
Style-Specific Phrasing in Speech Synthesis
Alok Parlikar

CMU-LTI-13-012

Language Technologies Institute
School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

Thesis Committee

Alan W Black
Carnegie Mellon

Florian Metze
Carnegie Mellon

Ian Lane
Carnegie Mellon

Kishore Prahallad
IIIT Hyderabad, India

Submitted in
partial fulfillment
of the requirements for
the degree of Doctor of Philosophy
in Language and Information Technologies

©2013, Alok Parlikar



Abstract
People pause between words and sentences when they speak. They pause
to emphasize content, or to make an utterance more understandable, or
just to take a breath. A speech synthesizer should also insert similar pauses
to sound natural.

The process of inserting prosodic breaks in an utterance is called
Phrasing. Phrasing is a crucial step during speech synthesis because other
models of prosody depend on it. Phrasing also helps characterize styles of
speech, and synthesizers must adapt their phrasing to different speaking
styles.

This thesis presents a data-driven grammar-based approach that can
be used to build style-specific phrasing models. We automatically label
phrase breaks from speech data and use features over acoustic syntax in our
modeling. Experimental results, both objective and subjective, show that
these models are better than the prior state-of-art across various speaking
styles.

This thesis presents a minimum error-rate training approach to im-
prove the phrasing models by optimizing them directly towards the evalu-
ation criterion: the F-measure. This framework also allows us to define a
knob that can be used to vary the number of phrase breaks produced in
an utterance. This can be useful when changing the speaking rate.

This thesis also discusses modeling not just the placement of phrase
breaks, but also their duration. Corpus analysis shows that durations of
breaks vary quite significantly between different styles, and we present
methods with which this variation can be captured in a way that is percep-
tually better.

The presented phrasing methods can have a broader impact on intona-
tion models and can enhance the intelligibility of the synthesis of machine
translation output. These methods can also be extended to “low-resource”
scenarios, such as when building voices for uncommon languages, or for
languages that do not have a standardized orthography.
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1
Introduction

A story is told as much by silence as
by speech.

Susan Griffin

T
he ultimate objective of a speech synthesizer is to pass the Tur-
ing test: the speech that it generates be indistinguishable from
human speech. There are two broad hurdles for synthetic speech

in passing this test: (i) Spectral similarity to a human voice, and (ii) Pre-
sentation in an appropriate style of speech. Significant research has been
devoted to achieving acoustic naturalness in speech. The Blizzard Chal-
lenge (Black and Tokuda, 2005) and its results over the past several years
have shown that synthetic voices can sound very natural, and sound like
the target speaker. As synthetic voices sound more and more natural, peo-
ple start becoming less forgiving about errors in speech synthesis. Natural
sounding speech that is presented in an inappropriate style can annoy
listeners, require increased listener effort, or even reduce intelligibility
of content. Thus the problem of synthesizing with appropriate speaking
style needs to be thoroughly addressed now.

1



1.1. Speaking Styles 2

1.1 Speaking Styles

The very notion of speaking style is a nebulous one (Hirschberg, 2000).
Different people have their own general speaking style. But the same
person could adopt different styles when reading passages from different
genres of text. The speech style could also vary depending on the task
at hand. For example, if somebody were to dictate a certain text from a
play to a typist, their style could be different from if they were actually
enacting the play.

Labov (1964, 1972) has suggested that speaking style changes as a func-
tion of the attention that the speaker pays to his discourse. Although the
cause of this change is related to the social setting of a discussion, there are
constant variations in the style. Joos (1968) and Zwicky (1972) suggested
that styles vary based on the casualness of the speaker in the given setting.
Eskenazi (1993) explored and related the work on speaking styles and pro-
vided a data-driven definition to “speaking styles”. According to her, style
reflects the action of the environment upon the speaker, and the speaker
upon the environment. It is also a projection of the speakers’ projection
of themselves, their background, and is a setting of the type and tone of
the conversation they wish to have. The style is a result of conscious and
subconscious effort on their part, and is not always perceived in the same
way as it was intended. Some styles are easier than others for some people
to express, and for some to perceive.

There are several dimensions in which speaking styles vary. Picheny
et al. (1986); Chen (1980); Browman and Goldstein (1990); Labov (1964);
Bladon et al. (1987); Granström (1992); Krull (1989); Duez (1992); Lind-
blom (1990) have suggested that there are acoustico-phonetic variations in
style, as evident by the manifestation of consonants and vowels. Picheny
et al. (1985); Gimson (1989); Browman and Goldstein (1990); Picheny et al.
(1986); Labov (1964); Eskenazi and Lacheret-Dujour (1991) have shown
evidence for phonological changes as style varies. These include phoneme
insertion, phonological reduction, consonant deletion, etc. Word stress,
pronunciation, sentence structure, and intelligibility also varies with the
choice of speaker’s style. Bruce (1995); Ayers (1994); Barry (1995); Kohler
(1995); Blaauw (1992); Touati (1995); Parlikar and Black (2011) have ob-
served that under different speech contexts, the voice quality, timing,
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intonation contour, pitch accents and phrasing all vary in speech.
A truly style-specific speech synthesizer should be able to produce

speech with all the variations that we find in natural speech. This thesis
addresses variations in style along one of the prosodic dimensions: phrase
breaks in speech.

1.2 Phrase Breaks

Silverman et al. (1992) suggests that phrase breaks can be classified into
multiple levels. One of the most prominent and frequent levels is a
pause. People pause every now and then when they speak. These pauses
are sometimes physiological and sometimes reflect cognitive processes.
Speech production is a complex motor activity involving many organs at a
time, and physiological limitations make it impossible to produce speech
continuously. Physiologically inevitable pauses regularly occur with the
breathing cycle. Speech production is also a rhythmic activity where word
groups are produced at particular rates, and this also contributes to regular
placement of pauses. Further, individual physiological constraints, such
as strength and capacity of lungs, muscular tone and articulatory rate
affect the number of pauses. Goldman-Eisler (1961) suggests that pauses
are an external reflection of some of the cognitive activities involved in
speech production. This activity could be on the part of the speaker
(thinking before delivering a clear message), or on part of the listener
(giving listeners time to assimilate what was just spoken). Grosjean and
Deschamps (1975) have shown that the number of pauses is affected by
the complexity of a communicative task.

Phrase breaks in natural speech are important: they are physiologically
essential, help emphasize the right content, and improve the intelligibility
of speech. However, in synthetic speech, these breaks are even more
important.

A typical speech synthesizer consists of a cascade of several modules.
Given a text form of an utterance, the text processing module expands
tokens into words, and makes choice about the pronunciation of words
based on their context. Prosody is generated by a combination of multiple
models: the phrasing model, the duration model and the intonation
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model. This is then combined with spectral prediction to produce actual
waveform speech.

Phrasing module is typically the first among various prosodic models,
and it makes decisions about where breaks should go in the speech to
be generated. This information is used by the other models of prosody.
Because a phrasing model lays out foundation of synthetic prosody, a style-
specific phrasing model is essential to produce speech in the desired styles.
This thesis addresses the important problem of building a style-specific
phrasing model.

1.3 Data-Driven Phrasing

The main problem associated with building “stylized” phrasing models is
the effort required in eliciting sufficient training data. Phrasing models
are typically trained on text corpus that is hand-annotated with breaks.
In order to train a style-specific phrasing model, one would have to obtain
manual annotations of phrase breaks over each of the styles we would
like to handle. Linguistic annotations can be expensive. The investment
(time, effort) required in getting such annotations would be prohibitive of
building style-specific models for every synthetic voice that we build.

Our proposal in this thesis is to use data-driven techniques to gather
training data for phrasing models. We shall see that not only is such an
approach feasible, but it is also extensible to low-resource scenarios, such
as in building phrasing models for new languages.

1.4 Thesis Statement

Style-specific phrasing is useful, novel, and feasible with the help of data-
driven techniques. It is perceived by people as being better. It helps
improve other models of prosody. It can make the synthesis of machine
translation output more intelligible. Methods proposed in the thesis are
extensible to low-resource scenarios.
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1.5 Thesis Contributions

The work in this thesis is set within the framework of the Festival (Black
and Taylor, 1997) speech synthesis engine. The research and development
contributions are:

• A Data-Driven Grammar-Based Phrasing Model. See Chapter 2 and
(Parlikar and Black, 2011).

• A Minimum-Error-Rate training approach to Phrasing. See Chap-
ter 3 and (Parlikar and Black, 2013).

• Analysis and Modeling of duration of phrase breaks. See Chapter 4
and (Parlikar and Black, 2012b).

• Methods for improved synthesis in the context of speech to speech
translation. See Chapter 5 and (Parlikar et al., 2010).

• Extension of presented methods to apply them under low-resource
conditions. See Chapter 6 and (Parlikar and Black, 2012a).

• TestVox: An open-source, web-based subjective evaluation frame-
work. See Appendix A.
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2
Phrase Break Prediction

A pause in the wrong place, an
intonation misunderstood, and a
whole conversation went awry.

E. M. Forster
Passage to India

P
eople pause between words when they speak. They pause to em-
phasize something, or to make their utterance more understand-
able, or quite often, just to take a breath. A speech synthesizer

should also pause in a similar manner. Appropriate pauses can enhance
the intelligibility of speech and make it sound more natural. The process
of determining where a synthesizer should insert these pauses is called
phrase break prediction, or phrasing. Since phrase breaks happen at word
boundaries, phrasing can also be defined as classifying each of the word
boundaries in text as being a break, or a non-break.

Phrasing is a crucial step during speech synthesis. It breaks long utter-
ances into meaningful units of information, and often resolves ambiguities
in text, thereby making it more understandable. More importantly, in
a typical speech synthesizer, phrase breaks lay the foundation required

6



Phrase Break Prediction 7

by other models of prosody, such as accent prediction (Hirschberg, 1993;
Ross and Ostendorf, 1996) and duration modeling (van Santen, 1994).
Any errors made in the initial phrasing step may get compounded by the
other models and result in synthetic speech that either sounds unnatural,
or is difficult to understand.

Phrase breaks are diverse: there is no one-single correct way to phrase
some given text. Different people may phrase the same text differently.
Different genres of text may lead a speaker to adopt different phrasing
styles. Different languages may have inherently different phrasing pat-
terns.

Prahallad et al. (2010) have shown that prosodic phrase breaks are
specific to a speaker. In fact, some speakers have an extremely unique
phrasing style. Two striking examples are the politicians: Barack Obama
(44th president of the United States), and Atal Bihari Vajpayee (10th
prime minister of India). In an informal experiment, we took short
audio clips from recordings of Obama’s speech and de-lexicalized them by
changing the spectra in all syllables to correspond to the sound ‘ma’. This
transformed speech was played to a class of undergrads at Carnegie Mellon,
and students were asked to identify the speaker. The students were able
to unanimously identify the correct speaker, and the general consensus
of their feedback was that they could identify it primarily because of the
phrasing patterns. Figure 2.1 shows the phrasing profile of two speakers
when reading the same text. This text was the output of a Chinese-English
machine translation system. This plot shows the probability of different
phrase lengths, i.e., probability of x words between two consecutive
pauses. The profiles of the two speakers are quite different, thereby
supporting the hypothesis that phrase breaks are speaker specific.

The style of phrase breaks can also depend on the domain of the text
at hand. For example, a speaker may phrase differently when reading a
book, compared to when reading a news article. Example of this phe-
nomenon can be seen in Figure 2.2. The phrasing profiles compared here
are analyzed from the same speaker, recording two different types of text.
In one case the recording is of isolated sentences taken from the arctic
prompts. In the other case, the recording is of isolated sentences taken
from the transcripts of EuroParl proceedings. We can see that the phrasing
profiles for different types of text, even with the same speaker, are quite
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Figure 2.1: Phrasing profiles of two speakers reading the same text.
Evidence that phrasing is speaker specific.
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Figure 2.2: Phrasing profiles of one speaker (AUP) reading text in two genres.
Evidence that phrasing depends on genres.

Kim and Oh (1996) have noted that faster speech tends to have fewer
phrase breaks. Frota and Marina (2007) have suggested that language-
particular preferences also influence phrasing patterns. All this evidence
leads us to infer that phrasing styles are different in different situations.

Speech synthesizers need to adapt their phrasing model to specific
speakers and speaking styles. Typical synthesizers today, such as the
Festival speech synthesis system (Black and Taylor, 1997) use a generic
phrasing model trained on one particular corpus of hand-annotated breaks.
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The style of this phrasing model is not always appropriate for the voices
we build. In situations where this generic phrasing model is inappropriate,
intonational models such as (Anumanchipalli et al., 2011) are unable to
appropriately capture stylistic prosody. We thus need a method to build
phrasing models targeted towards the voice that we intend to build.

Phrasing models have typically been built from large corpora of manu-
ally annotated breaks. If we want a targeted phrasing model for each voice
that we build, it would be a difficult exercise to find hand-annotated cor-
pora of breaks appropriate to the required style. In fact, such corpora may
not even exist for specific styles or languages we want to target. We thus
require a method to train data-driven phrasing models using unsupervised
learning methods.

We have proposed a novel grammar-based phrasing method to build
style-specific phrasing models. Our method generates phrasing models
that are accurate, style-specific, and completely data-driven. In this chapter,
we shall look at the details of our proposed method and study how well it
performs to baseline methods both objectively and subjectively. Later on,
in Chapter 6 we shall look at how we can improve upon this method in
order to build phrasing models when dealing with voices in resource-poor
languages.

2.1 Previous Phrasing Techniques

To build and evaluate phrase prediction models, we need text data that
is annotated with breaks. The tobi standard (Silverman et al., 1992) is
one of the most widely adopted systems for annotating prosody. The
tobi recommendation specifies annotating each word boundary with a
numeric level between 0 and 4. Level 0 is used in cases of clear phonetic
marks of clitic groups. Level 1 denotes a non-break boundary. Level 2
marks apparent disjuncture between words. Level 3 marks a intermediate
phrase break (within an utterance), and Level 4 is a major break, such
as at the end of an utterance. Several corpora have been annotated with
these break indices and have been used in phrasing research. Two of these
corpora, used commonly for English are the Boston University Radio
News Corpus (Ostendorf et al., 1995), and the marsec (Roach et al., 1993)
corpus.
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While the tobi recommendation specifies four levels of breaks, many
phrasing models have not included the Level 2. Festival, for example
simplifies this tobi scheme to include just the levels 1, 3 and 4. Model
predictions primarily decide whether a word boundary is a non-break
(Level 1) or a break (Level 3). Festival detects end of utterances and places
a Level 4 break at utterance boundaries.

Given an annotated corpus, there are several ways of building phrasing
models. In their literature review, Read and Cox (2007) describe two
main types of approaches to phrasing: (i) Deterministic, or Rule-Based,
and (ii) Data-driven. Deterministic models are easy to build, require no
training data. Rule based models, such as (Bachenko et al., 1990) can be
successful, but are unreliable, often difficult to write, and difficult to adapt
to new domains or languages. Data driven techniques use large amounts
of training data and machine learning algorithms for classification.

The simplest deterministic model is a punctuation-based model: Where
there is a punctuation, insert a break. Taylor and Black (1998) demon-
strated that this model is extremely precise, but has only about 50% recall.
This model is extremely easy to build, and is applicable to many languages.
This is why Festvox implements this model as the default phrasing model
for voices in new languages. The trouble with this model is that under
some conditions, punctuation is unreliable or non-existent. Informal
writing such as email or tweets often lacks punctuation. Tasks such as
speech-to-speech translation often require us to synthesize text without
punctuation. Nonetheless, this model provides a usable baseline especially
for low resource languages, and we will use this model as a baseline later
on in this thesis.

Data-driven phrasing has emerged as one of the most successful meth-
ods. Various machine learning methods have been proposed for phrasing,
among them: decision trees (Wang and Hirschberg, 1992; Koehn et al.,
2000), transformational rule learning (Fordyce and Ostendorf, 1998),
hidden Markov models (Taylor and Black, 1998; Schmid and Atterer,
2004), memory based learning (Marsi et al., 2003), Bayesian networks
(Maragoudakis et al., 2003), maximum entropy models (Liu et al., 2008),
and neural networks (Ying and Shi, 2001).

Prosodic phrases tend to be balanced in length. This means, when
doing a left-to-right prediction of phrase breaks, the decision of our classi-
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fier should depend on where the previous breaks were. Models that use
only local features (such as part-of-speech tags) rely on other mechanisms
to optimize the global phrasing over the utterance. For example, Taylor
and Black (1998) use a 7-gram language model of break sequences, and
Schmid and Atterer (2004) use the distance-from-previous-break feature
to parameterize their hmm model. An alternative strategy to optimize
utterance-level phrasing is to move a level up, from parts of speech, to
syntax and phrase structure.

