lloyd, 2006): given a k value that specifies the number of target clusters, the process is based

on minimizing a criterion function measures the distance of data points and cluster centroids.

DBSCAN (Sander et al., 1998): based on 2 values, a radius (Eps) and minimum number of neighbors

(MinPts). When a point in a Eps-neighborhood contains at least MinPts it is defined as a core point.

When a core point is found, a cluster is formed with all its neighbors. Then, an expansion process takes

place by checking if the neighbors are also core points. In the positive case, these are added to the cluster.
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Spectral Clustering (Weiss, 1999): uses an adjacency matrix of a similarity graph between the points

to cluster. Then, the first k eigenvectors of the Laplacian matrix are calculated. The final step consists of

using the k-means algorithm to obtain a clustering from the eigenvectors.

We use the development sets from the segmentation experiments to tune the parameters of all algo-

rithms. For the clustering algorithms that require the target number of clusters (Agglomerative, k-means,

and Spectral), we use the number of topics in the reference. In our graph-community approach, we proposed

several weighting schemes to study its impact on the discovered communities. We also proposed several

scoring functions that assign segments to the discovered communities. We use the weighting schemes and

scoring functions that yield the best results in the development set. Following Shahaf et al. (2012), we also

use a tf-idf filter to prune words that are either too common or too rare to be representative of a topic. We

experiment in the development set with a range between 1 and 200 for the cutoff value.

The pipeline strategy assumes that a segmented dataset is given as input to the topic identification algo-

rithm. To have the best possible baseline, we use the golden standard segmentation as input for the algorithm

in the pipeline strategy. The experiments are carried out in the same datasets used in the segmentation ex-

periments. We use the B3 score as an evaluation metric given that this experiment has a similar setup to the

topic identification agreement study (Section 3.4).

6.1.2 Experimental Results

From the average B3 results in Table 6.1 we can observe that the clustering algorithms that require

the target number of clusters (Agglomerative, k-means, and Spectral) obtain the best results in all domains.

Comparing these results with the best performing approaches that do not require this parameter, we obtain

the following differences in B3: 0.08 (Biography), and 0.03 (News), and 0.13 (AVL and Physics). This

shows that knowing the number of target clusters brings performance advantages in the topic identification

task. Connecting this with the observations made in the human agreement study (Section 3.4), where anno-

tators in some situations grouped or split the same set of segments in different topics, it is plausible that a

topic granularity also exists. This is similar to the segmentation granularity situation where Mincut, which

requires the target number of segments (granularity), obtained the best performance. Comparing the results

of the algorithms which do not require a target number of clusters, we can see that the best approach varies

across domains. DBSCAN performs better in the Biography, and Louvain in the News, AVL, and Physics

domains.
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Algorithm Biography News AVL Physics

GCD

Bigclam 0.57±0.06 0.60±0.12 0.31 0.36±0.05

Leading Eigenvector 0.56±0.09 0.63±0.11 0.33 0.34±0.04

Label Propagation 0.43±0.12 0.59±0.09 0.34 0.29±0.05

Louvain 0.57±0.08 0.64±0.11 0.37 0.38±0.06

Fast Greedy 0.55±0.08 0.64±0.10 0.33 0.35±0.07

Walktraps 0.47±0.10 0.63±0.09 0.36 0.34±0.05

CNM 0.54±0.05 0.64±0.12 0.33 0.34±0.04

Clustering

Agglomerative 0.72±0.08 0.66±0.09 0.39 0.46±0.03

K-means 0.59±0.05 0.66±0.09 0.48 0.49±0.02

Spectral 0.61±0.07 0.67±0.12 0.50 0.37±0.02

DBSCAN 0.66±0.08 0.60±0.09 0.33 0.34±0.06

Table 6.1: Average B3 scores for the topic identification task. In bold, are the best results for each class of
algorithm, graph-community detection (GCD) or clustering.

The identified topics in the clustering and graph-community detection approaches have different char-

acteristics. What mainly defines them is the number of identified topics and how segments are distributed.

From Table 6.2 we see that it is possible that the same algorithm discovers both a low and higher number of

topics compared to the reference in different domains. For example, DBSCAN identifies 269 more topics

in the Biography domain and identifies 88 fewer topics in the News domain. When the number of topics is

high, the segment distribution has a long tail of topics with a single segment (local topics). This is a source

errors since the number of local topics does not match the reference. When the number of identified topics

is low, we observe that there is a small number of topics that contains the majority of the segments, causing

another type error. It should be noticed that there is no strict correlation between the number of identified

topics and the best results. For example, in the Biography domain, DBSCAN is the algorithm that identifies

the highest number of topics and obtains the best performance. This means that DBSCAN is able to cor-

rectly group segments and isolate segments for which the topic cannot be identified. For the Physics domain,

Louvain obtains the best performance. In this domain, DBSCAN maintains its topic segment distribution

behavior, entailing that the topics with a higher number of segments are incorrectly clustered.

Taking into account that the joint model approaches do not require a target number of topics, we want to

compare them with algorithms with similar characteristics. Therefore, we consider the results of the follow-

ing algorithms as a baseline: DBSCAN (Biography), and Louvain (News, AVL, and Physics). Given that

three out of five of the baselines correspond to the results of a graph-community detection-based algorithm,

it indicates that this approach was effective.
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Biography News AVL Physics

Algorithm T L T L T L T L

Clustering
Agglomerative 405 119 220 110 17 13 135 99

k-means 405 331 220 104 17 15 135 113
Spectral 405 151 220 52 17 13 135 43

DBSCAN 674 481 132 110 4 0 454 420

GCD

Bigclam 584 389 209 154 45 32 325 214
Leading Eigenvector 189 10 209 37 5 0 32 0

Label Propagation 131 18 121 46 3 0 16 6
Louvain 200 14 216 47 7 0 48 4

Fast Greedy 190 14 225 67 5 1 27 1
Walktraps 274 99 220 70 6 0 98 28

CNM 234 54 209 50 4 0 30 2

Reference 405 112 220 50 17 5 135 53

Table 6.2: Number of total and local identified topics (T and L columns) by the clustering and graph-
community detection algorithms. Local topics represent topics that are only assigned one segment.

6.2 Joint Model Approach to Topic Identification

We now describe the topic identification experiments using a join model approach. The goal of the

experiment is two-fold: study how different BeamSeg prior combinations perform in this task and determine

if better results than the pipeline approach can be obtained.

6.2.1 Experimental Setup

The experimental setup is similar to the pipeline approach. We use the same datasets and the B3 metric

for evaluation. We also evaluate the topic identification performance of MultiSeg, which is, to the best of

our knowledge, the only joint model for segmentation and topic identification in the literature.

6.2.2 Experimental Results

We first analyze the results in Jeong and Titov (2010) datasets (Table 6.3). The B3 scores show that

none of the joint models obtains better results than the pipeline approach. The differences to the baseline

are 0.12, and 0.02 for the Biography, and News domains, respectively.

Comparing the joint models, we can see that BeamSeg always performs better. In the Biography and

News domain, BeamSeg outperforms Multiseg by 0.02 and 0.16. From the BeamSeg results, we can also

observe that different prior configuration work better in different domains. For example, the dynamic LM



6.2. JOINT MODEL APPROACH TO TOPIC IDENTIFICATION 95

priors perform better in the News domain but in the Biography domain the independent LM is better. Overall,

using the Beta-Bernoulli affords better results. The exception is the News domain. Relating these results

to the segmentation task, we conclude that performing worse in the segmentation task might not translate

to worse topic identification results. This is the case of the Biography and News domains, where MultiSeg

obtains better segmentation but BeamSeg affords better topic identification.

LM Prior SL Prior Biography News

Independent
Beta-Bernoulli 0.51±0.11 0.60±0.10

Gamma-Poisson 0.37±0.10 0.62±0.10

Dynamic
Beta-Bernoulli 0.54±0.06 0.57±0.09

Gamma-Poisson 0.53±0.06 0.60±0.08

MultiSeg 0.52±0.11 0.43±0.12

Baseline 0.66±0.08 0.64±0.11

Table 6.3: Joint models B3 scores in Jeong and Titov (2010) datasets.

