
High-Performance Multi-Pass Unication Parsing

Paul Wesley Placeway

May 14, 2002

CMU-LTI-02-172

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulllment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Eric Nyberg, Chair

Jaime Carbonell
Alon Lavie

Robert Bobrow, BBN Technologies

Copyright c 2002 Paul Wesley Placeway

This research was supported in part by Carnegie Mellon University

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the ofcial policies, either expressed or implied, of Carnegie Mellon University.

Keywords: Parsing, Unication, Ambiguity

For Mary, Mom and Dad.

Abstract

Parsing natural language is an attempt to discover some structure in a text (or textual
representation) generated by a person. This structure can be put to a variety of uses,
including machine translation, grammar conformance checking, and determination of
prosody in text-to-speech tasks.

Recent theories of Syntax use Unication to better describe the intricacies of natu-
ral language [137]. For parsing systems, unication techniques have been either added
to a context-free base system [152, 40, 4, 23], or replaced the context-free base en-
tirely [118, 135, 45] (possibly putting it back later [136]). The seemingly small step
of adding unication has opened a Pandora’s Box of computational complexity, in-
creasing the difculty of the problem from polynomial [48] to somewhere between
NP-complete and intractable, depending on the details of the unication system and
how it was added [10]. Worse, unication on a context-free base parser can break the
packing technique used to address the problem of ambiguity, leading to exponential
blow-ups of the parser’s performance in both space and time in practice.

I propose the use of a multi-pass strategy to avoid these problems in practice. I
describe a parser which combines the use of shallow, simple value unication with some
approximation techniques in order to nd a covering packed parse-forest. This parse-
forest is then searched for a single-best fully-unifying value; the scoring system which
drives the heuristic search encodes linguistically-based disambiguation preferences.

The resulting two-pass parser is compared to an ordinary single-pass parser in the
context of a heavy-weight knowledge-based machine translation system. The two-pass
parser is shown to be competitive with the single-pass parser on average data, both
in terms of time and space. It is also shown to be able to avoid a common class of
ambiguity blow-up that the single-pass parser is subject to. These results indicate that
the multi-pass technique, interleaving some of the unication equations in the parse, is
the superior approach for heavy-weight unication parsing.

Acknowledgements

I would like to thank the many people without whom this work would not have been possible:

My advisor, Eric Nyberg, for asking the critical question “Why do these sentences take so
long?”, many technical and philosophical discussions, and for help in turning my writing into
English.

The members of my committee, Jaime Carbonell, Alon Lavie, and Robert “Rusty” Bobrow,
for guidance in setting the technical direction of this work, many useful discussions, and their
patience.

Robert Moore, for technical advise related to high-performance context-free parsing.

Kathy Baker, for supporting the KANT grammar, and for helpful technical discussions.

Krzysztof Czuba, for providing the Broadcast News grammar and test set, and many helpful
technical discussions.

David Svoboda, for help in organizing the Catalyst 10,000 sentence test corpus.

Robert Igo, for organizing the FOATS regression test corpus.

The many other members of the KANT team.

Finally, my wife Mary Placeway, for her love and support throughout the adventure of grad-
uate school.

vi

Contents

1 Introduction 1
1.1 Introduction . 1

1.1.1 Statement of Thesis . 3

1.1.2 Summary of Contributions . 3

1.1.3 Motivation: Why parsing is useful? . 4

1.1.4 As part of Knowledge-based translation 4

1.1.5 Checking conformance to a restricted language 5

1.1.6 Discovering prosody in text-to-speech 5

1.2 Dissertation Overview . 6

2 Background 9
2.1 General Background . 9

2.1.1 Preliminaries . 9

2.1.2 Families of grammars . 10

2.1.3 Context-Free Parsing . 12

2.1.4 Unication Parsing . 13

2.1.5 Unication grammars are computationally powerful 20

2.1.6 Parsing as Constraint Satisfaction . 22

2.2 Parsing Applications . 23

2.2.1 Machine Translation Systems . 23

3 Unication Parsing 31
3.1 Unication Parsing . 31

3.1.1 Pure Unication Parsing . 32

3.1.2 Unication Parsing on Context Free Spine 34

3.2 About Pseudo-Unication . 39

vii

3.3 Parsing and Ambiguity . 40

3.3.1 Ambiguity is a problem for context-free parsing 40

3.3.2 Context free parsing with packing . 43

3.3.3 Context free parsing with packing and unication 47

3.3.4 Ambiguity inherently causes disjunction 53

3.3.5 Solution to ambiguity Packing is not Subsumption 54

3.3.6 Problems with Packing in Disjunctions 57

3.3.7 Pseudo-unication and Disjunction . 58

4 Delayed Unication Parsing 61
4.1 Delaying Unication Until After Parsing . 61

4.1.1 Interleaved unication Versus Delayed unication 62

4.2 Delaying Some Unication Until After Parsing 64

4.2.1 Negative Restriction . 64

4.3 The Two Purposes of Interleaved Unication . 66

4.3.1 ‘Cheating’ in the interleaved unication 66

4.3.2 Our unication approach . 70

5 Overview of the Approach 71
5.1 Conceptual Design . 72

5.1.1 Don’t try to do the parse all in one shot. 72

5.1.2 Don’t keep the unication values from the parse phase. 73

5.1.3 Don’t follow the grammar precisely early in the process. 74

5.1.4 Don’t try to nd all possible nal unication values. 75

5.1.5 Don’t pick just any single unication value; pick a good one. 75

5.2 System Requirements . 76

5.3 System Architecture . 79

5.3.1 Preprocessing . 80

5.3.2 Run-time Processing . 84

5.4 Evaluation during Development . 90

5.4.1 Development test conditions . 90

5.4.2 Development hardware . 92

5.4.3 Run-time Performance and Optimization Priorities 92

5.5 Summary . 93

viii

6 Efcient Chart Parsing 95
6.1 Motivation . 95

6.1.1 Chapter Outline . 96

6.2 Prior Context-Free Parsers . 96

6.3 The Tree-Structured Grammar . 102

6.3.1 Building a Tree-Structured Grammar . 104

6.3.2 Using a Tree-Structured Grammar . 105

6.3.3 Previous Approaches . 106

6.4 Left-Corner and Look-ahead Filtering . 107

6.4.1 Left-Corner Constraint . 108

6.4.2 Look-ahead Constraint . 113

6.4.3 Left-corner of Look-ahead . 115

6.5 Other Parser Features . 116

6.5.1 Complete algorithm . 117

6.6 Context-free Parsing Results . 118

6.6.1 Discussion of results . 118

7 Pseudo-Unication: Implementation and Optimization 125
7.1 Introduction to Pseudo-Unication . 126

7.1.1 On Interpreting Pseudo-Unication . 126

7.2 Modications to the Pseudo-Unier . 134

7.2.1 ‘Gray-Box’ Adaptation . 135

7.2.2 Handling of Data Disjunctions . 135

7.2.3 Explicit No-Value Values . 136

7.2.4 Wild-Carded Values . 136

7.2.5 Complements of Unications . 138

7.2.6 Explicit over-write value equation . 141

7.3 Compilation and Optimization of Pseudo-Unication 141

7.3.1 Unwinding of Conditional ORs . 143

7.3.2 Disjunction Flattening . 145

7.3.3 Multiple-Value Strength Reduction . 147

7.4 Shallow Pseudo-Unication as a First-Pass Filter 150

7.4.1 Wild-carding deep structure assignments 150

7.4.2 Pseudo-Optimizations for Shallow Unication 152

ix

7.4.3 Effectiveness of Shallow Approximate Unication 159

7.5 Optimizations That Did Not Help . 170

7.5.1 Approximated unication packing in disjunctions 170

7.5.2 Length limits in approximate packing . 170

7.5.3 Vector Unier (is not faster) . 171

8 Post-parse Search 173
8.1 Introduction . 173

8.1.1 Previous Approaches . 174

8.1.2 Method of Attack . 175

8.2 The Search Component . 176

8.2.1 Best-First Search . 177

8.2.2 Searching a parse forest . 180

8.2.3 An All-Paths Search of a Parse Forest . 183

8.2.4 A Backtracking Greedy search for a best parse 185

8.2.5 Full branch-and-bound search . 200

8.2.6 N-Best search . 209

8.3 Disambiguation Cost Calculator . 213

8.3.1 Algorithmic Requirements . 213

8.3.2 Useful disambiguators can be implemented within these criteria 213

8.3.3 Sensitivity of Search to Choice of Cost Function 216

9 Evaluation of the System 219
9.1 Experimental Methodology and Conditions . 220

9.2 Test on the Catalyst System . 220

9.2.1 About the KANT grammars . 220

9.2.2 About the Catalyst 10k corpus . 220

9.2.3 Results on the Catalyst corpus . 222

9.2.4 Conclusions from this test . 223

9.3 Tests on a Broadcast News grammar . 224

9.3.1 About the Broadcast News Grammar . 225

9.3.2 Test sentences . 225

9.3.3 Results on Broadcast News transcriptions 225

9.3.4 Test on Articially Bad Data . 228

x

9.3.5 Outliers in the Broadcast News corpus . 230

9.3.6 Conclusions from the Broadcast News tests 231

9.4 Retrospective Examination . 232

9.4.1 Comparison to GLR . 232

9.4.2 Summary of Improvements . 233

9.4.3 Improvements for Selected Worst-Case Sentences. 235

10 Conclusions and Future Directions 241
10.1 Conclusion: Shallow Unication Preferable . 241

10.2 Contributions . 241

10.2.1 Evidence that delayed unication is preferable over single-pass interleaved
unication. 242

10.2.2 Evidence that interleaved unication is generally preferable to fully-delayed
unication evaluation . 242

10.2.3 Evidence that single value search is preferable over all-values search. . . . 243

10.2.4 A novel technique to automatically produce a shallow unication grammar
from a complex-valued grammar. 243

10.2.5 Approximation of Shallow Interleaved Unication Values. 243

10.2.6 Techniques in Unication Optimization 244

10.2.7 Single-value Post-Parse Search Algorithm 245

10.2.8 Advances to Context Free parsing . 245

10.2.9 A complete description of implementation. 245

10.2.10 Empirical investigation of many engineering trade-offs. 246

10.3 Future Directions . 246

10.3.1 Dynamic Optimization of the Shallow Interleaved Unier 246

10.3.2 Top-down constraints in the post-parse search 247

10.3.3 Automatic Promotion of shallow unication features into the Context-Free
grammar spine. 250

10.3.4 Optimization of the Context-Free grammar. 250

xi

xii

List of Figures

2.1 Example context-free parse tree . 13

2.2 Example context-free parse tree . 15

2.3 Example constituent structure . 20

2.4 Multiple-source, multiple-target Interlingua Translation 24

2.5 Block Structure of Source-to-Interlingua Conversion 24

2.6 Block Structure of Source-Language Conformance Checker 28

3.1 An example shared packed node. 45

3.2 Example chart without packing . 46

3.3 Example chart with packing . 47

3.4 Number of words vs. Number of ambiguous analyses 52

3.5 Multiple Ambiguity Unication Example . 57

3.6 A unication example: a partial tree including a packed node X 59

4.1 Number of Words vs. Runtime Used: Delayed Unication on a CF-spine 62

4.2 Runtime Used: Interleaved vs. Fully-Delayed Unication 63

5.1 High-level View of System . 80

5.2 Grammar Preprocessing . 81

5.3 The Parser . 84

5.4 A shared packed node structure. 87

6.1 An example Tree-structured Grammar . 104

6.2 Method to Left-Prex-Compress a Grammar . 105

6.3 The Basic Tree-Structured Grammar Chart Parser 122

6.4 Tree-Structured Grammar Chart Parser with constraints and Interleaved Unication 123

7.1 Parse run-time: Data Disjunction Unpacking vs. EOR unwinding, PP attachment test 145

xiii

7.2 Number of calls to setvalue: Data Disjunction Unpacking vs. EOR unwinding, PP
attachment test . 146

7.3 Number of nodes: Full, Shallow and CF, PP attachment test 161

7.4 Number of nodes: Shallow and CF vs. Full Unication 163

7.5 Number of calls to setvalue: Full and Shallow unication, PP attachment test . . . 164

7.6 Unication work: Shallow vs. Full Unication . 165

7.7 Parse run-time: Full, Shallow and CF, PP attachment test 166

7.8 Parse run-time, log-scale: Full, Shallow and CF, PP attachment test 167

7.9 Total Parse-pass run-time: Shallow vs. Full Unication 169

7.10 Unication Tree-Structured Value to Bit-Vector Mapping 172

8.1 best-rst-search, after Russell & Norvig [128, gs. 3.10, 4.1]. 178

8.2 An example partial search tree . 180

8.3 An example node structure. 181

8.4 Pseudo-code to perform a depth-rst search of a parse forest 182

8.5 Pseudo-code to nd all FSs of a parse forest via depth-rst search 183

8.6 Runtime Used for: Single-pass OR-packing (“or”) and 2 pass: C-F 1st pass with
all-values 2nd pass (“cf-all”) . 185

8.7 An example of multiple attachment . 187

8.8 Example search space for two children . 189

8.9 Example search space, showing order of dimension search 190

8.10 Pseudo-code for branching-only version of get-nth-fs, get-rst-fs, and init-queue . 198

8.11 Pseudo-code for branching-only version of get-next-fs 199

8.12 Pseudo-code for branch-and-bound version of get-nth-fs 202

8.13 Pseudo-code for branch-and-bound versions of get-rst-fs and init queue 203

8.14 Pseudo-code for branch-and-bound version of get-next-fs 204

8.15 An example search tree . 206

8.16 Example case for proof . 207

8.17 Search time for nding n-best values . 211

9.1 Comparison of shallow parse + 1-best search time against full interleaved parse
time; Catalyst 10k test . 224

9.2 Comparison of shallow parse + 1-best search time against full interleaved parse
time; Broadcast News 53-sentence test . 227

9.3 Run-times, PP-attachment test on Broadcast News grammar 228

xiv

9.4 Run-times, PP-attachment test on Broadcast News grammar, log scale 229

10.1 Propagation of Unication features in a Packed Forest 248

xv

xvi

List of Tables

5.1 Total run times: Interleaved U.; All-Paths, and 1-best post-parse search 93

6.1 Comparison of parse times for Ordinary Left-Corner versus Cocke-Schwartz Filter-
ing using the Tree-Structured Grammar . 110

6.2 Comparison of parse times for the Tree-Structured Grammar with left-corner in the
middle of the grammar tree (“full LC in tree”) versus left-corner only at end (only
when creating nodes) . 112

6.3 Comparison of parse times for the Tree-Structured Grammar (using full Cocke-
Schwartz Filtering) with and without look-ahead. (Ordinary Left-Corner is without
LC-of-LHS-set ltering, whereas Cocke-Schwartz Left-Corner ltering uses this
feature.) . 114

6.4 Comparison of parse times for the Tree-Structured Grammar, using left-corner and
look-ahead constraints, with and without the left-corner-of-look-ahead [102] con-
straint. 115

6.5 Parse times for Context-Free (only) parse . 119

6.6 Parse times for parse with interleaved unication 120

7.1 Total run times: Interpreted vs. Compiled Unications 142

7.2 Parse run-time: Data Disjunction Unpacking vs. EOR Unwinding, Catalyst test data 144

7.3 Parse sizes: Interleaved U. vs. All-Paths Post-Parse Search 162

7.4 Unication effort: Interleaved U. vs. All-Paths Post-Parse Search 164

7.5 Parse times: Interleaved U. vs. All-Paths Post-Parse Search 168

8.1 Parse times: Interleaved U. vs. All-Paths Post-Parse Search 184

8.2 Branch-only vs. branch-and-bound search, CF rst pass 208

8.3 Branch-only vs. branch-and-bound search, shallow unication rst pass 209

8.4 Comparison of n-best search effort for various values of n 210

8.5 Static distribution of non-terminals in KANT grammar rules 212

8.6 Count of child expansions in B-and-B search, Catalyst ambiguity corpus 212

xvii

8.7 Branch-and-bound search effort with different cost functions 217

9.1 Total run times, Catalyst 10k test . 222

9.2 Number of nodes created & visited, Catalyst 10k test 222

9.3 Number of calls to setvalue; Catalyst 10k test 223

9.4 Total run times, Broadcast News test . 226

9.5 Nodes created & visited, and Calls to setvalue; Broadcast News test 226

9.6 Parse run-time: Original vs. Final Unication handling, Catalyst test data 234

9.7 Parse measurements: Example sentences A,B,& C 236

9.8 Parse measurements: Example sentence D . 237

9.9 Parse measurements: Example sentence E . 240

xviii

Chapter 1

Introduction

In working with the KANT machine translation system, we discovered a problem: the vast majority
of input sentences parsed very quickly, but a small minority required extremely large amounts of
time to parse. These outliers often require several hundred times the amount of time to parse an
average sentence. The discovery of these outliers begged the questions “why is this happening?”
and “what can we do about it?” The answer involved the handling of values in the unication
system, and bad interactions between these unication values and the ambiguity inherent in some
sentences.

This work describes the detailed engineering of a new parsing system, designed to avoid the
problem which creates this symptom. We will examine the problem in detail, create several novel
techniques designed to work around aspects of the problem, and apply existing techniques in order
to solve our problem. Careful engineering will be stressed throughout: the decision to adopt a
technique or choose between competing techniques is made on the basis of empirical evaluation
whenever possible.

1.1 Introduction

As we put natural language parsers to more elaborate and more realistic tasks, we keep changing
the problem that the parser must solve [49, 40, 68]. Sometimes this is a simple change, but quite
often it only seems to be simple [10].

It is tempting to treat parsing as a separable problem, and address it as a task in and of itself.
This separation is useful because it allows one to examine a problem in the absence of distractions.
On the other hand, a major disadvantage of this separation is that it can lead a researcher to overlook

1

certain aspects of the whole problem that they actually face, and cause them to mistakenly focus on
details of lesser importance.

The theme we shall be exploring is how natural-language parsing has become more complex in
practice, how this added complexity has resulted in a much more difcult computational task than
one might expect at rst glance, and what can be done to avoid some of the common problems that
this added complexity aggravates. This will be investigated principally in the context of a large,
practical natural-language processing system [89, 110, 111].

Natural language parsing is often introduced simply enough with context-free parsing [3, 48,
34]. Beginning with his description of formal classes of languages, Chomsky argued that the
context-free languages are not sufcient to capture the subtleties of human language grammar [25,
p. 120], citing mostly examples of tense and number as problematic. One more recent method
of addressing these deciencies led to the introduction of unication parsing [3, 137]. While the
idea of adding unication to a context-free parser may at rst seem simple [152], it turns out not to
be. The main theoretical draw-back to unication parsing is that it can vary in difculty from NP-
complete (hard) [10] to Turing-complete (impossible) [137, 10]. For unication parsers in practice
the situation is not so bad, but we will see below that a unication parser can suffer from exponential
blow-ups of space and time requirements which will lead to unacceptable performance in practice.

To work around the difculty, I propose the use of multi-pass parsing, whereby the solution
space is narrowed down by applying inexpensive operations. Only after the space has been nar-
rowed, are expensive operations carried out and a nal parse found.

By delaying these expensive operations until they are actually known to be needed, the parser
will avoid degenerate performance in the face of structurally ambiguous inputs, a commonly-
occurring phenomenon in natural language which leads to bad performance in practice. The multi-
pass technique will also save time compared to the common one-pass method. Finally, this multi-
pass technique will also allow the efcient use of linguistically-motivated disambiguation tech-
niques, which allow for the discovery of not just any resulting parse, but a desirable parse as the
nal result.

The culmination of this approach is a natural-language parser that is good from a linguistic
standpoint (theoretically as well as practically), good from a computational standpoint (again both
theoretically and practically), and good from a software engineering standpoint.

2

1.1.1 Statement of Thesis

My claim is that it is possible to build a parser that fulls all of these desires. In particular, I claim
that:

By combining automatically-derived, simple-valued, interleaved partial unication in
a high-performance parser with a post-parse search for a single complete unication
value, we can avoid the complexity problems of ambiguity, while preserving the speed
and grammar maintainability advantages of a simple bottom-up parser.

In the remainder of this document, we will examine a system that implements all of the elements
of this claim, and experimental evidence that supports it. The description of the system is wide-
ranging, working from theoretical concerns down though the particulars of the implementation of
the techniques. We will also see how this work is related to, but different from, the past efforts of
other researchers.

1.1.2 Summary of Contributions

In the process of developing this system, we have extended the state of the art in parsing in several
ways. Our contributions include:

Evidence that interleaved unication is generally preferable to fully-delayed unication eval-
uation.

Evidence that delayed unication is preferable over single-pass interleaved unication.

A novel technique to automatically produce a shallow unication grammar from a complex-
valued grammar.

The use of approximation of Shallow Interleaved Unication Values to gain efciency in
packing interleaved unication values.

Various techniques in Unication Optimization.

A novel, optimal algorithm to search a parse forest for a single, best value.

Advances to Context Free parsing. These include the structuring of the grammar into a tree
and the modied chart algorithm which uses this grammar structure, as well as the integration
of various ltering techniques with this algorithm.

3

Complete descriptions of all major portions of the implementation.

Empirical investigation of many engineering trade-offs in the development of this parsing
system.

1.1.3 Motivation: Why parsing is useful?

Parsing is about discovering a structure in an input, based on external information known about
the elements of the input and their order. Generally, the external information consists of a lexicon,
which is a list of input tokens (e.g. words), and a grammar, which describes which structures may
be built from, and implied by, sequences of tokens.

For the general task of processing natural language, it is useful to discover structure in order
to better process the input. So, for instance, one can do a mediocre job of translating a text from
one language to another by translating each word independently [49, pp. 175–189], or a decent job
considering the words in the context of other particular words [19, 14]. But one way of performing
a high-quality translation is to parse the input, to discover some internal structure, and then use this
structural analysis to better translate the input [40, 89, 131].

1.1.4 As part of Knowledge-based translation

Parsing is often the rst major step in a machine translation system. A machine translation system
attempts to translate input (often in the form of text) in some source language into some target
language, while preserving as much as possible of the meaning (both explicit and implicit) of the
input.

In Knowledge-based Machine Translation, the input is rst parsed to discover its syntactic struc-
ture, referred to as its constituent structure or C-structure. This then is used to create a more abstract
representation (such as a feature structure or F-structure). The F-structure can be turned into an even
more abstract representation: an Interlingua representation that explicitly expresses everything that
could be implicitly represented in any of the source or target languages. The Interlingua represen-
tation then can be turned into an F-structure appropriate to the target language. Finally, this target
F-structure can be used to generate an appropriate target C-structure, and then output string [40, 89].

In this process, the combined steps of parsing the input to discover the F-structures and disam-
biguating, or choosing amongst multiple F-structures, is very important and one of the slowest parts
of the process. One must remember that the disambiguation step is also part of this process — if we
were to consider parsing alone, and not worry about disambiguation, we might be led to a solution

4

that very quickly produces a representation of all possible F-structures but does not disambiguate,
or choose amongst them [114]. I will argue below that this outlook is insufcient because we have
not chosen amongst these alternatives, and thus not actually completed the parsing task required by
a machine translation system.

Once an input has been parsed and disambiguated, the remaining steps of the machine translation
system are fairly rapid [49, 40]. Therefore it is desirable for a practical machine translation system
to include a high-performance parser as a component.

1.1.5 Checking conformance to a restricted language

Experience with the KANT system [87, 111] has shown that it can be helpful to restrict the input
language of a machine translation system. Doing so allows a gain in accuracy and coverage within
the limited domain. But the trade-off is that a documentation writer must manage to write within
the restricted language.

Since checking conformance is something that computers can do much better than people, it is
useful to provide an automatic way to check for such conformance. Of course, the most straight-
forward way to do this is to separate out the parser and grammar from the beginning of the machine
translation system, package them separately as a checking system, and provide this checker in a
software package that is convenient for the writer to use [87].

The performance of this conformance checker could be improved upon further by noting that a
complete parse and F-structure analysis may not be required — all that is really needed is a ”yes/no”
indication for each input sentence, along with helpful information on what problem the parser had
for the ”no” responses. Because of this, nding all the F-structures of all possible parse trees is
simply too much work.

1.1.6 Discovering prosody in text-to-speech

Yet another use for a parser is to improve on the prosody of text-to-speech systems. It is useful
to chose the correct homograph, for example choosing correct pronunciation for record in these
examples:

Please record these results.

Put another record on the phonograph.

In this case, the former is a verb, whereas the latter is a noun. (There are other cases for which
the analysis must go beyond a simple part-of-speech analysis, for instance the two nouns bow: the

5

bow of a ship vs. a bow used to shoot arrows [35].)

In the case of record, the primary difference is in which syllable is stressed. However, this is
not the only way in which stress is important in English. Stress is also used to mark questions as
distinct from statements, as well as mark main clauses as differing from subordinating clauses [66].

In order to produce higher quality speech output, a syntactic analysis of the text input can be
quite helpful [77]. Like any other problem of engineering, there can be a trade-off between the level
of detail required for a particular text-to-speech task and the system resources available to this part
of the larger system. Up to a point, if we can produce a more accurate analysis with fewer resources,
the overall text-to-speech process can be done with higher quality, or fewer resources, or both.

1.2 Dissertation Overview

Before getting into the details, it is helpful to see where we should be headed. Thus, a brief overview
of this document will be helpful to see how all the pieces t into the whole.

In the next chapter, we illustrate several instances of how parsing ts into the larger scheme of
natural language processing, and argue that increased performance remains a worthy goal in
natural language processing. Section 2.1 briey reviews some aspects of parsing, unication,
linguistic theories of grammar, and results in theoretical computer science that have particular
bearing on this work. Section 2.2 briey reviews several practical applications for natural
language parsers.

Chapter 3 examines several options for implementing a unication parser that exist in the
literature, with emphasis on the parsers which use the sorts of unication grammars we are
ultimately interested in.. It then examines ways in which unication parsers can experience
blow-ups in space and time, despite efforts to prevent these same situations in the context of
strictly context-free parsing. The situations that lead to these blow-ups are demonstrated to
be realistic in an extant system.

Chapter 4 examines how much of the unication process could be delayed until after nding
a parse forest which covers the set of all valid parses.

The next four chapters examine the pieces which we will use to work around and avoid these
problems, as well as achieve a truly high-performance parsing system:

Chapter 5 examines our goals and requirements for a high-performance unication parser. It
then surveys some options in the general architecture of a parsing system, and examines why

6

one of these architectural options can address the complaints we have previously exposed. Fi-
nally, it examines the actual architectural design of our system, and examines the components
from which our system is built at high level.

The next three chapters take an extremely detailed look at the three major components of the
system.

– Chapter 6 introduces an improvement to context-free parsing. The tree-structured gram-
mar is an improvement to the structure of a chart parser that eliminates redundant pro-
cessing. Left-corner ltering is a technique that greatly reduces ultimately unproductive
processing in a chart parser. This section describes how to use these two techniques to-
gether, and describes a system that implements this combination of techniques, as well
as others necessary for the construction of a modern high-performance parser. It con-
cludes with a set of experiments demonstrating the effectiveness of this combination of
techniques.

– Chapter 7 reviews our particular pseudo-unication framework, and examines how
pseudo-unication can be considered to be a “little (programming) language” [13, ch. 9].
Section 7.2 discusses a set of modications which were made to the pseudo-unication
system for this work. In Section 7.3, the techniques used to compile this little language
into executable code are discussed, and the pseudo-unication optimizer is introduced.

These optimization techniques are then extended in order to support the implementation
of the shallow unication techniques introduced Chapters 4 and 5. These shallow uni-
cation techniques are shown to preserve much of the effectiveness of the pruning effect
of interleaved unication while avoiding the space blow-ups we discovered in Chapter 3.

Finally, a number of apparent optimizations to the unication which did not actually
improve performance are discussed.

– In order to take advantage of a parse forest which covers a superset of all valid parses,
we must nd the nal unication value for a single valid parse tree. Chapter 8 reviews
prior work in post-parse search and in sentence disambiguation, and then introduces
our technique for performing a post-parse search to simultaneously solve the problems
of nding a fully-unifying result, and performing disambiguation in a linguistically-
motivated way.

Section 8.2 introduces the Iterative-Deepening Greedy Best-First search which is used
to nd a best-scoring, complete unication value. This search is described in detail,
and shown to be optimal by means of a comparison in function to A* search [31]. A

7

cost calculator is necessary to effectively drive this search. Section 8.3 describes the
reference knowledge-based disambiguation cost calculator.

A number of empirical tests are used to clearly see the benets and trade-offs of the many
design decisions made in these chapters. The conditions of these development tests are dis-
cussed in Section 5.4.

In Chapter 9, the system is evaluated on independent test corpora in order to fairly evaluate
its performance. The effectiveness of the full system is examined using an independent test
corpus of real-world data. The system is shown to be competitive in the average case.

Finally, the generality of this set of techniques is examined using a test grammar and corpus
which have not been specially adapted to this system.

Chapter 10 reviews the work as a whole, and conclusions are presented. Contributions of this
work to the state of the art are examined, and several directions for future work are examined.

8

Chapter 2

Background

“Those who cannot remember the past are condemned to repeat it.”

— George Santayana, Life of Reason, Reason in Common Sense [130]

2.1 General Background

Before examining the technical details of unication parsing, we should rst dene a few terms and
problems related to parsing. This will make a number of technical issues in the following text much
more clear.

2.1.1 Preliminaries

Generation and acceptance Formally, we can either look at a formal language from a generative
standpoint, where the grammar is used to output a string, or from an acceptance standpoint, where
the string is considered input to a process that will answer yes if the input is ‘in’ the grammar or
no if it is not. These are actually the ip-sides of the same metaphoric coin; even though we will be
mostly concentrating on treating the string as input, we will occasionally look at the problem in the
other direction. This is not simply an abstraction for the purpose of explanation; the nal stage of
the Knowledge-Based Machine Translation system described above actually implements the output
process [40], [49, pp. 131–145].

Recognition The recognition problem is the ”yes/no” version of the problem:

9

Given some grammar and lexicon G, and some input string I, is I in the language described by
G? Could G have generated I, or equivalently does G accept I?

This is conveniently simple: either I parses, or it doesn’t. It does not matter that there may be
multiple ways to generate I, not even if there an innite number of ways.

Parsing The parsing problem is not only to answer the above ”yes/no” question, but also to come
up with some number of sets of derivations (often expressed as trees) that could produce I. We will
see that in some cases, the problem can be made easier by only requiring one example derivation;
but in other cases this does substantially change the problem.

Given G and I, nd not only if G accepts I, but if so what set of productions would cause G to
generate I? Or what set of sets?

Words We have not been clear about the acceptance or generation means, nor about the structure
of I, nor that of G.

We will say that an input string is an ordered set of tokens, which we will generally refer to
as words. A word is considered to be an atomic unit. A lexicon is a relation between words and
features that these words can entail. We will generally assume that there are a nite number of
possible words and features.

2.1.2 Families of grammars

Chomsky dened a family of classes of grammars, each in larger than the next [25, 48]. By larger,
we mean a subset inclusion relation: language family F’ is as large as F if and only if every language
L in F can also be generated by F’. F’ is (strictly) larger than F if there is some language L’ that is
in (can be generated by) F’, but cannot be generated by F.

We will not give proofs of separation of these families of languages. The characterizations of
these families are derived from Hopcroft & Ullman [48]; proofs of the separation of families, as
well as a wealth of other information about the formal properties of languages can be found in this
reference.

The following three language families are particularly relevant to this work:

Context-Free

Context-Sensitive

10

Unrestricted

Context-Free Languages and Push-Down Automata

Hopcroft & Ullman’s description of context-free languages is remarkably clear. First they present
an informal denition:

A context-free grammar is a nite set of variables (also called nonterminals or syntactic
categories) each of which represents a language. The languages represented by the
variables are described recursively in terms of each other and primitive symbols called
terminals. The rules relating the variables are called productions. A typical production
states that the language associated with a given variable contains strings that are formed
by concatenating strings from the language of certain other variables, possibly along
with some terminals.
[48, ch. 4, p. 77]

And then, after some examples, they formalize it:

Now we shall formalize the intuitive notions introduced in the previous section. A
context-free grammar (CFG or just grammar) is denoted , where
and are nite sets of variables and terminals, respectively. We assume that and
are disjoint. is a nite set of productions; each production is of the form ,
where is a variable and is a string of symbols from . Finally, is a special
variable called the start symbol.
[48, ch. 4, p. 79]

In the next chapter of this book, Hopcroft & Ullman note that, from a computational standpoint,
context-free language recognition is computationally equivalent to a nondeterministic push-down
automaton [48, pp. 107–119].