The relationship between prosody and syntax is not well understood.
Prosodic breaks do not always correspond to syntactic breaks. Bachenko
et al. (1986); Fach (1999) suggest that traditional syntactic phrase structure
is not directly applicable for prosodic phrasing. Koehn et al. (2000);
Read and Cox (2007) have shown that with the help of a high-accuracy
parser, adding syntactic information can have significant improvements
in phrasing. In more recent work, Saychum et al. (2011) have shown
that a categorial grammar based model can be successful. Prahallad et al.
(2010) have shown that prosodic and syntactic breaks can be different
for utterances. They showed that prosodic breaks are speaker specific.
A given unambiguous sentence will typically only have one linguistic
phrase structure. At the same time it can have multiple prosodic phrase
structures. It thus seems that syntax, in the sense of prosodic phrase
structure, is a more promising path than linguistic phrase structure, at
least from the point of view of phrasing. Liu et al. (2008) have used this
notion, but modeled it differently from a parsing approach.

Speaker specific, or style specific models have not been the focus of
most of the described work above. Phrasing models are typically trained
on large data sets, such as marsec (Roach et al., 1993). Little has been
done in the direction of style-specific modeling. The obvious problem to
building a speaker-specific model is data scarcity. Many synthetic voices
we build are from as little as half an hour of data. Sometimes the cost of
gathering more data is high, and other times, it is just not possible (e.g.,
voice of a deceased person). It is important to build phrasing models that
adapt to new conditions with limited amounts of data available. Bell et al.
(2006) assume that the variability in phrasing is due to the underlying dis-
tribution of phrase lengths, and they have proposed an enhanced version
of the (Schmid and Atterer, 2004) model that adapts the phrase length
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distribution to new domains. This method still solely relies on part-of-
speech tags and does not take into account deep syntactic information.
Obin et al. (2011) have proposed a method that uses segmental hmm and
Dempster-Shafer fusion to incorporate linguistic and metric constraints
in phrasing. This work uses a large coverage syntactic and morphological
lexicon for French, along with a factored parser. They have proposed to
test this model for different speaker styles.

2.2 Phrasing Evaluation Methods

Before we look at our methods of building phrasing models, it is important
to cover the subject of evaluation: How can we tell whether the models
that we shall build are better? Speech synthesis is a direct consumer facing
technology: people use it as a medium to access text content via speech.
One synthetic voice is truly better than another voice only if the users of
our systems think it is so. Subjective evaluation is therefore very critical
to speech synthesis. The same is true for phrasing. Our contention is
that phrasing will help improve overall prosody of synthetic speech, and
the primary method to evaluate that would be subjective listening tests.
Evaluation is also integral to building and optimizing our models, but it
is impractical to have subjective listening tests as part of model building:
they are expensive and take time. Therefore, we need some objective
metrics to evaluate phrasing: ideally, a metric that is correlated with
human judgments.

In this section, we shall look at some objective metrics and subjective
strategies to evaluate phrasing models.

2.2.1 Subjective Evaluation Methods

Subjective evaluation in speech synthesis typically consists of producing
speech examples for a few prompts, and asking human participants to
listen to them and grade them. Two of the most common listening tests
are the Mean Opinion Score (MOS) test, and the A/B test.

In a mean opinion score test, a participant listens to one utterance at
a time. They are asked to rate each utterance on some defined criteria,
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on a scale like 1 to 10. If participants grade two different systems, their
aggregate opinion could help decide which system is better.

An A/B test is a direct, pairwise comparison of two systems. Partici-
pants listen to pairs of utterances at a time. The pair contains the same
utterance produced by different systems. Participants are asked to pick
the system that they think better fits a certain criterion.

In this work, we have used A/B tests as the main subjective evaluation
method. We build two synthesizers, one that has our phrasing model, and
the other that uses a baseline phrasing model. We use a set of prompts
and synthesize them with the two voices. An A/B test is then performed,
and we ask people which version they prefer. For each utterance, subjects
submit their vote for a particular model, or they can choose a third option
(no preference). By summing the votes over all utterances and participants,
we can decide if our model is better by comparing the votes it received
with those of the baseline.

In our A/B tests, we have deliberately asked for “preference” of lis-
teners. Arguably, we could directly ask people which phrasing strategy
is better. However, the direct question is tricky for two reasons: (i) Par-
ticipants would need to be speech experts to understand what phrasing
is, and how to judge it, and (ii) The overall idea is that phrasing could
help the overall prosody, and by asking people to pay attention to just
phrasing, we could ignore the evaluation of prosodic artifacts introduced,
and their impact on naturalness and intelligibility.

Running subjective tests is time consuming and expensive, and using
crowd-sourcing platforms like Amazon Mechanical Turk can help mitigate
both these issues. We have therefore run most of our listening tests on such
platforms. In order to simplify and standardize the workflow of setting up
such tests, and to ensure that participants on the web can properly access
the tests, an opensource software called TestVox has been created. This is
an important contribution of this thesis, and is described in more details
in Appendix A.

2.2.2 Objective Evaluation Methods

Phrasing is a classification problem: predicting each word boundary as
being a break or not. Thus, classification accuracy is an objective metric
we can use to evaluate our models. However, because phrasing is also



2.2. Phrasing Evaluation Methods 14

a sequence labeling problem, we can also evaluate it by looking at the
similarity or dissimilarity of the phrase length histograms.

One measure of accuracy is the number of correct predictions. Indeed,
Taylor and Black (1998) measured the percentage of breaks correct, and
non-breaks correct, and the total word boundaries correctly predicted.
However, breaks and non-breaks typically have a very skewed distribution
in a corpus. The number of non-break word boundaries is very high.
Thus, a model that predicts all boundaries as non-breaks is likely to get a
very high total accuracy. Looking at the individual accuracies on breaks
and non-breaks is not ideal, because comparing two models that way is
fairly difficult.

This problem can be resolved by calculating the accuracy in terms of
precision and recall scores, and then combining them into a F-measure
(van Rijsbergen, 1979). Precision tells how many of the predicted breaks
are correct. Recall tells how many of the actual breaks were predicted.
The combined harmonic mean value is thus a good indicator of overall
quality of a model. If P is the precision, R is the recall, and F1 is the
F1-measure, then:

P =
Number of breaks correct

Number of breaks predicted
,

R=
Number of breaks correct

Number of breaks in test set
,

and

F1 =
2P R

P +R
Two models can be compared on their F-measure and the model with a

higher score would be better. This is the standard comparison metric used
in recent literature. In case a model does not predict any word boundary
as a break, then the precision and recall are both zero and F1 is undefined.
However, we shall assign a F-measure of zero in that case.

We present another objective method to evaluate phrasing models:
look at the distribution of phrase lengths. Phrase length is the number of
words between two consecutive phrase breaks. After predicting breaks
on a test set, we can find the overall phrasing profile: the histogram of
phrase lengths. We can also build another histogram of phrase lengths on
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the actual phrases present in the test data. We can then measure a distance
between the two histograms. We will use two of the commonly used
metrics to compare histograms: the L2 distance (Euclidean) and the Earth
Mover’s distance (emd) (Rubner et al., 1998).

If we represent two histograms as single dimensional vectors, then the
L2 distance between them is simply the Euclidean distance between those
vectors. If a and b are two histogram vectors, then:

DL2(a, b ) =
È

∑

i

(ai − bi )
2.

The emd distance (Rubner et al., 1998) between two distributions
is proportional to the minimum work required to change one distribu-
tion into another. We normalize our histograms so that they represent
probability distributions of the phrase lengths. For distributions in one
dimension, such as our histograms, Cohen (1999) has proved that the
emd between them is the area between the graphs of the cumulative
distributions.

A fully accurate model would get both the L2 and emd to be zero, and
when comparing two models, a model with the lower distance from truth
would be deemed better.

Given that phrasing model affects other prosody models, we can
also objectively compare two models by synthesizing with them on held-
out speech data and measure the Mel-Cepstral Distortion (mcd) of the
synthesis, as defined in (Mashimo et al., 2001). The mcd metric is often
used to judge the quality of synthesized speech. Calculation of mcd
requires a time-alignment of the two speech samples, which can be done
using Dynamic Time Warping. Similar to Prahallad et al. (2010), we can
use the mcd to evaluate how the new phrasing model compares to another
model.

Thus, in summary, when comparing two phrasing models objectively,
we can look at the F-measure, the L2 distance, the emd distance and the
mcd distance. Models with the higher F-measure and lower distances
would be deemed to be better.
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2.3 Grammar Based Phrasing Method

Having looked the different phrasing strategies used in the past, and the
evaluation methods to compare different phrasing models, let us now look
at one of the main contributions of this thesis. In this section, we present
our data-driven phrasing model that captures style-specific phrasing.

We use the Festival speech synthesis system (Black and Taylor, 1997)
for our research. Our proposed method lies within Festival’s framework.
Festival’s current phrasing method, described by Taylor and Black (1998),
uses two models: (i) A pos sequence model, and (ii) A phrase break
sequence model. If bi is the probability of a break at juncture i , Ci is the
context of observed features at juncture i , and Bi represents the context
of previous break sequences at juncture i , then we want to estimate
P (bi |Ci ,Bi ).

Using the Bayes theorem, we have:

P (bi |Ci ,Bi ) =
P (Ci ,Bi |bi ) · P (bi )

P (Ci ,Bi )
.

Assuming that the events C_i and B_i are independent, we get:

P (bi |Ci ,Bi ) =
P (Ci |bi ) · P (Bi |bi ) · P (bi )

P (Ci ) · P (Bi )
.

We can rewrite that as:

P (bi |Ci ,Bi ) =
1

P (bi )
·

P (Ci |bi ) · P (bi )

P (Ci )
·

P (Bi |bi ) · P (bi )

P (Bi )
.

Applying Bayes theorem to the two right terms gives:

P (bi |Ci ,Bi ) =
P (bi |Ci ) · P (bi |Bi )

P (bi )
.

Festival uses the Taylor and Black (1998) model that models the term
P(b_i|C_i) as a part-of-speech quad-gram model, and the term P(b_i|B_i)
as a 7-gram language model. The term P(b_i) is the unigram probability
of breaks as found in the training data. To obtain the best sequence of
break/non-break tags over the entire utterance, Festival uses a Viterbi
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search to combine these models. Figure 2.3 shows this arrangement. The
grammar based model that we are proposing in this thesis is a replacement
for the pos sequence model in Festival. Instead of looking at just the pos
sequence in a context, we use a combination of several features in a cart
tree. Our cart tree is trained to predict breaks from features, and thus
provides us with the probability P (bi |Ci ).

At each word boundary, our grammar-based model predicts the proba-
bility of a break, considering the context of features. Like the pos sequence
model in Festival, we deal with just two levels of breaks: a break (tobi
Level 3), or a non-break (tobi level 1). While phrasing models typically
do not explicitly dealt with tobi level 2 breaks because of their difficulty
to label and analyze, one could apply our method to incorporate this
extra category into the classification. We use the two tobi levels and run
Festival’s Viterbi search together with a phrase-break sequence model to
find the best path of break/non-break tags that maximizes the probability
of breaks in the entire utterance.

Text Input

POS
Sequence

Model

Viterbi
Combination

Break
Sequence

Model

Phrasing Output

Figure 2.3: Festival’s phrasing strategy. Our proposed model replaces the
POS sequence model.

Our method is outlined in Figure 2.4. To train our models, we first au-
tomatically annotate text data with breaks. We run part-of-speech tagging
over the text. We introduce bracketing, or phrase level chunking over our
training utterances. We then train a Stochastic Context-Free Grammar
(scfg) (Pereira and Schabes, 1992) that can parse unseen utterances into
similar prosodic chunks and introduce bracketing on them. We then ex-
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tract features over this prosodic phrase structure and use our training data
to build cart trees for phrase prediction. At test time, we replace words
with their parts of speech, and run the trained scfg to generate a prosodic
phrase structure over them. We then extract the syntactic features and
plug them into the trained cart tree to predict breaks. In the following
subsections, we shall look at these different components in detail.

Voice Data

Break
Annotation

pos

Tagging

Bracketing

Grammar
Training

scfg

cart

Training cart trees

Test Data

Parse

Phrase Breaks

Figure 2.4: Overview of our approach. Solid lines show flow of training data.
Dashed lines show flow at test time.

2.3.1 Automatically Annotating Training Data

Like all classifiers, we need some annotated data to train our models.
Unlike previous phrasing work however, we choose not to use a hand-
annotated corpus. Instead, we use acoustic data to derive phrase breaks
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in a corpus. When building synthetic voices, we typically have a few
minutes or more of speech data with transcripts available. We believe
that this speech not only captures the speaker’s spectral identity, but also
their phrasing traits. By training models on just this speech data, our
hypothesis is that we will be able to learn the phrasing style that is specific
to the speaker and the domain at hand. The other advantage of using
only this speech data for training purposes is that this data is available for
any language we are building voices for, and hence we can easily build
models for any language. (Prahallad et al., 2010) have suggested a method
to automatically extract phrase breaks from speech data. We use a similar
method here.

We start with the speech database we have. We use the hmm alignment
tool by Prahallad et al. (2006) and force-align this speech data to the
transcripts. The alignment tool uses an optional silence hmm state at
every word boundary and hence during Viterbi decoding. If there is a
pause in the acoustic data, it will be marked in the labeled transcription
automatically. We identify the pause regions in the signal. If there is no
pause between two words, we mark the boundary as a non-break. If there
is a pause that is longer than a certain threshold, we mark the boundary
as a break. The choice of the pause threshold is important. A value that
is too high would lead us to ignore genuine pauses from being labeled
properly. A value that is too low would mark events such as glottal stops
as being real pauses. Our empirical analysis on several corpora found that
the threshold of 80ms is an appropriate threshold and we used this value
in our experiments.

Running the forced alignment over the entire speech corpus results in
annotated data that can be used to train a classifier.

We looked at how well this automatic labeling method performs,
compared to hand-labeling of data. The Boston University Radio News
Corpus (Ostendorf et al., 1995) has speech recordings as well as hand
annotated breaks. Using a portion of this corpus as reference annotations,
we measured the performance of our automatic break annotation. We
found that the forced alignment method is 100% precise, but has a low
recall of 55.88%, leading to an overall F-measure of 0.717. The breaks
that the algorithm misses are typically shorter than 80ms in duration (our
threshold), or have noise in the silence segments that gets aligned with
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adjacent phones. More sophisticated forced-alignment techniques could
help improve the overall F-measure of automatic break labeling, but are
beyond the scope of this thesis. The labels that our method yields are very
precise, and allow us to train phrasing models for specific styles where
hand annotated data is not available.

2.3.2 Part of Speech Tagging

Building a classifier over lexical items is not a good idea, because the
vocabulary size would be too large, and dealing with out-of-vocabulary
words would be an issue. We need a way to collapse the vocabulary down
to a small finite set. To do that, we use Part of Speech (pos) tags. For
English, we use the built in pos tagger in Festival, which uses the tagset
from the Penn Tree Bank (Marcus et al., 1994). Festival also has a very
small set of tags called guessed pos tags, which can also be used in our
model.

2.3.3 Training the Prosodic Grammar

We train our prosodic grammar using the (Pereira and Schabes, 1992) algo-
rithm implemented in the scfg tools within Festival. The requirement
for this algorithm is a bracketed corpus. We first convert our text data
into a bracketed form, and then use the training tool to generate the scfg.

We start with a text sentence in our training database. After determin-
ing word boundaries that are breaks, we use brackets to divide the text
into prosodic chunks. For example, the sentence there are five people in
this room may be chunked as ((there are) (five people) (in this room)). The
bracketing step is thus a fairly simple step. The scfg training runs over
the bracketed training data to train a prosodic grammar.

The prosodic grammar thus learned can be used to predict prosodic
parses of new utterances. The grammar uses pos tags as the terminal
symbols, and generates non-terminals automatically. We typically limit
the number of non-terminals to 5, 10 or 20, depending on the amount of
training data we have. The grammar induction algorithm is an iterative
algorithm and we usually allow up to 20 iterations during training.

Figure 2.5 shows an example parse that we are trying to induce. This
example is made up for illustration purposes. Notice that while in spirit
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we are similar to learning a linguistic phrase structure, the end result is very
different from something like a grammar trained on, say the Penn Tree
Bank (Marcus et al., 1994). Some of the constituents in this parse (NT0
in our example) fail linguistic constituency tests, and the non-terminal
symbols have no particular linguistic meaning. The syntax simply tries to
capture prosodic constituents.

NT4

NT3

NT0

EX

There

VBP

are

NT1

CD

five

NNS

people

NT2

IN

in

DT

this

NN

room

Figure 2.5: Example of an SCFG parse for prosodic phrases

2.3.4 Learning the CART prediction trees

Once we have built a grammar from our style specific training data, we
parse our entire training set with the that grammar. We then dump fea-
tures for each word in the corpus, including features about their positions
with respect to the prosodic phrase structure predicted by the grammar.

With the word-level features and the truth value of break/no-break,
we train a cart classification tree using wagon. We optimize the trees for
the F1 accuracy. We typically use a 80/10/10 split of the available data
between training, development and testing. The exact proportion of this
split is not critical, as long as we ensure there is sufficient data in each
split.

Table 2.1 lists the features that we included in our cart training. To
take context into account, we use these features for the current word,
two previous words, and two next words. After building trees on all the
datasets, we looked at the top features in the their respective trees. The
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features “has-punc”, “end-brackets”, “delta-brackets” and “gpos” seem to
be the ones carrying a lot of information about the breaks.

