
Reducing the Costs to Design, Train,
and Collect Data for Neural Networks

with Combinatorial Optimization
Hieu Pham
Spring 2021

CMU-LTI-21-003

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
Thesis Committee:

Yiming Yang (Principal advisor) CMU
Quoc V. Le (Principal advisor) Google Brain
Samy Bengio Google Brain
Chris Dyer CMU & DeepMind
Barnabas Poczos CMU

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2021 Hieu Pham

Abstract
The success of modern deep learning algorithms owes itself to the steady effort

in scaling up neural models and their training datasets. This combined amazing
effort from many research groups have enabled neural network practitioners to
train increasingly larger models and increasingly larger datasets, and obtain
increasingly better results. In the model sizes, modern neural networks can
easily have thousands of times more parameters then neural networks in the last
decade. For instance, when the Sequence-to-Sequence LSTM model [197] model
was introduced in 2014, the community was impressed by its 380 million weights.
However, six years later, in 2020, GShard [121] came along with 1 trillion
weights. Along with growth in model sizes is the growth of datasets. In natural
language understanding, the One Billion Words dataset [100], once considered
a large dataset, has now been dwarfed by several orders of magnitude larger
corpora [22, 46, 172, 235]. The same trend exists in image understanding as well.
Anecdotally, ImageNet [180], the dataset once considered to be the statute of
large-scaled image classification, has become “the new MNIST” [237] – we went
from training ImageNet models in days or weeks [81, 198] to 1 hour [68, 226].

Despite the success of large models learning on large datasets, their uni-
versal adoption is hindered by their immense expenses. For instance, in 2020,
training GPT-3, which is not the largest model at the time for natural language
understanding, costs a staggering amount of 4.6 million USD. While this ex-
pense comes mostly from the computations required to train the model, and
this cost will eventually go down as better technology becomes available, the
same statement does not hold for collecting large training datasets. Since 2018,
Google has been reporting to obtain strong results in image understanding by
training models on their proprietary dataset JFT-300M [165, 229, 230], which
has 300 million labeled images and which is 20 times bigger than the publicly
available ImageNet [180]. Collecting datasets like JFT-300M requires human
workers, and hence scales much slower than computational power. Due to their
expenses, large models and large datasets gradually become a privilege of only
corporations with affluent resources.

In this thesis, I present a family of methods to reduce the expense of deep
learning models in three facets. First, I formulate an optimization problem
which reduces the cost to design good architectures for neural networks by
thousands of times compared to previous approaches. Second, I present a model
parallelism technique to reduce the time to train and deploy neural networks.
Third, I present a semi-supervised learning algorithm which reduces the cost of
obtaining large training datasets for neural networks. In certain cases, I
show that my algorithm can utilize only 10% of the available labeled data to
train a neural network to the similar accuracy with the network trained on the
entire labeled dataset.

This thesis has two key contributions. The first contribution is the Neural
Combinatorial Optimization algorithm (NCO), which is the first algorithm

iv

that requires no annotated training data yet can still train a recurrent neural
network to obtain nearly optimal solutions for certain combinatorial optimization
problems, such as the Traveling Salesman Problem. The second contribution
is the novel insight that designing, executing, and obtaining training data for
neural networks, albeit distant, can be formulated as combinatorial optimization
problems. Thanks to this insight, I show that by formulating a task of concern as
the right combinatorial optimization problem and applying NCO or its variants,
I can significantly reduce the expenses of neural networks.

The methods that I present in this thesis have delivered strong impacts to
many related fields, including but not limited to operational research, machine
learning, natural language processing, and computer vision. For instance, the
NCO algorithm has inspired subsequent developments of neural approaches in
canonical combinatorial optimization problems such as SAT, Vehicle Routing,
Vertex Cover, and MaxCut. Furthermore, my formulation for the problem of de-
signing neural network architectures, widely referred to as “weight-sharing neural
architecture search”, has enabled hundreds of researchers from groups without
affluent resources like Google or Facebook to develop and study algorithms to
design network architectures.

v

vi

Contents

1 Introduction 1
1.1 Motivations . 1
1.2 Summary of Contributions . 2

2 Neural Combinatorial Optimization with Reinforcement Learning 7
2.1 Introduction . 7
2.2 Related Work . 8
2.3 Network Architecture for TSP . 10

2.3.1 Architecture Details . 11
2.4 Optimization with policy gradients . 11

2.4.1 Search Strategies . 13
2.5 Experiments with TSP . 15

2.5.1 Experimental details . 15
2.5.2 Results and Analyses . 16

2.6 Conclusion . 19
2.7 Appendix . 20

2.7.1 Pointing and Attending . 20
2.7.2 Improving exploration . 20
2.7.3 Sample tours . 21

3 Device Placement Optimization with Reinforcement Learning 23
3.1 Introduction . 23
3.2 Related Work . 24
3.3 Method . 25

3.3.1 Training with Policy Gradients . 25
3.3.2 Architecture Details . 26
3.3.3 Co-locating Operations . 27
3.3.4 Distributed Training . 27

3.4 Experiments . 28
3.4.1 Experiment Setup . 28
3.4.2 Baselines . 30
3.4.3 Single-Step Runtime Efficiency . 30
3.4.4 End-to-End Runtime Efficiency . 32
3.4.5 Analysis of Found Placements . 33

vii

3.5 Conclusion . 35

4 Efficient Neural Architecture Search via Parameter Sharing 37
4.1 Introduction . 37
4.2 Methods . 38

4.2.1 Designing Recurrent Cells . 38
4.2.2 Training ENAS and Deriving Architectures 40
4.2.3 Designing Convolutional Networks 41
4.2.4 Designing Convolutional Cells . 42

4.3 Experiments . 44
4.3.1 Language Model with Penn Treebank 44
4.3.2 Image Classification on CIFAR-10 46
4.3.3 The Importance of ENAS . 49

4.4 Related Work and Discussions . 50
4.5 Conclusion . 50

5 Meta Pseudo Labels 53
5.1 Introduction . 53
5.2 Meta Pseudo Labels . 54
5.3 Small Scale Experiments . 56

5.3.1 TwoMoon Experiment . 57
5.3.2 CIFAR-10-4K, SVHN-1K, and ImageNet-10% Experiments 58
5.3.3 ResNet-50 Experiment . 60

5.4 Large Scale Experiment: Pushing the Limits of ImageNet Accuracy 62
5.5 Related Works . 64
5.6 Conclusion . 65
5.7 Appendix . 66

5.7.1 Derivation of the Teacher’s Update Rule 66
5.7.2 Pseudo Code for Meta Pseudo Labels with UDA 68
5.7.3 Experimental Details . 69
5.7.4 Dataset Splits . 70
5.7.5 Modifications of RandAugment . 70
5.7.6 Additional Implementation Details 71
5.7.7 Hyper-parameters . 72
5.7.8 More Detailed Analysis of Meta Pseudo Label’s Behaviors 74
5.7.9 Visualizing the Contributions of Meta Pseudo Labels 74
5.7.10 Meta Pseudo Labels Is An Effective Regularization Strategy 74
5.7.11 Meta Pseudo Labels Is a Mechanism to Addresses the Confirmation

Bias of Pseudo Labels . 75
5.7.12 Meta Pseudo Labels with Different Training Techniques for the Teacher 77
5.7.13 Meta Pseudo Labels with Different Amounts of Labeled Data . . . 77
5.7.14 Results with An Economical Version of Meta Pseudo Labels 78

viii

6 Meta Back-Translation 81
6.1 A Probabilistic Perspective of Back-Translation 82
6.2 Meta Back-Translation . 84
6.3 A Mulltilingual Application of MetaBT . 86
6.4 Experiments . 86

6.4.1 Dataset and Preprocessing . 87
6.4.2 Baselines . 87
6.4.3 Implementation . 88
6.4.4 Results . 88
6.4.5 Analysis . 89

6.5 Related Work . 91
6.6 Limitation, Future Work, and Conclusion 91
6.7 Appendix . 91

6.7.1 Derivation for the Gradient of ψ . 91
6.7.2 Training Details . 94
6.7.3 Effect of MBT on Multilingual Transfer 94
6.7.4 Example Translations . 95
6.7.5 Additional Experiments . 95

7 Conclusion 99
7.1 Impacts and Limitations of NCO . 99
7.2 Impacts and Limitations of ENAS . 100
7.3 Impacts and Limitations of MPL and MetaBT 102
7.4 Epilogue . 102

Bibliography 103

ix

x

List of Figures

2.1 TSP tour length ratios . 8
2.2 A pointer network’s architecture . 10
2.3 Sorted tour length ratios to optimality. 17
2.4 Sample tours for TSP50 and TSP100 . 21

3.1 Overview of device placement models . 23
3.2 Architecture of device placement models 26
3.3 Distributed training of device placement 27
3.4 Placement of a neural machine translation graph 31
3.5 Training curves of neural MT models with different placements 32
3.6 RL-based placement of Inception-V3 . 33
3.7 Training curves of Inception-V3 with different placements 34
3.9 Computational profiling of Inception-V3 model with different placements . 34
3.8 Computational profiling of neural MT models with different placements . . 35

4.1 Superposition of architectures using a DAG 38
4.2 ENAS example on generating RNN cells 39
4.3 ENAS example of generating a convolutional network 41
4.4 How to connect cells in the micro ENAS search space 42
4.5 ENAS example generating a micro cell . 43
4.6 ENAS recurrent cell . 46
4.7 ENAS macro network . 49
4.8 ENAS micro network . 51

5.1 Different between Pseudo Labels and Meta Pseudo Labels 53
5.2 Meta Pseudo Labels and other methods on the TwoMoon dataset 57
5.3 Breakdown gains of different components in Meta Pseudo Labels 75
5.4 Training accuracy of different methods on CIFAR-10-4,000 and ImageNet-10% 77
5.5 Accuracy of various methods at varying amounts of labeled examples. . . . 78

6.1 Example traning step of meta back-translation 82
6.2 Probability of pseudo-parallel data on WMT’14 En-Fr 89
6.3 Training PPL and Validation BLEU of the forward model on WMT En-De 89
6.4 Percentage of relevant words in the low-resource vocabulary of MetaBT . . 90
6.5 Histogram of length differences between reference and various system outputs 90

xi

6.6 Gain in target word F1 of MetaBT . 95

xii

List of Tables

2.1 Learning configurations for TSP. 16
2.2 Average TSP tour lengths . 17
2.3 Running time of different TSP methods . 18
2.4 KnapSack results . 19

3.1 Statistics of models for device placement. 29
3.2 Running times of network partitions. 31

4.1 ENAS perplexity on Penn Treebank . 46
4.2 ENAS error rates on CIFAR-10 . 48

5.1 Key results of Meta Pseudo Labels . 54
5.2 Accuracy of different methods on CIFAR-10-4K, SVHN-1K, and ImageNet-10% 59
5.3 Accuracy of Meta Pseudo Labels and other methods with ResNet-50 61
5.4 Accuracy of Meta Pseudo Labels and other methods on ImageNet 62
5.5 RandAugment transformations in used in Meta Peudo Labels 71
5.6 Hyper-parameters for supervised learning and Pseudo Labels. 73
5.7 Hyper-parameters for UDA . 73
5.8 Hyper-parameters for Meta Pseudo Labels. 74
5.9 Meta Pseudo Labels as a regularization method 75
5.10 Ablation study on Meta Pseudo Labels teacher’s training techniques 77
5.11 Accuracy of Reduced Meta Pseudo Labels 79

6.1 BLEU scores of MetaBT and other baselines 88
6.2 Examples of en-de translations. 95
6.3 BLEU scores for “translationese” and original languages 96

xiii

xiv

Chapter 1

Introduction

1.1 Motivations

The past decade has witnessed the incredible success of large-scale deep learning algorithms
in both natural language understanding and computer vision. In both domains, the
development trend is clear: increasingly larger models trained on increasingly larger
datasets lead to increasingly better performances across many tasks [22, 30, 31, 46, 121, 170,
172, 230, 235]. In 2021, when this thesis is being written, if one looks at the leaderboards
for challenges in natural language understanding, image classification, image detection and
segmentation, or visual-language understanding, one will see that the top performers are
from models with billions of weights which are trained on terabytes of data. However,
despite the success of large datasets and large models, their expenses often prevent them
from being widely adopted.

The expenses incurred from training large models and large datasets can be categorized
into three aspects: designing complexity, computational complexity, and data complexity.
In designing complexity, deep networks have reached the point where human intuition
alone is no longer sufficient to design strong architectures. For instance, EfficientNet [200],
a recent architecture for image classification, is designed by neural architecture search
(NAS, [251]). NAS is a reinforcement learning algorithm that automatically searches a
space of trillions of possible architectures to find the good ones. Despite NAS being very
expensive, as Zoph and Le [251] reported to use 400 GPUs running continuously for more
than 3 weeks, NAS has become a necessary procedure without which practitioners can
hardly design highly optimized architectures such as EfficientNet. In computational
complexity, neural networks have grown to have billions of weights. For instance, in 2019,
T5 [172] was proposed with 11 billion weights, which considered large at that time. Then
in 2020, GPT-3 [22] appeared with 175 billion weights, and just a few months afterwards,
GShard [121] was introduced with more than 1 trillion weights. Due to their humongous
numbers of weights, those neural networks are slow to train and deploy, and also require
special techniques to implement, e.g., it is very non-trivial to store 1 trillion of weights on
existing accelerators’ limited high-bandwidth memory. In data complexity, recent papers
in computer vision often reported training on large labeled datasets for better representation

1

learning. For instance, recent research papers from Google [48, 165, 229, 230] reported to
use the JFT-300M dataset which is a proprietary dataset containing 300 million labeled
images; recent papers from Facebook [207, 232] also reported to use a proprietary dataset
of 1 billion images crawled from Instagram. These proprietary datasets are two orders of
magnitude larger than the publicly available ImageNet [180]. The immense expenses to
design good model architectures, to train large models, and to collect large datasets have
turned the advances in large-scaled deep learning into a privilege that is accessible to only
research labs with affluent resources.

This thesis presents a family of methods to reduce the aforementioned expenses to
design, train, and collect data for neural networks. The common theme for this family of
methods is combinatorial optimization. Specifically, this thesis first develops a combinatorial
optimization algorithm, termed Neral Combinatorial Optimization (NCO), which utilizes
deep reinforcement learning techniques. NCO is benchmarked on classical NP-Complete
problems and it is shown that the algorithm is good (in the sense that it can find near-
optimal solutions for these problems), and is general (in the sense that it does not rely
on any problem-specific heuristic). Based on these two desirable properties of NCO, the
algorithm is then flexibly applied to solve improve the complexity in designing, training, and
collecting data for deep networks. In particular, a major part of this thesis is dedicated to
demonstrate that many steps in designing, training, and collecting data for deep networks can
be formulated as combinatorial optimization problems. Such formulations, albeit sometimes
far-fetched, allow practitioners to apply the NCO algorithm to find good solutions that are
sometimes counterintuitive to humans. Section 1.2 below briefly describes these formulations
and their benefits in reducing the costs to design, train, and collect data for various neural
networks across different tasks and domains.

1.2 Summary of Contributions
This section presents a brief summary of the algorithms and applications that I develop in
this thesis. These algorithms and applications revolve around a combinatorial optimization
algorithm. Specifically, in Chapter 2, I develop a combinatorial optimization algorithm
based on deep reinforcement learning. Then, in the remaining Chapters 3, 4, 5, 6, I show
that many tasks in designing, training, and collecting data for neural networks can be
formulated as combinatorial optimization problems. Under such formulations, I apply the
algorithm that I develop in Chapter 2 to those tasks and show that such applications lead
to substantial reductions in the expenses to the corresponding tasks. More details are as
follows.

Chapter 2: Neural Combinatorial Optimization with Reinforcement Learning.
Key to the contribution of this thesis is the Neural Combinatorial Optimization (NCO).
Before NCO was proposed, combinatorial optimization problems were considered hard for
machine learning methods. For instance, the relatively modern pointer network in 2015 [213]
was outperformed by an extremely simple heuristic developed decades ago in 1976 [37]. In
NCO, I show that the such poor performance of machine learning methods, specifically of

2

pointer networks, is because these methods rely on supervised learning. Supervised learning
procedures require labeled data, but many combinatorial optimzation problems belong to
the NP class, and hence oftentimes practitioners cannot obtain good solutions for these
problems to teach their machine learning models.

By leveraging reinforcement learning techniques, NCO became the first algorithm that
does not require any supervised training data yet can still train a pointer network to find
good solutions for classical combinatorial optimization problems, such as the Traveling
Salesman Problem (TSP) and the KnapSack problem. Experiments with NCO show that
NCO’s performance on the TSP is closed to that of Concorde [5] which is the state-of-
the-art TSP solver that took multiple decades to develop. Furthermore, NCO is a more
general discrete optimizer compared to Concorde as well as specialized solvers for different
combinatorial optimization problems. This is because NCO does not rely on any problem-
specific heuristics. This generality of NCO allows me to apply it to solve various tasks
in designing, training, and collecting data for neural networks, simply by posing such
tasks as combinatorial optimization problems and applying NCO to them. My work on
NCO was published at the Workshop Track of the International Conference on Learning
Representations 2017 [14].

Chapter 3: Device Placement Optimization with Reinforcement Learning. De-
vice placement, also known as model parallelism, is the problem where one is given a
computational model and a list of devices, and is required to assign different parts of the
computational model on to these devices to minimize the execution time. In the context
of deep learning, model parallelism is necessary, especially in the cases where one needs
to train or deploy neural networks that are too large to run in a single device. A famous
example is the LSTM-based sequence-to-sequence model [197], where the authors had a
multi-layered LSTM model and placed each LSTM layer on a GPU. While this placement
is intuitive for humans, there is no guarantee that it is optimal for the LSTM’s running
time. Indeed, later in this thesis, I provide empirical evidences that it is not optimal.

It is challenging to go beyond human intuitions to design automated device placement
algorithms for neural networks. For instance, Scotch [161] is an existing good automated
model parallelism algorithm based on graph heuristics such as MaxCut. As I show later
in some experiments, it fails to find good placements for large neural networks. This is
perhaps because the computational graphs of these networks are often large, i.e. having
tens of thousands of nodes.

This thesis shows that the device placement problem can be formulated as a discrete
optimization problem. In particular, one can represent any neural network as a computa-
tional graph G, and can represent the list of available devices as D = {d1, d2, ..., d|D|}. With
these notations, the problem statement becomes: find an assignment of each node in G to a
device in D that minimizes the execution time of G. If G as |V (G)| nodes, then the search
space of the resulting combinatorial optimization problem will have size |D||V (G)|. While
this space could be large, I show that the NCO algorithm can be applied to search for
good placements in the space. For instance, NCO finds a placement for the attention-based
multi-layered LSTM network that is more than 20% faster than the placement designed by

3

human experts for the same network. The original work on Device Placement was published
at the International Conference on Machine Learning 2017 [140].

Chapter 4: Efficient Neural Architecture Search via Parameter Sharing. Neu-
ral Architecture Search (NAS) is a problem proposed by Zoph and Le [251]. NAS is a
combinatorial optimization problem in its very own nature. In particular, one is given a
task T , such as classifying images in CIFAR-10 [114], and a finite set of available operations,
such as O = {Conv3x3,Conv5x5,MaxPool, ...}. One has to find the sequence of tokens
from O that describes the model architecture which achieves the highest performance on
the task T . Clearly, the size of this search space is |O|L where L is the number of layers
in the network to be designed. The original NAS algorithm of Zoph and Le [251] used
a procedure which is very similar to NCO, and was able to find good architectures that
outperform even the most advanced architectures designed by humans. However, the NAS
algorithm is prohibitively expensive. Zoph and Le [251] reports to use up to 400 GPUs
running continuously in between 3 and 4 weeks. While Zoph et al. [253] improved this
excessively expensive running time to 200-300 GPUs running in 3-4 days, such usage of
computational resources is still out of reach for most research groups.

This thesis addresses this expense of NAS by re-formulating the combinatorial opti-
mization task of NAS into a different problem. Specifically, the formulation of NAS via
“searching for sequences of operations” is replaced with “searching for sub-graphs in a large
computational graphs”. In particular, all possible architectures in a given NAS search space
are super-positioned into a computational graph, where operations are represented as nodes
with possibly shared weights and the computational paths between these operations are
represented as edges. This re-formulation of NAS allows different architectures sampled
during the reinforcement learning process to share weights, avoiding the expense of re-
training all architectures from scratch. Note that under this novel sub-graph formulation,
the NCO algorithm is still applied to search for the sub-graph that describes the best
architecture. The resulting search procedure dramatically reduceis the expense of NAS
from using hundreds of GPUs in days to using 1 GPU in 12 hours (yet can still find
architectures of similar quality). This reduction is estimated to be between 1,000 to 50,000
times compared to NAS, in terms of computational usage. Due to this efficient usage
of resource, this algorithm is named Efficient Neural Architecture Search (ENAS). The
original ENAS paper was published at the International Conference on Machine Learning
2018 [164].

Chapter 5: Meta Pseudo Labels. Along with good and fast models, data is indis-
pensable for the success of deep learning algorithms. While annotating large datasets are
expensive, it was known that practitioners can rely on pseudo data to boost the performances
of their models [120, 230]. Generally speaking, pseudo data is created in two steps: (1)
train a model on an existing dataset; and (2) use the trained model to generate extra data.
This extra data, which is called “pseudo data”, can then be combined with the existing
labeled dataset to train better models.

Consider the problem of classifying images into C given classes. Let U be a set of

4

unlabeled images. Pseudo labeling is the task of assigning labels to each image in U and
then use the resulting so-called pseudo-labelled images to train a subsequent model. There
are C |U| ways to assign each image in U to one of the C available classes; each of these
assignments will train a subsequent model to a different accuracy on a given validation
set. Finding the label assignment among such C |U| assignments that trains a model to the
highest accuracy is a combinatorial optimization problem. This resulting combinatorial
optimization problem, however, is too expensive to solve with NCO. This is because the
number of classes C could be in the realm of thousands for image classification problems,
e.g. ImageNet-21k [180] has 21,843 classes, while the set U of unlabeled images could
literally have billions of instances. In such cases, the size of the search space for pseudo
labels, C |U|, is in the Θ(googolplex)1.

Instead of vanilla NCO, a variant of NCO [13, 57, 131] is applied to make the task
of searching for pseudo labels practical. To be clear, this variant of NCO is not the
contribution of this thesis. Rather, the contribution in this thesis is to recognize that the
problem of searching for pseudo labels can be formulated as a combinatorial optimization
problem, which in turn makes the task solvable with the aforementioned variant of NCO.
The resulting algorithm, termed meta pseudo labels, can find pseudo labels that effectively
train multiple neural networks to state-of-the-art accuracies at multiple data regimes. For
instance, at the low-resource regime, meta pseudo labels can train ResNet-50 to 73.89%
top-1 accuracy on ImageNet, hence establishing a state-of-the-art and outperforming the
previous state-of-the-art by more than 1%. Unlike other methods which work well on
low-resource datasets but fail to generalize to the high-resource datasets, meta pseudo labels
can also benefit models that already train on full ImageNet plus unlabeled data, e.g., by
attaining the top-1 accuracy of 90.2% on ImageNet. The original Meta Pseudo Labels was
published at IEEE’s Conference on Computer Vision and Pattern Recognition 2021 [165].

Chapter 6: Meta Back-Translation. The same technique with Meta Pseudo Labels
from Chapter 5 is applied to back-translation. Back-translation is essentially the “pseudo
labels” of machine translation. In machine translation, in order to obtain extra data to
train a model to translate a source language S into a target language T , one can train a
backward model that translates in the reverse direction T → S, and then use this backward
model to generate pseudo source sentences for a large monolingual corpus in the target
language T [187]. This extra data is then used to train the final forward translation
model. Since sentences in language are represented by sequences of discrete tokens, such
as words or word pieces, I formulate the task of back-translation as a combinatorial
optimization where the backward model needs to search for the sequences that best teach
the forward model. This formulation allows me to apply the NCO algorithm, which leads
to improvements in the translation quality across many tasks. For instance, on the task of
WMT English-German 2014 translation, which is the canonical task for machine translation,
Meta Back-Translation improves over vanilla back-translation by 1.66 BLEU score. The
original Meta Back-Translation paper first appeared at the International Conference on
Learning Representation 2021 [166].

1googolplex = 10googol = 1010100 , according to https://en.wikipedia.org/wiki/Googleplex.

5

https://en.wikipedia.org/wiki/Googleplex

6

Chapter 2

Neural Combinatorial Optimization
with Reinforcement Learning

2.1 Introduction

Combinatorial optimization is a fundamental problem in computer science. A canonical
example is the traveling salesman problem (TSP), where given a graph, one needs to search
the space of permutations to find an optimal sequence of nodes with minimal total edge
weights (tour length). The TSP and its variants have myriad applications in planning,
manufacturing, genetics, etc. (see Applegate et al. [6] for an overview).

Finding the optimal TSP solution is NP-hard, even in the two-dimensional Euclidean
case [155], where the nodes are 2D points and edge weights are Euclidean distances between
pairs of points. In practice, TSP solvers rely on handcrafted heuristics that guide their
search procedures to find competitive (and in many cases optimal) tours efficiently. Even
though these heuristics work well on TSP, once the problem statement changes slightly,
they need to be revised. In contrast, machine learning methods have the potential to be
applicable across many optimization tasks by automatically discovering their own heuristics
based on the training data, thus requiring less hand-engineering than solvers that are
optimized for one task only.

We propose Neural Combinatorial Optimization, a framework to tackle combinatorial
optimization problems using reinforcement learning and neural networks. We consider two
approaches based on policy gradients [223]. The first approach, called RL pretraining, uses
a training set to optimize a recurrent neural network (RNN) that parameterizes a stochastic
policy over solutions, using the expected reward as objective. At test time, the policy is
fixed, and one performs inference by greedy decoding or sampling. The second approach,
called active search, involves no pretraining. It starts from a random policy and iteratively
optimizes the RNN parameters on a single test instance, again using the expected reward
objective, while keeping track of the best solution sampled during the search. We find that
combining RL pretraining and active search works best in practice.

Our main result is that on 2D Euclidean graphs with up to 100 nodes, Neural Combina-
torial Optimization significantly outperforms the supervised learning approach [213] and

7

obtains fairly close to optimal results if allowed much computation time (see Figure 2.1).
We further illustrate the flexibility of the method by also applying it to the KnapSack
problem, for which we get optimal results for instances with up to 200 items (Table 2.4).
Our results, while still inferior to the state-of-the-art in many dimensions (such as speed,
scale and performance), give insights into how neural networks can be used as a general
tool for tackling combinatorial optimization problems, especially those that are difficult to
design heuristics for.

0 25 50 75 100
Percentile

1.001.00

1.05

1.10

To
ur
 le
ng
th
 ra

tio
 to

 o
pt
im

al

Planar TSP50
Our best method
Google OR tools (generic local search)
Local Search (LK-H) = Exact (Concorde)

0 25 50 75 100
Percentile

1.001.00

1.05

1.10

To
ur
 le
ng
th
 ra

tio
 to

 o
pt
im

al

Planar TSP100
Our best method
Google OR tools (generic local search)
Local Search (LK-H) = Exact (Concorde)

Figure 2.1: Tour length ratios of LK-H [84] local search and our best method (RL pretraining-
Active Search) against optimality, guaranteed by Concorde [5]. Generic local search, obtained via
Googles vehicle routing problem solver (Google, 2016), applies a set of heuristics starting from
the Christofides solution [37]. Note that RL pretraining-Active Search is five orders of magnitude
slower than LK-H and Concorde.

2.2 Related Work
The Traveling Salesman Problem is a well studied combinatorial optimization problem and
many exact or approximate algorithms have been proposed for both Euclidean and non-
Euclidean graphs. Christofides [37] proposes a heuristic algorithm that involves computing
a minimum-spanning tree and a minimum-weight perfect matching. The algorithm has
polynomial running time and returns solutions that are guaranteed to be within a factor of
1.5× to optimality in the metric instance of the TSP.

The best known exact dynamic programming algorithm for TSP has a complexity of
Θ(2nn2), making it infeasible to scale up to large instances, say with 40 points. Nevertheless,
state of the art TSP solvers, thanks to carefully handcrafted heuristics that describe how
to navigate the space of feasible solutions in an efficient manner, can solve symmetric TSP
instances with thousands of nodes. Concorde [5], widely accepted as one of the best exact
TSP solvers, makes use of cutting plane algorithms [4, 44, 154], iteratively solving linear
programming relaxations of the TSP, in conjunction with a branch-and-bound approach
that prunes parts of the search space that provably will not contain an optimal solution.
Similarly, the Lin-Kernighan-Helsgaun heuristic [84], inspired from the Lin-Kernighan
heuristic [126], is a state of the art approximate search heuristic for the symmetric TSP

8

and has been shown to solve instances with hundreds of nodes to optimality.
More generic solvers, such as Google’s vehicle routing problem solver [67] that tackles

a superset of the TSP, typically rely on a combination of local search algorithms and
metaheuristics. Local search algorithms apply a specified set of local move operators on
candidate solutions, based on hand-engineered heuristics such as 2-opt [139], to navigate
from solution to solution in the search space. A metaheuristic is then applied to propose
uphill moves and escape local optima. A popular choice of metaheuristic for the TSP and
its variants is guided local search [214], which moves out of a local minimum by penalizing
particular solution features that it considers should not occur in a good solution.

The difficulty in applying existing search heuristics to newly encountered problems - or
even new instances of a similar problem - is a well-known challenge that stems from the
No Free Lunch theorem [225]. Because all search algorithms have the same performance
when averaged over all problems, one must appropriately rely on a prior over problems
when selecting a search algorithm to guarantee performance. This challenge has fostered
interest in raising the level of generality at which optimization systems operate [23] and
is the underlying motivation behind hyper-heuristics, defined as "search method[s] or
learning mechanism[s] for selecting or generating heuristics to solve computation search
problems". Hyper-heuristics aim to be easier to use than problem specific methods by
partially abstracting away the knowledge intensive process of selecting heuristics given
a combinatorial problem and have been shown to successfully combine human-defined
heuristics in superior ways across many tasks (see Burke et al. [24] for a survey). However,
hyper-heuristics operate on the search space of heuristics, rather than the search space of
solutions, therefore still initially relying on human created heuristics.

The application of neural networks to combinatorial optimization has a distinguished
history, where the majority of research focuses on the Traveling Salesman Problem [188].
One of the earliest proposals is the use of Hopfield networks [92] for the TSP. The authors
modify the network’s energy function to make it equivalent to TSP objective and use
Lagrange multipliers to penalize the violations of the problem’s constraints. A limitation
of this approach is that it is sensitive to hyperparameters and parameter initialization
as analyzed by Wilson and Pawley [224]. Overcoming this limitation is central to the
subsequent work in the field, especially by Aiyer et al. [2], Gee [63]. Parallel to the
development of Hopfield networks is the work on using deformable template models to solve
TSP. Perhaps most prominent is the invention of Elastic Nets as a means to solve TSP [50],
and the application of Self Organizing Map to TSP [3, 59, 111]. Addressing the limitations
of deformable template models is central to the following work in this area [25, 54, 208].
Even though these neural networks have many appealing properties, they are still limited
as research work. When being carefully benchmarked, they have not yielded satisfying
results compared to algorithmic methods [117, 181]. Perhaps due to the negative results,
this research direction is largely overlooked since the turn of the century.

Motivated by the recent advancements in sequence-to-sequence learning [197], neural
networks are again the subject of study for optimization in various domains [32], including
discrete ones [251]. In particular, the TSP is revisited in the introduction of Pointer
Networks [213], where a recurrent network with non-parametric softmaxes is trained
in a supervised manner to predict the sequence of visited cities. Despite architectural

9

improvements, their models were trained using supervised signals given by an approximate
solver.

2.3 Network Architecture for TSP
We focus on the 2D Euclidean TSP in this paper. Given an input graph, represented as
a sequence of n cities in a two dimensional space s = {~xi}ni=1 where each ~xi ∈ R2, we
are concerned with finding a permutation of the points π, termed a tour, that visits each
city once and has the minimum total length. We define the length of a tour defined by a
permutation π as:

L(π | s) =
∥∥∥xπ(n) − xπ(1)

∥∥∥
2

+
n−1∑
i=1

∥∥∥xπ(i) − xπ(i+1)

∥∥∥
2
, (2.1)

where ‖·‖2 denotes `2 norm.
We aim to learn the parameters of a stochastic policy p(π | s) that given an input set of

points s, assigns high probabilities to short tours and low probabilities to long tours. Our
neural network architecture uses the chain rule to factorize the probability of a tour as:

p(π | s) =
n∏
i=1

p (π(i) | π(< i), s) , (2.2)

and then uses individual softmax modules to represent each term on the RHS of equation 2.2.
We are inspired by previous work [197] that makes use of the same factorization based on

the chain rule to address sequence to sequence problems like machine translation. One can
use a vanilla sequence to sequence model to address the TSP where the output vocabulary is
{1, 2, . . . , n}. However, there are two major issues with this approach: (1) networks trained
in this fashion cannot generalize to inputs with more than n cities. (2) one needs to have
access to ground-truth output permutations to optimize the parameters with conditional
log-likelihood. We address both issues in this paper.

For generalization beyond a pre-specified graph size, we follow the approach of Vinyals
et al. [213], which makes use of a set of non-parameteric softmax modules, resembling the
attention mechanism from Bahdanau et al. [9]. This approach, named pointer network,
allows the model to effectively point to a specific position in the input sequence rather than
predicting an index value from a fixed-size vocabulary. We employ the pointer network
architecture, depicted in Figure 2.2, as our policy model to parameterize p(π | s).