Context Sensitive languages

The context-sensitive languages can be characterized in a manner similar to the context-free lan-
guage formalization above, except that productions can take the general form , where or
are both arbitrary strings of terminals and non-terminals, but with the restriction that the length of
must be at least as long as [48, p. 223].

11

Context Sensitive Language recognition is computationally equivalent to Linear Bounded Au-
tomaton (Linear Bounded Turing Machine) (with the exception that the LBA can accept the empty
string , but this string cannot be generated by a CSL) [48, pp. 225–226]. The recognition prob-
lem for context sensitive grammars is also PSPACE-complete [48, pp. 346–347]. (Also, Quantied
Boolean Formula satisability (”QBF”) is PSPACE-complete [48, pp. 343–346].)

Unrestricted languages and Turing Machines

The unrestricted languages can be characterized in a similar manner, with productions taking the
form , but without restrictions on the lengths of either or [48, p. 220].

Unrestricted, or type-0, language recognition is Turing Complete [48, pp. 220–223], hence the
unrestricted languages are exactly the recursively enumerable ones [48, p. 150].

2.1.3 Context-Free Parsing

Early work in Computational Linguistics and Automatic Program Translation (i.e. computer lan-
guage compilers) centered on using context-free grammars to discover the structure some input [64,
42, 163, 34, 2].

The Context-Free family of grammars is a fairly descriptive

For example, if we have the terminal symbols Det (for determiner, such as “the” or “a”) and
N (for noun, such as “car” or “man”), we can write a rule to describe the structure of such noun
phrases as “a man” or “the car” with the rule:

If we also had the terminal V to describe verbs such as “drove”, and the punctuation symbol .,
we can create rules to describe entire sentences such as “A man drove the car.”:

This collection of rules is known as a grammar. By repeatedly applying rules of the grammar
to the input, and to the results of other rules, we can nd whether the input is described by the
grammar, and if so what structure can be assigned to it.

12

the man

Det N

NP

V

VP

drove the

Det N

NP

car

S

.
Figure 2.1: Example context-free parse tree

For example, if we applied these rules to the input “A man drove the car.”, we would discover a
structure such as shown in Figure 2.1.

This repeated application of rules in order to discover the structure of an input is known as
parsing.

2.1.4 Unication Parsing

Although much of the pioneering work in Computational Linguistics centered on the parsing of
Context-Free Languages (e.g. [42, 163, 34]), it has also long been recognized that the Context-Free
formalism is insufcient for adequately describing the grammar of human languages [25].

Syntactic agreement

Syntax is more than just nouns and verbs. Although the mathematical formalization of grammar is
a modern notion, scholarly descriptions of languages have long included features such as number
and gender.

According to McArthur [86], Dionysius Thrax, of Alexandria, presented He gramḿatike tékhne
circa 100 B.C.E. In this work, Thrax presented a grammar for Greek, containing lists of inections
as well as some elements of syntax (according to McArthur, “through the presentation of imprecise
examples” [86]).

In that spirit, we will begin our discussion of features using an imprecise example. We have said
that a noun phrase can be made from a determiner and a noun:

13

Now consider the two sentences:

Argyle saw a man.

*Argyle saw a men.

In English, there are several types of agreement: gender, number, and time (tense) for example.
In the above example, the rst sentence is considered grammatical, but the second is not, because
the determiner a is of singular number, whereas the noun men is plural.

Strictly CF not preferred for writing grammars In order to maintain a context free grammar,
we could give more precise categories to the words, and duplicate the above rule using this ner
description [3, p. 83]:

It should be fairly clear that this is not such a good solution in the general case. We would have
to duplicate large portions of our grammar for each feature we wished to account for, leading to an
exponential blow-up in the number of rules in the grammar. From a software engineering outlook,
the grammar itself is a piece of a system that must be maintained. So the original source grammar,
as maintained by a person, must not only have good specicity and coverage, but it must also be
transparent — the underlying intent of the grammar writer must be clear. So we would really like
to write only one rule, but say that the number feature of the Det must match the number feature of
the N.

This is a fairly small example, yet when taken to the extreme of a grammar designed to parse a
realistic fraction of a language, the number of features can get inconveniently large. For example,
in their description of a Revised GPSG grammar for English, Barton, Berwick, and Ristad point out
that for verb agreement, they use a total of 19 3-valued (, , unspecied) features, which would
create out to over rules if expanded into separate context-free rules as above, and that their full
binary coordination schema corresponds to over context-free rules [10, pp. 293–4].

Semantic disambiguation Features are not only useful for enforcing agreement, they can also
be used for some types of disambiguation. Consider the two ambiguous sentences:

14

Argyle saw the man with the telescope.

Argyle saw the man with the bagpipe.

The rst sentence clearly has two ambiguous readings: either Argyle was using the telescope to
help him observe, or the man had the telescope. The second sentence does not have an analogous
rst reading for broadly semantic reasons: one cannot use a bagpipe to help one to see better.

We could simply allow ambiguities such as this to pass through the parser intact. This is really
a cheat in the context of many larger systems, however, since we would have to deal with the
ambiguity eventually, and it very well might be more difcult to resolve later.

Alternately, we could attach some very simple semantic information to the words, using this to
express the notion that a telescope can be used to help one see, but a bagpipe does not have this
aspect. But in order to correctly reject the erroneous sense of using the bagpipe to see, we would
have to apply some operation to this extra information in the grammar rules.

Feature-based transform useful for some more powerful systems

There is another fundamental problem with strictly context-free parses: they may not be especially
useful.

Argyle saw the man

VN Det N

NPNP

VP

S

Figure 2.2: Example context-free parse tree

It is ne to say that we have something like the tree shown in Figure 2.2, but in many cases, it
might be much more useful to know that a proper noun Argyle is the subject of the sentence, that
the sentence is in the past tense, and that the object of the sentence is a noun, man, modied by a
denite determiner.

15

It is true that we can gure all this out based on the parse tree that we discovered, but that begs
the question: how is this information to be discovered? This is exactly the problem we are actually
examining.

What we really want is a formalism which allows the grammar writer to express these aspects
of syntax in a principled way. Unication has been found to be an effective solution to , either
alone [39] or as an adjunct to a context-free grammar [56] has been found to be a good formalism

About Unication

Unication can be viewed as a simple generalization of pattern matching. Consider having lists in
which some values could be variables, rather than strictly constants. For this scenario, Allen has a
good denition of unication (when referring to nested lists of variables and values):

Two lists are said to unify if there is a set of bindings for their variables such that, if
you replace the variables with their bindings, the two lists are identical.
[3, p. 599]

We can also relax the above denition somewhat to say that a pattern will unify with a list if
there is some set of bindings of values to variables such that the pattern does not conict with the
list. Note that this is even more general than a subset operation. In this way of looking at unication,
the lists are sets of name-value bindings, and the question could be rephrased as ”Do these sets of
bindings agree, or do they clash?”

So, for example, we might say that the name-value list could unify with the pattern
, giving the result . But the list could not unify with the pattern

.

We can generalize this somewhat more. In the above example, we have considered only a at
set of names and value bindings. I will refer to this as simple-valued unication.

One can also imagine generalizing the values that could be bound to names as more than simple
constants, but instead as whole sets of subordinate name-value bindings. Thus we could have a
name-value set such as:

((foo bar)

(baz ((a b) (c d))))

For this, the pattern will need to be enhanced as well, in order to have a sufciently precise way
of referring to names and values. This is because a name is only bound with respect to its context

16

(with the top-level being generally unnamed). Thus rather than saying name = value, we will say
path = path.

So, for example, the pattern ((a = c)) would unify with the name-value set:

((foo bar)

(baz ((a b) (c d))))

Giving as a result:

((a c)

(foo bar)

(baz ((a b) (c d))))

But the pattern ((baz a) = c) would not, since in the context for the bindings of baz, a
has a value of b.

Unication of this sort can build large and complex trees, which we will see is both useful and
troublesome. I will refer to this sort of unication as tree-valued unication.

Unication in Theories of Syntax

There are several overall view-points one can take when developing a theory of syntax. From the
stand-point of the computational linguist, all view-points are not equally good. Quite often, the
theoretical linguist will concentrate on generative theories. In these, the starting point is some
abstract structure representing a thought, and the ending point is an ordered string of words or
equivalent symbols.

The main problem with this viewpoint is that the computational linguist often nds him- or
her-self working in the other direction: given an ordered set of words, what is the implied structure?

So called ‘structuralist’ theories of grammar can be of signicant help in this. From the outlook
of generation, structuralist theories assume that the words will be eventually produced in the nal
order only, rather than e.g. being created and then rearranged. Due to straight-forwardness of this
outlook, the process can often be easily reversed, which is exactly what we need for parsing.

When working with a grammar, it is often convenient to write rules that have two parts: a rule in
some strict grammar formalism, such as a context-free production, and a set of unication patterns.
The values that these patterns will match against are the values that the immediately subordinate
children of the rule might have. In this scenario, a node in the grammar tree will take a value that

17

is the result of applying the generating rule’s patterns to the set of values of the nodes that are
immediate children. Finally, to initialize the process, terminals such as words will have dened sets
of values themselves. If the base rule succeeds, but the unication fails, then the overall rule will
have failed as well.

Harrison and Ellison point out that the context-free production can be viewed as ‘syntactic sugar’
for certain types of unication equations [45]. Briey, consider the rule:

If there is a category variable in the unication system, and the unication system allows for the
over-writing or replacement of unication values, then the effect of this context-free rule may be
easily simulated by the three equations:

category
category
category

(Where x0 refers to the parent constituent, x1 and x2 refer to the child constituents, and := is an
over-write operation.)

One can imagine using this sort of unication to build grammars more interesting than that of
the simple grammar formalism that is the basis, or spine of the grammar. I will briey look at two
such formalisms: Generalized Phrase Structure Grammar, or GPSG [39], and Lexical Functional
Grammar, or LFG [56].

GPSG - simple features only, with a multiple inheritance system.

GPSG[39] can be seen as one extreme in the continuum of unication-based structuralist theories.
GPSG does not try to do anything more than allow valid phrases and sentences, and disallow invalid
combinations. GPSG attempts, whenever possible, to accomplish this using only simple-valued
features. In order to accomplish this, GPSG uses a system of multiple-inheritance to create general-
izations of patterns in the unication system [137].

GPSG was originally designed as a general theory of syntax, rather than as “a programming
language specialized for writing grammars” [23, p. 20]. As such, it tries to make predictions about
the universe of all possible human syntaxes. One such prediction was that it should be possible to
describe (almost all) languages using a strictly context-free formalism. Thus GPSG was designed

18

so that the rules of a grammar could be expanded into a strictly context-free set, albeit with an
exponential blow-up in the number of rules. Barton, Berwick, and Ristad point out that no one
would actually want to do such an expansion. In their description of a Revised GPSG grammar
for English, they estimate that their binary coordination schema corresponds to over context-
free rules, and conclude that “Any recognition procedure that explicitly calculates or uses the set of
admissible local trees can only result in a slower recognition time than one that does not.” [10, pp.
293–4]

GPSG is attractive for its simplicity. For example, in order to claim that for a well-formed
sentence, the person (e.g. rst, second, third) aspect of the subject NP must match that of the VP,
one need only dene a PER feature, make sure that it is set appropriately for the nouns and verbs, and
insist that the PER feature match in the appropriate rule. Using a notation somewhat less obscure
than GPSG, this rule would say:

NP PER VP PER

Although GPSG was designed as a theory of syntax, rather than a computational syntax for-
malism, it has inspired several computational formalisms, including HPSG [118] and the syntax
formalism used in the Core Language System [4].

LFG - tree-based features

LFG[56] is another extreme. Unlike GPSG, LFG tries to associate phrases with their grammatical
role in an overall clause, as a way of mapping from the more abstract space of grammatical functions
into the less abstract string of words.

Like several other types of syntactic theories, LFG provides for a set of high-level descriptions,
and a way to map these down to the usual low-level form: a sequence of words. In LFG, there
are actually two closely related high-level descriptions. Constituent structures, or C-structures,
are medium-level grammatical structures of the usual form, with nouns, noun phrases, verbs, verb
phrases, etc. Figure 2.3 shows an example of such a structure.

These simple structures are augmented by decorating them with functional structures, or F-
structures. These values are interpreted according to grammatical functions associated with the
context-free rules that dictate the form of the C-structures.

For example, in the LFG rule below, one might say that a verb phrase can be built from a
verb phrase and a noun phrase, with the subordinate verb phrase forming the phrasal head, and the

19

Argyle saw the man

VN Det N

NPNP

VP

S

Figure 2.3: Example constituent structure

subordinate noun phrase lling the role of direct object, or obj. The latter requires that the head verb
phrase can allow an obj slot to be lled, and that there is not already something in this slot.

obj

These rules can be used to generate by repeatedly applied to an abstract grammatical role struc-
ture to create a well-formed string of words, or to parse by working in the reverse order.

LFG-style grammars have the advantage that they can be very convenient for the computational
linguist who is interested in doing more that just parsing. The abstract representation can be just the
thing for tasks such as machine translation [40, 4].

The down side is that a parser using an LFG-style grammar must build and maintain these
complex tree structures. As a result, the unication process can be slow in some cases, and in the
worst case the process could be computationally intractable [10, 137].

2.1.5 Unication grammars are computationally powerful

In [56, pp. 268–272], Kaplan and Bresnan show that LFG is more powerful than a simple context-
free grammar by presenting two examples, one to accept all strings of the form , the other to
accept all strings of the form . This hints at the computational power of LFG; we shall see that it
can be very strong indeed.

In order to ensure computability, Kaplan and Bresnan restrict their theory in various ways in
order to ensure the computational tractability of their system. Notable in these restrictions is a limit

20

that no unproductive loops are allowed in the context-free backbone of the grammar. (For example,
the set of rules , , and would not be allowed [56, p. 264].) In order to see
why this was done, let us consider a system much like LFG, but without these restrictions.

According to Shieber [137], PATR-II [135] is both simple and unrestricted. It can, however,
contain tree-structured unication values, rather than a simple binary vector. Shieber notes that
because of this, PATR-II “can characterize any recursively enumerable language” [137, p. 66],
which is to say that it is Turing Complete [48]. (The proof for this is fairly straight-forward. One
simply uses the nesting ability of the unication values to form two stacks and a current symbol,
and implements the Turing Machine “move left” and “move right” actions by manipulating these
unication values. This is built, however, using loops of rules that are “unproductive” according to
the LFG restrictions [56, p. 264].)

Avoiding Turing equivalence is a worthy goal — it ensures that we can actually parse. On the
other hand, this is not a sufciently tight computational restriction for real-world problems. Not
only would we like to be able to compute the parses, but ideally we would like to know that we can
do so in polynomial time.

In their book on natural language and computational complexity, Barton, Berwick, and Ris-
tad [10] examine a number of theories of grammar in great detail, with an eye toward the computa-
tional difculty of each theory of grammar.

The most restricted grammar that they examine are what they call Agreement Grammars. An
Agreement Grammar is a context-free grammar where each nonterminal consists of a set of feature-
value pairs, where both features and their values are chosen from a set of predened nite sets.
Further, a production may only be applied if the left-hand-side nonterminal can share a set of
feature-value pairs with each of the right-hand-side nonterminals. In other words, if the feature-
value sets unify. As such, this grammar could be considered to be the simplest version of a unica-
tion grammar, and in fact the authors note that they designed the AG denition to be a completely
stripped-down version of the core of GPSG [10, pp. 89–90].

Barton, Berwick, and Ristad use the simple AG denition to show that even such a simple task
as agreement is NP-Complete [10, pp. 89–96] by showing that they can solve AG in NP time, by
guessing a solution and verifying that it is correct in polynomial time, and that they can reduce 3SAT
— the satisability problem restricted to conjunctive normal form, and with a limit of three terms
per disjunctive clause, e.g. — a standard NP-Complete problem [132,
pp. 633-639]. to the AG parsing problem, thus AG is also NP-Complete. The upshot of this is that
the parsing problem with unication may be very, very hard. In the worst case, no (deterministic)

21

polynomial-time solution is known.

Kaplan and Bresnan point this out in [56] as well. They write: “The problem of deciding whether
or not a given f-description is satisable is equivalent to the decision problem of the quantier-free
theory of equality. ... (Oppen & Nelson, 1977)” [56, p. 190].

Barton, Berwick, and Ristad conrm this by presenting a novel proof that LFG recognition is
NP-hard [10, pp. 107–13]. This is not too surprising, since LFG can implement simple feature
unication such as Barton, Berwick, and Ristad’s AG formalism, which is NP-complete (see above
in Section 2.1.5).

2.1.6 Parsing as Constraint Satisfaction

We can return to the two fundamental questions in parsing. We saw that the recognition question
“Does grammar G parse input I?” is equivalent to asking “Is I a member of the language L(G)
encoded by the grammar G?”. This in turn is equivalent to asking “Are there a set of constraints
P(G) consistent with I?”. Likewise, the parsing question “How does G parse I?” can be seen to be
equivalent to asking “What are a set of constraints P(G) that prove that I is a member of L(G)?”

This seemingly simple viewpoint is actually somewhat subtle. By taking this view, we can make
several important observations:

Parsing is a constraint satisfaction problem [85, 22, 96].

Context-free and Unication constraints can be encoded in rst-order logic (or preferably a
subset of rst-order logic) [22, 96].

The constraints can be re-ordered according to the mathematics of FOL.

The mathematics of the logic in use allow for both conjunctions (ANDs) and disjunctions
(ANDs) to be short-circuited: If some clause within a conjunction is false, we know that
the whole conjunction must be false without evaluating any remaining terms. Similarly, if
any term within a disjunction is true, the whole disjunction is true (without evaluating any
remaining terms).

From this in turn we can observe the following: within a family of grammars, all methods which
speed up parsing are one of the following:

1. A method to calculate individual constraints.

22

2. An algorithm to calculate some set of constraints with special computational properties.

3. A way to re-arrange the constraints so that redundant calculation of constraints are avoided.

4. A way to re-arrange the constraints so that Inexpensive constraints are applied prior to the
expensive constraints so that the failure of an inexpensive constraint allows the parser to avoid
calculating the expensive constraints entirely.

5. The introduction of additional constraints, which are derived from, and less expensive than
the original constraints, in order to avoid calculating expensive constraints as above.

We can also characterize most robust parsing techniques as a weakening of these constraints
in certain ways. For example, the ability to ‘skip’ words could be viewed as a relaxation of the
constraint that all the words must be used in consecutive order.

2.2 Parsing Applications

2.2.1 Machine Translation Systems

As introduced in Chapter 1 above, this parsing system is engineered to be a part of a larger system
— in this case, the KANT system: a large-scale knowledge-based machine translation system. One
concrete goal of this work is to produce a parser that is largely compatible with the existing one used
in the KANT system, while being resistant to certain failure modes that the current parser suffers
from. In order to understand the particular design decisions that have directed the development of
this parser, we should review the context in which it is intended to operate.

Machine translation is the process of translating text in one human language into a different
human language though an automatic process. There are several major successful approaches to
attacking this problem; the KANT system uses a knowledge-based approach.

In a knowledge-based machine translation system, the system attempts to build an explicit
higher-level representation of the source text (sentences or sets of sentences), which is then trans-
lated down to the target language. This is in contrast to example-based or statistical approaches, in
which any abstraction away from the source text is a substantially implicit effect [49].

23

The KANT system

KANT architecture The KANT system [20, 89, 110, 111] attempts to take the knowledge-based
approach to useful extreme: the source text from any one of a number of input languages is rst
translated into an Interlingua representation, which can then be translated to any one of a number
of target languages [20, 89]. This is shown conceptually in Figure 2.4.

Source Language 1

Source Language 2

...

Target Language 1

Target Language 2

...

Interlingua

Figure 2.4: Multiple-source, multiple-target Interlingua Translation

The primary advantage to this sort of over-all structure is that input languages and output
languages can be supported by a system with some major components, whereas a system
that requires each translation path to be implemented as a completely separate piece would require

major components. Of course, maintaining compatibility amongst the input modules
requires extra work, but over-all this is a good way to structure such a system. [20]

Parser disambiguator Semantic
MapperLanguage

Source
Interlingua

F!structures an F!structure

Figure 2.5: Block Structure of Source-to-Interlingua Conversion

The process of translating from a single source language to the Interlingua is broken down into
a set of pieces, shown conceptually in Figure 2.5. In this gure, the parser translates the input string
into a set of F-structures. The disambiguator then selects a best single F-structure for this parse.
Finally, the semantic mapper translates the (still partially source-language dependent) F-structure
into a (language independent) interlingua representation.

Ambiguity a problem for machine translation Ambiguity of any sort is a large problem for
a machine translation system. The reason for this should be fairly clear: what is ambiguous in
one language is rarely ambiguous in the same way in another. As a result, a single ambiguous
input sentence may have several different correct translations into a given output language. As a

24

result, there is a strong desire to nd a single “right” interpretation for any input, so that this single
interpretation can be translated to a single “right” translation1.

Obviously there are two general ways to attack the problem of ambiguity:

Select from amongst a set of ambiguities.

Avoid having ambiguity.

While the latter may sound trite at rst, this is a perfectly acceptable approach for some situ-
ations. In particular, a limited-domain machine translation system narrows down the space of the
source language to a manageable subset. Much of the point of limiting the domain is to exclude
ambiguities that have nothing to do with the domain that one is translating from [62, 20]. For exam-
ple, even though ‘grease the wheels’, meaning to bribe, is a common phrase in colloquial American
English, it is unlikely to be used in this metaphoric sense in a manual on the maintenance of heavy
equipment.

That said, limiting the domain of a machine translation system can help, but does not solve
the ambiguity problem. Only some machine translations are used in a situation where the input
domain and/or language can be limited. Still, limiting the domain when and where appropriate can
substantially reduce ambiguity problems [8].

A class of ambiguities that causes trouble for a parser There are several classes of ambiguities
that can cause trouble for a machine translation system.

Lexical ambiguity. This ambiguity is caused by a single orthographic representation of a word
having more than one meaning. For example, the word ’grease’ could either mean the verb
which means ’to lubricate’, or it could mean the noun, a type of heavy, thick lubricant. This
is an ambiguity in the grammatical category of the word.

A more subtle form of lexical ambiguity is an ambiguity in the detailed meaning of a word.
For instance, ‘wheel’ could refer to the part of a truck that rolls against the ground, or the con-
trol device used to steer the vehicle. While these are both nouns, these are in fact distinct and
non-interchangeable parts. In some circumstances, it is important for a machine translation
system to be able to distinguish between choices such as these.

1Obviously the problem of translating a single interpretation into a single “right” output is fraught with many of the
same problems of disambiguation that picking a single “right” interpretation is.

25

Non-compositional phrase ambiguity (idiomatic ambiguity). In this form of ambiguity, a
phrase of words has a different meaning as a group than the ordinary composition of the
meanings of the words would indicate. For example, in the Cantonese dialect of Chinese, to
‘fry the squid’ means to be red from one’s job [161].

Idiomatic phrases such as these cause trouble both for students of a non-native language, as
well as for machine translation systems, for much the same reasons: there are many of these
idioms, and the clue to whether the speaker or author is using the idiomatic meaning or the
compositional meaning is often only subtly indicated by the context.

Because the idiomatic meaning of a phrase is often quite different than the composite meaning
of those same words, an incorrect guess can lead to a rather spectacular (and often amusing)
translation failure, either from a machine, or a human translator. A particularly famous ex-
ample of this type of ambiguity is the (June 26, 1963) John F. Kennedy said “Ich bin ein
Berliner.” [52] meaning ‘I am from/of Berlin.’ It is widely believe that it also could be under-
stood to mean ‘I am a jelly doughnut,’ though this is disputed [80].

Syntactic attachment ambiguity. Attachment ambiguity is an effect of the grammar. This
form of ambiguity comes from a choice between two or more different ways of analyzing
some input. For example, Modern English prepositional phrases can be the source of syntactic
ambiguity. The prepositional phrase is formed out of a preposition and a noun phrase, and can
attach to both a verb phrase, as well as a noun phrase. This allows the prepositional phrase to
attach to the noun phrase of another prepositional phrase, which in turn can lead to attachment
ambiguity when two or more prepositional phrases appear together. An example would be the
sentence:

Argyle saw the man on the hill with the telescope. [47]

This sentence has four distinct readings:

1. Argyle could have been on the hill and used the telescope to see the man.

2. The man could have been on the hill, but Argyle used the telescope to see him.

3. Argyle could have been on the hill; the telescope was also on the same hill but Argyle
didn’t use it.

4. The man could have been on the hill, along with the telescope.

Although ambiguities of any form are a problem for an entire machine translation system, indi-
vidual localized ambiguities are not particularly a problem for the parser. Localized ambiguities can
become a problem, however, because the addition of each local ambiguity can increase the number

26

of global interpretations multiplicatively. Thus the total number of global interpretations can be
exponential in the number of local ambiguities.

It is easiest to see this happen with syntactic attachment ambiguity. We will see in Section 3.3.1
phenomena such as such as prepositional phrase attachment ambiguity lead to possibly very bad
behavior in the process of parsing such as an exponential blow-up in the space and time requirements
of the parser. These unfortunate behaviors are not limited to any particular type of ambiguity — any
set of local ambiguities, each of which cause a multiplication of global interpretations, can lead to
exponential blow-ups in the parser if they are not carefully controlled.

In Section 3.3.2, we will investigate this phenomenon, and examine how it can be xed for a
purely context-free parser. Then in Section 3.3.3 we will investigate how such a context-free parser
can become broken once again by the addition of a unication system, and that (as of this writing)
no guaranteed polynomial time solution to this problem is known to exist.

The remaining chapters of this work describe a set of techniques which, when used together, can
allow the system to avoid this potential pit-fall for the sorts of parsing problems we have encountered
in practice in a machine translation system.

Interactive checking One key element that allows the KANT system to work very well on re-
stricted domains is an effective method of checking to make sure that the human-authored input
language abides by the required restrictions [20, 89, 8]. This check must be effective, but must not
be too time-consuming for the author [55].

The simplest way to implement this checking is to run the full parser on the authors’ source
document, and check to make sure that a valid result is produced. However, this is more work than
the problem of conformance checking actually requires.

In the particular case of interactive conformance checking, we could simply run some minimal
amount of the parser — not enough to actually produce results that are useful for the rest of the
machine translation system, but simply just enough to check that a sentence either conforms or
doesn’t conform to the input language that is specied by the grammar.

Conceptually, we can extract out the rst part of the pipeline shown above in Figure 2.5, and
adapt it to the needs of interactive checking. This is shown in Figure 2.6.

Ideally, this checker should be integrated into an authoring tool, so that the writer can write
naturally and easily, but still receive indications warning them when what they have written fails to
conform to the restricted language that is required by the machine translation system.

27

Parser disambiguatorLanguage
Source Check for

F!structures up to two F!structures

Yes/Noexactly 1
F!structure

Figure 2.6: Block Structure of Source-Language Conformance Checker

One important guideline in the design of good human-computer interfaces is: The system should
not surprise the user [5, 109, 7].

The source-checking component should produce clear indications warning the author about parts
of their text that does not conform to the restricted language required by the machine translation
system. On the other hand, the display of these indications should not force the author to deal with
them as they are discovered to the exclusion of the normal task, for otherwise the author might loose
track of the ow of the thoughts they are trying to express (which is, after all, their primary task).

So, phrasing the design in terms of current standard user interface design ideas, the lack-of-
conformance warnings should not be modal — they should not force the user to deal with a single
problem before being presented with the next problem [5, pp. I-28–I-29]. Baecker and Buxton note
that Larry Tesler argues particularly strongly against the use of modes in user interfaces [7, p. 429].

In addition, the system should not surprise the user with checking that is overly variable in time
either [46, pp. 29–32][51]. Ronald Baecker makes this very clear, in his 1980 paper on graphical
user interfaces. In a list of guidelines entitled “some characteristics of good interactive techniques”,
he includes:

3. The feedback occurs predictably. Unpredictable response is even worse than pre-
dictably slow response, leading to frustration, tension, and anxiety.
[6]

If the system normally checks text at a rate of several sentences per second, it should not “bog
down” and spend the larger part of a minute checking some particularly bad sentence, and it should
absolutely not do this without some indication to the user that it is still working on something [5, 46].
Unfortunate behavior of this sort in the KANT system several years ago [114] supplied the seed from
which this work has sprouted. Our goal, then, is to have a system that is not only fairly quick at
parsing sentences, but does not bog down or blow up on any input.

This design principle can be seen to be a special case of generally good engineering practice.
Butler Lampson gives the following hint in “Hints for Computer System Design”:

28

In allocating resources, strive to avoid disaster rather than to attain an optimum.
[67], [13, p. 67])

29

30

Chapter 3

Unication Parsing

DEAR GRAMMAR LADY: I don’t know about you, but in my student days, master-
ing English grammar seemed about as easy as learning the art of black magic. Well,
I was apparently onto something. The word “grammar” entered medieval English as
“grammarye,” via Scotland. The Scots got it from the French word, “grimoire,” which
meant a collection of magic spells. The connection was made between grammar and
magic because most people then were illiterate, so any linguistic smarty-pants were
metaphorically seen as dabbling in sorcery. (Source: “Forgotten English.”) I wish they
had retained grimoire. It sounds more like the way I felt about the subject.
COMMENT: I’m sure a lot of people feel the same. Thanks for the information.

— The Grammar Lady, The Pittsburgh Post-Gazette,
Friday, November 3, 2000, p. C-11

3.1 Unication Parsing

As we noted in Chapter 2, one general framework that has gained acceptance with theoretical lin-
guists involves adding additional information to each of the context-free grammar rules which de-
scribe the valid parse structures which can be represented. [137, 39, 56]. Most of these formalisms
fall under the general category of unication grammars [137].

One such a formalism is Kaplan and Bresnan’s Lexical Functional Grammar [56] discussed in
Section 2.1.4 above. One of the nice features of LFG is that it tries to associate structures such as
phrases with the grammatical roles of the structures. So, for example, the value associated with the
top-level (sentential) node of a declarative transitive sentence would include not only information
inherited from the head verb, but also explicit slots for the subject and object information.

Marking out the grammatical roles in such a manner gives us a nice, somewhat abstract point

31

from which to generate text, or to which we can parse text. For example, if we are translating from
a language such as English, which marks roles such as the subject and object by their position in a
clause, into a language such as Spanish, which marks these roles morphologically, it is convenient
to know that the subject of the input language is a female, third person, singular pronoun. And even
though we might wish to perform the translation by transforming this abstract structure into an even
more abstract one, it can be easier to make the representation of the input more abstract in a set of
steps, rather than all at once [40]. So we might like to implement something like LFG in our system.

To implement this on a computer, we need a somewhat simpler syntax than using all those
arrows. What we shall do is number the children on the right-hand-side of each rule, left to right.
The leftmost child we shall call x1, the next, x2, and so forth. We will call the value of the current
production x0. Thus the above rule can be written as:

(VP <== (VP NP)

((x0 = x1)

((x0 obj) = x2)))

If one considers unication to be the process which decides what information to associate with
each node of the (context-free) parse tree, and that the parse operates in a bottom-up fashion, then
the set of unication rules can be considered a function which will either produce the new value to
be stored at the parent node (x0), or some sort of indication that the unication failed.

This is the representation our system uses internally. It was described in detail in Goodman and
Nirenburg [40].

3.1.1 Pure Unication Parsing

In some systems, the feature-theoretic portion has been carefully integrated with the parsing process,
to the point that the chart algorithm was modied to support a pure unication system [136, 45].
These systems concentrated on correct execution, or at least correct execution in some cases; issues
of efciency were not considered as such.