Table 2.1: CART model features

Name Description
pos Part of Speech
gpos Guessed Part of Speech
has-punc Is word followed by punctuation
lpunc Current token is punctuation, but not next

Does a single quote appear in
token-in-quote this or previous token?

(Disambiguate end-quote from possessive)
dist-to-eos No. of words before sentence end
Grammar:
end-brackets Count end-brackets in prosodic parse
start-brackets Count open-brackets in prosodic parse
delta-brackets (scfg-end-brackets) − (scfg-start-brackets)
abs-delta-brackets abs(scfg-delta-brackets)

2.3.5 Phrase Prediction for New Sentences

To use our models for new utterances, we first tag all words in the utter-
ance with the appropriate pos tags. We use the trained scfg grammar to
induce bracketing over the tag sequence. We then extract all the relevant
lexical and syntactic features out for the utterance and use the trained
cart tree to predict breaks at each boundary.

2.4 Style Specific Phrasing

The main objective of our phrasing approach was to build speaker/style
specific phrasing models. We looked at five different data sets belonging to
different styles of speech. We built phrasing models on them as described,
and compared them to the default model in Festival. In this section, we
shall first look at the different styles, and analyze the corpora for stylistic
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differences. Then we shall look at the objective and subjective results
obtained by our models.

2.4.1 Corpora and Styles

We looked at five different corpora that have speech in different styles.
The arctic corpus consists of a half set, called A-set, of the arctic

prompt set (Kominek and Black, 2004) recorded by speaker AUP (an
Indian English speaker). The style of this corpus is “short sentences”. The
corpus has 593 prompts with an average of 9 words per prompt and the
audio size is about 30 minutes.

We took the Europarl parallel corpus (Koehn, 2005) between English
and Portuguese. This data contains proceedings of the European Parlia-
ment. We selected prompts from the English side of the corpus. These
prompts were also recorded by speaker AUP. The style of this corpus is
“parliament proceedings”. The corpus has 595 prompts with an average of
14 words per prompt and the audio size is about 50 minutes.

The F2B corpus is from the Boston University Radio News Corpus
(Ostendorf et al., 1995). The style of this corpus is “radio broadcast”. The
corpus has 464 prompts with an average of 19 words per prompt and the
audio size is about 55 minutes.

The Obama corpus consists of public talks by the US President Barack
Obama. Audio and transcripts of two of his public addresses were used
to build this voice: (i) 2009 Presidential candidate speech “A more perfect
Union”, (Mar 2008, Philadelphia) and (ii) Address at the Military Academy
(Dec 2009). The style of this corpus is “public address”. The corpus has
465 prompts with an average of 18 words per prompt and the audio size is
about 61 minutes.

The Emma corpus (Prahallad and Black, 2010) is taken from an Au-
diobook (Emma, by Jane Austen) in the Librivox database. The book was
recorded by a female volunteer. The style of this corpus is “audio book”.
The corpus has 9936 prompts with an average of 15 words per prompt
and the audio size is about 1040 minutes (over 17 hours).
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2.4.2 Analysis of Phrase Breaks

The different styles of speech appear to vary with respect to the global
distribution of breaks versus non-breaks. We measured the percentage
of word boundaries where a break was found in the original recordings
for each dataset. Note that we excluded the breaks at the end of the
utterances. Table 2.2 shows that while the arctic, Europarl and F2B
datasets have a similar proportion of breaks in them, the Obama and
Emma data have more breaks. The table also shows how many breaks
were globally predicted by festival’s default phrasing model on each dataset.
The numbers show that the default model is inserting more breaks than
expected. To see why this may be the case, we looked at the marsec

(Roach et al., 1993) data from which the default phrasing model is trained.
That data has 14.15% of the word boundaries marked with breaks.

Table 2.2: Percentage of breaks in corpus

Actual Default
Dataset Total Words Breaks Predictions
ARCTIC 5313 6.25 % 8.96 %
Europarl 8066 6.48 % 11.28 %
F2B 9214 6.37 % 14.30 %
Obama 8402 9.21 % 14.50 %
Emma 158209 8.27 % 16.19 %

It turns out that the styles we are looking at don’t differ just in the pro-
portion of breaks, but also the distribution of durations of the breaks. We
looked at the histograms of break durations on the datasets and observed
that breaks in ARCTIC-A and Europarl are of similar lengths, whereas
Emma and F2B have longer breaks on average. The Obama corpus has
many long breaks, and also a long tail of breaks that go well over half a sec-
ond in duration. The duration distributions are not truly Gaussian, and
we shall look at them in more detail in Chapter 4. However, analyzing the
means and variances of the duration values can help us see that the styles
differ quite a bit in the duration. Table 2.3 summarizes the parameters of
these distributions.
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Table 2.3: Duration in seconds of pauses in recorded speech

Dataset Mean Stdev
ARCTIC 0.115 0.059
Europarl 0.111 0.067
F2B 0.273 0.099
Obama 0.391 0.311
Emma 0.180 0.162

2.4.3 Experimental Results

We built phrasing models on all five styles of speech. We used both the pos
and the g-pos (Festival Guessed Part of Speech for English) tags as features
in the cart. We ran preliminary experiments with the F2B corpus and
found that using Festival’s reduced pos set instead of the entire Penn-Tree
Bank set provided optimal results. In fact, these experiments also helped
us decide using 10 non-terminals in the grammar we trained.

We present objective results in terms of both the F-measure, and the
mcd score of synthesis. To measure the accuracy, we held out 10% of
our training data, which was automatically annotated for breaks. We
compared our predicted breaks to the automatic annotations and measure
the F-1 accuracy. We also synthesized the utterances and measured mcd

with respect to the original speaker’s recordings. All our data sets, with
the exception of the Emma set are small in size. To obtain meaningful
results, we performed a 10-fold cross validation on them. The Emma data
set was large, and building models was computationally expensive, and
we did not cross-validate on that data.

Table 2.4 shows the comparison in terms of the average F-measure
between the standard Festival phrasing and our approach. We observe
a significant improvement on all but the Obama data set. This shows
that our model is able to capture the different styles appropriately, across
not only the different styles but also different data size scenarios. We
have noted, in Table 2.3 that the break distribution of the Obama corpus,
especially in terms of the break durations was much different than others.
The corpus also has applause in the speech data, which leads to difficulty
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in analyzing it. Having a very high variance in the pause lengths, and
especially a long tail of many long pauses is likely to cause errors in the
hmm forced-alignment step which forms the very basis of our phrasing
method. This could explain why the new method did not outperform
Festival for the Obama corpus. Note however, that the difference between
the baseline and our method in this case is not statistically significant.

Table 2.4: Phrasing Accuracy (F1 score) on Different Styles. Bold values
significant for p < 0.005

DataSet Festival Our Improvement
Default Method

arctic 80.11 85.12 5.01
Europarl 70.42 77.67 7.25
F2B 66.17 73.67 7.50
Obama 66.41 63.80 -2.61
Emma 69.98 82.94 12.96

Table 2.5 shows the comparison in terms of the average mcd of the
synthesis using Festival default phrasing, compared to synthesis using our
approach. We see a consistent improvement in the synthesis across all the
styles. Note that the absolute numbers in this table are slightly on the
higher side, compared to scores on similar data in the literature. This is
because this is the mcd of full synthesis, not just re-synthesis with natural
durations, and we are using Dynamic Time Warping that shifts the mcd
numbers on the higher side.

We conducted listening tests to compare the proposed model to Festi-
val’s default model. We selected 25 random sentences from the heldout
test set and synthesized them using either of the phrasing models. We
made sure that the phrasing decisions for these utterances, as predicted
by the two models are not identical. We then did an A/B test over Me-
chanical Turk, and asked participants to listen to two versions of every
utterance at a time, and mark which one they prefer. We filtered responses
that we could predict as being workers trying to make easy money by
submitting random answers and collected statistics to see how many times
participants preferred our proposed model. Participants were also allowed
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Table 2.5: Comparison of MCD of synthesis on Different Styles. Bold values
significant for p < 0.0005

DataSet Festival Our Improvement
Default Method

ARCTIC 7.47 7.18 0.29
Europarl 7.12 6.67 0.45
F2B 6.20 5.95 0.25
Obama 10.25 10.08 0.17
Emma 6.98 6.60 0.38

to say that they could not prefer one model over another. Table 2.6 shows
the votes that the two models received in our listening task. We see that
people can perceive the differences between these phrasing models, and
that they prefer the proposed, grammar based phrasing model over the
Festival baseline in all but the Obama voices.

Table 2.6: Subjective Preference (% responses) of Synthesis on Different
Styles.

DataSet Festival Our No
Default Method Preference

ARCTIC 33.3 48.8 17.9
Europarl 41.5 51.5 7.0
F2B 37.7 48.6 13.7
Obama 48.7 47.3 4.0
Emma 40.0 53.0 7.0

2.5 Chapter Summary

In this chapter, we described one of the most important contributions
of this thesis: the grammar based phrasing method. We first described
the phrasing problem as a classification task. We discussed that phrasing
patterns are specific to speakers and styles. We looked at the details of how
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our data-driven grammar based method works, and our results show that
the method is better than the traditional model used by Festival across
different styles with varying amounts of training data available.

Our grammar based phrasing method has a data-driven approach. It
uses automatically annotated, acoustically derived phrase breaks for its
training. We learn and use a stochastic context-free grammar to introduce
syntax in our utterances: syntax in the form of prosodic phrase structure,
as opposed to linguistic phrase structure. This model replaces the tradi-
tional part-of-speech sequence model in Festival. Details of this model
have been published in (Parlikar and Black, 2011). Code for this model
is now integrated with the Festival and Festvox suite of tools with doc-
umentation and is available for further experimentation. The presented
grammar based method is flexible, and not specific to the phrasing prob-
lem: Anumanchipalli (2013) has successfully applied it to the problem of
predicting accent groups from syllables.
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Minimum Error-Rate Phrasing

"Vary the pace. . . " is one of the
foundations of all good acting.

Ellen Terry

S
peaking styles have a lot of variety. While some styles are clearly
distinct, such as an audiobook versus a newsreader, some styles are
only slightly different. For example, a newsreader could be speaking

at a fast or a slow pace. In these variations within a style, the phrasing is
also affected. Slow newsreaders pause more often while fast news readers
omit several pauses. If corpora with such variations in speaking rate were
available to us, we could train style specific grammar based models and
use them appropriately. However, we usually do not have corpora that are
explicitly recorded for variations of style, and we need flexibility in our
phrasing models to change the phrasing rate to suit speaking rate, even
if explicit training data was not available. More over, we desire to have
not just ‘fast’ and ‘slow’ phrasing, but a continuous number that denotes
exactly how much phrasing is happening.

The Grammar based phrasing model presented in the previous chapter

29
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is just one of the components of the phrasing process. The other parts
consist of a break sequence model, and Viterbi combination of these two
models, as shown in Figure 3.1. In this chapter, we propose a new archi-
tecture for phrasing, that involves a log-linear combination of multiple
phrasing models, and a process called minimum error-rate training. We
will see that this new architecture not only provides us with flexibility in
modeling phrasing, but also improves accuracy of prediction on top of
improvements that the Grammar-based method provides.

Text Input

Grammar
Based
Model

Viterbi
Combination

Break
Sequence

Model

Phrasing Output

Figure 3.1: Festival’s phrasing architecture we are proposing to change

3.1 New Phrasing Architecture

Phrase breaks are only occasional events in speech. In about an hour of
speech, such as the F2B data, there are about 600 breaks. When training
a phrasing classifier under such conditions, we are likely to encounter
the issues of having little training data. We showed that our proposed
Grammar-Based model can deal with this data sparsity situation well.
However, adding complexity to our model in the future would be difficult
because estimating all parameters with the little training data would be
hard. Under limited training data conditions, machine learning meth-
ods typically consider building multiple classifiers (some of them could
be potentially weak), and then combining them together to make final
decisions.
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One weak point of the default Festival phrasing architecture is that
it allows for two fixed models: a model that predicts the probability of a
break given context of features, and a model that looks at the sequence
of predicted breaks. These probabilities are the P (bi |Ci ) and P (bi |Bi )
respectively.

We are introducing a new architecture for phrasing in Festival, that
allows us to go beyond the two fixed models. Our system allows adding
multiple phrasing model to the mix of making final phrasing decisions. It
also supports arbitrary features that can be used to our advantage, such as
to vary phrasing rate as we will see later in this chapter.

Our proposal is to use a log-linear model for phrasing. A key advan-
tage of log-linear models is that they allow a very rich set of features to be
used in a model. Let us assume that we are given a text sequence t, and we
want to produce a break sequence b. Among all possible break sequences,
we will choose the sequence with the highest probability:

b∗ = argmax
b

P (b|t).

We directly model the posterior probability P (b|t) using a log-linear
model. In this framework, we have a set of M feature functions, hm(b, t).
For each feature function, we have a weight wm . The direct phrasing
probability is then given by:

P (b|t) =
exp
�

∑M
m=1 wm hm(b, t)

�

∑

b ′ exp
�

∑M
m=1 wm hm(b

′, t)
� .

The modeling problem here is to define suitable feature functions that
capture the relevant properties of the phrasing task. The grammar based
phrasing model, as well as the break sequence model that the old Festival
architecture uses can very well become two of these feature functions. In
addition, we can add the pos sequence model from Taylor and Black (1998).
We can also define other arbitrary features. Note that the features don’t
have to be probability distributions themselves. A schematic depiction of
the new architecture is shown in Figure 3.2.
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Figure 3.2: New proposed phrasing architecture in Festival

3.2 Minimum Error-rate Training

We need to train our loglinear model in order to use the defined features
appropriately. The training problem is to find out the suitable weights wM

1 .
Typically, these weights are determined by maximizing the likelihood of
the model over development data. We could train our model for maximum
likelihood. However, eventually, the model will be objectively evaluated
on a metric such as the F-1 score (van Rijsbergen, 1979), because an
improvement in this score is usually perceived as an improvement also
in subjective listening. In order to make a higher perceptual impact, we
aim to optimize our loglinear phrasing model directly to the F-1 score.
The idea of using Minimum Error-Rate Training (MERT) in training this
phrasing model is inspired from its use by Och (2003) and others in the
field of Statistical Machine Translation.

We define a held out development corpus DN
1 , of size N , with text
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sequences T N
1 that has reference break annotations RN

1 . Our goal is to
obtain minimum error on this corpus, and a set of k different candidate
break sequences, Sn = bn,1, . . . ,bn,k . That is, for each of the N sentences
in the test set, we have k hypotheses of break sequences, and we want to
pick the ones that minimize overall error on the test set. Given a set of
weights wM

1 , the top-best break sequence bn for sentence n is given by:

bn = argmax
b∈Sn





M
∑

m=1
wm hm(b|Tn)



 .

For each sentence in the development corpus DN
1 , we can pick the best

break sequence given some weights, and then compute the F-measure over
these break sequences. The error function E can then be set to negative
value of the F-measure. If E(DN

1 ; wM
1 ) represents the error on the test set

given a set of weights, we have:

wM
1 ∗= argmin

wM
1

�

E(DN
1 ; wM

1 )
�

.

The optimization criterion here is tricky. Because of the presence of
an argmax operation within the error function, we can not compute the
gradient of the error, and hence an optimization method such as gradient
descent can not be used here. The error surface is not smooth, and has
many local minima.

We use the Basin-Hopping algorithm by Wales and Doye (1997) to
optimize the error function at hand. This global minimization method has
been shown to be extremely efficient for a wide variety of problems, and
is especially useful when the error function has many minima separated by
large barriers. In particular, we use the implementation of this algorithm
within the Python SciPy toolkit.

We use a development corpus, use a randomly initialized weight se-
quence and produce an n-best list of break sequences. We then run the
minimum error rate training over these n-best sequences and learn new
weights. We then use the new weights and re-generate an n-best list of
break sequences over the development corpus, and run minimum error
rate training again. We repeat these iterative process until the final er-
ror does not improve across an iteration. After each iteration, we also
normalize the weight vector to be of a unit norm.
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3.3 Phrasing Improvements

We used four feature functions hm(b|t) in our method. Two of these
are the same as the models in the baseline phrasing method: (i) The
context model P (bi |Ci ) that looks at the lexical and syntactic context,
and (ii) P (bi |Bi ) that looks at the language model probability of the break
sequence. In addition, we use another context model, P (bi |Ci ), defined
in Taylor and Black (1998) that looks at the part-of-speech tag context at
a word boundary and uses a quadgram Language Model to predict the
probability of the word boundary being a break. Finally, we use a break-
count feature, that counts the total number of breaks in the predicted
break sequence.

We evaluated our method on two synthetic voices trained using the
clustergen (Black, 2006) statistical parametric synthesis method: (i)
Voice built from the F2B corpus within the Boston University Radio
News Corpus (Ostendorf et al., 1995), and (ii) Voice built from two hours
of recordings of Jane Austen’s books, for Blizzard Challenge 2013 task
EH2.

Our baseline phrasing models were built to be grammar based style-
specific phrasing models in each case, as described in the previous chapter.
We trained the proposed model with minimum error rate method on
a held out corpus, and used an unseen test dataset in the same domain
to compare the baseline method to the proposed approach. Table 3.1
shows the comparison. We see that on both the styles, we observe an
improvement in phrasing accuracy.