In Table 6.4, we can see the differences between the joint model approaches in the number of identified

topics and the reference. The same behavior patterns observed in the pipeline experiment also occur in

this case. That is, test cases where the number of identified topics is much higher than the reference also

have a high number of local topics. This occurs in MultiSeg, which for all domains identified more topics

than the reference. Such a high number of local topics explains the worse performance of MultiSeg when

compared to BeamSeg in the topic identification task since each local topic that is not in the reference

does not have relations to other segments. This contrasts with BeamSeg which identifies fewer topics and

clusters more segments in each topic, affording a better topic identification performance. Comparing the

identified topics between different prior configurations, we can see different behaviors across the domains.

For the Biography domain, using the dynamic prior allows more topics to be identified when compared to the

independent prior, which better matches the reference. This correlates with the differences in segmentation

described previously. It turns out that the dynamic LM prior is making BeamSeg output many single segment

document, many of which originate a local topic. When using the independent version, more segments can

be obtained and correctly assigned the same topic, providing better topic identification results.

Table 6.5 depicts the average B3 scores of the joint models in the topic identification task. BeamSeg

obtains the best results, improving the B3 score of the pipeline approach by 0.02 and 0.03, for the AVL

and Physics domains, respectively. The result improvements are higher when compared with MultiSeg,

0.1 for both domains. Comparing the results of different prior configurations, we can see that, in the AVL
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Biography News

LM Prior SL Prior T L T L

Independent
Beta-Bernoulli 130 21 336 103

Gamma-Poisson 76 22 137 64

Dynamic
Beta-Bernoulli 239 101 206 127

Gamma-Poisson 289 79 203 130

MultiSeg 734 264 542 70

Reference 405 112 270 50

Table 6.4: Total number of identified topics by the joint model approaches.

domain, three different configurations obtain the best results. For the Physics domain, a higher range of

result differences can be observed. From these differences, we can see that the Beta-Bernoulli prior works

better at the modality scope and when using an independent LM prior. This is different in the Gamma-

Poisson case, where the best performance is achieved when using the SL prior at the modality level with the

dynamic LM prior. Therefore, particular interactions between the different types of priors exist, and, thus,

choosing the correct configuration is critical to obtain the best performance in the topic identification task.

This relates to the previous segmentation results where the performance patterns are similar.

LM Prior SL Prior Scope AVL Physics

Independent
Beta-Bernoulli

D 0.35 0.36±0.05

M 0.39 0.38±0.06

Gamma-Poisson
D 0.38 0.35±0.03

M 0.36 0.37±0.05

Dynamic
Beta-Bernoulli

D 0.39 0.30±0.04

M 0.32 0.34±0.05

Gamma-Poisson
D 0.38 0.31±0.02

M 0.39 0.41±0.06

MultiSeg 0.29 0.30±0.03

Baseline 0.37 0.38±0.06

Table 6.5: Joint models B3 scores in the AVL and Physics domains.

From the number of topics identified by the joint models in Table 6.6, we can see that MultiSeg behaves

differently in these domains. The difference is that now it identifies fewer topics than the ones in the

references and most of them are not local topics. The distribution of the segments among the topics is

balanced with many segments being assigned to the same topics. Given MultiSeg’s underperformance,

this means many segments incorrectly share the same topic. In what respects BeamSeg, the best prior



6.2. JOINT MODEL APPROACH TO TOPIC IDENTIFICATION 97

configuration has a number of identified topics closer to the reference than MultiSeg but it still identifies

fewer topics. This BeamSeg configuration identifies 7 and 65 fewer topics than in the references for the AVL

and Physics domains, respectively. Other prior configurations are able to get a closer number of identified

topics to reference but the B3 scores are worse. For example, using a dataset scope instead of modality in

the Physics domain allows for topics to be identified with a difference of just two topics to the reference.

The problem is that the dataset prior originates more segments than the ones in the reference, which ends up

being a source of topic identification errors. When using the modality SL prior the number of segments is

lower and the topic identification is more accurate, explaining the better results.

AVL Physics

LM Prior SL Prior Scope T L T L

Independent
Beta-Bernoulli

D 9 2 80 30
M 6 2 56 19

Gamma-Poisson
D 5 0 48 18
M 8 0 132 32

Dynamic
Beta-Bernoulli

D 18 7 146 20
M 11 4 116 40

Gamma-Poisson
D 16 4 137 37
M 10 3 70 28

MultiSeg 8 0 59 9

Reference 17 5 135 53

Table 6.6: Total number of identified topics by the joint model approaches.

The conclusion from these experiments is that the proposed BeamSeg model is effective for topic iden-

tification in domains with prevalent topic development throughout the segments of the documents. This is

the case of the AVL and Physics domains where BeamSeg obtains the best results out of all bench-marked

algorithms. This is inline with the segmentation results and provides evidence that the tasks are related

and should be modeled jointly since better results can be obtained. To achieve the best performance, it is

necessary to use a combination a dynamic LM prior with a Gamma-Poisson SL prior at the modality level.

Therefore, the proposed modeling assumptions fit well with the data. For the Biography, and News domains,

the pipeline approach is more suitable. Our proposed graph-community detection algorithm obtains the best

results for the News domain, and DBSCAN in the Biography domain.
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6.3 Qualitative Analysis

We now perform a qualitative analysis of the topic identification results. We provide visual examples

with different prior configuration to better understand the behavior of BeamSeg.

Figure 6.1 provides topic identification examples from biography documents of Amelia Earhart for

the different BeamSeg prior configurations. One can observe that most of the time BeamSeg prefers to

output topics that follow a similar order in all documents of the dataset. This assumption is explicitly made

in dynamic LM prior but also occurs for the independent version since it actually matches the reference

data. As mentioned before, in the Biography domain, the independent LM prior outputs few segments.

The consequence for the topic identification task is that many of the topics are already merged because they

belong to the same segment (Figures 6.1a and Figure 6.1c). When using a dynamic LM prior more segments

emerge, making more room for cross-document topic identification (Figures 6.1b and Figure 6.1d). For

example, the dark green segments in Figure 6.1a from D2 and D3 align the topics from the reference well

but mix unrelated topics. As more segments are identified in the hypothesis, the topic alignments with the

reference are maintained, and, consequently, more topics are correctly identified. This can be observed in

Figure 6.1a by looking at the same utterance span as before. In this case, the light blue topic has an accurate

match in the reference. This is the main difference in the quality of the topic identification between these

prior configurations. When comparing the Gamma-Poisson and Beta-Bernoulli SL priors with the dynamic

LM we see that the topic identification does not differ significantly, which is inline with the close B3 scores.

Therefore, the quality of the topic identification is related to the accuracy of the segmentation.

Figure 6.2 provides topic identification examples in four documents from the Physics dataset with the

‘Frictional Forces’ subject. The examples show the different possible prior configurations using the Gamma-

Poisson since it obtains the best performance. When using the independent LM prior, the topic identification

patterns are similar to the ones observed in the Biography domain. The identified segments tend to follow

the same topic ordering (Figure 6.2a). Looking at the examples with a dynamic LM prior we can see

that combining it with a modality SL prior affords more accurate results than the dataset-based SL prior.

For example, the last segments of D1 and D3 are only correctly identified when using the modality prior.