Shieber’s unication-chart with restriction

In [136], Shieber examined pure unication parsing – i.e. parsing using unication equations without
a context free spine. Taking this approach to the parsing problem is motivated by theories of gram-
mar such as GPSG[39], LFG[56], and PATR-II[135] (also see below). GPSG, for example, treats

32

the traditional category of a rule as the union of a set of features. Other formalisms such as LFG
have values that are more complex; some such as PATR-II [135] have essentially no restrictions.

Shieber addressed this problem by adapting the chart parsing algorithm to parsing in a strictly
unication environment such as PATR-II. His motivation in this was, in part, that gluing a unication
formalism to a context-free spine violated the spirit of unication formalisms (in the abstract), and
could cause the parser to ignore information that could help guide the parse. On the other hand,
simply allowing the category symbols of the grammar rules to come from an innite domain, such as
the domain of tree-valued unication values, may cause parsing algorithms such as left-corner [23]
and LR preprocessing [48, 151] to fail [23, 136].

So rather than hard-wiring a dependence on the context-free spine into the parser, Shieber made
the parser depend on an abstract subset of the space of unication values, which he called the
restrictor. This could be set on a per-grammar basis in order to better tune the parser for a particular
unication grammar.

Consider the PATR-II rule:

Now suppose there is a cat slot. This rule can be re-written as:

There is, however, no particular reason to “hardwire” only the cat slot into the parser by using
it alone as the category of a context-free parser. GPSG uses the entire unication value (the whole
set) as the category.

Shieber noted that one need not wire in a particular feature, nor need one use the entire unica-
tion value set, but instead one could dene an abstract subset of the slots as the “interesting” ones,
the restrictor, and dene this subset separately for each grammar.

So if we were to set the restrictor to , we would get exactly the same result as binding
our grammar to the context-free spine. But we could also for example set the restrictor to the set

.

33

Obviously in theory, while a unication grammar can be bound to a context-free spine, it doesn’t
have to. Shieber showed that this could be made true in practice as well.

3.1.2 Unication Parsing on Context Free Spine

Unfortunately, there has been somewhat of a disconnect between the theoretical linguists and the
computational linguists. In many systems, feature-theoretic portions have been added into a context
free parser essentially as an after-thought [3], with little consideration of the ramications of the
additions.

GLR (Tomita)

In his thesis, Tomita doesn’t address a feature-theoretic (or unication) system for his parser at all.
His thesis work was strictly on the development of an algorithm for Context-Free parsing.

He does touch on the issue in a later paper [152]. The development of the GLR system saw
the addition of a simple pseudo-unication framework [153] (see also Section 3.2 below). In [152],
Tomita notes that local ambiguity packing for augmented context-free (i.e. unication-valued) gram-
mars is not as easy as local ambiguity packing for purely context-free ones. He goes on to say that
the solution he took was to have the GLR parser “unpack” packed nodes whenever the unication
values needed to be checked. He then argues that this unpacking is not such a big deal in practice;
that most of the nodes resulting in packed ambiguities will not need to be unpacked in practice.

Carroll’s chart parser

Carroll looked at the problem of parsing with unication, in the environment of a large, high-
coverage grammar. To this end, he developed a new unication algorithm, better suited to the
grammar formalism he was using. He then investigated both bottom-up chart parsing with ambigu-
ity packing, and non-deterministic LR parsing as an improvement over Tomita’s GLR. Finally, he
investigated probabilistic parsing in this environment.

In Carroll’s system, the ‘category’ of a production is the unication value. He shows how to
use the feature system to automatically build a context-free “spine” of rules from the unication
equations; the generated context free rule will be subsumed by the unication equation, but can be
checked quickly and used to build the LR tables used by his nondeterministic LR parser.

The grammar Carroll used was closely modeled on the GPSG [39] theory of grammar. The

34

emphasis of GPSG is on simplicity: with only one exception, GPSG unication values are a set of
simple-valued features. And the exception is also a set of simple-valued features. This differs from
the complex tree-based values of e.g. LFG [56].

These simple values promote local ambiguity packing. Carroll writes that “the correct test for
packing is category subsumption.” [23, p. 57],[4, p. 142]. This decision is closely coupled to the
simple structure of Carroll’s unication grammar. We will see that while good for Carroll’s system,
it will not sufce for ours.

Alshawi, et al.’s system: the Core Language Engine

The Core Language Engine [4] (CLE) is a remarkably “clean” system for processing language.
The processing of language is separated into a set of distinct stages, each substantially separate
from another [4, pp. 1–9]. It uses unication-valued categories for both the syntactic and semantic
components. Unlike some other systems (including the one presented in this work), the syntactic
values are quite different from, and independent of, the semantic values. Syntactic values are almost
entirely simple-valued, and compiled down to binary features. The exception to this are the list-like
features used to implement gap-threading method of handling elision and other “transformation-
like” phenomena.

The semantic values are Quasi-Logical Forms, which are modeled somewhat on LFG [4, p. 43],
but also resemble the Discourse Representation Structures of Kamp and Reyle [54]. The building
and processing of these structures is done strictly after all syntactic processing has nished. As a
result, the semantics can eliminate some possible interpretations, but cannot directly inuence the
syntax.

As a result of the simplicity and clear separation of the syntax and semantics, Robert Moore and
Hiyan Alshawi could devise a clever solution to some of the problems of parsing with unication.
In their system, the structure of the syntactic unication system, and the structure of the parser itself
are quite closely related. The parser is a left-corner parser (see above), operating on the unication
categories of the syntax. It employs packing on the categories. Because the semantic processing
is delayed until after the syntactic parse, this packing accomplishes semantic as well as syntactic
packing.

One way the authors demonstrated the utility of this system was to create a Swedish to English
machine translation system. This MT system could be said to be an interlingua-based translator,
using Quasi-Logical Forms as the interlingua.

Such a carefully thought-out feature theoretic system, with its associated parser, can avoid many

35

of the pit-falls of ambiguity [4, pp. 142–143]. Unfortunately, this system is not general in the sense
that one cannot just lift the parsing module and use it for an entirely different theory of syntax and
semantics. The parsing methodology is strongly linked into the overall system architecture, and
purpose-built for the particular theories of morphology, syntax, and semantics used in this system.

The forced separation of syntactic constraint and semantic interpretation of the Core Language
Engine could be considered to be a desirable goal from a systems design stand-point: the separation
can prevent needless complications in the programming of rules of grammar that have to do with
the mixing of two possibly distinct and different effects.

On the other hand, this separation can cause trouble for the grammar maintainer, because the
joint effects and interactions of two separate sets of rules must be considered while debugging the
system. If an input which is believed to be valid does not produce the intended result, the incorrect
operation may be due to a failure of the syntactic system, or a failure in the semantic interpretation,
or a possibly subtle interaction between the two subsystems. We will examine this problem in detail
in Section 3.3.4.

As a matter of the philosophy of language, it is not in fact clear that it is in fact better to
separate “syntax” and “semantics”, nor is it clear that the separation happens along the lines that
the Core Language Engine uses. The under-pinnings of Lexical-Functional Grammar, on which the
KANT system is largely based [89, 110, 111], argue counter to this explicit separation. So while
the Core Language Engine is based on a reasonable theory of language, it is based on but one of
many competing theories of language, none of which have been shown to be so overwhelmingly
advantageous as to become universally favored. In short, considerations of theories do not provide
any clear reason for us to discard the linguistic-theoretical basis of our system and adopt a different
one.

Furthermore, discarding the grammars that we have at the present time would imply not only
reengineering several grammars, but also reengineering the F-structure to Interlingua translation
stage [40, 89, 87], which might amount to many person-years of effort. While the prospects of
completely re-engineering such a system may be academically acceptable to some, the possible
gains may not be sufciently compelling to be worth the cost of the re-engineering effort. Since part
of the academic interest in e.g. KANT is that it is a large, practical, working system, we must look
for a better answer than a complete re-write of large portions of it. So due to these entirely practical
reasons, we cannot just adopt (or re-engineer) the Core Language System.

However, there are several interesting ideas presented by Alshawi, et al. ; these ideas will sub-
stantially inuence the design of our new parser.

36

Maxwell and Kaplan

In the unication systems we are interested in, the conditions for creating a valid constituent
are two-fold: not only must the children have the correct categories, but the F-structures of the
children must unify according to the equations that are also part of . It is somewhat convenient to
implement a parser by having it check for the unication condition immediately after discovering the
valid (Context-Free) constituent, and only creating the constituent when the associated unication
succeeds. We will refer to this as interleaved unication.

Maxwell and Kaplan [85] suggest that there is no particular reason why we must evaluate these
equations in an interleaved fashion — one could evaluate the context-free part of the grammar, and
only when it is complete go back and evaluate the unications for the portions of the parse that are
part of some complete analysis of the input.

Their approach is quite interesting. They argue that a potential problem with interleaved uni-
cation is that the parser might spend an exponential amount of time working on distinct unication
results. (We will discuss why this is in detail in section 3.3.4.) By delaying the unication until
later, they are able to avoid much of this problem.

Rather than simply evaluating the constraints within the system of the parser, they collect the
entire set of constraints, optimize their order to eliminate redundancy, and then hand the complete
set to a dedicated constraint solver, which produces a nal F-structure (if any can be found). This
extraction and joint optimization of constraints has the potential to greatly reduce the amount of
work that is put into evaluating unications, since the only unication constraints that are considered
are known to be part of a potential complete solution.

In general, the results and conclusions of any study are dependent on the overall conditions
under which that study was developed and the tests run. In some cases it is possible to prove
generality, in others the strong possibility of generality can be demonstrated empirically, and in
some, no claims of generality are made. Good software practice dictates that one not blindly adopt
techniques advocated by others, regardless of the relative strengths and weaknesses of their studies
or any claims of generality, but rather experimentally investigate possibly good ideas in one’s own
system to see if they are appropriate.

There are three fundamental problems with Maxwell and Kaplan’s study. First, their study
suffers from having an empirical evaluation on far too small a test set — 20 test sentences [85,
p. 586] — to be considered by any means denitive, even for the implicit conditions of their own
system. Thus, while their idea is an interesting one, the researcher should be doubly careful about
examining the viability of this technique in the context of his or her own system.

37

Second, as Maxwell and Kaplan point out [85, pp. 575–6], there are possible advantages to being
able to prune out derivations that succeed for the context-free rules but fail to unify, before they are
used to create other useless derivations. By delaying this check until after the context-free parse is
complete, their approach could lead to the production of a quite ‘bushy’ covering forest, containing
considerable ambiguity that would not have been created had we used interleaved unication.

And nally, when faced with several different possible solutions, the constraint solver of their
system seems to pick a single satisfying F-structure solution, without regard to syntactic structure or
any other common disambiguating technique. In other words, it appears to pick a parse, rather than
trying to pick the best parse. Any syntactic disambiguation would have to be somehow coded into
the constraints (with the effect of weakening the purity of the syntax), and other disambiguation
techniques such as statistical disambiguation would require modication of the constraint solver
itself.

While we cannot blindly adopt their technique, we cannot simply dismiss it either. Rather, we
will study it empirically, and develop a compromise that combines the best features of interleaved
and delayed unication.

LCFlex (Rosé and Lavie)

LCFlex is a new parsing system proposed by Rosé and Lavie [125], which addresses several de-
ciencies in GLR* [68], as well as providing additional capabilities. LCFlex is designed to be a
high-performance robust parser for unication formalisms similar to LFG [56]. It is based on a
left-corner chart parser [34, 58, 3, 107], but allows several degrees of robustness.

Like GLR*, the primary method of robustness that LCFlex applies is the ability to skip over
input words that the parser cannot t into an over-all parse.

More interesting for this work, however, is a modication to the unication system of LCFlex
that allows the parser to be exible in matching certain unication features. This is best illustrated
in an example from [125]: Suppose that the grammar in use had a rule saying that a sentence can be
made from a noun phrase and a verb phrase, but only if these two have the same agreement feature:

(S <== (NP VP)

(((x1 agr) = (x2 agr))

...))

LCFlex allows for a set of features to be specied as exible. The LCFlex parser will try to

38

evaluate all equations that involve exible features, but it will not require these particular equations
to succeed.

Rosé and Lavie show, as an example, that if we were to mark the agr feature as exible then we
could successfully parse the following sentence even though its subject and verb agreement features
would not match:

robust parsing present interesting computational challenges

[125]

This feature exibility is implemented through the use of a wild-card feature that is guaranteed
to match any other value. In this work, we will make extensive use of this wild-carding idea, though
with the primary goal of faster parsing, rather than more robust parsing.

An additional interesting feature of LCFlex is that it is substantially faster than GLR* for ro-
bust parsing. According to Rosé, this is in large part due to the simplicity of modifying the chart
algorithm to deal with the extra work of robust parsing [124].

3.2 About Pseudo-Unication

Pseudo-Unication is a variant of Unication which was originally proposed by Tomita and
Knight [153] for use in a bottom-up parsing environment. If one considers the general unication
equation:

path1 path2 (3.1)

In normal (full) unication, evaluating this equation will either have the side-effect of causing
both path1 and path2 to have the same value, or to fail when (prior to evaluation) path1 and path2
already have separate (incompatible) values.

In contrast, in a Pseudo-Unication system, evaluating equation 3.1 will result in a modication
to path1, but no change in path2 (even if Full Unication would have caused this value to change).

Further, when a complete block of equations are associated with a rule production, we consider
this block of equations to specify how to calculate the unication value associated with the parent
node, based on the unication values of the child nodes, without modifying the values associated
with the child nodes.

39

This contrast between Pseudo-Unication and Full Unication is most clear in the handling of
references to structures, or whole sets of values. An example of such a reference is the LFG equation

obj typically associated with binding an argument NP to a transitive verb. In a full unication
system, evaluating such an equation is typically accomplished by setting obj to be a reference (or
in the terminology of computer languages, a pointer) to the sub-tree structure corresponding to
whatever the is associated with.

More generally, in a full unication system, equations such as these specify (two-way) links in
a graph of associations. Once a link is made, any other operation which effects the value of one side
of the such a link will effect the other side of the link as well. Ensuring that all of the previously
specied associations in such a structure are compatible with a new modication involves substantial
amounts of effort [153, 63].

In contrast, a Pseudo-Unication system will set the obj slot to a copy of the unication value
associated with the child. (In more sophisticated implementations of Pseudo-Unication, includ-
ing ours, a copy-on-write mechanism [162, 153] is implemented so that the assignment is initially
simply a pointer to the original value, but appropriate parts of the structure are duplicated should
there be a change to the structure in the future. See Tomita & Knight’s technical report [153] for a
good description of this technique.)

In terms of computer language theory, we can consider Pseudo-Unication to be a call by value
system [2, sec. 2.11, pp. 59–63], [99, sec. 5.5, pp. 116–119]. In Section 3.3.7, we will see that
the call-by-value nature of pseudo-unication is both its greatest strength as well as its greatest
weakness.

3.3 Parsing and Ambiguity

We have examined context-free parsing, and hinted at combining context-free parsing with unica-
tion. Before we can just do this, we must examine unication in some detail.

3.3.1 Ambiguity is a problem for context-free parsing

Maxwell and Kaplan [85] note that it is well known that syntactic ambiguity can lead to an expo-
nential blow-ups in the number of distinct parses of an input. Although these are reasonably well
known, for the sake of clarity we will review these arguments here.

Recall our in our denitions above that recognition is asking if an input is within some language,

40

whereas parsing is the process of nding a set of derivations that match that input. In the above
descriptions, it has been assumed that parsing is about as difcult as recognition: na̈vely, one could
just assume that a parser simply works like a recognizer, but keeps track of which productions were
used at each stage of the processing.

Unfortunately, it isn’t that simple. Grammatical ambiguity can cause a problem here. If the
parser keeps track of all possible parses, rather than just one parse, then when presented with an
ambiguous input the parser could use space exponential in the input size to keep track of all of the
possible parses.

If, on the other hand, the parser keeps track of only a single parse, then this parser will no be
suitable for unication parsing (below) because the parser may “throw out” the only legal parse by
retaining a parse that is syntactically good but will no unify due to e.g. agreement problems.

A simple ambiguous Context Free grammar

Claim: A context-free language can exhibit a number of derivations exponential in the size of the
input.

Consider the context free grammar:

For this grammar, we can show the derivations concisely with parenthesis. For the input ”a a”,
there is obviously only one derivation:

(a a)

However, for ”a a a”, we can attach the third ”a” on either side:

(a (a a))

((a a) a)

And for ”a a a a”, not only can the fourth ”a” be attached to either end of any of the results for
”a a a” above, but we can also regroup the whole set:

a a a a

41

(a (a (a a)))

(a ((a a) a))

((a (a a)) a)

(((a a) a) a)

((a a) (a a))

Claim: There exist context-free grammars, and strings described by these grammars for which the
number of legal derivations of the string is exponentially proportional to the length of the string.

Consider the above grammar. By induction on the length of the output. For the base case,
consider that the output ”a” has exactly one derivation: , .

Now for an output formed of n ”a’s” has at least twice as many derivations as one formed of
n-1 ”a’s”: one set by joining the new ”a” at the beginning of any from the previous set, and one by
joining the new ”a” at the end.

So there are at least derivations for a string of n ”a’s”. (Actually, the number of
derivations in the above example is exactly equal to the number of ways of parenthesizing the string
of N letters. The number of ways to do this is exactly Catalan , which is in O(exp(n))
[158, pp. 116–118].)

A slightly more realistic example A problem with the previous example is bit contrived, and at
rst glance is unlike grammars that we might wish to write to describe natural language.

Billot and Lang [15] present an example derived from ordinary English which shows this same
behavior as the above example. This example is also used by Moore and Alshawi [4], as well as
Oepen and Carroll [115].

Consider the following grammar:

42

(where , , and are input symbols)

Also consider an output of the form:

n v p n p n p n p n p n

Moore and Alshawi’s example of such a pattern is the sentence:

Kim saw a cat in the hotel .

Given repetitions of the sequence ”p n”, an ordinary parser, without any type of packing, will
have a number of derivations equal to Catalan , which is in .

The point of this is that in any context free parsing algorithm, in order to avoid completely
blowing up and using enormous amounts of time and space when processing some inputs with
certain grammars, the algorithm must either throw away some ambiguous derivations or store the
set of possible derivations in a more compact form.

3.3.2 Context free parsing with packing

Clearly the parser must do something more clever than to store each distinct derivation indepen-
dently. Younger [163] explicitly speaks to the problem of ambiguity, and showed how his solution
addresses this problem. Tomita [151] found a good explicit solution to this problem, which More &
Alshawi [4] and Carroll [23] then showed was more widely applicable than to only GLR.

Younger Younger, in his fundamental paper on context-free parsing, directly confronts the prob-
lem of ambiguity and the possible consequences it can have:

A parse of a sentence in a language is a description of how the sentence is gen-
erated by ; this description is generally in the form of a generation tree. There is for
an ambiguous sentence more than one generation tree. In fact, there exist grammars

for which some sentences n the language generated by have associated with them
a number of distinct generation trees which is an exponential function of the sentence
length.

He continues:

43

Even if it were feasible to exhibit all the generation trees of a highly ambiguous sen-
tence, that set of trees would not convey a great deal of information to the analyst. What
is needed is a more compact form which summarizes the grammatical structure.
[163, p. 199]

Younger then denes a “parsing matrix” , shows that this matrix can contain a description of all
possible context-free parses of a sentence, exhibits an algorithm to derive from the “recognition
matrix” , and nally argues that this procedure (like the procedure to nd) runs in time.

is nothing more than an -by- -by- matrix of bits (is the length of the input sentence;
is the number of terminal non-terminal symbols), where is true whenever there exists a
constituent spanning from word to word .

Clearly, whenever an ambiguous analysis is discovered, the appropriate bits for all of the daugh-
ter analyses should (and indeed are) set. Thus multiple ambiguous parses are implicitly stored in
this structure.

GLR (Tomita) Tomita, for his parser, proposed the idea of using a packed forest to explicitly
keep track of ambiguities. The general idea is to keep ambiguities local, by grouping ambiguous
alternatives together as a set, and then referring to the set of them as a single unit when using them
in further, superior derivations. This allows the GLR parser to deal with local ambiguity locally,
rather than having to store N completely separate trees.

Billot and Lang Billot and Lang [15] investigate the problem of ambiguity in Context-free
parsing, and show that for every input sentence of every context-free grammar, there exists an output
graph representing the union of all parses for that sentence of size . Billot and Lang structure
their output graph somewhat differently than usual packed forest; the only difference is that they
allow partial sharing between sets of children of a production. They point out that this difference in
structure is critical to achieving the size bound for any C-F grammar (in contrast to Chomsky
Normal Form grammars). They also include a description of how to transform their output graph
into a more standard packed forest.

Carroll’s chart parser Carroll, in his thesis [23], showed that the packed forest representation
works to address the ambiguity problem for chart parsers in practice, just as it had for GLR. (This
is not surprising in light of Billot and Lang’s work [15].)

44

Node

Node

Node Node

rule
children

Child set 2:
... rule

children

Child set n:Node:
begin
end
category
child!sets
...

Child set 1:
rule
children

Figure 3.1: An example shared packed node.

A packing example Figure 3.1 shows an example packed forest node, corresponding to a packed
set of inactive arcs. Each inactive arc is a representation of the rule that produced the arc, the set
of children of the arc, and the category of the parent. In order to pack inactive arcs together, each
packed forest node contains a set of sets of children; one set per inactive arc.

Given this structure, we can demonstrate packing in a parser with an example:

1 2 3 4 5 6 7 8 9 10 11
Argyle saw the boy on the hill with the telescope
n n,v det n p det n p det n

This sentence has ve possible parses, which we can represent schematically as:

[1] Argyle (((saw the boy) on the hill) with the telescope)
[2] Argyle (saw (the boy on the hill)) with the telescope
[3] Argyle saw ((the boy on the hill) with the telescope)
[4] Argyle saw (the boy (on the hill with the telescope))
[5] Argyle ((saw the boy) (on the hill with the telescope))

Without packing, we could get a chart like Figure 3.2. In this gure, we can see many entries

45

with the same symbols and covering the same span of words.

=============42:S(2,41)=[5]==================================
==41:VP(12,34)=======================================

=============40:S(2,38)=[3]==================================
=============39:S(2,37)=[4]==================================

==38:VP(6,36)==
==37:VP(6,35)==

==36:NP(21,28)===============================
==35:NP(11,34)===============================

==34:PP(on,33)=====================
==33:NP(18,28)=================

=============32:S(2,30)=[2]==================================
=============31:S(2,29)=[1]==================================

=====30:VP(22,28)====================================
=====29:VP(20,28)====================================
====22:VP(6,21)================

===21:NP(11,19)========
====20:VP(12,19)===============
===12:VP(6,11)== =19:PP======= ===28:PP============

=2:NP= =6:VP= =11:NP== ==18:NP== ====27:NP=====
Argyle saw the boy on the hill with the telescope

Figure 3.2: Example chart without packing. (Figure after Allen [3, Fig. 6.17; p. 178].)

Without packing, we get some sets of ambiguous sub-parses. In this example, because nodes 29
and 30 have the same span, we are forced to also generate nodes 31 and 32.

With packing, the chart will be smaller, as shown in Figure 3.3. We have avoided producing
ambiguous sets of sub-parses such as nodes 29 and 30 (hence also avoiding the duplicates 31 and
32). Although we have saved only 5 entries in this example, we have also avoided propagating
ambiguities outward, and hence saved some 10% of the required structure. We will see that in
longer cases, the time and space saved can be substantial.

Worst-case Theoretic Bounds on the size of a Packed Forest. In this formulation of a packed
forest, there will be at most one node for every category in the grammar, for each possible span
(start, end). Therefore there will be no more than top-level nodes, where refers to the
number of symbols in the grammar, and refers to the number of input words.

The expansion is not so nice for the sets containing children. In fact, there may be one set of

46

=============42:S(2,41)=[5]==================================
==41:VP(12,34)=======================================

=============39:S(2,37)=[4,3]================================
==37:VP(6,35)==

==35:NP(11,34)(21,28)========================
==34:PP(on,33)=====================

==33:NP(18,28)=================
=============31:S(2,29)=[1,2]================================

=====29:VP(20,28)(22,28)=============================
====22:VP(6,21)================

===21:NP(11,19)========
====20:VP(12,19)===============
===12:VP(6,11)== =19:PP======= ===28:PP============

=2:NP= =6:VP= =11:NP== ==18:NP== ====27:NP=====
Argyle saw the boy on the hill with the telescope

Figure 3.3: Example chart with packing. For clarity of comparison, redundant nodes have been
deleted without re-numbering the remaining ones. (Figure after Allen [3, Fig. 6.18; p. 179].)

children corresponding to each individual rule in the grammar. Therefore, there may be as many as
sets of children, where refers to the number of rules in the grammar.

Finally, the links representing the children must be accounted for. Noting that each link runs
from a set of children to some node, we can derive a loose upper bound by simply multiplying these
two sizes together. So there must be no more than links
in the packed forest.

3.3.3 Context free parsing with packing and unication

It is tempting to assume that one can just simply integrate a unication (or feature-theoretic) system
into a context-free parser by adding the additional requirement that a production can be accepted
only if the corresponding right hand side is found and that the unication of the grammar rule and
the features from the right hand side elements succeeds [3]. Unfortunately it is not quite so simple.

Simple implementation may negate advantages of packing for complex feature systems.

GLR1 Tomita, in his thesis [151], doesn’t address this at all. His thesis is devoted to strictly
context-free parsing. So even though the implementation of his parser that this work will be com-

47

pared to includes a unication system (in fact, the same unication system that this work uses), the
ramications of unication are not addressed in his thesis. As a result, Tomita’s test for packing was
category (i.e. rule left-hand-side identity) equality.

GLR2 In his later paper on GLR adapted to “augmented-context-free grammars” [152], (i.e. uni-
cation grammars), Tomita writes that unication can be added to GLR, though this addition compli-
cates local ambiguity packing somewhat. He goes on to write that the solution is to unpack locally
packed ambiguities whenever their unication value is accessed.

This is essentially the same as combining the unication values together with a disjunction
(described in detail below). The advantage of this is that it partially addresses the problems of
ambiguities interacting badly with complex unication values.

This has two problems. First, while the strictly context-free version of GLR can avoid an expo-
nential blow-up in memory when faced with multiple ambiguities, the unication grammar writer
can build a grammar that requires ambiguous nodes to be unpacked often. And when they are un-
packed, they may have to be fully unpacked, leading to a possible exponential blow-up in storage
for the unication values. Second, since the parse is done in one pass, this implicit packing must be
exact and complete.

Moore and Alshawi In The Core Language Engine, Moore and Alshawi note the problem of
packing constituents within a unication system:

In order to handle the more general case of CLE categories that contain arbitrary terms
as feature values, more complex management of the records implementing packing is
necessary. In the general case, in order to check that two or more analysis records can
be ‘packed’ under a single constituent record, it is no longer sufcient to test that their
mother categories are identical. Instead, we must check whether the category in the
constituent record subsumes the mother categories in each of the analysis records in
question.
[4, ch. 7, p. 145]

After an example, they continue:

There may, in addition, be other analyses for the same segment of text, where the
categories in the constituent records are uniable, but neither subsumes the other, so

48

packing does not occur.
[4, ch. 7, p. 146]

They also exhibit an example showing that in their system, by using this packing technique, the
number of packed nodes (or complete arcs) grows more slowly than either the number of unpacked
nodes, or even the number of parses [4, table 7.1, p. 146]. They do not, however, analyze the
worst-case consequences of their solution to packing.

In the introduction and system overview chapter, Alshawi and Moore note that the extension of
Tomita’s packing to unication structures is original to their work. [4, ch. 1, p. 7]

Carroll At rst glance, Carroll [23] confronts exactly the issue of packing with unication. In his
work, the unication system is tightly integrated into both Earley-style and LR-style parsers.

Carroll was working at somewhat of an advantage, in that his unication system was in some
sense a best-case system. His parser was designed to parse grammars written in a unication frame-
work closely modeled on GPSG [39, 23]. In this system, a category is not an atomic value, but
rather a feature structure [23, p. 57]. This feature structure is extremely at, however, being almost
a simple vector of atomic values. As a result, Carroll, citing Moore & Alshawi, then can claim that
“the correct test for packing is category subsumption.” [23, p. 57],[4, p. 145].

I have every reason to believe that for Carroll’s system, just as in Moore and Alshawi’s, that
subsumption was the solution to packing was indeed the correct analysis of the situation. Since the
unication values are so simple, it is quite possible to get, for example, multiple phrasal analyses
that either have the same unication value for each phrase, or for one to subsume the other as far as
restrictions go. As a result, these phrases can be clustered together easily.

Unfortunately, this test for clustering does not apply to our situation; our parser is designed
to use an LFG-inspired unication system [20, 89, 110, 111]. In this environment, the unication
values are not simply representations of the restrictions imposed by a phrase on an immediately
dominating rule, but instead are more abstract representations of the entire phrase. [40]

Suppose that instead of a simple feature system of e.g. GPSG, using only values such as count
and gender, we use the much richer F-structure system of LFG. One of the important aspects of an
F-structure analysis is that it captures not only simple agreement information, but also the essence
of the structure of the input.

(Note that I will not be arguing for or against the particular choices of F-structure in the follow-
ing examples. These are an example of what is used by KANT system, as part of the machine

49

translation process, for a particular domain. Thus for the purposes of this parser, the production
of these structures can be considered a functional requirement.)

The problem should now be clear: two ambiguous productions will result in two distinct F-
structures. Consider the following example pair1:

"saw the man on the hill", with "on the hill" modifying "man":

((NP-SUBJECT +) (FORM FINITE) (TENSE PAST)
(MODIFIED +) (CONTRACTED -) (EXPL-SUBJ -) (VALENCY SUBJECT+OBJECT)
(IMPERSONAL -) (CAT V) (SEM *A-SEE) (ROOT "see") (ORTHO "saw")
(NONT WORD)
(OBJECT

((SEM *O-MAN) (CAT N) (CASE ACCUSATIVE) (TIME-ADJUNCTS -)
(TIME -) (NUMBER SG) (DEFINITE +) (UNIT -) (PRONONOMINAL -)
(NUMERAL -) (Q -) (EXPL -) (PERSON THIRD) (ROOT "man")
(NONT WORD)
(MODIFIER

((TIME -) (ROOT "on") (NP-RESTRICTED -) (CAT P) (SEM *K-ON)
(NONT WORD)
(OBJECT

((CAT N) (UNIT -) (TIME -) (INTERROGATIVE -)
(EXPL -) (CASE ACCUSATIVE) (COUNT +) (NUMBER SG)
(DEFINITE +) (PRONONOMINAL -) (NUMERAL -) (Q -)
(PERSON THIRD) (ROOT "hill") (SEM *O-HILL)
(NONT WORD)
(DET

((ROOT "the") (DEMONSTRATIVE -) (CAT DET)
(DEFINITE +) (SEM *DET-THE) (NONT WORD)))))))

(COUNT (*OR* + -))
(DET

((ROOT "the") (DEMONSTRATIVE -) (CAT DET) (DEFINITE +)
(SEM *DET-THE) (NONT WORD))))))

"saw the man on the hill", with "on the hill" modifying "saw":

((NP-SUBJECT +) (FORM FINITE) (TENSE PAST)
(MODIFIED +) (CONTRACTED -) (EXPL-SUBJ -) (VALENCY SUBJECT+OBJECT)
(IMPERSONAL -) (CAT V) (SEM *A-SEE) (ROOT "see") (ORTHO "saw")
(NONT WORD)
(OBJECT

((*O-MAN) (CAT N) (CASE ACCUSATIVE) (TIME-ADJUNCTS -)
(TIME -) (NUMBER) (DEFINITE +) (UNIT -) (PRONONOMINAL -)
(NUMERAL -) (Q -) (EXPL -) (PERSON THIRD) (ROOT "man")

1I am indebted to Krzysztof Czuba for the grammar used in producing these examples [28, 29].