Table 3.1: Objective Evaluation (F-score) of the Proposed MERT Method.
Improvements are significant at p < 0.05

Voice Baseline MERT
F2B 54.35 58.06
Audiobook 52.87 57.58
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3.4 Phrasing Rate Knob

One requirement of a phrasing model is that it should be flexible to adapt
to the speaking rate of a synthesizer. A slow synthesizer should probably
mark more word boundaries as breaks, and a faster synthesizer can do
away with a few breaks. If the user of a speech synthesis engine demands
that 30%, or 60% of the word boundaries should be breaks, then our
phrasing model should be able to meet this requirement. However, this is
a tricky constraint. If our training data had splits corresponding to slower
and faster speaking styles, we could train individual classifiers and use the
appropriate one at synthesis time. But such data is seldom available, and
collecting data to train such specific models is difficult. We describe how
we use the log-linear framework and mert mechanism to provide a knob,
a continuous number, to vary the number of phrase breaks produced.

One of the features that we used in the log-linear model was simply the
number of phrase breaks in a given break sequence. This feature allows
us to define a knob to change the number of phrase breaks our model
produces.

Intuitively, the break-count feature tries to make sure that the number
of breaks produced by our model is reasonably close to the number of
breaks in the reference sequences in our development data. Even if we
optimize towards the F-measure of break prediction, which itself balances
precision and recall of phrasing, having this additional feature means that
the weight learned for this feature will try to produce an optimal number
of phrase breaks. If we keep the weights for other features to be the same,
and change the weight of the break-count feature, then the search process
at synthesis time picks utterances with more or fewer breaks than the
optimal. For example, if we subtract a number from the weight of the
break count feature, and maximize the log-linear combination, we would
produce more breaks. We can vary the value of this weight and measure
the number of word boundaries in a development corpus that were breaks.
The weight of the break-count feature is thus the knob we can use to
tweak the amount of phrasing. Figure 3.3 shows this curve for the two
voices we have. The x-axis shows the value of the knob (i.e., the weight
of the break-count feature) and the y-axis shows what percentage of word
boundaries in a corpus were predicted as being breaks.
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Figure 3.3: Proportion of phrase breaks generated by varying the log-linear
weight of the break-count feature (the knob)

In order to customize the phrasing rate at demand, we need to param-
eterize the “knob”, so that given a particular value of expected proportion
of breaks, we can set an appropriate weight for the break-count feature
during synthesis. This problem boils down to deriving an equation for
the inverse of the function represented in Figure 3.3. Given a particular
phrasing proportion x, we want to find out the value k that our knob
should be set to.

To learn the parametric equation of the knob, we use a development
corpus and varying values of the weight of the break-count feature to
generate data points depicted in Figure 3.3. We then fit the data auto-
matically to a variety of sigmoidal, trigonometric and simple functions
and choose the function that best fits the data we have, as measured by
the root-mean-squared error of the fit. We used open-source fitting code,
pyeq2 by (Phillips) in this work.

Our empirical analysis shows that for various corpora and phrasing
model combinations, the phrasing knob curve can be approximated, well
within a rmse tolerance of about 0.15, using a Tangent equation with
offset:

k =A · tan

�

π
x −C

W

�

+O

where A (Amplitude), C (center), W (width) and O (offset) are the param-
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eters we learn automatically. For the F2B voice, we obtained

k f 2b =−0.165 · tan
�

π
x − 0.5073

1.0772

�

− 0.4670

and for the Audiobook voice, we obtained

kaud i ob ook =−0.2682 · tan
�

π
x − 0.5048

1.072

�

− 0.8084

Figure 3.4 shows the real curve of the phrasing proportion generated
by our loglinear model, along with the tangent approximation curve, for
the F2B corpus. Figure 3.5 shows the same graph for the audiobook data.
To read these graphs, start by picking a number on the x axis. This is
the knob value that our tangent estimate will predict, for a particular
value of desired proportion of breaks. Then follow the vertical line
corresponding to the x value, and look at the difference between the
blue and red lines. This shows the error that we make in predicting the
appropriate proportion of breaks. Visual analysis of the curves of F2B data
shows that apart from the region of strong inflection in the actual curve,
towards the bottom, the blue and red lines have very little error between
them, thus supporting the claim that the tangent function provides a good
estimate overall to predict the knob value. The error in the case of the
audiobook is overall larger than that of F2B, for the central region.

By tweaking the knob to change the phrasing rate, we deviate from
the reference break sequences that we originally used to train our mert
model. This means, by changing the knob, we obtain fewer or more
breaks, but at the cost of the F-measure. Of course, since the goal was to
insert more or fewer breaks, the penalty in F-measure is not very relevant
anymore, but we looked at what the drop in the F-measure looks like.
Figure 3.6 shows how the F-measure changes when we set the expected
break proportion to different values. We observe that the F-measure is
highest when the knob is set to its original value, as learned from the
mert training.

3.5 Perception of Phrasing Rate

The mert phrasing model, with the knob feature allows us to vary the
phrasing rate. For each utterance, we can set an expected break proportion,
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Figure 3.4: Comparing actual knob values to values estimated using the
Tangent function, on the F2B corpus.
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Figure 3.5: Comparing actual knob values to values estimated using the
Tangent function, on the audiobook corpus.

i.e., how many word boundaries should be breaks, and we saw how the
tangent approximation function of the knob could be used to generate
the desired proportion of breaks. We investigated how these variations in
phrasing rate affect perception of speech.

Understanding the perception of phrasing rate is important to synthe-
sizing appropriate variations of phrasing. The Mel scale studies showed
that the human ear is not equally sensitive to differences in pitches at the
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Figure 3.6: F-measure versus Desired Proportion of Phrase Breaks on the
F2B corpus

lower end of the audible spectrum and at the higher end. In a similar
spirit, we wanted to evaluate whether people can distinguish between
different phrasing rates, and how sensitive they were to the differences.

We used the F2B voice described above to perform listening tests. We
configured the voice to use eleven knobs, each to produce an expected
phrasing rate of 0%, 10%, 20%, . . . , 100%. Phrasing rate of 0% means
that no word boundary is a break, and a 100% phrasing rate means that
all word boundaries are breaks. We synthesized utterances from a held
out test set using these eleven knob values. We chose three utterances,
longer than 10 words each, as our data for running perception study. For
each utterance, we have 11 variations, thus we have 33 waveform files of
synthetic speech in total.

We compared the different phrasing rates pairwise. We compared
the 0% phrasing rate individually with 10%, 20%, 30%, 40%, and 50%.
Similarly, we compared the 10% phrasing rate to 20%, 30%, 40%, 50%
and 60%. Thus each phrasing rate was compared with up to five phrasing
rates on the higher and lower side. Overall, we had 40 pairs of phrasing
rates to compare. For each comparison, (say 10% with 40%), we used the
three utterances and played them to listening test participants, and asked
them whether they think the utterances are same, or different. For each
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utterance in each pair, we asked ten participants to submit their responses.
This provides a total of 40 ∗ 3 ∗ 10 = 1200 responses. The listening test
was conducted on mechanical Turk, and we had included gold standard
questions to weed out spammers from submitting their responses.

What we wanted to know was: how much should a phrasing rate
change, if people are to notice a difference? For each pair that we com-
pared in the listening test, we can calculate what fraction of the responses
thought the pair was same, versus different. Thus, for each pair, we can
get a number between 0 and 1, where 0 means the pair is clearly the same,
and 1 means the pair is clearly different. We can then draw a 11x11 grid,
comparing the similarity or difference between each pair of phrasing rates.
We can fill each cell with a color (a heat map) that shows how similar or
different they are. Figure 3.7 shows this data.
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Figure 3.7: Heatmap showing perceptual measure of distinction between
two phrasing rates

To read and interpret Figure 3.7, start with any value on the x axis.
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Now follow along the y axis for that value. For the phrasing rate at the
chosen x value, any phrasing rate y that is blue in the figure will be be
perceptually similar. Pink cells will be perceptually distinct. Notice the
diagonal cells are dark blue, because synthesis using a certain phrasing rate
will clearly be perceptually indistinguishable from itself. There are two
important observations we can make from this figure: (i) Starting from
any phrasing rate, if we want to change the phrasing rate to be something
different, we need to manipulate our knob quite strongly. For example,
starting from a phrasing rate of 20%, perceivable difference in phrasing
can only be made by doubling the phrasing rate! (ii) As a corollary, if we
tweak the knob only a little bit, and change the phrasing rate by 10-20%,
then the resulting phrasing will be perceptually indistinguishable. This
can be of advantage if extra breaks need to be inserted for domain-specific
reasons. One example where this is useful is to achieve lip-sync during
video dubbing. See Section 5.2.5 for a discussion on this.

A visual inspection of the heatmap shows that there are three regions,
bordered at a phrasing rate of 40%, and 80%. We also note, from Table 2.2
that normal speech has breaks in the vicinity of 10%. If we had to make
the speech slower, we would have to up the phrasing rate to 40%. If we
would like to make it even slower, we would have to then up the phrasing
rate to 80%. If we had to make the phrasing knob a fixed scale, rather
than a continuous value, our hypothesis was that we can use the values
corresponding to the default, 40%, and then 80%. We tried to evaluate
whether people can classify these different phrasing rates as normal, slow,
and very slow. We did this with the help of a listening test. With 10
utterances and 10 subjects evaluating each utterance on mechanical Turk,
we played the different phrasing rates independently, and randomly. We
asked people to classify each audio clip as normal, slow and very slow.
Participants were given examples before the test began so they could
understand the space of differences. Table 3.2 shows somewhat mixed
results of this perception study. We observe that when presented with the
default, “natural” phrasing rate, people agree a lot on their view of the
speech being normal. When we up the phrasing rate to 40%, people are
somewhat certain that the speech is not ‘very slow’, but they are divided
on their opinion of whether it is ‘normal’, or ‘slow’. Moving the phrasing
rate up to 80% seems to leave people into a state of no consensus — the
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opinion is almost equally divided between ‘normal’, ‘slow’ and ‘very slow’.
Our hypothesis of the 10-40-80 phrasing rate groups for a ‘fixed knob’
is only mildly supported by this evidence. While people can tell these
phrasing rates apart, they do not seem to agree on what label to assign.

Table 3.2: Subjective Listening Test: Can people classify phrasing rates into
‘normal’, ‘slow’ and ‘very slow’ categories?

% Votes % Votes % Votes
Phrasing Rate Normal Slow Very Slow
Default 77 21 2
40% 50 33 17
80% 28 38 34

3.6 Chapter Summary

In this chapter, we described our method of defining the phrasing problem
under a log-linear framework and training the framework with a minimum
error rate target, rather than maximum likelihood. We showed that
combining features/models related to phrasing using this mert strategy
produces a significant improvement in phrasing accuracy, as measured by
the F-1 metric.

We described a break-count feature integral to our mert model that
allows us to define a parametric “knob” to vary the quantity of generated
phrase breaks. Once we learn our mert weights, we can keep all weights
to their learned value and vary the weight of the break-count feature
to provide this knob. Our empirical evidence shows that the knob can
be reasonably approximated with a Tangent function with offset. The
combination of using a mert model and this break-count feature allows a
user to specify how many breaks they want, and our model produces the
breaks appropriately.

Our model now can vary the phrasing rate at demand. We map a
particular phrasing proportion into a knob value. However, users of
speech synthesis do not define phrasing rate in terms of the proportion
of word boundaries that are breaks. The control we would like them to
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have would be more quantized: low, medium, high, etc. We studied the
perceptual impact of phrasing rate (proportion of breaks) and saw that
people are quite insensitive to small changes in phrasing rate. This means
that large changes in phrasing rate are necessary if we want to make a
difference in perception. But more practically, it means that we can get
away with little changes for specific reasons.

The mert framework that we proposed for phrasing took inspiration
from work in Machine Translation. However, this connection actually
runs deeper. Text to speech is often used as the final step in speech
to speech translation, and we are required to synthesize automatically
translated output. We shall get back to this model in Section 5.2.3 with
the objective to improve the intelligibility of synthesized translations.

This proposed new architecture of phrasing in Festival has been pub-
lished in (Parlikar and Black, 2013). Code for this model has been inte-
grated in the Festival and Festvox suite of tools with documentation. The
underlying framework is extensible from phrasing to other models within
the clustergen synthesis paradigm, and future work could look into
applying this to other prosody models.
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4
Predicting Break Duration

The right word may be effective, but
no word was ever as effective as a
rightly timed pause.

Mark Twain

P
auses in speech are not all the same. The obvious difference is
that pauses at end of sentences are longer than those within a
sentence. However, the differences are more subtle than that. In

the previous chapters, we saw how phrase break prediction can be made
style specific. However, there is more to style than just the positions of
breaks. Goldman-Eisler (1961) has observed that lengths of individual
pauses in speech are distributed differently for different individuals, as
well as the type of situation in which speech is uttered. Oliveira (2002)
has discussed about work that demonstrates that people tend to pause
more often and remain in silence for much longer when speaking in
more complex scenarios. Duration of pauses can affect perception. For
example, Dhillon (2008) shows that pause duration is a reliable means
of discriminating between lexically ambiguous words. From a synthesis

44
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point of view, it is thus important to not just model where we insert
prosodic breaks, but also predict the duration of these pauses.

Although phrase break prediction has been widely explored in synthe-
sis, generating these breaks with the appropriate duration has not received
much attention. Generally, all duration models treat the pause separately.
Some segmental duration modeling techniques, such as Campbell (1992)
does not predict pauses at all. Barbosa and Bailly (1997) divides an utter-
ance into rhythmic groups and predicts the duration of each group. It
computes the segmental duration of the group and then optionally inserts
a pause of the remainder length. Following the Klatt (1982) model, the
Festival speech synthesis system (Black and Taylor, 1997) as well as the
Mary TTS system (Schröder and Trouvain, 2003) assign a fixed duration
to breaks, based on the predicted tobi level of the break. One of the
reasons why pause specific duration models have not been thoroughly
explored is that style corpora with appropriate annotations are not easy to
construct. The burnc corpus (Ostendorf et al., 1995) is one such corpus,
but it hasn’t been widely used to build pause duration models.

In this chapter, we present a data-driven approach to modeling du-
ration of phrase breaks. Similar to methods in previous chapters, we
use forced-alignments between speech and transcription to detect where
phrase breaks are in natural speech. For each break, we find out its dura-
tion and extract features over text that could be used to learn a regression
predictor for the duration. Here we present our work on six data sets,
which vary both in size and in speech style.

4.1 Styles and Corpora

The stylistic corpora we used for duration modeling are the same as those
we used in Chapter 2. We used an additional audiobook corpus. Here is a
recapitulation of the corpora we used.

The Europarl corpus consists of prompts from the English side of the
Europarl (Koehn, 2005) parallel corpus between English and Portuguese.
This data contains proceedings of the European Parliament. The speech
was recorded by an Indian English speaker (AUP) in the style of “parlia-
ment proceedings”. The ARCTIC corpus consists of the arctic prompt
set (Kominek and Black, 2004) recorded by speaker SLT (female, Amer-
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ican speaker). The style of this speech is “short sentences”. The F2B
corpus is from the Boston University Radio News Corpus (Ostendorf
et al., 1995), in the style of “radio broadcast”. The Obama corpus consists
of public talks by the US President, Barack Obama. Audio and transcripts
of two of his public addresses were used to build this voice: (i) Presidential
Candidate speech (Mar 2008, Philadelphia) and (ii) Address at the Military
Academy (Dec 2009). The TATS corpus is taken from an audio-book (The
Adventures of Tom Sawyer, by Mark Twain) in the Librivox database.
The book was recorded by a male professional volunteer. This is in the
“audio-book” style. Finally, the Emma corpus (Prahallad and Black, 2010)
is taken from an audio-book (Emma, by Jane Austen) in the Librivox
database. The book was recorded by a female volunteer. The style of
this corpus is also, broadly, “audio-book” but is different from the TATS
corpus.

We extracted the pause duration from natural speech in our corpora.
To do that, we force-aligned the speech and transcriptions using an EHMM
tool by Prahallad et al. (2006) that allows for short silences to be inserted
during the alignment. We used these alignments to find out the length of
these inserted silences. We ignored all inserted pauses that were less than
80msec in length.

Table 4.1 shows the break duration profile of these corpora. Note that
we do not include breaks at the end-of-utterance in our analysis here. This
is because, for some databases, the end-of-utterance pause timing may no
longer be in the database due to external pre-splitting, and/or recording
being done as isolated sentences. We observe from this table, however,
that the average break duration varies quite a bit across the styles.

4.2 Analysis of Phrase Break Duration

As argued by Campione and Véronis (2002), it is better to use log-transformed
duration, rather than values in the time domain, to analyze or model
pauses. This is because corpus studies have shown that the log-distribution
is closer to being a normal distribution than the original distribution. We
looked at the log distribution of the duration of breaks extracted from
our corpora.

Figure 4.1 plots the kernel density estimates of the log-distribution



4.3. CART Duration Modeling 47

Table 4.1: Break Profile of our corpora. Counts here do not include breaks at
ends of utterances.