Another example is the last two segments of the reference from D4. BeamSeg merges these segments both

in the dataset and modality SL priors cases. The difference is that in the former this segment shares the same

topic with another segment from D3, whereas in the latter it is correctly identified as a local topic. Another

observation we made while examining the different topic identification outputs is that the topic structure in

the Physics and AVL domains have a higher complexity than in Jeong and Titov (2010)’s datasets. By this,
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Figure 6.1: Topic identification examples in the Biography domain.
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Figure 6.2: Topic identification examples in the Physics domain.

we mean that the topics sequences vary more across the different documents. This, coupled with documents

that are harder to segment accurately and with our assumption that a shared topic order between documents

exists, explains the worse results in the topic identification task for the AVL and Physics domains.
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In this thesis, we studied how lexical-cohesion manifest in the context of a collection of documents

describing similar topics, and hypothesized that its vocabulary relationships at the segment level could be

used to improve the text segmentation and topic identification tasks in a joint and multi-document perspec-

tive. Given the multi-document scenario, we also hypothesize that segment length characteristics tied to

document modality can be used to improve the results in these tasks. To test the previous hypothesis, it was

necessary to acquire gold standard data since existing datasets do not allow us to study this phenomenon at

a proper scale. To determine the extent of the advantages of a joint model we compared it with a pipeline

approach. For the pipeline approach, we proposed two extensions to single-document models to the multi-

document segmentation case (non-joint models) and a graph-community detection-based algorithm for topic

identification. In this context, our main proposal is BeamSeg, an unsupervised Bayesian joint model for text

segmentation and topic identification. By using a probabilistic approach, we can encode assumptions on

how input data was generated. The novel modeling assumptions we encode in BeamSeg match the hy-

pothesis we make in this thesis, and, thus, allows us to have a better grasp on how to answer our research

questions. Given the previous research context, we summarize our contributions and point to future work in

the following sections.

7.1 Contributions

Main contributions:

• We proposed BeamSeg, an unsupervised Bayesian joint model for segmentation and topic identifica-

tion. BeamSeg is a mixture model where it is assumed that lexical cohesion can be observed across

documents, meaning that segments describing the same topic use a similar lexical distribution over

the vocabulary.

• We proposed an incremental MAP optimization procedure to carry out inference under the BeamSeg

model that was shown to obtain adequate segmentations. We also explored a research line to apply

Variational Inference instead, but we concluded that this is not feasible in our setup.
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• We evaluated the proposed BeamSeg approach in available datasets and our collected learning ma-

terials. In the evaluation, we benchmarked several different state-of-the-art models, encompassing

different types of modeling approaches to segmentation and topic identification, and compared their

results to BeamSeg. The results show that BeamSeg obtained the best results, both in segmentation

and topic identification, in AVL and Physics domains. These are domains where segments develop

their corresponding topic more thoroughly, and, thus, more suitable to explore our target lexical co-

hesion phenomenon. The experimental setup also allowed to compare the impact of the proposed

dynamic language model and segment length priors. From the results, we can see that only by using

a dynamic language model and a modality based Gamma-Poisson segment length prior achieves the

best results. This argues in favor of both our hypothesis, that is, a joint approach that models that

vocabulary relationships between segments and segment length properties abstracted at the modality

level can improve text segmentation and topic identification.

Secondary contributions:

• We carried out a data collection task to obtain learning materials from different domains and modali-

ties. The dataset was manually annotated with segmentation boundaries and the corresponding topics

identified. This enables research in multi-document segmentation and topic at a scale that was not

possible before and in documents where segment topic development occurs more extensively. We

also carried out a human agreement study for both segmentation and topic identification. For the topic

identification task, this is, to the best of our knowledge, the first reported human agreement study.

The results show that it is possible, to some extent, to observe agreement between human judges for

both tasks. We found that the main cause for disagreement, are the different perceptions of what the

level of granularity should be (Mota et al., 2018b). Through this data annotation study, we also found

a phenomenon between segmentation and topic identification that had not been reported before. We

found that it is possible that segments tightly couple two topics that can also be observed disjointly in

other segments.

• We proposed an extension to the existing Bayesseg model for the multi-document case, Bayesseg-

MD. The extended approach searches for similar utterances in the dataset and adds the corresponding

word counts to segment likelihood estimations, making this a hybrid model with lexical similarity and

probabilistic features (Mota et al., 2016). This approach obtained comparable results to BeamSeg in

the AVL domain.

• We proposed an extension to the existing PLDA model for the multi-document case, PLDA-MD. This
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extension allowed us to study multi-document segmentation in a mixed-membership modeling per-

spective. From our Gibbs sampler derivations, we show that the multi-document aspect of PLDA-MD

amounts to adding the counts from all topic assignments when sampling for new topic assignments.

We take advantage of this setup to implement an algorithm that speeds up the Gibbs sampling proce-

dure by caching the topic sampling probabilities. To obtain a significant number of cache hits, it is

necessary to assume a fix scan order of the variables. This raises the question if the Gibbs sampler

convergence is affected. In our experiments, we compared random and fixed scan orders. The results

show that the convergence of the Gibbs sampler is similar in both cases, and, thus, we can use effec-

tively use the caching algorithm. The results show that improvements from the PLDA version could

be obtained in four out of five of the tested domains. For the AVL domain, the results are comparable

to the best performances.

• We studied how a pipeline strategy for segmentation and topic identification compares to a joint model

approach. In this context, we proposed an algorithm that given a segmentation assigns topic labels

to segments based on the output of graph-community detection algorithms. When compared to a

standard clustering algorithm, it was possible to obtain better results in three of the tested domains,

making it a viable approach in a pipeline scenario for topic identification (Mota et al., 2018a).

7.2 Future Directions

Given the presented results and conclusions of this thesis, we highlight the following higher priority

future directions:

• The rawest assumption we make in BeamSeg is that there is a shared topic ordering among all doc-

uments. Although this only happens to a certain extent in the datasets, it still allows us to make use

of a dynamic language model prior, which can improve segmentation and topic identification. The

results analysis indicates that many of the errors in these tasks stem from this assumption, and, thus,

BeamSeg can certainly benefit if the model is improved in this aspect. One way we can at least relax

this shared ordering assumption is by using the local/global topic mechanism from MultiSeg. This

way we would only apply the dynamic language model prior to global topics.

• The inference procedure that we presented for BeamSeg is a MAP estimation. Ideally, we want

to access the full posterior distribution during inference since it allows us to obtain more accurate

results. A possible research line is to follow the inference approach used by Goldwater et al. (2009)



104 CHAPTER 7. CONCLUSIONS

in a word segmentation task, a problem that infants must solve when acquiring a language. The

inference procedure uses a Hidden Semi-Markov approach. In this setup, a blocked Gibbs sampler

scheme is used, which means that a full utterance is randomly resampled instead of doing this at the

word level. To sample new word segmentation boundaries a forward-backward procedure is used.

The appeal in using this procedure is that it provides mixing efficiency by implicitly considering all

possible segmentations of the given utterance at the same time.

• BeamSeg assumes that there is no overlap between different topic segments. Although it does not

occur extensively, we do report that it is possible to find more than one topic in the same segments

and also find them individually in other segments. To model this type of interaction one could use a

mixed membership model. PLDA-MD does have such characteristics, and one possibility would be

to incorporate them in BeamSeg.

• The segmentation granularity has been an issue in this research area. For a given document, defining

segmentations with different granularity levels can make sense. To better study these differences, it is

necessary to gather enough annotations for different segmentation patterns to emerge. The next step

would be to organize the identified patterns in a hierarchical segment structure. This allows a more

precise evaluation since we would be able to characterize segmentation models according to how well

they match different possible paths in the hierarchy instead of a single segmentation reference.
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ANotation

In this Appendix, for convenience, we provide a summary of the variables and their corresponding

description for the derivations in the proposed models. The adopted notation for Bayesseg (Section 4.2.1),

PLDA-MD (Section 4.2.2), and BeamSeg (Section 4.4) are in Tables A.1, A.2, and A.3 respectively.

W Number of words in the vocabulary.
U Set of all utterance indexes.
u Utterance index.
S Segmentation of a document.
s Segment of a document.
su Segment assignment of utterance u.
xu Bag-of-words vector of utterance u.
X The set of all utterances in the document collection.
φ Per topic word probability distributions.
Φ Set of all per topic word probability distributions.
β Hyperparameter for the φ prior.
nsw Number of times word w occurs in s.