2.3.1 Architecture Details
Our pointer network comprises two recurrent neural network (RNN) modules, encoder
and decoder, both of which consist of Long Short-Term Memory (LSTM) cells [91]. The
encoder network reads the input sequence s, one city at a time, and maps it into a sequence
of latent memory states {enci}ni=1 where enci ∈ Rd. The input to the encoder network at
time step i is a d-dimensional embedding of a 2D point ~xi, which is obtained via a linear

10

〈g〉 x2x1x5x4x4x3x2x1 x5

Figure 2.2: A pointer network architecture introduced by Vinyals et al. [213].

transformation of ~xi shared across all input steps. The decoder network also maintains
its latent memory states {deci}ni=1 where deci ∈ Rd and, at each step i, uses a pointing
mechanism to produce a distribution over the next city to visit in the tour. Once the next
city is selected, it is passed as the input to the next decoder step. The input of the first
decoder step (denoted by 〈g〉 in Figure 2.2) is a d-dimensional vector treated as a trainable
parameter of our neural network.

Our attention function takes as input a query vector q = deci ∈ Rd and a set of reference
vectors ref = {enc1, . . . , enck} where enci ∈ Rd, and predicts a distribution A(ref, q) over
the set of k references. This probability distribution represents the degree to which the
model is pointing to reference ri upon seeing query q (see Appendix 2.7 for more details).

Vinyals et al. [212] also suggest including some additional computation steps, named
glimpses, to aggregate the contributions of different parts of the input sequence, very much
like Bahdanau et al. [9] (see Appendix 2.7 for more details). In our experiments, we find that
utilizing one glimpse in the pointing mechanism yields performance gains at an insignificant
cost in latency.

2.4 Optimization with policy gradients
Vinyals et al. [213] propose training pointer networks using a supervised loss function
comprising conditional log-likelihood, which factors into a cross entropy objective between
the network’s output probabilities and the targets provided by a TSP solver. Learning from
examples in such a way is undesirable for NP-hard problems because (1) the performance
of the model is tied to the quality of the supervised labels, (2) getting high-quality labeled
data is expensive and may be infeasible for new problem statements, and (3) one cares
about finding a competitive solution more than replicating the results of another algorithm.

By contrast, we believe Reinforcement Learning (RL) provides an appropriate paradigm
for training neural networks for combinatorial optimization, especially because these prob-
lems have relatively simple reward mechanisms that could be even used at test time. We

11

hence propose to use model-free policy-based Reinforcement Learning to optimize the
parameters of a pointer network denoted ~θ. Our training objective is the expected tour
length which, given an input graph s, is defined as:

J(~θ | s) = Eπ∼pθ(.|s) L(π | s) . (2.3)

During training, our graphs are drawn from a distribution S, and the total training objective
involves sampling from the distribution of graphs, i.e. J(~θ) = Es∼S J(~θ | s) .

We resort to policy gradient methods and stochastic gradient descent to optimize the
parameters. The gradient of equation 2.3 is formulated using the well-known REINFORCE
algorithm [223]:

∇θJ(θ | s) = Eπ∼pθ(.|s)

[(
L(π | s)− b(s)

)
∇θ log pθ(π | s)

]
, (2.4)

where b(s) denotes a baseline function that does not depend on π and estimates the expected
tour length to reduce the variance of the gradients.

By drawing B i.i.d. sample graphs s1, s2, . . . , sB ∼ S and sampling a single tour per
graph, i.e. πi ∼ pθ(. | si), the gradient in equation 2.4 is approximated with Monte Carlo
sampling as follows:

∇θJ(θ) ≈ 1
B

B∑
i=1

(
L(πi|si)− b(si)

)
∇θ log pθ(πi | si) . (2.5)

A simple and popular choice of the baseline b(s) is an exponential moving average of
the rewards obtained by the network over time to account for the fact that the policy
improves with training. While this choice of baseline proved sufficient to improve upon the
Christofides algorithm, it suffers from not being able to differentiate between different input
graphs. In particular, the optimal tour π∗ for a difficult graph s may be still discouraged if
L(π∗|s) > b because b is shared across all instances in the batch.

Using a parametric baseline to estimate the expected tour length Eπ∼pθ(.|s)L(π | s)
typically improves learning. Therefore, we introduce an auxiliary network, called a critic
and parameterized by θv, to learn the expected tour length found by our current policy pθ
given an input sequence s. The critic is trained with stochastic gradient descent on a mean
squared error objective between its predictions bθv(s) and the actual tour lengths sampled
by the most recent policy. This additional objective is formulated as

L(θv) = 1
B

B∑
i=1

∥∥∥ bθv(si)− L(πi | si)
∥∥∥2

2
. (2.6)

Critic’s architecture for TSP. We now explain how our critic maps an input sequence
s into a baseline prediction bθv(s). Our critic comprises three neural network modules:
1) an LSTM encoder, 2) an LSTM process block and 3) a 2-layer ReLU neural network
decoder. Its encoder has the same architecture as that of our pointer network’s encoder and
encodes an input sequence s into a sequence of latent memory states and a hidden state h.

12

The process block, similar to Vinyals et al. [212], then performs P steps of computation
over the hidden state h. Each processing step updates this hidden state by glimpsing at the
memory states and feeds the output of the glimpse function as input to the next processing
step (see Appendix 2.7 for more details). At the end of the process block, the obtained
hidden state is then decoded into a baseline prediction (i.e a single scalar) by two fully
connected layers with respectively d and 1 unit(s).

Our training algorithm, described in Algorithm 1, is closely related to the asynchronous
advantage actor-critic (A3C) proposed in Mnih et al. [143], as the difference between the
sampled tour lengths and the critic’s predictions is an unbiased estimate of the advantage
function. We perform our updates asynchronously across multiple workers, but each worker
also handles a mini-batch of graphs for better gradient estimates.

Algorithm 1 Actor-critic training
1: Train: training set S, #training steps T , batch size B
2:
3: Initialize pointer network params θ
4: Initialize critic network params θv
5: for t = 1 to T do
6: for i = 1 to B do
7: si ∼ SampleInput(S)
8: πi ∼ SampleSolution (pθ(·|si))
9: bi ← bθv(si)
10: end for
11: gθ ← 1

B

∑B
i=1(L(πi|si)− bi)∇θ log pθ(πi|si)

12: Lv ← 1
B

∑B
i=1 ‖bi − L(πi)‖2

2
13: θ ← Adam(θ, gθ)
14: θv ← Adam(θv,∇θvLv)
15: end for
16: return θ

2.4.1 Search Strategies
As evaluating a tour length is inexpensive, our TSP agent can easily simulate a search
procedure at inference time by considering multiple candidate solutions per graph and
selecting the best. This inference process resembles how solvers search over a large set of
feasible solutions. In this paper, we consider two search strategies detailed below, which we
refer to as sampling and active search.

Sampling. Our first approach is simply to sample multiple candidate tours from our
stochastic policy pθ(.|s) and select the shortest one. In contrast to heuristic solvers, we
do not enforce our model to sample different tours during the process. However, we
can control the diversity of the sampled tours with a temperature hyperparameter when

13

sampling from our non-parametric softmax (see Appendix 2.7). This sampling process
yields significant improvements over greedy decoding, which always selects the index with
the largest probability. We also considered perturbing the pointing mechanism with random
noise and greedily decoding from the obtained modified policy, similar to Cho [35], but this
proves less effective than sampling in our experiments.

Active Search. Rather than sampling with a fixed model and ignoring the reward
information obtained from the sampled solutions, one can refine the parameters of the
stochastic policy pθ during inference to minimize Eπ∼pθ(.|s)L(π | s) on a single test input
s. This approach proves especially competitive when starting from a trained model.
Remarkably, it also produces satisfying solutions when starting from an untrained model.
We refer to these two approaches as RL pretraining-Active Search and Active Search because
the model actively updates its parameters while searching for candidate solutions on a
single test instance.

Active Search applies policy gradients similar to Algorithm 1 but draws Monte Carlo
samples over candidate solutions π1 . . . πB ∼ pθ(·|s) for a single test input. It resorts to an
exponential moving average baseline, rather than a critic, as there is no need to differentiate
between inputs. Our Active Search training algorithm is presented in Algorithm 2. We
note that while RL training does not require supervision, it still requires training data
and hence generalization depends on the training data distribution. In contrast, Active
Search is distribution independent. Finally, since we encode a set of cities as a sequence,
we randomly shuffle the input sequence before feeding it to our pointer network. This
increases the stochasticity of the sampling procedure and leads to large improvements in
Active Search.

Algorithm 2 Active Search
1: ActiveSearch: input s, θ, number of candidates K, B, α
2: π ← RandomSolution
3: Lπ ← L(π | s)
4: n← dKB e
5: for t = 1 . . . n do
6: πi ∼ SampleSolution(pθ(. | s)) for i ∈ {1, . . . , B}
7: j ← Argmin

(
L(π1 | s) . . . L(πB | s)

)
8: Lj ← L(πj | s)
9: if Lj < Lπ then
10: π ← πj
11: Lπ ← Lj
12: end if
13: gθ ← 1

B

∑B
i=1(L(πi | s)− b)∇θ log pθ(πi | s)

14: θ ← Adam(θ, gθ)
15: b← α× b+ (1− α)× (1

B

∑B
i=1 bi)

16: end for
17: return π

14

2.5 Experiments with TSP
We conduct experiments to investigate the behavior of the proposed Neural Combinatorial
Optimization methods. We consider three benchmark tasks, Euclidean TSP20, 50 and 100,
for which we generate a test set of 1, 000 graphs. Points are drawn uniformly at random in
the unit square [0, 1]2.

2.5.1 Experimental details
Across all experiments, we use mini-batches of 128 sequences, LSTM cells with 128 hidden
units, and embed the two coordinates of each point in a 128-dimensional space. We train
our models with the Adam optimizer [108] and use an initial learning rate of 10−3 for TSP20
and TSP50 and 10−4 for TSP100 that we decay every 5000 steps by a factor of 0.96. We
initialize our parameters uniformly at random within [−0.08, 0.08] and clip the L2 norm of
our gradients to 1.0. We use up to one attention glimpse. When searching, the mini-batches
either consist of replications of the test sequence or its permutations. The baseline decay is
set to α = 0.99 in Active Search. Our model and training code in Tensorflow [1] will be
made available soon.

In our experiments, we benchmark several variations of training, decoding and refining.
The variations of our method, experimental procedure and results are as follows.

Supervised Learning. In addition to the described baselines, we implement and train
a pointer network with supervised learning, similar to Vinyals et al. [213]. While our
supervised data consists of one million optimal tours, we find that our supervised learning
results are not as good as those reported in Vinyals et al. [213]. We suspect that learning
from optimal tours is harder for supervised pointer networks due to subtle features that
the model cannot figure out only by looking at given supervised targets. We thus refer to
the results in Vinyals et al. [213] for TSP20 and TSP50 and report our results on TSP100,
all of which are suboptimal compared to other approaches.

RL pretraining. For the RL experiments, we generate training mini-batches of inputs
on the fly and update the model parameters with the Actor Critic Algorithm 1. Our
critic consists of an encoder network which has the same architecture as that of the policy
network, but followed by 3 processing steps and 2 fully connected layers. We find that
clipping the logits to [−10, 10] with a tanh(·) activation function helps with exploration and
yields marginal performance gains (see Appendix 2.7 for more details). The simplest search
strategy using an RL pretrained model is greedy decoding, i.e. selecting the city with the
largest probability at each decoding step. We also experiment with decoding greedily from
a set of 16 pretrained models at inference time. For each graph, the tour found by each
individual model is collected and the shortest tour is chosen. We refer to those approaches
as RL pretraining-greedy and RL pretraining-greedy@16.

RL pretraining-Sampling. For each test instance, we sample 1, 280, 000 candidate
solutions from a pretrained model and keep track of the shortest tour. A grid search

15

over the temperature hyperparameter found respective temperatures of 2.0, 2.2 and 1.5 to
yield the best results for TSP20, TSP50 and TSP100. We refer to the tuned temperature
hyperparameter as T ∗. Since sampling does not require parameter updates and is entirely
parallelizable, we use a larger batch size for speed purposes.

RL pretraining-Active Search. For each test instance, we initialize the model param-
eters from a pretrained RL model and run Active Search for up to 10, 000 training steps
with a batch size of 128, sampling a total of 1, 280, 000 candidate solutions. We set the
learning rate to a hundredth of the initial learning rate the TSP agent was trained on (i.e.
10−5 for TSP20/TSP50 and 10−6 for TSP100).

Active Search. We allow the model to train much longer to account for the fact that it
starts from scratch. For each test graph, we run Active Search for 100, 000 training steps
on TSP20/TSP50 and 200, 000 training steps on TSP100.

Table 2.1 summarizes the configurations and different search strategies used in the
experiments.

Table 2.1: Different learning configurations.

Configuration Learn on training data Sampling on test data Refining on test data

RL pretraining-Greedy Yes No No
Active Search (AS) No Yes Yes
RL pretraining-Sampling Yes Yes No
RL pretraining-AS Yes Yes Yes

2.5.2 Results and Analyses
Baselines: We compare our methods against 3 different baselines of increasing perfor-
mance and complexity:

• The Christofides algorithm which runs in polynomial time and garantees solutions
with an optimality ratio of 1.5.

• The generic (non TSP-specific) vehicle routing solver from OR-Tools [67]. This solver
improves over Christofides’ solutions with simple local search operators, including
2-opt [139] and a version of the Lin-Kernighan heuristic [126], stopping when it reaches
a local minimum. In order to escape poor local optima, OR-Tools’ local search can also
be run in conjunction with different metaheuristics, such as simulated annealing [109],
tabu search [66] or guided local search [214]. OR-Tools’ vehicle routing solver can
tackle a superset of the TSP and operates at a higher level of generality than solvers
that are highly specific to the TSP. While not state-of-the art for the TSP, it is
a common choice for general routing problems and provides a reasonable baseline
between the simplicity of the most basic local search operators and the sophistication
of the strongest solvers.

16

• State-of-the-art TSP-specific solvers, namely Concorde [5] and LK-H’s local search [84,
85], which both solve all of our test instances to optimality. While only Concorde
provably solves instances to optimality, we empirically find that LK-H also achieves
optimal solutions on all of our test sets after 50 trials per graph (which is the default
parameter setting).

Table 2.2: Average tour lengths (lower is better). Results marked (†) are from [213]. Concorde’s
solutions are provably optimal, and LK-H finds the same solutions.

Task Supervised RL pretraining AS Christofides OR Tools’ Concorde/
greedy greedy@16 sampling Active local search LK-H

TSP20 3.88(†) 3.89 − 3.82 3.82 3.96 4.30 3.85 3.82
TSP50 6.09(†) 5.95 5.80 5.70 5.70 5.87 6.62 5.80 5.68
TSP100 10.81 8.30 7.97 7.88 7.83 8.19 9.18 7.99 7.77

Solution Quality. We report the average tour lengths of our approaches on TSP20,
TSP50, and TSP100 in Table 6.1. Notably, results demonstrate that training with RL
significantly improves over supervised learning [213]. All our methods comfortably surpass
Christofides’ heuristic, including RL pretraining-Greedy which also does not rely on search.

We present the results more graphically in Figure 2.3, where we sort the ratios to
optimality of our different learning configurations. As can be seen from the results, RL
pretraining-Sampling and RL pretraining-Active Search are the most competitive Neural
Combinatorial Optimization methods and recover the optimal solution in a significant
number of our test cases. We find that for small solution spaces, RL pretraining-Sampling,
with a finetuned softmax temperature, outperforms RL pretraining-Active Search with the
latter sometimes orienting the search towards suboptimal regions of the solution space (see
TSP50 results in Figure 2.3). Interestingly, Active Search - which starts from an untrained
model - also produces competitive tours.

0 25 50 75 100
Percentile

1.001.00

1.05

1.10

To
ur
 le
ng
th
 ra
tio
 to
 o
pt
im
al

Planar TSP50
RL pretraining-Greedy
RL pretraining-Greedy@16
RL pretraining-Sampling
RL pretraining-Active Search
Active Search
Local Search (LK-H) = Exact (Concorde)

0 25 50 75 100
Percentile

1.001.00

1.05

1.10

1.13

To
ur

 le
ng

th
 ra

tio
 to

 o
pt

im
al

Planar TSP100
RL pretraining-Greedy
RL pretraining-Greedy@16
RL pretraining-Sampling
RL pretraining-Active Search
Active Search
Local Search (LK-H) = Exact (Concorde)

Figure 2.3: Sorted tour length ratios to optimality.

17

Task RL pretraining OR-Tools’ Optimal
greedy greedy@16 local search Concorde LK-H

TSP50 0.003s 0.04s 0.02s 0.05s 0.14s
TSP100 0.01s 0.15s 0.10s 0.22s 0.88s

Table 2.3: Running times in seconds (s) of greedy methods compared to OR Tool’s local search
and solvers that find the optimal solutions. Time is measured over the entire test set and averaged.
LK-H was run for 50 trials per graph (the default parameter setting). It is likely that optimal
solutions were found in fewer trials, resulting in shorter running times.

Speed. Table 2.3 compares the running times of our greedy methods to the aforementioned
baselines, with our methods running on a single Nvidia Tesla K80 GPU, Concorde and
LK-H running on an Intel Xeon CPU E5-1650 v3 3.50GHz CPU and OR-Tool on an Intel
Haswell CPU. We find that both greedy approaches are time-efficient but still quite far
from optimality.

Searching at inference time proves crucial to get closer to optimality but comes at the
expense of longer running times. Fortunately, the search from RL pretraining-Sampling and
RL pretraining-Active Search can be stopped early with a small performance tradeoff in terms
of the final objective. This can be seen in Table 4, where we show their performances and
corresponding running times as a function of how many solutions they consider. Furthermore,
RL pretraining-Sampling benefits from being fully parallelizable and runs faster than RL
pretraining-Active Search. However, for larger solution spaces, RL-pretraining Active Search
proves superior both when controlling for the number of sampled solutions or the running
time.

Compared to generic solvers, such as Google OR-Tools, we find that many of our RL pre-
training methods outperform OR-Tools’ local search, including RL pretraining-Greedy@16
which runs similarly fast. In our experiments, Neural Combinatorial Optimization is better
than Simulated Annealing but is slightly less competitive that Tabu Search and much less
so than Guided Local Search (see Appendix 2.7 for a thorough comparison).

Experiments with the Knapsack problem. As an example of the flexibility of Neural
Combinatorial Optimization, we consider the KnapSack problem, another intensively studied
problem in computer science. Given a set of n items i = 1...n, each with weight wi and
value vi and a maximum weight capacity of W , the 0-1 KnapSack problem consists in
maximizing the sum of the values of items present in the knapsack so that the sum of the
weights is less than or equal to the knapsack capacity:

max
S⊆{1,2,...,n}

∑
i∈S

vi

subject to
∑
i∈S

wi ≤ W
(2.7)

With wi, vi and W taking real values, the problem is NP-hard [105]. A naive heuristic
is to take the items ordered by their weight-to-value ratios until they fill up the weight

18

capacity. Two simple heuristics are ExpKnap, which employs branch-and-bound with
Linear Programming bounds [167], and MinKnap, which uses dynamic programming with
enumerative bounds [168]. Exact solutions can also be obtained by quantizing the weights
to high precisions and then performing dynamic programming with pseudo-polynomial
complexity [19].

We apply the pointer network and encode each knapsack instance as a sequence of 2D
vectors (wi, vi). At decoding time, the pointer network points to items to include in the
knapsack and stops when the total weight of the items collected so far exceeds the weight
capacity. We generate three datasets, KNAP50, KNAP100 and KNAP200, of a thousand
instances with items’ weights and values drawn uniformly at random in [0, 1]. Without
loss of generality (since we can scale the items’ weights), we set the capacities to 12.5
for KNAP50 and 25 for KNAP100 and KNAP200. We present the performances of RL
pretraining-Greedy and Active Search (which we run for 5, 000 training steps) in Table 2.4
and compare them to the following baselines: 1) random search (which we let sample as
many feasible solutions seen by Active Search), 2) the greedy value-to-weight ratio heuristic,
3) MinKnap, 4) ExpKnap, 5) OR-Tools’ KnapSack solver [67] and 6) optimality (which we
obtained by quantizing the weights to high precisions and using dynamic programming).

Table 2.4: Results of RL pretraining-Greedy and Active Search on KnapSack (higher is better).

Task RL pretraining Active Search Random Search Greedy MinKnap / Optimalgreedy ExpKnap / OR-Tools
KNAP50 19.86 20.07 17.91 19.24 20.07 20.07
KNAP100 40.27 40.50 33.23 38.53 40.50 40.50
KNAP200 57.10 57.45 35.95 55.42 57.45 57.45

2.6 Conclusion

This paper presents Neural Combinatorial Optimization, a framework to tackle combinatorial
optimization with reinforcement learning and neural networks. We focus on the traveling
salesman problem (TSP) and present a set of results for each variation of the framework.
Experiments demonstrate that Neural Combinatorial Optimization achieves close to optimal
results on 2D Euclidean graphs with up to 100 nodes. Our results, while still far from
the strongest solvers (especially those which are optimized for one problem), provide
an interesting research avenue for using neural networks as a general tool for tackling
combinatorial optimization problems.

19

2.7 Appendix

2.7.1 Pointing and Attending
Pointing mechanism: Its computations are parameterized by two attention matrices
Wref ,Wq ∈ Rd×d and an attention vector v ∈ Rd as follows:

ui =

v> · tanh (Wref · ri +Wq · q) if i 6= π(j),∀j < i

−∞ otherwise
(2.8)

A(ref, q;Wref ,Wq, v) 4= softmax(u) (2.9)
Our pointer network, at decoder step j, then assigns the probability of visiting the next

point π(j) of the tour as follows:

p(π(j)|π(< j), s) 4= A(enc1:n, decj). (2.10)
Setting the logits of cities that already appeared in the tour to −∞, as shown in

Equation 2.8, ensures that our model only points at cities that have yet to be visited and
hence outputs valid TSP tours.

Attending mechanism: Specifically, our glimpse function G(ref, q) takes the same
inputs as the attention function A and is parameterized by W g

ref ,W
g
q ∈ Rd×d and vg ∈ Rd.

It performs the following computations:
p = A(ref, q;W g

ref ,W
g
q , v

g) (2.11)

G(ref, q;W g
ref ,W

g
q , v

g) 4=
k∑
i=1

ripi. (2.12)

The glimpse function G essentially computes a linear combination of the reference
vectors weighted by the attention probabilities. It can also be applied multiple times on
the same reference set ref :

g0
4= q (2.13)

gl
4= G(ref, gl−1;W g

ref ,W
g
q , v

g) (2.14)
Finally, the ultimate gl vector is passed to the attention function A(ref, gl;Wref ,Wq, v)

to produce the probabilities of the pointing mechanism. We observed empirically that
glimpsing more than once with the same parameters made the model less likely to learn
and barely improved the results.

2.7.2 Improving exploration
Softmax temperature: We modify Equation 2.8 as follows:

A(ref, q, T ;Wref ,Wq, v) 4= softmax(u/T), (2.15)
where T is a temperature hyperparameter set to T = 1 during training. When T > 1, the
distribution represented by A(ref, q) becomes less steep, hence preventing the model from
being overconfident.

20

Logit clipping: We modify Equation 2.9 as follows:

A(ref, q;Wref ,Wq, v) 4= softmax(C tanh(u)), (2.16)

where C is a hyperparameter that controls the range of the logits and hence the entropy of
A(ref, q).

2.7.3 Sample tours

(5.934)

RL pretraining
-Greedy

(5.734)

RL pretraining
-Sampling

(5.688)

RL pretraining
-Active Search

(5.827)

Active Search

(5.688)

Optimal

(7.558)

RL pretraining
-Greedy

(7.467)

RL pretraining
-Sampling

(7.384)

RL pretraining
-Active Search

(7.507)

Active Search

(7.260)

Optimal

Figure 2.4: Sample tours. Top: TSP50; Bottom: TSP100.

21

22

Chapter 3

Device Placement Optimization with
Reinforcement Learning

3.1 Introduction
Over the past few years, neural networks have proven to be a general and effective tool for
many practical problems, such as image classification [81, 115, 198], speech recognition [27,
71, 77, 88], machine translation [9, 197, 227] and speech synthesis [8, 153, 222]. Together with
their success is the growth in size and computational requirements of training and inference.
Currently, a typical approach to address these requirements is to use a heterogeneous
distributed environment with a mixture of many CPUs and GPUs. In this environment, it
is a common practice for a machine learning practitioner to specify the device placement for
certain operations in the neural network. For example, in a neural translation network, each
layer, including all LSTM layers, the attention layer, and the softmax layer, is computed by
a GPU [197, 227].

Although such decisions can be made by machine learning practitioners, they can be
challenging, especially when the network has many branches [198], or when the minibatches
get larger. Existing algorithmic solvers [103, 161], on the other hand, are not flexible enough
to work with a dynamic environment with many interferences.

Placement Environment Runtime

Update

Placement

Figure 3.1: An overview of the RL based device placement model.

In this paper, we propose a method which learns to optimize device placement for training
and inference with neural networks. The method, illustrated in Figure 3.1, takes into account
information of the environment by performing series of experiments to understand which

23

parts of the model should be placed on which device, and how to arrange the computations
so that the communication is optimized. Key to our method is the use of a sequence-to-
sequence model to read input information about the operations as well as the dependencies
between them, and then propose a placement for each operation. Each proposal is executed
in the hardware environment to measure the execution time. The execution time is then
used as a reward signal to train the recurrent model so that it gives better proposals over
time.

Our main result is that our method finds non-trivial placements on multiple devices
for Inception-V3 [198], Recurrent Neural Language Model [100, 242] and Neural Machine
Translation [197, 227]. Single-step measurements show that Scotch [161] yields disappointing
results on all three benchmarks, suggesting that their graph-based heuristics are not flexible
enough for them. Our method can find non-trivial placements that are up to 3.5 times
faster. When applied to train the three models in real time, the placements found by our
method are up to 20% faster than human experts’ placements.

3.2 Related Work
Our work is closely related to the idea of using neural networks and reinforcement learning for
combinatorial optimization [14, 213]. The space of possible placements for a computational
graph is discrete, and we model the placements using a sequence-to-sequence approach,
trained with policy gradients. However, experiments in early work were only concerned with
toy datasets, whereas this work applies the framework to a large-scale practical application
with noisy rewards.

Reinforcement learning has also been applied to optimize system performance. For
example, Mao et al. [135] propose to train a resource management algorithm with policy
gradients. However, they optimize the expected value of a hand-crafted objective function
based on the reward, unlike this work, where we optimize directly for the running time of
the configurations, hence relieving the need to design intermediate cost models.

Graph partitioning is an intensively studied subject in computer science. Early work such
as Fiduccia and Mattheyses [55], Johnson et al. [99], Kernighan and Lin [106], Kirkpatrick
et al. [110] employ several iterative refinement procedures that start from a partition and
continue to explore similar partitions to improve. Alternative methods such as Hagen and
Kahng [76], Karypis and Kumar [103] perform spectral analyses on matrix representations
of graphs to partition them. Despite their extensive literature, graph partitioning algorithms
remain heuristics for computational graphs. The reason is that in order to apply these
algorithms, one has to construct cost models for the graphs of concern. Since such models
are expensive to even estimate and in virtually all cases, are not accurate, graph partitioning
algorithms applied on them can lead to unsatisfying results, as we show in Section 3.4 of
this paper.

A well-known graph partitioning algorithm with an open source software library is
the Scotch optimizer [161], which we use as a baseline in our experiments. The Scotch
mapper attempts to balance the computational load of a collection of tasks among a set of
connected processing nodes, while reducing the cost of communication by keeping intensively

24

communicating tasks on nearby nodes. Scotch relies on a collection of graph partitioning
techniques such as k-way Fiduccia-Mattheyses [55], multilevel method [12, 87, 102], band
method [34], diffusion method [160], and dual recursive bipartitioning mapping [162]).

Scotch models the problem with 2 graphs. The first graph is called the target architecture
graph, whose vertices represent hardware resources such as CPUs or GPUs and whose edges
represent the communication paths available between them, such as a PCIe bus or a network
link. The second graph is called the source graph, which models the computation to be
mapped onto the target architecture graph. In the case of TensorFlow [1], the computations
of programs are modeled as a graph whose vertices represent operations, while the graph
edges represent the multidimensional data arrays (tensors) communicated between them.
Scotch users have to choose how and when given partitioning should be applied to graphs.
However, in our experiment, we rely on the software’s default strategies implemented in
Scotch, which have already been extensively tuned.

3.3 Method
Consider a TensorFlow computational graph G, which consists ofM operations {o1, o2, ..., oM},
and a list of D available devices. A placement P = {p1, p2, ..., pM} is an assignment of an
operation oi ∈ G to a device pi, where pi ∈ {1, ..., D}. Let r(P) denote the time that it
takes to perform a complete execution of G under the placement P. The goal of device
placement optimization is to find P such that the execution time r(P) is minimized.

3.3.1 Training with Policy Gradients
While we seek to minimize the execution time r(P), direct optimization of r(P) results in
two major issues. First, in the beginning of the training process, due to the bad placements
sampled, the measurements of r(P) can be noisy, leading to inappropriate learning signals.
Second, as the RL model gradually converges, the placements that are sampled become
more similar to each other, leading to small differences between the corresponding running
times, which results in less distinguishable training signals. We empirically find that the
square root of running time, R(P) =

√
r(P), makes the learning process more robust.

Accordingly, we propose to train a stochastic policy π(P|G; θ) to minimize the objective
J(θ) = EP∼π(P|G;θ) [R (P) |G] (3.1)

In our work, π(P|G; θ) is defined by an attentional sequence-to-sequence model, which
we will describe in Section 3.3.2. We learn the network parameters using Adam [108]
optimizer based on policy gradients computed via the REINFORCE equation [223],

∇θJ(θ) = EP∼π(P|G;θ) [R (P) · ∇θ log p (P|G; θ)] (3.2)
We estimate ∇θJ(θ) by drawing K placement samples using Pi ∼ π(·|G; θ). We reduce

the variance of policy gradients by using a baseline term B, leading to

∇θJ(θ) ≈ 1
K

K∑
i=1

(R (Pi)−B) · ∇θ log p (Pi|G; θ) (3.3)

25

We find that a simple moving average baseline B works well in our experiments. In
practice, on computational graphs with large memory footprints, some placements can fail
to execute, e.g., putting all of the operations of a huge LSTM on a single GPU will exceed
the device’s memory limit. For such cases, we set the square root of running time R(P) to
a large constant, which we call the failing signal. We specify the failing signal manually
depending on the input graph. We observe that throughout our training process, some
placements sporadically and unexpectedly fail, perhaps due to factors such as the state of
the machine (we train our model on a shared cluster). This phenomenon is particularly
undesirable towards the end of the training process, since a large difference between R(Pi)
and the baseline B leads to a large update of the parameters, which potentially perturbs
parameters θ out of a good minimum. We thus hard-code the training process so that after
5, 000 steps, one performs a parameter update with a sampled placement P only if the
placement executes. In our experiments, we also find that initializing the baseline B with
the failing signal results in more exploration.

3.3.2 Architecture Details

Figure 3.2: Device placement model architecture.

We use a sequence-to-sequence model [197] with LSTM [91] and a content-based attention
mechanism [9] to predict the placements. Figure 3.2 shows the overall architecture of our
model, which can be divided into two parts: encoder RNN and decoder RNN.

The input to the encoder RNN is the sequence of operations of the input graph. We
embed the operations by concatenating their information. Specifically, for each input graph
G, we first collect the types of its operations. An operation’s type describes the underlying
computation, such as MatMul or conv2d. For each type, we store a tunable embedding
vector. We then record the size of each operation’s list of output tensors and concatenate
them into a fixed-size zero-padded list called the output shape. We also take the one-hot
encoding vector that represents the operations that are direct inputs and outputs to each
operation. Finally, the embedding of each operation is the concatenation of its type, its
output shape, and its one-hot encoded adjacency information.

The decoder is an attentional LSTM [9] with a fixed number of time steps that is equal
to the number of operations in a graph G. At each step, the decoder outputs the device for

26

the operation at the same encoder time step. Each device has its own tunable embedding,
which is then fed as input to the next decoder time step.

3.3.3 Co-locating Operations
A key challenge when applying our method to TensorFlow computational graphs is that
these graphs generally have thousands of operations (see Table 3.1). Modeling such a large
number of operations with sequence-to-sequence models is difficult due to vanishing and
exploding gradient issues [158] and large memory footprints. We propose to reduce the
number of objects to place on different devices by manually forcing several operations to be
located on the same device. In practice, this is implemented by the colocate_with feature
of TensorFlow.

We use several heuristics to create co-location groups. First, we rely on TensorFlow’s
default co-location groups, such as co-locating each operation’s outputs with its gradients.
We further apply a simple heuristic to merge more operations into co-location groups.
Specifically, if the output of an operation X is consumed only by another operation Y ,
then operations X and Y are co-located. Many initialization operations in TensorFlow
can be grouped in this way. In our experiments, we apply this heuristic recursively, and
after each iteration, we treat the co-location groups as operations until there are not any
further groups that can be merged. For certain models, we apply specific rules to construct
co-location groups. For example, with ConvNets, we can treat several convolutions and
pooling layers as a co-location group, and with RNN models, we treat each LSTM cell as a
group.

3.3.4 Distributed Training
We speed up the training process of our model using asynchronous distributed training, as
shown in Figure 3.3. Our framework consists of several controllers, each of which execute
the current policy defined by the attentional sequence-to-sequence model as described in
Section 3.3.2. All of the controllers interact with a single shared parameter server. We note
that the parameter server holds only the controllers’ parameters, and not the input graph’s
parameters, because keeping the input graph’s parameters on the parameter server can
potentially create a latency bottleneck to transfer these parameters. Each controller in our
framework interacts with K workers, where K is the number of Monte Carlo samples in
Equation 3.3.

Figure 3.3: Distributed and asynchronous parameter update and reward evaluation.