Corpus Speech Size Num Breaks Average Break
(minutes) Per Minute Length (msec)

Europarl 49 7.2 141
ARCTIC 56 3.8 130
F2B 55 10.6 273
Obama 61 11.8 414
TATS 406 7.6 249
Emma 1040 8.5 243

of breaks that we extracted. We observe that the distribution of breaks
between different corpora is quite different. Also observe that even in the
log domain, our break distribution is far from normality. We can perhaps
consider that the break duration values come from a Gaussian mixture.
Using the Benaglia et al. (2009) approach, we looked at each corpus and
analyzed how many Gaussian distributions the mixture for that corpus
consists of. The analysis shows that ARCTIC, Obama and TATS corpora
consist of a mixture of two Gaussians, the Europarl and F2B are mixtures
of three Gaussians, whereas the Emma distribution is best expressed as a
mixture of four Gaussians. The analysis by Campione and Véronis (2002)
described trimodal distribution of pauses, and categorized them as brief
(<200ms), medium (200-1000ms) and long (>1000 ms). In our analysis, we
have completely excluded the end-of-utterance breaks, which are typically
long pauses. Even if we assume that those breaks are normally distributed,
the entire set of pauses in our case does not always seem to be trimodal.

4.3 CART Duration Modeling

Our analysis showed that there is a lot of variation in the duration of
phrase breaks in natural speech, that we should attempt to capture during
speech synthesis. To predict duration of each phrase break, we built a
decision tree regression model. Each of the leaf nodes of the tree makes
the assumption that the breaks within its context are normally distributed
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Figure 4.1: Kernel Density Plot of log-duration of breaks

(i.e., we store the mean and variance of the breaks). While this seems in vi-
olation of our analysis that the breaks are in fact not normally distributed,
our contention is that the questions asked by the decision tree would
sufficiently narrow the context of the breaks so that all breaks in that
context fall into a distribution that can be approximated with a Gaussian
estimator.

We started with all the breaks extracted from each of our corpora. We
dumped a set of features corresponding to the breaks and used wagon to
build regression trees. Like in our other experiments, we used an 80-10-10
split of data between training, development and testing. We used the
‘stepwise’ option that the wagon program provides, and this allowed us to
select the most informative feature at every level by evaluating it on the
development set when building the tree.

At synthesis time, Festival first predicts the positions of all phrase
breaks in an utterance and then builds the duration of segments from left
to right. In this particular work, we used the standard phrasing model in
Festival, the Taylor and Black (1998) model to perform the phrase break
decisions. When predicting the duration of a segment that corresponds
to a phrase break, we use the custom tree trained to predict the break
duration.
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The set of features we used in our modeling is as follows: (i) name of
the two segments before and after the break, (ii) part of speech of the two
words before and after the break, (iii) punctuation character, if any, before
and after the break, (iv) presence of a quotation mark before or after the
break, (v) the number of content words in the previous phrase, (vi) the
number of stressed syllables in the previous phrase. From building models
and analyzing the output of the build process, we made the following
observations. The type of punctuation that occurs before the break is a
great predictor for break duration. The names of the adjacent segments
and the parts of speech of adjacent words are also good indicators of break
duration. The number of words or syllables in the previous phrase was
not consistently a useful feature for predicting the duration of breaks.
Analysis by Zvonik (2004) suggests that having more than 10 syllables
in the preceding phrase strongly correlates with a long break. In the
styles and corpora that we used, however, we did not notice such a strong
relationship between the length of the previous phrase and the duration
of the break. Note however, that the prediction of where breaks should
be inserted in the first place does depend on the length of the previous
phrase.

4.4 Evaluation of Break Durations

In the earlier chapters, where we looked at the prediction of where phrase
breaks should be inserted, we measured the accuracy objectively by us-
ing metrics such as the F-measure. Duration prediction is a regression
problem, not a classification problem. Hence, we need to use some other
metrics to objectively compare how well our models are doing.

One of the commonly used metrics in duration modeling (at segment
level, or otherwise) is the root-mean-squared-error (RMSE) of prediction.
If we use the durations of breaks in our held-out data, d1, d2, . . . dn , as
being the ground truth, and if our model predicts p1, p2, . . . , pn as the
actual duration values for those breaks respectively, then the rmse is
calculated as:

RM SE =

s

∑n
i=1(di − pi )

2

n
.
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The other commonly used metric for duration modeling is correlation
between the truth and predictions. The sample correlation coefficient can
be used to estimate the Pearson correlation r between the true durations
of breaks d1, d2, . . . , dn and the predicted respective values p1, p2, . . . , pn ,
by using the equation:

r =
n
∑

di pi −
∑

di
∑

pi
Æ

n
∑

d 2
i − (

∑

di )
2
Æ

n
∑

p2
i − (

∑

pi )
2
.

The goal of modeling break duration, at least objectively, is to achieve
a low rmse value, and a high correlation with truth. However, these ob-
jective metrics are not very strongly correlated with perceptual judgments,
and we would also like to compare our models based on whether people
think they are different, and/or better.

4.5 Experiments and Results

We have six corpora at hand. We extracted breaks and related features
from each of the corpora. We then partitioned this data into 10 sets, with
the intent of doing a 10-fold cross validation. In every set, we held out
10% of the data for testing. Instead of taking every tenth item into our
test set, we preserved the sequence of breaks in training and testing data.

For each cross-validation fold and for each corpus, we have four differ-
ent models. The baseline model is what Festival uses by default: predict
each sentence-internal break as being 150ms. We can make this model a bit
smarter by building a “Mean” model: Instead of predicting 150ms, we can
predict the mean value of breaks that we saw in the training data for that
cross-validation fold. Third, we built a style-specific model as described
before. Finally, we built a non-style-specific model, or a combined model:
we combine the same cross-validation fold of all our corpora and train a
combined cart model. The purpose of this combined model is to provide
us with a reference performance of a model that is trained using method
similar to our style-specific method, but still is not style-specific. The
hope is that style specific models will be better than the generic, combined
model.

For each fold in the cross validation, we estimated the rmse and
Correlation number of our prediction using the four models at hand. We
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then averaged out the results over all cross-validation folds and looked at
the average result for each corpus.

Table 4.2 shows the rmse error of the four models on each corpus.
Table 4.3 similarly shows the correlation of prediction. The rmse and
correlation values are on the prediction of the duration in the log-domain.

Table 4.2: RMSE of Predicted Duration (log-seconds domain)

Corpus Festival Mean Combined Style
Specific

Europarl 0.4099 0.3858 0.6167 0.4186
ARCTIC 0.3897 0.3313 0.6858 0.3422
F2B 0.6778 0.4433 0.4794 0.4360
Obama 1.0456 0.7199 0.8685 0.7491
TATS 0.6736 0.5934 0.6021 0.5934
Emma 0.7072 0.6563 0.5834 0.5697

Table 4.3: Correlation of Predicted Duration (log-seconds domain)

Corpus Festival Mean Combined Style
Specific

Europarl 0.0000 0.0000 0.1939 0.0653
ARCTIC 0.0000 0.0000 0.2974 0.2174
F2B 0.0000 0.0000 0.1251 0.2770
Obama 0.0000 0.0000 0.0790 0.0868
TATS 0.0000 0.0000 0.2276 0.1885
Emma 0.0000 0.0000 0.4634 0.5096

Looking at the rmse, we see that the style specific model performs
better than the Festival model on all but the Europarl style. It is also better
than the combined model. However, quite often, the mean model seems
to get a lower rmse. This is a bit surprising because it is a naive model,
and moreover, the underlying distribution of breaks is not even normal.
One possible explanation here is that since there is little training data on
most of our corpora (one or two breaks in every utterance), our models
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are over-fitting to the training data across all cross-validation folds, leading
to weaker final model. If we look at the Emma corpus (our largest corpus),
we see the results as we would expect: the Festival baseline does the worst,
the mean-prediction does slightly better, followed by the combined model,
and the style-specific model has the least error.

While rmse is an important dimension to consider for evaluating our
models, achieving the right speaking style means we should get a good
correlation measure too. The mean model predicts a fixed value, and
hence is not correlated at all with the actual duration. Our cart models
can have a good correlation. The combined model typically gets better
correlation numbers than the style specific model, even though it typically
has higher error. On the largest (Emma) corpus, however, we see that the
style specific model has higher correlation than the combined model, as
we would expect.

Objective results show that style specific duration is better than other
models, on the Emma corpus. We ran subjective tests using this corpus to
understand two aspects of duration modeling. First, we wanted to find
out if people can even perceive differences in break duration for synthetic
speech. Strictly speaking, we did not combine the pause duration into any
other prosodic model (such as F0), and hence we wanted to investigate
the impact of the duration alone, on perception. Secondly, if people can
indeed perceive the difference between pause duration, we wanted to find
out if they prefer to listen to synthesis that uses the style-specific duration
model.

We ran two subjective comparisons. First, we compared the “Mean”
model to the style specific model. We also compared the “Combined”
model to the style specific model. We used a preference test for both these
comparisons. We chose 25 utterances from our test data and synthesized
them with the three models of phrase duration. In this case, we used
Festival’s default phrasing model to predict the location of breaks. We
then created two tasks on Amazon Mechanical Turk to compare the two
pairs of models. In each task, we presented the 25 utterances in random
order. The two versions of each utterance were presented in random order,
and were not labeled. Workers were asked to select the version that they
preferred. We allowed up to 10 workers to do our tasks, and thus for each
pair of comparison we have up to 250 data points of comparison. We
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filtered out responses by listeners that our automatic heuristics flagged as
being spammers. The model that received the most votes by listeners can
be considered to be the better one.

Figure 4.2 shows that the the style specific model performed better
than the Mean model. This suggests that people perceive and prefer
variability of pause duration in speech. Figure 4.3 shows that people could
not tell the style-specific and combined models apart. This could mean
that people can not tell apart subtle differences in variable duration. It
could be that people can notice the presence of variation in pause duration,
but not distinguish the subtleties. This is not unlikely, because pauses only
happen once or twice in an utterance, and someone paying attention to
understanding the overall speech may not pick up on the small differences
in duration of breaks. However, this needs further investigation.

Figure 4.2: Subjective Result: Listener Preference for the Style-Specific
model versus the Mean model
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Figure 4.3: Subjective Result: Listener Preference for the Style-Specific
model versus the Combined model
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4.6 Chapter Summary

In this chapter, we looked at the duration aspects of stylistic phrasing. We
looked at analysis of corpora which shows that there is a lot of variation
in break duration between styles. Analysis also showed that not all styles
have normally distributed break durations, even in the log domain, but
that it could be modeled as a multimodal distributions.

We built decision tree models to predict phrase break duration for the
styles with a data-driven approach. We compared these models to two
naive models, that use fixed durations of breaks, and a non-style-specific
model. On the Emma corpus, we found both objectively and subjectively,
that the style-specific model was better than the fixed-duration models.
The results on other corpora fixed-mean-prediction yields the lowest rmse,
but training a stylistic model gives variation in the break durations. The
details of this work have been published in (Parlikar and Black, 2012b).

We realized, through efforts in the presented experiments, that pre-
dicting the duration of phrase breaks is a harder problem than predicting
their location. This is primarily due to data scarcity. Unlike segmental
duration, where many instances are available for each segment at training
time, breaks occur less frequently in data. If speech corpus available to
train a voice is about an hour of speech, the total number of breaks is
likely to be far short of even 5000 data points, and building regression
estimators over real numbers is challenging. However, in such situations,
our results show that we can continue to use a fixed-value duration of
breaks, but use a value that is learned from the corpus rather than an
arbitrary constant such as 150ms. If larger data is available, such as in
our case of the Emma corpus, then building the style-specific models is
feasible and it would provide objective and subjective improvements over
a fixed-value model.

In the work presented in this chapter, we only addressed phrase breaks
that are inside an utterance. The next steps are to look at predicting breaks
between utterances. Until recently, speech synthesis has usually focused
on synthesizing one utterance at a time. However, paragraph synthesis is
gaining popularity in domains such as audio-book synthesis. If synthesis
happens at paragraph levels or higher, we have to start caring not just
about breaks within an utterance, but also breaks between utterances in a
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paragraph, and breaks at the ends of paragraphs. Modeling the duration
of these breaks is tricky, since databases from which we can train them are
not readily available. Prahallad et al. (2007) have proposed a method with
which large speech corpora could be aligned to their text, to automatically
build a corpus for TTS voices that includes information at sentence and
paragraph boundaries. One next step could be to construct such databases
for available audio-books and model the duration of all phrase breaks
occurring in speech. We would need to use cross-sentence features, and
implement a support for them in the Festival Framework.
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5
Phrasing: Broader Scope and Impact

Technology feeds on itself.
Technology makes more technology
possible.

Alvin Toffler

P
hrasing models are first of the prosodic models used by a speech
synthesizer. The choice of particular phrase breaks can have an
impact on other models of prosody, such as intonation and seg-

mental duration. Further, phrase breaks also have an impact on the overall
intelligibility of text. While the previous chapters looked into how phrase
breaks can be modeled, this chapter focuses on the broader scope and
impact of phrase breaks. We shall see how intonation modeling is affected
by the choice of phrase breaks. We shall also look at speech synthesis
in the context of speech to speech translation, and see how appropriate
phrase breaks can make the synthesis of automatic translations more
understandable.

56
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5.1 Impact on Intonation

Phrasing is an important step during prosody generation in speech synthe-
sis. It is also the first of the prosody models that gets invoked, and lays the
foundation of prosodic decisions. Decisions that a phrasing model makes
can have an impact on other models of prosody, such as intonation and
duration. Improvements in the phrasing model should therefore be able
to produce more natural speech synthesis.

We studied the interaction of our phrasing models with the Statistical
Phrase Accent intonation model (Anumanchipalli et al., 2011). We built
a voice using the data provided for Blizzard Challenge 2013, under the
EH2 task. The training data consisted of ten hours of speech, and was
taken from audio recordings of two books. The style of speech was thus,
“audio book”. We built a grammar-based phrasing model (Chapter 2) for
this style and also built a minimum error rate phrasing model (Chapter 3)
for the voice. We trained a Statistical Phrase Accent Model (SPAM) for
the intonation. We used held out utterances to produce synthetic speech
in two versions: versions: (i) Using the Festival default phrasing with the
SPAM model, and (ii) Using the proposed phrasing model with the SPAM
model. We looked at the intonation contours predicted by the SPAM
model in the two cases, and compared them to the reference.

Our goal here was to study whether the SPAM intonation model pre-
dicted better pitch contours because of the introduction of the proposed
phrasing model. Because we have reference pitch contours (from natural
speech) over these utterances from the held out data, we can objectively
evaluate the two predicted contours.

Two of the commonly used metrics in evaluating pitch prediction
are the Root-mean-squared error (RMSE) and the correlation of predic-
tion (Anumanchipalli et al., 2011). However, these metrics require time-
alignment between the prediction and reference signals. Typically, pitch
prediction is performed under “resynthesis” conditions, where the phras-
ing models and duration models are kept invariant, and different intona-
tion models are then evaluated objectively. However, our case is a little
different: we are changing the phrasing, thereby affecting both duration
and intonation, and the predicted pitch contour is no longer time aligned
with the reference from natural speech.
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We used Dynamic Time Warping (DTW) to align the predicted and
reference pitch contours. The dtw distance, in terms of the L2 norm,
after the alignment is performed could be used to study whether phrasing
affects the intonation model.

We first ran an experiment to study the validity of the dtw distance
as an objective evaluation for improvements in pitch prediction. We built
four voices, on the F2B corpus from burnc. The intonation model in
these four voices was trained on data with different sizes. Table 5.1 shows
the dtw distance of the intonation model compared to reference natural
speech on held out data. We know that an intonation model becomes
worse as we reduce the amount of training data. This trend is reflected
in the dtw distance. Therefore, the dtw distance seems to be a valid
objective metric for evaluating different intonation contours that are not
time-aligned.

Table 5.1: DTW distance of predicted F0 with models trained on
different-sized subsets of F2B data. Bold values are significantly
different from the row above. The trend supports the validity of
DTW as an objective metric of F0 prediction.

Data Size DTW
(F2B Corpus) Distance

100% 26.1260
66% 26.1754
50% 26.6518
33% 27.3685

We now compared the intonation of the two audiobook voices we
have: one with the default phrasing model, and one with the proposed
model. Table 5.2 shows the dtw distance of the two intonation predic-
tions with respect to natural speech. We see that introducing the proposed
phrasing model significantly improves the SPAM intonation model.

Anumanchipalli (2013) has argued that an intonational model can
be deemed better if it better captures the variation that exists in natural
speech. One simple measurement they used is the mean and standard
deviation of predicted pitch: a model that is closer numerically to the
statistics in natural speech is better. We did similar comparison on the
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Table 5.2: DTW Distance of F0 prediction with different phrasing models.
Bold values significant for p < 0.0001.

Phrasing Model DTW
Distance

Festival Default 29.2358
Proposed Phrasing 25.7285

two voices we have. Table 5.3 shows that compared to natural speech, the
intonation model that is based on the proposed phrasing model is slightly
better than when using the baseline phrasing model. The difference here
is not very big, but the trend is encouraging.