Table A.1: Notation used in Bayesseg.
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W Number of words in the vocabulary.
w Word index in the vocabulary.
u Utterance index.
Wu Number of words in sentence u.
z Topic assignments of words in all documents.
c Sentence segment boundary assignments in all documents.
φ Per topic word probability distributions.
θ Topic proportions of segments in all documents.
π Topic segment boundary probability of documents.
β Hyperparameter for the φ prior.
α Hyperparameter for the θ prior.
γ Hyperparameter for the π prior.
D Number of documents in the collection.
Ud Number of sentences in document d.
nd1 Number of sentences with c = 1 in document d.
nd0 Number of sentences with c = 0 in document d.
nD1 Number of sentences with c = 1 in document collection D.
nD0 Number of sentences with c = 0 in document collection D.
K Number of topics.
φk,w Probability of word w in topic k.
nkD,w Number of times word w was assigned topic k in D.
nkD Number of words assigned to k in D.
Su Segment index containing u.
Ud,1 Sentence indexes in d with c = 1.
θd,Su Topic proportions of segment Su from document d.
nkd,Su Number of words assigned to k in Su from d.
n.d,Su Total number of words in Su from d.
zd,wu,i Topic assignment of word wu,i from d.
z¬(d,wu,i) All word topic assignments except for word wu,i from d.
S0
u The Su segment resulting from the merge at utterance u.
S1
u The Su segment resulting from the split at utterance u.

Table A.2: Notation used in PLDA-MD.
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W Number of words in the vocabulary.
w Word index in the vocabulary.
U Set of all utterance indexes.
u Utterance index.
K Number of topics.
k Topic index.
xu Bag-of-words vector of utterance u.
X The set of all utterances in the document collection.
zu Topic assignment of utterance u.
z Topic assignments of all utterances in the document collection.
φ Per topic word probability distributions.
Φ Set of all per topic word probability distributions.
β Hyperparameter for the φ prior.
nkU,w Number of times word w is assigned topic k in all U utterances.
nkU Number of times topic k occurs in all U utterances.
αk Precision parameter of topic k.
φ̂k′w Mean language model word probabilities of topic k.
γ Variational parameters.
γkd,i Variational parameter of the ith word in d for topic k.
γDkw Sum of all kth components of the γkd,i variational parameters for all words that match w.
D Number of documents in the collection.
d Document index.
i ith word in some document d.
zd,i Topic assignment of the ith word in d.
z¬d,i All topic assignment except the ith word in d.
nDkw Number of times word w is assigned topic k in D.
n
Dk,¬d,i
w Similar to the previous, but excludes from the counts the ith word from document d.
nDk· Number of times topic k appears in D.

Table A.3: Notation used in BeamSeg.
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BPLDA-MD Derivations

We now work out the complete derivations of the Gibbs sampler for the PLDA-MD model. For con-

venience, we provide in Table A.3 a description of the used notation. The first step consists in deriving the

joint probability expression of the model, since it is one of the terms of the Gibbs sampling equations. From

the plate diagram in Figure 4.1 we get the following joint probability distribution for PLDA-MD:

p(w, z, c,Φ,Θ, π, β, α, γ) =p(w|z, φ)p(Φ|β)

p(z|Θ)p(Θ|c, α)

p(c|π)p(π|γ) (B.1)

Sampling all latent variables is a computationally expensive step given the number of variables in

PLDA-MD. To address this problem, we take advantage of conjugacy to integrate out1 some of variables,

building a collapsed Gibbs sampler. Conjugacy means that the posterior distribution is in the same family

as the prior. In this context, we first define the topic shift probability of documents, p(π|γ). These variables

are drawn from a Beta prior, and, assuming γ symmetric parameters2, its probability is defined as follows:

p(π|γ) =
D∏
d=1

Γ(2γ)

Γ(γ)2
πγ−1
d (1− πd)γ−1

=

(
Γ(2γ)

Γ(γ)2

)D D∏
d=1

πγ−1
d (1− πd)γ−1, (B.2)

where πd is the topic shift probability of document d and D is the size of the dataset.

p(c|π) is the probability of the utterances being a segment boundary, given the corresponding document

topic shift probability. Since these are Bernoulli distributed, we defined the expression according to:

p(c|π) =

D∏
d=1

π
nd1
d (1− πd)n

d
0 , (B.3)

1A process also referred as marginalization in the literature.
2All parameters have the same value.
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where nd1 is the number of utterance boundaries in document d, and nd0 is the number of non-utterance

boundaries. Since both Equation B.2 and B.3 use πd, we can join p(π|γ) and p(c|π) in a single expression:

p(c|π)p(π|γ) =

(
Γ(2γ)

Γ(γ)2

)D D∏
d=1

πn
d
1(1− π)n

d
0πγ−1
d (1− πd)γ−1

=

(
Γ(2γ)

Γ(γ)2

)D D∏
d=1

(πn
d
1+γ−1)(1− πnd0+γ−1) (B.4)

From Equation B.4 we can actually see that the two distributions are conjugate, because what we ob-

tained is also a beta distribution. The only thing missing is the normalizing constant B =
Γ(nd1+nd0+2γ)

Γ(nd1+γ)Γ(nd0+γ)
.

Therefore, if we add the normalizing constant and integrate with respect to π, we simplify the expression,

since integrating a distribution with respect to its parameters evaluates to one:

p(c) =

∫
p(c|π)p(π|γ)dπ (B.5)

=

(
Γ(2γ)

Γ(γ)2

)D D∏
d=1

1

B

∫
B(πn

D
1 +γ−1)(1− πnD0 +γ−1)dπd

=

(
Γ(2γ)

Γ(γ)2

)D D∏
d=1

Γ(nd1 + γ)Γ(nd0 + γ)

Γ(Nd + 2γ)

where Nd is the number of segments in document d. Note how π does not appear in Equation B.5, meaning

it is was integrated out.

Using an approach similar to the previous one, we can simplify the expression p(w|z,Φ)p(Φ|β). The

first factor is the probability of generating words w given the topics assignments z and language models Φ.

The second factor is the probability of the language models givens its prior β. Using the probability density

function definition of a Dirichlet distribution,

Dirichlet(β) =
Γ(
∑W

i=1 βi)∏W
i=1 Γ(βi)

, (B.6)

we define each of the factors, assuming symmetric β parameters:

p(Φ|β) =

(
Γ(
∑W

w=1 β)∏W
w=1 Γ(β)

)K K∏
k=1

W∏
w=1

φβ−1
k,w =

(
Γ(Wβ)

Γ(β)W

)K K∏
k=1

W∏
w=1

φβ−1
k,w (B.7)
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p(w|z,Φ) =

D∏
d=1

K∏
k=1

W∏
w=1

φ
nkd,w
k,w =

K∏
k=1

W∏
w=1

φ
nkD,w
k,w (B.8)

where K is number of topics, W the size of vocabulary, and nkd,w the number of times word w is assigned

topic k in document d. Similarly to before, we can note that Equations B.7 and B.8 are products over the

same sets and the same φk,w variables. Thus, we join both factors as follows:

p(w|z,Φ)p(Φ|β) =

(
Γ(Wβ)

Γ(β)W

)K K∏
k=1

W∏
w=1

φ
nkD,w+β−1

k,w (B.9)

The multinomial and the Dirichlet are conjugate distributions, thus the resulting distribution in Equa-

tion B.9 is also Dirichlet. In this context, we can integrate out Φ using C ′ =
(

Γ(Wβ)
Γ(β)W

)K
, and add in the

missing Dirichlet normalizing constant D′ =
Γ(

∑W
w=1 n

k
D,w+β)∏W

w=1 Γ(nkD,w+β)
:

p(w|z) =

∫
p(w|z,Φ)p(Φ|β)dΦ

= C ′
K∏
k=1

∫ W∏
w=1

φ
nkD,w+β−1

k,w dφk

= C
K∏
k=1

1

D′

∫
D′φ

nkD,w+β−1

k,w dφk

=
(Γ(Wβ)

Γ(β)W

)K K∏
k=1

∏W
w=1 Γ(nkD,w + β)

Γ(
∑W

w=1 n
k
D,w +Wβ)

=
(Γ(Wβ)

Γ(β)W

)K K∏
k=1

∏W
w=1 Γ(nkD,w + β)

Γ(nkD +Wβ)

The last factor we need to work out for the joint probability expression is p(z|Θ)p(Θ|c, α), which

models the interactions between the topic assignments z, topic proportions Θ, and segmentation c. These are

defined with multinomial and Dirichlet distributions, similarly to the language models Φ. Thus, integrating

out Θ follows the same pattern as before. The difference is that instead of counting the number of times a

words occurs under a topic, we count the number of times a topic occurs in a segment. Assuming symmetric
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prior parameters α, we define each of the factors as follows:

p(Θ|c, α) =
D∏
d=1

∏
u∈Ud,1

Γ(Kα)

Γ(α)K

K∏
k=1

θα−1
d,Su

(B.10)

p(z|Θ) =
D∏
d=1

∏
u∈Ud,1

K∏
k=1

θ
nd,Suk
d,Su

, (B.11)

where Ud,1 is the set of utterance indexes in d with cd,u = 1, Su is the segment index containing u, θd,Su

is the segment topic proportions of segment Su in d, and nd,Suk is the number of times topic k occurs in Su.