27

The training process has two alternating phases. In the first phase, each worker
receives a signal that indicates that it should wait for placements from its controller, while
each controller receives a signal that indicates it should sample K placements. Each
sampled placement comes with a probability. Each controller then independently sends the
placements to their workers, one placement per worker, and sends a signal to indicate a
phase change.

In the second phase, each worker executes the placement it receives and measures the
running time. To reduce the variance in these measurements, each placement is executed for
10 steps and the average running time of the steps but the first one is recorded. We observe
that in TensorFlow, the first step can take longer to execute compared to the following
steps, and hence we treat itss runing time as an outlier. Each controller waits for all of its
workers to finish executing their assigned placements and returning their running times.
When all of the running times are received, the controller uses the running times to scale
the corresponding gradients to asynchronously update the controller parameters that reside
in the parameter server.

In our experiments, we use up to 20 controllers, each with either 4 or 8 workers. Under
this setting, it takes between 12 to 27 hours to find the best placement for the models in
our experiments. Using more workers per controller yields more accurate estimates of the
policy gradient as in Equation 3.3, but comes at the expense of possibly having to put more
workers in idle states. We also note that due to the discrepancies between machines, it is
more stable to let each controller have its own baseline.

3.4 Experiments
In the following experiments, we apply our proposed method to assign computations to
devices on three important neural networks in the deep learning literature: Recurrent
Neural Language Model (RNNLM) [100, 242], Attentional Neural Machine Translation [9],
and Inception-V3 [198]. We compare the RL placements against strong existing baselines
described in Section 3.4.2.

3.4.1 Experiment Setup
Benchmarks. We evaluate our approach on three established deep learning models:

• Recurrent Neural Network Language Model (RNNLM) with multiple LSTM layers [100,
242]. The grid structure of this model introduces tremendous potential for parallel
executions because each LSTM cell can start as soon as its input and previous states
are available.

• Neural Machine Translation with attention mechanism (NMT) [9, 227]. While the
architecture of this model is similar to that of RNNLM, its large number of hid-
den states due to the source and target sentences necessitates model parallelism.
Both Sutskever et al. [197] and Wu et al. [227] propose to place each LSTM layer, the
attention layer, and the softmax layer, each on a separate device. While the authors
observe significant improvements at training time, their choices are not optimal. In

28

fact, we show in our experiments that a trained policy can find significantly better
placements.

• Inception-V3 [198] is a widely-used architecture for image recognition and visual
feature extraction [53, 107]. The Inception network has multiple blocks. Each block
has several branches of convolutional and pooling layers, which are then concatenated
to make the inputs for the next block. While these branches can be executed in
parallel, the network’s depth restricts such potential since the later blocks have to
wait for the previous ones.

Model details. For Inception-V3, each step is executed on a batch of images, each of
size 299× 299× 3, which is the widely-used setting for the ImageNet Challenge [198]. For
RNNLM and NMT, we use the model with 2 LSTM layers, with sizes of 2048 and 1024,
respectively. We set the number of unrolling steps for RNNLM, as well as the maximum
length for the source and target sentences of NMT, to 40. Each pass on RNNLM and NMT
consists of a minibatch of 64 sequences.

Co-location groups. We pre-process the TensorFlow computational graphs of the three
aforementioned models to manually create their co-location groups. More precisely; for
RNNLM and NMT, we treat each LSTM cell, each embedding lookup, each attention step
and each softmax prediction step as a group; for Inception-V3, we treat each branch as a
group. Table 3.1 shows the grouping statistics of these models.

Model #operations #groups

RNNLM 8943 188
NMT 22097 280
Inception-V3 31180 83

Table 3.1: Model statistics.

Metrics. We implement training operations for RNNLM and NMT using Adam [108],
and for Inception-V3 using RMSProp [203]. We evaluate a placement by the total time it
takes to perform one forward pass, one backward pass and one parameter update. To reduce
measurement variance, we average the running times over several trials. Additionally, we
train each model from scratch using the placements found by our method and compare the
training time to that of the strongest baseline placement.

Devices. In our experiments, the available devices are 1 Intel Haswell 2300 CPU, which
has 18 cores, and either 2 or 4 Nvidia Tesla K80 GPUs. We allow 50 GB of RAM for all
models and settings.

29

3.4.2 Baselines

Single-CPU. This placement executes the whole neural network on a single CPU. Pro-
cessing some large models on GPUs is infeasible due to memory limits, leaving Single-CPU
the only choice despite being slow.

Single-GPU. This placement executes the whole neural network on a single CPU. If an
operation lacks GPU implemention, it will be placed on CPU.

Scotch. We estimate the computational costs of each operation as well as the amount
of data that flows along each edge of the neural network model, and feed them to the
Scotch static mapper [161]. We also annotate the architecture graph (see Section 3.2) with
compute and communication capacities of the underlying devices.

MinCut. We use the same Scotch optimizer, but eliminate the CPU from the list of
available devices fed to the optimizer. Similar to the single-GPU placement, if an operation
has no GPU implementation, it runs on the CPU.

Expert-designed. For RNNLM and NMT, we put each LSTM layer on a device. For
NMT, we also put the attention mechanism and the softmax layer on the same device with
the highest LSTM layer, and we put the embedding layer on the same device with the first
LSTM layer. For Inception-V3, the common practice for the batch size of 32 is to put the
entire model on a single GPU. There is no implementation of Inception-V3 with batch 32
using more than 1 GPU. To create an intuitive baseline on multiple GPUs, we heuristically
partition the model into contiguous parts that have roughly the same number of layers. We
compare against this approach in Section 3.4.3. The common practice for Inception-V3
with the larger batch size of 128 is to apply data parallelism using 4 GPUs. Each GPU
runs a replica of the model and processes a batch of size 32 [198]. We compare against this
approach in Section 3.4.4.

3.4.3 Single-Step Runtime Efficiency

In Table 3.2, we present the per-step running times of the placements found by our method
and by the baselines. We observe that our model is either on par with or better than
other methods of placements. Despite being given no information other than the running
times of the placements and the number of available devices, our model learns subtle
tradeoffs between performance gain by parallelism and the costs induced by inter-device
communications.

30

Tasks Single-CPU Single-GPU #GPUs Scotch MinCut Expert RL-based Speedup

RNNLM 6.89 1.57 2 13.43 11.94 3.81 1.57 0.0%
(batch 64) 4 11.52 10.44 4.46 1.57 0.0%
NMT 10.72 OOM 2 14.19 11.54 4.99 4.04 23.5%
(batch 64) 4 11.23 11.78 4.73 3.92 20.6%
Inception-V3 26.21 4.60 2 25.24 22.88 11.22 4.60 0.0%
(batch 32) 4 23.41 24.52 10.65 3.85 19.0%

Table 3.2: Running times (in seconds) of placements found by RL-based method and the baselines
(lower is better). For each model, the first row shows the results with 1 CPU and 2 GPUs; the
second row shows the results with 1 CPU and 4 GPUs. Last column shows improvements in
running time achieved by RL-based placement over fastest baseline. To reduce variance, running
times less than 10 seconds are measured 15 times and the averages are recorded. OOM is Out Of
Memory.

RNNLM. Our method detects that it is possible to fit the whole RNNLM graph into one
GPU, and decides to do so to save the inter-device communication latencies. The resulting
placement is more than twice faster than the best published human-designed baseline.

LSTM 2

LSTM 1

Embedding

Softmax

Attention

LSTM 2

LSTM 1

Embedding

Figure 3.4: RL-based placement of Neural MT graph. Top: encoder, Bottom: decoder. Devices
are denoted by colors, where the transparent color represents an operation on a CPU and each
other unique color represents a different GPU. This placement achieves an improvement of 19.3%
in running time compared to the fine-tuned expert-designed placement.

Neural MT. Our method finds a non-trivial placement (see Figure 3.4) that leads to a
speedup of up to 20.6% for 4 GPUs. Our method also learns to put the less computational
expensive operations, such as embedding lookups, on the CPU. We suspect that whilst
being the slowest device, the CPU can handle these lookup operations (which are less
computationally expensive than other operations) to reduce the load for other GPUs.

Inception-V3. For Inception-V3 with the batch size of 32, RL-based placer learns that
when there are only 2 GPUs available, the degree of freedom for model parallelism is limited.
It thus places all the operations on a single GPU (although it could use 2 GPUs). However,
when 4 GPUs are available, the RL-based placer finds an efficient way to use all of the
GPUs, reducing the model’s per-step running time from 4.60 seconds to 3.85 seconds. This
result is significant, as neither of our baselines could find a placement better than assigning
all the operations to a single GPU.

31

We also conduct a simple extension of our experiments, by increasing the batch sizes of
RNNLM and NMT to 256, and their LSTM sizes to 4, 096 and 2, 048, respectively. This
makes the models’ memory footprints so large that even one layer of them cannot be fitted
into any single device, hence ruling out the human-designed placement. Nevertheless, after
several steps of finding placements that fail to run, our approach manages to find a way to
successfully place input models on devices The running times of the placements found for
large RNNLM and NMT are 33.46 and 35.84 seconds, respectively.

3.4.4 End-to-End Runtime Efficiency
We now investigate whether the RL-based placements can speedup not only the single-step
running time but also the entire training process.

Neural MT. We train our Neural MT model on the WMT14 English-German dataset.1
For these experiments, we pre-process the dataset into word pieces [227] such that the
vocabularies of both languages consist of 32, 000 word pieces. In order to match our model’s
settings, we consider only the translation pairs where no sentence has more than 40 word
pieces. We train each model for 200, 000 steps and record their train perplexities. Each
training machine has 4 Nvidia Tesla K80 GPUs and 1 Intel Haswell 2300 CPU. Since there
are inevitable noises in the computer systems when measuring the running times, we train
each model 4 times independently and average their per-step running times and perplexities.

0 50 100 150 200
hours

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

tr
ai

n
 l

o
g

_
p

p
l

Neural MT Training Curves with 1CPU, 4GPUs

RL-based Placement

Human Expert (One layer per device)

Figure 3.5: Training curves of NMT model using RL-based placement and expert-designed
placement. The per-step running time as well as the perplexities are averaged over 4 runs.

The RL-based placement runs faster than the expert-designed placement, as shown in
the training curves in Figure 3.5. Quantitatively, the expert-designed placement, which

1http://www.statmt.org/wmt14/

32

http://www.statmt.org/wmt14/

puts each layer (LSTM, attention and softmax) on a different GPU, takes 229.57 hours;
meanwhile the RL-based placement (see Figure 3.4) takes 165.73 hours, giving 27.8% speed
up of total training time. We note that the measured speedup rate (and the running times)
of these models appear different than reported in Table 3.2 because measuring them in our
RL method has several overheads.

Figure 3.6: RL-based placement of Inception-V3. Devices are denoted by colors, where the
transparent color represents an operation on a CPU and each other unique color represents a
different GPU. RL-based placement achieves the improvement of 19.7% in running time compared
to expert-designed placement.

Inception-V3. We train Inception-V3 on the ImageNet dataset [180] until the model
reaches the accuracy of 72% on the validation set. In practice, more often, inception models
are trained with data parallelism rather than model parallelism. We thus compare the
placements found by our algorithm (see Figure 3.6) against two such baselines.

The first baseline, called Asynchronous towers, puts one replica of the Inception-V3
network on each GPU. These replicas share the data reading operations, which are assigned
to the CPU. Each replica independently performs forward and backward passes to compute
the model’s gradients with respect to a minibatch of 32 images and then updates the
parameters asynchronously. The second baseline, called Synchronous Tower, is the same as
Asynchronous towers, except that it waits for the gradients of all copies before making an
update. All settings use the learning rate of 0.045 and are trained using RMSProp.

Figure 3.7 shows the training curves of the three settings for Inception-V3. As can be
seen from the figure, the end-to-end training result confirms that the RL-based placement
indeed speedups the training process by 19.7% compared to the Synchronous Tower. While
Asynchronous towers gives a better per-step time, synchronous approaches lead to faster
convergence. The training curve of the RL-based placement, being slower at first, eventually
crosses the training curve of Asynchronous towers.

3.4.5 Analysis of Found Placements
In order to understand the rationale behind the RL-based placements, we analyze their
profiling information and compare them against those of expert-designed placements.

Neural MT. We first compare the per-device computational loads by RL-based placement
and expert-designed placement for the NMT model. Figure 3.8 shows such performance
profiling. RL-based placement balances the workload significantly better than does the

33

0 50 100 150 200 250 300 350
hours

0

2

4

6

8

10

12

14

cu
m

u
la

ti
v

e
av

g
 t

ra
in

 l
o

ss

Inception Training Curves with 1CPU, 4GPUs

RL-based Placement

Synchronous Towers

Asynchronous Towers

Figure 3.7: Training curves of Inception-V3 model using RL-based placement and two expert-
designed placements: Synchronous towers and Asynchronous towers. The per-step running time
as well as the perplexities are averaged over 4 runs.

expert-designed placement. Interestingly, if we do not take into account the time for
back-propagation, then expert-designed placement makes sense because the workload is
more balanced (whilst still less balanced than ours). The imbalance is much more significant
when back-propagation time is considered.

GPU0 GPU1 GPU2 GPU3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

o
p
er

at
io

n
 r

u
n
ti

m
e

(s
)

RL-based placement

GPU0 GPU1 GPU2 GPU3

Synchronous towers

conv2d(grad)

avgpool(grad)

concat(grad)

dropout(grad)

GPU0 GPU1 GPU2 GPU3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

o
p
er

at
io

n
 r

u
n
ti

m
e

(s
)

RL-based placement

GPU0 GPU1 GPU2 GPU3

Synchronous towers

memcpy

Figure 3.9: Computational load and memory copy profiling of Inception-V3 for RL-based and
Synchronous tower placements. Top figure: Operation runtime for GPUs. Smaller blocks of each
color correspond to feedforward path and same-color upper blocks correspond to backpropagation.
RL-based placement produces less balanced computational load than Synchronous tower. Bottom
figure: Memory copy time. All memory copy activities in Synchronous tower are between a GPU
and a CPU, which are in general slower than GPU to GPU copies that take place in the RL-based
placement.

34

GPU0 GPU1 GPU2 GPU3
0.0

0.5

1.0

1.5

2.0

o
p

er
at

io
n

 r
u

n
ti

m
e

(s
)

RL-based placement

GPU0 GPU1 GPU2 GPU3

Expert-designed placement

encoder_lstm(grad)

decoder_lstm(grad)

attention(grad)

softmax(grad)

Figure 3.8: Computational load profiling of NMT model for RL-based and expert-designed place-
ments. Smaller blocks of each color correspond to feedforward path and same-color upper blocks
correspond to backpropagation. RL-based placement performs a more balanced computational
load assignment than the expert-designed placement.

Inception-V3. On Inception-V3, however, the RL-based placement does not seek to
balance the computations between GPUs, as illustrated in Figure 3.9-top. We suspect this
is because Inception-V3 has more dependencies than NMT, allowing less room for model
parallelism across GPUs. The reduction in running time of the RL-based placement comes
from the less time it spends copying data between devices, as shown in Figure 3.9-bottom.
In particular, the model’s parameters are on the same device as the operations that use
them, unlike in Synchronous tower, where all towers have to wait for all parameters have to
be updated and sent to them. On the contrary, that use them to reduce the communication
cost, leading to overall reduction in computing time.

3.5 Conclusion
In this paper, we present an adaptive method to optimize device placements for neural
networks. Key to our approach is the use of a sequence-to-sequence model to propose device
placements given the operations in a neural network. The model is trained to optimize the
execution time of the neural network. Besides the execution time, the number of available
devices is the only other information about the hardware configuration that we feed to our
model.

Our results demonstrate that the proposed approach learns the properties of the
environment including the complex tradeoff between computation and communication in
hardware. On a range of tasks including image classification, language modeling, and
machine translation, our method surpasses placements carefully designed by human experts
and highly optimized algorithmic solvers.

35

36

Chapter 4

Efficient Neural Architecture Search
via Parameter Sharing

4.1 Introduction

Neural architecture search (NAS) has been successfully applied to design model architectures
for image classification and language models [26, 128, 130, 251, 253]. In NAS, a controller
is trained in a loop: the controller first samples a candidate architecture, i.e. a child model,
trains it to convergence, and measure its performance on the task of desire. The controller
then uses the performance as a guiding signal to find more promising architectures. This
process is repeated for many iterations. Despite its impressive empirical performance, NAS
is computationally expensive and time consuming, e.g. Zoph et al. [253] use 450 GPUs for
3-4 days (i.e. 32,400-43,200 GPU hours). Meanwhile, using less resource tends to produce
less compelling results [10, 146]. We observe that the computational bottleneck of NAS
is the training of each child model to convergence, only to measure its accuracy whilst
throwing away all the trained weights.

The main contribution of this work is to improve the efficiency of NAS by forcing all child
models to share weights to eschew training each child model from scratch to convergence.
The idea has apparent complications, as different child models might utilize their weights
differently, but was encouraged by previous work on transfer learning and multitask learning,
which established that parameters learned for a particular model on a particular task can
be used for other models on other tasks, with little to no modifications [133, 173, 252].

We empirically show that not only is sharing parameters among child models possible,
but it also allows for very strong performance. Specifically, on CIFAR-10, our method
achieves a test error of 2.89%, compared to 2.65% by NAS. On Penn Treebank, our method
achieves a test perplexity of 56.3, which significantly outperforms NAS’s test perplexity of
62.4 [251] and which is on par with the existing state-of-the-art among Penn Treebank’s
approaches that do not utilize post-training processing (56.0; Yang et al. [234]). Importantly,
in all of our experiments, for which we use a single Nvidia GTX 1080Ti GPU, the search for
architectures takes less than 16 hours. Compared to NAS, this is a reduction of GPU-hours
by more than 1000x. Due to its efficiency, we name our method Efficient Neural Architecture

37

Search (ENAS).

4.2 Methods
Central to the idea of ENAS is the observation that all of the graphs which NAS ends
up iterating over can be viewed as sub-graphs of a larger graph. In other words, we can
represent NAS’s search space using a single directed acyclic graph (DAG). Figure 4.1
illustrates a generic example DAG, where an architecture can be realized by taking a
subgraph of the DAG. Intuitively, ENAS’s DAG is the superposition of all possible child
models in a search space of NAS, where the nodes represent the local computations and the
edges represent the flow of information. The local computations at each node have their own
parameters, which are used only when the particular computation is activated. Therefore,
ENAS’s design allows parameters to be shared among all child models, i.e. architectures, in
the search space.

Figure 4.1: The graph represents the entire search space while the red arrows define a model in
the search space, which is decided by a controller. Here, node 1 is the input to the model whereas
nodes 3 and 6 are the model’s outputs.

In the following, we facilitate the discussion of ENAS with an example that illustrates
how to design a cell for recurrent neural networks from a specified DAG and a controller
(Section 4.2.1). We will then explain how to train ENAS and how to derive architectures
from ENAS’s controller (Section 4.2.2). Finally, we will explain our search space for
designing convolutional architectures (Sections 4.2.3 and 4.2.4).

4.2.1 Designing Recurrent Cells
To design recurrent cells, we employ a DAG with N nodes, where the nodes represent
local computations, and the edges represent the flow of information between the N nodes.
ENAS’s controller is an RNN that decides: 1) which edges are activated and 2) which
computations are performed at each node in the DAG. This design of our search space for
RNN cells is different from the search space for RNN cells in Zoph and Le [251], where the
authors fix the topology of their architectures as a binary tree and only learn the operations
at each node of the tree. In contrast, our search space allows ENAS to design both the
topology and the operations in RNN cells, and hence is more flexible.

38

Figure 4.2: An example of a recurrent cell in our search space with 4 computational nodes. Left:
The computational DAG that corresponds to the recurrent cell. The red edges represent the flow
of information in the graph. Middle: The recurrent cell. Right: The outputs of the controller
RNN that result in the cell in the middle and the DAG on the left. Note that nodes 3 and 4 are
never sampled by the RNN, so their results are averaged and are treated as the cell’s output.

To create a recurrent cell, the controller RNN samples N blocks of decisions. Here
we illustrate the ENAS mechanism via a simple example recurrent cell with N = 4
computational nodes (visualized in Figure 4.2). Let xt be the input signal for a recurrent
cell (e.g. word embedding), and ht−1 be the output from the previous time step. We sample
as follows.

1. At node 1: The controller first samples an activation function. In our example, the controller
chooses the tanh activation function, which means that node 1 of the recurrent cell should
compute k1 = tanh (xt ·W(x) + ht−1 ·W(h)

1).
2. At node 2: The controller then samples a previous index and an activation function. In our

example, it chooses the previous index 1 and the activation function ReLU. Thus, node 2
of the cell computes k2 = ReLU(k1 ·W(h)

2,1).
3. At node 3: The controller again samples a previous index and an activation function. In

our example, it chooses the previous index 2 and the activation function ReLU. Therefore,
k3 = ReLU(k2 ·W(h)

3,2).
4. At node 4: The controller again samples a previous index and an activation function. In

our example, it chooses the previous index 1 and the activation function tanh, leading to
k4 = tanh (k1 ·W(h)

4,1).
5. For the output, we simply average all the loose ends, i.e. the nodes that are not selected as

inputs to any other nodes. In our example, since the indices 3 and 4 were never sampled to
be the input for any node, the recurrent cell uses their average (k3 + k4)/2 as its output. In
other words, ht = (k3 + k4)/2.

In the example above, we note that for each pair of nodes j < `, there is an independent
parameter matrix W(h)

`,j . As shown in the example, by choosing the previous indices, the
controller also decides which parameter matrices are used. Therefore, in ENAS, all recurrent
cells in a search space share the same set of parameters.

Our search space includes an exponential number of configurations. Specifically, if
the recurrent cell has N nodes and we allow 4 activation functions (namely tanh, ReLU,
identity, and sigmoid), then the search space has 4N × (N − 1)! configurations. In our
experiments, N = 12, which means there are approximately 1014 models in our search
space.

39

4.2.2 Training ENAS and Deriving Architectures
Our controller network is an LSTM with 100 hidden units [91]. This LSTM samples
decisions via softmax classifiers, in an autoregressive fashion: the decision in the previous
step is fed as input embedding into the next step. At the first step, the controller network
receives an empty embedding as input.

In ENAS, there are two sets of learnable parameters: the parameters of the controller
LSTM, denoted by θ, and the shared parameters of the child models, denoted by ω. The
training procedure of ENAS consists of two interleaving phases. The first phase trains ω,
the shared parameters of the child models, on a whole pass through the training data set.
For our Penn Treebank experiments, ω is trained for about 400 steps, each on a minibatch
of 64 examples, where the gradient ∇ω is computed using back-propagation through time,
truncated at 35 time steps. Meanwhile, for CIFAR-10, ω is trained on 45, 000 training
images, separated into minibatches of size 128, where ∇ω is computed using standard
back-propagation. The second phase trains θ, the parameters of the controller LSTM, for
a fixed number of steps, typically set to 2000 in our experiments. These two phases are
alternated during the training of ENAS. More details are as follows.

Training the shared parameters ω of the child models. In this step, we fix the
controller’s policy π(m; θ) and perform stochastic gradient descent (SGD) on ω to minimize
the expected loss function Em∼π [L(m;ω)]. Here, L(m;ω) is the standard cross-entropy
loss, computed on a minibatch of training data, with a model m sampled from π(m; θ).
The gradient is computed using the Monte Carlo estimate

∇ωEm∼π(m;θ) [L(m;ω)] ≈ 1
M

M∑
i=1
∇ωL(mi, ω), (4.1)

where mi’s are sampled from π(m; θ) as described above. Eqn 4.1 provides an unbiased
estimate of the gradient ∇ωEm∼π(m;θ) [L(m;ω)]. However, this estimate has a higher
variance than the standard SGD gradient, where m is fixed. Nevertheless – and this is
perhaps surprising – we find that M = 1 works just fine, i.e. we can update ω using the
gradient from any single model m sampled from π(m; θ). As mentioned, we train ω during
a entire pass through the training data.

Training the controller parameters θ. In this step, we fix ω and update the policy
parameters θ, aiming to maximize the expected reward Em∼π(m;θ) [R(m, ω)]. We employ
the Adam optimizer [108], for which the gradient is computed using REINFORCE [223],
with a moving average baseline to reduce variance.

The reward R(m, ω) is computed on the validation set, rather than on the training
set, to encourage ENAS to select models that generalize well rather than models that
overfit the training set well. In our language model experiment, the reward function is
c/valid_ppl, where the perplexity is computed on a minibatch of validation data. In our
image classification experiments, the reward function is the accuracy on a minibatch of
validation images.

40

Deriving Architectures. We discuss how to derive novel architectures from a trained
ENAS model. We first sample several models from the trained policy π(m, θ). For each
sampled model, we compute its reward on a single minibatch sampled from the validation
set. We then take only the model with the highest reward to re-train from scratch. It is
possible to improve our experimental results by training all the sampled models from scratch
and selecting the model with the highest performance on a separated validation set, as
done by other works [128, 130, 251, 253]. However, our method yields similar performance
whilst being much more economical.

4.2.3 Designing Convolutional Networks

We now discuss the search space for convolutional architectures. Recall that in the search
space of the recurrent cell, the controller RNN samples two decisions at each decision
block: 1) what previous node to connect to and 2) what activation function to use. In the
search space for convolutional models, the controller RNN also samples two sets of decisions
at each decision block: 1) what previous nodes to connect to and 2) what computation
operation to use. These decisions construct a layer in the convolutional model.

Figure 4.3: An example run of a recurrent cell in our search space with 4 computational nodes,
which represent 4 layers in a convolutional network. Top: The output of the controller RNN.
Bottom Left: The computational DAG corresponding to the network’s architecture. Red arrows
denote the active computational paths. Bottom Right: The complete network. Dotted arrows
denote skip connections.

The decision of what previous nodes to connect to allows the model to form skip
connections [81, 251]. Specifically, at layer k, up to k− 1 mutually distinct previous indices
are sampled, leading to 2k−1 possible decisions at layer k. We provide an illustrative example
of sampling a convolutional network in Figure 4.3. In this example, at layer k = 4, the
controller samples previous indices {1, 3}, so the outputs of layers 1 and 3 are concatenated
along their depth dimension and sent to layer 4.

Meanwhile, the decision of what computation operation to use sets a particular layer into
convolution or average pooling or max pooing. The 6 operations available for the controller
are: convolutions with filter sizes 3× 3 and 5× 5, depthwise-separable convolutions with
filter sizes 3× 3 and 5× 5 [36], and max pooling and average pooling of kernel size 3× 3.

41

As for recurrent cells, each operation at each layer in our ENAS convolutional network has
a distinct set of parameters.

Making the described set of decisions for a total of L times, we can sample a network
of L layers. Since all decisions are independent, there are 6L × 2L(L−1)/2 networks in the
search space. In our experiments, L = 12, resulting in 1.6× 1029 possible networks.

4.2.4 Designing Convolutional Cells
Rather than designing the entire convolutional network, one can design smaller modules
and then connect them together to form a network [253]. Figure 4.4 illustrates this design,
where the convolutional cell and reduction cell architectures are to be designed. We now
discuss how to use ENAS to search for the architectures of these cells.

Figure 4.4: Connecting 3 blocks, each with N convolution cells and 1 reduction cell, to make the
final network.

We utilize the ENAS computational DAG with B nodes to represent the computations
that happen locally in a cell. In this DAG, node 1 and node 2 are treated as the cell’s
inputs, which are the outputs of the two previous cells in the final network (see Figure 4.4).
For each of the remaining B − 2 nodes, we ask the controller RNN to make two sets of
decisions: 1) two previous nodes to be used as inputs to the current node and 2) two
operations to apply to the two sampled nodes. The 5 available operations are: identity,
separable convolution with kernel size 3× 3 and 5× 5, and average pooling and max pooling
with kernel size 3 × 3. At each node, after the previous nodes and their corresponding
operations are sampled, the operations are applied on the previous nodes, and their results
are added.

As before, we illustrate the mechanism of our search space with an example, here with
B = 4 nodes (refer to Figure 4.5). Details are as follows.

1. Nodes 1, 2 are input nodes, so no decisions are needed for them. Let h1, h2 be the outputs
of these nodes.

2. At node 3: the controller samples two previous nodes and two operations. In Figure 4.5
Top Left, it samples node 2, node 2, separable_conv_5x5, and identity. This means that
h3 = sep_conv_5x5(h2) + id(h2).

3. At node 4: the controller samples node 3, node 1, avg_pool_3x3, and sep_conv_3x3. This
means that h4 = avg_pool_3x3(h3) + sep_conv_3x3(h1).

4. Since all nodes but h4 were used as inputs to at least another node, the only loose end, h4,
is treated as the cell’s output. If there are multiple loose ends, they will be concatenated
along the depth dimension to form the cell’s output.

42

Figure 4.5: An example run of the controller for our search space over convolutional cells. Top: the
controller’s outputs. In our search space for convolutional cells, node 1 and node 2 are the cell’s
inputs, so the controller only has to design node 3 and node 4. Bottom Left: The corresponding
DAG, where red edges represent the activated connections. Bottom Right: the convolutional cell
according to the controller’s sample.

A reduction cell can also be realized from the search space we discussed, simply by: 1)
sampling a computational graph from the search space, and 2) applying all operations
with a stride of 2. A reduction cell thus reduces the spatial dimensions of its input by a
factor of 2. Following Zoph et al. [253], we sample the reduction cell conditioned on the
convolutional cell, hence making the controller RNN run for a total of 2(B − 2) blocks.

Finally, we estimate the complexity of this search space. At node i (3 ≤ i ≤ B), the
controller can select any two nodes from the i− 1 previous nodes, and any two operations
from 5 operations. As all decisions are independent, there are (5× (B − 2)!)2 possible cells.
Since we independently sample for a convolutional cell and a reduction cell, the final size of
the search space is (5× (B − 2)!)4. With B = 7 as in our experiments, the search space
can realize 1.3× 1011 final networks, making it significantly smaller than the search space
for entire convolutional models.

43

4.3 Experiments
We first present our experimental results from employing ENAS to design recurrent cells
on the Penn Treebank dataset and convolutional architectures on the CIFAR-10 dataset.
We then present an ablation study which asserts the role of ENAS in discovering novel
architectures.

4.3.1 Language Model with Penn Treebank
Dataset and Settings. Penn Treebank [136] is a well-studied benchmark for language
model. We use the standard pre-processed version of the dataset, which is also used by
previous works, e.g. Zaremba et al. [242].

Since the goal of our work is to discover cell architectures, we only employ the standard
training and test process on Penn Treebank, and do not utilize post-training techniques such
as neural cache [70] and dynamic evaluation [113]. Additionally, as Collins et al. [39] have
established that RNN models with more parameters can learn to store more information,
we limit the size of our ENAS cell to 24M parameters. We also do not tune our hyper-
parameters extensively like Melis et al. [137], nor do we train multiple architectures and
select the best one based on their validation perplexities like Zoph and Le [251]. Therefore,
ENAS is not at any advantage, compared to Melis et al. [137], Yang et al. [234], Zoph and
Le [251], and its improved performance is only due to the cell’s architecture.

Training details. Our controller is trained using Adam, with a learning rate of 0.00035.
To prevent premature convergence, we also use a tanh constant of 2.5 and a temperature of
5.0 for the sampling logits [14, 15], and add the controller’s sample entropy to the reward,
weighted by 0.0001. Additionally, we augment the simple transformations between nodes
in the constructed recurrent cell with highway connections [250]. For instance, instead
of having k2 = ReLU(k1 ·W(h)

2,1) as shown in the example from Section 4.2.1, we have
k2 = c2 ⊗ ReLU(k1 ·W(h)

2,1) + (1− c2)⊗ k1, where c2 = sigmoid(k1 ·W(c)
2,1) and ⊗ denotes

elementwise multiplication.
The shared parameters of the child models ω are trained using SGD with a learning

rate of 20.0, decayed by a factor of 0.96 after every epoch starting at epoch 15, for a total
of 150 epochs. We clip the norm of the gradient ∇ω at 0.25. We find that using a large
learning rate whilst clipping the gradient norm at a small threshold makes the updates on
ω more stable.

We utilize three regularization techniques on ω: an `2 regularization weighted by 10−7;
variational dropout [61]; and tying word embeddings and softmax weights [96]. More details
are as follows.

Computations in an RNN Cell. We view the cell at time step t as a DAG with N
computational nodes, indexed by h(t)

1 , h(t)
2 , ... h(t)

N . Node h(t)
1 receives two inputs: 1) the

RNN signal x(t) at its current time step; and 2) the output h(t−1)
D from the cell at the

44

previous time step. The following computations are performed:

c(t)
1 ← sigmoid

(
x(t) ·W(x,c) + h(t−1)

N ·,W(c)
0

)
(4.2)

h(t)
1 ← c(t)

1 ⊗ f1
(
x(t) ·W(x,h) + h(t−1)

N ·W(h)
1

)
+ (1− c(t)

1)⊗ h(t−1)
N , (4.3)

where f1 is an activation function that the controller will decide. For ` = 2, 3, ..., N , node
h` receives its input from a layer j` ∈ {h1, ...,h`−1}, which is specified by the controller,
and then performs the following computations:

c(t)
` ← sigmoid

(
h(t)
j`
·W(c)

`,j`

)
(4.4)

h(t)
` ← c(t)

` ⊗ f`
(
h(t)
j`
·W(h)

`,j`

)
+ (1− c(t)

`)⊗ h(t)
j`
. (4.5)

Therefore, the shared parameters ω among different recurrent cells consist of all the matrices
W(x,c), W(x,h), W(c)

`,j , W(h)
`,j , word embeddings, and the softmax weights if they are not tied

with the word embeddings. The controller decides the connection j` and the activation
function f` for each ` ∈ {2, 3, ..., N}. The layers that are never selected by any subsequent
layers are averaged and sent to a softmax head, or to higher recurrent layers.