50

(NONT WORD)
(COUNT (*OR* + -))
(DET

((ROOT "the") (DEMONSTRATIVE -) (CAT DET) (DEFINITE +)
(*DET-THE) (WORD)))))

(ADJUNCTS
((TIME -) (ROOT "on") (NP-RESTRICTED -) (CAT P) (*K-ON)
(NONT WORD)
(OBJECT
((CAT N) (UNIT -) (TIME -) (INTERROGATIVE -)
(EXPL -) (CASE ACCUSATIVE) (COUNT +) (NUMBER SG)
(DEFINITE +) (PRONONOMINAL -) (NUMERAL -) (Q -)
(PERSON THIRD) (ROOT "hill") (SEM *O-HILL)
(NONT WORD)
(DET
((ROOT "the") (DEMONSTRATIVE -) (CAT DET)
(DEFINITE +) (SEM *DET-THE) (NONT WORD))))))))

These F-structures are two representations of a perfectly normal verb phrase; and either could be
attached to a subject to form a complete sentence. Thus it would be best if they could be clustered
together. Yet, they cannot be clustered on the basis of subsumption, since neither subsumes the
other. This situation should not be a surprise; as Shieber points out, “Subsumption is only a partial
order — that is, not every two feature structures are in a subsumption relation with each other.” [137,
p. 16].

As a result of this difference in F-structures, these two ambiguous productions can no longer
be clustered via subsumption. And neither can any productions that use these as children. Such a
system is now in trouble: ambiguity can now lead to an exponential blow-up in the storage used by
successful productions once again.

To see this, consider the ambiguous readings for the following examples:

Argyle saw the man on the hill with the telescope.

Kellogg broadens its reach into the food industry on wall

street.

Grease flows through the bearing seal.

Accuracy is dependent on the amount of fuel that is burned

in relation to the volume of flow.

It is important to emphasize here that simply sharing sub-structure in the F-structure will not get
us off the hook: the feature values are different for the different ambiguous readings, so otherwise

51

clusterable productions are not clustered.

Is this a problem in practice?

This example is clear enough, but it is appropriate to question how often this situation actually
arises. Unfortunately, it happens rather often.

1

100

10000

1e+06

1e+08

1e+10

0 10 20 30 40 50 60

Nu
m

be
r o

f d
ist

in
ct

 p
ar

se
s

(lo
g

sc
al

e)

Number of Words

Figure 3.4: Number of words vs. Number of ambiguous analyses

Figure 3.4 shows a scatter-plot of the number of words vs. the number of analyses (or readings)
of each sentence, for 1447 test sentences chosen because they each exhibit some sort of ambiguity.
(For more information on these test sentences, see Section 5.4 below.) We can see from the gure
that there can be a remarkably large number of ambiguities in some sentences; below we will see that
the number of readings can be exponentially proportional to the number of phrases in the sentence.

Can we simply pack with disjunction?

As noted above, the LFG formalism allows disjunction within the unication framework, whereas
GPSG/HPSG formalisms do not. This feature suggests a possible direction for avoiding the blow-up
in unication space: simply pack the unication structures by wrapping local ambiguities together
in disjunctions.

52

Of course, in order to avoid a blow-up, these disjunctively packed structures must never ever be
unpacked. This should seem an obvious point, but was is in fact a problem that had to be partially
corrected in the process of developing the test system, with some remaining cases still possibly
remaining yet extremely difcult to pin-point and correct.

Miyao This seems an obvious point, and one on which we shall expand substantially, it can still
be subtle enough that it is missed by some. In [92], Miyao proposes a packing system that he claims
is substantially smaller than a simple disjunctive packing, or an enumeration of non-packed feature
structures. His system can be substantially smaller than disjunctive packing in an absolute sense
by the use of a clever data structure to store the disjunctions. In this structure, the over-all feature
structure is represented as a tree of (possibly nested) slot-value pairs, with points of difference
between individual choices indicated with a variable, and a dependency function — an enumeration
of possible bindings of sub-trees to variables.

Unfortunately, a close examination of his proposal reveals that it can be only a constant factor
smaller than an enumeration of non-packed feature structures, and larger than simple disjunctive
packing. The key observation that leads to this conclusion is to note that the dependency function
structure requires a separate listing of bindings for each distinct overall structure. As we have
shown above, this will lead to an exponentially large number of listings of bindings. So while his
method may be some constant factor more efcient, it will still suffer from the sort of exponential
“blow-up” that we are trying to avoid.

In the next section, we will see rst that this problem of ambiguity cannot really be avoided
altogether, and second that an unpacking such as this must lead to an exponential blow-up of the
unication data structures — in the particular case of [92], the structure containing the dependency
functions. The unfortunate conclusion is that Miyao’s proposal must be substantially modied to
avoid this unpacking, and thus blow-up, before it can be effectively adopted.

3.3.4 Ambiguity inherently causes disjunction

The problem we have been hinting at above is this: grammars are inherently disjunctive [137, p.
42], so structural ambiguity causes disjunction.

Recall that structural ambiguity is a nondeterministic choice between multiple ways of applying
the grammar rules. What this means is that a structurally ambiguous input could be parsed using
one set of rules (applied in a particular, ordered, way) or a different set of rules or ...

Further, as we have discussed above, a set of rules can be viewed as a proof that an input is in the

53

language described by the grammar. For languages that can be described by a set of rules (in some
arbitrary form) such as we are dealing with in this work, this proof is of the form ‘rule applies
and rule applies and...’

This means that to encode a set of parses, we need to encode a disjunction over individual
parses. At a casual rst glance, this may not seem to be much of a problem, but in fact, it is. As
we have seen above, we can easily end up with an exponential number of parses in extreme cases
of ambiguity in real languages. If we do nothing to encode this ambiguity, we will end up having
to spend an exponential (in the input length) amount of space to store the parses, and spend an
exponential amount of time building this structure. As a matter of good engineering, we do not
want to do this.

But because the ambiguity encodes a choice over sub-analyses, efciently encoding the ambi-
guity involves encoding this choice in a more efcient way. We must either directly encode the
disjunctive choice over sub-analyses, or we must use some different, more obscure encoding. In
any case, it involves somehow encoding disjunctions buried in the middle of a set of ordered con-
junctions.

It is important to emphasize here that this is true for unication values as well as for e.g. context-
free rules. As we have seen above, if we just ignore this, we may very well experience a blow-up in
the unication space even though we have guarded against this in the context-free portion parser.

The conclusion is that for any sort of data in the parser (such as the unication values), if we
have ambiguity that is reected in this type of data, and we have effective packing that prevents
against exponential blow-ups due to this ambiguity, then we must somehow encode disjunctions
within that data.

3.3.5 Solution to ambiguity Packing is not Subsumption

Several researchers have suggested that “the solution to the packing problem is subsumption,” in-
cluding Kay [72], [4, p. 142] as well as Carroll [23, p. 57]. Subsumption is a type of generalization.
Suppose we had two feature structures and . If and have no features that are in direct conict
(i.e. do not share any features with different values for each respective one), then the subsumption
of and is whichever of or has the least specic set of features. [137, pp. 14–16].

Suppose that we have two unication values and :

feature1
feature2

feature1

54

The result of applying the subsumption operator on and would then be:

feature1

This is because does not specify feature2, so leaving it unspecied results in the more general
unication value.

Note, however, that it is possible to have a pair of feature structures such neither can subsume
the other. [137, p. 16]. This case can arise when both feature structures share a feature, but this
feature has a different value in each of the two feature structures (that is, the feature-values are in
conict). In this case, we could not use subsumption at all, and would be forced to keep to keep
these structures separate. This may not be a rare occurrence — indeed, this situation is not at all
rare in our system.

Packing with subsumption may give incorrect results

The rst problem with trying to use subsumption to pack is that it is often undened. In fact, as
we have seen above, for grammars such as we are examining it is usually undened. The second
problem is that it doesn’t do what we need it to do even when it is dened.

Consider what happens if we have a region of local ambiguity , and try to cluster two differ-
ent sub-analyses of this region and . As above, for analysis , we have feature1 and
feature2 , but for analysis , we have only feature1 leaving feature2 unspecied.

If we pack these two features structures together, using subsumption we will compute the packed
value as in this case. Thus for the packed node, feature1 will be
specied as , but feature2 will be unspecied.

Now consider what happens when the resulting unication value is subjected to the ltering
condition . What should happen is that analysis should succeed and be included,
but analysis should fail, since it has (feature2 +).

But what does happen is that because we clustered together with , both sub-analyses will be
considered valid derivations, even though should have been ltered out. Obviously in cases like
this it would be better to not pack at all, in order to assure correct results.

One can, of course, verify the validity of the derivations by unifying back down the trees, but
doing so entails extra work, and in the case of full (non-pseudo) unication, may itself imply an
explosion of instances of unication values for the lower-level structures (one for each combination

55

of higher-level constructs).

And as we have seen above, simply not packing is not a good answer to this problem: if this hap-
pens often enough, we may very well experience an exponential blow-up in the space of unication
values. As a result, we cannot really consider subsumption to be a “solution.”

Packing with a commonality operator

Suppose we wanted to dene a new operator, , a generalization of subsumption, to be
used to pack feature structures. We will dene as most specic set of features
which do not conict with either or . Thus when subsumes (), then

, but when is undened, then letting
, and .

The advantage of the operator is that it will always work (i.e. is always dened). The
problem with is that it still loses information.

Consider what happens if we have a region of local ambiguity , and try to cluster two different
sub-analyses of this region and . In analysis , we have (feature1 +) , but feature2 unspecied.
In , we have (feature2 +) , but feature1 unspecied.

Now consider what happens when we try to compute . feature1 is not specied
in , so it will have to be left unspecied. But feature2 is not specied in , so it too will be left
unspecied.

Finally, consider what happens when the resulting unication value is subjected to the ltering
condition . What should happen is that analysis should succeed and be included,
but analysis should fail, since it has (feature2 +).

Because we clustered together with , both sub-analyses will be considered valid, even
though one isn’t. If we have a non-pure unication system such as pseudo-unication such that we
require features to be set to values without changing the feature structure under test, then neither of
these derivations are valid. In this case, we would like the unication on the packed node to fail,
rather than succeed.

The fundamental problem with subsumption, or even a generalization of subsumption, is that
using it to pack involves throwing out information. We have just seen that throwing out informa-
tion during packing is not going to get us what we want, thus neither proper subsumption, nor a
generalization of it can be a solution to our problem.

56

3.3.6 Problems with Packing in Disjunctions

Suppose, rather than packing feature structures together by throwing out information, we wanted
to keep the information intact. One reasonable option is to pack the feature structures together by
keeping track of optionality in a disjunction.

One problem with packing unication equations using disjunctions is that the unication values
may have to be “unwound” in order to correctly calculate the result of later unications.

Suppose that we have two separate regions of local ambiguity and . Further suppose that
for region , one choice has feature (f1 +) and the other has (f1 -), and likewise region has an
ambiguity, one with (f2 +) and the other with (f2 -).

A B...

A1 A2 B1 B2

Now suppose that somewhere upward in the parse tree, these structures are combined, via one
of two different rules, both creating a structure for some category , such as shown in Figure 3.5.
One of these rules contains the unication equation (f1) = (f2), and the other rule includes (f1)
!= (f2).

A B...

C

A1 A2 B1 B2

Figure 3.5: Multiple Ambiguity Unication Example

In order to correctly evaluate these unications, in a bottom-up fashion, the subordinate uni-
cation F-structures will have to be unwound with respect to f1 and f2. This will have the effect
of globalizing the disjunction — that is, promoting the disjunction up to the top-level. Only then
can each disjunctive term be evaluated, with some succeeding for , and others failing. (By this
particular construction, the terms that fail for will succeed for and vice-versa.)

Finally, since and have the same category and cover the same over-all region, they will be
packed together into a single disjunction.

At this point, we now have a single F-structure with four top-level disjunctions:

57

(f1 -) (f2 -)

(f1 +) (f2 -)

(f1 -) (f2 +)

(f1 +) (f2 +)

This sequence can be repeated recursively, leading to an exponential blow-up of the unication
space, despite our efforts to pack. The only way out of this situation is to attempt to repack the F-
structures. Repacking them will avoid this particular case of exponential blow-up in space, but the
repacking operation itself is a relatively slow operation, and will add substantially to the overhead
of the parser. And, as we have seen above, repacking may not avoid an exponential blow-up in time,
since an exact evaluation of unication expressions such as these require either an unpacking of
the packed expressions, or a search over the packed space which is effectively the same thing. (An
explicit unpacking could be part of a breadth-rst search, whereas a search over the space could be
part of a depth-rst search. In either case, pruning combinations is a heuristic process at best [30].)

We must avoid the problem We have seen that any technique which attempts to discover all
valid F-structures simultaneously is subject to a blow-up in space. What we would really like to
do is avoid this problem altogether. In the above discussion, we have been assuming that we must
perform the unication as we parse. This is not in fact the case; in the remainder of this work, we
will examine what we must do in order to use this to our advantage.

We will next examine high-performance context-free parsing and the implementation of the
optimizing pseudo-unication compiler. We will then examine how to achieve much of the pruning
effect of the unication while avoiding the space blow-ups we have just seen. In order to take
advantage of this pruning, we introduce a technique to simultaneously solve for a single F-structure
while performing disambiguation in a linguistically motivated way. Finally, we put these pieces
together and show that they are effective in avoiding this problem.

3.3.7 Pseudo-unication and Disjunction

Figure 3.6 shows an example of an interesting situation where node packing and unication can
interact. In this example, node X is a packed node, with two choices. The rules which created these
nodes are included for clarity; one choice includes the unication rule

58

A B

Y

(X feat) = (*OR* foo bar)

feat = ???

 (A feat) = foo (A feat) = bar

Z = X Y
 ...

X <= A B X <= A B

 (X) = (A) (X) = (A)

X: packed

Figure 3.6: A unication example: a partial tree including a packed node X

In a full unication system, the central question for this example is: what should the value of
feat be for node A? There are really two possibilities which make sense:

1. We could have one instance of node A, with value feat = (*OR* foo bar).

This has the advantage of keeping a single instance of node A, modifying its value to contain
the disjunction as we grow the parse forest.

On the other hand, this has the disadvantage that the value associated with A becomes inco-
herent: In theory both instances of node X should share the same structure. But if they do so,
the value unied into feat from the rst instance of X could leak into the second instance of
X, which is obviously an error. And the mechanisms to prevent this would prevent the actual
sharing of structure. So we must reject this option.

2. We could have two instances of node A, one with value feat = foo and one with feat = bar.

This solution overcomes the computational problems of the other options, but comes with the
unfortunate side-effect of potentially causing a lot of extra work. In the general case, when-
ever a node is created, the entire sub-forest of each of its children may have to be duplicated.
This will certainly be true for the second and later instances of the use of a node (and hence
the second and later sets of children in a packed node as well).

59

This implies a huge amount of work. In addition, it may be subject to the kind of exponential
blow-up which we described in Sections 3.3.3 and 3.3.4. Duplicating nodes is essentially
equivalent to using only top-level disjunctions to express ambiguity in the unication val-
ues, so if there is any chance that there could be a cross-product-induced multiplication of
ambiguities from the grammar, using this technique is sure to trigger this behavior.

3. We could have one instance of node A, with a (possibly hidden) disjunctive sets of values,
one with feat = foo and one with feat = bar.

Implementing this approach will require some potentially difcult record-keeping. Node A
should have access to every distinct version of its structure, each instance of node X should
only have access to the version of A’s structure that it itself changed (and not the one its sibling
changed). Finally, node Z should have access to both of the versions of A’s structure which
the two X modes modied.

Given such an implementation, this approach has the advantage of keeping the values distinct
in the right sorts of ways, and as a result calculating the unication values correctly.

As we have noted above, the example shown in Figure 3.6 is not a problem for Pseudo-Uni-
cation because for a bottom-up parser, applying the unication equations in (either instance of) X
will not change the value associated with A. It will, however, change the value associated with each
of the Xs which are passed on to the application of Z’s equations.

We are not implying that using pseudo-unication will totally avoid ambiguity problems; it will
not. However, if one is only using the unication value at the top-most level in the end, it simply
does not make sense to spend a lot of extra effort keeping the sub-tree values correct when we will
never use these values.

60

Chapter 4

Delayed Unication Parsing

Never put off till tomorrow what you can avoid altogether.

— modern proverb

One of the main problems we have confronted in Chapter 3 was the cost of adding unication
to a parser, and potential for a run-time blow-up caused by unication. Perhaps the most straight-
forward ways to add unication is as an interleaved process [152]. Although an interleaved solution
is straight-forward, there is no a priori reason why this is the best way to include unication in
a parser [85, 115, 9]. We found that for this system it was advantageous to calculate some sort of
unication values in an interleaved manner, but to delay the calculation of the entire nal unication
value (or values) until after the actual parse. In this chapter, we consider several strategies in the
literature, and then begin to develop the strategy used in this system. Chapters 5 through 8 will then
describe the implementation of this strategy.

4.1 Delaying Unication Until After Parsing

The method we have been examining is interleaved unication. Recall that the conditions for cre-
ating a valid constituent are two-fold: not only must the children have the correct categories, but
the F-structures of the children must unify according to the equations that are also part of . For
the system above, we check to see that unies immediately after discovering that can be created
according to the context-free spine of the grammar.

Although it is somewhat convenient to implement a parser in this way, there is no mathematical
reason why we must do so. We next consider the other extreme, as suggested by Maxwell and

61

Kaplan [85]: delaying the unication until after the entire context-free parse is complete.

4.1.1 Interleaved unication Versus Delayed unication

We conducted an experiment to examine the effectiveness of delaying unication. For the test case,
we tried parsing with a context-free (only) grammar and delaying the unication until after we have
a context free backbone in-hand. All possible unication values were discovered in a recursive-
descent search of this context-free backbone. This conguration was compared against the fully
interleaved unication system presented above.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60

CP
U

Ti
m

e
(s

ec
s)

Number of Words

Figure 4.1: Number of Words vs. Runtime Used: Delayed Unication on a CF-spine

Figure 4.1 shows a plot of the combined time to parse and then search for all unication values
for each sentence. Once again, there are three outliers at or above 4 seconds of CPU time, and these
aren’t too bad.

Each of interleaved- and delayed-unication has an advantage. For delayed unication, the
advantage is that one need not calculate unications for partial parses that cannot participate in a
total context-free analysis of the sentence. On the other hand, the advantage for interleaved unica-
tion is that many partial parses that are valid in a context-free sense, but cannot be unied, will be
immediately removed from consideration, saving considerable resources.

62

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

CP
U

Ti
m

e
(s

ec
s)

 -
CF

 p
ar

se
 a

nd
 fu

lly
 d

el
ay

ed
 a

ll-
va

lu
es

 u
ni

fic
at

io
n

CPU Time (secs) - Interleaved unification

Trendline equation:
1.5426*x

Figure 4.2: Runtime Used: Interleaved vs. Fully-Delayed Unication

Discussion According to Maxwell and Kaplan [85], the advantage in speed should be decidedly
in favor of delayed unication. Yet the results shown in Figure 4.2 are counter to this: interleaved
unication has a slight speed advantage over delayed unication — a total of 1228.75 CPU seconds
spent to parse all utterances on this test corpus for the interleaved unication conguration versus
1392.10 CPU seconds to parse and search for all complete unications for the fully-delayed con-
guration. This is a signicant difference: a single-tailed matched-pair T-test gives result at =
1.29787E-78. Also, although most sentences take about the same amount of time to parse in the
interleaved conguration as they do in the fully-delayed conguration, there are a few sentences
that take decidedly more time in the delayed-unication situation.

We will see below that there is another large disadvantage to delaying all of the unication until
later: if we try to integrate a disambiguation system into the post-parse search, and search not for
all valid F-structures, but for a single best F-structure, the context-free spine may not provide suf-
cient constraint for the search, and the search may spend inordinate amounts of time on unfruitful
derivations. In other words, it will blow up by getting “garden pathed”.

63

4.2 Delaying Some Unication Until After Parsing

Rather than either doing all of the unications interleaved, or delaying all of them until later, what
if we interleave some of the unications, leaving the remainder for after the main parse?

The Core Language Engine Moore and Alshawi [4] take such an approach, separating the uni-
cation values into two separate parts: in the parsing phase, the unication value is formed solely
by a union of simple feature values, which are compiled into a binary feature vector. By tightly
integrating the parser and the syntactic feature system, Moore and Alshawi are often able to clus-
ter locally ambiguous nodes. Within such a feature system it could be possible to avoid exposing
the semantic differences of e.g. PP attachment, thus allowing local ambiguities of this sort to be
clustered together easily.

As we have argued above in section 3.1.2, we cannot simply adopt the Core Language Engine
as-is, however. It is based on a substantially different theory of syntax than ours system is, so
adopting it as-is would involve substantial amounts of reengineering effort.

We have argued above in Section 2.2.1 that ambiguity is a problem for machine translation
systems, and that we generally have to resolve ambiguities as part of the translation process. In
addition to having some sort of disambiguator, one of our goals is to use a disambiguation technique
that is both linguistically and computationally motivated.

Unfortunately, the Core Language Engine, as presented in Moore and Alshawi [4], does not
include such a component; the problems of ambiguity are touched on [4, p. 141], but no solution
other than packing is presented. Therefore integrating the Core Language Engine parser into the
KANT machine translation system would require us to create that piece of the puzzle.

So, rather than adopting the Core Language Engine itself, we shall examine it carefully, and
adopt several ideas from it, and integrate these into our parser. Our goal for unication processing
is to allow the system to transform the problem so that we can gain the advantages in processing
that the Core Language Engine exhibits, while changing our (working) source grammars to the least
reasonable extent.

4.2.1 Negative Restriction

In Section 3.1, we examined Shieber’s restriction technique, which allows one to adapt a pure uni-
cation grammar for use with a context-free parsing algorithm. The essence of Shieber’s technique
is to specify which unication features should be used to create a context-free spine grammar [136].

64

Harrison and Ellison’s extension of restriction

One unfortunate problem that Shieber discovered is that there are some unication grammars for
which the predictor step of his modied algorithm will not terminate. Harrison and Ellison [45]
examined this problem in detail, exhibiting two grammars for which Shieber’s algorithm with re-
striction will not terminate. They then examine why this is, and examine some possible changes to
the algorithm to address the difculty.

They conclude that in some cases, this non-termination problem is inherent in the nature of the
grammars, but that grammars exhibiting this problem fall outside the formal class off-line parsable
in the sense described by Kaplan and Bresnan in [56].

To work around this problem, Harrison and Ellison introduced the concept of negative restric-
tion: rather than to specify which features are interesting, which they describe as “positive restric-
tion”, they specify which features are not interesting.

Trujillo

The FIRST and FOLLOW relations are used in calculating both Left-Corner and L-R parsing ta-
bles [1, pp. 188-189] (see also section 6.4 below).

Trujillo [156] extended the calculation of these relations from context-free grammars to feature-
theoretic ones. Without the use of some sort of equivalence-relation, it is impossible to calcu-
late these relations in the general case, because the number of possible nonterminals in a feature-
theoretic grammar can be innite. Even when nite, the use of these relations would either help the
efciency of a parser very little, or be so time-consuming to compute during the parse as to be no
aid. Trujillo found that by using negative restriction to establish a set of equivalence classes, it was
possible to calculate and use these relations productively.

Oepen and Carroll

Establishing and using equivalence classes as done by Trujillo [156] is very similar to the problem
of packing. Contemporaneous with early parts of our work, Oepen and Carroll [115] investigated
the problem of ambiguity packing, and the use of negative restriction to aid packing, in the context
of an HPSG system.

They introduce a new linear-time bidirectional algorithm for determining subsumption, and use
this to improve the ambiguity packing portion of their parser.

65

They also examine negative restriction, and investigate its use to improve ambiguity pack-
ing during the parse phase. They found that: “Restricting compositional semantics but preserv-
ing attributes that participate in selection and agreement results in minimal chart size and parsing
time.” [115]

They show that by employing these two techniques together, they are able to get good perfor-
mance on a the PP-attachment case reported by Billot and Lang [15] and Moore and Alshawi [4].
Oepen and Carroll’s parse times are approximately cubic in the number of PPs, though their unpack-
ing (i.e. post-parse resolution) times are proportional to the number of readings, which is exponential
in the number of PPs. (See section 3.3.1 below.)

In this work we expand on these results, both in packing and in unpacking of the nal unication
values.

4.3 The Two Purposes of Interleaved Unication

Rich and Knight point out that in general, a parser performs two kinds of operations: matching (of
constraints) and building structure [121, p. 395]. In the abstract, there is no particular reason why we
would want to choose the context-free constraints to perform early, while delaying the unication
constraints until later.

Suppose, like the Core Language Engine [4], that we had a parser with two distinct unication
systems: one with a simple-valued unication system, to be used only to lter the parse forest as
it is being built, in order to avoid building structure that will not be ultimately useful; the second
with a full-featured unication system to compute the eventual F-structures that we are interested
in getting in the end. The general idea is to use the rst parse as a lter to reduce the search space,
and only when this space is some reasonable size look at full (or ‘semantic’) abstract unication
structures [4, 85].

4.3.1 ‘Cheating’ in the interleaved unication

Further suppose that we will throw out (i.e. ignore) all unication values calculated during the rst
pass, using only the structure of the parse forest to guide our post-parse calculation of unication
values. Such a framework is very powerful: it will allow us do almost anything at all during the
initial parse, so long as we do not exclude any structures that could potentially lead to a correct
parse.

66

This allows us to ‘cheat’ by approximating, in the earlier pass, anything that would be expensive
to calculate exactly. The preservation of partial unication results, as is done in parsers employing
restriction such as Oepen and Carroll’s [115], assumes that partial unication values are expensive
to calculate.

In Section 5.4, in the next chapter, we will examine experimental results which show that this
recalculation is not expensive – that for average data, complete recalculation of the unication values
requires only as much as 14% of the time required to perform the back-bone parse.

Thus the basic engineering trade-off is time spent calculating unication values in the second
pass versus time spent in the parse due to packing or lack thereof. Since we found that complete
recalculation of unication values in the post-parse phase is not expensive, we can consider methods
to improve packing which do not exactly preserve the unication values calculated during the parse.

Approximation in the packing of unication values Since we are doing a fresh unication in
the second pass, we do not need to maintain strictly accurate F-structures in the initial parse. We
could, however, maintain F-structures that include every structure that would be part of a correct
parse. In other words, we can over-generate, but cannot under-generate F-structures.

Consider, for example, two F-structures: ((a b) (c d)) and ((a x) (c y)). The
strictly correct way to pack this disjunction would be:

(*or* ((a b) (c d))

((a x) (c y)))

But since we will do another pass to compute the correct F-structure, we can approximate this
particular case as:

((a (*or* b x))

(c (*or* d y)))

In general, this packing technique generates the Conjunctive Normal Form equation which rep-
resents a superset of the original equation by removing any inter-slot dependencies, and then pushing
the disjunctions down to the leaf (individual slot) level of the unication value tree.

The advantage of such a packing is that it can allow items to be packed more compactly; possibly
avoiding the exponential blow-up of the exact disjunction. The disadvantage is that such a disjunc-
tion will allow previously disallowed elements, such as ((a b) (c y)). Obviously there is a
time/space trade-off here, but we do get to make the trade-off.

67

This technique closely corresponds to modifying Miyao’s proposal [92] by removing the depen-
dency function entirely, and simply noting the packing points (represented above with an *or*, and
not worrying about the fact that we will likely over generate the actual disjunctive possibilities.

This is a permissible approximation, because the F-structures will be completely generated anew
in the second pass, so these approximately packed F-structures will be thrown out. Their only
purpose is to ensure that further structures built on them won’t be grossly over-generative.

Wild-carding feature values Sometimes it would be useful, in the rst pass, to be able to skip
over parts of the unication equations. Fortunately, the feature-based exibility of the unication
system of Rosé and Lavie’s LCFlex system [125] suggests a solution: it is possible for us to intro-
duce a wild-card to stand in place of part of an F-structure. This wild-card will have the effect of
causing any unication equation that reaches this part of the F-structure (either as a value, or as part
of a path) to succeed, returning an appropriately wild-carded F-structure result.

In LCFlex [125], this wild-card is used to allow certain features to be optional, rather than
required parts of the unication. But this use is to enhance robustness; we have somewhat different
goals. One of the other things that we can use this for is to impose a limit on the length of a number
of values in a disjunction.

Suppose that we are going to pack together the three F-structures ((a b) (c d)), ((a x)

(c y)), and ((a y) (c y)). Further suppose that we are applying the approximate disjunc-
tion technique described above, and we have imposed a length limit: no disjunction my contain
more than two terms.

After packing the rst two F-structures, using the approximate packing technique we have just
discussed, we will have:

((a (*or* b x))

(c (*or* d y)))

But when we try to pack in the third F-structure, we will exceed our disjunction length limit for
the feature a. So instead we will replace this disjunction with the wild-card *WILD*. The result
will be:

((a *WILD*)

(c (*or* d y)))

68

The results of unifying with a *WILD* are slightly different than unifying with a normal value.
For example, A *WILD* unied with anything should return a *WILD*; asking if *WILD* is
dened should be true; Asking if *WILD* is undened should also be true.

Using these wild-cards to impose a length limit can eliminate the possibility of exponential
blow-up in the face of ambiguity, but will cause the F-structures to be substantially over-generated.

Shallow Unication Another limitation we could impose is to limit the depth we will search F-
structures [56], or even limit the depth of the F-structures themselves. We have seen above that
these deep F-structures contribute to exponential blow-ups. In order to help prevent this, we might
wish to limit our rst-pass unication to be only a single level deep.

For example, consider the rule:

can-mod

mod

We know that the unication equation can-mod is a shallow operation — it looks at
the F-structure of the right-hand-side NP to see that can-mod is either set to a , or can be set to
that now.

The equation identies as the lexical head of the rule. Evaluating this equation
will produce no more deep structure in than has already, so we will assume that it is safe
to keep as-is. Also, were we to wild-card these sort of equations, we would render the actions of
the unication equations of other rules effectively moot, and effectively relax the grammar to little
more constrained than Context-Free. So we will keep rules such as this one.

Finally, we can tell that the equation mod does produce deep-structure, since it
puts the entirety of the right-hand-side PP F-structure into the slot mod.

If we weren’t too worried about this last feature being used to control the size of the parse, we
could re-write this particular equation to be something like: mod wild By doing this, any
future reference into the left-hand-side’s mod feature will succeed, returning wild.

We could do all of this entirely at parse time (i.e. run time), replacing deep structures with wild-
cards as they are built. But since we can tell in advance which unication equations are going to
produce or need deep structures and which won’t, there is no reason to wait until run-time to do this.

69

If we were to apply this knowledge ahead of parse time, and apply it to our example rule above, we
could re-write the unication equations as:

can-mod

mod *WILD*

4.3.2 Our unication approach

From our full unication grammar, we will make two sets of unication equations: from each full
set of equations associated with a rule we generate a set of equations which produce and support
only these shallow unication operations outlined above.

We will interleave the shallow unication system within the context-free parser, in order to help
prune the parse forest as it is being built. After a covering parse forest has been found, we will use
search and disambiguation techniques to nd the result of unifying a single, preferred, parse tree.
The next four chapters cover how this is done.

70

Chapter 5

Overview of the Approach

Patient: “Doctor, doctor, it hurts when I do this.”
Physician: “So don’t do that.”

— Old Vaudeville joke

In Chapter 3, we investigated unication and ambiguity, and how the latter can adversely effect
implementations of the former. In this chapter we will review the goals for the proposed system,
and see how these goals and several high-level design decisions lead to a working system.

Our main goals for this parsing system are three-fold:

We wish to parse quickly in the average case.

We wish to parse quickly in certain common problematic cases, avoiding bad behaviors which
lead to extreme slow-downs or outright failures.

And we wish to make the system easy to work with. We wish to largely maintain compatibility
with previous systems.

Ultimately what we want is a good tool that hits the balance between being sufciently general
that it can be used for many useful problems, yet sufciently specialized that it can take advantage
of the particulars of the structure of the particular problem it is used on. Our parsing system is
designed with this in mind: we have seen that structural ambiguity can lead to major computational
problems in a unication parser. We deliberately took advantage of the context of the larger system
in which this parser is designed to operate — a knowledge-based machine translation system — in
order to carefully avoid these problems.