We can now integrate out Θ, with normalizing constants C = Γ(Kα)
Γ(α)K

, and D′ =
Γ(

∑K
k=1 n

t
d,Su

+α)∏K
k=1 Γ(nkd,Su+α)

:

p(z|c) =

∫
p(z|Θ)p(Θ|c, α)dΘ

= Cn
D
1

D∏
d=1

∏
u∈Ud,1

∫ K∏
k=1

θ
nkd,Su+α−1

d,Su
dθd,Su

= Cn
D
1

D∏
d=1

∏
u∈Ud,1

1

D′

∫
D′

K∏
k=1

θ
nkd,Su+α−1

d,Su
dθd,Su

= Cn
D
1

D∏
d=1

∏
u∈Ud,1

∏K
k=1 Γ(nkd,Su + α)

Γ(n.d,Su +Kα)

=
(Γ(Kα)

Γ(α)T

)nD1 D∏
d=1

∏
u∈Ud,1

∏K
k=1 Γ(nkd,Su + α)

Γ(n.d,Su +Kα)
(B.12)

where nD1 is the number of segments in the dataset D, and n.d,Su the total number of words in segment Su.

With the previous derivations we were able to get the expression for the joint distribution of the PLDA-

MD model. The next step in building the Gibbs sampler is to define what the sampling equations are for each

of the latent variables. After integrating out some of the latent variables, we are left with topic assignments

z and segment boundaries c. The Gibbs sampling equations works by sampling individual variables and the

the corresponding equation is the probability of the sampled variable given all the other ones. Applying this
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principle to z we get the following sampling equation:

p(zd,wu,i |z¬(d,wu,i), c,w) =
p(zd,wu,i , z¬(d,wu,i), c,w)

p(z¬(d,wu,i), c,w)

=
p(z, c,w)

p(z¬(d,wu,i), c,w)

=
p(c)p(w|z)p(z|c)

p(c)p(w|z¬(d,wu,i))p(z¬(d,wu,i)|c)

=
p(w|z)p(z|c)

p(w|z¬(d,wu,i))p(z¬(d,wu,i)|c)
(B.13)

where wu,i is the ith word in utterance u. The previous derivation starts by applying the conditional proba-

bility definition. The result is an expression with the joint probability in the numerator, and joint distribution

minus the sampled variable in the denominator. Then, we can note that p(c) does not involve the variable

we are excluding, zd,wu,i , and, thus, it appears both on the numerator and the denominator, canceling out.

The derivation follows by working on similar terms in the numerator and the denominator individually. For
p(w|z)

p(w|z¬(d,wu,i))
, the denominator and the numerator are very similar. Therefore, we expect to be able to can-

cel out many of the factors in the expression. For the remaining ones, we need to understand what are the

implications of removing zd,wu,i from the joint probability expression. These implications depend on what

the current value of the variable is and what is the value we are sampling. For z we define the new topic

value to be sampled as k′. Two scenarios are possible: k′ is the same topic as the current zd,wu,i , or it is a

different topic. We will first work out the case for which k′ and zd,wu,i are the same topic:

p(w|z)

p(w|z¬(d,wu,i))
=

(
Γ(Wβ)
Γ(β)W

)K∏K
k=1

∏Wu
i′=1

Γ(nkD,wu,i′
+β)

Γ(nkD+Wβ)(
Γ(Wβ)
Γ(β)W

)K Γ(nk
′
D,wu,i

+β−1)

Γ(nk
′
D+Wβ−1)

∏K
k=1,k 6=k′

∏Wu
i′=1

Γ(nkD,wu,i′
+β)

Γ(nkD+Wβ)

=

(
Γ(Wβ)
Γ(β)W

)K Γ(nk
′
D,wu,i

+β)

Γ(nkD+Wβ)(
Γ(Wβ)
Γ(β)W

)K Γ(nk
′
D,wu,i

+β−1)

Γ(nk
′
D+Wβ−1)

=
Γ(nkD,wu,i + β)Γ(nk

′
D +Wβ − 1)

Γ(nk
′
D,wu,i

+ β − 1)Γ(nk
′
D +Wβ)

=
(nk

′
D,wu,i

+ β − 1)Γ(nk
′
D,wu,i

+ β − 1)Γ(nk
′
D +Wβ − 1)

(nk
′
D +Wβ − 1)Γ(nk

′
D,wu,i

+ β − 1)Γ(nk
′
D +Wβ − 1)

=
nk
′
D,wu,i

+ β − 1

nk
′
D +Wβ − 1

, (B.14)

where Wu is the number of words in u, nk
′
d,wu,i

is number of times word wu,i was assigned topic k′ in d,
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and nk
′
D the number of times topic k′ appears in the dataset D. The previous derivation starts by separating,

in the denominator, the k′ counts from the product over K. This is because we need to remove the topic

assignment zd,wu,i from the counts, which explains why -1 appears on the factor regarding k′. Since all

other factors appear in the numerator and in the denominator, they cancel out. The final step is to use

Γ(n) = (n− 1)Γ(n− 1) to make the factors with Γ cancel out. It should be noted that this approach to the

derivations is going to occur in all derivations for the Gibbs sampling equation derivations. For simplicity,

we will gloss over some of these details from now on.

The other sampling case, zd,wu,i is currently assigned a topic different from k′, is similar:

p(w|z)

p(w|z¬(d,wu,i))
=

(
Γ(Wβ)
Γ(β)W

)K Γ(nk
′
D,wu,i

+β+1)

Γ(nk
′
D+Wβ)(

Γ(Wβ)
Γ(β)W

)K Γ(nk
′
D,wu,i

+β)

Γ(nk
′
D+Wβ−1)

=
Γ(nk

′
D,wu,i

+ β + 1)Γ(nk
′
D +Wβ − 1)

Γ(nk
′
D,wu,i

+ β)Γ(nk
′
D +Wβ)

=
(nk

′
D,wu,i

+ β)Γ(nk
′
D,wu,i

+ β)Γ(nk
′
D +Wβ − 1)

(nk
′
D +Wβ − 1)Γ(nk

′
D,wu,i

+ β)Γ(nk
′
D +Wβ − 1)

=
nk
′
D,wu,i

+ β

nk
′
D +Wβ − 1

, (B.15)

The difference for this second sampling case is that now we need to consider adding one to the topic

counts for k′ in the numerator since we are sampling for a different topic assignment than the one in the

current state. Finally, we generalize the two cases in a single equation, using the Kronecker δ function:

p(w|z)

p(w|z¬(d,wu,i))
=
nk
′
D,wu,i

+ β − δ(zd,wu,i , k′)
nk
′
D +Wβ − 1

(B.16)