Parameters Initialization. Our controller’s parameters θ are initialized uniformly in
[−0.1, 0.1]. We find that for Penn Treebank, ENAS quite insensitive to its initialization
than for CIFAR-10. Meanwhile, the shared parameters ω are initialized uniformly in
[−0.025, 0.025] during architecture search, and [−0.04, 0.04] when we train a fixed architec-
ture recommended by the controller.

Stabilizing the Updates of ω. To stabilize the updates of ω, during the architectures
search phase, a layer of batch normalization [97] is added immediately after the average of
these layers, before the average are sent out of the cell as its output. When a fixed cell
is sampled by the controller, we find that we can remove the batch normalization layer
without any loss in performance.

Results. Running on a single Nvidia GTX 1080Ti GPU, ENAS finds a recurrent cell
in about 10 hours. In Table 4.1, we present the performance of the ENAS cell as well as
other baselines that do not employ post-training processing. The ENAS cell achieves a
test perplexity of 56.3, which is on par with the existing state-of-the-art of 56.0 achieved
by Mixture of Softmaxes (MoS) [234]. Note that we do not apply MoS to the ENAS cell.
Importantly, ENAS cell outperforms NAS [251] by more than 6 perplexity points, whilst
the search process of ENAS, in terms of GPU hours, is more than 1000x faster.

Our ENAS cell, visualized in Figure 4.6, has a few interesting properties. First, all
non-linearities in the cell are either ReLU or tanh, even though the search space also has
two other functions: identity and sigmoid. Second, we suspect this cell is a local optimum,
similar to the observations made by Zoph and Le [251]. When we randomly pick some
nodes and switch the non-linearity into identity or sigmoid, the perplexity increases up to

45

Architecture Additional Techniques Params Test
(million) PPL

LSTM [242] Vanilla Dropout 66 78.4
LSTM [61] VD 66 75.2
LSTM [96] VD, WT 51 68.5
RHN [250] VD, WT 24 66.0
LSTM [137] Hyper-parameters Search 24 59.5
LSTM [234] VD, WT, `2, AWD, MoC 22 57.6
LSTM [138] VD, WT, `2, AWD 24 57.3
LSTM [234] VD, WT, `2, AWD, MoS 22 56.0

NAS [251] VD, WT 54 62.4
ENAS VD, WT, `2 24 56.3

Table 4.1: Test perplexity on Penn Treebank of ENAS and other baselines. Abbreviations: RHN
is Recurrent Highway Network, VD is Variational Dropout; WT is Weight Tying; `2 is Weight
Penalty; AWD is Averaged Weight Drop; MoC is Mixture of Contexts; MoS is Mixture of Softmaxes.

Figure 4.6: The RNN cell ENAS discovered for Penn Treebank.

8 points. Similarly, when we randomly switch some ReLU nodes into tanh or vice versa,
the perplexity also increases, but only up to 3 points. Third, as shown in Figure 4.6, the
output of our ENAS cell is an average of 6 nodes. This behavior is similar to that of
Mixture of Contexts (MoC) [234]. Not only does ENAS independently discover MoC, but
it also learns to balance between i) the number of contexts to mix, which increases the
model’s expressiveness, and ii) the depth of the recurrent cell, which learns more complex
transformations [250].

4.3.2 Image Classification on CIFAR-10
Dataset. The CIFAR-10 dataset [114] consists of 50, 000 training images and 10, 000
test images. We use the standard data pre-processing and augmentation techniques,
i.e. subtracting the channel mean and dividing the channel standard deviation, centrally
padding the training images to 40× 40 and randomly cropping them back to 32× 32, and
randomly flipping them horizontally.

Search spaces. We apply ENAS to two search spaces: 1) the macro search space over
entire convolutional models (Section 4.2.3); and 2) the micro search space over convolutional

46

cells (Section 4.2.4).

Training details. The shared parameters ω are trained with Nesterov momentum [147],
where the learning rate follows the cosine schedule with lmax = 0.05, łmin = 0.001, T0 = 10,
and Tmul = 2 [132]. Each architecture search is run for 310 epochs. We initialize ω with He
initialization [80]. We also apply an `2 weight decay of 10−4. We train the architectures
recommended by the controller using the same settings.

The policy parameters θ are initialized uniformly in [−0.1, 0.1], and trained with Adam
at a learning rate of 0.00035. Similar to the procedure in Section 4.3.1, we apply a tanh
constant of 2.5 and a temperature of 5.0 to the controller’s logits, and add the controller
entropy to the reward, weighted by 0.1. Additionally, in the macro search space, we enforce
the sparsity in the skip connections by adding to the reward the KL divergence between:
1) the skip connection probability between any two layers and 2) our chosen probability
ρ = 0.4, which represents the prior belief of a skip connection being formed. This KL
divergence term is weighted by 0.8.

We also find the following details crucial for achieving good performance with ENAS.
Standard NAS [251, 253] rely on these and other tricks as well.

Structure of Convolutional Layers. Each convolution in our model is applied in
the order of relu-conv-batchnorm [82, 97]. Additionally, in our micro search space, each
depthwise separable convolution is applied twice [253].

Stabilizing Stochastic Skip Connections. If a layer receives skip connections from
multiple layers before it, then these layers’ outputs are concatenated in their depth dimension,
and then a convolution of filter size 1× 1 (followed by a batch normalization layer and a
ReLU layer) is performed to ensure that the number of output channels does not change
between different architectures. When a fixed architecture is sampled, we find that one
can remove these batch normalization layers to save computing time and parameters of the
final model, without sacrificing significant performance.

Global Average Pooling. After the final convolutional layer, we average all the activa-
tions of each channel and then pass them to the Softmax layer. This trick was introduced
by [125], with the purpose of reducing the number of parameters in the dense connection
to the Softmax layer to avoid overfitting.

The last two tricks are extremely important, since the gradient updates of the shared
parameters ω, as described in Eqn 4.1, have very high variance. In fact, we find that
without these two tricks, the training of ENAS is very unstable.

Results. Table 4.2 summarizes the test errors of ENAS and other approaches. In this
table, the first block presents the results of DenseNet [94], one of the highest-performing
architectures that are designed by human experts. When trained with a strong regularization
technique, such as Shake-Shake [62], and a data augmentation technique, such as CutOut [47],
DenseNet impressively achieves the test error of 2.56%.

47

Method GPUs Times Params Error
(days) (million) (%)

DenseNet-BC [94] − − 25.6 3.46
DenseNet + Shake-Shake [62] − − 26.2 2.86
DenseNet + CutOut [47] − − 26.2 2.56

Budgeted Super Nets [210] − − − 9.21
ConvFabrics [182] − − 21.2 7.43
Macro NAS + Q-Learning [10] 10 8-10 11.2 6.92
Net Transformation [26] 5 2 19.7 5.70
FractalNet [119] − − 38.6 4.60
SMASH [21] 1 1.5 16.0 4.03
NAS [251] 800 21-28 7.1 4.47
NAS + more filters [251] 800 21-28 37.4 3.65

ENAS + macro search space 1 0.32 21.3 4.23
ENAS + macro search space + more channels 1 0.32 38.0 3.87

Hierarchical NAS [130] 200 1.5 61.3 3.63
Micro NAS + Q-Learning [247] 32 3 − 3.60
Progressive NAS [128] 100 1.5 3.2 3.63
NASNet-A [253] 450 3-4 3.3 3.41
NASNet-A + CutOut [253] 450 3-4 3.3 2.65

ENAS + micro search space 1 0.45 4.6 3.54
ENAS + micro search space + CutOut 1 0.45 4.6 2.89

Table 4.2: Classification errors of ENAS and baselines on CIFAR-10. In this table, the first
block presents DenseNet, one of the state-of-the-art architectures designed by human experts.
The second block presents approaches that design the entire network. The last block presents
techniques that design modular cells which are combined to build the final network.

The second block of Table 4.2 presents the performances of approaches that attempt
to design an entire convolutional network, along with the the number of GPUs and the
time these methods take to discover their final models. As shown, ENAS finds a network
architecture, which we visualize in Figure 4.7, and which achieves 4.23% test error. This
test error is better than the error of 4.47%, achieved by the second best NAS model [251].
If we keep the architecture, but increase the number of filters in the network’s highest layer
to 512, then the test error decreases to 3.87%, which is not far away from NAS’s best model,
whose test error is 3.65%. Impressively, ENAS takes about 7 hours to find this architecture,
reducing the number of GPU-hours by more than 50,000x compared to NAS.

The third block of Table 4.2 presents the performances of approaches that attempt
to design one more more modules and then connect them together to form the final
networks. ENAS takes 11.5 hours to discover the convolution cell and the reduction cell,
which are visualized in Figure 4.8. With the convolutional cell replicated for N = 6
times (c.f. Figure 4.4), ENAS achieves 3.54% test error, on par with the 3.41% error of

48

Figure 4.7: ENAS’s discovered network from the macro search space for image classification.

NASNet-A [253]. With CutOut [47], ENAS’s error decreases to 2.89%, compared to 2.65%
by NASNet-A.

In addition to ENAS’s strong performance, we also find that the models found by
ENAS are, in a sense, the local minimums in their search spaces. In particular, in the model
that ENAS finds from the marco search space, if we replace all separable convolutions with
normal convolutions, and then adjust the model size so that the number of parameters
stay the same, then the test error increases by 1.7%. Similarly, if we randomly change
several connections in the cells that ENAS finds in the micro search space, the test error
increases by 2.1%. This behavior is also observed when ENAS searches for recurrent cells
(c.f. Section 4.3.1), as well as in Zoph and Le [251]. We thus believe that the controller
RNN learned by ENAS is as good as the controller RNN learned by NAS, and that the
performance gap between NAS and ENAS is due to the fact that we do not sample multiple
architectures from our trained controller, train them, and then select the best architecture
on the validation data. This extra step benefits NAS’s performance.

4.3.3 The Importance of ENAS
A question regarding ENAS’s importance is whether ENAS is actually capable of finding
good architectures, or if it is the design of the search spaces that leads to ENAS’s strong
empirical performance.

Comparing to Guided Random Search. We uniformly sample a recurrent cell, an
entire convolutional network, and a pair of convolutional and reduction cells from their
search spaces and train them to convergence using the same settings as the architectures
found by ENAS. For the macro space over entire networks, we sample the skip connections
with an activation probability of 0.4, effectively balancing ENAS’s advantage from the KL
divergence term in its reward (see Section 4.3.2). Our random recurrent cell achieves the
test perplexity of 81.2 on Penn Treebank, which is far worse than ENAS’s perplexity of
56.3. Our random convolutional network reaches 5.86% test error, and our two random
cells reache 6.77% on CIFAR-10, while ENAS achieves 4.23% and 3.54%, respectively.

Disabling ENAS Search. In addition to random search, we attempt to train only the
shared parameters ω without updating the controller. We conduct this study for our

49

macro search space (Section 4.2.3), where the effect of an untrained random controller is
similar to dropout with a rate of 0.5 on the skip connections, and to drop-path on the
operations [119, 253]. At convergence, the model has the error rate of 8.92%. On the
validation set, an ensemble of 250 Monte Carlo configurations of this trained model can
only reach 5.49% test error. We therefore conclude that the appropriate training of the
ENAS controller is crucial for good performance.

4.4 Related Work and Discussions
There is a growing interest in improving the efficiency of NAS. Concurrent to our work
are the promising ideas of using performance prediction [11, 45], using iterative search
method for architectures of growing complexity [128], and using hierarchical representation
of architectures [130]. Table 4.2 shows that ENAS is significantly more efficient than these
other methods, in GPU hours.

ENAS’s design of sharing weights between architectures is inspired by the concept of
weight inheritance in neural model evolution [174, 175]. Additionally, ENAS’s choice of
representing computations using a DAG is inspired by the concept of stochastic computa-
tional graph [184], which introduces nodes with stochastic outputs into a computational
graph. ENAS’s utilizes such stochastic decisions in a network to make discrete architectural
decisions that govern subsequent computations in the network, trains the decision maker,
i.e. the controller, and finally harvests the decisions to derive architectures.

Closely related to ENAS is SMASH [21], which designs an architecture and then uses
a hypernetwork [75] to generate its weight. Such usage of the hypernetwork in SMASH
inherently restricts the weights of SMASH’s child architectures to a low-rank space. This
is because the hypernetwork generates weights for SMASH’s child models via tensor
products [75], which suffer from a low-rank restriction as for arbitrary matrices A and B,
one always has the inequality: rank(A ·B) ≤ min {rank(A), rank(B)}. Due to this limit,
SMASH will find architectures that perform well in the restricted low-rank space of their
weights, rather than architectures that perform well in the normal training setups, where
the weights are no longer restricted. Meanwhile, ENAS allows the weights of its child
models to be arbitrary, effectively avoiding such restriction. We suspect this is the reason
behind ENAS’s superior empirical performance to SMASH. In addition, it can be seen from
our experiments that ENAS can be flexibly applied to multiple search spaces and disparate
domains, e.g. the space of RNN cells for the text domain, the macro search space of entire
networks, and the micro search space of convolutional cells for the image domain.

4.5 Conclusion
NAS is an important advance that automatizes the designing process of neural networks.
However, NAS’s computational expense prevents it from being widely adopted. In this
paper, we presented ENAS, a novel method that speeds up NAS by more than 1000x, in
terms of GPU hours. ENAS’s key contribution is the sharing of parameters across child

50

models during the search for architectures. This insight is implemented by searching for
a subgraph within a larger graph that incorporates architectures in a search space. We
showed that ENAS works well on both CIFAR-10 and Penn Treebank datasets.

51

Figure 4.8: ENAS cells discovered in the micro search space.

52

Chapter 5

Meta Pseudo Labels

5.1 Introduction

StudentPre-trained
Teacher

Student’s performance
on labeled data

Pseudo-labeled data

StudentTeacher

Pseudo-labeled data

Figure 5.1: The difference between Pseudo Labels and Meta Pseudo Labels. Left: Pseudo Labels,
where a fixed pre-trained teacher generates pseudo labels for the student to learn from. Right:
Meta Pseudo Labels, where the teacher is trained along with the student. The student is trained
based on the pseudo labels generated by the teacher (top arrow). The teacher is trained based on
the performance of the student on labeled data (bottom arrow).

The methods of Pseudo Labels or self-training [120, 179, 185, 236] have been applied
successfully to improve state-of-the-art models in many computer vision tasks such as image
classification (e.g., [230, 232]), object detection, and semantic segmentation (e.g., [171, 255]).
Pseudo Labels methods work by having a pair of networks, one as a teacher and one as
a student. The teacher generates pseudo labels on unlabeled images. These pseudo
labeled images are then combined with labeled images to train the student. Thanks to
the abundance of pseudo labeled data and the use of regularization methods such as data
augmentation, the student learns to become better than the teacher [230].

Despite the strong performance of Pseudo Labels methods, they have one main drawback:
of the student’s training. As a result, if the pseudo labels are inaccurate, the student will
learn from inaccurate data. As a result, the student may not get significantly better
than the teacher. This drawback is also known as the problem of confirmation bias in
pseudo-labeling [7].

In this paper, we design a systematic mechanism for the teacher to correct the bias
by observing how its pseudo labels would affect the student. Specifically, we propose
Meta Pseudo Labels, which utilizes the feedback from the student to inform the teacher to

53

generate better pseudo labels. In our implementation, the feedback signal is the performance
of the student on the labeled dataset. This feedback signal is used as a reward to train
the teacher throughout the course of the student’s learning. In summary, the teacher
and student of Meta Pseudo Labels are trained in parallel: (1) the student learns from a
minibatch of pseudo labeled data annotated by the teacher, and (2) the teacher learns from
the reward signal of how well the student performs on a minibatch drawn from the labeled
dataset.

We experiment with Meta Pseudo Labels, using the ImageNet [180] dataset as labeled
data and the JFT-300M dataset [89, 194] as unlabeled data. We train a pair of EfficientNet-
L2 networks, one as a teacher and one as a student, using Meta Pseudo Labels. The
resulting student network achieves the top-1 accuracy of 90.2% on the ImageNet ILSVRC
2012 validation set [180], which is 1.6% better than the previous record of 88.6% [58].
This student model also generalizes to the ImageNet-ReaL test set [20], as summarized
in Table 5.1. Small scale semi-supervised learning experiments with standard ResNet
models on CIFAR-10-4K, SVHN-1K, and ImageNet-10% also show that Meta Pseudo
Labels outperforms a range of other recently proposed methods such as FixMatch [189]
and Unsupervised Data Augmentation [229].

Datasets ImageNet ImageNet-ReaL
Top-1 Accuracy Precision@1

Previous SOTA [48, 58] 88.6 90.72
Ours 90.2 91.02

Table 5.1: Summary of our key results on ImageNet ILSVRC 2012 validation set [180] and the
ImageNet-ReaL test set [20].

5.2 Meta Pseudo Labels
An overview of the contrast between Pseudo Labels and Meta Pseudo Labels is presented
in Figure 5.1. The main difference is that in Meta Pseudo Labels, the teacher receives
feedback of the student’s performance on a labeled dataset.

Notations. Let T and S respectively be the teacher network and the student network in
Meta Pseudo Labels. Let their corresponding parameters be θT and θS. We use (xl, yl) to
refer to a batch of images and their corresponding labels, e.g., ImageNet training images
and their labels, and use xu to refer to a batch of unlabeled images, e.g., images from
the internet. We denote by T (xu; θT) the soft predictions of the teacher network on the
batch xu of unlabeled images and likewise for the student, e.g. S(xl; θS) and S(xu; θS). We
use CE(q, p) to denote the cross-entropy loss between two distributions q and p; if q is a
label then it is understood as a one-hot distribution; if q and p have multiple instances in
them then CE(q, p) is understood as the average of all instances in the batch. For example,
CE

(
yl, S(xl; θS)

)
is the canonical cross-entropy loss in supervised learning.

54

Pseudo Labels as an optimization problem. To introduce Meta Pseudo Labels, let’s
first review Pseudo Labels. Specifically, Pseudo Labels (PL) trains the student model to
minimize the cross-entropy loss on unlabeled data:

θPL
S = argmin

θS

Exu
[
CE

(
T (xu; θT), S(xu; θS)

)]
︸ ︷︷ ︸

:=Lu
(
θT ,θS

) (5.1)

where the pseudo target T (xu; θT) is produced by a well pre-trained teacher model with
fixed parameter θT . Given a good teacher, the hope of Pseudo Labels is that the obtained
θPL
S would ultimately achieve a low loss on labeled data, i.e. Exl,yl

[
CE

(
yl, S(xl; θPL

S)
)]

:=

Ll
(
θPL
S

)
.

Under the framework of Pseudo Labels, notice that the optimal student parameter θPL
S

always depends on the teacher parameter θT via the pseudo targets T (xu; θT). To facilitate
the discussion of Meta Pseudo Labels, we can explicitly express the dependency as θPL

S (θT).
As an immediate observation, the ultimate student loss on labeled data Ll

(
θPL
S (θT)

)
is also

a “function” of θT . Therefore, we could further optimize Ll with respect to θT :

min
θT

Ll
(
θPL
S (θT)

)
,

where θPL
S (θT) = argmin

θS

Lu
(
θT , θS

)
.

(5.2)

Intuitively, by optimizing the teacher’s parameter according to the performance of the
student on labeled data, the pseudo labels can be adjusted accordingly to further improve
student’s performance. As we are effectively trying to optimize the teacher on a meta level,
we name our method Meta Pseudo Labels. However, the dependency of θPL

S (θT) on θT is
extremely complicated, as computing the gradient ∇θT θ

PL
S (θT) requires unrolling the entire

student training process (i.e. argminθS).

Practical approximation. To make Meta Pseudo Labels feasible, we borrow ideas from
previous work in meta learning [57, 131] and approximate the multi-step argminθS with the
one-step gradient update of θS:

θPL
S (θT) ≈ θS − ηS · ∇θSLu

(
θT , θS

)
,

where ηS is the learning rate. Plugging this approximation into the optimization problem
in Equation 5.2 leads to the practical teacher objective in Meta Pseudo Labels:

min
θT

Ll
(
θS − ηS · ∇θSLu

(
θT , θS

))
. (5.3)

Note that, if soft pseudo labels are used, i.e. T (xu; θT) is the full distribution predicted by
teacher, the objective above is fully differentiable with respect to θT and we can perform

55

standard back-propagation to get the gradient.1 However, in this work, we sample the hard
pseudo labels from the teacher distribution to train the student. As a result, a slightly
modified version of REINFORCE is used to obtain the gradient of Ll in Equation 5.3 with
respect to θT . We defer the detailed discussion to Appendix 5.7.1.

On the other hand, the student’s training still relies on the objective in Equation 5.1,
except that the teacher parameter is not fixed anymore. Instead, θT is constantly changing
due to the teacher’s optimization. More interestingly, the student’s parameter update can
be reused in the one-step approximation of the teacher’s objective, which naturally gives
rise to an alternating optimization procedure between the student update and the teacher
update:

• Student: draw a batch of unlabeled data xu, then sample T (xu; θT) from teacher’s
prediction, and optimize objective 5.1 with SGD: θ′S = θS − ηS∇θSLu(θT , θS),

• Teacher: draw a batch of labeled data (xl, yl), and “reuse” the student’s update to
optimize objective 5.3 with SGD: θ′T = θT − ηT∇θTLl

(
θS −∇θSLu

(
θT , θS

)
︸ ︷︷ ︸

= θ′S reused from student’s update

)
.

Teacher’s auxiliary losses. We empirically observe that Meta Pseudo Labels works
well on its own. Moreover, it works even better if the teacher is jointly trained with other
auxiliary objectives. Therefore, in our implementation, we augment the teacher’s training
with a supervised learning objective and a semi-supervised learning objective. For the
supervised objective, we train the teacher on labeled data. For the semi-supervised objective,
we additionally train the teacher on unlabeled data using the UDA objective [229]. For the
full pseudo code of Meta Pseudo Labels when it is combined with supervised and UDA
objectives for the teacher, please see Appendix 5.7.2, Algorithm 3.

Finally, as the student in Meta Pseudo Labels only learns from unlabeled data with
pseudo labels generated by the teacher, we can take a student model that has converged
after training with Meta Pseudo Labels and finetune it on labeled data to improve its
accuracy. Details of the student’s finetuning are reported in our experiments.

Next, we will present the experimental results of Meta Pseudo Labels, and organize
them as follows:

• Section 5.3 presents small scale experiments where we compare Meta Pseudo La-
bels against other state-of-the-art semi-supervised learning methods on widely used
benchmarks.

• Section 5.4 presents large scale experiments of Meta Pseudo Labels where we push
the limits of ImageNet accuracy.

5.3 Small Scale Experiments
In this section, we present our empirical studies of Meta Pseudo Labels at small scales. We
first study the role of feedback in Meta Pseudo Labels on the simple TwoMoon dataset [28].

1When optimizing Equation equation 5.3, we always treat θS as fixed parameters and ignore its
higher-order dependency on θT .

56

This study visually illustrates Meta Pseudo Labels’ behaviors and benefits. We then
compare Meta Pseudo Labels against state-of-the-art semi-supervised learning methods on
standard benchmarks such as CIFAR-10-4K, SVHN-1K, and ImageNet-10%. We conclude
the section with experiments on the standard ResNet-50 architecture with the full ImageNet
dataset.

5.3.1 TwoMoon Experiment

Figure 5.2: An illustration of the importance of feedback in Meta Pseudo Labels. In this example,
Meta Pseudo Labels works better than Supervised Learning and Pseudo Labels on the simple
TwoMoon dataset. Meta Pseudo Labels finds the separation that is similar to that of Laplacian
SVM with RBF kernel, while Supervised and Pseudo Labels fail to find this separatin. More
details are in Section 5.3.1.

To understand the role of feedback in Meta Pseudo Labels, we conduct an experiment
on the simple and classic TwoMoon dataset [28]. The 2D nature of the TwoMoon dataset
allows us to visualize how Meta Pseudo Labels behaves compared to Supervised Learning
and Pseudo Labels.

Dataset. For this experiment, we generate our own version of the TwoMoon dataset.
In our version, there are 2,000 examples forming two clusters each with 1,000 examples.
Only 6 examples are labeled, 3 examples for each cluster, while the remaining examples are
unlabeled. Semi-supervised learning algorithms are asked to use these 6 labeled examples
and the clustering assumption to separate the two clusters into correct classes.

Training details. Our model architecture is a feed-forward fully-connected neural network
with two hidden layers, each has 8 units. The sigmoid non-linearity is used at each layer.
In Meta Pseudo Labels, both the teacher and the student share this architecture but have
independent weights. All networks are trained with SGD using a constant learning rate of
0.1. The networks’ weights are initialized with the uniform distribution between -0.1 and
0.1. We do not apply any regularization.

Results. We randomly generate the TwoMoon dataset for a few times and repeat the
three methods: Supervised Learning, Pseudo Labels, and Meta Pseudo Labels. In addition
to these methods which all employ neural networks as their backbone models, we also
experiment with a simple Laplacian SVM with the RBF kernel and [?]. We observe
that Meta Pseudo Labels has a much higher success rate of finding the correct classifier
than Supervised Learning and Pseudo Labels. Figure 5.2 presents a typical outcome of

57

our experiment, where the red and green regions correspond to the classifiers’ decisions.
As can be seen from the figure, Supervised Learning finds a bad classifier which classifies
the labeled instances correctly but fails to take advantage of the clustering assumption to
separate the two “moons”. Pseudo Labels uses the bad classifier from Supervised Learning
and hence receives incorrect pseudo labels on the unlabeled data. As a result, Pseudo
Labels finds a classifier that misclassifies half of the data, including a few labeled instances.
Meta Pseudo Labels, on the other hand, uses the feedback from the student model’s loss on
the labeled instances to adjust the teacher to generate better pseudo labels. As a result,
Meta Pseudo Labels finds a good classifier for this dataset. In other words, Meta Pseudo
Labels can address the problem of confirmation bias [7] of Pseudo Labels in this experiment.
Interestingly, the decision boundary found by Meta Pseudo Labels is visually very closed to
the boundary found by Laplacian SVM.

5.3.2 CIFAR-10-4K, SVHN-1K, and ImageNet-10% Experiments

Datasets. We consider three standard benchmarks: CIFAR-10-4K, SVHN-1K, and
ImageNet-10%, which have been widely used in the literature to fairly benchmark semi-
supervised learning algorithms. These benchmarks were created by keeping a small fraction
of the training set as labeled data while using the rest as unlabeled data. For CIFAR-
10 [114], 4,000 labeled examples are kept as labeled data while 41,000 examples are used as
unlabeled data. The test set for CIFAR-10 is standard and consists of 10,000 examples.
For SVHN [148], 1,000 examples are used as labeled data whereas about 603,000 examples
are used as unlabeled data. The test set for SVHN is also standard, and has 26,032
examples. Finally, for ImageNet [180], 128,000 examples are used as labeled data which
is approximately 10% of the whole ImageNet training set while the rest of 1.28 million
examples are used as unlabeled data. The test set for ImageNet is the standard ILSVRC
2012 version that has 50,000 examples. We use the image resolution of 32x32 for CIFAR-10
and SVHN, and 224x224 for ImageNet.

Training details. In our experiments, our teacher and our student share the same
architecture but have independent weights. For CIFAR-10-4K and SVHN-1K, we use a
WideResNet-28-2 [241] which has 1.45 million parameters. For ImageNet, we use a ResNet-
50 [81] which has 25.5 million parameters. These architectures are also commonly used by
previous works in this area. During the Meta Pseudo Labels training phase where we train
both the teacher and the student, we use the default hyper-parameters from previous work
for all our models, except for a few modifications in RandAugment [41] which we detail in
Appendix 5.7.5. All hyper-parameters are reported in Appendix 5.7.7. After training both
the teacher and student with Meta Pseudo Labels, we finetune the student on the labeled
dataset. For this finetuning phase, we use SGD with a fixed learning rate of 10−5 and a
batch size of 512, running for 2,000 steps for ImageNet-10% and 1,000 steps for CIFAR-10
and SVHN. Since the amount of labeled examples is limited for all three datasets, we do
not use any heldout validation set. Instead, we return the model at the final checkpoint.

58

Baselines. To ensure a fair comparison, we only compare Meta Pseudo Labels against
methods that use the same architectures and do not compare against methods that use larger
architectures such as Larger-WideResNet-28-2 and PyramidNet+ShakeDrop for CIFAR-10
and SVHN [17, 18, 215, 229], or ResNet-50×{2,3,4}, ResNet-101, ResNet-152, etc. for
ImageNet-10% [29, 30, 31, 83, 86]. We also do not compare Meta Pseudo Labels with
training procedures that include self-distillation or distillation from a larger teacher [29, 30].
We enforce these restrictions on our baselines since it is known that larger architectures
and distillation can improve any method, possibly including Meta Pseudo Labels.

We directly compare Meta Pseudo Labels against two baselines: Supervised Learning
with full dataset and Unsupervised Data Augmentation (UDA [229]). Supervised Learning
with full dataset represents the headroom because it unfairly makes use of all labeled data
(e.g., for CIFAR-10, it uses all 50,000 labeled examples). We also compare against UDA
because our implementation of Meta Pseudo Labels uses UDA in training the teacher. Both
of these baselines use the same experimental protocols and hence ensure a fair comparison.
We follow [152]’s train/eval/test splitting, and we use the same amount of resources to tune
hyper-parameters for our baselines as well as for Meta Pseudo Labels. More details are in
Appendix 5.7.3.

Method CIFAR-10-4K SVHN-1K ImageNet-10%
(mean ± std) (mean ± std) Top-1 Top-5

Label Propagation

Temporal Ensemble [118] 83.63± 0.63 92.81± 0.27 −
Mean Teacher [201] 84.13± 0.28 94.35± 0.47 −
VAT + EntMin [142] 86.87± 0.39 94.65± 0.19 − 83.39
LGA + VAT [98] 87.94± 0.19 93.42± 0.36 −
ICT [211] 92.71± 0.02 96.11± 0.04 −
MixMatch [17] 93.76± 0.06 96.73± 0.31 −
ReMixMatch [18] 94.86± 0.04 97.17± 0.30 −
EnAET [215] 94.65 97.08 −
FixMatch [189] 95.74± 0.05 97.72± 0.38 71.5 89.1
UDA∗ [229] 94.53± 0.18 97.11± 0.17 68.07 88.19

Self-Supervised

SimCLR [29, 30] − − 71.7 90.4
MOCOv2 [31] − − 71.1 −
PCL [122] − − − 85.6
PIRL [141] − − − 84.9
BYOL [72] − − 68.8 89.0

Meta Pseudo Labels 96.11 ± 0.07 98.01 ± 0.07 73.89 91.38

Supervised with full dataset∗ 94.92± 0.17 97.41± 0.16 76.89 93.27

Table 5.2: Image classification accuracy on CIFAR-10-4K, SVHN-1K, and ImageNet-10%. Higher
is better. For CIFAR-10-4K and SVHN-1K, we report mean±std over 10 runs, while for ImageNet-
10%, we report Top-1/Top-5 accuracy of a single run. For fair comparison, we only include results
that share the same model architecture: WideResNet-28-2 for CIFAR-10-4K and SVHN-1K, and
ResNet-50 for ImageNet-10%. ∗ indicates our implementation which uses the same experimental
protocols. Except for UDA, results in the first two blocks are from representative important
papers, and hence do not share the same controlled environment with ours.

59

Additional baselines. In addition to these two baselines, we also include a range of other
semi-supervised baselines in two categories: Label Propagation and Self-Supervised. Since
these methods do not share the same controlled environment, the comparison to them is not
direct, and should be contextualized as suggested by [152]. More controlled experiments
comparing Meta Pseudo Labels to other baselines are presented in Appendix 5.7.8.

Results. Table 5.2 presents our results with Meta Pseudo Labels in comparison with
other methods. The results show that under strictly fair comparisons (as argued by [152]),
Meta Pseudo Labels significantly improves over UDA. Interestingly, on CIFAR-10-4K,
Meta Pseudo Labels even exceeds the headroom supervised learning on full dataset. On
ImageNet-10%, Meta Pseudo Labels outperforms the UDA teacher by more than 5% in
top-1 accuracy, going from 68.07% to 73.89%. For ImageNet, such relative improvement is
very significant.

Comparing to existing state-of-the-art methods. Compared to results reported
from past papers, Meta Pseudo Labels has achieved the best accuracies among the same
model architectures on all the three datasets: CIFAR-10-4K, SVHN-1K, and ImageNet-10%.
On CIFAR-10-4K and SVHN-1K, Meta Pseudo Labels leads to almost 10% relative error
reduction compared to the highest reported baselines [189]. On ImageNet-10%, Meta
Pseudo Labels outperforms SimCLR [29, 30] by 2.19% top-1 accuracy.

While better results on these datasets exist, to our knowledge, such results are all
obtained with larger models, stronger regularization techniques, or extra distillation pro-
cedures. For example, the best reported accuracy on CIFAR-10-4K is 97.3% [229] but
this accuracy is achieved with a PyramidNet which has 17x more parameters than our
WideResNet-28-2 and uses the complex ShakeDrop regularization [233]. On the other hand,
the best reported top-1 accuracy for ImageNet-10% is 80.9%, achieved by SimCLRv2 [30]
using a self-distillation training phase and a ResNet-152×3 which has 32x more parameters
than our ResNet-50. Such enhancements on architectures, regularization, and distillation
can also be applied to Meta Pseudo Labels to further improve our results.

5.3.3 ResNet-50 Experiment
The previous experiments show that Meta Pseudo Labels outperforms other semi-supervised
learning methods on CIFAR-10-4K, SVHN-1K, and ImageNet-10%. In this experiment,
we benchmark Meta Pseudo Labels on the entire ImageNet dataset plus unlabeled images
from the JFT dataset. The purpose of this experiment is to verify if Meta Pseudo Labels
works well on the widely used ResNet-50 architecture [81] before we conduct more large
scale experiments on EfficientNet (Section 5.4).