71

In this chapter, we present a high-level view of our system. We start by summarizing the high-
level design principles from which our design is derived, and then examine each of these principles
in detail. We will see that each of these design principles is a departure from some ‘standard’ way
of attacking the unication parsing problem, and why each are necessary.

Next we will review a set of detailed requirements for the parsing system itself, examining the
motivation behind each of these requirements.

Finally, we examine the architecture of our actual implementation. This implementation jointly
follows the design principles and detailed requirements which we have surveyed. This overview is
in preparation for the three following chapters, which will present important aspects of the imple-
mentation in detail.

5.1 Conceptual Design

In this section, we consider the interrelationship of unication and the context-free parser, concen-
trating on when the unication constraints should be applied during the over-all processing of the
input. Conceptually, we can summarize our design criteria in ve the design principles:

1. Don’t try to do the parse all in one shot.

2. Don’t keep the unication values from the parse phase.

3. Don’t follow the grammar precisely early in the process.

4. Don’t try to nd all possible nal unication values.

5. Don’t pick just any single unication value; pick a good one.

An explanation of these design criteria follows.

5.1.1 Don’t try to do the parse all in one shot.

The single-pass context free parsers employing a chart data structure (or something closely related)
employ the dynamic programming design pattern [78]: a total solution is found by rst creating and
then combining small sub-solutions until the one or more full-size solutions have been discovered.

For the context-free case this is an effective solution; a good implementation will have
run-time behavior in the general case. Unfortunately, as we have seen above in Section 3.3.3, the

72

addition of complex-valued unication features will defeat the fundamental assumptions of the chart
algorithm which allow for an efcient solution. The result is a breadth-rst search which is subject
to worst-case computational time requirements which are exponential in the length of the input, with
realistic inputs triggering this bad computational behavior.

The dynamic-programming breadth-rst design pattern is not the only one we can employ.
As we have seen above in Section 3.1.2, other solution patterns have been investigated by many
researchers, including Moore and Alshawi [4], Maxwell and Kaplan [85], and Oepen and Car-
roll [115]. The strategy common to all of these approaches is to rst narrow down a very large space
of potential solutions to a much smaller space which contains the solutions (as well as possibly con-
taining non-solutions). Once the space has been narrowed, a potentially more expensive algorithm
is used to discover one or more of the actual solutions.

The other interesting feature shared by all of these approaches is that the discovery of a complete
unication value is delayed until the end of the process. Delaying the full unication avoids per-
forming unication calculations which will not ultimately be useful [85], as well as improving the
ability to pack together sub-solutions [115] and thus partially avoid the problems described above
in Section 3.3.

We will adopt this strategy, and improve upon the previous solutions through the use of addi-
tional techniques.

5.1.2 Don’t keep the unication values from the parse phase.

As we just mentioned above, not trying to parse in a single pass allows for considerable exibility in
the way we process the grammar. We can gain further exibility by not attempting to preserve any
unication values from the rst pass, but instead throwing these values out and recalculating them
from scratch in the second pass.

For a parser using this general structure, the only thing which we must calculate in the rst pass
is the packed parse forest structure. This structure is then used to guide the second pass in nding
the ultimate unication value results.

At rst glance this would seem to be a foolish move, since it may imply a duplication of effort
in the parse and post-parse passes, however it also allows for the calculation of completely different
unication operations and values in the two passes. This structure was used by Moore and Alshawi
in the Core Language Engine [4]; syntactic values were used in the parse, and then semantic values
were calculated from the resulting parse trees.

73

Thus the principle advantage is that we can do anything we want to in the parse pass, so long
as we create a packed parse forest which describes every parse that would be valid according to the
original grammar. That is, the packed parse forest must describe a superset of all possible parses.

Adopting this design decision is based on two observations. First that recalculating the unica-
tion values can be fast in comparison to calculating the parse forest. In Table 8.1 of Chapter 8 we
will see that the effort required to recalculate all of the possible unication values from scratch only
accounts for some 13% of the total run-time of a two-pass parser running on natural data, with the
other 87% going to the parse pass.

The second observation is that one key to high performance in the parse phase is efcient pack-
ing [151, 115]. From the relative speed of the post-parse phase which we have observed, we can
reason that aiding packing in the parse phase can be more important than preserving unication
values for the post-parse phase, and that a reasonable engineering trade-off can be made along these
lines.

5.1.3 Don’t follow the grammar precisely early in the process.

Since we have decided not to preserve any unication values calculated in the rst pass along with
the parse forest, we can take liberties with the grammar used in this pass.

We can certainly selectively leave out unication equations which are computationally expen-
sive — this is one of the goals in using negative restriction [115].

Like Oepen and Carroll [115], we have found that restricting the rst pass so that unication
equations which enforce simple-valued constraints such as agreement should be preserved in the
rst pass, but that equations used to create complex structures as part of a more abstract (‘semantic’)
analysis are best left to the post-parse processing.

We can also modify the parse-phase unication values in more elaborate ways. As we have
mentioned above, aiding packing in the parse pass is extremely important for achieving high perfor-
mance. Since we are not re-using the parse-pass unication values beyond the rst pass, there is no
reason why we must preserve exact mathematical equivalence while packing together locally am-
biguous productions, so long as we do nothing which will eliminate parses which would otherwise
be legal. Unlike Oepen and Carroll’s exact packing technique [115], we will always be able to pack
locally ambiguous nodes together using such a technique.

74

5.1.4 Don’t try to nd all possible nal unication values.

We neither need nor want to calculate all possible unication values in the post-parse phase. As we
have seen above in Section 3.3, the main problem with calculating all possible unication values is
that there could be an exponentially-large number of them [85, 115]. Such exponential blow-ups
cause bad performance of exactly the sort which we wish to avoid.

When used as part of a machine translation system, a common next step after nding all possible
unication values is to disambiguate — to select one single parse.

Rather than nd all possible values, and then select one of them, we could simply nd one single
best unication value. With this realization, the post-parse processing can be seen as a search for
one or more unication values, rather than a simple ‘unpacking’ [115].

We adopted this approach. We created a disambiguating post-parse search, and show that this
search is effective at avoiding some of the ambiguity problems which lead to exponential run-time
blow-ups, without slowing the parser in the average case.

5.1.5 Don’t pick just any single unication value; pick a good one.

The nal observation is that we don’t want just any single unication value — we want the best
value.

The notion of ‘best’ here is a very important one. Consider the sentence:

I saw the man with the telescope.

There are two readings for this sentence: either I used the telescope as a tool to see the man, or
the man has the telescope. Since both readings are legal, we can see that a preference for one
interpretation over another is not strictly part of the syntax. On the other hand, the rst reading is
commonly understood to be the preferred one.

In contrast, consider the sentence:

I saw the man on the hill.

There are two possible readings for this sentence: either the speaker (“I”) or the man is on the hill.
To a native English speaker, the latter reading is considerably preferred over the latter.

If the parser was designed to solve for any arbitrary complete unication value [84], the user
might very well get the less-preferred reading instead of the more-preferred one. Furthermore, the

75

choice of which we got might not be stable in the face of changes to the grammar: some seemingly
independent change to the grammar might make the system change which reading was rst found
for no readily apparent reason.

Instability such as we have described above makes for a very hard-to-maintain system. Large-
scale natural language systems which use a natural language parser as a component, such as Machine
Translation systems, are notoriously difcult to maintain [129]. Any effect which would tend to
make this harder should be avoided.

So rather than picking just any single reading of ambiguous inputs, we designed the system to
select a best unication value according to a heuristic which attempts to capture the notion of human
preference which we have demonstrated above.

5.2 System Requirements

Now that we have examined a number of design principles which motivated the implementation of
our system, we can survey the requirements for this particular parsing system.

What we need is a good tool that hits the balance between being sufciently general that it can
be used for many useful problems, and sufciently specialized that it can take advantage of the
particulars of the structure of the particular problem it is used on.

The parser need not be fully general. The parser should not be fully general in the sense
of parsing every unication formalism — as we are not proposing to switch to a radically
different formalism (e.g. HPSG), there is no reason to worry about compatibility with such
a formalism. On the other hand, we should not produce a system which is so specialized to
some single target grammar that it is not general at all; the parser should be able to handle a
reasonably large class of related formalisms.

This is not an exactly radical proposal as the parsers of several other systems (including The
Core Language Engine [4] and LCFlex [125] are closely tailored to the particular grammar
formalism they are using).

Should parse LFG-style grammars. This said, our particular grammar formalism is closely
modeled on LFG: a context-free spine, with tree-structured unication values attached to the
complete arcs (i.e. partial productions).

Should take advantage of current techniques in context-free parsing. Since the gram-
mar formalism we adopt is based on a context-free spine, the rst-pass parser should take

76

advantage of recent advances in context-free parsing. These should include:

– A tree-structured grammar [42, 116].

– Packing of ambiguous complete arcs [163, 151, 23, 18, 4, 125, 94].

– Left-corner constraints [42, 127, 119, 41, 58, 83, 134].

– Look-ahead constraints [32, 2, 160, 1, 102, 94].

– Optimal agenda ordering [76].

– End-point restriction [23].

In addition, we also need to support unication which is interleaved within the application of
Context-Free rules:

– Interleaved Unication [152, 68, 125].

– Precompiled unication [20].

– Optimization of unication equations.

– Disjunctive packing of Unication values [152, 4, 92].

Unication should allow for disjunction in both unication values and equations. As
we have seen above in Section 3.3, in order to avoid some common sorts of blow-ups, it is
critical for the parser to both pack ambiguous nodes together, and also pack the unication
values attached to the nodes. It is also convenient to allow disjunctions in the unication
equations of the grammar, so we will support this as well.

Allow exibility in the application of unication equations. Above, we have seen how
other researchers have beneted from applying multi-pass unication techniques, using sep-
arate unication equations for each pass. These have been both explicitly represented in the
grammar and semantic rules [4] and implicitly as a mechanical process applied to the gram-
mar [115].

We feel that the question of whether single or multi-pass unication is better is not a philo-
sophical question, but rather one best answered empirically. In order to perform experiments
which examine these questions, we must parameterize the implementation so that it supports
multiple solution techniques.

The rst (parsing) pass must support both one-pass parsing and the parse tree search for multi-
pass parsing. This is to say that we support both:

77

– Full exact unication in the rst pass.

– Shallow unication with approximate packing in the rst pass.

The second (post-parse) pass must support two general search types for full, exact unication
values:

– best-rst search (or -best search) with integrated disambiguation.

– breadth-rst all-values search.

Separate best-rst search from the measure of ‘best’.

In order to support additional exibility in design and conguration, we chose to separate
the mechanics of the search away from the measure used to select which trees are better to
search rst. This allows us to modify and congure each of these components separately
while lowering the chance that by modifying one we break the other.

Linguistically-motivated disambiguation.

Since we are searching for a single best result, we can improve on the usefulness of our
system by not simply searching for just any complete unication value. We argued above in
Section 5.1.5 that some types of structural ambiguities are not considered highly ambiguous
by a native speaker. Ideally, we wish our system to faithfully reproduce this type of human
preference.

A number of researchers have considered the problem of disambiguation from a linguistic
standpoint, including Kimball [60], Whittemore and Ferrara [159] and Mitamura et al. [90].
In particular, Mitamura et al. showed that a small number of heuristics will select the na̈vely
correct parse in most cases. As a proof-of-concept, we will implement a disambiguator which
implements many of the heuristics used by Mitamura et al. [90].

Shallow 1st-pass unication automatically derived from full grammar.

Grammar authors (i.e. users of this parser) should not be expected to go so far out of their way
as to write completely separate unication rules for the various phases of unication — they
should be able to write one set of unication rules, and have the ‘right thing’ happen. So we
will calculate the shallow-valued unication equations automatically from the full unication
equations that the user has supplied.

We next examine the over-all architecture of our system. This is a high-level look at the system;
important implementation details are left to the three subsequent chapters.

78

5.3 System Architecture

Cohesion and coupling are two criteria of good system design: loosely related components should
be loosely coupled so that internal changes to one component generally do not effect any other
component, and each component should implement a small number of very closely related (i.e.
cohesive) functionalities [120, ch. 13–14].

We applied these principles to the overall architecture of our system. We have split the over-all
parsing system into two phases of processing comprised of a total of ve major components:

The preprocessing is comprised of three parts:

1. Lexical and phrasal information storage.

2. Context-free grammar preprocessing.

3. Unication ltering, optimization, and compilation.

Parsing is a three-step process:

1. Lexical and phrasal information retrieval.

2. Parsing (Context-Free / Interleaved Unication).

3. Post-parse search and disambiguation.

These components are kept largely separate, so that each component may be substantially modi-
ed without affecting the correct operation of the other components (the lexical and phrasal handling
is actually one module).

The weak coupling between the various components, particularly the unication compilation,
parsing, and post-parse search, allow considerable exibility in the conguration of the system,
which in turn allows us the freedom to easily isolate and evaluate different conguration choices.
The form of the interfaces which allow this will be discussed in the sub-sections below.

Figure 5.1 contains a sketch of the highest-level view of the system. Before the actual parsing
system can be run, several collections of information must be processed; most notably the gram-
mar, from which several relations are discovered, as well as the unication equations, which are
extensively processed.

We next examine this preprocessing in more detail.

79

Lexical
look!up

Lexical
Preprocessing

Input Lexicon
(words and phrases)

Lexicon

Post!parse
Search

Backbone
Parse

Grammar
Preprocessing

Compiled
Shallow
Grammar

Compiled
Full
Grammar

Chart
Sparse

Parser

Parse
Forest

Input
String

Output
F!structure

Input Grammar

Figure 5.1: High-level View of System

5.3.1 Preprocessing

There are three independent pieces of preprocessing which must be done in order to support the run-
time system: lexical and phrasal storage, preprocessing of the context-free portion of the grammar,
and ltering and optimization of the unication portion of the grammar, followed by compilation of
the unication equations into a form which is very rapid to evaluate.

The lexical storage is best described along with lexical look-up, in Section 5.3.2 below.

Figure 5.2 is a block diagram of the major pieces of the grammar preprocessor. This prepro-
cessing can be divided into two categories: Context-Free grammar preprocessing, and Unication
preprocessing.

This preprocessing is not particularly expensive. On the test machine (a Macintosh PowerBook
G3 466; see Section 5.4 below), it takes a total of 67.2 seconds of time to entirely preprocess,
compile, and load the KANT grammar.

80

Input
Grammar

Compiled
Grammar

Unification
Compiler

Shallow
Feature
Extraction

Unification
Optimization

Find
Left!Corner

Unification
Optimization

Simple
Vector

Compiler
Unification

Relations
and Precede

Tree!
structure
Grammar

Figure 5.2: Grammar Preprocessing

Grammar preprocessing takes 22.3 seconds of time. Of this time, 14.5 seconds are required
to calculate the various ltering relations, and 7.8 seconds are required to convert the unication
equations into LISP code. 36.7 seconds of time are spent compiling the LISP functions derived
from the unication equations into machine code.

Finally, it takes 8.2 seconds to load the compiled grammar. 4.0 seconds of this time are used to
convert the context-free backbone into a trie data structure [132, pp. 248–252] and decorate that trie
with left-corner relation information, and the remaining 4.2 seconds are used by the LISP system in
loading the functions and data derived from the grammar.

Context-Free Grammar Preprocessing

There are four pieces of preprocessing which must be done to a grammar before the run-time parser
can use it. Two of these concentrate on the context-free backbone of the grammar:

The left-corner, precede (look-ahead), and partial-ordering relations are discovered from the
structure of the context-free backbone of the grammar.

The context-free backbone is reduced to a tree structure.

81

These preprocessing steps are discussed in detail in Chapter 6.

Unication Preprocessing

The other two major pieces of preprocessing of the grammar concern the unication portions of the
grammar rules. This is a bottom-up unication system, so the unication equations in a grammar
rule specify how the unication values for a parent are to be computed from the unication values
of its children.

From these full unication equations, we also calculate a set of rules which support only a
shallow subset of the full unication values. So in the preprocessing:

The shallow features for the rst-pass unier are extracted, optimized, and compiled.

The full grammar unications for the second pass are optimized and compiled.

The Restriction technique, as originally proposed by Shieber [136] and extended as “Negative
Restriction” by Harrison and Ellison [45], is a good tool for this unication preprocessing. The
idea behind Negative Restriction is to describe a set of unication slots for which calculation should
be delayed during parsing of an input. A unication equation using one of these slots will not be
evaluated at the same time as the unrestricted unication equations; instead this equation will be
evaluated only after the unrestricted equations for all of rules participating in any entire parse tree
have been evaluated.

Contemporaneous with parts of this work, Oepen and Carroll [115] reported that it was most
helpful to include unications which enforce syntactic constraints such as agreement, but to restrict
compositional semantic unications until after all syntactic restrictions have been met.

Oepen and Carroll were working with an HPSG [118] grammar. Our grammar formalism is
considerably different than theirs; the differences in grammar authoring conventions give rise to the
need for slightly different handling of restrictions.

This is best demonstrated with a brief example, of a structure which occurs fairly often in the
KANT grammar (see Section 5.4.1 below). We might have a grammar rule containing:

(X0 obj) = X2

We might also have, in some parent grammar rule:

(X2 obj) = *UNDEFINED*

82

While we could simply eliminate both of these equations, doing so would lose some precision in
the rst-pass grammar. These two rules illustrate a fairly common practice in our largest grammar.

Syntacticians often prefer a notion of minimum expressibility, leading to a minimization of
several countable aspects of the grammar, notably including the number of distinct unication slots
used. Because the obj feature can serve double duty, both forming part of the compositional
semantics, as well as existentially as a syntactic constraint, removing this feature entirely will cause
our rst-pass grammar to over-generate unnecessarily.

For the rst pass, counter to what many linguists might at rst expect, we do not want constraints
such as these to serve multiple uses, because we wish to remove the uses which are computationally
expensive for us. So rather than simply remove both equations altogether, we will remove the
structure-building aspect, but keep the (non-) existential check.

We do this through the introduction of a wildcard feature value [125], which causes unication
equations which reference substructures of the wild-carded slot to succeed. Existential checks end-
ing at this slot will succeed, and non-existential tests will fail. This behavior allows us to separate
the existential-tests unication equations from the structure-building ones, and perform the former
while deferring the latter.

Unication Optimizer In addition to simply modifying or removing unication statements from
the grammar, as part of the process of creating the shallow rst-pass grammar, we also have found
it useful to optimize both the derived (rst-pass) and original (second-pass) unication grammars.

The main optimization which we apply to the original unication grammar is conditional OR
unwinding. This technique allows us to rewrite conditional ORs, which are expensive to correctly
evaluate, into unconditional ORs, which are much less expensive.

As we have discussed above, applying restrictions to the original grammar in order to create the
shallow unication subset grammar removes some unication statements and substantially modies
others. In order to cope with the results of applying these restrictions, the unication optimizer
applies the following additional optimizations to the shallow grammar:

empty-statement removal.

single-term OR and EOR weakening.

wild-carded parallel path removal in disjunctions.

These techniques will be explained in considerable detail in Chapter 7.

83

5.3.2 Run-time Processing

Shallow
Unifier

Input String

Disambiguator

Output F!structure Output F!structures

1!Best
post!parse
search

Full!tree Unifier

All!values
post!parse
search

Core
Chart Parser

Lexical
Look!up

Phrasal
look!up

Figure 5.3: The Parser

The run-time processing uses the information distilled in the preprocessing phase to actually
parse input strings, creating representations of a structural analysis of these inputs.

Figure 5.3 is a block diagram of the major pieces of the run-time system. This is a three-stage
process; each of the stages performing a clear task. For experimental purposes, several performance
characteristics are monitored separately for each stage of processing.

1. The input string is separated into “words”, these words are looked up, and their lexical F-
structures are saved. These words are also assembled into phrases, which are also looked
up.

2. The chart parser is initialized with these lexical items, and a parse is performed to nd a
covering parse forest, using a context-free backbone with interleaved unication.

3. The resulting parse forest is then searched, and the full F-structure value or values are com-

84

puted. This can be done in one of two ways:

1-best F-structure search

all-F-structures search

Both of these use the full-tree unier. The all-values search is a simple depth-rst traversal of
the entire parse forest. The single value search is implemented as a recursive heuristic best-
rst search, in which the costs which drive the search are calculated via a disambiguation
weighting system.

Lexical Look-up

Following the design of the KANTOO system [113], we separated the lexical and phrasal look-up
from the main parse. Before actual parsing of an input, the input string is separated into words, and
each of the words are looked up in order to retrieve all possible syntactic categories for these words
along with their basic unication values (i.e. F-structures).

This look-up is performed for each entire input sentence prior to parsing that sentence. This is
done so that the look-ahead information (described in Chapter 6) can be correctly calculated and
used.

Lexical look-up for individual words is a straight-forward process. In the preprocessing phase,
every F-structure and syntactic category corresponding to each unique sense of every word known to
the system is associated with the word, so that all of the senses of a particular word can be retrieved
when this word is encountered in the input to the parsing system. In addition, some fairly simple
root, prex, and sufx morphology is performed so that different tenses of words do not require
completely separate entries.

In addition to lexical look-up for individual words, the system also performs a lexical look-up on
phrasal, or composite entries [3, 110]. Phrases are stored and retrieved in a trie data structure [132,
pp. 248–252], keyed on the root-form of each entry in sequence. Phrasal look-up is left-to-right
breadth-rst process: a number of positions within the phrase trie are kept; for each word in turn,
the root-position is added to the set of positions (corresponding to the theory that a phrase could
begin at this position), then an attempt is made to advance every trie position by the lexical root
of the current word. Every trie-position which cannot be advanced is dropped; every one which
does advance to another interior trie node is kept, and for every one which reaches a leaf of the trie
(indicating that a phrase has been found), the phrase, syntactic category, and base unication value
is retrieved. (Note that it is possible to reach both an interior node and a leaf in the trie, when one

85

phrase is a left-prex of another. For example, “oil pressure signal” is both a valid phrase and a
prex of “oil pressure signal voltage”.)

Because of the left-prex compression of the trie, phrasal lookup is at most an process
(for words, where is the maximum number of distinct phrases for some identical set of words),
because at each position there can be at most trie positions to keep track of at any one time
(corresponding to phrases starting at each of the starting positions).

In the recent ancestors to this system, the process of nding and assembling a phrasal entry
was done from within the grammar itself, though the use of grammar call-outs. While expedient,
this has two major problems. First, it simply reduces the coherence of the syntactic part of the
system. Second, and much more damaging, it can basically eliminate any benet from look-ahead
ltering in the grammar (see below). Because in principle any word could end any phrase, and there
are phrasal versions of virtually every lexical syntactic category, any lexical category could appear
adjacent to any other lexical category. Thus, when in the middle of processing an input, knowing
what the possible categories of the next adjacent item are is of no particular help in ruling out partial
grammatical productions which could not be completed with the current input. The result is that
including phrasal look-up in the grammar removes any left-corner and look-ahead constraints, by
allowing any terminal category to appear anywhere.

The principle reason we chose to separate lexical and phrasal look-up from syntactic processing
was in order to better take advantage of look-ahead ltering. After making this separation, the
system design benets of this architectural separation became clear.

The (First Pass) Backbone Parser

The main task of the backbone parser is to discover a packed parse forest representing a superset of
the union of all possible individual parse trees.

The choice of methods employed by the backbone parser is largely independent from the rest
of the system. So long as the parser takes in words, and creates a parse forest, the other parts of the
over-all system will work without modication. That is to say, we can parse using any algorithm so
long as we get a parse forest in the end.

Input The inputs to the backbone parser are a grammar, compiled into some form, and a sequence
of input words. The grammar is simply a combination of the tree-structured context-free grammar
rules, compiled functions implementing the collections of unication rules, and the tables represent-
ing the left-corner, look-ahead, and partial ordering relations. We assume that the grammar will not

86

change from run to run, but rather will be loaded once and used.

The sequence of input words is just that – the actual input. The main requirement is that the
format of the input words matches that of the lexical and phrasal storage, so that they can be looked
up.

Output There are two possible outputs from the backbone parser. If the parsing system is running
in one-pass mode, then the expected output is a representation of the unication values associated
with the top-most nodes in the parse tree, if the parse was successful.

If the parsing system is running in two-pass mode, then the backbone parser is expected to
produce a packed parse forest, which is a representation of all possible parse trees which cover the
input. This parse forest is then searched in the second pass to discover one or more nal unication
values.

Node

Node

Node Node

Node:
begin
end
category
FS
best!cost
child!sets
...

Child set 1:
rule
cost
child!counter
children

rule
cost
child!counter
children

Child set 2:

...
rule
cost
child!counter
children

Child set n:

Figure 5.4: A shared packed node structure.

The Parse Forest A parse forest is simply a generalization of a parse tree [151, 15, 23]. In this
system, the parse forest is composed of nodes; each node may either be a leaf, representing a lexical
item, or an internal node. Internal nodes contain a set of one or more sets of children, each of these

87

sets describes an ordered sequence of child nodes. When a node has more than one set of children,
it is said to be a packed node. Figure 5.4 schematically shows an example packed node. (This is a
more complete version of Figure 3.1; note that this parse forest representation does not speak to the
issue of associating unication values with pares tree nodes.)

Parser Technology One of our original goals is high performance. In order to reach that goal, we
will use

A Chart data structure. Moore [94] presented considerable evidence that a chart parser can be
at least as fast as an L-R parser, and in many cases much more so due to the extremely large
potential size of the L-R parse tables.

Optimal agenda ordering. Lavie and Rosé [76] discovered that by carefully ordering the se-
quence in which chart parser agenda items are processed, one can optimally pack together
these agenda items before they are used, avoiding many inefciency problems (e.g. as found
in [115]). In addition, optimal packing implies minimal handling, and thus improved perfor-
mance.

Interleaved Unication. As discovered by e.g. Lavie [68], Oepen and Carroll [115], and
contrary to Maxwell and Kaplan [85], we have observed that interleaved unication can be
used as an effective lter to prevent the creation of structures which are legal according to the
Context-free backbone of the grammar, but which are ruled out by some unication constraint.
We allow for interleaved unication, though it is not required.

Packing of both nodes and f-structures. Packing of parse forest nodes has been shown to
be necessary for achieving high-performance in quite a variety of systems [151, 4, 23]. In
addition to the parse nodes, when employing interleaved unication it is also necessary to
pack the unication values [92, 115]. We extend on previous techniques by allowing for both
exact and approximate packing of the unication values.

Tree-structured grammar. The common implementation of a chart parser makes inefcient
use of the grammar by failing to take advantage of common prexes in the right-hand-sides
of the context-free rules [94, 42, 134, 103]. We arrange to reduce the grammar into a left-
prex-compressed tree, in the same way as Grifths and Petrick did [42]. Our implementation
differs, however, by using this data structure directly rather than as an intermediate step in the
preprocessing of the grammar.

88

Filtering. We use a variety of techniques to lter out, or avoid building, grammar productions
which could not participate in a complete analysis of each particular input sentence. We
use left-corner ltering [42, 127, 119, 58, 83] of the Cocke-Schwartz variant [41, 134], and
employ a novel technique to use this ltering with the tree-structured grammar. We also
use look-ahead restrictions [2, 160, 1, 102, 94], and combine these two together, applying a
left-corner-of-look-ahead constraint as well. In addition, we also use an end-point restriction
proposed by Carroll [23].

We have arranged for considerable exibility in the implementation of the backbone parser,
largely hiding the implementation details of this component from other components in the over-
all system. This allows us to modify the backbone parser component to take advantage of other
context-free parsing techniques as they become available.

The Post-Parse Search

The role of the post-parse search is to search through a packed parse forest in order to discover one
or more unication values corresponding to complete parses. The packed parse forest which was
the output of the backbone parser forms the input to this component; the output of this component
is this collection of unication values.

This system contains two different post-parse searching components, one simple and one con-
siderably more complex. The simple post-parse search performs a complete depth-rst search of the
parse forest in order to calculate the set of all possible unication values. We will see that perform-
ing a two-pass parse using the all-values search is slightly faster than performing a one-pass parse,
but that both suffer from the same type of exponential blow-up in the face of bad ambiguity.

In order to attempt to avoid the ambiguity problems, we use a best-single-value search. The
main goal of this search is to nd the best parse which fully unies. For this search, best means
the parse that is most preferred by the disambiguator. This is not as simple a process as one might
rst think because the backbone parser might give us a parse forest which describes a superset of
all fully-unifying parses. In other words, the best parse tree described by the parse forest might not
fully unify.

The second goal for the best-single-value search is that it should not search the entire parse
forest unless absolutely necessary. This is because the parse forest can (and often does) describe
an exponentially-large number of possible parses; thus searching though all of them will take an
exponentially large amount of time. On the other hand, in a parse forest describing many possible
parses, most of the parse forest will not take part in the best parse. Of course we wish to avoid

89

spending time calculating unication values for parts of the parse forest which we will not ultimately
use.

We accomplish all of these goals though the use of two components. The search is performed
using a novel recursively nested branch-and-bound best-rst search algorithm, which is based on
standard search techniques [128], but custom designed for the particular needs of searching a parse
forest. We show that in operation this algorithm is equivalent to the A* search [128, 31], demon-
strating that our search is also optimal.

This search uses a disambiguating cost calculator to drive its choice of which potential sub-tree
is better, but is otherwise decoupled from this disambiguator. We demonstrate the viability of this
approach by creating a disambiguating cost calculator which is linguistically motivated, basing its
decisions on local structural assignment. We also sketch the requirements for a statistically-based
cost calculator.

5.4 Evaluation during Development

Bentley [11, pp. 32–33] points out that it is virtually always important to measure the performance
of a correctly working program before attempting to improve its performance, and that careful
proling should be used as a guide to improving performance.

A good test suite is a essential part of measurement. The test corpora are used to assure con-
sistent results in proling, allowing the researcher to objectively measure whether some seemingly
good idea actually improves performance. In addition, the test corpora can be used to assure the
correctness of the system [120, ch. 17–18].

We used constant testing to assure the correctness and effectiveness of each change to this sys-
tem during its development. We describe the development testing conditions in the remainder of
this section.

5.4.1 Development test conditions

The goals of the development testing corpora are three-fold: we wish to assure the correctness of
the system, measure its effectiveness on natural data, and measure its effectiveness on particularly
difcult “worst-case” conditions. Further, it is important to test and measure in a realistic, rather
than “toy” system.

In the remainder of this section, we describe the grammar and test corpora which were primarily

90

used in the development of this system, and which form the input of the tests reported in this chapter
as well as the following three.

The KANT grammar

The KANT machine translation system [20, 89, 110, 111] employs a substantial and heavy-weight
grammar. The grammar contains 982 rules (958 unique context-free parts), using 544 distinct
context-free symbols in the back-bone of the grammar. There are an average of 4.36 unication
equations per rule. The grammar handles a substantial subset of American English, as well as spe-
cial handling of SGML-based mark-up indicators.

Testing Data: The KANT Regression Suite

Jon Bentley relates an old industry adage in a column of rules-of-thumb for Computer Science: “If
a program doesn’t work, it doesn’t matter how fast it runs; after all, the null program give a wrong
answer in no time at all.” [13, p. 66] It is generally the case that optimizations to a program cause
the modied version to produce the same results as the old unmodied version1. In the development
of this system, we strove to maintain substantial compatibility with the previous parser [20, 155] as
well as correctness of execution.

In order to assure the correctness of the system while making various modications, we used
the KANT “FOATS” regression suite. This is a set of 3237 sentences which exercise virtually all of
the KANT grammar rules, created to aid ongoing maintenance of CTE usage examples as described
by Kamprath et al. [55]. No modication to this system was considered to be completed until the
new system would correctly parse all of the sentences of the FOATS test corpus. We found this high
threshold of testing was critical in discovering and correcting subtle aws in our implementation,
some of which substantially effected our performance test results. We are sure that without such a
good regression test corpus, some number of these aws would still exist.