Now we will work on the other factor for the Gibbs sampling equation of zd,wu,i ,
p(z|c)

p(z¬(d,wu,i)|z) . First,

we examine the case where the current topic assignment zd,wu,i is equal to k′. The derivations are similar to

the previous one, we just need to note that since we are excluding zd,wu,i in the denominator the only factor
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that will remain from the product is the one regarding segment Su:

p(z|c)

p(z¬(d,wu,i)|z)
=

(
Γ(Kα)
Γ(α)K

)nD1 Γ(nk
′
d,Su

+α)

Γ(n.d,Su+Kα)(
Γ(Kα)
Γ(α)K

)nD1 Γ(nk
′
d,Su

+α−1)

Γ(n.d,Su+Kα−1)

=
Γ(nk

′
d,Su

+ α)Γ(n.d,Su +Kα− 1)

Γ(n.d,Su +Kα)Γ(nk
′
d,Su

+ α− 1)

=
(nk

′
d,Su

+ α− 1)Γ(nk
′
d,Su

+ α− 1)Γ(n.d,Su +Kα− 1)

(n.d,Su +Kα− 1)Γ(n.d,Su +Kα− 1)Γ(nk
′
d,Su

+ α− 1)

=
nk
′
d,Su

+ α− 1

n.d,Su +Kα− 1
(B.17)

The other case, zd,wu,i is different from k′, follows the same approach:

p(z|c)

p(z¬(d,wu,i)|z)
=

(
Γ(Kα)
Γ(α)K

)nD1 Γ(nk
′
d,Su

+α+1)

Γ(n.d,Su+Kα)(
Γ(Kα)
Γ(α)K

)nD1 Γ(nk
′
d,Su

+α)

Γ(n.d,Su+Kα−1)

=
Γ(nk

′
d,Su

+ α+ 1)Γ(n.d,Su +Kα− 1)

Γ(n.d,Su +Kα)Γ(nk
′
d,Su

+ α)

=
(nk

′
d,Su

+ α)Γ(nk
′
d,Su

+ α)Γ(n.d,Su +Kα− 1)

(n.d,Su +Kα− 1)Γ(n.d,Su +Kα− 1)Γ(nk
′
d,Su

+ α)

=
nk
′
d,Su

+ α

n.d,Su +Kα− 1
(B.18)

Generalizing the two cases:

p(z|c)

p(z¬(d,wu,i)|z)
=
nk
′
d,Su

+ α− δ(zd,wu,i , k′)
n.d,Su +Kα− 1

(B.19)

Putting Equations B.16 and B.19 we obtain the full Gibbs sampling expression for z:

p(zd,wu,i = k′|z¬(d,wu,i), c,w) =
nk
′
D,wu,i

+ β − δ(zd,wu,i , k′)
nk
′
D +Wβ − 1

× (B.20)

nk
′
d,Su

+ α− δ(zd,wu,i , k′)
n.d,Su +Kα− 1

Having defined how to sample z, we are left with the hidden variables c. The general definition of the
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sampling equation is the following:

p(cd,u|c¬(d,u), z,w) =
p(cd,u, c¬(d,u), z,w)

p(c¬(d,u), z,w)

=
p(c, z,w)

p(c¬(d,u), z,w)

=
p(c)p(w|z)p(z|c)

p(c¬(d,u))p(w|z)p(z|c¬(d,u))

=
p(c)p(z|c)

p(c¬(d,u))p(z|c¬(d,u))
(B.21)

As before, we need to break down this expression according to the different sampling cases. We define

the new value we are sampling as c′. If c′ = 0 a merge occurs, and if c′ = 1 a split occurs. Also, for each of

these cases, we need to consider what the current value of cd,u is. We start with the scenario where c′ = 0

(merge) and the current value of cd,u is also 0. In this context, for the factor p(c)
p(c¬(d,u))

, with the constant

C ′ =
(

Γ(2γ)
Γ(γ)2

)D
, we obtain:

p(c)

p(c¬(d,u))
=

C ′
∏D
d=1

Γ(nd1+γ)Γ(nd0+γ)
Γ(Nd+2γ)

C ′
Γ(nd1+γ)Γ(nd0+γ−1)

Γ(Nd+2γ)

∏D
d′=1,d′ 6=d

Γ(nd
′

1 +γ)Γ(nd
′

0 +γ)
Γ(Nd′+2γ)

=
Γ(nd0 + γ)Γ(Nd + 2γ − 1)

Γ(Nd + 2γ)Γ(nd0 + γ − 1)

=
(nd0 + γ − 1)Γ(nd0 + γ − 1)Γ(Nd + 2γ − 1)

(Nd + 2γ − 1)Γ(Nd + 2γ − 1)Γ(nd0 + γ − 1)

=
nd0 + γ − 1

Nd + 2γ − 1
(B.22)

This previous derivation uses the same approach as before, but in this case we need to realize that by

excluding cd,u, the factor in the product over documents that remains is the one regarding d. Also, since

cd,u has a value of 0, we subtract one from the nd0 counts. The other case, cd,u is 1, is also very similar. The

only difference is that a -1 does not appears in the numerator. This happens because now the segmentation

changes with the merge of two segments. This was not the case before since we were sampling for the value

that cd,u already has. Generalizing both cases:

p(cd,u|c¬(d,u), z,w) =
nd0 + γ − δ(cd,u, c′)

Nd + 2γ − 1
(B.23)

For the other part of the Gibbs sampling equation, p(z|c)
p(z|c¬(d,u))

, assuming cd,u is 0 and using C ′ =
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(
Γ(Kα)
Γ(α)K

)nD1
we get:

p(z|c)

p(z|c¬(d,u))
=

C ′
∏D
d=1

∏
u′∈Ud,1

∏K
k=1 Γ(nkd,Su′

+α)

Γ(n.d,Su′
+Kα)

C ′
∏D
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∏
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∏K
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+α)

Γ(n.d,Su′
+Kα)

=

∏K
k=1 Γ(nkd,S0

u
+ α)

Γ(n.
d,S0

u
+Kα)

(B.24)

where S0
u is the resulting segmentation when considering c′ = 0, which matches the current segmentation.

The previous simplification stems from excluding segment Su in the denominator, making most of the

factors to cancel all out. The other case, in which cd,u is a boundary, leads to the exact same expression. The

difference is that an actually merge occurs, since cd,u is a boundary, but this merge matches S0
u.

Now we will work on the sampling the segment split, c′ = 1. The p(c)
p(c¬(d,u))

factor is similar to Equa-

tion B.22, the only difference is that we use nD1 instead of nD0 , since we are evaluating the probability of

getting 1 when sampling c′d,u. The final result is:

p(c)

p(c¬(d,u))
=
nD1 + γ − δ(cd,u, c′)

D + 2γ − 1
(B.25)

The factor p(z|c)
p(z|c¬(d,u))

, assuming cd,u is 1, results in the following expression:

p(z|c)

p(z|c¬(d,u))
=

(
Γ(Kα)
Γ(α)K

)nD1 ∏D
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∏
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u−1
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u
+ α)
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u
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(B.26)

where S1
u is the resulting segmentation when considering c′ = 1. Since we are dealing with a split case,

removing cd,u affects two segments, Su and Su−1, and, thus, we need to exclude their topic assignment

counts. This is why we end up with an extra fraction when compared to the merge case. When considering

the case cd,u not being a boundary, the exact same thing happens. Therefore, we can use Equation B.26 in

both situations.

Having finished all derivations for all factors and their possible sampling cases, we can put together the
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final Gibbs sampling equation for c:

p(cd,u = c′|c¬(d,u), z,w) =


nd0+γ−δ(cd,u,c′)

D+2γ−1

∏K
k=1 Γ(nk

d,S0u
+α)

Γ(n.
d,S0u
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Γ(α)K

∏K
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+α)

Γ(n.
d,S1u−1

+Kα)

∏K
k=1 Γ(nk

d,S1u
+α)

Γ(n.
d,S1u

+Kα) , c′ = 1



CDocument Segmentation

Annotation Instructions

Segmentation Study Instructions

Introduction

The goal of this research is to develop a system that helps students to browse learning materials 
efficiently. For example, when students are preparing for a physics exam and want to review the 
topic of kinetic energy they do not want to watch the full 1.5 hours video lecture. In the ideal case, 
students would only watch the portion of the lecture where this topic was covered. To this end, 
segmenting the lecture into individual topics is the first step in building such systems.