Table 5.3: Mean and Standard Deviation of F0 in synthesized and Natural
Speech. The phrasing models proposed in this thesis help the
intonation model get closer to natural speech.

Speech Mean F0 Stdev F0
(Hz)

TTS: Festival Phrasing 174.926 28.418
TTS: Proposed Phrasing 178.607 30.582
Natural Speech 191.618 40.613

Overall, we found that the proposed phrasing techniques do impact
the intonation in a positive way. We tried to evaluate the impact on a
subjective level but found that designing a listening test that is valid is
difficult. An informal A/B test measuring preference between the two
voices (SPAM intonation model with the default and proposed phrasing
methods) showed that the synthesis with proposed phrasing is better.
However, this result is in line with the results found in the evaluation
of style-specific phrasing models in Chapter 2. We don’t know if the
preference is because of a better phrasing model, or better intonation
model. While the objective trends show that better phrasing also causes
better intonation, a subjective listening test such as A/B, or even AB/X
is not necessarily a valid test. This problem will hold for any study of
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interaction between different prosodic models, and a subjective strategy
that can tease apart the improvements coming from individual models
needs to be designed.

5.2 Impact in Speech Translation

One of the most interesting, yet challenging applications of speech syn-
thesis is in speech-to-speech translation. In this task, we want to translate
spoken utterances in one language, into spoken utterances in a foreign
language. Ideally, we would want the translations to be exact in content,
fluent in language, and delivered in the same style as the original speech.
However, in a typical automatic spoken translation scenario, a person
speaks into a microphone, and ill formed, difficult-to-understand transla-
tions come out of computer speakers. We decided to investigate into this
problem and offer some solutions to make synthesized translations easier
to understand.

Speech-to-speech translation (sst) is an inherently difficult task. It
broadly consists of three modules. Speech data first goes through Auto-
matic Speech Recognition (asr) and gets converted into text. This text is
then given to a Statistical Machine Translation (smt) engine to convert it
into text in foreign language. A text-to-text (tts) system then reads out the
foreign text. Although modern asr and smt systems are quite advanced,
they are prone to errors. Further, errors in asr can get amplified by errors
in smt. The result is that the output of the smt engine often contains
ill-formed sentences. A tts system is supposed to read these ill-formed
sentences, but standard synthesizers are trained on fluent text. They can
not always handle the disfluent sentences correctly, and end up producing
speech that amplifies the errors in text. In the end, we have speech that
can be very difficult to understand.

Recent Blizzard Challenge results (see website) show that synthetic
speech is still not as intelligible as natural speech. Further, Tomokiyo
et al. (2006) have shown that synthesis of automatic translations is even
less intelligible. Research is continuously improving the asr, smt, and
tts models individually, but comparatively little is being done to jointly
improve the performance of this speech-to-speech translation pipeline.

Improving the overall sst pipeline involves deeper integration be-

http://www.festvox.org
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tween its individual models. Improvements in translation accuracy have
been obtained by tightly coupling asr and smt systems. Zhou et al.
(2007); Bertoldi et al. (2007) and others have shown that using asr word
lattices or confusion networks as input to an smt system can find a better
translation rather than translating just the 1-best output of asr. The link
between asr and tts has also been looked at. Agüero et al. (2006); Sridhar
et al. (2008) have looked at transferring prosodic information in the source
speech onto the target side. This has shown to make the synthesis output
more natural.

Our work here focuses on tighter integration between the smt and
tts components. If an smt engine produces output with fluency errors, a
typical tts system is not designed to handle it well. By letting the smt

and tts modules talk to each other and communicate their strengths
and weaknesses, they can jointly make better decisions about the final
output. In addition, a tts system, using the minimum error rate phrasing
as proposed in this thesis can make phrasing decisions that can improve
the intelligibility of machine translation.

5.2.1 Previous work: SMT–TTS Integration

There are two main issues with the boundary between smt and tts. First,
that the output of smt may not be grammatical or fluent. Secondly, the
overall “dialect” of the language that the smt generates bay be different
than that the synthesizer was trained on, and hence even if the smt output
was fluent, tts would have trouble synthesizing it correctly.

Ungrammatical and disfluent sentences are difficult to understand,
even if presented in textual form. Tree (2001); Watanabe et al. (2008)
suggest that when humans are reading such text, they explicitly mark
disfluencies by adding silent or filled pauses at the appropriate places.
These pauses alert the listener of an imminent phrase that may be difficult
to understand. Taking this into account, Bonafonte et al. (2006) have used
the probability of a word level language model as a feature in their tts
system in their phrasing model. Adell et al. (2012) have further shown
that synthesizing filled pauses not only makes the utterances easier to
understand, but also generates speech that is perceived to be more natural.

Paraphrasing input text is another technique that has been explored.
Putois et al. (2010); Cahill et al. (2009) have suggested that for some tasks,
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the exact wording of an utterance is not crucial. A Paraphrasing tool
can be used to generate several paraphrases of the actual input. The tts
system can choose any of the paraphrases, based on the unit-selection join
cost. They used an smt system that translates from one language into the
same language, thereby creating an n-best list of paraphrases to choose
from.

5.2.2 TTS-Friendly Translations

Sometimes, the output of an smt system is grammatically and semantically
fine, but is difficult to synthesize for our tts models. For example, the
generated utterance might have an unusual diphone at a word boundary.
To mitigate this issue, we can use the n-best list from smt instead of just
the top best. This is similar in principle to (Cahill et al., 2009), but instead
of paraphrasing given input text, we already have an smt system at hand.

We start with the top-best translations we have to synthesize. For
each utterance, we obtain the set of phonemes we would synthesize. We
compare diphones in this set to the diphones in the training data of our
voice. If an unseen diphone was found, we classify that utterance as having
a bad join. We found that 17% of our translated sentences had a bad join
in them.

For sentences that have a bad join, we seek to find an alternative
translation from the n-best list. However, we need to ensure that by
going down the n-best list we do not lose translation quality. We take the
top-best sentence (the one with the bad join) as being a reference sentence.
We compare each of the n-best items to the top-best and determine the
meteor score (Banerjee and Lavie, 2005). Our candidate hypotheses are
the ones that have a meteor score of 0.98 or above. We used meteor

instead of bleu because of its reliability on an individual sentence level.
We then go through the filtered n-best list and find the unit selection cost
(Hunt and Black, 1996) of each hypothesis. We then pick the hypothesis
with the lowest join cost.

To evaluate whether this n-best reranking gives us better intelligibility,
we ran a transcription task. We picked 20 sentences that we knew had
bad joins. Then we synthesized them, and also synthesized an alternative
translation from the n-best list as obtained using the above method. We
had five subjects listen to the utterances and we had them transcribe. We
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measured the error in the points of the bad join. We found that using the
top-best translation had a word error of 28.9%, whereas using alternative
hypothesis had a lower error of 24.7%.

5.2.3 Phrasing for Intelligible Translations

Appropriate phrasing can make synthesis easier to understand. We wanted
to see if customized phrase prediction on smt output can help improve
its synthesis. We only had text output from the smt system, and had to
elicit phrase break information in order to perform this experiment. We
had human annotators go through the smt output and mark the word
boundaries where they would insert breaks if they were reading the text
out loud. We did not train a phrasing model, but used some of these
annotated utterances, synthesized them and ran an oracle experiment to
see if such customized phrasing can increase intelligibility.

The smt output we chose for this experiment comes from a phrase
based Chinese–English translation system. We chose this language pair
because there is divergence in the word orders in these languages, leading
to longer-distance word reordering errors in output. This system was
trained on about 11 million parallel sentences and used the Gigaword
corpus for language modeling. We used the moses decoder (Koehn et al.,
2007) for translation. The test set we used was in the broadcast-news
domain, and had a bleu score (Papineni et al., 2002) of 14 points with
one reference available for evaluation. We selected 80 translations that
were between 10 and 20 words long. We manually removed 15 sentences
that were very grammatical. Three people were asked to annotate phrase
breaks in these sentences. All annotators are fluent English speakers and
have a background in linguistics.

People don’t always agree on phrase annotation, so we tried to deter-
mine the level of agreement between our annotators. We computed the
kappa statistic (Cohen, 1960) between the annotations. On average, the
annotators had a kappa value of 0.66. However, this substantial level of
agreement can not be relied upon. Most word boundaries are non-breaks,
and agreeing on them is easy. As argued by Stevenson and Gaizauskas
(2000), this issue will affect other standard measures of inter-annotator
agreement as well. It actually turns out that the agreement is not that high.
From Table 5.4, we can see that there is a great difference in the number
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of phrase breaks inserted by each person. It is unclear how much of that
can be attributed to personal phrasing preferences, and how much to the
complexity introduced by the ungrammatical smt output. Nonetheless,
just like phrasing for fluent text, there clearly is no one-correct way of
phrasing garbled smt output.

Table 5.4: Annotator Agreement on Phrasing of SMT output

Number of
Annotator Annotations
A 99
B 59
C 88
A ∩ B 41
B ∩ C 31
C ∩ A 53
A ∩ B ∩ C 28

We then checked if customized phrasing can help improve the synthe-
sis of smt. We picked 20 annotated sentences (all from one annotator)
and synthesized them with two phrasing versions: (i) The default Festival
model, and (ii) Manually annotated phrases. The set of 20 sentences was
chosen randomly, but care was taken to ensure that the phrasing gener-
ated by Festival isn’t exactly the same as what our annotators marked
(or we would not be comparing anything meaningful). We also made
sure these sentences did not have hard words such as uncommon named
entities. We asked five subjects to listen to these utterances and transcribe
them. We post-processed these transcriptions to normalize case, correct
typos and remove function words. We compared the transcriptions to
actual text and calculated the word error rate. Table 5.5 shows the average
transcription error of the two synthesis models. This result suggests that
customized phrasing for smt has potential to increase intelligibility and
that we should pursue that goal.

We also looked at the smt error of untranslated words. When smt

decoders encounter untranslated words, they can either leave them as
they are, or delete them entirely. Untranslated words can cause problems
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Table 5.5: Comparison of Annotated Phrasing to Standard Phrasing

Phrasing WER
Model
Festival 30.0 %
Customized 26.6 %

understanding content. If the source and target languages use the same
orthography, the synthesizer can try to pronounce a foreign word and
perhaps result in misleading speech. We had output of an Portuguese–
English translation system that had several untranslated words. An ex-
ample sentence: It does raise problems “la” again. With the assumption
that untranslated words are likely to be a cause of trouble, we replaced
them with filled pauses during synthesis. We synthesized the filled pause
with an um sound at 20% lower pitch than the rest of the synthesis. No
other changes were explicitly made to the overall prosody of the utterance.
With a set of twenty sentences and four subjects, we ran a transcription
test again. We compared the synthesis version with untranslated words
left bare, versus the version with the filled pauses. In this case, it doesn’t
make sense to measure the overall word error rate, because transcribers are
most likely to make error in the neighboring words of the untranslated
word. Hence we measured error rate on the nearest two content words of
the filled pause. We noticed that synthesizing untranslated words resulted
in a 30.1% error. Using filled pauses lowers the error to 24.0%.

5.2.4 Automatic Phrase Breaks for SMT with MERT
Phrasing

Given that appropriate phrase breaks can help the intelligibility of synthe-
sized translations, we investigated whether we can automatically introduce
such breaks with the help of a language model. We built a baseline voice
on the F2B corpus. We trained a grammar based phrasing model. We built
a mert phrasing model in a manner similar to that described in Chapter 3,
but we added an extra feature to the loglinear model: the trigram language
model score at the word boundary (previous word, current word and next
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word). We trained an English language model on the Europarl data. For
each word boundary, we queried the probability of the word sequence at
the boundary.

We did the mert training in three ways. First, we simply trained
it on the F2B development corpus. In the second condition, we used
a mix of the F2B development corpus and actual MT output that was
hand-annotated with reference breaks (as described above). In the third
condition, we only trained the mert weights using the MT development
data. We then evaluated the performance of the phrasing model on heldout
portion of the labeled MT corpus. Table 5.6 shows the F-measure of the
phrasing under these three conditions. We have also included results of
the mert training without the language model feature.

Table 5.6: F-measure of phrase break prediction, studying the impact of the
language-model feature in MERT

3gr LM Feature? Dev Corpus F-1 F-1
(SMT) (F2B)

No F2B 10.64 58.06
Yes F2B 12.63 58.06
Yes F2B+SMT 29.03 56.90
Yes SMT 41.67 35.62

We observe that the mert phrasing model trained on the F2B corpus
performs poorly when synthesizing machine translation output. If we add
a language model to the mert model, and still only train mert weights
on F2B data, we get a very small improvement on the smt held out data.
The intuition behind why the LM feature will help is that it will help
detect bad word boundaries. However, the F2B development data is fluent
English, and it doesn’t have examples of “bad boundaries” that the mert
can learn from. By including smt data to the mix of development corpus
for training mert weights, we get evidence of the bad boundaries and the
language model feature suddenly becomes more discriminatory. This can
also be seen by the weights that are assigned to the different models after
optimization. Table 5.7 shows how the weights shift when tuning to the
F2B corpus, versus the mix of F2B and SMT corpora. Notice the shift
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in the relative weight of the language model feature. Notice that when
tuning to the mix of F2B and SMT corpora, we do not lose too much
accuracy on the F2B test data. However, if we optimize the mert only
for smt data, then in a way we make it specific to the smt style, and the
performance on the F2B data greatly goes down.

Table 5.7: Weights learned by MERT for different features when optimizing
for different datasets.

Feature F2B F2B+SMT
Grammar Based Model 0.47756 0.48307
POS Sequence Model 0.12344 0.39139
3gr Language Model 0.03279 0.13300
Break Language Model 0.86617 0.75993
Break Count -0.07327 -0.13519

We evaluated the impact of adding the language model subjectively,
by running an A/B test between the base model (without a language
model) to objectively the best model (mixed development data). We
synthesized 25 utterances and asked 10 participants on mechanical Turk
to listen to each. For each utterance, they heard the synthesis using two
models. We asked them to choose the utterance they thought was more
understandable. The two audio versions were presented in random order
every time. Figure 5.1 shows that people prefer the proposed model.
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Figure 5.1: SMT Phrasing Subjective Test: Which model produces more
understandable translations?

The inclusion of smt corpus in mert training for phrase breaks has
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shown promising results, but they come with a caveat. Where does the
smt corpus come from? If we build a new smt system, we can produce
the text required to build a development corpus for mert. However, it
won’t be labeled with phrase breaks. Because we don’t have speech data
corresponding to these translations, we won’t have a way to automatically
label the phrase breaks either. Thus, we would have to annotate a few
hundred sentences for breaks by hand. It would be an interesting direction
to explore how to reduce this effort. One particular idea is to study the
divergence of phrasing across multiple smt systems of different quality
levels. There might be some generalization techniques that could be
invented, that could allow mert training for phrasing to be conducted
on one well defined hand-labeled MT corpus, while the results still being
valid for other MT outputs.

5.2.5 Phrasing and Video Dubbing

The number of video lectures available on the Internet today is increasing
very rapidly. These lectures may be about topics of global interest, but
are given in languages that may not be well understood everywhere. In
interest of broader dissemination of knowledge, it is desirable to dub these
lectures into several languages.

Video repositories such as TED have already taken steps to make
their content widely accessible. Most videos are transcribed in their
original language, and volunteers translate the text into several languages.
Videos are then shown in the original language, but subtitles can be
chosen in many languages. Other video hosting services, such as YouTube
have automated some of these processes. Many English YouTube videos
are automatically transcribed, and can be translated into one of many
languages, enabling subtitles in a language of user’s choice.

Our goal, via the PTSTAR project, funded by the Portuguese FCT,
was to take a further leap in this direction. Instead of simply showing
translated subtitles under original videos, our intention was to actually
perform full speech to speech translation, and dub the video via speech
synthesis in a foreign language of user’s choice.

Automatic dubbing of video lectures is a tricky scenario. It consists
of a speech recognition system that converts the original speech into text,
and takes note of the timing of each text snippet. A machine translation
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system then converts this text into a different language. The speech
synthesizer then takes the translation along with timing information and
produces speech that is overlaid onto the video.

While at first inspection, video dubbing would appear to be the same
problem as speech to speech translation, the “dubbing” mechanism makes
it a trickier problem. When translating from one language into another,
the length of underlying text usually changes. This is called the “fertility”
of machine translation. The source speech could be be much shorter,
or much longer that what needs to be produced in the target speech.
However, because we have to overlay the new speech on top of the video,
we would desire to achieve lip-sync. This would mean that depending
on the difference in duration of source and target speech utterances for a
particular snippet of a video, the speaking rate of the target speech would
have to be shrunk or expanded. This can be done with the help of a global
duration stretch over all phonetic segments. However, doing this has an
impact on the intelligibility and naturalness of speech.

Our analysis and locally conducted experiments with five listeners
showed that for a clustergen voice, a duration stretch value between 0.7
and 1.4 was considered tolerable by listeners. This means, a ten second
utterance could be sped up to 7 seconds, or slowed down to 14 seconds,
without large impairment of intelligibility. We fixed the thresholds to
be slightly more conservative than these, to aim for a duration stretch
between 0.8 and 1.3 in the dubbing.