Natural Data: The Catalyst Ambiguity Corpus

To gauge our development progress on realistic data, we selected sentences used for regression-
testing and investigation of ambiguity-handling of the KANT system [89, 55].

The test set we used for these experiments is 1447 sentences taken from the corpus used by

1Some probabilistic modeling systems can be exceptions to this rule-of-thumb.

91

Mitamura et al. in their investigation of automatic disambiguation [90]. These are sentences from
actual heavy equipment manuals. Each of these sentences contain some sort of structural ambiguity,
and were chosen primarily to investigate the effects of ambiguity on parsing. The sentences range
in length from 5 to 40 words (26133 words total), with an average length of just over 18 words per
sentence.

Articial Data: PP Attachment

In order to judge worst-case behavior, we also examined an interesting articial example, con-
structed to force a prepositional-phrase attachment ambiguity. The following is a close variant of an
example used by Moore and Alshawi [95], as well as Oepen and Carroll [115].

Grease flows through the bearing seal (in the engine)*.

For this sentence, it is interesting to examine the relationship between one of several measures
of parser efciency and the number of repetitions of the prepositional phrase “in the engine”.

5.4.2 Development hardware

All of the tests described in this document were conducted on an Apple Macintosh (R) PowerBook
(R) G3-series (“WallStreet”), with a 466 MHz G3 processor and 288 MB of main memory, running
MacOS version 9.1. The parser was compiled and run using Macintosh Common Lisp version 4.2,
with options (speed 3) (safety 3) (space 0) (compilation-speed 0).

5.4.3 Run-time Performance and Optimization Priorities

In the following chapters, we will consider a variety of design choices, and use empirical measure-
ments to guide our choices. But before we examine the details of the engineering of this system, we
need to examine a high-level (if crude) prole of the system.

Table 5.1 summarizes the run-time performance of the system running in various congurations
on a corpus of natural sentences. Although we can see several interesting things from this summary
of results, one stands out from a high-level design point of view: the post-parse search takes sub-
stantially less time than the backbone parse when a shallow interleaved unication grammar is used
in the backbone parser. In this latter condition, the post-parse search takes only 14% of the time
required by the backbone parse.

92

Search type
lexical look-up

(CPU secs.)
parse
time

post-parse
search time

Total
time

Fully-Interleaved
Unication 13.94 68.35 n/a 82.29

Context-Free parse
with all-paths search 14.09 87.40 18.99 120.48

Context-Free parse
with single-best search 14.11 87.36 56.30 157.77
Shallow Unication
with all-paths search 13.81 58.90 8.82 81.53
Shallow Unication

with single-best search 13.84 58.89 8.45 81.18

Table 5.1: Break-down of total run times for Interleaved Unication, Context-free (i.e. no unica-
tion) plus All-Paths Post-Parse Search, Context-free plus Single-best Post-Parse Search, Shallow
Unication plus All-Paths Post-Parse Search, and Shallow Unication plus Single-best Post-Parse
Search, on the Catalyst ambiguity corpus (see Section 5.4). Variations in lexical look-up times and
parse times for identical parse congurations are due to sampling noise.

The implication of this is fairly clear: worrying about reducing time in the back-bone parser
is (within limits) more important than reducing time in the post-parse search. Although there are
potential techniques which could improve the post-parse search further, such improvements can be
seen to be of strictly secondary importance in light of these measurements.

5.5 Summary

Our system implements all of the requirements presented above in Section 5.2. The context-free
parser that is the core of the rst-pass search supports many of the best techniques for increasing
performance, including unication (both heavy- and light-weight), packing of nodes, left-corner and
look-ahead constraints, a tree-structured grammar, and optimal agenda ordering.

Our system also supports shallow unication with approximate unication-value packing, and
collects some information needed for the disambiguator. The second-pass search supports both
best-rst-search with disambiguation and breadth-rst search for all possible unication values. The
unication equations used in the rst and second passes are independent, allowing for considerable
exibility in the rst pass.

Among these features, the use of a tree-structured grammar, the unication optimizer, approx-
imate unication packing, and the best-value post-parse-search algorithm are novel to this system.
In addition, the realization that the unication values obtained in the rst pass need not be used
directly to calculate the nal unication result, and that as a consequence we may make certain
approximations in the rst pass is also novel to this system.

93

The unication results of the this parsing system have been veried against other similar known-
good systems in order to assure correct execution. This verication included successfully running
the KANT “FOATS” standard regression tests, and hand-verifying that the results obtained were
correct and complete.

The following three chapters describe the major components of the implementation in detail:

Chapter 6 describes the context-free parser part of the system, including implementations of
the tree grammar, left-corner and look-ahead ltering, and how these interact and must be
harmonized.

Chapter 7 describes the unication system, including the pseudo-unier and its optimizing
compiler, and the mechanisms used to calculate the shallow unication grammar from out of
the original grammar, as well as the approximate packing of unication values.

Chapter 8 describes the two variations on post-parse search, including a description of the
nested branch-and-bound search, its proof of optimality, and a description of the disambigua-
tion cost calculator.

Following these chapters, experimental tests of the system are examined and conclusions are
drawn from these results. Finally, further directions for research are considered.

94

Chapter 6

Efcient Chart Parsing

UNLESS someone like you
cares a whole awful lot,
nothing is going to get better.
It’s not.

— The Lorax [148]

6.1 Motivation

As we have noted in Chapter 1, many large-scale natural language systems include the user of
context-free-spine based unication parsers. The larger system for which this parser was designed
to t into works in just such a manner.

The KANT system [87, 111] originally used Tomita’s “Augmented-Context-Free” GLR parser
described in [152]. This parser was enhanced to include an interleaved pseudo-unication [153]
system as part of the context-free parser.

As we have stated in Section 3.1.2, we wish to maintain substantial compatibility with this
previous parser. That does not mean we need completely limit ourselves to interleaved unication,
as Tomita’s Augmented GLR used, but that choice is the subject of future chapters. In any case
we know that a high-performance context-free parser will be an integral part of the overall parsing
system; investigating how to construct one is the topic of this chapter.

Goal In general, what want in the context-free portion of our parser is a context-free parsing
algorithm and implementation that runs quickly, while creating the least number of chart entries

95

(e.g. inactive edges) required.

The needs of interleaved unication also require that the parser be able to recover the partic-
ular child entries that allow for the creation of any new parent entry, before it has been fully cre-
ated, so that the unication equations associated with the relevant rule can be evaluated against the
unication values associated with the children. (While this is simply a particular sub-case of the
requirement that we be able to recover the set of all valid parses, it is a design consideration when
implementing an interleaved unication parser.)

6.1.1 Chapter Outline

In order to better understand the problem and what other researchers have done, the next section
contains a brief review of some of the history of context free parsing, especially as applied to the
processing of natural language. This section is mostly for the reader who is not already familiar
with the details of NL processing.

Section 6.3 introduces the Tree-Structured Grammar. We will see that by compressing the
grammar into a left-prex tree, we can gain substantial parsing efciency.

In Section 6.4 we consider left-corner and look-ahead ltering techniques, and their effect on
the parser, and the special considerations that result from combining the tree-structured grammar
with left-corner ltering.

In Section 6.5 we will briey touch on interleaved unication (as it effects the context-free
parser), as well as packing and an end-point restriction, and then discuss the algorithm for the
combination of all of these features.

Finally, Section 6.6 contains a full set of results comparing the contributions on each feature
upon the whole context-free parser. The best measured combination of features is then selected as
the basis of the remainder of this work.

6.2 Prior Context-Free Parsers

The earliest work on automatic parsing concentrated on the Context Free class of languages. There
are basically three major ways to recognize and parse a context free language: searching top-down
from the starting symbol for a sequence that produces the input string, building partial parses of
the input into a complete parse starting with the input string and working bottom-up, and some
combination of the two, either adding top-down constraints to a bottom-up parser or vice-versa [3,

96

108, 104, 125, 48].

There is also a choice between interpreting the grammar directly [163, 34, 58] and compiling
the input grammar by transforming it into a pushdown automaton and running the result on the
input [48, 1, 151].

Top-down parsers

One straight-forward way to write a parser is to use information from the grammar to predict struc-
ture, and thus guide the process [3, pp. 47–53]. A top-down parser starts by predicting the start
symbol, and then recursively expands this symbol in an attempt to discover a sequence of sym-
bols that correspond to the input string. Viewed in this way, parsing is simply another search task
— an abstraction that has allowed researchers in the eld of Articial Intelligence to solve many
seemingly different problems.

There are two main problems to a strictly top-down approach. The rst is that the search can
often spend a lot of computational time proposing and then eliminating predictions that do not even
closely match the input (e.g. the failures at steps 2 and 8 in the above example). The second is that
if we give such a parser an ungrammatical input (according to the supplied grammar), the top-down
parser will give us nothing useful at all. It is frequently useful to get some partial analysis even if a
complete parse is not possible [68].

Bottom-up parsers

Cocke, Kasami, and Younger independently suggested a different approach [48, p. 145]. Rather
than trying to use the grammar to predict what the input might look like, building from the top
downward, they proposed a dynamic programming solution that starts with the input and builds a
matrix of constituent occurrences in a bottom-up fashion. In Younger’s solution, this “recognition
matrix” of occurrences is then used to build a “parsing matrix” of constituents actually used in
analyses that cover the complete input. This second step is performed in a top-down manner [163].

The major advantage to these algorithms is that they run in time for any context-free
grammar in Chomsky normal form[163, 25, 48]: every rule must either be composed of two daughter
non-terminal constituents, e.g. , or a single terminal constituent, e.g. [163, p. 192].
Younger showed that both the recognition step, where the “recognition matrix” of occurrences is
built, and the parsing step, where the “parsing matrix” is built, run in .

The major disadvantage of these types of algorithms is that their fundamental data structures

97

are a matrix of binary occurrences. For an input of 50 words long and a grammar containing 500
symbols, such as we will use below, this algorithm requires two matrices of 1,250,000 bits each.
While not impractical on current hardware, this is rather a lot of overhead. Also, most of the entries
in these matrices will be zeros, so this may not be the most efcient way to deal with the data.

Chart parsers

In order to gain the best of both worlds, Earley devised a set of algorithms now commonly known as
‘Chart parsers’ [34]. This method uses a data structure to hold both ‘nal’ and non-nal states,
and an iteration over the states predicting new non-nal states (arcs) to start, completing non-nal
states with nal states to create new nal states, and extending non-nal states with nal states to
create new non-nal states. Earley proved that for the recognition case, his algorithm has a time
complexity of [34, pp. 98–99].

Some twelve years after Earley, Kay [58] proposed a family of algorithms that are quite similar
to those proposed by Earley. In Kay’s formulation, the ‘chart’ structure is used to hold information
about edges (states) that have been found (corresponding to Earley’s). When an edge can be
extended, the new extension is placed into an ‘agenda’ structure, to be processed at an appropriate
time. Kay’s innovation is two-fold: rst, placing work still to be done in an agenda turns out to have
many advantages, notably the ability to control which pending item to work on next; we will see
below that this is important. Also, Kay’s proposal included a form of left-corner look-ahead, which
is also important.

In the nal analysis, it is fair to say that the modern ‘Chart Parser’ is really a combination of
ideas from these two papers. The basic algorithm, described in terms of a predictor, completer, and
scanner components came from Early [34, p. 97], whereas the names ‘chart’, ‘agenda’, and the
left-corner look-ahead came from Kay [58].

The bottom-up approach solves the problem of creating something useful in the face of ungram-
matical input. On the other hand, it still has some of the problems of spending time starting rules
that cannot nish. These aren’t as bad for bottom-up parsing as for top-down, however, since the
only wasted time and space is in the creation of of the unnishable active rule. This is much less
expensive than in the top-down approach since the active rule can be allowed to languish, rather
than being forced to explore the rule and discover its failure followed by enough back-tracking to
continue from a useful point. Still, the expense of creating a useless active rule is non-trivial, and
worth trying to minimize.

98

GLR (Tomita)

To solve the context-free parsing problem, Tomita took a different approach in creating the Gen-
eralized L-R parser [151]. GLR is basically a pseudo-nondeterministic implementation of a shift-
reduce-style nondeterministic nite state automaton parser.

Chomsky, and separately Evey, showed that any context free language could be recognized by a
push-down automaton [48, p. 123]; for details see also Aho and Ullman [2, p. 198]. A shift-reduce
parser is basically an implementation of this. The context free grammar is compiled into a state-
action table that instructs a push-down automaton how to process words (i.e. symbols) of input. The
available actions are to:

shift a new symbol onto the stack

reduce a set of symbols currently on the stack according to a particular grammar rule

accept the input (as being in the grammar).

reject the input (as being outside of the grammar).

LR parsers were primarily developed to parse computer programming languages, where ambi-
guities are generally either aws in language design or resolvable in advance of parsing by some
general rule. There are two types of ambiguities that can appear:

shift/reduce ambiguities. These are due to an ambiguous choice between two different rules,
one of which can be reduced right away, the other of which contains some topmost part of
the stack as a prex to the right-hand-side of this rule. One way to trigger this condition is to
have two rules in the grammar, the right-hand-side of one of which is a prex of the other, for
example:

In this case, after discovering a V, we (might) have an ambiguous choice between shifting to
the state that expects an NP, and reducing the V to a VP.

reduce/reduce ambiguities. These are due to an ambiguous choice between two different rules
that can both be reduced according to the current stack. One way to get into this condition is
to have two different rules in the grammar with identical right-hand-sides:

99

For these rules, any time a VP is recognized, followed by an NP, the parser will have an
ambiguous choice between reducing an S and reducing a VP.

It would be an oversimplication to say that these different ambiguities result from particular
types of ambiguous rules in the grammar, since fairly complex sets of rules can result in seemingly
simple ambiguities [2, 48].

Shift-reduce parsers have the advantage that they can be very, very fast on unambiguous gram-
mars. If a grammar is a member of the class , then by denition it can be compiled into an
LR table, employing one symbol of look-ahead, without any of the conicts described just above.
When a grammar can be so compiled, a shift-reduce parser will run in linear time [2]. The possibil-
ity of applying this sort of speed to natural language provided strong motivation for Tomita to adapt
this method.

The main obstacle to this is that the LR subset of the Context Free class of languages does not
permit ambiguity in the grammar [2, p. 225]. The obvious problem is in the push-down automaton:
if there are a choice of actions for some inputs, then the notion of the stack only makes sense
in a nondeterministic sense. Thus Tomita’s idea was to nondeterministically follow all choices in
parallel, with a set of stacks. So when faced with, say, choosing between a shift and a reduce, the
GLR parser splits the current theory into two separate ones: one to follow the shift choice, and one
to follow the reduce.

It was not enough to simply duplicate a theory when splitting it, however, as this led to expo-
nential run-time in the face of ambiguity [151, pp. 14–16]. To address this, Tomita developed the
graph-structured stack: the set of stacks is represented by a directed acyclic graph, in which local
ambiguities could be represented by local splits in the graph which rejoin at a later point.

Johnson [53] showed that there exist grammars for which Tomita’s GLR algorithm can be made
to require time to run. Addressing this problem, Kipps [61] and Carroll [23, pp. 91–108]
each showed that with some modications, variants of the GLR algorithm can be shown to run in

time for all context free grammars. Kipps also demonstrated experimental evidence that his
modications lead to parser that is a faster than Tomita’s, though one that requires more space [61,
p. 54–56].

100

GLR* (Lavie)

For GLR*, Lavie extended Tomita’s GLR algorithm to better handle spoken language by making it
robust to ill-formed input [68]. Much of the robustness of GLR* comes from its ability to skip over
words in the input, allowing it to avoid many of the problems in input data that is the output from a
speech recognition system.

In order to make the search feasible, Lavie applied several techniques; may of which are inter-
esting simply from a performance standpoint (irrespective of robustness in parsing). He applied a
Beam Search, to prune out less likely productions in the middle of the parse. To make this work, he
also applied a trainable distribution on ambiguous actions within the shift-reduce table.

He made further use of the distribution on actions by using it for statistical disambiguation.
He showed that his method of disambiguation was considerably superior to a (simple) principled
approach. This is a very intriguing idea; methods of adapting this approach to a chart parser could
be well worth considering.

He noted that with unication grammars, it is important to detect local ambiguities before pack-
ing these ambiguities together. We will consider the subtlety of this point in some detail below.

The connection between Chart and LR parsers

In the above description of the GLR parser, we did not mention anything specic about how gram-
mar rules were recorded when performing a reduce action. There are many ways one could imagine
recording such information; the chart data structure is a natural choice. Kipps showed that the
GLR technique can be made polynomial () all the time with the addition of a dynamic data
structure, which he calls ANCESTORS, which bears a remarkable similarity to a chart [61].

In Lavie’s thesis [68], an examination of the example implementation of GLR* reveals a similar
technique: when productions are completed, the results are recorded in a chart-like structure [68,
pp. 144-166],[70].

The similarity between chart and LR parsers can be taken further. van Noord [107] noted the
similarity of bottom-up chart and LR parsers.

Superiority of Chart parsers for this application

Contemporaneously with much of the work presented in this chapter, Moore [94] presented a set
of experiments investigating the effects of a large number of left-corner, look-ahead, and factoring

101

optimizations on a set of grammars spanning three orders of magnitude in size.

Moore shows that while these techniques are all advances to context-free parsing, they are not
fully independent, but instead interact with each other. Often they reinforce each other, but some-
times they work at cross-purposes, with a combination of particular techniques resulting in slower
parsing than using either alone.

He also compared these variants of Chart parsers to the GLR algorithm [151], and found that
while GLR could be faster in some cases, it was in fact slower in others, and in some cases the LR
table was so large that it could not be adequately tested.

On the basis of early investigations of our own, we chose to base our parser on the Chart frame-
work. Happily, Moore’s results help conrm our choice as reasonable.

6.3 The Tree-Structured Grammar

Grammar structure optimizations

There are several ways to improve the efciency of a context-free parser. Not only can one im-
prove the efciency of a parser by constraining the search according to left-child and adjacency
information gathered from the grammar, one can also improve the efciency of how the rules of the
grammar are processed.

As Grifths and Petrick [42], Shann [134], and Nederhof [103] have all observed, one basic
shortcoming of simple table parsers are that they make inefcient use of the grammar whenever
there are grammar rules with common prexes. Aho and Ullman also point out that this can be a
fatal aw in recursive-descent parsers [2, pp. 180–182]. That the grammar is used inefciently is as
true for a simple chart parser [34, 58, 3, 107] as for other types of table-based parsers.

To see how to make better use of the structure of the grammar in our chart parser, we should rst
review the problem. The following explanation starts with a detailed expansion of the observation
made by Grifths and Petrick [42, p. 295].

Consider the following context-free rules:

102

One of the interesting features of this set of rules is that there is a lot of redundancy in the
prexes of the right-hand-sides, and that this structure can be rearranged into a tree structure to
eliminate this redundancy.

Unfortunately, a na̈ve implementation of a chart parser will not take advantage of this redun-
dancy. Consider what would happen inside a “standard” chart parser using this grammar fragment.
Suppose that the rst input token was an ; then the parser would start active arcs for rules (4),
(5), (6), and (7) above. Further suppose that the second input token was a Comma; then the parser
would create active arcs to advance the active arcs from rules (4) and (5) that we created before.

In contrast, a shift-reduce parser [48, 151, 23, 107] will often use a grammar that has been
optimized to eliminate this redundancy [48]. Since chart parsing and shift-reduce parsing are sub-
stantially similar [107], many techniques used in shift-reduce parsing can be applied to a chart
parser.

Consider this grammar once again from the stand-point of a Push-Down Automaton (PDA) [48].
We will call reducing a sequence of symbols and producing a left-hand-side symbol a reduction, and
we will call traversing a right-hand-side symbol a shift. (The obvious motivation for these particular
terms is their use in the shift-reduce parser literature [48].)

Most shift-reduce parsers include a step that combines together multiple equivalent shift or

103

.

.

.

. .

.

.

Figure 6.1: An example Tree-structured Grammar

reduce rules that appear in parallel. Consider what happens when we combine the left sides of the
right-hand-sides (or shifts) of our example grammar. We will use a downward- (upward-) diagonal
arrow () to indicate that the RHS up to this point comes from the previous (next) rule. The
result of this re-drawing is shown in Figure 6.1.

Grifths and Petrick refer to the structure shown in Figure 6.1 as a “linked-list (tree) represen-
tation” of a set of rules [42, p. 295].

Obviously fewer symbols appear in this grammar. Its structure is also quite indicative of how it
will be used — active arcs will indicate places on the grammar tree, rather than (rule, offset) tuples.

6.3.1 Building a Tree-Structured Grammar

Properly, the grammar shown in Figure 6.1 is structured into a trie data structure [132, pp. 248–
252]. Each node in the trie contains a symbol, and two sets: the shifts and the reductions.
The shifts are a set of (pointers to) trie nodes; the reductions are a set of rules (possibly containing
other useful information such as unication equations).

We build the grammar trie by “tree-ifying,” or left-prex compressing, the rst rule in the gram-
mar by producing a list of trie nodes (linked through the shifts eld), with a nal node containing
an entry in the reductions eld pointing to the original rule. The algorithm used for this com-

104

tree-ify (rule, rhs)
new-t = new node
new-t.symbol = first(rhs)
if length(rhs) == 1

new-t.reductions = rule
else

new-t.shifts = tree-ify (rule, rest(rhs))
return new-t

add-to-tree (rule, rhs, t-node)
if lhs is empty
push rule onto t-node.reductions

else if (fist(rhs) == n.symbol) for some n in t-node.shifts
recursively call add-to-tree (rule, rest(rhs), n)

else push tree-ify (rule, rhs) onto t-node.shifts

build-tree (rule-list)
tree = new node
tree.shifts = tree-ify (first(rule-list), first(rule-list).rhs)
foreach r in rest(rule-list)

add-to-tree (r, r.rhs, tree)
return tree

Figure 6.2: Method to Left-Prex-Compress a Grammar

pression is outlined in Figure 6.2. 1

6.3.2 Using a Tree-Structured Grammar

Once the grammar tree has been built, applying it in the chart-parser is quite straightforward. The
algorithm presented below is, at its essence, a chart parser. The principle difference between the
algorithm below and one presented in e.g. Allen [3, p. 55] is that in the classic formulation of the
chart algorithm, for each extendible active arc, a new active arc is added, and for each completable
active arc, a new constituent is added to the agenda. In contrast, when using the tree-grammar
several new active arcs and several new constituents may be created from a single extendible active
arc.

The other notable difference is in the representation of the children of an active arc. We represent
the children of an active arc with a reversed-order linked list in the traceback eld of the arc.
Because one active arc could spawn several arcs in turn representing different rules, the addition of
a new child on a successfully extended arc must not disturb the children of any sister arcs. As noted

1The pseudo-code in this paper is in a vaguely C/C++/Java-like notation. An element of a structure is denoted by
structure.element; lists are assumed to have a linked list structure, accessed by the operators rst() and rest().

105

by Carroll [23, p. 55], an efcient way to handle this is to simply build the child set as an up-tree
[27], and then trace-back the list to build the nal set of children should the arc successfully nish.

With this in mind, the basic tree-structured grammar chart parser algorithm shown in Figure 6.3
is quite straight-forward.

Implementation note The root of the grammar tree contains only shift actions (assuming that
there are no -reductions), and these are searched in the rules-started-by and single-

rules-completed-by functions. The speed of the parser can be substantially improved by
instead putting these initial grammar-tree entries in a table so that these two functions are unit-time
operations.

6.3.3 Previous Approaches

While the details of our implementation of the tree-structured grammar, as well as the combination
of this optimization and left-corner ltering (described below in Section 6.4) are unique, the general
idea of removing this redundancy in the grammar is by no means new.

Grifths and Petrick Grifths and Petrick seem to be the rst to describe this redundancy and
take advantage of it. In their 1965 paper [42], they refer to the structure shown in Figure 6.1 as
a “linked-list (tree) representation” of a set of rules [42, p. 295]. Even though they describe this
tree structured grammar quite clearly, they chose not to implement a parser directly based on this
structure, but instead used the structure to generate a transformed set of rules. Though this seems
slightly odd, it is worth pointing out that Grifths and Petrick’s paper predates Early’s parser [34]
by some ve years, and Kay’s chart parser [58] by fteen. The direct implementation that we will
pursue uses a formulation of the chart parser, thus not all necessary pieces were in place at the right
time.

Shann (1991) More recently, Shann [134] also exploited the tree structure, albeit partially, by
compacting together the common left parts of the right-hand-sides of rules. Unfortunately, he chose
to do so only for rules that share common left-hand-sides. So in Figure 6.1 above, only rules (4),
(5), and (7) would be combined together; (1) could not share prexes with (2), nor could (6) be
combined with the (4,5,7) set. In Section 6.4, we will see below that we need not have such a
restriction.

106

Nederhof (1994) Nederhof [103] suggests that one can fully take advantage of this redundancy,
and exhibits several algorithm variants that do so. For strictly context-free parsing, these algorithms
are extremely good, removing many redundancies from the processing. All of these algorithms are
table parsing algorithms. As such, they are much more closely related to GLR and other compiled
table parsing algorithms than to the class of chart parsers (to the extent that chart parsers are different
than table parsers, at least).

Unfortunately, however, these optimizations partially loose track of which particular rule created
a particular derivation. (‘Partially’, in the sense that one must do some work to recover the original
rule.) So they are still incomplete for our purposes. Fortunately we have seen that this extra bit of
book-keeping can be quite simple, due to our changing the base formulation of the algorithms from
being table-based to being chart-based.

Moore (2000) Contemporaneously with the work presented in this chapter, Moore [94] presented
a set of experiments investigating the effects of a large number of left-corner, look-ahead, and fac-
toring optimizations on a set of grammars spanning three orders of magnitude in size. He compares
and contrasts a set of parsers including the improvements proposed by Grifths & Petrick [42],
Shann [134], and Nederhof [102], as well as several others.

For the optimizations to the grammar, Moore follows Shann and Nederhof, transforming the
grammar itself. This is perfectly ne for a strictly context-free parser, but we wish to easily accom-
modate sets of unication equations as well. It would involve too much extra work and book-keeping
to re-write the grammar for the context-free parse, and then gure out what the original structure
was in order to correctly apply unication rules.

6.4 Left-Corner and Look-ahead Filtering

Although the search for a complete parse can be performed in a purely top-down or bottom-up
manner, these searches can be improved upon by combining top-down and bottom-up information
together, and also by taking advantage of information slightly beyond the span of a single con-
stituent.

We can improve on the efciency of the parser by restricting the edges that are added to the
chart according to restrictions discovered from the structure of the grammar. The two constraints
we use are left-corner and look-ahead constraints.

107

6.4.1 Left-Corner Constraint

Robert Moore has described the origins of left-corner parsing as “murky” [94]. He notes that the
origins of left-corner parsing go back to Grifths and Petrick [42] and Rosenkrantz and Lewis [127],
with additional work by Pratt [119], Kay [58], and Matsumoto [83], among others. A particularly
accessible description of this process is presented by Aho, Sethi, & Ullman [1, pp. 188-189].

The idea behind left-corner parsing is to start with a bottom-up parser, but to restrict the search
in such a way that the parser only searches for and builds constituents that can take part in a parse
that covers the entire input. In other words, to add top-down restrictions onto the bottom-up parse.

In order to perform the actual parse, the parser starts by proclaiming that it is interested in
building a top-level (i.e.) constituent spanning the entire input. From then on, the parser should not
create a constituent (or even start a rule that would create a constituent [93]) unless this constituent
can be used in the construction of some larger constituent that is in the process of being built.

This is generally accomplished with the aid of the left-corner relation: is said to be ‘in the
left-corner’ of either if there exists a rule of the form (where could either be empty
or not), or if there is some such that is in the left-corner of and is in the left-corner of
(i.e. the transitive closure of the relation).

This restriction can either be explicitly checked, or partially implicitly encoded into the imple-
mentation of an interpretive (e.g. chart) parser [108, 104, 125, 94], or compiled into the state-space
of an LR (table-driven) parser [48, 1].

In the na̈ve chart implementation, this check is quite straight-forward. Whenever either a single-
ton (unit-length) rule is about to be evaluated, or a multiple-constituent rule is about to be started,
at starting position , check to see if the rule’s LHS category is a member of the union of the
downward-left-corner sets of all current active arcs which start at . It is, of course, convenient
to precalculate the downward-left-corner relation (known in Aho, Sethi & Ullman as FIRST [1])
during the grammar compilation stage.

Cocke-Schwartz ltering is a variant of the left-corner restriction. In Cocke-Schwartz ltering,
the left-corner sets are expanded as they are added to the prediction sets, so that the actual ltering
check becomes a simple set-membership operation. Again according to Moore [94], this type of
restriction rst appeared in Graham, Harrison, and Ruzzo [41], and was used by Shann [134]. (Ac-
cording to Graham, Harrison, and Ruzzo [41, p.456], their restrictor is somewhat more specialized
than the Cocke-Schwartz restrictor in that it applies to whole rules.)

108

“Ordinary” Left-Corner ltering There are two basic ways of implementing a left-corner check.
Since we wish to use the best technique, and did not have an a priori preference, we implemented
both techniques and consider each in turn here. The following description is due to Moore [94].

The essence of the “ordinary” left-corner constraint [94, 42, 127, 1] is to collect together the
“next-needed” categories of all the active arcs for each position , and then before adding an inactive
edge to the chart, make sure that some active arc is “looking for it” by checking to make sure that
the left-corner-set of one of these active arcs includes the category of the new inactive edge.

We can restate this somewhat more formally:

Let be the set of all categories for which there is a rule or an active arc starting at . (Moore
calls this the “prediction set” [94].)

On initialization, is set to (the grammar start symbol).

When an arc (or active edge) is added to the chart at cat , set cat.

An entry (or inactive edge) cat is added to the agenda only if s.t. cat
LC .

In our implementation, is an array of bit-vectors (see below), and the nal test is actually
implemented as the intersection test UPWARD-LC cat . (Just as LC cat is the inclusive
transitive closure of the rst-child relationship, UPWARD-LC cat is the inclusive transitive closure
of the parent relationship.)

Cocke-Schwartz ltering In contrast to ordinary left-corner ltering, the essence of Cocke-
Schwartz ltering [41, 134, 94] is that we union together the left-corner sets when developing the
prediction set, and the ltering test is a (quick) single set-membership test.

More formally, this can be summarized as:

Let be the union of all left corner sets of categories, for all categories for which there is a
rule or an active arc starting at .

On initialization, is set to LC (the grammar start symbol).

When an arc (or active edge) is added to the chart at cat , set LC cat .

An entry (or inactive edge) with category is added to the agenda starting at only if:
.

109

Filtering type features
total num.

nodes total num.arcs
parse time

(CPU secs.)
Ordinary Left-Corner LC at leaves only 1,014,451 2,607,842 171.49

full LC in tree 984,083 2,264,255 265.61
Cocke-Schwartz LC LC at leaves only 1,014,451 2,607,842 77.45

full LC in tree 984,083 2,264,255 77.96

Table 6.1: Comparison of parse times for Ordinary Left-Corner versus Cocke-Schwartz Filtering
using the Tree-Structured Grammar

Implementation notes We found that in our implementation of each of these ltering techniques,
it is very important for the constraint-checking functions to be implemented efciently. This is
particularly true for the left-corner-of-look-ahead constraint (described below). Since arc creation
and handling is relatively cheap, any check used to reduce the number of arcs must be less expensive
still, or the over-all run-time will go up rather than down.

Our initial implementation used an unsorted-list representation of sets, but this slowed down the
parser considerably. We now represent these sets as packed bit-vectors, so that set-membership is
a unit-time operation, and set-union, set-intersection, and querying for set-emptiness are all vector-
izable bit-parallel operations which are quick in practice [12, p. 146], [78, pp. 257–259], [99, pp.
759—760].

This particular implementation choice is probably quite implementation-language dependent,
however, and should be reconsidered for a truly optimal implementation.

Comparison For completeness, we implemented both methods in order to compare the one
against the other. Table 6.1 summarizes this comparison. (For test conditions, see Section 5.4
above.) In it we can see that Cocke-Schwartz ltering outperformed the “ordinary” left-corner l-
tering by almost a factor of two in speed. In Section 6.6 we will consider this choice as well as
several others in more detail.