Topic Segmentation Guidelines

The annotation task you will perform consists of partitioning a set of learning materials (video 
lectures, HTML pages, Power Points, or PDFs) in a sequence of segments. This means that you 
need to identify places in the learning materials where a topic change occurs. After the identification
of these boundaries, a segment is then defined by the set of sentences between a pair of sequential 
boundaries.

The guidelines for the task are as follows:

1.  Every segment needs to be cohesive and self-contained.
Explanation: only mark a boundary when the topic change contributes to the understanding 
of the content organization of the document.

2. Determine if the annotated segment can be easily assigned a small description regarding the 
corresponding topic. Some examples of descriptions are “gravity”, “centripetal acceleration”,  or “a 
proof of Theorem A”

Explanation: assigning a topic description helps to make sure that the segments are really 
self-contained and cohesive. If you are having difficulties coming up with a topic 
description to distinguish it from previous segments, then the segment may be a continuation
of the previous segment.

3. It is not mandatory that visual text markers, such as bold titles for sections/subsections , match 
segment boundaries. You are free to combine or break the document at these markers if it is your 
understanding that this should be done.

Explanation: it is possible that a new section on a document starts but the topic segment 
continues.

4. Sentences referring a common concept can be used with different goals, thus, they might belong 
to different segments. Each segment is defined to convey a clear topic or goal, thus, it is necessary 
to ensure that the context in which a sentence is used matches the overall goal of the corresponding 
segment. 

Explanation: concept sharing does not indicate that the sentences must be in the same 
segment. For example, a document might have a segment detailing the concept of velocity 
and later use velocity in another segment about acceleration. 
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Document Segmentation Practical Example

Below we provide annotation examples of a document. The example is part of a video lecture 
transcript about Newton's Laws. The green strings denote expected document segments and the red 
string corresponds to unexpected segments. 

Example:

==========
You now know that you have to overcome inertia to get your bicycle moving, but what is it that 
allows you to overcome it?
Well, the answer is explained by Newton's Second Law.
In mathematical terms, Newton's Second Law says that force is the product of mass times 
acceleration.
To cause an object to accelerate, or speed up, a force must be applied.
The more force you apply, the quicker you accelerate.
And the more mass your bicycle has, and the more mass you have too, the more force you have to 
use to accelerate at the same rate.
This is why it would be really difficult to pedal a 10,000 pound bicycle.
And it is this force, which is applied by your legs pushing down on the pedals, that allows you to 
overcome Newton's Law of Inertia.
The harder you push down on the pedals, the bigger the force and the quicker you accelerate.
==========
Another question is why objects go forward when they start to move?
According to Newton's Third Law, for every action, there is an equal and opposite reaction.
To understand this, think about what happens when you drop a bouncy ball.
As the bouncy ball hits the floor, it causes a downward force on the floor.
This is the action.
The floor reacts by pushing on the ball with the same force, but in the opposite direction, upward, 
causing it to bounce back up to you.
Together, the floor and the ball form what's called the action/reaction pair.
Now when it comes to your bicycle, it is a little more complicated.
As your bicycle wheels spin clockwise, the parts of each tire touching the ground push backwards 
against the Earth: the actions.
The ground pushes forward with the same force against each of your tires: the reactions.
Since you have two bicycle tires, each one forms an action/reaction pair with the ground.
And since the Earth is really, really, really big compared to your bicycle, it barely moves from the 
force caused by your bicycle tires pushing backwards, but you are propelled forward.
==========

Explanation: the previous segmentation is acceptable because it reflects the two main topics of the 
document: Newton's 2nd Law and Newton's 3rd Law. Each of the segments clearly focuses on these 
topics, thus, they are cohesive and self-contained.

Counter example:

==========
You now know that you have to overcome inertia to get your bicycle moving, but what is it that 
allows you to overcome it?
Well, the answer is explained by Newton's Second Law.
In mathematical terms, Newton's Second Law says that force is the product of mass times 
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acceleration.
To cause an object to accelerate, or speed up, a force must be applied.
The more force you apply, the quicker you accelerate.
And the more mass your bicycle has, and the more mass you have too, the more force you have to 
use to accelerate at the same rate.
This is why it would be really difficult to pedal a 10,000 pound bicycle.
And it is this force, which is applied by your legs pushing down on the pedals, that allows you to 
overcome Newton's Law of Inertia.
The harder you push down on the pedals, the bigger the force and the quicker you accelerate.
==========
Another question is why objects go forward when they start to move?
According to Newton's Third Law, for every action, there is an equal and opposite reaction.
To understand this, think about what happens when you drop a bouncy ball.
As the bouncy ball hits the floor, it causes a downward force on the floor.
This is the action.
The floor reacts by pushing on the ball with the same force, but in the opposite direction, upward, 
causing it to bounce back up to you.
Together, the floor and the ball form what's called the action/reaction pair.
==========
Now when it comes to your bicycle, it is a little more complicated.
As your bicycle wheels spin clockwise, the parts of each tire touching the ground push backwards 
against the Earth: the actions.
The ground pushes forward with the same force against each of your tires: the reactions.
Since you have two bicycle tires, each one forms an action/reaction pair with the ground.
And since the Earth is really, really, really big compared to your bicycle, it barely moves from the 
force caused by your bicycle tires pushing backwards, but you are propelled forward.
==========

Explanation: the previous segmentation is not desirable because it is too fine grained. In the red 
segment case the annotator considered as a main topic applying Newton's 3rd Law to pedaling a 
bicycle. It should be considered that the goal of the bicycle example is to make the understanding of
Newton's 3rd Law easier, thus, it can be aggregated with the previous segment. 

Counter example:

==========
You now know that you have to overcome inertia to get your bicycle moving, but what is it that 
allows you to overcome it?
Well, the answer is explained by Newton's Second Law.
In mathematical terms, Newton's Second Law says that force is the product of mass times 
acceleration.
To cause an object to accelerate, or speed up, a force must be applied.
The more force you apply, the quicker you accelerate.
And the more mass your bicycle has, and the more mass you have too, the more force you have to 
use to accelerate at the same rate.
This is why it would be really difficult to pedal a 10,000 pound bicycle.
And it is this force, which is applied by your legs pushing down on the pedals, that allows you to 
overcome Newton's Law of Inertia.
The harder you push down on the pedals, the bigger the force and the quicker you accelerate.
Another question is why objects go forward when they start to move?
According to Newton's Third Law, for every action, there is an equal and opposite reaction.
To understand this, think about what happens when you drop a bouncy ball.
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As the bouncy ball hits the floor, it causes a downward force on the floor.
This is the action.
The floor reacts by pushing on the ball with the same force, but in the opposite direction, upward, 
causing it to bounce back up to you.
Together, the floor and the ball form what's called the action/reaction pair.
Now when it comes to your bicycle, it is a little more complicated.
As your bicycle wheels spin clockwise, the parts of each tire touching the ground push backwards 
against the Earth: the actions.
The ground pushes forward with the same force against each of your tires: the reactions.
Since you have two bicycle tires, each one forms an action/reaction pair with the ground.
And since the Earth is really, really, really big compared to your bicycle, it barely moves from the 
force caused by your bicycle tires pushing backwards, but you are propelled forward.
==========

Explanation: the previous segmentation is not desirable because it is too coarse. The annotator 
might be thinking in Newton's Laws in a more general sense. When reading the document it is 
possible to observe that the two segments are strong enough to exist by themselves, meaning that 
they have different goals.

Task instructions:

- Annotate each file in the $DIR folder with document segment boundaries. The boundaries 
of the topic segments are represented by the string “==========”. Please use this exact sequence 
of characters. You can copy this sequence from the beginning or the end of the document files.

- For each annotated segment boundary, indicate your level of certainty in the annotation. 
Use the character “C” if you are sure it is a correct segment boundary and the character “U” if you 
are uncertain. Finally, add a topic description of the segment as described in guideline 2.