Datasets. As mentioned, we experiment with all labeled examples from the ImageNet
dataset. We reserve 25,000 examples from the ImageNet dataset for hyper-parameter tuning
and model selection. Our test set is the ILSVRC 2012 validation set. Additionally, we
take 12.8 million unlabeled images from the JFT dataset. To obtain these 12.8 million

60

unlabeled images, we first train a ResNet-50 on the entire ImageNet training set and then
use the resulting ResNet-50 to assign class probabilities to images in the JFT dataset. We
then select 12,800 images of highest probability for each of the 1,000 classes of ImageNet.
This selection results in 12.8 million images. We also make sure that none of the 12.8
million images that we use overlaps with the ILSVRC 2012 validation set of ImageNet.
This procedure of filtering extra unlabeled data has been used by UDA [229] and Noisy
Student [230].

Implementation details. We implement Meta Pseudo Labels the same as in Section 5.3.2
but we use a larger batch size and more training steps, as the datasets are much larger for
this experiment. Specifically, for both the student and the teacher, we use the batch size of
4,096 for labeled images and the batch size of 32,768 for unlabeled images. We train for
500,000 steps which equals to about 160 epochs on the unlabeled dataset. After training
the Meta Pseudo Labels phase on ImageNet+JFT, we finetune the resulting student on
ImageNet for 10,000 SGD steps, using a fixed learning rate of 10−4. Using 512 TPUv2
cores, our training procedure takes about 2 days.

Baselines. We compare Meta Pseudo Labels against two groups of baselines. The first
group contains supervised learning methods with data augmentation or regularization
methods such as AutoAugment [40], DropBlock[64], and CutMix [240]. These baselines
represent state-of-the-art supervised learning methods on ResNet-50. The second group of
baselines consists of three recent semi-supervised learning methods that leverage the labeled
training images from ImageNet and unlabeled images elsewhere. Specifically, billion-scale
semi-supervised learning [232] uses unlabeled data from the YFCC100M dataset [202], while
UDA [229] and Noisy Student [230] both use JFT as unlabeled data like Meta Pseudo
Labels. Similar to Section 5.3.2, we only compare Meta Pseudo Labels to results that are
obtained with ResNet-50 and without distillation.

Method Unlabeled Accuracy
Images (top-1/top-5)

Supervised [81] None 76.9/93.3
AutoAugment [40] None 77.6/93.8
DropBlock [64] None 78.4/94.2
FixRes [206] None 79.1/94.6
FixRes+CutMix [240] None 79.8/94.9

NoisyStudent [230] JFT 78.9/94.3
UDA [229] JFT 79.0/94.5
Billion-scale SSL [206, 232] YFCC 82.5/96.6

Meta Pseudo Labels JFT 83.2/96.5

Table 5.3: Top-1 and Top-5 accuracy of Meta Pseudo Labels and other representative supervised
and semi-supervised methods on ImageNet with ResNet-50.

61

Results. Table 5.3 presents the results. As can be seen from the table, Meta Pseudo
Labels boosts the top-1 accuracy of ResNet-50 from 76.9% to 83.2%, which is a large margin
of improvement for ImageNet, outperforming both UDA and Noisy Student. Meta Pseudo
Labels also outperforms Billion-scale SSL [206, 232] in top-1 accuracy. This is particularly
impressive since Billion-scale SSL pre-trains their ResNet-50 on weakly-supervised images
from Instagram.

5.4 Large Scale Experiment: Pushing the Limits of
ImageNet Accuracy

Method # Params Extra Data ImageNet ImageNet-ReaL [20]
Top-1 Top-5 Precision@1

ResNet-50 [81] 26M − 76.0 93.0 82.94
ResNet-152 [81] 60M − 77.8 93.8 84.79
DenseNet-264 [94] 34M − 77.9 93.9 −
Inception-v3 [198] 24M − 78.8 94.4 83.58
Xception [36] 23M − 79.0 94.5 −
Inception-v4 [199] 48M − 80.0 95.0 −
Inception-resnet-v2 [199] 56M − 80.1 95.1 −
ResNeXt-101 [231] 84M − 80.9 95.6 85.18
PolyNet [245] 92M − 81.3 95.8 −
SENet [93] 146M − 82.7 96.2 −
NASNet-A [254] 89M − 82.7 96.2 82.56
AmoebaNet-A [176] 87M − 82.8 96.1 −
PNASNet [129] 86M − 82.9 96.2 −
AmoebaNet-C + AutoAugment [40] 155M − 83.5 96.5 −
GPipe [95] 557M − 84.3 97.0 −
EfficientNet-B7 [200] 66M − 85.0 97.2 −
EfficientNet-B7 + FixRes [207] 66M − 85.3 97.4 −
EfficientNet-L2 [200] 480M − 85.5 97.5 −

ResNet-50 Billion-scale SSL [232] 26M 3.5B labeled Instagram 81.2 96.0 −
ResNeXt-101 Billion-scale SSL [232] 193M 3.5B labeled Instagram 84.8 − −
ResNeXt-101 WSL [134] 829M 3.5B labeled Instagram 85.4 97.6 88.19
FixRes ResNeXt-101 WSL [205] 829M 3.5B labeled Instagram 86.4 98.0 89.73
Big Transfer (BiT-L) [112] 928M 300M labeled JFT 87.5 98.5 90.54
Noisy Student (EfficientNet-L2) [230] 480M 300M unlabeled JFT 88.4 98.7 90.55
Noisy Student + FixRes [207] 480M 300M unlabeled JFT 88.5 98.7 −
Vision Transformer (ViT-H) [48] 632M 300M labeled JFT 88.55 − 90.72
EfficientNet-L2-NoisyStudent + SAM [58] 480M 300M unlabeled JFT 88.6 98.6 −

Meta Pseudo Labels (EfficientNet-B6-Wide) 390M 300M unlabeled JFT 90.0 98.7 91.12
Meta Pseudo Labels (EfficientNet-L2) 480M 300M unlabeled JFT 90.2 98.8 91.02

Table 5.4: Top-1 and Top-5 accuracy of Meta Pseudo Labels and previous state-of-the-art methods
on ImageNet. With EfficientNet-L2 and EfficientNet-B6-Wide, Meta Pseudo Labels achieves an
improvement of 1.6% on top of the state-of-the-art [58], despite the fact that the latter uses 300
million labeled training examples from JFT.

In this section, we scale up Meta Pseudo Labels to train on a large model and a large
dataset to push the limits of ImageNet accuracy. Specifically, we use the EfficientNet-L2
architecture because it has a higher capacity than ResNets. EfficientNet-L2 was also used
by Noisy Student [230] to achieve the top-1 accuracy of 88.4% on ImageNet.

62

Datasets. For this experiment, we use the entire ImageNet training set as labeled data,
and use the JFT dataset as unlabeled data. The JFT dataset has 300 million images, and
then is filtered down to 130 million images by Noisy Student using confidence thresholds
and up-sampling [230]. We use the same 130 million images as Noisy Student.

Model architecture. We experiment with EfficientNet-L2 since it has the state-of-
the-art performance on ImageNet [230] without extra labeled data. We use the same
hyper-parameters with Noisy Student, except that we use the training image resolution of
512x512 instead of 475x475. We increase the input image resolution to be compatible with
our model parallelism implementation which we discuss in the next paragraph. In addition
to EfficientNet-L2, we also experiment with a smaller model, which has the same depth
with EfficientNet-B6 [200] but has the width factor increased from 2.1 to 5.0. This model,
termed EfficientNet-B6-Wide, has 390 million parameters. We adopt all hyper-parameters
of EfficientNet-L2 for EfficientNet-B6-Wide. We find that EfficientNet-B6-Wide has almost
the same performance with EfficientNet-L2, but is faster to compile and train.

Model parallelism. Due to the memory footprint of our networks, keeping two such
networks in memory for the teacher and the student would vastly exceed the available
memory of our accelerators. We thus design a hybrid model-data parallelism framework to
run Meta Pseudo Labels. Specifically, our training process runs on a cluster of 2,048 TPUv3
cores. We divide these cores into 128 identical replicas to run with standard data parallelism
with synchronized gradients. Within each replica, which runs on 2,048/128=16 cores, we
implement two types of model parallelism. First, each input image of resolution 512x512
is split along the width dimension into 16 patches of equal size 512x32 and is distributed
to 16 cores to process. Note that we choose the input resolution of 512x512 because 512
is close to the resolution 475x475 used by Noisy Student and 512 keeps the dimensions of
the network’s intermediate outputs divisible by 16. Second, each weight tensor is also split
equally into 16 parts that are assigned to the 16 cores. We implement our hybrid data-model
parallelism in the XLA-Sharding framework [121]. With this parallelism, we can fit a batch
size of 2,048 labeled images and 16,384 unlabeled images into each training step. We train
the model for 1 million steps in total, which takes about 11 days for EfficientNet-L2 and
10 days for EfficientNet-B6-Wide. After finishing the Meta Pseudo Labels training phase,
we finetune the models on our labeled dataset for 20,000 steps. Details of the finetuning
procedures are in Appendix 5.7.7.

Results. Our results are presented in Table 5.4. From the table, it can be seen that Meta
Pseudo Labels achieves 90.2% top-1 accuracy on ImageNet, which is a new state-of-the-art
on this dataset. This result is 1.8% better than the same EfficientNet-L2 architecture trained
with Noisy Student [230] and FixRes [205, 207]. Meta Pseudo Labels also outperforms the
recent results by BiT-L [112] and the previous state-of-the-art by Vision Transformer [48].
The important contrast here is that both Bit-L and Vision Transformer pre-train on 300
million labeled images from JFT, while our method only uses unlabeled images from this
dataset. At this level of accuracy, our gain of 1.6% over [58] is a very significant margin of

63

improvement compared to recent gains. For instance, the gain of Vision Transformer [48]
over Noisy Student + FixRes was only 0.05%, and the gain of FixRes over Noisy Student
was only 0.1%.

Finally, to verify that our model does not simply overfit to the ImageNet ILSVRC
2012 validation set, we test it on the ImageNet-ReaL test set [20]. On this test set, our
model also works well and achieves 91.02% Precision@1 which is 0.4% better than Vision
Transformer [48]. This gap is also bigger than the gap between Vision Transformer and
Noisy Student which is only 0.17%.

A lite version of Meta Pseudo Labels. Given the expensive training cost of Meta
Pseudo Labels, we design a lite version of Meta Pseudo Labels, termed Reduced Meta
Pseudo Labels. We describe this lite version in Appendix 5.7.14, where we achieve 86.9%
top-1 accuracy on the ImageNet ILSRVC 2012 validation set with EfficentNet-B7. To avoid
using proprietary data like JFT, we use the ImageNet training set as labeled data and the
YFCC100M dataset [202] as unlabeled data. Reduced Meta Pseudo Labels allows us to
implement the feedback mechanism of Meta Pseudo Labels while avoiding the need to keep
two networks in memory.

5.5 Related Works
Pseudo Labels. The method of Pseudo Labels, also known as self-training, is a simple
Semi-Supervised Learning (SSL) approach that has been successfully applied to improve
the state-of-the-art of many tasks, such as: image classification [230, 232], object detection,
semantic segmentation [255], machine translation [78], and speech recognition [101, 157].
Vanilla Pseudo Labels methods keep a pre-trained teacher fixed during the student’s learning,
leading to a confirmation bias [7] when the pseudo labels are inaccurate. Unlike vanilla
Pseudo Labels, Meta Pseudo Labels continues to adapt the teacher to improve the student’s
performance on a labeled dataset. This extra adaptation allows the teacher to generate
better pseudo labels to teach the student as shown in our experiments.

Other SSL approaches. Other typical SSL methods often train a single model by
optimizing an objective function that combines a supervised loss on labeled data and an
unsupervised loss on unlabeled data. The supervised loss is often the cross-entropy computed
on the labeled data. Meanwhile, the unsupervised loss is typically either a self-supervised loss
or a label propagation loss. Self-supervised losses typically encourage the model to develop a
common sense about images, such as in-painting [159], solving jigsaw puzzles [151], predicting
the rotation angle [65], contrastive prediction [29, 30, 31, 86, 122], or bootstraping the latent
space [72]. On the other hand, label propagation losses typically enforce that the model is
invariant against certain transformations of the data such as data augmentations, adversarial
attacks, or proximity in the latent space [17, 69, 98, 104, 118, 142, 171, 189, 201, 211, 229].
Meta Pseudo Labels is distinct from the aforementioned SSL methods in two notable ways.
First, the student in Meta Pseudo Labels never learns directly from labeled data, which
helps to avoid overfitting, especially when labeled data is limited. Second, the signal that

64

the teacher in Meta Pseudo Labels receives from the student’s performance on labeled data
is a novel way of utilizing labeled data.

Knowledge Distillation and Label Smoothing. The teacher in Meta Pseudo Labels
uses its softmax predictions on unlabeled data to teach the student. These softmax predic-
tions are generally called the soft labels, which have been widely utilized in the literature
on knowledge distillation [60, 89, 244?]. Outside the line of work on distillation, manually
designed soft labels, such as label smoothing [144], temperature sharpening or dampen-
ing [229, 230], and more adaptive approaches based on Expectation-Minimization [196],
have also been shown to improve models’ generalization. Both of these methods can be seen
as adjusting the labels of the training examples to improve optimization and generalization.
Similar to other SSL methods, these adjustments do not receive any feedback from the
student’s performance as proposed in this paper. An experiment comparing Meta Pseudo
Labels to Label Smoothing is presented in Appendix 5.7.10.

Bi-level optimization algorithms. We use Meta in our method name because our
technique of deriving the teacher’s update rule from the student’s feedback is based on a
bi-level optimization problem which appears frequently in the literature of meta-learning.
Similar bi-level optimization problems have been proposed to optimize a model’s learning
process, such as learning the learning rate schedule [13], designing architectures [131],
correcting wrong training labels [246], generating training examples [193], and re-weighting
training data [177, 178, 219, 221]. Meta Pseudo Labels uses the same bi-level optimization
technique in this line of work to derive the teacher’s gradient from the student’s feedback.
The difference between Meta Pseudo Labels and these methods is that Meta Pseudo Labels
applies the bi-level optimization technique to improve the pseudo labels generated by the
teacher model.

5.6 Conclusion

In this paper, we proposed the Meta Pseudo Labels method for semi-supervised learning.
Key to Meta Pseudo Labels is the idea that the teacher learns from the student’s feedback
to generate pseudo labels in a way that best helps student’s learning. The learning process
in Meta Pseudo Labels consists of two main updates: updating the student based on
the pseudo labeled data produced by the teacher and updating the teacher based on the
student’s performance. Experiments on standard low-resource benchmarks such as CIFAR-
10-4K, SVHN-1K, and ImageNet-10% show that Meta Pseudo Labels is better than many
existing semi-supervised learning methods. Meta Pseudo Labels also scales well to large
problems, attaining 90.2% top-1 accuracy on ImageNet, which is 1.6% better than the
previous state-of-the-art [58]. The consistent gains confirm the benefit of the student’s
feedback to the teacher.

65

5.7 Appendix

5.7.1 Derivation of the Teacher’s Update Rule

In this section, we present the detailed derivation of the teacher’s update rule in Section 5.2.

Mathematical Notations and Conventions. Since we will work with the chain rule, we
use the standard Jacobian notations.2 Specifically, for a differentiable function f : Rm → Rn,
and for a vector x ∈ Rm, we use the notation ∂f

∂x
∈ Rn×m to denote the Jacobian matrix of

f , whose dimension is n×m. Additionally, when we mention the Jacobian of a function f
at multiple points such as x1 and x2, we will use the notations of ∂f

∂x

∣∣∣
x=x1

and ∂f
∂x

∣∣∣
x=x2

.
Furthermore, by mathematical conventions, a vector v ∈ Rn is treated as a column

matrix – that is, a matrix of size n × 1. For this reason, the gradient vector of a multi-
variable real-valued function is actually the transpose of of its Jacobian matrix. Finally,
all multiplications in this section are standard matrix multiplications. If an operand is a
vector, then the operand is treated as a column matrix.

Dimension Annotations. Understanding that these notations and conventions might
cause confusions, in the derivation below, we annotate the dimensions of the computed
quantities to ensure that there is no confusion caused to our readers. To this end, we
respectively use |S| and |T | to denote the dimensions of the parameters θS, θT . That is,
θS ∈ R|S|×1 and θT ∈ R|T |×1.

We now present the derivation. Suppose that on a batch of unlabeled examples xu,
the teacher samples the pseudo labels ŷu ∼ T (xu; θT) and the student uses (xu, ŷu) to
update its parameter θS. In expectation, the student’s new parameter is Eŷu∼T (xu;θT)

[
θS −

ηS∇ηSCE(ŷu, S(xu; θS))
]
. We will update the teacher’s parameter to minimize the student’s

cross-entropy on a batch of labeled data a this expected parameter. To this end, we need
to compute the Jacobian:

∂R

∂θT︸ ︷︷ ︸
1×|T |

= ∂

∂θT
CE

(
yl, S

(
xl;Eŷu∼T (xu;θT)

[
θS − ηS∇ηSCE(ŷu, S(xu; θS))

]))
(5.4)

To simplify our notation, let us define

θ̄′S︸︷︷︸
|S|×1

= Eŷu∼T (xu;θT)

[
θS − ηS∇ηSCE(ŷu, S(xu; θS))

]
(5.5)

2Standard: https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

66

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

Then, by the chain rule, we have

∂R

∂θT︸ ︷︷ ︸
1×|T |

= ∂

∂θT
CE

(
yl, S

(
xl;Eŷu∼T (xu;θT)

[
θS − ηS∇ηSCE(ŷu, S(xu; θS))

]))

= ∂

∂θT
CE

(
yl, S

(
xl; θ̄′S

))

=
∂CE

(
yl, S

(
xl; θ̄′S

))
∂θS

∣∣∣∣∣∣
θS=θ̄′S

)
︸ ︷︷ ︸

1×|S|

· ∂θ̄
′
S

∂θT︸ ︷︷ ︸
|S|×|T |

(5.6)

The first factor in Equation 5.6 can be simply computed via back-propagation. We now
focus on the second term. We have

∂θ̄′S
∂θT︸ ︷︷ ︸
|S|×|T |

= ∂

∂θT
Eŷu∼T (xu;θT)

[
θS − ηS∇ηSCE(ŷu, S(xu; θS))

]

= ∂

∂θT
Eŷu∼T (xu;θT)

θS − ηS ·
 ∂CE (ŷu, S(xu; θS))

∂θS

∣∣∣∣∣
θS=θS

>

(5.7)

Note that in Equation 5.7 above, the Jacobian of CE (ŷu, S(xu; θS)), which has dimension
1× |S|, needs to be transposed to match the dimension of θS, which, as we discussed above,
conventionally has dimension |S| × 1.

Now, since θS in Equation 5.7 does not depend on θT , we can leave it out of subsequent
derivations. Also, to simplify notations, let us define the gradient

gS(ŷu)︸ ︷︷ ︸
|S|×|1|

=
 ∂CE (ŷu, S(xu; θS))

∂θS

∣∣∣∣∣
θS=θS

> (5.8)

Then, Equation 5.7 becomes

∂θ̄′S
∂θT︸ ︷︷ ︸
|S|×|T |

= −ηS ·
∂

∂θT
Eŷu∼T (xu;θT)

[
gS(ŷu)︸ ︷︷ ︸
|S|×1

]
(5.9)

Since gS(ŷu) has no dependency on on θT , except for via ŷu, we can apply the REINFORCE

67

equation [223] to achieve

∂θ̄
(t+1)
S

∂θT︸ ︷︷ ︸
|S|×|T |

= −ηS ·
∂

∂θT
Eŷu∼T (xu;θT) [gS(ŷu)]

= −ηS · Eŷu∼T (xu;θT)

[
gS(ŷu)︸ ︷︷ ︸
|S|×1

· ∂ logP (ŷu|xu; θT)
∂θT︸ ︷︷ ︸
1×|T |

]

= ηS · Eŷu∼T (xu;θT)

[
gS(ŷu)︸ ︷︷ ︸
|S|×1

· ∂CE (ŷu, S(xu; θT))
∂θT︸ ︷︷ ︸
1×|T |

]
(5.10)

Here, the last equality in Equation 5.10 is is due to the definition of the cross-entropy loss,
which is the negative of the log-prob term in the previous line.

Now, we can substitute Equation 5.10 into Equation 5.6 to obtain

∂R

∂θT︸ ︷︷ ︸
1×|T |

=
∂CE

(
yl, S

(
xl; θ̄′S

))
∂θS

∣∣∣∣∣∣
θS=θ̄′S︸ ︷︷ ︸

1×|S|

· ∂θ̄
′
S

∂θT︸ ︷︷ ︸
|S|×|T |

= ηS ·
∂CE

(
yl, S

(
xl; θ̄′S

))
∂θS

∣∣∣∣∣∣
θS=θ̄′S︸ ︷︷ ︸

1×|S|

· Eŷu∼T (xu;θT)

[
gS(ŷu)︸ ︷︷ ︸
|S|×1

· ∂CE (ŷu, S(xu; θT))
∂θT︸ ︷︷ ︸
1×|T |

] (5.11)

Finally, we use Monte Carlo approximation for every term in Equation 5.11 using the
sampled ŷu. In particular, we approximate θ̄′S with the parameter obtained from θS by
updating the student parameter on (xu, ŷu), i.e., θ′S = θS − ηS · ∇θSCE (ŷu, S(xu; θS))), and
approximate the expected value in the second term with the same using ŷu. With these
approximation, we obtain the gradient ∇θTLu(θT , θS) from Equation 5.1:

∇θTLl = ηS ·
∂CE

(
yl, S

(
xl; θ′S

))
∂θS︸ ︷︷ ︸
1×|S|

·

 ∂CE (ŷu, S(xu; θS))
∂θS

∣∣∣∣∣
θS=θS

>
︸ ︷︷ ︸

|S|×1

· ∂CE (ŷu, S(xu; θT))
∂θT︸ ︷︷ ︸
1×|T |

= ηS ·
((
∇θ′S

CE (yl, S(xl; θ′S)
)>
· ∇θSCE (ŷu, S(xu; θS))

)
︸ ︷︷ ︸

A scalar := h

·∇θTCE (ŷu, S(xu; θT))

(5.12)

5.7.2 Pseudo Code for Meta Pseudo Labels with UDA
In this section, we present the pseudo code for Meta Pseudo Labels where the teacher
is trained with an extended objective to include the UDA loss. We emphasize that the

68

UDA objective is applied on the teacher, while the student still only learns from the pseudo
labeled data given by the teacher. The pseudo code can be found in Algorithm 3.

Algorithm 3 The Meta Pseudo Labels method, applied to a teacher trained with UDA [229].
Input: Labeled data xl, yl and unlabeled data xu.
Initialize θ(0)

T and θ(0)
S

for t = 0 to N − 1 do
Sample an unlabeled example xu and a labeled example xl, yl
Sample a pseudo label ŷu ∼ P (·|xu; θT)
Update the student using the pseudo label ŷu:

θ
(t+1)
S = θ

(t)
S − ηS ∇θSCE(ŷu, S(xu; θS)|

θS=θ(t)
S

Compute the teacher’s feedback coefficient as in Equation 5.12:

h = ηS ·
((
∇θ′SCE

(
yl, S(xl; θ

(t+1)
S

))>
· ∇θSCE

(
ŷu, S(xu; θ(t)

S)
))

Compute the teacher’s gradient from the student’s feedback:

g
(t)
T = ηS · h · ∇θTCE(ŷu, T (xu; θT))|

θT=θ(t)
T

Compute the teacher’s gradient on labeled data:

g
(t)
T,supervised = ∇θT CE(yl, T (xl; θT))|

θT=θ(t)
T

Compute the teacher’s gradient on the UDA loss with unlabeled data:

g
(t)
T,UDA = ∇θT CE

(
StopGradient(T (xl); θT), T (RandAugment(xl); θT)

)∣∣∣
θT=θ(t)

T

Update the teacher:

θ
(t+1)
T = θ

(t)
T − ηT ·

(
g

(t)
T + g

(t)
T,supervised + g

(t)
T,UDA

)
end
return θ

(N)
S . Only the student model is returned for predictions and evaluations

5.7.3 Experimental Details

In this section, we provide the training details for our experiments in Section 5.3 and
Section 5.4.

69

5.7.4 Dataset Splits

We describe how the datasets CIFAR-10-4K, SVHN-1K, and ImageNet-10% in Section 5.3.2
are constructed. For CIFAR-10, we download the five training data batch files from CIFAR-
10’s official website.3 Then, we load all the images into a list of 50,000 images, keeping the
order as downloaded. The fisrt 5,000 images are typically reserved for validation, so we
remove them. The next 4,000 images are used as labeled data. For SVHN, we download
the data from the mat files on SVHN’s official site4, and follow the same procedure as with
CIFAR-10. We note that this selection process leads to a slight imbalance in the class
distribution for both CIFAR-10-4K and SVHN-1K, but the settings are the same for all
of our experiments. For ImageNet, we follow the procedure in Inception’s GitHub5. This
results in 1,024 training TFRecord shards of approximately the same size. The order of the
images in these shards are deterministic. For ImageNet-10%, we use the first 102 shards; for
ImageNet-20%, we use the first 204 shards; and so on. The last 20 shards, corresponding to
roughly 25,000 images, are reserved for hyper-parameters tuning (used in Section 5.3.3 and
Section 5.4).

5.7.5 Modifications of RandAugment

We modify a few data augmentation strategies as introduced by RandAugment [41]. Our
modifications mostly target the SVHN dataset. In particular, we remove all rotations from
the set of augmentation operations since rotation is a wrong invariance for digits such as 6
and 9. We also remove horizontal translations because they cause another wrong invariance
for digits 3 and 8, e.g., when 8 is pushed half-outside the image and the remaining part
looks like a 3. Table 5.5 presents the transformations that we keep for our datasets.

3CIFAR-10’s official website: www.cs.toronto.edu/~kriz/cifar.html.
4SVHN’s official website: ufldl.stanford.edu/housenumbers/.
5Inception’s GitHub, which also has the code to create ImageNet’s training shards

in TFRecord: github.com/tensorflow/models/blob/master/research/inception/inception/data/
download_and_preprocess_imagenet.sh.

70

www.cs.toronto.edu/~kriz/cifar.html
ufldl.stanford.edu/housenumbers/
github.com/tensorflow/models/blob/master/research/inception/inception/data/download_and_preprocess_imagenet.sh
github.com/tensorflow/models/blob/master/research/inception/inception/data/download_and_preprocess_imagenet.sh

CIFAR-10 and ImageNet SVHN

AutoContrast AutoContrast
Brightness Brightness
Color Color
Contrast Contrast
Equalize Equalize
Invert Invert
Sharpness Sharpness
Posterize Posterize
Sample Pairing Solarize
Solarize ShearX
Rotate ShearY
ShearX TranslateY
ShearY
TranslateX
TranslateY

Table 5.5: Transformations that RandAugment uniformly samples for our datasets. We refer our
readers to [40] for the detailed descriptions of these transformations.

5.7.6 Additional Implementation Details

To improve the stability of Meta Pseudo Labels, we use the following details in the Meta
Pseudo Labels process.

Use cosine distance instead of dot product in Equation 5.12. The dot product h
in Equation 5.12 has a large value range, especially at the beginning of the Meta Pseudo
Labels process. Thus, in order to stabilize training, we compute h using the gradients’
cosine distance. This modification requires very little modification in our code.

We give two justifications why the use of cosine distance makes sense mathematically.
First, h in Equation 5.12 is on a scalar which is multiplied with the teacher’s gradient with
respect to θT . Changing dot product into cosine distance does not change the sign of h,
and thus preserving the actions to increase or to decrease the probabilities of the sampled
pseudo labels. Second, cosine distance’s value range is much smaller than that of dot
product, making the Meta Pseudo Labels updates more numerically stable. Specifically, the
value range of cosine distance is [−1, 1], while the value range of dot products, as observed
in our experiments, is about [−5 × 104, 5 × 104]. This range also depends on the weight
decay hyper-parameter.

Additionally, the dot product h, as shown in Equation 5.12 and as derived in Sec-
tion 5.7.1, results from the application of the chain rule in a so-called bi-level optimization
procedure. Bi-level optimization has been applied in some past work, such as Hyper
Gradient Descent [13], which also replaces dot product with cosine distance to improve the
numerical stability.

71

Use a baseline for h in Equation 5.12. To further reduce the variance of h, we
maintain a moving average b of h and subtract b from h every time we compute g(t)

T as in
Equation 5.12. This practice is also widely applied in Reinforcement Learning literature.

While using cosine distance is very crucial to maintain the numerical stability of Meta
Pseudo Labels, using the moving average baseline only slightly improves Meta Pseudo
Labels’s performance. We suspect that not using the moving average baseline is also fine,
especially when Meta Pseudo Labels can train for many steps without overfitting.

5.7.7 Hyper-parameters
Optimizers. In all our experiments, the WideResNet-28-2 for CIFAR-10-4K and SVHN-
1K and the ResNet-50 for ImageNet-10% and full ImageNet are updated with Nesterov
Momentum with default the momentum coefficient of 0.9. The networks’ learning rate
follow the cosine decay [132]. Meanwhile, the EfficientNet-L2 and EfficientNet-B6-Wide for
ImageNet+JFT are trained with RMSProp [203] and with an exponential decay learning
rate. These are the default optimizers and learning rate schedules used for the architectures
in their corresponding papers. We have only one substantial change of optimizer: when
we finetune EfficientNet-L2 and EfficientNet-B6-Wide on the labeled data from ImageNet
(see Section 5.4), we use the LARS optimizer [238] with their default parameters, i.e.,
momentum 0.9 and learning rate 0.001, training for 20,000 steps with a batch size of 4,096.
We finetune using this optimizer instead of SGD in Noisy Student [230] because unlike
Noisy Student, the student model in Meta Pseudo Labels never trains directly on any
labeled example, and hence can benefit from a more “aggressive” finetuning process with
stronger optimiziers.

Numerical Hyper-parameters. To tune hyper-parameters, we follow [152] and allow
each method to have 128 trials of hyper-parameters. When we tune, we let each model train
for up to 50,000 steps. The optimal hyper-parameters are then used to run experiments
that last for much more steps, as we report below. In our experiments with Meta Pseudo
Labels, training for more steps typically leads to stronger results. We stop at 1 million
steps for CIFAR-10-4K and SVHN-1K, and at 0.5 million steps for ImageNet because these
are the standards from past papers.

We report the hyper-parameters for our baselines and for Meta Pseudo Labels in
Section 5.3 in Tables 5.6, 5.7, 5.8. We note that our settings for UDA is different from
originally reported by the original UDA paper [229]. In their work, UDA [229] use a much
larger batch size for their UDA objective. In our implementation of UDA, we keep these
batch sizes the same. This leads to a much easier implementation of data parallelism in our
framework, TensorFlow [1] running on TPU big pods. To compensate for the difference, we
train all UDA baselines for much longer than the UDA paper [229]. During the training
process, we also mask out the supervised examples with high confidence. Effectively, our
UDA model receives roughly the same amount of training with labeled examples and
unlabeled examples as the models in [229]. We have also verified that on ImageNet-10%
with the augmentation policy from AutoAugment [40], our UDA implementation achives
68.77% top-1 accuracy, which is similar to 68.66% that the UDA paper [229] reported.

72

Hyper-parameter CIFAR-10 SVHN ImageNet

Weight decay 0.0005 0.001 0.0002
Label smoothing 0 0 0.1
Batch normalization decay 0.99 0.99 0.99
Learning rate 0.4 0.05 1.28
Number of training steps 50,000 50,000 40,000
Number of warm up steps 2500 0 2000
Batch size 1024 128 2048
Dropout rate 0.4 0.5 0.2

Pseudo label threshold 0.95 0.975 0.7

Table 5.6: Hyper-parameters for supervised learning and Pseudo Labels.

Hyper-parameter CIFAR-10 SVHN ImageNet

Weight decay 0.0005 0.0005 0.0002
Label smoothing 0 0 0.1
Batch normalization decay 0.99 0.99 0.99
Learning rate 0.3 0.4 1.28
Number of training steps 1,000,000 1,000,000 500,000
Number of warm up steps 5,000 5,000 5,000
Batch size 128 128 2048
Dropout rate 0.5 0.6 0.25
UDA factor 2.5 1 20
UDA temperature 0.7 0.8 0.7

Table 5.7: Hyper-parameters for UDA. Unlike originally done by the UDA paper [229], we do not
use a larger batch size for the UDA objective. Instead, we use the same batch size for both the
labeled objective and the unlabeled objective. This is to avoid instances where some particularly
small batch sizes for the labeled objective cannot be split on our computational hardware.

73

Hyper-parameter CIFAR-10 SVHN ImageNet

Common

Weight decay 0.0005 0.0005 0.0002
Label smoothing 0.1 0.1 0.1
Batch normalization decay 0.99 0.99 0.99
Number of training steps 1,000,000 1,000,000 500,000
Number of warm up steps 2,000 2,000 1,000

Student
Learning rate 0.3 0.15 0.8
Batch size 128 128 2048
Dropout rate 0.35 0.45 0.1

Teacher

Learning rate 0.125 0.05 0.5
Batch size 128 128 2048
Dropout rate 0.5 0.65 0.1
UDA factor 1.0 2.5 16.0
UDA temperature 0.8 1.25 0.75

Table 5.8: Hyper-parameters for Meta Pseudo Labels.

5.7.8 More Detailed Analysis of Meta Pseudo Label’s Behaviors
We have seen in Section 5.3 and Section 5.4 that Meta Pseudo Labels leads to strong
performances on multiple image classification benchmarks. In this section, we provide
further analysis of Meta Pseudo Labels and related baselines on more restricted and more
controlled environments to provide better insights about Meta Pseudo Labels’ behaviors.