The results shown in Table 6.1 are not surprising when one considers how the ltering is imple-
mented in detail. As Graham, Harrison, and Ruzzo observed [41, p. 456], “ordinary” left-corner
ltering requires the least computation to generate the prediction set, and the most computation to
test against it, whereas the reverse is true for their method as well as for Cocke-Schwartz ltering.
In particular, for “ordinary” left-corner ltering an element must be added to a set for every arc
(active edge), but an iteration over a sparse set must be performed to evaluate the restriction before
adding a chart entry (inactive edge). On the other hand, for Cocke-Schwartz ltering, a union-of-
sets operation must be performed for each arc with a unique next-needed symbol, but this allows

110

the restriction test to be an inexpensive set-membership operation.

In either case, the whole-set operation is going to be more expensive than the single-item oper-
ation, so the choice of where to put the expensive operation should follow from the observation of
whether creating an arc (active edge) happens more often than creating a chart entry (inactive edge).

We will see below that with the tree-structured grammar, we create many more inactive edges
than active edges, so of course we should chose Cocke-Schwartz ltering since it does more work
for each active edge.

Integrating Left-corner constraints into the Grammar Tree There is one potential problem
with structuring the grammar into a tree: several techniques, notably including the left-corner con-
straint proposed by Graham, Harrison, and Ruzzo [41, p. 456], involve evaluating predicates in-
volving the left-hand-sides of proposed or active grammar rules.

In the na̈ve implementation of the grammar, evaluating these predicates is straight-forward.
Taking the example of the left-corner constraint, before “starting” a rule, one can ask whether the
rule will be used if it can be completed. This question can be formalized as asking whether the
LHS category of the rule is a member of the (downward) left-corner set for the current position (at
offset). Since we have the rule immediately to hand, computing this is straight-forward.

The situation becomes more complicated when the grammar is structured into a tree. The notion
of “the” category that can be derived from a rule becomes the set of categories that can be derived
from some point in the tree. This somewhat complicates our calculations.

For Cocke-Schwartz ltering, we can re-formulate the left-corner constraint to ask if there is
a non-empty intersection between the set of all categories that could be completed from the point
in the tree corresponding to the category of the current entry and the left-corner set for the current
position.

For Ordinary left-corner ltering, we must instead ask if there is a non-empty intersection be-
tween any of the left-corner sets of the categories that could be completed from the current point in
the tree, and the set of categories of active arcs starting at the current position.

The set of completable categories can be recursively dened as the union of:

The categories of all rules in the reduce list of the current node, and

The union of the sets of completable categories for each node on the shift list of the current
node.

111

Filtering type features
total num.

nodes total num.arcs
parse time

(CPU secs.)
Ordinary Left-Corner LC at leaves only 1,014,451 2,607,842 171.49

full LC in tree 984,083 2,264,255 265.61
Cocke-Schwartz LC LC at leaves only 1,014,451 2,607,842 77.45

full LC in tree 984,083 2,264,255 77.96

Table 6.2: Comparison of parse times for the Tree-Structured Grammar with left-corner in the
middle of the grammar tree (“full LC in tree”) versus left-corner only at end (only when creating
nodes)

This denition invites the following extension to the left-corner restriction: As one proceeds
down a path in the tree, the set of categories that can be derived from the current node in the
tree shrinks. With this in mind, one can decorate each tree node with the set of all nodes that are
completable from that point in the tree, and require the left-corner non-empty intersection constraint
to be true for every new active arc. When this extension is applied to the Cocke-Schwartz restriction,
the resulting computation can be considered an extension of the restriction proposed by Graham,
Harrison, and Ruzzo [41].

If we decorate the tree-structured grammar example we used above, the result is this:

NP,S S

NP

NP NP

. .

N,NP N N N

N

N N

For the actual parser, we compute these sets according to the above denition, decorating the
tree nodes with the resulting sets.

Table 6.2 briey summarizes a comparison of using these sets of reductions within the tree
to lter arc (active edge) production versus performing the left-corner constraint only when nodes
(inactive edges) are to be created.

112

From Table 6.2, we can see that when using Cocke-Schwartz ltering, this ltering on the set of
reductions reduces the number of both arcs and nodes created. Unfortunately, because this reduction
is slight, the parse time is not improved.

On the other hand, for ordinary left-corner ltering, ltering on the reduction set introduces
more work than it avoids. So while fewer arcs and nodes are created, the result is a parser that is
35% slower than not using this ltering.

This is quite interesting, because it shows that reducing the number of chart entries is not al-
ways the better choice. In this case, we pay a 35% speed penalty in order to reduce the number
of chart entries by %. If we were forced to adopt ordinary left-corner ltering for some other
reason, unication would have to be substantially slower than chart entry creation (and the associ-
ated extra work that having these extra entries would induce) in order to be a net benet in run-time
performance.

Fortunately, we do not have to make that choice. Since the parser using Cocke-Schwartz ltering
is over twice as fast as using the parser with ordinary left-corner ltering, we will adopt the Cocke-
Schwartz ltering. In the full results in Section 6.6, we will see that in the context of the full
system, including the features which we will discuss below, the left-corner ltering on the possible
reduction-set is a slight net benet, so in the end we will use this feature as well.

6.4.2 Look-ahead Constraint

Another restriction that can be placed on a parser involves adding look-ahead. The essence of look-
ahead is to only add constituents (or start rules) that can be combined with the token or tokens
that come immediately after the position currently under consideration. According to Moore [94],
framing this ltering in this way was proposed by Wirén [160], though the use of look-ahead was
described as part of building an LALR(1) parsing table by Aho and Ullman [2, pp. 219–224, 236–
241], who in turn credit DeRemer [32] with inventing the LALR parser-construction algorithm [2,
p. 243]. DeRemer in turn indicates that the look-ahead technique came from Knuth [64], though
the separate calculation of the look-ahead set was novel (to DeRemer) [32, p. 459].

This constraint is also accomplished with the aid of a simple relation, which encodes whether
some constituent can be adjacent to another constituent . If the parser is about to complete
constituent using word , then we can ask whether word can immediately follow . If not,
then we should not add to our set of constituents, because it cannot be used in any analysis.

The guiding principle of look-ahead is this: don’t create a constituent that cannot possibly be
followed by the next word. We should only create a constituent of category ending at if is

113

Filtering type features
total num.

nodes total num.arcs
parse time

(CPU secs.)
No left-corner No look-ahead 1,979,651 3,719,086 135.66

Look-ahead 1,754,684 3,498,758 128.18
Ordinary Left-Corner No look-ahead 1,014,451 2,607,842 171.49

Look-ahead 928,007 2,463,204 159.74
Cocke-Schwartz LC No look-ahead 984,083 2,264,255 77.96

Look-ahead 900,674 2,126,952 78.06

Table 6.3: Comparison of parse times for the Tree-Structured Grammar (using full Cocke-Schwartz
Filtering) with and without look-ahead. (Ordinary Left-Corner is without LC-of-LHS-set ltering,
whereas Cocke-Schwartz Left-Corner ltering uses this feature.)

a member of the set of categories that can occur to the immediate left of the category of the next
word (at). Since this relation depends only on the grammar, it can be calculated in advance of
actually parsing, during a grammar compilation phase of processing.

Our implementation We implement the look-ahead by precalculating a PRECEDE relation: if
FOLLOW , then PRECEDE . Then, while processing the input word at , we union

together all the PRECEDE sets for each basic category of the next word (). Finally, we allow
the creation of only if is a member of this union. Our actual implementation of the calculation
of the FIRST and FOLLOW relations follows the presentation in Aho, Sethi, & Ullman [1, pp.
188-189].

The chart-parser implementation of this restriction is straight-forward. Just before starting a
new input word, the PRECEDE set of each of the possible categories for the next word after that
(and any phrases that can start with the second word) are added to the look-ahead set.

Then, before proposing a new chart entry (inactive edge), the look-ahead set is consulted to see
if the new category could precede anything that the next word could begin by checking to see that it
is a member of the current look-ahead set.

From Table 6.3, we can see that adding look-ahead constraints to our parser reduces the number
of chart nodes (inactive edges) that are built by 9% (for the Cocke-Schwartz ltering case). For
ordinary left-corner ltering, it also speeds up the parser, but for Cocke-Schwartz ltering it is
about a wash; there is no improvement in run-time. We will see in the next section that look-ahead
is a necessary condition for an additional ltering option that does substantially decrease structure
building and improves the run-time performance as a result.

114

Filtering type features
total num.

nodes total num.arcs
parse time

(CPU secs.)
Ordinary Left-Corner no LC-of-LA 928,007 2,463,204 159.74

LC-of-LA 928,007 711,296 159.70
Cocke-Schwartz LC no LC-of-LA 900,674 2,126,952 78.06

LC-of-LA 900,662 576,622 75.32

Table 6.4: Comparison of parse times for the Tree-Structured Grammar, using left-corner and look-
ahead constraints, with and without the left-corner-of-look-ahead [102] constraint.

6.4.3 Left-corner of Look-ahead

This combines together the look-ahead and left-corner restrictions described above. In essence:
don’t create an active arc which requires a constituent that cannot be started by the next word. Only
create active arc that would next require category if could be started by the next word.

Nederhof [102] proposed, as an additional optimization to look-ahead ltering, precomputing
the (upward) left-corner relation of the next input token, and then ltering by performing a simple
set-membership test against this left-corner set. Our implementation follows this proposal.

We implement this by precalculating an UPWARD-LC (or FIRST-PARENT) relation, which is
an inclusive transitive closure of the parent-of-leftmost relation: is a member of UPWARD-LC
if could be a left-most descendant of . Then, while processing the input word at , we union
together the UPWARD-LC sets for each basic category of the next word starting at . Finally,
we allow the creation of an active arc cat only if cat is a member of the union of
UPWARD-LC sets for .

Implementation notes When integrating left-corner constraints into the grammar tree, we noticed
that the set of completable categories is quite sparse compared to the left-corner set. Rather than
performing a simple set-intersection and set-non-empty operation, it turned out to be much faster to
ask if the intersection between these two sets was non-empty by performing a sparse-set to dense-
set intersection operation, short-circuiting when any part of the intersection was discovered. For
the actual implementation, we found it best to simply decorate the tree with a list of completable
categories, and to perform the restriction check by looking down this list for an element that was
also in the left-corner set.

From Table 6.4, we can see that adding the left-corner-of-look-ahead constraint to our parser
greatly reduces the number of arcs (active edges) that the parser needs to build — a reduction by a
factor of over times. Even though making a new arc is a relatively cheap operation, this results
in a slight improvement in the run-time performance.

115

6.5 Other Parser Features

There are a considerable number of features that can be added to the basic algorithm above to turn
it into what could be considered a ‘modern’ parser. In addition to the left-corner and look-ahead
search restrictions, these features include unication, packing, and an end-point search restriction.

Unication We will note here that this parser was developed to support “augmented context-free”
unication grammar [152] using a Lexical Functional Grammar [56] inspired formalism. Support-
ing unication is the reason we could not adopt methods such as those used by Nederhof [103]
or Moore [94], which modify the grammar so substantially that rediscovering the constituents of a
complete rule is difcult.

Following Tomita [151] and Carroll [23], we apply packing of locally ambiguous constituents.
As Briscoe & Carroll [18] and Alshawi, et al.[4] noted, packing can be used to save considerable
amounts of duplicated work, but when working within a unication grammar framework both the
constituent structures and the unication feature structures must be packed in order to see any actual
gains.

Packing In the algorithm presented below, packing is hidden within the agenda-add operation.
Since an entry actually entered in the chart may have been used to complete other rules, and since its
unication value will have been used in this case, we cannot simply pack into constituents already
in the chart unless we then recalculate the unication values for any other constituent for which the
chart entry in question is a descendant [70]. Implementing this adds a lot of extra book-keeping, so
we simply chose to pack only into the agenda (since we know that agenda items have not been used
and thus may be packed together safely) [76].

Optimal agenda ordering Lavie and Rosé [76] examine an interesting aspect of chart parser
implementation: agenda ordering. In a chart parser, as new constituents are discovered, they are
placed on an agenda of items which require further attention. These are then used to start, extend,
and nish other partial constituents.

What Lavie and Rosé discovered was that in a chart parser with interleaved unication such
as LCFlex [125], once the unication value attached to a node has been used, other ambiguous
nodes cannot be packed into without recalculating the unication results for all parents of .
Figuring out which unication results to recalculate in inconvenient, and it is often better to simply
leave the node unpacked. Unfortunately, leaving it unpacked will lead to redundant work later in

116

the parse.

The best way to handle this would be to nd an ordering on the agenda that allows us to know
that once we start to use node , we will have already packed into . Such an order would be
an optimal order in which to process the agenda.

Lavie and Rosé [76] discovered that such an ordering exists, and that it can be precalculated,
based solely on the structure of the grammar.

We adopt this technique as-is, calculating the partial ordering at the same time that we calculate
the left-corner and look-ahead relations. The ordering of the actual agenda is then compartmental-
ized into the agenda-add function.

End-point restrictions The end-point restriction on starting rules is from Carroll [23, p. 55].
Carroll’s actual restriction was on the minimum number of tokens needed to complete the new rule.
Unfortunately, because the tree-grammar can encode several rules of different lengths together in
one starting arc, we could only apply this restriction in this more limited form. (We actually tried
annotating the tree with an indication of minimum length needed to complete any node, but this
didn’t save any appreciable run-time over and above this simple version.)

6.5.1 Complete algorithm

Figure 6.4 shows the main loop of the full tree-structured grammar chart parser, including unication
and the restrictions discussed above. The actual implementation of the parser follows this structure
exactly. We used object-oriented design to hide techniques such as packing and agenda ordering in
the implementation of the agenda; table insertion and look-up details are in the implementations of
the chart and (separate) active arcs. In doing so, we can clearly separate the core algorithm from
these other (important) additional techniques.

For an efcient implementation of this algorithm, there are several data structures that must be
implemented in an efcient way.

The agenda must be implemented in a way that supports quick addition and removal. This is
because every entry in the chart must rst be added and then later removed from the agenda.

(We shall note here that searching down a list, such as the LISP ASSOC function, is not a
unit-time operation, and therefore not to be considered ‘quick’.)

Active arcs should be stored in such a way that a new active arc can be added quickly.

117

Active arcs should also be stored in such a way that the arcs-continued-by operation
is quick — preferably a unit-time operation such as a table- or hash-lookup.

6.6 Context-free Parsing Results

To demonstrate the effectiveness of the various techniques described above, we used the test corpus
of natural KANT data described in Section 5.4 above.

As a reminder, this corpus consists of 1447 sentences, with an average length of just over 18
words per sentence, taken from the corpus used by Mitamura et al. in their investigation of automatic
disambiguation [90]. These sentences are applied to the KANT (982-rule) unication grammar.

All of the results shown in tables 6.5 and 6.6 were collected using the same basic parser. For the
“standard” entries, the parser was loaded with a grammar without applying the prex-compression
described above, whereas the “tree” entries do use the fully compressed tree-structured grammar.
Both congurations were run with various constraints turned on or off. “LC-at-end” refers to left-
corner restriction applied just prior to computing the unication function and (if successful) creating
a chart entry; “LA” to look-ahead; and “LC-of-LA” refers to the left-corner-of-look-ahead as out-
lined above. “LC-in-rules” refers to applying the left-corner restriction prior to starting a rule,
whereas “LC-in-tree” refers to applying the left-corner set-intersection-non-empty restriction in the
grammar tree (as described above).

6.6.1 Discussion of results

As we stated in the beginning of this chapter, what we are looking for in the context-free portion
of our parser is the least run-time, while creating the smallest number of chart entries (i.e. inactive
arcs).

Table 6.5 lists some comparative results of running the parser on only the context-free spine
of the test grammar. Comparing the numbers of arcs generated by the na̈ve chart versus the tree-
structured chart that using the grammar tree does indeed save a substantial number of arc creations.
Without any left-corner or look-ahead restrictions, when compared to the na̈ve implementation, the
tree-structured grammar reduced the number of active arcs created by 22%. When employing full
left-corner and look-ahead constraints [108, 125, 48] on the parser, the tree-grammar gave a 33%
reduction in the number of active arcs, and a run-time improvement of 6.6%.

Table 6.6 lists comparative numbers for running the parser with fully-interleaved unication.

118

Grammar
type

LC
type

LC of
LHS set

Look-
ahead

LC-of-
LA

total num.
nodes total num.arcs

Parse time
(CPU secs)

none 2,006,968 4,554,782 144.70
X 1,777,092 4,213,835 138.09

1,016,736 3,164,755 194.23
Ordinary X 986,091 2,784,207 308.36

Left- X 930,071 2,945,009 175.60
Corner X X 902,497 2,574,894 281.99

Standard X X 930,071 924,532 173.42
(linear) X X X 902,485 794,128 200.77

1,016,736 3,164,755 84.32
X 986,091 2,784,207 84.48

Cocke- X 930,071 2,945,009 85.10
Schwartz X X 902,497 2,574,894 85.63

X X 930,071 892,131 81.82
X X X 902,485 767,651 80.32

none 1,979,651 3,719,086 135.66
X 1,754,684 3,498,758 128.18

1,014,451 2,607,842 171.49
Ordinary X 984,083 2,264,255 265.61

Left- X 928,007 2,463,204 159.74
Corner X X 900,674 2,126,952 247.61

Tree- X X 928,007 711,296 159.70
structured X X X 900,662 601,253 180.10

1,014,451 2,607,842 77.45
X 984,083 2,264,255 77.96

Cocke- X 928,007 2,463,204 78.19
Schwartz X X 900,674 2,126,952 78.06

X X 928,007 680,800 76.90
X X X 900,662 576,622 75.32

Table 6.5: Parse times for Context-Free (only) parse.
LC type refers to the type of left-corner restriction used (none, Ordinary, or Cocke-Schwartz).
LC of LHS set refers to the integration of Left-hand-side category sets into the grammar tree as
described in Section 6.4.1.
Look-ahead indicates that this constraint has been used.
LC-of-LA refers to the restriction of active arcs to be in the upward-left-corner of the next symbol
as described in Section 6.4.3.
The best combination of features for this conguration is shown in bold face.

119

Grammar
type

LC
type

LC of
LHS set

Look-
ahead

LC-of-
LA

total num.
nodes total num.arcs

parse time
(CPU secs)

none 893,483 2,046,123 108.44
X 803,341 1,909,494 106.37

515,282 1,514,648 152.82
Ordinary X 498,264 1,294,209 207.53

Left- X 484,163 1,424,560 136.34
Corner X X 468,309 1,208,840 187.70

Standard X X 484,162 496,948 132.89
(linear) X X X 468,297 419,017 148.76

515,282 1,514,648 73.74
X 498,264 1,294,209 72.63

Cocke- X 484,163 1,424,560 74.49
Schwartz X X 468,309 1,208,840 73.15

X X 484,162 480,208 70.89
X X X 468,297 405,262 69.46

none 876,266 1,640,324 99.72
X 789,083 1,554,241 96.82

513,632 1,231,939 131.27
Ordinary X 496,787 1,037,666 175.11

Left- X 482,663 1,173,499 123.19
Corner X X 466,957 982,738 165.60

Tree- X X 482,662 367,302 118.18
structured X X X 466,945 305,543 129.05

513,632 1,231,939 67.89
X 496,787 1,037,666 68.17

Cocke- X 482,663 1,173,499 67.77
Schwartz X X 466,957 982,738 67.48

X X 482,662 352,446 64.77
X X X 466,945 293,610 63.10

Table 6.6: Parse times for parse with interleaved unication.
LC type refers to the type of left-corner restriction used (none, Ordinary, or Cocke-Schwartz).
LC of LHS set refers to the integration of Left-hand-side category sets into the grammar tree as
described in Section 6.4.1.
Look-ahead indicates that this constraint has been used.
LC-of-LA refers to the restriction of active arcs to be in the upward-left-corner of the next symbol
as described in Section 6.4.3.
The best combination of features for this conguration is shown in bold face.

120

(See Sections 5.4 and 7.4.3 for details.) As in the context-free case, use of the tree-structured
grammar reduces arc creation by 25% when using no restrictions, and 38% using full left-corner and
look-ahead restrictions. This latter conguration is also 10% faster than using the na̈ve grammar
structure.

It is also interesting to note the huge decrease in the number of active arcs created when applying
the left-corner-of-look-ahead restriction in the creation of active arcs when compared to applying
the left-corner and look-ahead restrictions only to the creation of the chart entries. This is clearly a
win in terms of reducing memory use, though the resulting speed improvement is extremely modest.

On this corpus, left-corner constraints alone are clearly superior to look-ahead constraints alone.
Further, the combination of left-corner and look-ahead constraints are only a modest win over left-
corner alone until the left-corner-of-look-ahead restriction is applied as well.

Conclusion Over all, using the tree-structured grammar substantially reduces the number of arcs
created in in this chart parser, and cooperates well with the combined left-corner and look-ahead
restrictions.

We can also see that we need not only a good parsing algorithm, but that the implementation
of that algorithm must be good as well. This is especially true in the case of ltering techniques,
where the cost of applying some lter might be substantially greater than the savings that result from
applying that lter. In these cases, making an appropriate choice may require an empirical compar-
ison of several alternate approaches. This is shown most clearly in the results for the “ordinary”
Left-corner constraint, where not using this feature is faster than using it, even though the amount
of structure that is created has been reduced.

Fortunately, by carefully implementing several options and empirically comparing their effects,
we can see that by the adoption of the tree-structured grammar, full Cocke-Schwartz left-corner
ltering, and full look-ahead constraints, we realize an improvement of some 67% in the average
run-time of our fully-interleaved unication parser, while almost halving the number of chart entries
that are created.

The topic of the next chapter is how the unication portion of our parser works.

121

basic_tree_parse (words):

loop:
if (agenda empty)

if (no more words)
break

else
Add next word

e = remove next entry from agenda

add e to chart.

foreach r in rules-started-by (e.constituent) do:
new-arc = make-arc (e.end, r, traceback = (item))
arcs-add (new-arc)

foreach rule in single-rules-completed-by (e.constituent) do:
new = make-entry (e.start, e.end, rule.LHS,

children = list(list(e)))
agenda-add (new)

foreach arc in arcs-continued-by (e.start, e.constituent) do:
foreach node in arc.tnode.shiftlist

new-arc = make-arc (e.end, node,
traceback = (cons(e, arc.traceback))

arc-add (new-arc)

foreach rule in arc.tnode.reducelist
let new-children = reverse (cons(e, arc.traceback))
new = make-entry (first(new-children).start,

e.end, rule.LHS,
children = list (new-children))

agenda-add (new)

end loop

end Basic_tree_parse

Figure 6.3: The Basic Tree-Structured Grammar Chart Parser

122

Parse (words):
Add words to look-ahead (words)
loop:

if (agenda empty)
if (no more words) break loop
else

Add next word

e = pop next entry off of agenda; add e to chart.

unless (e.end == final-position)
foreach r in rules-started-by (e.constituent) do:

if (lc-of-look-ahead-licenses (r.LHS)
&& lc-node-set-licenses (r, e.start))
new-arc = make-arc (e.end, r, traceback = list(e))
arcs-add (new-arc)

foreach r in single-rules-completed-by (e.constituent) do:
if (look-ahead-licenses (r.LHS) && LC-licenses (r.LHS, e.start))

fs = rule.unify ((e.fs))
if (fs)

new = make-entry (e.start, e.end, r.LHS, fs,
children = list(list(e)))

agenda-add (new)

foreach arc in arcs-continued-by (e.start, e.constituent) do:
foreach node in arc.tnode.shiftlist

if (lc-of-look-ahead-licenses (rule.LHS, e.end)
&& lc-node-set-licenses (arc.tnode, arc.start))
new-arc = make-arc (e.end, node,

traceback = cons(e, arc.traceback))
arc-add (new-arc)

foreach rule in arc.tnode.reducelist
let new-children = reverse (cons(e, arc.traceback))

child-fs = get-FSs-of (new-children)
if (look-ahead-licenses (rule.LHS)

&& LC-licenses (rule.LHS, first(new-children).start))
fs = rule.unify (child-fs)
if (fs)

new = make-entry (first(new-children).start,
e.end, rule.LHS, fs,
children = list (new-children))

agenda-add (new)
end loop

Figure 6.4: Tree-Structured Grammar Chart Parser with constraints and Interleaved Unication

123

124

Chapter 7

Pseudo-Unication: Implementation and
Optimization

“Don’t work harder, work smarter.”

— The Pointy-Haired Boss,
from the comic strip Dilbert.

For our system, we can make an observation about the problem of unication values: for parsing,
we don’t really care about what the value at a subordinate node (such as A in Figure 3.6 of Chapter 3)
because we will only use the top-level unication value of a parse.

With this in mind, it makes perfect sense to use a unication framework which does not bother
calculating values which we will not use anyway. As we noted in Section 3.2, Pseudo-uni-
cation [153] is such a framework. In this chapter, we survey the pseudo-unication framework
which we actually use, and investigate several methods which we used to improve the performance
of the unication system.

We then investigate how to transform a grammar in order to create a shallow unication system
– one which entirely avoids building the sorts of deep unication values which we found to be
so bothersome in Chapter 5. Finally, we investigate techniques to further improve the run-time
performance of the shallow unication system.

125

7.1 Introduction to Pseudo-Unication

The pseudo-unier for our system is a descendant of the one designed by Tomita and Knight [153]
and described in detail in the GENKIT version 3.2 User’s Manual [154, pp. 10–13]. We will describe
the changes to this unier which we found to be useful, but rst we must briey review the syntax
and semantics of the unier.

7.1.1 On Interpreting Pseudo-Unication

First, let us consider the syntax of this unier. We can describe this with a small number of meta-
syntax rules:

A grammar rule has associated with it a list of equations.

An equation can be either a simple equation or a special form.

Ordinary equations are made up of paths and atoms. A path is a list of slots, starting with a
top-level variable.

A top-level variable is either a reference to the grammar node’s value (X0), or one of the
children (X1 X , where X1 refers to the leftmost child, X2 the second from the left, etc.).

The special forms include both ordinary and conditional disjunctions. Each of these offer
a choice over a list of lists-of-equations, with somewhat differing semantics as to how the
individual lists-of-equations are handled (see Section 7.3.1 below).

Values

Unlike full unication, this unier operates on tree structured values. The fundamental data structure
is a labeled tree, where every node in the tree (both internal- and leaf-nodes) has a label with the
exception of the root. The children of an internal node of the tree are labeled, but unordered. The
two values:

(FOO A)
(BAR X)

and (BAR X)
(FOO A)

are considered to be equal. Thus the two are uniable together.

These trees are a generalization of a set of slot-value associations: the value of a slot-value pair
can be another set of slot-value pairs. Slots are then the names of internal nodes of a tree. A path is

126

a sequence of slot names, starting at the (unnamed) root. The trees need not be strictly a collection
of values, or even of any particular depth. For the unication value:

(FOO ((FOO-VALUE A) (SUB-FOO FOOD)))

(BAR X)

(FOO FOO-VALUE) is a path.

Data Disjunctions. In addition to a single value (or entire sub-tree), a slot can also contain a
disjunction over values. For example:

(FOO (*OR* A B C))

Although this example shows a disjunction at the leaves of the tree, disjunctions are also possible
at interior nodes of the tree:

(FOO (*OR* ((FOO-VALUE A) (SUB-FOO FOOD))

((FOO-VALUE B) (SUB-FOO FOOL))

((FOO-VALUE C))

))

(BAR X)

Data value complements. A value can also be a complement over one or more sets of values (or
even sub-trees), for example:

(FOO (*NOT* B C D))

Similar to data disjunctions, a complement is considered to describe an open-ended set, contain-
ing any value except for the ones named.

Top-Level Variables. If we consider the entire environment of values to be a single tree, then
the top-level variables are simply the labels on the rst-level sub trees. We will see below in Sec-
tion 7.1.1 that this is a convenient data representation. Since we could end up with several sets
of values of top-level variables, we can conveniently represent these with a data disjunction at the
top-most level.

127

In the bottom-up pseudo-unier that we use, X1 X are initialized to contain the unication
values associated with the child nodes, and the parent variable X0 is initialized to contain no value.
After the unication equations have been evaluated, the set of values bound to the X0 top-level
variable are retrieved, and associated with the node.

In a top-down pseudo-unier, the parent variable X0 should be initialized with the appropriate
value, and the child nodes should be initialized to be empty. After unication equations have been
evaluated, the resulting values for each of the child variables X1 X should be extracted and
associated with the appropriate child nodes.

Ordinary Equations.

There are two basic types of unication equations:

l-path = value (where value is either a single value or a disjunctive set of values)

l-path = r-path

l-path = value equations. The l-path = value equations are handled in a very straight-forward
way: if the value will unify with the path, the equation succeeds, otherwise it fails. More precisely,
the tree is traversed, one element of l-path at a time, until nal slot has been found. Then the value
stored in this slot is compared to value. If the two values are equal (without regard to ordering), the
unication succeeds; if these values are different, then the unication fails.

l-path = r-path equations. L-Path = r-path equations are handled in a straight-forward way: r-
path is rst traversed to nd the value stored in the nal slot of this path. Then this value is unied
with l-path as above.

Side effects in Ordinary Equations. The evaluation of unication values becomes more inter-
esting when some portion of l-path does not exist. For ordinary unications, indicated with the =
operator as above, if some portion of the path does not exist, it is created in the left-hand-side tree.

There is also a ‘checking’ unication operator, =c, which insists on nding some value: if some
portion of l-path does not exist, this operator simply fails.

Unlike full unication, no side effects can take place in the right-hand-side (r-path) of l-path =
r-path equations. As a result, the two equations

128

(X1 FOO) = (X2 FOO)

and

(X2 FOO) = (X1 FOO)

are not equivalent in this unication system, because they do not produce the same side effects.

Data Disjunctions in Ordinary Equations. When either value or the value stored in the nal
slot of path contains a disjunction over a set of values, both the standard and checking unication
equations perform a set-intersection operation to determine if there are some number of values
which are equal within these two sets. If so, then the slot at the end of path is modied to reect
this set intersection. It is important to note that this modication also happens for the ‘checking’
unication operator, =c.

When the (unnamed) tree of values contains a data disjunction in an interior node, the unier
loops over each sub-tree within the disjunction, recursively attempting to perform the unication
with each in turn. Some of these may succeed, whereas others may fail. In this situation, the failing
sets of sub-trees are removed. In this situation, the over-all unication is considered to fail only if
every sub-tree unication fails.

Finally, note that the top-level tree of values may contain a disjunction over sets of top-level
variables. This situation is perfectly legal, necessary for correct operation, and notably different
than the early version of the pseudo-unier illustrated by Carbonell and Tomita [20, 153].

Data value complements in Ordinary Equations. It is possible for either of value or the value
stored in the nal slot of l-path to contains a complement of one or more sets of values, for example:

(*NOT* B C D)

A complement describes an open-ended set. These unify with single values and disjunctions in
the way one would na̈vely expect; e.g. unifying (*NOT* B C D) with (*OR* A B) is A.

Unifying two *NOT*s together results in a *NOT* of union of the complemented sets. So the
result of unifying together (*NOT* B C D) and (*NOT* A B X) is (*NOT* A B C D X).

129

Lists of Equations

The result of unifying a list of equations is the result of applying each of the equations in order. If
any equation should fail, then the entire list of equations is considered to have failed. Because of
this, lists of equations can be considered conjunctive.

In many situations, notably including disjunctions (below), we must create a copy of the current
environment (i.e. the current values of all top-level variables) every time we start to evaluate a list of
equations, so that if some equation in the list fails we can restore the old values. This is because each
individual unication equation might modify the current values, but we cannot accept a modied
set of values until every unication in the list succeeds.

Disjunctions of Lists of Equations

There are two types of disjunctions over lists of equations: ordinary disjunctions and conditional
disjunctions. The ordinary disjunction has the form:

(*OR* list-of-equations-1 list-of-equations-2 list-of-equations-3 ...)

The result of an ordinary disjunction special form is a data disjunction containing the results of
applying each of the lists of equations in turn to the current values.