If an utterance required a duration stretch of say, 1.5, then putting a
ceiling of 1.3 on our duration stretch factor would result in synthesis that
is not in sync with the original video any more. In order to maintain the
time sync, we used phrase breaks to our advantage. Let ds be the duration
of original speech, and dt be the duration of synthesized translation, with
normal synthesis. If ds = dt , then we can simply overlay the translation
onto the original video. However, if dt < ds , then we need to apply a
duration stretch factor of S = ds/dt to the synthesis. If S < 1.3, then we
use the required stretch factor and perform the synthesis. However, if
S >= 1.3, then we use a stretch factor of 1.3 for all segments other than
pauses, and the remainder time is covered by expanding the duration of
pauses. A duration stretch limit of 1.5 was used for pauses within an
utterance, and pauses at the beginning and end of the utterance were used
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to cover for the remainder time. In the event that dt > ds , the stretch
factor would be S < 1. If this was within the limits of S >= 0.8, we
used the required stretch. However, if S < 0.8, then we set the stretch to
be exactly 0.8, and let the synthesis spill over. The extra time was then
carried over to the next segment and the stretch factor of that segment was
adjusted to fit the actual remaining time (after the spillover from previous
sentence).

The algorithm described here seemed to work well. We used the TED
video database to perform automatic dubbing, and found that without
a significant loss in intelligibility, dubbing could be achieved with very
good lip sync. We could not formally evaluate how well the sync actually
was, because it is difficult to define what the gold standard should be in
this case. It is also difficult to design a subjective test that can allow people
to critique the achieved sync.

The method described here for video dubbing is essentially heuristic.
However, there is scope for future improvement here with the help of
methods proposed in this thesis. For example, we only varied the duration
of phrase breaks in our method. However, the phrasing “knob” could be
used to vary the number of phrase breaks generated thereby allowing us to
reduce the duration stretch even further. The current speech translation
framework however limits us from testing the knob approach. The speech
recognition and translation work at the level of few words at a time, and do
not take full utterances (or sentences). This is not an ideal setting for the
phrasing model, and especially the knob, because it would result in breaks
that are too frequent. With an improved speech translation framework
available for video dubbing, the phrasing knob could be incorporated into
the video dubbing pipeline.

5.3 Chapter Summary

In this chapter, we studied the impact that phrasing can have on intona-
tional models, and its effect on intelligibility of synthesized automatic
translations. We saw that a better phrasing model can help make the
pitch prediction be more natural. We then saw that phrasing can im-
prove the understandability of disfluent sentences. We saw how the mert
framework proposed in this thesis can adapt itself to the task of machine
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translation. We also described the task of video dubbing and how our
heuristic methods in achieving time synchronization between original
and translated speech.

Phrasing can also have an impact on the segmental duration. In fact,
duration modeling happens between phrasing and pitch prediction, and
thus an improved duration model could enhance the intonation model
even further. This thesis has not looked at the impact of phrasing on
segmental duration, or the cascaded effect on pitch prediction.

We have only scratched the surface here, of prosody in speech to
speech translation. Phrase breaks are used an intelligibility enhance-
ment devices, to cover up mistakes that speech recognition and machine
translation could have introduced. However, a deeper integration of the
recognition, translation and synthesis components would be a valuable
endeavor: prosodic information such as phrase breaks, intonation and
duration could be transferred from the source side into the target side
leading to a more appealing spoken translation.

Parts of work presented in this chapter have been published in (Par-
likar et al., 2010) and in annual reports of the PT-STAR project.
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6
Phrasing for Low Resource Languages

When words are scarce they are
seldom spent in vain.

William Shakespeare

L
anguages of the world can be divided into three zones. The
“green” zone of languages contains languages like English, that are
well studied, have a lot of speakers and researchers. Such languages

typically have not just lot of data available but also a wide variety of
linguistic tools to process the language. These tools could be lexical
(dictionaries), syntactic (parsers), semantic (thesauri), or even higher level
such as discourse interpreters. Very few languages of the world could fall
into the “green” zone. Many languages belong to the “yellow” zone. This
is where data might be easy to find, and the language may be well known,
but linguistic processing tools are not easily available. However, most
languages (and their dialects) end up in a “red” zone. Neither data, nor
tools are easily available and in many cases, linguistic background of the
language is also difficult to find.

From a speech synthesis perspective, in terms of building voices, we

72
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can redefine these zones as follows: the green zone has languages like
English, where speech data is available with transcripts, and linguistic
tools such as part-of-speech taggers and parsers are available. The yellow
zone has languages for which speech data and transcripts are available, but
no text-processing front end, or linguistic tools are available. The red zone
is languages where only speech data is available. Transcripts are either not
available because nobody produced them, or because the language does
not have a standardized writing system.

Speech synthesizers need to be deployed for all the three zones of
languages. Most of the work we presented so far has catered to the green
zone languages. Very little work has been done so far to predict phrase
breaks when working with the yellow and red zone languages. The most
common solution is to use a punctuation-based phrasing model: where
there is a punctuation, there is a break. However, we would like to extend
our data-driven methods to also work for these yellow and red zone
languages.

We shall first look at the yellow zone, the low-resource languages and
study how our method can be extended to build data-driven grammar-
based phrasing models with the help of automatic part-of-speech induction.
We shall then look at the red zone, describe how we build voices for such
languages, and investigate whether phrasing models are feasible in such
scenarios.

6.1 Handling Low-Resource Languages

We often build voices for languages other than English. While Festival
has a sophisticated default phrasing model for English, the default for
other languages is simply the punctuation based model and can be quite
unreliable. This is because not all languages use punctuation to denote
phrase breaks as in English, and also because some genres of text are well
punctuated, whereas others may not be punctuated at all. While capturing
stylistic phrasing was the primary objective of our modeling strategies,
we investigated if our models could be adapted to handle new languages.

Our grammar based model depends on part of speech tags to predict
phrase breaks. These tags are required both as lexical features in the
decision tree, but also as terminal symbols of the grammar we train. If



6.1. Handling Low-Resource Languages 74

we are dealing with a new language, we can either use a tagger in that
language if we have one. Otherwise, we can perform automatic induction
of pos tags. To do so, we use the Ney et al. (1994) clustering algorithm
as implemented by Clark (2003). This algorithm iteratively improves the
likelihood of a given clustering by moving each word from its current
cluster to a cluster that will maximize the increase in likelihood. We only
cluster words that appeared in our corpus over 1000 times, and group them
into 16 clusters. We use these clusters without any manual modifications
and use the cluster numbers as pos categories. To distinguish these tags
from actual pos tags, we shall call tags induced with this method as ipos
tags. At test time, if we encounter a word for which an ipos tag was not
found, we set a default tag called content. In this section, we shall look at
how well our method does in the low-resource scenario.

6.1.1 Languages and Available Resources

We wanted to carry out experiments on languages that differ in families
as well as amount of linguistic resources available. We chose English,
European Portuguese and Marathi for this work. English is a Germanic
language with rich set of linguistic tools. Portuguese is a Romance lan-
guage and has many linguistic resources available in general. Marathi is an
Indo-Aryan language spoken in India, and all we had access to was a text
corpus.

Our English voice was trained on the F2B corpus (about 55 mins of
speech) from the Boston University Radio News Corpus (Ostendorf et al.,
1995). We used the English pos tagger available within Festival. We also
induced ipos tags over 50000 sentences taken from the English side of the
Europarl (Koehn, 2005) corpus. For running listening tests, we randomly
selected 25 long utterances from the F1A set of the Boston University
Radio News Corpus.

We built our Portuguese voice from about an hour of speech of record-
ings of a male news broadcaster from Portuguese national TV. We did
not have access to a Portuguese pos tagger. We did have a lexicon that
provides part of speech for known words, but does not disambiguate
multiple possible pos based on context. We used 50000 sentences from the
English-Portuguese Europarl corpus and induced ipos tags for Portuguese.
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For running listening tests, we selected 15 long utterances from online
Portuguese newspapers.

We only had a text corpus available for Marathi. This was a collection
of news published in the E-Sakal newspaper. The corpus was collected
at the Center for Indian Language Technology at IIT Bombay. We had
about about half an hour of speech recorded by the AUP voice in order
to build a synthetic voice, and build phrasing models. There was no pos

tagger or lexicon available. We used 50000 sentences from the text corpus
to induce ipos tags for Marathi. For listening tests, we selected 15 long
utterances from this same text corpus.

Phrase prediction is an easier problem when text is well punctuated.
In order to simulate the harder (and the more important) case when
punctuation is not available to us during synthesis, we stripped all our
corpora for punctuation within utterances for all languages. We let the
sentence final punctuation remain in text.

Note that for all three languages, we ran ipos learning only on 50000
sentences. We did have access to much larger text corpus in all languages,
but we decided to using a corpus of this size to make sure our technique
works when for a new language we might not have hundreds of thousands
of lines of text available.

6.1.2 Experimental Results

We have several phrasing models to compare in this experiment. For all
languages, our baseline model is the punctuation-based model. However,
because the text we were synthesizing did not have punctuation, there was
no phrasing being done. We call this model the none model.

Evaluation for this section uses the F-measure and the L2 and emd dis-
tances presented in Chapter 2. We also show results of subjective listening
tests run on all three languages. For English, we used Amazon Mechanical
Turk (MTurk) to run the listening task. We split 25 utterances into sets of
5x5. Each set was presented as an individual HIT. We allowed 10 workers
per HIT. Thus, we had 50 tasks, and 5 utterances each, giving us 250 data
points for comparison. We discarded responses by few workers on MTurk
since they had finished the task too quickly, and their responses would
have been spam. For Portuguese and Marathi we could not reliably use
MTurk for the listening task. We requested volunteer native speakers of
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the languages to perform the task. Majority of our Portuguese participants
did the task over the web from Portugal, and similarly majority Marathi
tests were taken in India. We had about 100 data points for comparison for
Portuguese experiments, and 120 data points for Marathi. After collecting
data of the subjective task, we simply counted the total percentage of votes
received by each model in an experiment. The model that receives the
majority vote can be thought of as the winning model.

English had the most resources available among the three languages.
We also had the default Festival phrasing model available here. We thus
used English to perform “oracle” study and run sanity checks to ensure
that our approach is indeed moving in the right direction. We have
four different phrasing models for English to compare: (i) The none

model, (ii) Festival’s default model, (iii) Grammar based phrasing using
Festival’s pos tags, and (iv) Grammar based phrasing using the ipos tags.
Table 6.1 shows the results of objective evaluation of these four models.
The results presented here are the average values after performing 10-fold
cross validation.

Table 6.1: Objective Results for Phrasing in English

System F1 L2 EMD
none 0.0000 0.2566 10.6233
Festival 0.3417 0.2802 3.0733
pos Phrasing 0.3481 0.1661 1.1449
ipos Phrasing 0.2751 0.1972 1.7744

Based on the results in Table 6.1 and performing significance analysis,
we can draw the following conclusions for p-value p < 0.01:

• Grammar based pos phrasing model is slightly better than the
default model in Festival. The improvement in F-1 measure is
not significant, but the improvement in L2 and emd measures is
significant.

• Grammar based ipos phrasing model is slightly weaker than the
Grammar based pos model across all metrics, but the differences
are not statistically significant.
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• Both the ipos and pos models are significantly better than the none
model.

We wanted to see if subjective listening tests support the objective
comparisons here. We did two listening tests. First, we compared the
none model to the ipos model. Figure 6.1 shows the results for this. We
found that the ipos model is better than the none model. The result is
statistically significant.
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Figure 6.1: English Subjective Test: Which model is better?

In the second test, we compared the ipos model to the pos model.
Figure 6.2 shows these results. We found that while the pos model gets
more votes overall compared to the ipos model, the difference is not
statistically significant.

0 10 20 30 40 50 60

Can’t Say

POS

IPOS

7.5

50

42.5

% responses

Figure 6.2: English Subjective Test: Which model is better?

The objective and subjective results on English show that that using
the Grammar based approach with pos tags helps us do better at phrasing
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than the standard model in Festival. We also see that replacing the pos

tagger with ipos tags also gives us a very reasonable phrasing model.
For Portuguese, we only have three phrasing models: (i) The none

model, (ii) The Grammar based pos model, and (iii) The Grammar based
pos model. Note that the pos model here is slightly different than the
one available for English, because we only had a lexical part of speech
available for Portuguese. Table 6.2 summarizes the objective results for
Portuguese phrasing. The results presented here are average values after
performing 10 fold cross validation.

Table 6.2: Objective Results for Phrasing in Portuguese

System F1 L2 EMD
none 0.0000 0.4113 28.2284
ipos Phrasing 0.2870 0.2427 2.9735
pos Phrasing 0.2520 0.2639 3.2327

After performing significance analysis over these objective results, we
found like just like for English, we could make the following conclusions:

• Both the ipos and pos models are significantly better than the none
model.

• The ipos model is not significantly different compared to the pos
model.

We tried to verify with listening tests, whether these hypotheses hold
true for subjective opinion also. We did two listening tests, similar to
those in English.

In the first listening test, we compared the none model to the ipos

model. Figure 6.3 shows this result. In the second test, we compared the
ipos model to the pos model. Figure 6.4 shows this result. Numerically,
we see that the ipos model is better than the none model, and that the
pos model is better than the ipos model. However, Significance analysis
showed that the three systems may not be significantly different on the
listening tasks.
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Figure 6.3: Portuguese Subjective Test: Which model is better?
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Figure 6.4: Portuguese Subjective Test: Which model is better?

We only have two phrasing models for Marathi: (i) The none model,
and (ii) A Grammar based model trained with ipos tags. Table 6.3 summa-
rizes the average objective results after 10 fold cross validation, comparing
these two models, and subjective results are presented in Figure 6.5. We
see that both objectively and subjectively, the ipos model is significantly
( p < 0.01) better than not having phrasing at all.

Table 6.3: Objective Results for Phrasing in Marathi

System F1 L2 EMD
none 0.0000 0.1850 2.1491
ipos Phrasing 0.2560 0.1828 0.8352
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Figure 6.5: Marathi Subjective Test: Which model is better?

6.1.3 Summary: Phrasing for Low Resource Languages

In this section on phrasing for low resource languages, we have shown that
our proposed grammar, together with automatic pos induction can help
build phrasing models for languages that do not have very many resources.
In the case of Marathi, we built both the voice and the phrasing models
using only half an hour of speech. While we do need a few thousand lines
of text corpus to induce pos tags over, such corpus can be easy to find.
Our English results in Table 6.1 show that given the lack of punctuation
in input text, our proposed approach works better than Festival’s default
models with pos tags coming from the tagger. If we use ipos tags, then the
performance goes down slightly. This suggests that adding more linguistic
information certainly helps. However, the difference between models
built using the pos versus ipos tags is not very high, and hence investing
time and money in procuring linguistic resources may not always be
necessary.

We primarily dealt with part-of-speech induction in this part of the
work, and did not look at other linguistic analysis, such as morphology,
parsing and semantics. Vadapalli et al. (2013) have recently suggested that
word-terminal syllables could be used as good indicators of phrasing for
Indian languages. Using last and penultimate syllables as features might
also work for other languages that use morphological case markings. The
induced parts of speech we used are an approximation of lexical parts of
speech, when taggers are not available. In the context of low-resource
languages, there is need for research in two directions: (i) Developing
heuristic or automatic techniques that approximate linguistic analysis, and
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(ii) Investigating how these developments could be used in improving the
phrasing, and more generally, speech synthesis.

6.2 Enabling TTS without Text

Many languages of the world, and most dialects do not have a standardized
writing system, yet are spoken by many people. If speech technology is to
make an impact for all languages, it will need to consider the processing of
languages without a standardized orthography. We have recently begun
the investigation of building text to speech systems for languages where a
text form isn’t available. We expect to be able to collect acoustics in that
language, and be able to know the meaning of what is said. Given only
speech data in that language that we can use at training time, we want to
build a text to speech system.

At first it may seem futile to develop a speech synthesis system without
a related writing system. But consider these two use cases that highlight
the need of such a system. The first is a speech translation system, that
takes content spoken in a language like English, and needs to be “dubbed”
or translated into a language that only has a spoken form. A second use
case is deployment of spoken dialog systems in the language that has no
written form.

If text is fundamental to “text-to-speech”, what does it even mean to
build speech synthesizers for languages where text is not available? Our
proposal is that we can use the speech corpus to automatically derive a
written form for that language. This could be in the form of a phonetic
writing system that uses either an universal phone set, or a phone set from
a closely related language. A cross-lingual phonetic decoder can be used
to automatically derive such a written form for our target language. Once
this automatic written form is available, we can train a speech translation
system, or a dialog system’s natural language generation unit to produce
text in this form. The synthetic voice we train will then be able to process
this text and produce speech in the target language.
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6.2.1 Crosslingual Phonetic Decoding

We have developed an iterative cross-lingual phonetic decoding method
that allows us to build text-to-speech without text. We have shown, in
(Palkar et al., 2012; Sitaram et al., 2013b,a) that this method works for
several languages. Figure 6.2.1 shows the overview of our method.