5.7.9 Visualizing the Contributions of Meta Pseudo Labels
To understand the contributions of Meta Pseudo Labels (MPL), in Figure 5.3, we visualize
the relative gains of various methods on ImageNet-10% (Section 5.3.2). From the figure,
we have two observations. First, for a purely supervised teacher, Meta Pseudo Labels
outperforms RandAugment. We suspect this is because Meta Pseudo Labels is more effective
form of regularization for the student. This is very crucial for ImageNet-10%, where we
only have about 128 images per class for each of the 1,000 classes. Second, UDA improves
over Supervised+MPL+Finetune by 6.05% in top-1 accuracy. This is in the same ballpark
with the gain that UDA+MPL delivers above UDA, which is 5.25%. As UDA’s accuracy is
already high, such improvement is very significant. Finally, finetuning only slightly improves
over UDA+MPL. This extra performance boost is a unique advantage of Meta Pseudo
Labels, since the student never directly learns from labeled data.

5.7.10 Meta Pseudo Labels Is An Effective Regularization Strat-
egy

The rest of this paper uses Meta Pseudo Labels as a semi-supervised learning method. In
this section, we show that Meta Pseudo Labels can behave like an effective regularization

74

Figure 5.3: Breakdown of the gains of different components in Meta Pseudo Labels (MPL). The
gain of Meta Pseudo Labels over UDA, albeit smaller than the gain of UDA over RandAugment,
is significant as UDA is already very strong.

method for supervised learning. This behavior can be achieved by making labeled data the
same with unlabeled data in Figure 5.1. In this case, Meta Pseudo Labels can be seen as an
adaptive form of Label Smoothing: the teacher generates soft labels on labeled data for the
student, just like the way Label Smoothing smooths the hard labels to regularize the model.
The main difference is that the policy in Label Smoothing is fixed, whereas the policy of
the teacher in Meta Pseudo Labels is adaptive to enhance the student’s performance.

To confirm the effect of Meta Pseudo Labels, we compare the method to Supervised
Learning and Label Smoothing on CIFAR-10-4K and SVHN-1K. All models and settings are
the same as in Section 5.3.2, except that we do not use RandAugment and we restrict the
unlabeled data to the same set of labeled data. We choose CIFAR-10-4K and SVHN-1K for
this experiment because Label Smoothing is typically already used in ImageNet models. The
results are shown in Table 5.9. As can be seen from the table, Meta Pseudo Labels achieves
83.71% on CIFAR-10-4K and 91.89% on SVHN-1K. Both of these are significantly better
than the accuracy obtained by supervised learning with and without Label Smoothing.
This shows the importance of feedback in Meta Pseudo Labels.

CIFAR-10-4K SVHN-1K

Supervised 82.14 ± 0.25 88.17 ± 0.47
Label Smoothing 82.21 ± 0.18 89.39 ± 0.25
Meta Pseudo Labels 83.71 ± 0.21 91.89 ± 0.14

Table 5.9: Meta Pseudo Labels can be used as a regularization method for supervised learning.

5.7.11 Meta Pseudo Labels Is a Mechanism to Addresses the
Confirmation Bias of Pseudo Labels

In this section, we show empirical evidence that Meta Pseudo Labels helps to address the
teacher’s confirmation bias [7] in Pseudo Labels. To this end, we analyze the training
accuracy of the teacher and the student in Meta Pseudo Labels from our experiments for
CIFAR-10-4K and ImageNet-10% in Section 5.3.2. In Figure 5.4, we plot the accuracy
percentage at each training batch throughout the training process of a teacher and a student

75

in Meta Pseudo Labels. We also plot the same data for a supervised model. From the
figure, we have two observations:

• On CIFAR-10-4K (Figure 5.4-Left), the student’s training accuracy in Meta Pseudo
Labels is much lower that of the same network in Supervised Learning. As CIFAR-
10-4K has very few labeled data, if the teacher converges quickly like in Supervised
Learning, it will not generalize to the unlabeled data and hence will teach the student
in inaccurate pseudo labels. In contrast, Figure 5.4-Left shows that both the teacher
and student in Meta Pseudo Labels converge much slower. To see this, note that
in Meta Pseudo Labels, the student’s training accuracy is measured by how much
it agrees with the teacher’s pseudo labels. Therefore, the student in Meta Pseudo
Labels having a lower training accuracy means that the student often disagrees with
the pseudo labels that the teacher samples. This disagreement forces the teacher to
constantly updates its weights to generate better pseudo labels, and makes it hard
for the student to converge as the student has to learn from the teacher’s changing
pseudo labels. This behavior prevents both the teacher and the student from the
premature convergence that causes the confirmation bias in Supervised Learning and
Pseudo Labels.

• On ImageNet-10% (Figure 5.4-Right), the student also disagrees with the teacher’s
pseudo labels, as shown in the student’s low training accuracy. Additionally, we
observe that the teacher’s training accuracy surges up faster than the supervised
model’s accuracy. We suspect that this is beneficial for the student learning, since
ImageNet has 1,000 classes so in order to effectively teach the student to do well
on the labeled dataset, the teacher has to become more accurate. Therefore, the
feedback from the student is beneficial for the teacher’s learn as well. This trend
of high training accuracy only changes at the end of the training procedure, where
the training accuracy of Supervised Learning surpasses those of the teacher and the
student in Meta Pseudo Labels. From this last sign, we suspect that the supervised
model has overfitted to the small set of labeled training examples in ImageNet-10%,
which will causes the confirmation bias if this supervised model is used to generate
pseudo labels for another student model to learn from.

76

0 0.25 0.50 0.75 1.0
Training Progress

0.80

0.85

0.90

0.95

1.00

Tr
ai

ni
ng

 A
cc

ur
ac

y

Training Accuracy on CIFAR-10-4,000

Supervised
Teacher
Student

0 0.25 0.50 0.75 1.0
Training Progress

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai
ni
ng

 A
cc
ur
ac
y

Training Accuracy on ImageNet-10%
Supervised
Teacher
Student

Figure 5.4: Training accuracy of Meta Pseudo Labels and of supervised learning on CIFAR-10-4K
and ImageNet-10%. Both the teacher and the student in Meta Pseudo Labels have lower training
accuracy, effectively avoiding overfitting.

5.7.12 Meta Pseudo Labels with Different Training Techniques
for the Teacher

In Sections 5.3 and Section 5.4, we have presented Meta Pseudo Labels results where the
teacher is trained with UDA. In Table 5.10, we further show that on CIFAR-10-4K, Meta
Pseudo Labels improves over different teachers trained with different techniques, including
Pseudo Labels [120], Mixup [243], and RandAugment. These results indicate that Meta
Pseudo Labels is effective with all techniques. Additionally, the results suggest that better
training techniques for the teacher tend to result in better students.

Teacher Pseudo-Labels Mixup [243] RandAugment

-Meta Pseudo Labels 83.79± 0.11 84.20± 0.15 85.53± 0.25
+Meta Pseudo Labels 84.11 ± 0.07 84.81 ± 0.19 87.55 ± 0.14

Table 5.10: Meta Pseudo Labels’s accuracy for WideResNet-28-2 on CIFAR-10-4,000, where the
teacher is trained with different techniques. All numbers are mean± std over 10 runs.

5.7.13 Meta Pseudo Labels with Different Amounts of Labeled
Data

We study how much Meta Pseudo Labels improves as more labeled data becomes available.
To this end, we experiment with 10%, 20%, 40%, 80%, and 100% of the labeled examples in
ImageNet. We compare Meta Pseudo Labels with supervised learning and RandAugment.
We plot the results in Figure 5.5. From the figure, it can be seen that Meta Pseudo
Labels delivers substantial gains with less data, but plateaus as more labeled data becomes
available. This result suggests that Meta Pseudo Labels is more effective for low-resource
image classification problems.

77

Figure 5.5: Performance of Supervised Learning, RandAugment, and Meta Pseudo Labels at
different amounts of labeled examples.

5.7.14 Results with An Economical Version of Meta Pseudo La-
bels

Meta Pseudo Labels requires storing both the teacher model and the student model in
memory. For model architectures with a large memory footprint, such as EfficientNet-L2 and
EfficientNet-B6-Wide in our experiments, this memory footprint exceeds 16G of available
memory in our accelerators. While we have implemented a hybrid data-model parallelism
in Section 5.4 which allows us to run Meta Pseudo Labels with large model architectures,
the tradeoff is a slow and expensive training procedure. To allow a more efficient training
of large models with Meta Pseudo Labels, we design a more economical alternative to
instantiate the teacher, termed Reduced Meta Pseudo Labels.

In Reduced Meta Pseudo Labels, we first train a large teacher model T to convergence.
Next, we use T to pre-compute all target distributions for the student’s training data.
Importantly, until this step, the student model has not been loaded into memory, effectively
avoiding the large memory footprint of Meta Pseudo Labels. Then, we parameterize a
reduced teacher T ′ as a small and efficient network, such as a multi-layered perceptron
(MLP), to be trained the along with student. This reduced teacher T ′ takes as input the
distribution predicted by the large teacher T and outputs a calibrated distribution for the
student to learn. Intuitively, Reduced Meta Pseudo Labels works reasonably well because
the large teacher T is reasonably accurate, and hence many actions of the reduced teacher T ′
would be close to an identity map, which can be handled by an MLP. Meanwhile, Reduced
Meta Pseudo Labels retains the benefit of Meta Pseudo Labels, as the teacher T ′ can still
adapt to the learning state of the student θT .

To evaluate whether Meta Pseudo Labels can scale to problems with a large number
of labeled examples, we now turn to full labeled sets of CIFAR-10, SVHN and ImageNet.
We use out-of-domain unlabeled data for CIFAR-10 and ImageNet. We experiment with
Reduced Meta Pseudo Labels whose memory footprint allows our large-scale experiments.
We show that the benefit of Meta Pseudo Labels, i.e. having a teacher that adapts to the
student’s learning state throughout the student’s learning, stil extends to large datasets
with more advanced architectures and out-of-domain unlabeled data.

78

Model Architectures. For our student model, we use EfficinetNet-B0 for CIFAR-10
and SVHN, and use EfficientNet-B7 for ImageNet. Meanwhile, our teacher model is a small
5-layer perceptron, with ReLU activation, and with a hidden size of 128 units for CIFAR-10
and of 512 units for ImageNet.

Labeled Data. Per standard practices, we reserve 4,000 examples of CIFAR-10, 7,300
examples from SVHN, and 40 data shards of ImageNet for hyper-parameter tuning. This
leaves about 45,000 labeled examples for CIFAR-10, 65,000 labeled examples for SVHN,
and 1.23 million labeled examples for ImageNet. As in Section 5.3.2, these labeled data
serve as both the validation data for the student and the pre-training data for the teacher.

Unlabeled Data. For CIFAR-10, our unlabeled data comes from the TinyImages dataset
which has 80 million images [204]. For SVHN, we use the extra images that come with
the standard training set of SVHN which has about 530,000 images. For ImageNet, our
unlabeled data comes from the YFCC-100M dataset which has 100 million images [202].
To collect unlabeled data relevant to the tasks at hand, we use the pre-trained teacher
to assign class distributions to images in TinyImages and YFCC-100M, and then keep K
images with highest probabilities for each class. The values of K are 50,000 for CIFAR-10,
35,000 for SVHN, and 12,800 for ImageNet.

Baselines. We compare Reduced Meta Pseudo Labels to NoisyStudent [230], because
it can be directly compared to Reduced Meta Pseudo Labels. In fact, the only difference
between NoisyStudent and Reduced Meta Pseudo Labels is that Reduced Meta Pseudo
Labels has a teacher that adapts to the student’s learning state.

Methods CIFAR-10 SVHN ImageNet

Supervised 97.18± 0.08 98.17± 0.03 84.49/97.18
NoisyStudent 98.22± 0.05 98.71 ± 0.11 85.81/97.53
Reduced Meta Pseudo Labels 98.56 ± 0.07 98.78 ± 0.07 86.87/98.11

Table 5.11: Image classification accuracy of EfficientNet-B0 on CIFAR-10 and SVHN, and
EfficientNet-B7 on ImageNet. Higher is better. CIFAR-10 results are mean ± std over 5 runs,
and ImageNet results are top-1/top-5 accuracy of a single run. All numbers are produced in our
codebase and are controlled experiments.

Results. As presented in Table 5.11, Reduced Meta Pseudo Labels outperforms NoisyS-
tudent on both CIFAR-10 and ImageNet, and is on-par with NoisyStudent on SVHN. In
particular, on ImageNet, Meta Pseudo Labels with EfficientNet-B7 achieves a top-1 accu-
racy of 86.87%, which is 1.06% better than the strong baseline NoisyStudent. On CIFAR-10,
Meta Pseudo Labels leads to an improvement of 0.34% in accuracy on NoisyStudent,
marking a 19% error reduction.

79

For SVHN, we suspect there are two reasons of why the gain of Reduced Meta Pseudo
Labels is not significant. First, NoisyStudent already achieves a very high accuracy. Second,
the unlabeled images are high-quality, which we know by manual inspection. Meanwhile,
for many ImageNet categories, there are not sufficient images from YFCC100M, so we end
up with low-quality or out-of-domain images. On such noisy data, Reduced Meta Pseudo
Labels’s adaptive adjustment becomes more crucial for the student’s performance, leading
to more significant gain.

80

Chapter 6

Meta Back-Translation

While Neural Machine Translation (NMT) delivers state-of-the-art performance across many
translation tasks, this performance is usually contingent on the existence of large amounts
of training data [197, 209]. Since large parallel training datasets are often unavailable for
many languages and domains, various methods have been developed to leverage abundant
monolingual corpora [33, 74, 79, 90, 187, 190, 228]. Among such methods, one particularly
popular approach is back-translation (BT; Sennrich et al. [187]).

In BT, in order to train a source-to-target translation model, i.e., the forward model, one
first trains a target-to-source translation model, i.e., the backward model. This backward
model is then employed to translate monolingual data from the target language into the
source language, resulting in a pseudo-parallel corpus. This pseudo-parallel corpus is then
combined with the real parallel corpus to train the final forward translation model. While
the resulting forward model from BT typically enjoys a significant boost in translation
quality, we identify that BT inherently carries two weaknesses.

First, while the backward model provides a natural way to utilize monolingual data in
the target language, the backward model itself is still trained on the parallel corpus. This
means that the backward model’s quality is as limited as that of a forward model trained
in the vanilla setting. Hoang et al. [90] proposed iterative BT to avoid this weakness, but
this technique requires multiple rounds of retraining models in both directions which are
slow and expensive.

Second, we do not understand how the pseudo-parallel data translated by the backward
model affects the forward model’s performance. For example, Edunov et al. [51] has observed
that pseudo-parallel data generated by sampling or by beam-searching with noise from
the backward model train better forward models, even though these generating methods
typically result in lower BLEU scores compared to standard beam search. While Edunov
et al. [51] associated their observation to the diversity of the generated pseudo-parallel data,
diversity alone is obviously insufficient – some degree of quality is necessary as well.

In summary, while BT is an important technique, training a good backward model for
BT is either hard or slow and expensive, and even if we have a good backward model, there
is no single recipe how to use it to train a good forward model.

In this paper, we propose a novel technique to alleviate both aforementioned weaknesses
of BT. Unlike vanilla BT, which keeps the trained backward model fixed and merely uses

81

Monolingual Target Data

Wie geht es dir haute?

Pseudo Parallel Data

How are you today?

Wie geht es dir haute?

Backward
model

Forward model (t-1)

gradient

samples

Forward model (t)

Ground Truth Parallel Data

How are you?

Wie geht es dir?

Cross
Entropy

Loss

update backward model

Figure 6.1: An example training step of meta back-translation to train a forward model translating
English (En) into German (De). The step consists of two phases, illustrated from left to right in
the figure. Phase 1: a backward model translates a De sentence taken from a monolingual corpus
into a pseudo En sentence, and the forward model updates its parameters by back-propagating
from canonical training losses on the pair (pseudo En, mono De). Phase 2: the updated forward
model computes a cross-entropy loss on a pair of ground truth sentences (real En, real De). As
annotated with the red path in the figure, this cross-entropy loss depends on the backward model,
and hence can be back-propagated to update the backward model. Best viewed in colors.

it to generate pseudo-parallel data to train the forward model, we continue to update the
backward model throughout the forward model’s training. Specifically, we update the
backward model to improve the forward model’s performance on a held-out set of ground
truth parallel data. We provide an illustrative example of our method in Figure 6.1, where we
highlight how the forward model’s held-out set performance depends on the pseudo-parallel
data sampled from the backward model. This dependency allows us to mathematically
derive an end-to-end update rule to continue training the backward model throughout the
forward model’s training. As our derivation technique is similar to meta-learning [56, 183],
we name our method Meta Back-Translation (MetaBT).

In theory, MetaBT effectively resolves both aforementioned weaknesses of vanilla BT.
First, the backward model continues its training based on its own generated pseudo-parallel
data, and hence is no longer limited to the available parallel data. Furthermore, MetaBT
only trains one backward model and then trains one pair of forward model and backward
model, eschewing the expense of multiple iterations in Iterative BT [90]. Second, since
MetaBT updates its backward model in an end-to-end manner based on the forward model’s
performance on a held-out set, MetaBT no longer needs to explicitly understand the effect
of its generated pseudo-parallel data on the forward model’s quality.

Our empirical experiments verify the theoretical advantages of MetaBT with definitive
improvements over strong BT baselines on various settings. In particular, on the classical
benchmark of WMT En-De 2014, MetaBT leads to +1.66 BLEU score over sampling-based
BT. Additionally, we discover that MetaBT allows us to extend the initial parallel training
set of the backward model by including parallel data from slightly different languages. Since
MetaBT continues to refine the backward model, the negative effect of language discrepancy
is eventually rebated throughout the forward model’s training, boosting up to +1.20 BLEU
score for low-resource translation tasks.

6.1 A Probabilistic Perspective of Back-Translation
To facilitate the discussion of MetaBT, we introduce a probabilistic framework to interpret
BT. Our framework helps to analyze the advantages and disadvantages of a few methods

82

to generate pseudo-parallel data such as sampling, beam-searching, and beam-searching
with noise [51, 187]. Analyses of these generating methods within our framework also
motivates MetaBT and further allows us to mathematically derive MetaBT’s update rules
in Section 6.2.

Our Probabilistic Framework. We treat a language S as a probability distribution
over all possible sequences of tokens. Formally, we denote by PS(x) the distribution of a
random variable x, whose each instance x is a sequence of tokens. To translate from a source
language S into a target language T , we learn the conditional distribution PS,T (y|x) for
sentences from the languages S and T with a parameterized probabilistic model P (y|x; θ).
Ideally, we learn θ by minimizing the objective:

J(θ) = Ex,y∼PS,T (x,y)[`(x, y; θ)] where `(x, y; θ) = −logP (y|x; θ) (6.1)

Since PS,T (x, y) = PS,T (y)PS,T (x|y) = PT (y)PS,T (x|y), we can refactor J(θ) from Equa-
tion 6.1 as:

J(θ) = Ey∼PT (y)Ex∼PS,T (x|y)[`(x, y; θ)] (6.2)

Motivating BT. In BT, since it is not feasible to draw exact samples y ∼ PT (y) and
x ∼ PS,T (x|y), we rely on two approximations. First, instead of sampling y ∼ PT (y), we
collect a corpus DT of monolingual data in the target language T and draw the samples
y ∼ Uniform(DT). Second, instead of sampling x ∼ PS,T (x|y), we derive an approximate
distribution P̂ (x|y) and sample x ∼ P̂ (x|y). Before we explain the derivation of P̂ (x|y),
let us state that with these approximations, the objective J(θ) from Equation 6.2 becomes
the BT following objective:

ĴBT(θ) = Ey∼Uniform(DT)Ex∼P̂ (x|y)[`(x, y; θ)] (6.3)

Rather unsurprisingly, P̂ (x|y) in Equation 6.3 above is derived from a pre-trained parame-
terized backward translation model P (x|y;ψ). For example:

• P̂ (x|y) 4= 1[x = argmaxẋ P (ẋ|y;ψ)] results in BT via beam-search [187].
• P̂ (x|y) 4= P (x|y;ψ) results in BT via sampling [51].
• P̂ (x|y) 4= 1[x = argmaxẋ P̃ (ẋ|y;ψ)] results in BT via noisy beam-search [51] where
P̃ (x|y;ψ) denotes the joint distribution of the backward model P (x|y;ψ) and the
noise.

Therefore, we have shown that in our probabilistic framework for BT, three common
techniques to generate pseudo-parallel data from a pre-trained backward model correspond
to different derivations from the backward model’s distribution P (x|y;ψ). Our framework
naturally motivates two questions: (1) given a translation task, how do we tell which
derivation of P̂ (x|y) from P (x|y, ψ) is better than another? and (2) can we derive better
choices for P̂ (x|y) from a pre-trained backward model P (x|y;ψ) according to the answer
of question (1)?

83

Metric for the Generating Methods. In the existing literature, the answer for our
first question is relatively straightforward. Since most papers view the method of generating
pseudo-parallel data as a hyper-level design, i.e. similar to the choice of an architecture like
Transformer or LSTM, and hence practitioners choose one method over another based on
the performance of the resulting forward model on held-out validation sets.

Automatically Derive Good Generating Methods. We now turn to the second
question that our probabilistic framework motivates. Thanks to the generality of our
framework, every choice for P̂ (x|y) results in an optimization objective. Using this objective,
we can train a forward model and measure its validation performance to evaluate our choice
of P̂ (x|y). This process of choosing and evaluating P̂ (x|y) can be posed as the following
bi-level optimization problem:

Outer loop: P̂ ∗ = argmax
P̂

ValidPerformance(θ∗
P̂

),

Inner loop: θ∗
P̂

= argmin
θ

ĴBT(θ; P̂),

where ĴBT(θ; P̂) = Ey∼Uniform(DT)Ex∼P̂ (x|y)[`(x, y; θ)]

(6.4)

The optimal solution of this bi-level optimization problem can potentially train a forward
model that generalizes well, as the forward model learns on a pseudo-parallel dataset and
yet achieves a good performance on a held-out validation set. Unfortunately, directly solving
this optimization problem is not feasible. Not only is the inner loop quite expensive as
it includes training a forward model from scratch according to P̂ , the outer loop is also
poorly defined as we do not have any restriction on the space that P̂ can take. Next, in
Section 6.2, we introduce a restriction on the space that P̂ can take, and show that our
restriction turns the task of choosing P̂ into a differentiable problem which can be solved
with gradient descent.

6.2 Meta Back-Translation
Continuing our discussion from Section 6.1, we design Meta Back-Translation (MetaBT)
which finds a strategy to generate pseudo-parallel data from a pre-trained backward model
such that if a forward model training on the generated pseudo-parallel data, it will achieve
a strong performance on a held-out validation set.

The Usage of “Validation” Data. Throughout this section, readers will see that
MetaBT makes extensive use of the “validation” set to provide feedback to refine the
pseudo-parallel data’s generating strategy. Thus, to avoid nullifying the meaning of a
held-out validation set, we henceforth refer to the ground-truth parallel dataset where the
forward model’s performance is measured throughout its training as the meta validation
dataset and denote it by DMetaDev. Other than this meta validation set, we also have a
separate validation set for hyper-parameter tuning and model selection.

84

A Differentiable Bi-level Optimization Problem. We now discuss MetaBT, starting
with formulating a differentiable version of Problem 6.4. Suppose we have pre-trained a
paramterized backward translation model P (x|y;ψ). Instead of designing the generating
distribution P̂ (x|y) by applying actions such as sampling or beam-search to P (x|y;ψ), we let
P̂ (x|y) 4= P (x|y;ψ) and continue to update the backmodel’s parameters ψ throughout the
course of training the forward model. Clearly, under this association P̂ (x|y) 4= P (x|y;ψ),
the parameters ψ controls the generating distribution of the pseudo-parallel data to train
the forward model. By setting the differentiable parameters ψ as the optimization variable
for the outer loop, we turn the intractable Problem 6.4 into a differentiable one:

Outer loop: ψ∗ = argmax
ψ

Performance(θ∗(ψ), DMetaDev)

Inner loop: θ∗(ψ) = argmin
θ

Ey∼Uniform(DT)Ex∼P̂ (x|y)[`(x, y; θ)]
(6.5)

Bi-level optimization problems whose both outer and inner loops operate on differentiable
variables like Problem 6.5 have appeared repeatedly in the recent literature of meta-learning,
spanning many areas such as learning initialization [56], learning hyper-parameters [?
], designing architectures [131], and reweighting examples [218]. We thus follow their
successful techniques and design a two-phase alternative update rule for the forward model’s
parameters θ in the inner loop and the backward model’s parameters ψ in the outer loop:

Phase 1: Update the Forward Parameters θ. Given a batch of monolingual target
data y ∼ Uniform(DT), we sample the pseudo-parallel data (x̂ ∼ P (x|y;ψ), y) and update θ
as if (x̂, y) was real data. For simplicity, assuming that θ is updated using gradient descent
on (x̂, y), using a learning rate ηθ, then we have:

θt = θt−1 − ηθ∇θ`(x̂, y; θ) (6.6)
Phase 2: Update the Backward Parameters ψ. Note that Equation 6.6 means that
θt depends on ψ, because x̂ is sampled from a distribution parameterized by ψ. This
dependency allows us to compute the meta validation loss of the forward model at θt, which
we denote by J(θt(ψ), DMetaDev), and back-propagate this loss to compute the gradient
∇ψJ(θt(ψ), DMetaDev). Once we have this gradient, we can perform a gradient-based update
on the backward parameter ψ with learning rate ηψ:

ψt = ψt−1 − ηψ∇ψ∇θJ(θt(ψ), DMetaDev) (6.7)

Computing ∇ψJ(θt(ψ), DMetaDev). Our derivation of this gradient utilizes two tech-
niques: (1) the chain rule to differentiate J(θt(ψ), DMetaDev) with respect to ψ via θt; and
(2) the log-gradient trick from reinforcement learning literature [223] to propagate gradients
through the sampling of pseudo-source x̂. We refer readers to Appendix 6.7.1 for the full
derivation. Here, we present the final result:
∇ψJ(θt(ψ), DMetaDev) ≈ −

[
∇θJ(θt, DMetaDev)> · ∇θ`(x̂, y; θt−1)

]
· ∇ψlogP (x̂|y;ψ) (6.8)

In our implementation, we leverage the recent advances in high-order AutoGrad tools
to efficiently compute the gradient dot-product term via Jacobian-vector products. By
alternating the update rules in Equation 6.6 and Equation 6.7, we have the complete
MetaBT algorithm.

85

Remark: An Alternative Interpretation of MetaBT. The update rule of the back-
ward model in Equation 6.8 strongly resembles the REINFORCE equation from the
reinforcement learning literature. This similarity suggests that the backward model is
trained as if it were an agent in reinforcement learning. From this perspective, the backward
model is trained so that the pseudo-parallel data sampled from it would maximize the
“reward”:

R(x̂) = ∇θJ(θt, DMetaDev)> · ∇θ`(x̂, y; θt−1) (6.9)

Since this dot-product measures the similarity in directions of the two gradients, it can
be interpreted that MetaBT optimizes the backward model so that the forward model’s
gradient on pseudo-parallel data sampled from the backward model is similar to the forward
model’s gradient computed on the meta validation set. This is a desirable goal because the
reward guides the backward model’s parameters to favor samples that are similar to those
in the meta validation set.

6.3 A Mulltilingual Application of MetaBT
We find that the previous interpretation of MetaBT in Section 6.2 leads to a rather
unexpected application MetaBT. Specifically, we consider the situation where the language
pair of interest S-T has very limited parallel training data. In such a situation, BT
approaches all suffer from a serious disadvantage: since the backward model needs to be
trained on the parallel data T -S, when the amount of parallel data is small, the resulting
backward model has very low quality. The pseudo-parallel corpus generated from the
low-quality backward model can contaminate the training signals of the forward model [42].

To compensate for the lack of initial parallel data to train the backward model, we propose
to use parallel data from a related language S ′-T for which we can collect substantially
more data. Specifically, we train the backward model on the union of parallel data T -S ′
and T -S, instead of only T -S. Since this procedure results in a substantially larger set of
parallel training data, the obtained backward model has a higher quality. However, since
the extra S ′-T parallel data dominates the training set of the backward model, the pseudo
source sentences sampled from the resulting backward model would have more features of
the related language S ′, rather than our language of interest S.

In principle, MetaBT can fix this discrepancy by adapting the backward model using
the forward model’s gradient on the meta validation set that only contains parallel data for
S-T . This would move the back-translated pseudo source sentences closer to our language
of interest S.

6.4 Experiments
We evaluate MetaBT in two settings: (1) a standard back-translation setting to verify
that MetaBT can create more effective training data for the forward model, and (2) a
multilingual NMT setting to confirm that MetaBT is also effective when the backward
model is pre-trained on a related language pair as discussed in Section 6.3.

86

6.4.1 Dataset and Preprocessing

Standard For the standard setting, we consider two large datasets: WMT En-De 2014
and WMT En-Fr 20141, tokenized with SentencePiece [116] using a joint vocabulary size of
32K for each dataset. We filter all training datasets, keeping only sentence pairs where both
source and target have no more than 200 tokenized subwords, resulting in a parallel training
corpus of 4.5M sentence pairs for WMT En-De and 40.8M sentences for WMT En-Fr. For
the target monolingual data, we collect 250M sentences in German and 61 million sentences
in French, both from the WMT news datasets between 2007 and 2017. After de-duplication,
we filter out the sentences that have more than 200 subwords, resulting in 220M German
sentences and 60M French sentences.

Multilingual The multilingual setting uses the multilingual TED talk dataset [169],
which contains parallel data from 58 languages to English. We focus on translating 4 low-
resource languages to English: Azerbaijani (az), Belarusian (be), Glacian (gl), Slovak (sk).
Each low-resource language is paired with a corresponding related high-resource language:
Turkish (tr), Russian (ru), Portuguese (pt), Czech (cs). We following the setting from prior
work [149, 217] and use SentencePiece with a separate vocabulary of 8K for each language.

6.4.2 Baselines

Our first baseline is No BT, where we train all systems using parallel data only. For the
standard setting, we simply train the NMT model on the WMT parallel data. For the
multilingual setting, we train the model on the concatenation of the parallel training data
from both the low-resource language and the high-resource language. The No BT baseline
helps to verify the correctness of our model implementations. For the BT baselines, we
consider two strong candidates:

• MLE: we sample the pseudo source sentences from a fixed backward model trained
with MLE. This baseline is the same with sampling-based BT [51]. We choose
sampling instead of beam-search and beam-search with noise as [51] found sampling
to be stronger than beam-search and on par with noisy beam-search. Our data usage,
as specified in Section 6.4.1, is also the same with [51] on WMT. We call this baseline
MLE to signify the fact that the backward model is trained with MLE and then is
kept fixed throughout the course of the forward model’s learning.

• DualNMT [228]: this baseline further improves the quality of the backward model
using reinforcement learning with a reward that combines the language model score
and the reconstruction score from the forward model.

Note that for the multilingual setting, we use top-10 sampling, which we find has better
performance than sampling from the whole vocabulary in the preliminary experiments.

1Data link: http://www.statmt.org/wmt14/

87

http://www.statmt.org/wmt14/

6.4.3 Implementation
We use the Transformer-Base architecture [209] for all forward and backward models in
our experiments’ NMT models. All hyper-parameters can be found in Section 6.7.2. We
choose Transformer-Base instead of Transformer-Large because MetaBT requires storing in
memory both the forward model and the backward model, as well as the two-step gradients
for meta-learning, which together exceeds our 16G of accelerator memory when we try
running Transformer-Large. We further discuss this in Section 6.6.

For the standard setup, we pre-train the backward model on the WMT parallel corpora.
In the meta-learning phases that we described in Section 6.2, we initialize the parameters ψ0
using this pre-trained checkpoint. From this checkpoint, at each training step, our forward
model is updated using two sources of data: (1) a batch from the parallel training data,
and (2) a batch of sentences from the monolingual data, and their source sentences are
sampled by the backward model.

For the multilingual setup, we pre-train the backward model on the reverse direction of
the parallel data from both the low-resource and the high-resource languages. From this
checkpoint, at each meta-learning step, the forward model receives two sources of data:
(1) a batch of the parallel data from the low-resource language. (2) a batch of the target
English data from the high-resource language, which are fed into the BT model to sample
the pseudo-source data.

6.4.4 Results

BT Model Objective Multilingual Standard
az-en be-en gl-en sk-en en-de en-fr

No BT 11.50 17.00 28.44 28.19 26.49 38.56
MLE [51] 11.30 17.40 29.10 28.70 28.73 39.77
DualNMT [228] 11.69 14.81 25.30 27.07 25.71 −

Meta Back-Translation 11.92∗ 18.10∗ 30.30∗ 29.00∗ 30.39∗ 40.28∗

Table 6.1: BLEU scores of MetaBT and of our baselines in the standard bilingual setting and the
multilingual setting. ∗ indicates statistically significant improvements with p < 0.001. Our tests
follow Clark et al. [38].

We report the BLEU scores [156] for all models and settings in Table 6.1. From the table,
we observe that the most consistent baseline is MLE, which significantly improves over the
No BT baseline. Meanwhile, DualNMT’s performance is much weaker, losing to MLE on
all tasks except for az-en where its margin is only +0.19 BLEU compared to No BT. For
WMT En-Fr, we even observe that DualNMT often results in numerical instability before
reaching 34 BLEU score and thus we do not report the result. By comparing the baselines’
performance, we can see that continuing to train the backward model to outperform MLE
is a challenging mission.