- Open the link in the first line of each file in $DIR folder. The link contains the original 
format of the document (video, HTML page, Power Point, or PDF). When performing the 
annotation task the documents should be analyzed in their original format and the annotations done 
in the corresponding text file of the $DIR folder.

Using the previous practical example, a possible annotation is the following:

========== C Newton's 2nd Law 
You now know that you have to overcome inertia to get your bicycle moving, but what is it that 
allows you to overcome it?
Well, the answer is explained by Newton's Second Law.
In mathematical terms, Newton's Second Law says that force is the product of mass times 
acceleration.
To cause an object to accelerate, or speed up, a force must be applied.
The more force you apply, the quicker you accelerate.
And the more mass your bicycle has, and the more mass you have too, the more force you have to 
use to accelerate at the same rate.
This is why it would be really difficult to pedal a 10,000 pound bicycle.
And it is this force, which is applied by your legs pushing down on the pedals, that allows you to 
overcome Newton's Law of Inertia.
The harder you push down on the pedals, the bigger the force and the quicker you accelerate.
========== C Newton's 3rd Law
Another question is why objects go forward when they start to move?
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According to Newton's Third Law, for every action, there is an equal and opposite reaction.
To understand this, think about what happens when you drop a bouncy ball.
As the bouncy ball hits the floor, it causes a downward force on the floor.
This is the action.
The floor reacts by pushing on the ball with the same force, but in the opposite direction, upward, 
causing it to bounce back up to you.
Together, the floor and the ball form what's called the action/reaction pair.
========== U 3rd Law applied to bike pedaling
Now when it comes to your bicycle, it is a little more complicated.
As your bicycle wheels spin clockwise, the parts of each tire touching the ground push backwards 
against the Earth: the actions.
The ground pushes forward with the same force against each of your tires: the reactions.
Since you have two bicycle tires, each one forms an action/reaction pair with the ground.
And since the Earth is really, really, really big compared to your bicycle, it barely moves from the 
force caused by your bicycle tires pushing backwards, but you are propelled forward.
==========
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DTopic Identification

Annotation Instructions

Segment Relationship Identification
Study Instructions

Introduction 

The goal of this research is to develop a system that helps students to browse learning materials 
efficiently. For example, students preparing for a physics exam might want to find where the topic 
of kinetic energy is explained in different documents. The students do not want to skim all 
documents until they find this topic. In the ideal case, students would have the documents 
segmented by topic and similar segments from different documents grouped together. To this end,   
automatically identifying which segments are similar across different documents is a crucial step in 
building such systems.

Segment Relationship Identification Guidelines

The annotation task you will perform consists of identifying segments with similar content in a set 
of learning materials (video lectures, HTML pages, Power Points, or PDFs) . The segmentation of 
the documents is not part of this annotation task, it is given a priori. You only need to annotate 
which segments are similar to one another.

The guidelines for the task are as follows:

1. Segments sharing a common main topic should be annotated as being related.

Explanation: it is not expected that segments in a relationship have the exact same semantic
meaning. It is sufficient that they share a common main topic. For example, 2 segments can 
have the same main topic but one covers it in much more detail than the other.

2. It is sufficient that segments share a single main topic to annotate them as related.

Explanation: segments can have more than one main topic.

3. Determine if the annotated segment relationship can be easily assigned a small description 
regarding the corresponding topic. Some examples of descriptions are “gravity”, “centripetal 
acceleration”, or “a proof of Theorem A”.

Explanation: assigning a topic description helps to group segments that share  the 
same main topic. If you are having difficulties coming up with a topic description which is 
different from existing descriptions, then the segments probably belongs to an existing 
group.

4. Segments may not have any relationship with any other segment.

Explanation: some segments have topics that only relate with their corresponding 
document. For example, course related information such as homework deadlines.

Segment Relationship Identification Practical Example 

Below we provide annotation examples. The examples are from documents about Newton's Laws. 
The green strings denote related segments and the red strings correspond to unrelated segments. 
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Example:

==========
Newton's Laws:
1) If an object is under a zero net force, it is either stationary or if moving, it moves at constant 
velocity. Note that constant velocity means constant speed plus constant direction that means along 
a straight line.
2) A nonzero net force Σ F acting on mass M causes an acceleration a in it such that Σ F = Ma.
The acceleration has the same direction as the applied net force.
3) There is a reaction for every action, equal in magnitude, but opposite in direction.
==========

==========
Newton’s 2nd law - A net force acting on a body causes the body to accelerate in the same direction 
as the net force.
If the magnitude of the net force is constant, then the magnitude of the acceleration is also constant.
In fact, the magnitude of the acceleration is directly proportional to the magnitude of the net force 
acting on the body. These conclusions about net force and acceleration also apply to a body moving 
along a curved path…
...
Stating Newton's 2nd law
If a net external force acts on a body the body accelerates.
The direction of acceleration is the same as the directions of the net force.
The mass of the body times the acceleration of the body equals the net force vector.
Using Newton's second law…
...
==========

Explanation: the previous segments should be marked as related. Note that that first segment is a 
summary of Newton's laws. It can be considered that it has 3 main topics (one for each law). The 
second only explains Newton's 2nd law but with much more details.  This shows that segments only 
need to share one of the main topics to be considered related. They are also considered related even 
if they explain a main topic at different level (summary vs. detailed explanation).

Counter Example:

==========
Newton’s 2nd law - A net force acting on a body causes the body to accelerate in the same direction 
as the net force.
If the magnitude of the net force is constant, then the magnitude of the acceleration is also constant.
In fact, the magnitude of the acceleration is directly proportional to the magnitude of the net force 
acting on the body. These conclusions about net force and acceleration also apply to a body moving 
along a curved path…
...
Stating Newton's 2nd law
If a net external force acts on a body the body accelerates.
The direction of acceleration is the same as the directions of the net force.
The mass of the body times the acceleration of the body equals the net force vector.
Using Newton's second law…
...
==========
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==========
Newton's First Law: Consider a body on which no net force acts.
If the body is at rest, it will remain at rest.
If the body is moving with a constant velocity, it will continue to do so.
Example: Consider a cart on the air track.
The cart is floating on the track with no friction.
The net force on the cart is zero.
• If the cart is at rest, it remains stationary.
• If I give the cart a push it will move with constant velocity.
P Newton's Law is valid only in an inertial reference frame, a frame that is not accelerating, e.g. a 
powerless spacecraft far away from all planets (good example) or close to the surface of the Earth 
(good approximation).
Any frame that is moving at constant velocity with respect to an inertial frame is also an inertial 
frame.
==========

Explanation: the previous segments are not related. Despite both describe Newton's Laws, the 
former specifically describes Newton's 1st law, whereas the later specifically describes Newton's 2nd 
law, thus, they have different main topics.

Task instructions:

- In the provided zip file, each of the directories starting with the letter L contains a 
document for which segment relationships must be annotated. In each document directory, you will 
find a *_full_doc.txt file containing the full textual representation of the document. You will also 
find *_segX.txt files containing the individual segments of the documents. To annotate that 2 
segments are related, copy the corresponding files to a common directory under the 
seg_relations_annotation directory. Note that you need to create these directories. For example, for 
the first segment of the first document you have to create a directory and copy the corresponding 
file to it. Later, in another document, if you find a related segment you just need to copy it to the 
previously created directory. The name of the directories should follow guideline 3. That is, some 
possible directory names would be gravity or centripetal_accelaration.

- We strongly suggest that the annotation of the segments relationships of a document is 
done sequentially. When you annotate a document you must start in the first segment and annotate 
all the following ones. This means you cannot annotate segments from one document and move to 
other segments in other documents before finishing the current one. This ensures that the context in 
which a segment occurs is taken into account.

- Open the link in the first line of each *_full_doc.txt file. The link contains the original 
format of the document (video, HTML page, Power Point, or PDF). When performing the 
annotation task the documents should be analyzed in their original format.
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