Speech without Orthography

ASR:
Phonetic
Decoding

Phonetic Language Model
(related language with orthography)

Acoustic Model

Phonetic Transcriptions

TTS
Training TTS Voice

MCD
Improved?

heldout

Acoustic
Model

Training

yes

Figure 6.6: Overview of our method to build TTS voices from speech data
without transcripts

We start by building a cross-lingual phonetic decoder. The acoustic
model is built on a high resource language, ideally with a phone set that
is close to the target language. The language model is built over phone
sequences of a language that is a high resource language also phonetically
close to the target language. We then use the speech corpus we have and
decode it with the phonetic decoder to obtain phonetic transcriptions.
We now start an iterative process of adapting the acoustic model to fit to
the data we have. We take the target speech and its obtained transcripts
and build a new acoustic model. We decode the speech again with the new
acoustic model, keeping the language model the same, and produce new
transcripts. We retrain a new acoustic model with the new transcripts,
and repeat the decoding over many iterations. At each iteration, we build
a clustergen voice and measure its spectral quality in terms of the mcd
distance. Because this early work was exploratory in nature, we did some
experiments with languages that do have an orthography, but pretended
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they didn’t. Figure 6.2.1 shows a graph of how the mcd improves over
different iterations for German and for English. For German, we used
the WSJ acoustic English acoustic model, and a 3-gram language model
defined over English phones learned from the Europarl corpus. For
English, we used an acoustic model trained over the Indic database by
Prahallad et al. (2012) and trained a 3-gram language model over German
phones taken from the Europarl corpus. We see from the figure that while
the improvement in the mcd is not monotonic, many of the iterations are
better than the baseline crosslingual phonetic decoding we start with.
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Figure 6.7: MCD of voices built from transcriptions for German and English
over the iterative decoding process

6.2.2 Phrasing, Prosody, Word Discovery

Our initial experiments and subjective listening tests so far show that the
spectral quality of the speech we produce is understandable. However, the
prosody is far from being acceptable. We would want to build phrasing
models, and other prosodic models for these voices.

One reason why the prosody of voices we have built is not very good is
that these are phonetic voices: something speech synthesis is not designed
to deal with. Phrasing, duration modeling, and intonational models all use
word-level information, such as lengths of words, position of a segment or
syllable in a word, etc. as features in their prediction task. By synthesizing
purely from phoneme sequences, this critical information is not available.

Since the focus of this thesis is on phrasing, we looked at what the
impact of losing the high level word-information is on the phrasing models.
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We did an oracle experiment with the F2B corpus. We built three voices
with this corpus: one where the text was words, one where the text was
strings of syllables, and one where the text was strings of phonemes. We
processed the word-level corpus here to strip punctuation, and as such
the results here are not comparable to other phrasing results on the F2B
corpus published in this thesis.

We induced part of speech tags over the three corpora and built gram-
mar based phrasing models. We then measured the performance of those
models over held-out data by looking at the F-measure of the prediction.
Table 6.4 shows these results. We see that the loss in phrasing accuracy is
very high when moving from a word level to the syllable level, and even
more so when we synthesize from text that contains strings of phones.

Table 6.4: F-measure of phrasing models trained over text at different types
of units

Text Unit F1
Words 21.62
Syllables 12.28
Phonemes 7.80

We thus have three things: (i) The voice we are building is a phonetic
voice, (ii) Phrasing model is very weak at the phonetic level, and (iii) We
need a good phrasing model to improve prosody in the voice we have.
There are two potential solutions to address this situation in the future:
(i) Develop strategies to build a phrasing model at the phonetic level, and
(ii) Automatically discover word-like units from phonetic segments in the
derived orthography.

Phrase breaks can be of help in discovering words automatically: the
data-driven method we have used through out this thesis labels position
of phrase breaks from speech data. If we have a string of phonemes with
the associated labels of where the phrase breaks are, we know some of the
word boundaries. This constraint can possibly improve the performance
of word induction algorithms.
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6.3 Chapter Summary

In this chapter, we looked at phrasing and its performance on low-resource
languages. We showed how we can used part of speech induction to
enable our grammar-based phrasing model to work with languages that
do not have part of speech taggers available. Since this method is language
independent, we can use it for any language, instead of the commonly
used “punctuation” rule for phrasing. This work has been published in
(Parlikar and Black, 2012a).

We also looked at our team effort on building text to speech systems
for languages without an orthography. We saw that we can build phonetic
voices that are of an acceptable spectral quality, but lack quite a bit in
prosody. We saw that not having word-level units in text can severely de-
grade the performance of our phrasing model (which has been optimized
for words). We hope that improvements in word discovery algorithm
from phoneme strings can help improve the prosody in this setting.
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Conclusions and Future Work

In literature and in life we ultimately
pursue, not conclusions, but
beginnings.

Sam Tanenhaus

T
his thesis has looked into speaking styles and addressed the prob-
lem of phrase break prediction. The presented methods lay down
a foundation of stylistic synthetic prosody. Other prosody mod-

els can benefit from this foundation. Together, this can help making para-
metric speech synthesis sound more natural, as well has have an impact
on applications of speech synthesis such as speech to speech translation.

We have shown that speaking styles vary both in the placement and
duration of phrase breaks within an utterance. We have also shown
that people can perceive differences between different placements and
different durations. Modeling phrase breaks appropriately is therefore
important for perceptually better synthesis. We have shown that the pro-
posed Grammar-Based method and the minimum error rate framework
allow us to capture stylistic phrasing in a data-driven setting. We have
also shown that the methods are extensible to low-resource scenarios, and
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that the techniques can be applied to uncommon languages. Tradition-
ally, phrasing models have been trained on large hand-annotated corpora.
The proposed data-driven language-independent methods to manipulate
placement, duration and rate of phrase breaks is thus a novel contribution.

This thesis proposed the grammar-based method and showed that it
makes phrasing models better. However, the method itself, along with
its language-independent extensions are generic and can be applied to
problems other than phrasing. Indeed, this technique has been directly
used by Anumanchipalli (2013) for predicting accent groups in intonation
modeling. The proposed Minimum Error Rate Training framework is also
very extensible. While we have only seen its impact on phrasing in this
thesis, the technique and code is designed to be useful in other modeling
methods where optimization towards an error metric is desirable.

TestVox, the web based subjective evaluation framework is also an
important contribution of the thesis. It simplifies the process of setting
up listening tests, and allows tests to be deployed to crowd-sourcing
platforms. We hope this tool will be of great value for future research in
speech synthesis.

7.1 Future Directions

This thesis has looked at only one particular type of phrase breaks: the
pauses within utterances. These correspond to the tobi level 3. We
have not directly addressed the level 2 and level 4 breaks. Once accurate
methods for data-driven labeling of tonal breaks (level 2) from speech
corpora are developed, those annotations can be directly used in the
architectures proposed in this thesis and modeled in conjunction with
the Anumanchipalli et al. (2011) model to generate synthetic tonal breaks.
Major breaks (level 4) happen at ends of utterances. While the placement
of end-of-utterance breaks is trivial, a lot can be done to model duration
and intonation at these boundaries.

Speech synthesizers typically synthesize isolated utterances. However,
the context of a sentence has an impact on the boundary between two
utterances. This context can affect how much pause there is between the
sentences, and how pitch resets for the next utterance. Hovy et al. (2013)
describe how people speak differently when reading isolated sentences
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versus sentences spoken in context. Modeling these cross-sentential aspects
of pitch and duration can make the speech sound more natural. Features
that could help us model cross-sentence events could be at the lexical
level, such as overlap of content words between the two utterances, or the
lengths of the utterances. However a deeper analysis of what is happening
at the boundary could be more helpful: whether a narrative is continuing,
or whether a quotation begins or ends, or whether new information is
being presented, and whether entities in the next utterance have first or
second mentions. It might be that the overall discourse of current speech
has an impact on our utterances and the boundaries between utterances.
However, we still need to investigate how far back in the discourse we
should extract features from, for our modeling purpose. Considering
a couple of utterances around the boundary is practical, going beyond
paragraphs, or to the chapter level might cause us to hit data sparsity
issues. There also is an cognitive aspect to be investigated here: a speech
synthesizer can use “future” utterances to predict events at an utterance
boundary. However, when we speak, we typically do not construct
utterances well in advance. In that case, is the information contained in
future utterances helpful for modeling inter-utterance events? And if so,
how does the human brain use this “future” information, i.e., in what
form could we pre-generate the speech we have to soon produce, and how
far a look-ahead does the human brain do?

Our proposal of the grammar-based phrasing method uses the formal-
ism of a context-free grammar. While our results show that this is useful
for capturing acoustic syntax, it may be possible that this formalism is not
ideal. Linguistic studies have focused on syntax, such as found in the Penn
Tree Bank (Marcus et al., 1994). But acoustic syntax is not yet formally
studied. It may be possible to come up with a grammar formalism that
can help chunk text into its acoustic parse in a manner superior to what
we have used in this work.

In this work, we used syntactic features with the grammar based
model. The next step is to see how semantic features could help make
further improvements. Our experiments with phrasing in the context of
speech translation tell us that appropriate phrase breaks can help make
speech more understandable. The same might be true for enhancing the
intelligibility of semantically complex content. If an utterance contains
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hard words, or rare words, pauses could help make them more intelligible.
The use of a language model in the mert framework is a step in this
direction, as rare words will have a lower probability. However, the
language model can at best be considered to be a shallow semantic model.
Semantic analysis of the utterance we want to speak, in terms of the entities
and relationships in the utterance could provide additional features for
mert and have an impact on the pauses. It would be interesting to see
how semantic features can be added to the mert framework and what
impact it would have on the phrasing accuracy.

Phrasing is the foundation of synthetic prosody, and this thesis ad-
dresses the problem of inserting appropriate phrase breaks. Work by
Anumanchipalli (2013) addresses the problem of capturing style-specific
intonation. However, style-specific models to capture segmental duration
need to be thoroughly investigated now. In particular, it would be inter-
esting to explore whether, instead of a cascade of phrasing, duration and
intonation models, we could jointly make decisions about the individual
models in order to make the overall prosody more natural.

This work has used subjective evaluations to make modeling decisions,
as well as to show how methods compare to one another. However, the
question we have most typically asked in an A/B test is for participants to
tell us which model they prefer. While this test seems to be valid for com-
paring different phrasing models, it is not perfect. Given that statistical
parametric synthesis has now reached levels of adequate naturalness and
expressiveness, there is imminent need for a full scale cognitive study on
how to design experiments for subjective evaluation of speech synthesis.
There is also a need to study how these subjective tests correlate with
different objective tests, so that researchers can optimize their models to
the appropriate objective criterion.

One way of designing subjective evaluation for speech synthesis is to
build it around the exact application that a synthesizer is being designed
for. For example, if the synthesizer will be used as the speech interface of
a dialog system, then subjective tests should measure the impact of our
models (phrasing, or others) in terms of the task completion rate, or task
completion time. Skantze et al. (2013) have shown that users’ behavior
is affected by how pauses are realized in the speech of a dialog system.
Pauses can have an effect on turn taking, grounding, and explicit and
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implicit confirmation. The duration and placement of a pause can help
people detect whether the floor is theirs to take, and a user study could
be conducted to see whether people react appropriately to the generated
pauses. Pauses can help with implicit confirmation: if a system accepts
user input, repeats it as a declarative sentence (“Going to Pittsburgh.”) and
pauses for a while, users get an opportunity to barge in and correct the
system before it moves to the next dialog act. The duration of the pause
could be linked to the system’s confidence in the recognition of user input.
These can be used to design user study that evaluates how well our speech
synthesizer and prosody models are doing. In other dialog applications,
such as spoken directions and navigation, the speech synthesizer could
be evaluated based by gaze tracking, to see if users understood the speech
by itself or whether they had to look at their navigators in addition. A
synthetic voice that minimizes driver’s distraction from the roads could
be deemed to be better.

If subjective evaluation of speech synthesis is based on task completion,
then so should be the modeling. Prosody models in a dialog system, for
example, could be built conditioned on the dialog state of the system. If
the system is confirming user’s input for example, the prosody could be
quite different, compared to when the system is offering choice to the
user. In a navigation scenario, spoken directions could be given differently
based on the cognitive load on the driver—the traffic conditions, the
complexity of the route, and the familiarity of the driver with the area.
Training these models will be a move from the general “style-specific”
approach to a “task-specific” approach.

We used a data-driven definition of speaking style in this work. By
using recorded corpora as our gold standard for phrasing, we defined
our models to capture the style found in the corpus. However, style is a
function of various parameters. It is very difficult to tease apart aspects
of speaking style that are speaker-specific, task-specific, and genre-specific.
A more detailed analysis of speaking styles, within the conform of this
data-driven definition is necessary in order to understand how to tease
these aspects apart when building our models.

This thesis has barely touched the surface of modeling prosody in
the speech to speech translation task. Phrasing in the target side was
predicted purely from the target text, with the help of a language model.



7.1. Future Directions 91

This may capture events such as bad word combinations, and improve the
overall intelligibility. However, there is no direct connection between the
synthesized phrase breaks and the breaks in original speech. Phrase breaks
can be used for effects of emphasis or dramatics, and that information is so
far lost in translation. There is a need for deeper integration of the speech
recognition, machine translation and text to speech systems in order to
transfer all aspects of prosody from the source side into the target side.
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TestVox: Web Based Subjective

Evaluation

O Wad some Pow’r the giftie gie us
To see oursels as others see us!

Robert Burns

Speech synthesis is an end-user technology. The output of a speech
synthesizer is usually consumed by people. Very rarely is it fed to other
speech and language technologies for further processing. This means that
any improvements that we think we made to our speech synthesis models
need to be validated with the help of listening tests.

Subjective evaluation is integral to speech synthesis research, yet the
process of setting up and performing listening tests is challenging. Tradi-
tionally, tests were set up in a lab environment, with controlled equipment,
and volunteers or paid participants were recruited to listen to stimuli and
submit responses. However, research activities might need a lot of tests,
frequently paced, and finding participants for listening experiments might
be difficult. In fact, conducting tests locally in lab settings might even be
impossible for some smaller labs in remote locations.
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Internet has become a popular platform for conducting listening tests.
While this enables remote subjects to participate in the tasks, experi-
menters lose control over the listening equipment that is used at the
remote end. The biggest advantage, however, is that a lot of people can
be recruited for tests, and tests can be completed faster. Platforms such
as Amazon Mechanical Turk have even enabled paying such subjects in a
convenient manner. In a way, speech synthesis evaluation was always a
‘crowd-sourced’ process. But official crowd-sourcing platforms, such as
Amazon’s Turk have made the process very convenient.

Although the web has come out as the biggest solution to fast, cheap,
and reliable listening tests, the biggest problem of running tests on the
web is web standards. Different browsers, different operating systems
often have infamously disparate implementations of identical technologies.
This is especially true of how audio can be played on the web. Getting
speech produced appropriately to users with every and all browsers that
are commonly used can be very tricky. The other problem with hosting
tests for the web is that many smaller research teams don’t necessarily have
access to a public IP address on which they can host tests. Requiring to
find a hosting provider, and then setting up web-servers and relevant tools
to conduct listening tests is complicated, and requires a lot of investment
(time, money) on part of researchers.

Many technical contributions of this thesis had to be validated using
listening tests, and over the course of running these experiments, we have
developed a solution called TestVox, which simplifies running listening
tests. TestVox is publicly released software under an open-source license,
and is an important contribution of this thesis work.

A.1 Features

TestVox is a web-based framework for subjective evaluation of speech
synthesis. It helps quickly setup and run listening tests over the Internet.
It supports many of the commonly used listening test formats (A/B tests,
MOS tests, Transcription tests, Word-Choice tests, etc.) It supports entry
and exit surveys. Audio stimuli can be presented in random order if
desired. TestVox is designed to be cross-browser compatible. It can run
under Linux, Windows or OSX. It could also be deployed to an instance
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of the Google App Engine computing environment, which can be useful
if a public IP address is not directly available to researchers.

TestVox comes with a built-in webserver, so there is very little to
configure and setup. It can also be run under an existing server such
as Apache or nginX. TestVox comes with scripts that simplify setting
up listening tests by taking wav files as input and setting up a zip file
that can be uploaded to an admin interface to start listening tests. Once
participants submit responses, the answers can be retrieved as a CSV file
to analyze and summarize results. The Mechanical Turk interface for
TestVox is also powerful. It allows posting, listing and reviewing tasks
easily.

The motivation behind TestVox is not just to simplify uploading and
posting listening tests, but also create recipes for analyzing and summariz-
ing results. Crowd-sourced listening tests often have to be filtered for spam
responses. TestVox aims to create recipes for inculcating best practices for
such filtering in standardized analysis scripts that would allow researchers
to quickly evaluate their models.

A.2 About

TestVox is primarily written in Python. It has about 4.5k lines of code, and
is estimated to be about an year of effort under the COCOMO model. It
consists of a server, that runs under the control of speech researchers, and
a web-client that participants use to listen to stimuli and submit responses.
The web-client is written with the help of PyJS. The TestVox framework,
tools and documentation are licensed under a BSD like license, free to
use without restriction (commercial or otherwise). More information is
available on the TestVox website.
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