Despite such challenge, MetaBT consistently outperforms all baselines in both settings.
In particular, compared to the best baselines, MetaBT’s gain is up to +1.20 BLEU in the

88

low-resource multilingual setting, and is +1.66 BLEU for WMT En-De 14. We remark
that WMT En-De 14 is a relatively classical benchmark for NMT and that a gain of +1.66
BLEU on this benchmark is very significant. While the gain of MetaBT over MLE on
WMT En-Fr is somewhat smaller (+0.51 BLEU), our statistical test shows that the gain
is still significant. Therefore, our experimental results confirm the theoretical advantages
of MetaBT. Next, in Section 6.4.5, we investigate the behaviors of MetaBT to further
understand how the method controls the generating process of pseudo-parallel data.

6.4.5 Analysis

0.0070

0.0075

0.0080

0.0085

P
ro
b
.
of

B
T
S
am

p
le
s

MLE MBT

Figure 6.2: Probability of pseudo-parallel
data from the forward model for WMT’14
En-Fr. MetaBT produces less diverse data
to fit the model better.

4

5

6

7

T
ra
in

P
P
L

MLE
MBT

17.5

20.0

22.5

25.0

27.5

D
ev

B
L
E
U

MLE
MBT

Figure 6.3: Training PPL and Validation BLEU
for WMT En-De throughout the forward model’s
training. MetaBT leads to consistently higher val-
idation BLEU by generating pseudo-parallel data
that avoids overfitting for the forwarwd model,
evident by a higher training PPL.

MetaBT Flexibly Avoids both Overfitting and Underfitting. We demonstrate
two constrasting behaviors of MetaBT in Figure 6.2 and Figure 6.3. In Figure 6.2, MetaBT
generates pseudo-parallel data for the forward model to learn in WMT En-Fr. Since
WMT En-Fr is large (40.8 million parallel sentences), the Transformer-Base forward model
underfits. By “observing” the forward model’s underfitting, perhaps via a low meta
validation performance, the backward model generates the pseudo-parallel data that the
forward model assigns a high probability, hence reducing the learning difficulty for the
forward model. In contrast, Figure 6.3 shows that for WMT En-De, the pseudo-parallel
data generated by the backward model leads to a higher training loss for the forward model.
Since WMT En-De has only 4.5 million parallel sentences which is about 10x smaller
than WMT En-Fr, we suspect that MetaBT generates harder pseudo-parallel data for the
backward model to avoid overfitting. In both cases, we have no control over the behaviors
of MetaBT, and hence we suspect that MetaBT can appropriately adjusts its behavior
depending on the forward model’s learning state.

MetaBT Samples Pseudo-Parallel Data Closer to the Meta Validation Set. Af-
ter showing that MetaBT can affect the forward model’s training in opposite ways, we
now show that MetaBT actually tries to generate pseudo-parallel data that are closed to
the meta validation data. Note that this is the expected behavior of MetaBT, since the

89

0 1 2 3 4 5 6 7 8 9

0.575

0.580

0.585

0.590

0.595

az

0 1 2 3 4 5 6 7 8 9

0.46

0.47

0.48

0.49

be

0 1 2 3 4 5 6 7 8 9

0.75

0.80

0.85

0.90

gl

0 1 2 3 4 5 6 7 8 9
0.740

0.745

0.750

0.755
sk

MLE MBT

L
R
L
V
oc
ab

O
ve
rl
ap

Figure 6.4: Percentage of words in the pseudo source sentences that are in the low-resource
vocabulary throughout training. MetaBT learns to favor the sentences that are more similar to
the data from the low-resource language.

ultimate objective is for the forward model to perform well on this meta validation set. We
focus on the multilingual setting because this setting highlights the vast difference between
the parallel data and the meta validation data. In particular, recall from Section 6.3 that
in order to translate a low-resource language S into language T , we use extra data from a
language S ′ which is related to S but which has abundant parallel data S ′-T . Meanwhile,
the meta validation set only consists of parallel sentences in S-T .

In Figure 6.4, we group the sampled sentences throughout the forward model’s training
into 10 bins based on the training steps that they are generated, and plot the percentage of
words in the pseudo source sentences that are from the vocabulary of S for each bin. As
seen from the figure, MetaBT keeps increasing the vocabulary coverage throughout training,
indicating that it favors the sentences that are more similar to the meta validation data,
which are from the low-resource language S.

<-
20

[-2
0,

-1
0)

[-1
0,

-5
) -5 -4 -3 -2 -1 0 1 2 3 4 5

[6
,1

1)
[1

1,
21

)
>=

21

len(output)-len(reference)

0

100

200

300

400

500

co
un

t

mle
mbt

Figure 6.5: Histogram of dif-
ferences in length between the
reference and system outputs.
MLE-trained BT tends to gen-
erate slightly more outputs with
lengths that greatly differ from
the reference.

Qualitative Analysis: MetaBT Generates Fewer
Pathological Outputs. In Figure 6.5, we plot the his-
togram of length differences between the reference sentences
and the translations of MetaBT and by our baseline MLE
on WMT En-De. We observe a consistent trend of the
MLE baseline to generate more sentences with pathological
length differences, i.e. more than ±5-10 words different from
the reference’s lengths. One such example is illustrated in
Table 6.2 in Section 6.7.4. We suspect that this happens
for MLE because while sampling-based back-translation
increases diversity of the outputs and aids overall forward
performance, it will still sometimes generate extremely bad
pseudo-parallel examples. Forward models that learn from
these bad inputs will sometimes produces translations that
are completely incorrect, for example being too short or too
long, causing the trends in Figure 6.5. MetaBT suffers less

from this problem because the backward model continues training to improve the forward
model’s dev set performance.

90

6.5 Related Work
Our work is related to methods that leverage monolingual data either on the source
side [79] or on the target side [51, 187] to improve the final translation quality. Going
beyond vanilla BT, IterativeBT [90] trains multiple rounds of backward and forward models
and observe further improvement. While MetaBT cannot push the backward model’s
quality as well, MetaBT is also much cheaper than multiple training rounds of IterativeBT.
DualNMT [228] jointly optimizes the backward model with the forward model, but relies
on indirect indicators, leading to weak performances as we showed in Section 6.4.4.

As MetaBT essentially learns to generate pseudo-parallel data for effective training,
MetaBT is a natural extensions of many methods that learn to re-weight or to select
extra data for training. For example, Soto et al. [191] and Dou et al. [49] select back-
translated data from different systems using heuristic, while Lin et al. [127], Wang and
Neubig [216], Wang et al. [218, 220] select the multilingual data that is most helpful for a
forward model. We find the relationship between MetaBT and these methods analogous to
the relationship between sampling from a distribution and computing the distribution’s
density.

The meta-learning technique in our method has also been applied to other tasks, such
as: learning initialization points [56, 73], designing architectures [131], generating synthetic
input images [192], and pseudo labeling [165].

6.6 Limitation, Future Work, and Conclusion
We propose Meta Back-Translation (MetaBT), an algorithm that learns to adjust a back-
translation model to generate data that are most effective for the training of the forward
model. Our experiments show that MetaBT outperforms strong existing methods on both
a standard NMT setting and a multilingual setting.

As discussed in Section 6.4.3 the large memory footprint is a current weakness that
makes it impossible to apply MetaBT to larger models. However, the resulting Transformer-
Base model trained by MetaBT still outperform Transformer-Large models trained in the
standard settings. Since the smaller Transformer-Base model are cheaper to deploy, MetaBT
still has its values. In the future, we expect this memory limitation will be lifted, e.g. when
better technology, such as automated model parallelism [121] or more powerful accelerators,
become available. When that happens, MetaBT’s will better realize its potential.

6.7 Appendix

6.7.1 Derivation for the Gradient of ψ
Notations. We present the derivation of the gradient of our backward model P (x|y;ψ)
that we stated in 6.8. Throughout the derivation, we use the standard Jacobian notations.
Specifically, if f(x1, x2, ..., xm) : Rm → Rn is a smooth function, then ∂f

∂x
∈ Rn×m is the

Jacobian matrix, where the entry at row ith and column jth is ∂fi
∂xj

. In the special case

91

that n = 1, ∂f
∂x

is the transpose of the gradient vector ∇xf . Additionally, per standard
conventions, vectors are column vectors unless otherwise specified. To avoid confusions, we
annotate the dimensions of the matrices and vectors in our equations.

Derivation. At training step tth, the forward model’s parameter from the previous step
was θ(t−1), and the backward model’s parameter was ψ(t−1). Based on ψ(t−1), and receiving
a sentence y ∼ PT (y) in the target language T , the backward model samples a pseudo
source sentence x̂ ∼ P (x|y;ψ(t−1)). Using (x̂, y), the forward model computes the gradient
and updates its parameter θ. For simplicity, we consider the case where the forward model
is trained with SGD with learning rate η. This leads to the following update:

θ(t) = θ(t−1) − η∇θ`
(
x̂, y; θ(t−1)

)
(6.10)

In MetaBT, we update ψ(t−1) into ψ(t) such that the loss of the forward model on the
development at the expected parameter θ(t) is minimized. We compute the gradient ∇ψ

according to this goal. The expected parameter θ(t) is:

θ
(t) = Ex̂∼P (x|y;ψ(t−1))

[
θ(t−1) − η∇θ`

(
x̂, y; θ(t−1)

)]
= θ(t−1) − η

∑
x̂

P
(
x̂
∣∣∣y;ψ(t−1)

)
∇θ`

(
x̂, y; θ(t−1)

) (6.11)

Here, the summation is taken over all possible sequences of tokens x. Note that under
regulatory conditions of the distribution P

(
x
∣∣∣y;ψ(t−1)

)
, this summation converges.

Now, for simplicity, let us denote the loss of the forward model at θ(t) on the development
set Ddev as Jdev

(
θ

(t)
)
. We apply the chain rule to compute ∇ψJdev as follows:

[∇ψJdev]> = ∂Jdev

∂ψ︸ ︷︷ ︸
1×|ψ|

= ∂Jdev

∂θ
(t)︸ ︷︷ ︸

1×|θ|

· ∂θ
(t)

∂ψ︸ ︷︷ ︸
|θ|×|ψ|

(6.12)

We will approximate the first factor in 6.12 using a single sample θ(t), which is calculated
according to the x̂ that we sample as discussed in 6.10, that is:

∂Jdev

∂θ
(t) ≈

∂Jdev

∂θ(t) (6.13)

92

Now we expand the second factor in 6.12 as follows:

∂Jdev

∂θ
(t)︸ ︷︷ ︸

|θ|×|ψ|

= ∂θ(t−1)

∂ψ︸ ︷︷ ︸
≈0 (Markov)

−η
∑
x

∇θ`
(
x, y; θ(t−1)

)
︸ ︷︷ ︸

|θ|×1

·
∂P

(
x
∣∣∣y;ψ(t−1)

)
∂ψ︸ ︷︷ ︸

1×|ψ|

(Markov assumption)

= −η
∑
x

∇θ`
(
x, y; θ(t−1)

)
︸ ︷︷ ︸

|θ|×1

·
∂ logP

(
x
∣∣∣y;ψ(t−1)

)
∂ψ︸ ︷︷ ︸

1×|ψ|

·P
(
x
∣∣∣y;ψ(t−1)

)
︸ ︷︷ ︸

scalar

(log-gradient trick)

= −ηEx∼P(x|y;ψ(t−1))

∇θ`
(
x, y; θ(t−1)

)
·
∂ logP

(
x
∣∣∣y;ψ(t−1)

)
∂ψ

(6.14)

Once again, we approximate this resulting expectation via a single sample x̂ ∼ P
(
x
∣∣∣y;ψ(t−1)

)
,

that is:
∂Jdev

∂θ
(t)︸ ︷︷ ︸

|θ|×|ψ|

≈ −η∇θ`
(
x̂, y; θ(t−1)

)
︸ ︷︷ ︸

|θ|×1

·
∂ logP

(
x̂
∣∣∣y;ψ(t−1)

)
∂ψ︸ ︷︷ ︸

1×|ψ|

(6.15)

Putting 6.13, 6.15, and 6.12 together, we have the final approximating gradient ∇ψJdev:

[∇ψJdev]> ≈ −η · ∂Jdev

∂θ(t)︸ ︷︷ ︸
1×|θ|

· ∇θ`
(
x̂, y; θ(t−1)

)
︸ ︷︷ ︸

|θ|×1

·
∂ logP

(
x̂
∣∣∣y;ψ(t−1)

)
∂ψ︸ ︷︷ ︸

1×|ψ|

(6.16)

Using associativity of matrix multiplications, we can group the first two factors which result
in a scalar. Then, by transposing both sides, we obtain the final result:

∇ψJdev︸ ︷︷ ︸
|ψ|×1

≈ −η ·
[
∇θJdev

(
θ(t)

)>
︸ ︷︷ ︸

1×|θ|

· ∇θ`
(
x̂, y; θ(t−1)

)
︸ ︷︷ ︸

|θ|×1

]
· ∇ψ logP

(
x̂
∣∣∣y;ψ(t−1)

)
︸ ︷︷ ︸

|ψ|×1
(6.17)

This final result is almost what we stated in 6.8. In 6.8, we do not have the learning rate
term −η, since η is a scalar and can be absorbed into the learning rate of the backward
model. Thus, our derivation is complete.

It is worth noting that our derivation above assumes that the forward model parameters
θ is updated with vanilla stochastic gradient descent. In reality, we either use Adam [108]
or LAMBOptimizer to update θ. In that case, the derivation of MetaBT stays almost the
same, except that at Equation 6.11, we will have a slightly different update:

θ
(t) = Ex̂∼P (x|y;ψ(t−1))

[
θ(t−1) − η · h

(
∇θ`

(
x̂, y; θ(t−1)

))]
, (6.18)

where h is the function specified by the optimizer. If we assume that all moving averages
and momentums of the optimizer are independent of θ and ψ, then we can simply replace
∇θ`

(
x̂, y; θ(t−1)

)
with h

(
∇θ`

(
x̂, y; θ(t−1)

))
and use follow the same derivation.

93

It is also worth noting that in our derivations, we made two strong approximations
about computing an expectation via a single sample, namely at 6.13 and 6.15, which could
potentially lead to a high variance in our approximation. However, since the backward
model P (x|y;ψ) is pre-trained to convergence, most of the samples x̂ from it will concentrate
around the correct pseudo source sentence, and hence the variance of these approximations
are reasonable. It is hard to measure such variance and confirm our hypothesis here.
Nevertheless, the fact that our training procedure does not diverge empirically suggests
that our approximations have acceptable variances.

6.7.2 Training Details
Here we list some other training details of the standard setting:

• We use the Transformer-Base architecture from Vaswani et al. [209]. All initialization
follow the paper.

• We share all embeddings and softmax weights between the encoder and the decoder.
• We use a batch size of 2048 sentences for the forward model, and a batch size of

1024 sentences for the backward model. We use a smaller batch size of 512 for the
validation batches that are sampled from Ddev.

• We train for 200,000 update steps, where each update step counts as one update
for the forward model and one update for the backward model, as we described in
Section 6.1.

The training details of the multilingual NMT setting are as follows:
• We use the transformer model with word embedding of dimension 512, and feed-

forward dimension of 1024. It has 6 layers and 4 attention heads for both the encoder
and the decoder.

• We share all embeddings between the encoder and the decoder.
• Since the dataset is relatively small, we ran each experiment 4 times with different

random seeds and record the average.
• To optimize the backward model, we use a baseline to stabilize training. We keep a

moving average baseline of the gradient dot-product as in 6.8 (the forward model’s
gradient alignment), and subtract the baseline from the current reward before each
update.

6.7.3 Effect of MBT on Multilingual Transfer
To further demonstrate the effect of these improvements in vocabulary coverage, we compare
the word prediction accuracy for target words in the training data of S ′-T . We bucket the
target words in the test set according to their frequency in S ′-T , and then calculate the
word F-1 scores for each bucket2. The difference of F-1 score between MBT and MLE for the
four languages in the multilingual setting are plotted in 6.6. We can see that MBT generally

2We use compare-mt for analysis [150]

94

[1, 10) [10, 100) [100, 1K) [1K, 10K)
−0.01

0.00

0.01

az be gl sk

Figure 6.6: Gain in target word F1 measures of MetaBT compared to MLE. Words are bucketed
from left to right based on increasing frequency in the S′-T data. MBT brings more gains on
target words have middle frequency in the related language data.

has higher word accuracy than MLE, and the gains are most significant for middle-frequency
words in the related language, probably because high-frequency words may be covered well
already by the training data in the low-resource language. The improved word accuracy
indicates that MBT can make better use of the data from the related language.

6.7.4 Example Translations

Src As the town ’ s contribution to the 150th anniversary of the Protestant Church in Haigerloch
, the town ’ s Office of Culture and Tourism is to dedicate the last of this year ’ s public
thematic tours on Sunday 27 October to the Abendsmahlskirche (Church of the Holy
Communion) .

Ref Als Beitrag der Stadt zum 150 - jährigen Bestehend der Evangelischen Kirche in Haigerloch
widmet das Kultur - und Tourismusbüro der Stadt die letzte ihrer diesjährigen öffentlichen
Themenführungen am Sonntag , 27 . Oktober , der Abendmahlskirche .

MLE Als Beitrag der Stadt zum 150.
MBT Als Beitrag der Stadt zum 150 - jährigen Bestehen der evangelischen Kirche in Haigerloch

widmet das Amt für Kultur und Tourismus am Sonntag , 27 . Oktober , der Abends-
mahlskirche die letzten öffentlichen Themenführungen .

Table 6.2: Examples of en-de translations.

6.7.5 Additional Experiments
Finetuning NoBT and MLE meta validation set. In a recent paper, Sun et al.
[195] suggests that some neural machine translation systems can achieve significant gain if

95

fine-tuned on in-domain data. However, these results are not always positive. In particular,
on the WMT-18 translation tasks, Sun et al. [195] observed that fine-tuning a converged
translation model on their validation data leads to +2 BLEU for their Chinese → English
translation task, but has almost no effect on their English → Chinese translation task.

Here, we perform the same experiment with our meta validation of our MetaBT experi-
ments, as described in Section 6.4 and Section 6.1. For WMT’ 14 En-De, we see a difference
of +0.08 BLEU for MLE and -0.03 BLEU for NoBT, which are insignificant. A glimpse at
several lines from the outputs of a diff command on the translations of the model before
and after finetuning on the meta validation set shows that most translations differ in just a
few words, mostly punctuations.

This result is not particularly surprising, because our meta validation set was extracted
from our training data, and not from a translation input tasks like the actual validation
data. For an in-depth understanding of this phenomenon, let us note that the Workshop
in Machine Translation (WMT) is an annual challenge. In the translation track, every
year, a small corpus of a few thousand test inputs is given. These yearly corpora, such
as newstest2014, newstest2015, etc. are used as benchmarks for their year. Then, every
subsequent year would use the newstestXXXX from previous years as validation data. As a
result, perhaps for some years, the validation data has a similar distribution to the test
data, which could lead to the improvement observed by Sun et al. [195]. Such improvements,
however, are counterintuitive, and do not hold in our experiment.

WMT 14 En-De WMT 14 En-Fr
All Translationese Original All Translationese Original

MLE 28.73 29.37 28.20 39.77 40.08 39.47
MetaBT 30.39 30.61 30.22 40.28 40.33 40.22

Table 6.3: BLEU scores on different subsets of WMT’14 En-De and WMT’14 En-Fr for MetaBT
and MLE.

Results on “translationese” splits. Translationese is a potential issue with back-
translation techniques, recently discussed in Edunov et al. [52]. Translationese refers to the
source sentences in the test sets which are themselves translations. For instance, a large
portion of the source sentences in the task of WMT’14 En-De, which are given English,
were originally collected in German and were then translated into English. Edunov et al.
[52] analyzed the issue that the translation quality for translationese could be better than
the translation quality for sentences that are written in original language. Edunov et al.
[52] found that there is no statistically significant difference in the translation quality of
these two categories. Here, we split our test sets for WMT’14 En-De and WMT’14 En-Fr
into translationese source sentences and original source sentences. We then measure the
BLEU scores for these test sets in these subsets. We report the resutls for MetaBT and
MLE in Table 6.3. We observe that for both methods, the BLEU score on the entire test
sets, on the translationese subset, and on the original subset differ by at most 0.64 BLEU.
The difference is smaller for German than for French, which is perhaps due to the linguistic
properties of these two langages. Most importantly, the BLEU differences across these

96

subsets for MLE is larger than these differences for MetaBT. This suggests that models
trained with MetaBT are less susceptible to the differences in translationese and original
source sentences.

97

98

Chapter 7

Conclusion

This thesis has presented the Neural Combinatorial Optimization algorithm (NCO), which
is the first neural approach that does not require training data but can still train attention-
based recurrent neural networks to find near-optimal solutions on the Traveling Salesman
Problem (TSP). A desirable property of the NCO algorithm is that it is problem-agnostic, in
the sense that NCO does not rely on any problem-specific heuristics when finding solutions
for various combinatorial optimization problems. Thanks to this property of NCO, various
of its applications were developed in this thesis to reduce the cost to train, design, and
collect training data for neural networks.

The body of work in this thesis, i.e., the NCO algorithm and its applications, was
completed between 2016 and 2021. During this span of thes years, many subsequent works
have been developed up on the results of this thesis. Some of these works showed that the
methods developed in this thesis are in fact more effective than the applications presented,
while some of these works revealed the limitations of these methods. To conclude this thesis,
this chapter will discuss some of these impacts and limitations of the NCO algorithm and
its applications.

7.1 Impacts and Limitations of Neural Combinatorial
Optimization (NCO)

NCO is the first machine learning approach that can achieve similar performance to Con-
corde [5] on various TSP benchmarks. This is an impressive performance, especially when
one considers the context that Concorde is a specific TSP solver which takes decades to
develop and which relies on many TSP heuristics. NCO’s success on TSP has inspired
subsequent works to develop machine learning approaches, and more specifically, rein-
forcement learning approaches to solve other combinatorial optimization problems. For
instance, Nazari et al. [145] studied Q-Learning for the Vehicle Routing problem. Dai et al.
[43] studied both Q-Learning and policy gradient methods for various graph optimizatin
problems such ax Vertex Cover, MaxCut, and Generalized TSP. Selsam et al. [186] further
studied a hybrid approach between reinforcement learning and inference algorithms for the
SAT problem. These subsequent works attested to the pioneer contribution of NCO in

99

combinatorial optimization problems.
As alternatives to NCO, various other algorithms have been shown to find good solutions

to combinatorial optimization problems. For instance, evolutionary algorithms [174, 175]
are also capable of finding good architectures in the context of neural architecture search.
Simulated annealing and Monte Carlo Tree Search (MCTS) have also been applied to
develop more general device placement algorithms and to optimize various aspects of
compilers [248, 249]. These works, along with NCO, contribute to a large tool kit of modern
discrete optimization algorithms that can achieve strong performance across multiple tasks.

A limitation of NCO is that the algorithm does not always return the absolute optimal
configuration for certain search spaces. This property is perhaps expected for NCO as NCO
is based on training a neural network using reinforcement learning, and neural networks are
subjected to various local optimality. This property sometimes makes NCO less appealing
for classical combinatorial optimization problems, such as the TSP, it is important to find
bounds and to search for absolutely optimal solutions. However, NCO is very appealing for
more applied tasks where the concern is near-optimal performances, rather than guarantees
for absolute optimality. These tasks are prevalent, such as those in Automated Machine
Learning [40, 140, 163, 251].

Another limitation of NCO is that the algorithm’s running time heavily depends on the
time to evaluate the proposed solutions. This is evident in various works in Automated
Machine Learning such as vanilla neural architecture search [251, 253], neural optimizer
search [15], AutoAugment [40], and AutoDropout [163]. In the listed works, evaluating
each configuration generated by the NCO algorithm takes can take from hours to days on a
few accelerators such as GPUs or TPUs. As NCO needs to see many samples and their
rewards to update its parameters, applying NCO in these instances is very expensive. The
expense of NCO becomes even more prohibitive in harder applications. For instance, if one
wants to design a drug that interacts with a particular protein for positive effects, such as
slowing down cancer spreads, then even though in theory, NCO can sample multiple drug
formulas and try them to eventually find the best formula, the turnaround time for each
drug formula would be weeks, months, or years. Thus, NCO is current not applicable to
these tasks.

7.2 Impacts and Limitations of Efficient Neural Ar-
chitecture Search (ENAS)

ENAS is perhaps the most controversial algorithm developed in this thesis. On the positive
side, ENAS’s significant reduction of search time compared to NAS has turned NAS from a
“luxury” of industrial labs with affluent computational resources into a “fair game” for all
research labs. The main contribution of ENAS, i.e., weight-sharing technique, is almost
always cited in subsequent papers in Automated machine learning, asserting the importance
of ENAS’s contribution. One important work that was developed based on the weight-
sharing technique of ENAS is Differentiable Architecture Search (DARTS; [131]). DARTS
uses the formulation of a shared computational graph in ENAS to represent its search
space, but replaces the reinforcement learning updates of ENAS with differentiable updates

100

based on second-ordered gradients. Since its publication in 2019, DARTS has become the
de-facto algorithm for architecture search.

The impact of ENAS also extends further outside the context of neural architecture
searcn. In particular, a trend has been observed in the literature of automated machine
learning (AutoML). In this trend, whenever an AutoML algorithm is proposed and relies on
intensive computational resources, then a few months later, an improved algorithm would be
proposed that utilizes the weight-sharing technique in ENAS to reduce the computational
requirement by a few order of magnitudes. A famous example is AutoAugment [40] and
Fast AutoAugment [124].

On the negative side, ENAS has received to main criticisms of the research community:

1. First, Li and Talwalkar [123] showed that random search, i.e., randomly generating
multiple architectures from a search space and taking the best out of them, can
achieve similar performance to ENAS. First, while Li and Talwalkar [123] showed
that random search can achieve similar performance to ENAS on CIFAR-10, random
search by itself is a lot more expensive than ENAS. In particular, taking the very first
architecture from a search space of 1016 possibilities and hoping that it outperforms
the architecture found by ENAS is based on pure luck. In order words, in order to
achieve similar performances to ENAS, multiple random architectures need to be
evaluated, which already caused the search cost to exceed that of ENAS for multiple
times. Furthermore, a recent study titled “Can weight-sharing outperform random
architecture search?” [16] has directly concluded the discussion on weight-sharing
versus random search. The verdict is positive for the weight-sharing, and was found
on ImageNet [180] which is a larger and more reliable dataset than CIFAR-10 as used
in Li and Talwalkar [123].

2. Second, Yu et al. [239] showed that on small and controllable search spaces, ENAS
incorrectly ranks the architectures compared to their actual performances. Here, I
acknowledge that this behavior is expected for ENAS (as well as for DARTS and other
weight-sharing neural architecture search algorithms). This is because the weight-
sharing procedure will favor architectures that train faster on any given dataset. This
phenomenon is colloquially called “the rich becomes richer”. However, this behavior
does not mean that ENAS is a wrong search algorithm. In fact, this behavior only
indicates that ENAS (and DARTS, and other weight-sharing architecture search
algorithms) fail to find the optimal architecture. This comes at no surprise, just
like the NCO alogrithm has no guarantee of finding the optimal solutin for the TSP.
Furthermore, the conclusion of ENAS, i.e. weight-sharing arachitecture search can
find architectures with similar performance to non weight-sharing architecture search,
is not affected by the observation that ENAS misranks the architectures.

Therefore, even though both main criticisms have their own merits and they do create healthy
debates within the field of automated machine learning, especially neural architecture search,
these criticisms do not outshine the values of ENAS – the weight-sharing technique can
significantly reduce the search time for architecture search.

101

7.3 Impacts and Limitations of Meta Pseudo Labels
and Meta Back-Translation

Unlike NCO ans ENAS, Meta Pseudo Labels (MPL; Chapter 5) and Meta Back-Translation
(MetaBT; Chapter 6) were published much more recently in 2021, and hence have not
been thoroughly examined by the field. The foreseeable impact of MPL and MetaBT is
that the both lead to very strong performances on their corresponding tasks, namely image
classification and machine translation. However, the serious shortcoming of both methods
is that they both cause painfully large memory footprints because both methods need to
store two models in their memory. In particular, MPL needs to store the teacher model and
the student model, while MetaBT needs to store both the forward translation model and
the backward translation model. Resolving this memory bottleneck is the most important
step in order to make MPL and MetaBT widely adopted.

7.4 Epilogue
Overall, the takeaway message of this thesis is that many decisions in modern deep learning
algorithms could be formulated as combinatorial optimization problems. Once such a
formulation can be obtained, the NCO algorithm or one of its alternatives and variants can
serve as a black-box optimization algorithm to provide good solutions.

102

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Benoit G, Derek . Murrayand Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. Tensorflow: A system for large-scale machine learning. In USENIX Symposium
on Operating Systems Design and Implementation, 2016.

[2] Sreeram V. B. Aiyer, Mahesan Niranjan, and Frank Fallside. A theoretical investigation
into the performance of the Hopfield model. IEEE Transactions on Neural Networks,
1990.

[3] Bernard Angeniol, Gael De La Croix Vaubois, and Jean-Yves Le Texier. Self-organizing
feature maps and the Travelling Salesman Problem. Neural Networks, 1988.

[4] David Applegate, Robert Bixby, Vašek Chvátal, and William Cook. Implement-
ing the dantzig-fulkerson-johnson algorithm for large traveling salesman problems.
Mathematical programming, 2003.

[5] David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook. Concorde
tsp solver, 2006. URL www.math.uwaterloo.ca/tsp/concorde.

[6] David L Applegate, Robert E Bixby, Vasek Chvatal, and William J. Cook. The
traveling salesman problem: a computational study. Princeton university press, 2011.

[7] Eric Arazo, Diego Ortego, Paul Albert, Noel E. O’Connor, and Kevin McGuinness.
Pseudo-labeling and confirmation bias in deep semi-supervised learning. Arxiv,
1908.02983, 2019.

[8] Sercan O Arik, Mike Chrzanowski, Adam Coates, Gregory Diamos, Andrew Gibiansky,
Yongguo Kang, Xian Li, John Miller, Jonathan Raiman, Shubho Sengupta, et al.
Deep voice: Real-time neural text-to-speech. Arxiv 1702.07825, 2017.

[9] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. In International Conference on Learning
Representations, 2015.

[10] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural
network architectures using reinforcement learning. In International Conference on
Learning Representations, 2017.

[11] Bowen Baker, Gupta Otkrist, Ramesh Raskar, and Nikhil Naik. Accelerating neural

103

www.math.uwaterloo.ca/tsp/concorde

architecture search using performance prediction. Arxiv, 1705.10823, 2017.
[12] S. T. Barnard and H. D. Simon. A fast multilevel implementation of recursive

spectral bisection for partitioning unstructured problems. Concurrency: practice and
Experience, 6(2):101–117, 1994.

[13] Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and
Frank Wood. Online learning rate adaptation with hypergradient descent. In Inter-
national Conference on Learning Representations, 2018.

[14] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural
combinatorial optimization with reinforcement learning. In International Conference
on Learning Representations Workshop, 2017.

[15] Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V Le. Neural optimizer search
with reinforcement learning. In International Conference on Machine Learning, 2017.

[16] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang Cheng, Pieter-Jan
Kindermans, and Quoc V. Le. Can weight sharing outperform random architecture
search? an investigation with tunas. In IEEE Conference on Computer Vision and
Pattern Recognition, 2019.

[17] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver,
and Colin Raffel. MixMatch: A holistic approach to semi-supervised learning. In
Advances in Neural Information Processing Systems, 2019.

[18] David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Kihyuk Sohn, Han
Zhang, and Colin Raffel. Remixmatch: Semi-supervised learning with distribution
alignment and augmentation anchoring. In International Conference on Learning
Representations, 2020.

[19] Dimitris Bertsimas and Ramazan Demir. An approximate dynamic programming
approach to multidimensional knapsack problems. Management Science, 48(4), 2002.

[20] Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron
van den Oord. Are we done with ImageNet? arXiv preprint arXiv:2006.07159, 2020.

[21] Andrew Brock, Theodore Lim, James M. Ritchie, and Nick Weston. SMASH: one-
shot model architecture search through hypernetworks. International Conference on
Learning Representations, 2018.

[22] Tom B. Brow, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Chlld, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners. In Advances in Neural Information
Processing Systems, 2020.

[23] Edmund Burke, Graham Kendall, Jim Newal, Emma Hart, Peter Ross, and Sonia
Schulenburg. Hyperheuristics: An emerging direction in modern search technology.

104

2003.
[24] Edmund K. Burke, Michel Gendreau, Matthew R. Hyde, Graham Kendall, Gabriela

Ochoa, Ender Özcan, and Rong Qu. Hyper-heuristics: a survey of the state of the
art. JORS, 2013.

[25] Laura I. Burke. Neural methods for the Traveling Salesman Problem: insights from
operations research. Neural Networks, 1994.

[26] Han Cai, Tianyao Chen, Weinan Zhang, Yong. Yu, and Jun Wang. Efficient architec-
ture search by network transformation. In AAAI, 2018.

[27] William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol Vinyals. Listen, attend and
spell. Arxiv 1508.01211, 2015.

[28] Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien. Semi-Supervised Learning.
The MIT Press, 2010.

[29] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A sim-
ple framework for contrastive learning of visual representations. In International
Conference on Machine Learning, 2020.

[30] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey
Hinton. Big self-supervised models are strong semi-supervised learners. In Advances
in Neural Information Processing Systems, 2020.

[31] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with
momentum contrastive learning. Arxiv, 2003.04297, 2020.

[32] Yutian Chen, Matthew W. Hoffman, Sergio Gomez Colmenarejo, Misha Denil, Timo-
thy P. Lillicrap, and Nando de Freitas. Learning to learn for global optimization of
black box functions. Arxiv 1611.03824, 2016.

[33] Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu.
Semi-supervised learning for neural machine translation. In ACL, 2016.

[34] C. Chevalier and F. Pellegrini. Improvement of the efficiency of genetic algorithms
for scalable parallel graph partitioning in a multi-level framework. EuroPar, Dresden,
LNCS 4128, September 2006.

[35] Kyunghyun Cho. Noisy parallel approximate decoding for conditional recurrent
language model. Arxiv 1605.03835, 2016.

[36] Francois Chollet. Xception: Deep learning with depthwise separable convolutions. In
IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[37] Nicos Christofides. Worst-case analysis of a new heuristic for the Travelling Salesman
Problem. In Graduate School of Industrial Administration, CMU, Report 388, 1976.

[38] Jonathan H. Clark, Chris Dyer, Alon Lavie, and Noah A. Smith. Better hypothesis
testing for statistical machine translation: Controlling for optimizer instability. In
ACL, 2011.

[39] Jasmine Collins, Jascha Sohl-Dickstein, and David Sussillo. Capacity and trainability
in recurrent neural networks. In International Conference on Learning Representations,

105

2017.
[40] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le.

AutoAugment: Learning augmentation policies from data. In IEEE Conference on
Computer Vision and Pattern Recognition, 2019.

[41] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Prac-
tical data augmentation with no separate search. In Advances in Neural Information
Processing Systems, 2020.

[42] Anna Currey, Antonio Valerio Miceli Barone, and Kenneth Heafield. Copied monolin-
gual data improves low-resource neural machine translation. In WMT, 2017.

[43] Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning
combinatorial optimization algorithms over graphs. In Advances in Neural Information
Processing Systems, 2017.

[44] George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale
traveling-salesman problem. Journal of the operations research society of America,
1954.

[45] Boyang Deng, Junjie Yan, and Dahua Lin. Peephole: Predicting network performance
before training. Arxiv, 1705.10823, 2017.

[46] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. Arxiv,
1810.04805, 2018.

[47] Terrance DeVries and Graham W. Taylor. Improved regularization of convolutional
neural networks with cutout. Arxiv, 1708.04552, 2017.

[48] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. Arxiv, 2010.11929, 2020.

[49] Zi-Yi Dou, Antonios Anastasopoulos, and Graham Neubig. Dynamic data selection
and weighting for iterative back-translation. arXiv preprint arXiv:2004.03672, 2020.

[50] Richard Durbin. An analogue approach to the Travelling Salesman. Nature, 1987.
[51] Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-

translation at scale. In EMNLP, 2018.
[52] Sergey Edunov, Myle Ott, Marc’Aurelio Ranzato, and Michael Auli. On the evaluation

of machine translation systems trained with back-translation. In Annual Meeting of
the Association for Computational Linguistics, 2020.

[53] Andre Esteva, Brett Kuprel, Rob Novoa, Justin Ko, Susan Swetter, Helen M. Blau,
and Sebastian Thrun. Dermatologist-level classification of skin cancer. Nature, 2016.

[54] Favio Favata and Richard Walker. A study of the application of Kohonen-type neural
networks to the travelling salesman problem. Biological Cybernetics, 1991.

[55] Charles M Fiduccia and Robert M Mattheyses. A linear-time heuristic for improving

106

network partitions. In Papers on Twenty-five years of electronic design automation.
ACM, 1988.

[56] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for
fast adaptation of deep networks. In ICML, 2017.

[57] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for
fast adaptation of deep networks. In International Conference on Machine Learning,
2017.

[58] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware
minimization for efficiently improving generalization. Arxiv, 2010.01412, 2020.

[59] J. C. Fort. Solving a combinatorial problem via self-organizing process: an application
of the Kohonen algorithm to the traveling salesman problem. Biological Cybernetics,
1988.

[60] Tommaso Furlanello, Zachary C. Lipton, Michael Tschannen, Laurent Itti, and Anima
Anandkumar. Born again neural networks. In International Conference on Machine
Learning, 2018.

[61] Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout
in recurrent neural networks. In Advances in Neural Information Processing Systems,
2016.

[62] Xavier Gastaldi. Shake-shake regularization of 3-branch residual networks. In
International Conference on Learning Representations Workshop Track, 2016.

[63] Andrew Howard Gee. Problem solving with optimization networks. PhD thesis, 1993.
[64] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V. Le. Dropblock: A regularization method

for convolutional networks. In Advances in Neural Information Processing Systems,
2018.

[65] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation
learning by predicting image rotations. In IEEE Conference on Computer Vision and
Pattern Recognition, 2018.

[66] Fred Glover and Manuel Laguna. Tabu Search. 2013.
[67] Google. Or-tools, google optimization tools, 2016. URL https://developers.

google.com/optimization.
[68] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo

Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, Large Minibatch
SGD: Training ImageNet in 1 Hour. Arxiv 1706.02677, 2017.

[69] Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimiza-
tion. In International Conference on Computer Vision, 2005.

[70] Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural language mod-
els with a continuous cache. In International Conference on Learning Representations,
2017.

[71] Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition with recurrent

107

https://developers.google.com/optimization
https://developers.google.com/optimization

neural networks. In International Conference on Machine Learning, 2014.
[72] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre

H. Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-
han Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu,
Remi Munos, and Michal Valko. Bootstrap your own latent: A new approach to
self-supervised learning. In Advances in Neural Information Processing Systems,
2020.

[73] Jiatao Gu, Yong Wang, Yun Chen, Victor O. K. Li, and Kyunghyun Cho. Meta-
learning for low-resource neural machine translation. In EMNLP, 2018. URL https:
//www.aclweb.org/anthology/D18-1398.

[74] Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loic Barrault, Huei-Chi
Lin, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. On using monolingual
corpora in neural machine translation. arXiv preprint arXiv:1503.03535, 2015.

[75] David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks. In International Conference
on Learning Representations, 2017.

[76] Lars Hagen and Andrew B Kahng. New spectral methods for ratio cut partitioning
and clustering. IEEE transactions on computer-aided design of integrated circuits
and systems, 11(9), 1992.

[77] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen,
Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al. Deep speech:
Scaling up end-to-end speech recognition. Arxiv 1412.5567, 2014.

[78] Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio Ranzato. Revisiting self-
training for neural sequence generation. In International Conference on Learning
Representations, 2020.

[79] Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio Ranzato. Revisiting self-
training for neural sequence generation. In ICLR, 2020.

[80] Kaiming He, Xiangyu Zhang, Shaoqing Rein, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In IEEE
Conference on Computer Vision and Pattern Recognition, 2015.

[81] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In IEEE Conference on Computer Vision and Pattern Recognition,
2016.

[82] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in
deep residual networks. In CPVR, 2016.

[83] Kaiming He, Haoqi Fan, Yuxin Wu, Saining He, and Ross Girshick. Momentum
contrast for unsupervised visual representation learning. In IEEE Conference on
Computer Vision and Pattern Recognition, 2020.

[84] Keld Helsgaun. An effective implementation of the Lin-Kernighan traveling salesman.
European Journal of Operational Research, 2000.

[85] Keld Helsgaun. LK-H, 2012. URL http://akira.ruc.dk/~keld/research/LKH/.

108

https://www.aclweb.org/anthology/D18-1398
https://www.aclweb.org/anthology/D18-1398
http://akira.ruc.dk/~keld/research/LKH/

[86] Olivier J. Henaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch,
S. M. Ali Eslami, and Aaron van den Oord. Data-efficient image recognition with
contrastive predictive coding. Arxiv, 2003.04297, 2020.

[87] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs.
Technical Report SAND93–1301, Sandia National Laboratories, June 1993.

[88] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath,
et al. Deep neural networks for acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal Processing Magazine, 2012.

[89] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. Arxiv, 1503.02531, 2015.

[90] Vu Cong Duy Hoang, Philipp Koehn, Gholamreza Haffari, and Trevor Cohn. Iterative
back-translation for neural machine translation. In ACL, 2018.

[91] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. In Neural
Computations, 1997.

[92] John J. Hopfield and David W. Tank. "Neural" computation of decisions in optimiza-
tion problems. Biological Cybernetics, 1985.

[93] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018.

[94] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks. In IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

[95] Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam,
Quoc V Le, and Zhifeng Chen. GPipe: Efficient training of giant neural networks
using pipeline parallelism. In Advances in Neural Information Processing Systems,
2019.

[96] Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word
classifiers: a loss framework for language modeling. In International Conference on
Learning Representations, 2017.

[97] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on Machine
Learning, 2015.

[98] Jacob Jackson and John Schulman. Semi-supervised learning by label gradient
alignment. Arxiv 1902.02336, 2019.

[99] David S Johnson, Cecilia R Aragon, Lyle A McGeoch, and Catherine Schevon.
Optimization by simulated annealing: an experimental evaluation; part i, graph
partitioning. Operations research, 37(6), 1989.

[100] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu.
Exploring the limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.

109

[101] Jacob Kahn, Ann Lee, and Awni Hannun. Self-training for end-to-end speech recogni-
tion. In IEEE International Conference on Acoustics, Speech, and Signal Processing,
2020.

[102] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. Technical Report 95-035, University of Minnesota, June 1995.

[103] George Karypis and Vipin Kumar. Metis–unstructured graph partitioning and sparse
matrix ordering system, version 2.0. 1995.

[104] Zhanghan Ke, Daoye Wang, Qiong Yan, Jimmy Ren, and Rynson W. H. Lau. Dual stu-
dent: Breaking the limits of the teacher in semi-supervised learning. In International
Conference in Computer Vision, 2019.

[105] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems. Springer-
Verlag Berlin Heidelberg, 2004.

[106] Brian W Kernighan and Shen Lin. An efficient heuristic procedure for partitioning
graphs. The Bell system technical journal, 49(2), 1970.

[107] Ashish Khetan and Sewoong Oh. Achieving budget-optimality with adaptive schemes
in crowdsourcing. In Advances in Neural Information Processing Systems. 2016.

[108] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization.
In International Conference on Learning Representations, 2015.

[109] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 1983.

[110] Scott Kirkpatrick, Mario P Vecchi, et al. Optimization by simulated annealing.
Science, 220(4598), 1983.

[111] Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, 1990.
[112] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung,

Sylvain Gelly, and Neil Houlsby. Big transfer (bit): General visual representation
learning. In Proceedings of the European Conference on Computer Vision (ECCV),
2020.

[113] Ben Krause, Emmanuel Kahembwe, Iain Murray, and Steve Renals. Dynamic evalua-
tion of neural sequence models. Arxiv, 1709.07432, 2017.

[114] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, 2009.

[115] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Processing
Systems, 2012.

[116] Taku Kudo and John Richardson. Sentencepiece: A simple and language independent
subword tokenizer and detokenizer for neural text processing. In EMNLP, 2018.

[117] Bert F. J. La Maire and Valeri M. Mladenov. Comparison of neural networks for
solving the Travelling Salesman Problem. In NEUREL, 2012.

[118] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In

110

International Conference on Learning Representations, 2017.
[119] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-

deep neural networks without residuals. In International Conference on Learning
Representations, 2017.

[120] Dong-Hyun Lee. Pseudo-Label: The simple and efficient semi-supervised learning
method for deep neural networks. In International Conference on Machine Learning
Workshop, 2013.

[121] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling
giant models with conditional computation and automatic sharding. Arxiv, 2006.16668,
2020.

[122] Junnan Li, Pan Zhou, Caiming Xiong, Richard Socher, and Steven CH Hoi. Pro-
totypical contrastive learning of unsupervised representations. Arxiv, 2005.04966,
2020.

[123] Liam Li and Ameet Talwalkar. Random search and reproducibility for neural archi-
tecture search. In Conference on Uncertainty in Artificial Intelligence, 2019.

[124] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast
autoaugment. In Advances in Neural Information Processing Systems, 2019.

[125] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. Arxiv, 1312.4400,
2013.

[126] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Operations Research, 1973.

[127] Yu-Hsiang Lin, Chian-Yu Chen, Jean Lee, Zirui Li, Yuyan Zhang, Mengzhou Xia,
Shruti Rijhwani, Junxian He, Zhisong Zhang, Xuezhe Ma, Antonios Anastasopoulos,
Patrick Littell, and Graham Neubig. Choosing transfer languages for cross-lingual
learning. In ACL, 2019.

[128] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. Arxiv,
1712.00559, 2017.

[129] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li,
Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural
architecture search. In Proceedings of the European Conference on Computer Vision
(ECCV), 2018.

[130] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray
Kavukcuoglu. Hierarchical representations for efficient architecture search. In Inter-
national Conference on Learning Representations, 2018.

[131] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture
search. In International Conference on Learning Representations, 2019.

[132] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm
restarts. In International Conference on Learning Representations, 2017.

111

[133] Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser.
Multi-task sequence to sequence learning. In International Conference on Learning
Representations, 2016.

[134] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri,
Yixuan Li, Ashwin Bharambe, and Laurens van der Maaten. Exploring the limits of
weakly supervised pretraining. Proceedings of the European Conference on Computer
Vision (ECCV), 2018.

[135] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. Resource
management with deep reinforcement learning. In ACM Workshop on Hot Topics in
Networks, 2016.

[136] Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schasberger. The penn treebank: Annotating
predicate argument structure. In Proceedings of the Workshop on Human Language
Technology, 1994.

[137] Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in
neural language models. Arxiv, 1707.05589, 2017.

[138] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and opti-
mizing LSTM language models. Arxiv, 1708.02182, 2017.

[139] Olaf Mersmann, Bernd Bischl, Jakob Bossek, Heike Trautmann, Markus Wagner,
and Frank Neumann. Local search and the traveling salesman problem: A feature-
based characterization of problem hardness. In Learning and Intelligent Optimization.
Springer, 2012.

[140] Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng
Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device
placement optimization with reinforcement learning. In International Conference on
Machine Learning, 2017.

[141] Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant
representations. In IEEE Conference on Computer Vision and Pattern Recognition,
2020.

[142] Takeru Miyato, Shin-ichi Maeda, Shin Ishii, and Masanori Koyama. Virtual adversarial
training: a regularization method for supervised and semi-supervised learning. In
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.

[143] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P.
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. arXiv preprint arXiv:1605.03835, 2016.

[144] Rafael Müller, Simon Kornblith, and Geoffrey Hinton. When does label smoothing
help? In Advances in Neural Information Processing Systems, 2019.

[145] Mohammadreza Nazari, Afshin Oroojlooy, Martin Takac, and Lawrence V. Snyder.
Reinforcement learning for solving the vehicle routing problem. In Advances in Neural
Information Processing Systems, 2018.

112

[146] Renato Negrinho and Geoff Gordon. Deeparchitect: Automatically designing and
training deep architectures. In CPVR, 2017.

[147] Yurii E. Nesterov. A method for solving the convex programming problem with
convergence rate o(1/k2). Soviet Mathematics Doklady, 1983.

[148] Yuval Netzer, Tao Wang, Alessandro Coates, Adamand Bissacco, Bo Wu, and An-
drew Y. Ng. Reading digits in natural images with unsupervised feature learning. In
Advances in Neural Information Processing Systems Workshop on Deep Learning and
Unsupervised Feature Learning, 2011.

[149] Graham Neubig and Junjie Hu. Rapid adaptation of neural machine translation to
new languages. EMNLP, 2018.

[150] Graham Neubig, Zi-Yi Dou, Junjie Hu, Paul Michel, Danish Pruthi, and Xinyi Wang.
compare-mt: A tool for holistic comparison of language generation systems. In
NAACL, 2019.

[151] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations
by solving jigsaw puzzles. In IEEE Conference on Computer Vision and Pattern
Recognition, 2018.

[152] Avital Oliver, Augustus Odena, Colin Raffel, Ekin D. Cubuk, and Ian J. Goodfellow.
Realistic evaluation of deep semi-supervised learning algorithms. In Advances in
Neural Information Processing Systems, 2018.

[153] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet:
A generative model for raw audio. Arxiv 1609.03499, 2016.

[154] Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the resolution
of large-scale symmetric traveling salesman problems. Society for Industrial and
Applied Mathematics, 1990.

[155] Christos H. Papadimitriou. The Euclidean Travelling Salesman Problem is NP-
complete. Theoretical Computer Science, 1977.

[156] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for
automatic evaluation of machine translation. In ACL, 2002.

[157] Daniel S. Park, Yu Zhang, Ye Jia, Wei Han, Chung-Cheng Chiu, Bo Li, Yonghui Wu,
and Quoc V. Le. Improved noisy student training for automatic speech recognition.
In Interspeech, 2020.

[158] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In International Conference on Machine Learning, 2013.

[159] Deepak Pathak, Philipp Krahenbühl, Jeff Donahue, Trevor Darrell, and Alexei A.
Efrös. Context encoders: Feature learning by inpainting. In IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[160] F. Pellegrini. A parallelisable multi-level banded diffusion scheme for computing
balanced partitions with smooth boundaries. EuroPar, Rennes, LNCS 4641, August
2007.

113

[161] F. Pellegrini. Distillating knowledge about scotch. 2009.
[162] F. Pellegrini and J. Roman. Experimental analysis of the dual recursive bipartitioning

algorithm for static mapping. Research Report, LaBRI, Universite Bordeaux I, August
1996.

[163] Hieu Pham and Quoc V. Le. Autodropout: Learning dropout patterns to regularize
deep networks. In Association for the Advancement of Artificial Intelligence (AAAI)
Conference, 2021.

[164] Hieu Pham, Melody Y. Guan, Zoph Barret, Quoc V. Le, and Jeff Dean. Efficient
neural architecture search via parameter sharing. In International Conference on
Machine Learning, 2018.

[165] Hieu Pham, Qizhe Xie, Zihang Dai, and Quoc V. Le. Meta pseudo labels. Arxiv
2003.10580, 2020.

[166] Hieu Pham, Xinyi Wang, Yiming Yang, and Graham Neubig. Meta back-translation.
In International Conference on Learning Representations, 2021.

[167] David Pisinger. An expanding-core algorithm for the exact 0-1 knapsack problem
european journal of operational research. European Journal of Operational Research,
1995.

[168] David Pisinger. A minimal algorithm for the 0-1 knapsack problem. Operations
Research, 1997.

[169] Ye Qi, Devendra Singh Sachan, Matthieu Felix, Sarguna Padmanabhan, and Graham
Neubig. When and why are pre-trained word embeddings useful for neural machine
translation? In NAACL, 2018.

[170] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual models from natural
language supervision. 2021. URL https://cdn.openai.com/papers/Learning_
Transferable_Visual_Models_From_Natural_Language_Supervision.pdf.

[171] Ilija Radosavovic, Piotr Dollár, Ross Girshick, Georgia Gkioxari, and Kaiming He.
Data distillation: Towards omni-supervised learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018.

[172] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal of Machine Learning Research, 2019.

[173] Ali Sharif Razavian, Hossein Azizpour, Sullivan Josephine, and Stefan Carlsson. Cnn
features off-the-shelf: an astounding baseline for recognition. In IEEE Conference on
Computer Vision and Pattern Recognition, 2014.

[174] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Suematsu Leon,
Jie Tan, Quoc Le, and Alex Kurakin. Large-scale evolution of image classifiers. In
International Conference on Machine Learning, 2017.

[175] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution

114

https://cdn.openai.com/papers/Learning_Transferable_Visual_Models_From_Natural_Language_Supervision.pdf
https://cdn.openai.com/papers/Learning_Transferable_Visual_Models_From_Natural_Language_Supervision.pdf

for image classifier architecture search. Arxiv, 1802.01548, 2018.
[176] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution

for image classifier architecture search. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, 2019.

[177] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight
examples for robust deep learning. In International Conference on Machine Learning,
2018.

[178] Zhongzheng Ren, Raymond A. Yeh, and Alexander G. Schwing. Not all unlabeled
data are equal: Learning to weight data in semi-supervised learning. 2020.

[179] Ellen Riloff. Automatically generating extraction patterns from untagged text. In
Proceedings of the national conference on artificial intelligence, 1996.

[180] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision, 2015.

[181] Farah Sarwar and Abdul Aziz Bhatti. Critical analysis of Hopfield’s neural net-
work model for TSP and its comparison with heuristic algorithm for shortest path
computation. In IBCAST, 2012.

[182] Shreyas Saxena and Jakob Verbeek. Convolutional neural fabrics. In Advances in
Neural Information Processing Systems, 2016.

[183] Jurgen Schmidhuber. Learning to control fast-weight memories: An alternative to
dynamic recurrent networks. In Neural Computation, 1992.

[184] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient
estimation using stochastic computation graphs. In Advances in Neural Information
Processing Systems, 2015.

[185] H Scudder. Probability of error of some adaptive pattern-recognition machines. IEEE
Transactions on Information Theory, 11(3), 1965.

[186] Daniel Selsam, Matthew Lamm, Benedikt Bunz, Percy Liang, David L. Dill, and
Leonardo de Moura. Learning a sat solver from single-bit supervision. In International
Conference on Learning Representations, 2019.

[187] Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine
translation models with monolingual data. In ACL, 2016.

[188] Kate A. Smith. Neural networks for combinatorial optimization: a review of more
than a decade of research. INFORMS Journal on Computing, 1999.

[189] Kihyuk Sohn, David Berthelot, Zizhao Li, Chun-Liang Zhang, Nicholas Carlini,
Ekin D. Cubuk, Alex Kurakin, Han Zhang, and Colin Raffel. Fixmatch: Simplifying
semi-supervised learning with consistency and confidence. In IEEE Conference on
Computer Vision and Pattern Recognition, 2020.

[190] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mass: Masked sequence

115

to sequence pre-training for language generation. arXiv preprint arXiv:1905.02450,
2019.

[191] Xabier Soto, Dimitar Shterionov, Alberto Poncelas, and Andy Way. Selecting back-
translated data from multiple sources for improved neural machine translation. In
ACL, 2020.

[192] Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth O. Stanley, and Jeff Clune.
Generative teaching networks: Accelerating neural architecture search by learning to
generate synthetic training data. In arxiv, 2019.

[193] Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth O. Stanley, and Jeff Clune.
Generative teaching networks: Accelerating neural architecture search by learning to
generate synthetic training data. 2020.

[194] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting
unreasonable effectiveness of data in deep learning era. In Proceedings of the IEEE
international conference on computer vision, 2017.

[195] Meng Sun, Bojian Jiang, Hao Xiong, Zhongjun He, Hua Wu, and Haifeng Wang.
Baidu neural machine translation systems for wmt19. In Workshop in Machine
Translation, 2019.

[196] Zhiqing Sun and Yiming Yang. An em approach to non-autoregressive conditional
sequence generations. In International Conference on Machine Learning, 2020.

[197] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with
neural networks. In Advances in Neural Information Processing Systems, 2014.

[198] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

[199] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learning. In
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[200] Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking model scaling for convolu-
tional neural networks. In International Conference on Machine Learning, 2019.

[201] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results. In
Advances in Neural Information Processing Systems, 2017.

[202] Bart Thomee, David A. Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni,
Douglas Poland, Damian Borth, and Li-Jia Li. YFCC100M: The new data in
multimedia research. Communications of the ACM, 2016.

[203] T. Tieleman and G. Hinton. RmsProp: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

[204] Antonio Torralba, Rob Fergus, and William T. Freeman. 80 million tiny images: a
large dataset for non-parametric object and scene recognition. In IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2008.

116

[205] Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Hervé Jégou. Fixing the train-
test resolution discrepancy. In Advances in Neural Information Processing Systems,
2019.

[206] Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Herve Jegou. Fixing the train-
test resolution discrepancy. In Advances in Neural Information Processing Systems,
2019.

[207] Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Hervé Jégou. Fixing the
train-test resolution discrepancy: Fixefficientnet. arXiv preprint arXiv:2003.08237,
2020.

[208] Andrew I. Vakhutinsky and Bruce L. Golden. A hierarchical strategy for solving
traveling salesman problems using elastic nets. Journal of Heuristics, 1995.

[209] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in Neural Information Processing Systems, 2017.

[210] Tom Veniat and Ludovic Denoyer. Learning time-efficient deep architectures with
budgeted super networks. Arxiv, 1706.00046, 2017.

[211] Vikas Verma, Alex Lamb, Juho Kannala, Yoshua Bengio, and David Lopez-Paz.
Interpolation consistency training for semi-supervised learning. In International Joint
Conference on Artificial Intelligence, 2019.

[212] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to
sequence for sets. Arxiv 1511.06391, 2015.

[213] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances
in Neural Information Processing Systems, 2015.

[214] Christos Voudouris and Edward Tsang. Guided local search and its application to
the traveling salesman problem. European journal of operational research, 1999.

[215] Xiao Wang, Daisuke Kihara, Jiebo Luo, and Guo-Jun Qi. Enaet: Self-trained ensemble
autoencoding transformations for semi-supervised learning. Arxiv 1911.09265, 2019.

[216] Xinyi Wang and Graham Neubig. Target conditioned sampling: Optimizing data
selection for multilingual neural machine translation. In ACL, 2019.

[217] Xinyi Wang, Hieu Pham, Philip Arthur, and Graham Neubig. Multilingual neural
machine translation with soft decoupled encoding. In ICLR, 2019.

[218] Xinyi Wang, Hieu Pham, Paul Mitchel, Antonis Anastasopoulos, Jaime Carbonell, and
Graham Neubig. Optimizing data usage via differentiable rewards. In International
Conference on Machine Learning, 2020.

[219] Xinyi Wang, Hieu Pham, Paul Mitchel, Antonis Anastasopoulos, Jaime Carbonell, and
Graham Neubig. Optimizing data usage via differentiable rewards. In International
Conference on Machine Learning, 2020.

[220] Xinyi Wang, Yulia Tsvetkov, and Graham Neubig. Balancing training for multilingual
neural machine translation. In ACL, 2020.

117

[221] Yulin Wang, Jiayi Guo, Shiji Song, and Gao Huang. Meta-semi: A meta-learning
approach for semi-supervised learning. Arxiv, 2007.02394, 2020.

[222] Yuxuan Wang, R. J. Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J. Weiss, Navdeep
Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, Quoc V. Le, Yannis
Agiomyrgiannakis, Rob Clark, and Rif A. Saurous. Tacotron: A fully end-to-end
text-to-speech synthesis model. In InterSpeech, 2017.

[223] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 1992.

[224] G. V. Wilson and G. S. Pawley. On the stability of the travelling salesman problem
algorithm of hopfield and tank. Biological Cybernetics, 1988.

[225] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
Transactions on Evolutionary Computation, 1997.

[226] Arissa Wongpanich, Hieu Pham, James Demmel, Mingxing Tan, Quoc V. Le, Yang
You, and Sameer Kumar. Training efficientnets at supercomputer scale: 83accuracy
in one hour. Arxiv 2011.00071, 2020.

[227] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol
Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural machine
translation system: Bridging the gap between human and machine translation. Arxiv,
1609.08144, 2016.

[228] Yingce Xia, Di He, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-Ying Ma.
Dual learning for machine translation. In Advances in Neural Information Processing
Systems, 2016.

[229] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V. Le. Unsuper-
vised data augmentation for consistency training. In Advances in Neural Information
Processing Systems, 2020.

[230] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with
noisy student improves imagenet classification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020.

[231] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated
residual transformations for deep neural networks. In IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

[232] I. Zeki Yalniz, Herv’e J’egou, Kan Chen, Manohar Paluri, and Dhruv Mahajan.
Billion-scale semi-supervised learning for image classification. Arxiv 1905.00546,
2019.

[233] Yoshihiro Yamada, Masakazu Iwamura, Takuya Akiba, and Koichi Kise. Shakedrop
regularization for deep residual learning. Arxiv, 1802.0237, 2018.

118

[234] Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William Cohen. Breaking the
softmax bottleneck: A high-rank rnn language model. In International Conference
on Learning Representations, 2018.

[235] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and
Quoc V. Le. Xlnet: Generalized autoregressive pretraining for language understanding.
In Advances in Neural Information Processing Systems, 2019.

[236] David Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods.
In 33rd annual meeting of the association for computational linguistics, 1995.

[237] Chris Ying. Imagenet is the new mnist. Advances in Neural Information Processing
System. Workshop: Deep Learning At Supercomputer Scale, 2017.

[238] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional
networks. Arxiv, 1708.03888, 2017.

[239] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann.
Evaluating the search phase of neural architecture search. Arxiv, 1902.08142, 2019.

[240] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and
Youngjoon Yoo. CutMix: Regularization strategy to train strong classifiers with
localizable features. In International Conference on Computer Vision, 2019.

[241] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine
Vision Conference, 2016.

[242] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network
regularization. Arxiv, 1409.2329, 2014.

[243] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup:
Beyond empirical risk minimization. In International Conference on Learning Repre-
sentations, 2018.

[244] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng
Ma. Be your own teacher: Improve the performance of convolutional neural networks
via self distillation. In International Conference on Computer Vision, 2019.

[245] Xingcheng Zhang, Zhizhong Li, Chen Change Loy, and Dahua Lin. Polynet: A pursuit
of structural diversity in very deep networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017.

[246] Guoqing Zheng, Ahmed Hassan Awadallah, and Susan Dumais. Meta label correction
for learning with weak supervision. Arxiv, 1911.03809, 2019.

[247] Zhao Zhong, Junjie Yan, and Cheng-Lin Liu. Practical network blocks design with
q-learning. AAAI, 2018.

[248] Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter C. Ma, Qiumin
Xu, Ming Zhong, Hanxiao Liu, Anna Goldie, Azalia Mirhoseini, and James Laudon.
Gdp: Generalized device placement for dataflow graphs. Arxiv, 1910.01578, 2019.

[249] Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter C. Ma, Qiumin
Xu, Ming Zhong, Hanxiao Liu, Anna Goldie, Azalia Mirhoseini, and James Laudon.

119

Transferable graph optimizers for ml compilers. In Advances in Neural Information
Processing Systems, 2020.

[250] Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutník, and Jürgen Schmidhuber.
Recurrent highway networks. In International Conference on Machine Learning,
2017.

[251] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning.
In International Conference on Learning Representations, 2017.

[252] Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. Transfer learning for
low-resource neural machine translation. In EMNLP, 2016.

[253] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transfer-
able architectures for scalable image recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, 2018.

[254] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018.

[255] Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao Liu, Ekin D Cubuk,
and Quoc V Le. Rethinking pre-training and self-training. In Advances in Neural
Information Processing Systems, 2020.

120

	1 Introduction
	1.1 Motivations
	1.2 Summary of Contributions

	2 Neural Combinatorial Optimization with Reinforcement Learning
	2.1 Introduction
	2.2 Related Work
	2.3 Network Architecture for TSP
	2.3.1 Architecture Details

	2.4 Optimization with policy gradients
	2.4.1 Search Strategies

	2.5 Experiments with TSP
	2.5.1 Experimental details
	2.5.2 Results and Analyses

	2.6 Conclusion
	2.7 Appendix
	2.7.1 Pointing and Attending
	2.7.2 Improving exploration
	2.7.3 Sample tours

	3 Device Placement Optimization with Reinforcement Learning
	3.1 Introduction
	3.2 Related Work
	3.3 Method
	3.3.1 Training with Policy Gradients
	3.3.2 Architecture Details
	3.3.3 Co-locating Operations
	3.3.4 Distributed Training

	3.4 Experiments
	3.4.1 Experiment Setup
	3.4.2 Baselines
	3.4.3 Single-Step Runtime Efficiency
	3.4.4 End-to-End Runtime Efficiency
	3.4.5 Analysis of Found Placements

	3.5 Conclusion

	4 Efficient Neural Architecture Search via Parameter Sharing
	4.1 Introduction
	4.2 Methods
	4.2.1 Designing Recurrent Cells
	4.2.2 Training ENAS and Deriving Architectures
	4.2.3 Designing Convolutional Networks
	4.2.4 Designing Convolutional Cells

	4.3 Experiments
	4.3.1 Language Model with Penn Treebank
	4.3.2 Image Classification on CIFAR-10
	4.3.3 The Importance of ENAS

	4.4 Related Work and Discussions
	4.5 Conclusion

	5 Meta Pseudo Labels
	5.1 Introduction
	5.2 Meta Pseudo Labels
	5.3 Small Scale Experiments
	5.3.1 TwoMoon Experiment
	5.3.2 CIFAR-10-4K, SVHN-1K, and ImageNet-10% Experiments
	5.3.3 ResNet-50 Experiment

	5.4 Large Scale Experiment: Pushing the Limits of ImageNet Accuracy
	5.5 Related Works
	5.6 Conclusion
	5.7 Appendix
	5.7.1 Derivation of the Teacher's Update Rule
	5.7.2 Pseudo Code for Meta Pseudo Labels with UDA
	5.7.3 Experimental Details
	5.7.4 Dataset Splits
	5.7.5 Modifications of RandAugment
	5.7.6 Additional Implementation Details
	5.7.7 Hyper-parameters
	5.7.8 More Detailed Analysis of Meta Pseudo Label's Behaviors
	5.7.9 Visualizing the Contributions of Meta Pseudo Labels
	5.7.10 Meta Pseudo Labels Is An Effective Regularization Strategy
	5.7.11 Meta Pseudo Labels Is a Mechanism to Addresses the Confirmation Bias of Pseudo Labels
	5.7.12 Meta Pseudo Labels with Different Training Techniques for the Teacher
	5.7.13 Meta Pseudo Labels with Different Amounts of Labeled Data
	5.7.14 Results with An Economical Version of Meta Pseudo Labels

	6 Meta Back-Translation
	6.1 A Probabilistic Perspective of Back-Translation
	6.2 Meta Back-Translation
	6.3 A Mulltilingual Application of MetaBT
	6.4 Experiments
	6.4.1 Dataset and Preprocessing
	6.4.2 Baselines
	6.4.3 Implementation
	6.4.4 Results
	6.4.5 Analysis

	6.5 Related Work
	6.6 Limitation, Future Work, and Conclusion
	6.7 Appendix
	6.7.1 Derivation for the Gradient of
	6.7.2 Training Details
	6.7.3 Effect of MBT on Multilingual Transfer
	6.7.4 Example Translations
	6.7.5 Additional Experiments

	7 Conclusion
	7.1 Impacts and Limitations of NCO
	7.2 Impacts and Limitations of ENAS
	7.3 Impacts and Limitations of MPL and MetaBT
	7.4 Epilogue

	Bibliography