In some sense, these can be considered to be simply “syntactic sugar” on the grammar rules
themselves. Any nested list of equations associated with a single rule can be re-written into an
equivalent Disjunctive Normal Form [126, pp. 584–586] — a single top-level *OR* with some
number of subordinate lists of equations (see also [144, sec. 15.4, pp. 461–472]). This can then
be replaced by a number of individual grammar rules, one for each subordinate list of equations,
containing this list, and with the same Context-Free part as the parent rule.

For example, the rule:

130

X <== Y
((*OR*

(((X1 FOO) = A)
((X0 FOO-FEAT) = +))
(((X1 FOO) = *UNDEFINED*)
((X0 FOO-FEAT) = -)))

(*OR*
(((X1 BAR) = A)
((X0 BAR-FEAT) = +))
(((X1 BAR) = *UNDEFINED*)
((X0 BAR-FEAT) = -)))

)

can be expanded into:

X <== Y
((*OR*

(((X1 FOO) = A)
((X0 FOO-FEAT) = +)
((X1 BAR) = A)
((X0 BAR-FEAT) = +))

(((X1 FOO) = A)
((X0 FOO-FEAT) = +)
((X1 BAR) = *UNDEFINED*)
((X0 BAR-FEAT) = -))

(((X1 FOO) = *UNDEFINED*)
((X0 FOO-FEAT) = -)
((X1 BAR) = A)
((X0 BAR-FEAT) = +))

(((X1 FOO) = *UNDEFINED*)
((X0 FOO-FEAT) = -)
((X1 BAR) = *UNDEFINED*)
((X0 BAR-FEAT) = -))

)

and nally expanded into the four rules:

131

X <== Y
(((X1 FOO) = A)
((X0 FOO-FEAT) = +)
((X1 BAR) = A)
((X0 BAR-FEAT) = +))

X <== Y
(((X1 FOO) = A)
((X0 FOO-FEAT) = +)
((X1 BAR) = *UNDEFINED*)
((X0 BAR-FEAT) = -))

X <== Y
(((X1 FOO) = *UNDEFINED*)
((X0 FOO-FEAT) = -)
((X1 BAR) = A)
((X0 BAR-FEAT) = +))

X <== Y
(((X1 FOO) = *UNDEFINED*)
((X0 FOO-FEAT) = -)
((X1 BAR) = *UNDEFINED*)
((X0 BAR-FEAT) = -))

For ordinary disjunctions, such an expansion should result in a weakly-equivalent set of equa-
tions. If each rule in this collection is applied to some set of input unication value, and the output
values are packed together in a disjunction, resulting unication value should be weakly equal to
the result of applying the same input to the original nested list of equations. By weakly equivalent,
we mean that if each are expanded into Disjunctive Normal Form with the removal of any duplicate
terms, the expanded unication values will be equal.

It is important to note that since the expansion into Disjunctive Normal Form results in a num-
ber of clauses exponentially proportional to the number of independent disjunctions in the original
rule [126, pp. 580], such an expansion would create a similarly exponential expansion in the number
of rules.

The reverse of this transformation could be used as a grammar optimization, though we did not
explore this possibility.

Conditional disjunctions The conditional disjunction special form has a similar form:

(*EOR* list-of-equations-1 list-of-equations-2 list-of-equations-3)

132

For ordinary (non-disjunctive) unication values, the conditional disjunctive special form is
evaluated in a manner similar to the ordinary one: each list of equations is evaluated as a group.
Unlike the ordinary disjunction, as soon as one of these lists of equations succeeds, evaluation is
terminated and the side-effects of the successful list-of-equations are preserved. This structure is
commonly called a conditional OR because in an ordinary programming language, such a structure
can be equivalently re-written as [44, sec. 7.6.2, p. 181], [99, sec. 8.7.1, pp. 236–244]:

if list-of-equations-1
else if list-of-equations-2
else if list-of-equations-3

else list-of-equations-N

The GENKIT version 3.2 User’s Manual [154, pp. 10–13], mistakenly describes these as “ex-
clusive ORs”. They are not exclusive, however, since it may be possible for several of the lists of
equations to successfully evaluate, whereas an exclusive disjunction would require that exactly one
of these lists should succeed.

The conditional OR structure is somewhat problematic to apply to unication values which
themselves contain disjunctions. The na̈vely correct behavior for evaluating a conditional OR struc-
ture in the context of a set of unication values containing disjunctions is to expand the disjunctions
to the top-most level (i.e. into disjunctive normal form), and then iterate over the terms in this set,
collecting the results of applying the conditional OR structure to each term in a disjunction. Sec-
tion 7.3.1 below will consider an alternative method for evaluating these structures.

Inter-slot Dependencies Both ordinary and conditional disjunctions can create a situation in
which several slots become semantically dependent on each other. Consider the rules:

((*OR*
(((X1 FOO) = A)
((X1 BAR) = +))
(((X1 FOO) = *UNDEFINED*)
((X1 BAR) = -))
(((X1 FOO) = *DEFINED*)))

)

It is not semantically correct to simply represent the result of this special form by assigning the
value (*OR* + -) to (X1 BAR) because (X1 BAR) only has the value - when (X1 FOO) is
undened.

133

To see this, suppose that we start (X1 FOO) with the value (*OR* A B). After evaluating
the above disjunction, there are two different values for X1:

1. (X1 FOO) = A, (X1 BAR) = +

2. (X1 FOO) = *OR* A B, (X1 BAR) undened.

The same effects which create these inter-slot dependencies within a unication structure also
create inter-variable dependencies. Consider the implications of changing the example above to:

((*OR*
(((X1 FOO) = A)
((X0 BAR) = +))

(((X1 FOO) = *UNDEFINED*)
((X0 BAR) = -))

(((X1 FOO) = *DEFINED*))
))

If we were to evaluate this disjunction in an environment with (X1 FOO) = (*OR* A B)

as above, now (X0 BAR) will depend on and be related to (X1 FOO).

As we mentioned in Section 7.1.1, it is convenient to represent the entire environment of uni-
cation variables as a single tree. Doing so allows us to represent multiple sets of interdependent
sets of variables as a top-level disjunction over trees, each of which contains a single set of variable
bindings.

(N. b.: The tree unier in this system is a direct descendant of the one described by Carbonell
and Tomita [20, 153]. We did not change this particular aspect of the pseudo-unication system,
though it is different from the description given by Carbonell and Tomita; we assume that this
change was done by some prior engineer.)

7.2 Modications to the Pseudo-Unier

In this section, we will highlight the modications which we found to be important to make to
the pseudo-unier. These modications support the optimizations described in Section 7.3 and the
negative restriction and approximate packing described in Section 7.4 below.

134

7.2.1 ‘Gray-Box’ Adaptation

Because we agree with some of the design choices but strongly disagree with others (e.g. LISP
call-outs), we will make no attempt to justify the particular choices of the semantics of the pseudo-
unier other than to note that our grammars were written to use this particular set of semantics. Since
compatibility with earlier systems is a design goal of this system, we attempted to only extend, rather
than modify, the semantics of the pseudo-unier. (In the terminology of Software Engineering, this
is a ‘gray-box wrapping’ extension of the previous version [120, pp. 731–2].)

Our feeling is that a radical change to the semantics of the pseudo-unier (notably in removing
some types of unication equations) would require a large re-engineering effort of existing gram-
mars. While possibly worthy for other reasons, such an effort is orthogonal to the goals of this work.
So the pseudo-unier was predominately extended rather than being drastically reorganized.

7.2.2 Handling of Data Disjunctions

In the previous implementation of the pseudo-unier, disjunctions in the data were ‘unpacked’ –
expanded so that the disjunctions appear only at the top-most level (i.e. disjunctive normal form). A
comment in the code says that it does this so that the unier could be implemented without worrying
about disjunction during unication [155].

Of course, if there is any possibility of a blow-up in the unication space, expanding the values to
disjunctive normal form will insure that such a blow-up will happen. Because of this, we found that
we could save a considerable amount of run-time by examining how all unication values involv-
ing disjunctions were evaluated, and endeavoring to avoid expanding these values into Disjunctive
Normal Form unless there was no other way to correctly evaluate the unication equations.

Section 7.3.1 below discusses an optimization for conditional ORs which avoids data unpacking.
In this section, we see that avoiding unpacking the data disjunctions can give an average speed-up of
a factor of 18 on ambiguous natural data, and that most of this speed-up is due to avoiding disjunctive
blow-ups in several outlier sentences. We also examine this disjunctive blow-up behavior in detail,
and see that simply by avoiding unpacking the data disjunctions we can almost double the number
of consecutive prepositional phrases that an all-values conguration of the parser can handle before
facing a computational blow-up.

135

7.2.3 Explicit No-Value Values

Normally, the absence of a value in a slot is indicated by the absence of the slot. Disjunctions in data
values complicate this somewhat, because we may very well wish to express a choice between a slot
being assigned some value and that slot having no value whatsoever. This is particularly useful for
packing unication values together as part of local ambiguity packing during the parse pass (see
Section 6.5 above), though it can also occur as the result of the evaluation of a disjunction over a
list of equations (see Section 7.1.1 above).

For example, the unication value:

(FOO (*OR* BAR no-value))

describes the situation where either slot FOO holds value BAR or is unassigned.

In order to handle this case smoothly, we included an explicit no-value value. These are treated
exactly as the absence of a value, except that they can be conveniently combined in disjunctions.

7.2.4 Wild-Carded Values

We found it useful in some circumstances to skip over the evaluation of some parts of the unica-
tion equations. The feature-based exibility of the unication system of Rosé and Lavie’s LCFlex
system [125] suggested a technique. Rosé and Lavie introduced a wild-card value. This wild-card
is used to allow certain feature slots to be optional, rather than required parts of the unication in
order to enhance the robustness of their unication grammar.

For our system, we found that the wild-carding mechanism served several different goals equally
well. This mechanism is primarily used to support a form of negative restriction [136, 45, 115]. It
is also used to support the (unsuccessful) approximate packing length limitation described below in
Section 7.5.2.

Implementation. We introduced a wild-card value *WILD* to stand in place of part of an F-
structure. This wild-card has the effect of causing most types of unication equations that reach this
part of the F-structure (either as a value, or as part of a path) to succeed, returning an F-structure
containing the wild-card.

This is best illustrated with an example. Suppose that we have some F-structure including an
element X2, which has a feature slot FOO, and that (X2 FOO) currently has the value *WILD*.

136

Applying the operation (X2 FOO BAR) = BAZ will succeed, leaving the FOO slot of X2 with
WILD. This is because our pseudo-unier is a tree unier [152, 154], and the leaf node *WILD*
successfully unies with any sub-tree giving itself as the result. Graphically, this example appears
thus:

(X2) (X2) (X2)
| | |

(FOO) unify (FOO) ==> (FOO)
| | |

WILD (BAR) *WILD*
|

(BAZ)

There are three exceptions to this behavior. The negative-existential condition will fail if applied
at a leaf node, and path-removal equations and over-write equations (see below) will modify the
WILD at a leaf node.

Continuing our example, the equation:

(X2 FOO) = *UNDEFINED*

Will fail for the above example. Similarly, the equation:

(X2 FOO) = *REMOVE*

will successfully remove the FOO slot from X2, even though it contained a *WILD*.

On the other hand, if that removal equation was a request for the removal of a sub-slot of the
wild-carded slot:

(X2 FOO BAR) = *REMOVE*

It would not change X2, because even though the BAR sub-slot should be removed, we must
continue to “pretend” that other sub-slots of FOO exist. For similar reasons, the equation:

(X2 FOO BAR) = *UNDEFINED*

will succeed.

137

Wild-carding and Restriction. We chose to adopt this particular behavior because the KANT
grammar primarily used by this parser contains many rule sequences which include (and are thus
conditioned on) rules such as:

(X2 obj) = *UNDEFINED*

Rules are written in this way because complex-valued features, such as the obj feature in this
example, are often used to hold both semantic and existential information.

The assignment of a complex value to features such as these cause problems with packing, but
that some value was assigned is also useful information in the grammar. What we wish to do is
remove the problematic cases (i.e. the complex feature assignment), but keep the (easy-to-pack)
existential behavior.

A straight-forward implementation of negative restriction, such as used by Oepen and Car-
roll [115], would be accomplished by simply removing all references to the restricted features from
the unication equations used in the rst-pass grammar. This would have the effect of removing
both the problematic semantic information as well as the benecial existential information.

In order to retain the existential information, we chose to dene the semantics of the wild-card
value such that a *WILD* value will succeed when tested for existence (i.e. unied with *DE-

FINED*), but will fail when tested for non-existence (i.e. unied with *UNDEFINED*). Then
rather than removing all references to features which are assigned complex values (as in straight-
forward negative restriction), we replace the complex assignment with an assignment of *WILD*.

This modication in behavior has an extremely small effect on the performance of our system.
When tested on the Catalyst ambiguity corpus (see Section 5.4), causing a terminal *WILD* value
to fail when tested for non-existence (rather than succeed) reduced the number of nodes created by
only 0.25%. This in turn reduced the number of nodes searched in the second pass by 1.5% for the
all-values post-parse search, and only 0.9% for the single-value search. Differences in the run-times
due to this modication were not signicant.

7.2.5 Complements of Unications

In order to support the conditional OR unwinding optimization described below in Section 7.3.1,
we added logical complements for as many unication operations as possible, including every basic
equation.

138

Ordinary Unication Equations

The right way to consider these are as set-complement operators. Suppose we have a set of unica-
tion values , some operator , and some value . One can think of applying as splitting the
set into two parts, those for which succeeds, and those for which fails.

|(A * V) | not(A * V)|

What we want in a complement operator is exactly the set of all elements of
for which fails.

More concretely, suppose we have some F-structure including an element X, which has a feature
slot FOO, and that (X FOO) currently has the value (*OR* A B C). Applying the operation (X
FOO) = B will result in (X FOO) having only the value B.

Applying the complement operation (X FOO) /= Bwill result in (X FOO) having the value
(*OR* A C) since neither A nor C would have unied with B.

The no-value case is slightly more subtle. If X currently does not have a BAR slot, then applying
the operation (X BAR) = B will result in the (X BAR) slot being created with value B. Because
of this, if instead the complement operation (X BAR) /= B were to be applied, the result should
be a failure (because the uncomplemented operation would have succeeded).

Combining these cases, if X also has a slot BAZ, which currently has the value (*OR* A B C

no-value), applying (X BAZ) = B will result in (X FOO) having only the value B. This is
because the actual result will be the four values (*OR* *FAIL* B *FAIL* B); the failures are
removed, leaving (*OR* B B); nally duplicates are removed resulting in the value B. Similarly,
applying the complement operation (X BAZ) /= B will result in (X BAZ) having the value
(*OR* A C), as above.

Of course, since disjunctions may occur at any level of the tree, if instead of one slot BAZ with
four choices of value we had four choices of values for X, each with a different single value for the
BAZ slot, the result of applying the operators as above would be semantically equivalent.

139

Complements of Disjunctions and Conjunctive Lists

Both ordinary and conditional ORs are complemented according to DeMorgan’s Law[144, pp. 8–
10], [126, p. 46]:

In our pseudo-unication system, a conjunction is simply a list of equations (which are assumed
to be applied in order). So the complement of a disjunction is a list of the complements of each of
the items in the original disjunction. Similarly, the complement of a list of equations is an ordinary
(non-conditional) disjunction of the complements of the equations in the list.

Therefore the complement of a disjunction of sets of lists of equations is a list of the comple-
ments of the lists of equations (which themselves become a disjunction of complemented equations).
For example, the complement of:

((*OR*
(((X1 FOO) = *UNDEFINED*)
((X0 FOO-DEFNED) = *UNDEFINED*))

(((X1 FOO) = BAR)
((X0 FOO-DEFNED) = +)
((X0 FOO-SPECIAL) = +))

(((X1 FOO) = QUUX)
((X0 FOO-DEFNED) = +)
((X0 FOO-SPECIAL) = +))

))

is:

(
(*OR* (((X1 FOO) = *DEFINED*))

(((X0 FOO-DEFNED) = *DEFINED*)))
(*OR* (((X1 FOO) /= BAR))

(((X0 FOO-DEFNED) /= +))
(((X0 FOO-SPECIAL) /= +)))

(*OR* (((X1 FOO) = QUUX))
(((X0 FOO-DEFNED) = +))
(((X0 FOO-SPECIAL) = +)))

)

140

Exceptions

This pseudo-unication system contains some operators for which no complement can be calcu-
lated; notably LISP call-outs. The system simply indicates that it is not possible to complement
these statements. By implication, it is also not possible to nd the complement of a sequence of
statements containing a non-complementable statement, nor is it possible to nd the complement
of a disjunction containing such a sequence of statements. This is of particular importance for the
unwinding of conditional ORs (see Section 7.3.1 below).

7.2.6 Explicit over-write value equation

The pseudo-unier described in the GENKIT version 3.2 User’s Manual [154, pp. 10–13] had a
combination of explicit assignment (i.e. over-write) and LISP call-out function:

(X0 FOO) <= atom

(X0 BAR) <= (LISP-FUNCTION ...)

We found it useful to separate these functionalities by introducing a new := operator, which
performs an explicit over-write function.

path := <atom or path>

In a bottom-up environment, this has exactly the same semantics as the (GENKIT unier) se-
quence:

path = *REMOVE*

path = <atom or path>

As such, this addition is mostly ‘syntactic sugar’, but it did aid the implementation of the com-
piler optimizer slightly.

7.3 Compilation and Optimization of Pseudo-Unication

We can simply interpret the unication statements as-is. However, we are using an implemen-
tation language which allows us to easily create and manipulate executable fragments of code

141

(LISP [143]). Because we can create fragments of code, we can compile the sets of unication
equations into executable functions as part of the preprocessing of the grammar [97, 153, 98]. This
technique is fairly common, appearing in many other systems, including DyPar II–IV [21, 97],
GLR [152, 153], the KANT system [20, pp. 86–88], [110], GLR* [68], LCFlex [125], and the Core
Language Engine [4].

Search type
parse
time

post-parse
search time

Parse + Search
time

Fully-Interleaved
Unication 316.89 n/a 316.89

Interpreted
Unication

Shallow Unication
with all-paths search 267.77 37.76 305.53
Shallow Unication
with single-best search 267.85 25.24 293.09

Fully-Interleaved
Unication 68.35 n/a 68.35

Compiled
Unication

Shallow Unication
with all-paths search 58.90 8.82 67.72
Shallow Unication
with single-best search 58.89 8.45 67.34

Table 7.1: Comparison of directly interpreting unication equations with compiling sets of equa-
tions into LISP. Results are total run time for Interleaved Unication, Shallow Unication plus
All-Paths Post-Parse Search, and Shallow Unication plus Single-best Post-Parse Search, on the
Catalyst ambiguity corpus (see Section 5.4). Variations in lexical look-up times and parse times for
identical parse congurations are due to sampling noise.

Table 7.1 summarizes the run-time performance of our system, comparing programmatically
interpreting the unication equations with translating them into LISP functions which are then com-
piled and loaded into the system.

It is not surprising that it is better to compile the unication equations into a more efcient form.
What is surprising is the magnitude of the performance improvement. In every case, compiling the
unication equations into machine code results in a speed-up of a factor of 4.5.

Clearly treating the unication equations as a “little (programming) language” [13, ch. 9] is
useful. We continued this thought by investigating optimizations of the source language [1, 99]:
prior to compiling the unication equations into some faster-executing form, we attempt to optimize
the equation equations themselves. (This was done for the equations used in the test shown in
Table 7.1.)

The possibilities for optimization are fairly broad. In general, any technique that has been
developed for optimizing code in computer languages (such as loop invariant movement or strength
reduction [1, 99]) may be applicable to unication optimization. (Obviously we do not have loops

142

as such, but it can be useful to move invariants out of disjunctions, which is a very similar problem.)

In the remainder of this section, we discuss several such optimizations in detail.

7.3.1 Unwinding of Conditional ORs

The conditional OR special form of our unier causes special computational problems in the face of
disjunctions in the unication values. Recall from Section 7.1.1 that the na̈ve method for evaluating
conditional ORs involves turning the current values into disjunctive normal form by ‘unwinding’ any
data disjunctions to the top-most level, and then applying the conditional OR to each of these terms
in turn.

There is another option for correctly interpreting the conditional OR structure [99, sec. 8.7.1,
pp. 236–244]. We can re-write the conditional form:

if A else B

using a normal (non-conditional) OR, along with the complement of a term, as:

A or ((not A) and B)

Of course, in order to successfully apply this sort of transformation, we must be able to compute
the complement of the rst term.

This transformation is fairly simple to express in a recursive form for conditional ORs of arbi-
trary length, following the logical form above. The compiler attempts to perform this transforma-
tion. If it is possible to calculate the complement of all but the last of the terms of the conditional
OR (as in Section 7.2.5 above), then the compiler substitutes the structure above to the rst term,
and calls itself recursively for the remainder of the terms.

To see the need for this optimization, we ran two simple experiments.

The results shown in Table 7.2 show the effectiveness of the Conditional OR Unwinding op-
timization on natural data. It is of particular note that 19 of the test sentences failed to parse by
“timing out” — requiring more than 10 CPU-seconds of run-time to parse. (In fact, the failure of
the rst of these sentences in the prior parser prompted this entire investigation.)

Using Data Disjunction Unpacking to evaluate conditional ORs still results in a parser that is
an average of 12 times slower than one using Conditional OR Unwinding for the fully interleaved
parse. For the fully-interleaved conditions of this comparison, 190 CPU-seconds of this slowness is

143

Search type
Number of

Sents Parsed
Parse
Time

Search
Time

Total
time

Fully-Interleaved
Unication 1404 849.89 n/a 849.89

Data Disjunction
Unpacking

Shallow Unication
with all-paths search 1408 170.91 442.47 613.38
Shallow Unication

with single-best search 1423 169.82 39.31 209.13
Fully-Interleaved

Unication 1423 68.35 n/a 68.35
EOR

Unwinding
Shallow Unication
with all-paths search 1423 58.90 8.82 67.72
Shallow Unication
with single-best search 1423 58.89 8.45 67.34

Table 7.2: Comparison of unication data disjunction unpacking with unwinding conditional ORs in
the grammar preprocessing. Results are total run time for Interleaved Unication, Shallow Unica-
tion plus All-Paths Post-Parse Search, and Shallow Unication plus Single-best Post-Parse Search,
on the Catalyst ambiguity corpus (see Section 5.4). All sentences were run with a 10-CPU-second
time-out.

due to the 19 outlier sentences that time-out before successfully parsing. However, even neglecting
the sentences which actually time out, Data Disjunction Unpacking is still over 9 times slower than
Conditional OR Unwinding.

From these results it is clear that we must avoid unpacking disjunctions in the data. The only
conguration in which Data Disjunction Unpacking is competitive is the shallow rst-pass parse
followed by single-best unication value search conguration. And this case is a red herring, be-
cause Conditional OR unwinding was applied to the shallow rst-pass unication equations, and
the single-best search avoids creating the data disjunctions which must be unpacked.

To see what is happening in these outliers, we ran a simple experiment using the PP-attachment
case (see Section 7.4.3 below).

Figure 7.1 demonstrates why conditional OR unwinding is superior to data disjunction unpack-
ing of the unication values. For this input sentence, the data disjunction unpacking technique
considerably extends the point-of-failure – Using Data Disjunction Unpacking we were unable to
process 7 PPs due to running out of memory after several minutes of run-time. Using conditional
OR unwinding extends the failure point out to 11 PPs, with 10 PPs taking 6.581 CPU-seconds.

Figure 7.2 demonstrates why we see a run-time blow-up much earlier when using Data Disjunc-
tion Unpacking than when using the conditional OR unpacking technique: unpacking the data (even
when limited to only the slots used in the body of the conditional OR) causes the unication system
to create much larger unication structures, which in turn cause the system to make many, many

144

0

0.5

1

1.5

2

0 5 10 15 20 25 30

Ru
n-

tim
e

(C
PU

 s
ec

s)
 --

 F
ul

ly-
in

te
rle

av
ed

 u
ni

fic
at

io
n,

 p
ar

se
 p

as
s

on
ly

Number of PPs

Fully-interleaved Unification
Data unpacking
EOR unwinding

Figure 7.1: Graph of the number of prepositional phrases vs. the net run-time (in CPU seconds)
for a parse using Fully-interleaved Unication, comparing unication data disjunction unpacking to
unwinding conditional ORs in the grammar preprocessing.

more calls to the low-level unication routines.

7.3.2 Disjunction Flattening

The problem with the simple recursive implementation of Conditional OR Unwinding of Sec-
tion 7.3.1 is that it leaves a piece of sub-optimal structure. The ordinary disjunctions generated
by the recursive application of the conditional OR unwinder are right-trees such as:

A or (B or (C or (D or ...)))

In the prex notation of the unication system, this is expressed as:

145

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25 30

Nu
m

be
r o

f c
al

ls
to

 s
et

va
lu

e

Number of PPs

Fully-interleaved Unification
Data unpacking
EOR unwinding

Figure 7.2: Graph of number of prepositional phrases vs. the number of calls to the setvalue
function for a parse using Fully-interleaved Unication, comparing unication data disjunction un-
packing to unwinding the conditional ORs.

(*OR* A
(*OR* B

(*OR* C
(*OR* D

...))))

Because the compiler is still relatively unsophisticated, and introduces a new unication value
result context for every equation disjunction (as well as a new value context for every term of the
disjunction), we found that we could eliminate some needless duplication of effort by attening out
these OR structures. Continuing our example above, the result of this attening would be:

(*OR* A
B
C
D
...)

146

7.3.3 Multiple-Value Strength Reduction

Our initial effort at nal testing of the system using independent test data revealed a source of blow-
up in the unication space not due to structural ambiguity. In the test, two sentences exhibited
unusually bad run-time behavior. The worst exhibiting this behavior was:

The possible sources of positive voltage on connector

<code>J1</code> are contacts <code>J1</code>, <code>J4</code>,

<code>J5</code>, <code>J6</code>, <code>J10</code>,

<code>J11</code>, <code>J12</code>, <code>J13</code>,

<code>J14</code>, <code>J15</code>, <code>J16</code>,

<code>J17</code>, and <code>J19</code>.

Both of these outlier sentences exercise a particular feature of the pseudo-unication system:
multiple value push. The unication system allows one to specify that a slot can take on multiple
values. For example, consider the rules:

(<np> <== (<np&> <comma?-coord-conj> <np>)
(...
(x0 = x1)
((x0 conj) = x2)
((x0 member) > x3)))

(<np&> <== (<np&> *comma* <np>)
(...
(x0 = x1)
((x0 member) > x3)))

(<np&> <== (<np>)
(...
(x0 member) > x1))

where the <comma?-coord-conj> rule species an optional comma followed by one of several
conjunctions such as and or or.

These rules specify that the member slot of the head will take the value of the last child (the
<np>) simultaneously with any previous value it might have. These values are not unied together,
but instead are stored in this slot together as an unordered set.

The original intent of the previous authors of this unication system was that when a list such
as:

147

foo, bar, and baz

the unier should create a structure of the form:

(member (*MULTIPLE* ((ROOT "foo") ...)
((ROOT "bar") ...)
((ROOT "baz") ...)))

These multiple-value sets cause problems because they interact poorly with disjunctions in the
current unier. Suppose that there is rule in the grammar which is superior to the above <np>

rule, and that this superior rule checks some element in the member slot. To correctly evaluate this
check, the unication system will have to check that the equation is true for each of the multiple
values.

Recall that for rule disjunctions (*OR* or *EOR*), the unication system could produce a
different value for each clause of the disjunction. If, in this superior rule, the checking equation is
contained within a rule disjunction, we could end up with a data value such as:

(member (*OR* (*MULTIPLE* (...) (...))
(*MULTIPLE* (...) (...))
...

In the actual grammar rules, rather than having a rule production which is a parent of the <np>
rule, the above rules themselves contain disjunctions. This interaction between rule disjunctions
and multiple values causes an explosion of nested (*OR* (*MULTIPLE* ...)) structures. So
for a three element list such as:

foo, bar, and baz

the unier will create a structure of the form:

(member (*OR* (*MULTIPLE* (...) (...))
(*MULTIPLE* (...) (...))))

For a four element list (“foo, bar, baz, and foob”), the structure will have an additional level:

148

(member (*OR* (*MULTIPLE* (*OR* (*MULTIPLE* (...) (...))
(*MULTIPLE* (...) (...))

(*OR* (*MULTIPLE* (...) (...))
(*MULTIPLE* (...) (...))

(*MULTIPLE* (*OR* (*MULTIPLE* (...) (...))
(*MULTIPLE* (...) (...))

(*OR* (*MULTIPLE* (...) (...))
(*MULTIPLE* (...) (...))))))))))

For every additional item in the list, and additional level of tree is created. The predictable result
is an exponential explosion in the unication space.

Initial Solution

In order to control blow-ups of unication values of this sort, we investigated changing the repre-
sentation of multiple-value unication values.

Rather than represent the multiple values as composite entry using *MULTIPLE*, we changed
the representation to be a linked-list of unication structures. We created a PREVIOUS slot, and
used the unication optimizer to replace all calls of the form:

((x0 SLOT) > xn)

With the sequence of unication equations:

(*or* (((x0 SLOT) = *DEFINED*)

((x0 previous-SLOT) = (x0 SLOT))

((x0 SLOT) = *REMOVE*)

((x0 SLOT previous) = (x0 previous-SLOT))

((x0 previous-SLOT) = *REMOVE*))

(((x0 SLOT) = *UNDEFINED*)))

((x0 SLOT) = xn)

(where SLOT refers to some slot name, and xn refers to some top-level variable name.)

The effect of this new representation is that the for the initial assignment of a value to some slot,
it is simply assigned. However for each additional assignment, the previous value is saved under the
PREVIOUS slot.

149

This change in representation cooperates much more with the handling of disjunctions. A test
run using this change in representation reduced the run-time of these two outliers from in the 2–6
second range to under 0.2 seconds. Further, with this modication to the grammar, we were able to
parse the same basic sentence with triple the number of conjoined terms in only slightly more than
triple the total run-time.

7.4 Shallow Pseudo-Unication as a First-Pass Filter

Recall from the system overview (Chapter 5) that for the rst-pass parse, we do not need a complete
or even exact unication value, but instead only want to perform enough unication to provide an
effective lter for the bottom-up parser. In Chapter 8, we will discuss how we calculate an exact,
preferred unication value from this over-covering parse forest.

Also, we must avoid the problems of unication-space “blow-up” noted in Chapter 3. When a
complex-valued unication grammar creates a unique representation for each distinct parse tree, a
system using this grammar which calculates all possible unication values for each input will suffer
an exponential blow-up in run-time when given a highly structurally ambiguous input.

We wanted a unication system which avoids blowing up because of having a unique represen-
tation for every distinct parse tree. The most straight-forward way to avoid the blow-up problem is
to make a grammar in which the unication values which can be efciently packed together.

In order to full this, we adopted a variant of the restriction technique proposed by Shieber [136]
and Harrison and Ellison [45]: we took a subset of the full unication grammar. That is, we used
a number of techniques to transform the unication equations of the full grammar into a shallow
grammar: a unication grammar which uses only simple values or disjunctive sets of simple values.

We will next discuss our variant of negative restriction and how this is used to produce the
shallow unication grammar. After this we will describe a set of non-exact optimizations that are
applied to the shallow unication grammar. We then discuss the approximate packing technique
which allows us to ensure that unication values will always pack efciently. Finally, we examine
the effectiveness of this approach experimentally.

7.4.1 Wild-carding deep structure assignments

The key to developing a collection of grammar rules which allow only for shallow unication is to
re-write the grammar rules which either create or use deep unication structures so that they do not

150

do so.

We apply ve types of modications to the original (possibly deep) unication equations in
order to form the shallow equations:

For unication of one of the parent’s slots with an entire child structure, the child structure is
replaced by a wild-card. This is the primary way in which we eliminate deep structures — by
failing to create them.

For example, the equation:

(X0 OBJ) = X2

would be replaced by the equation:

(X0 OBJ) = *WILD*

After this replacement, any long-path unications with this particular OBJ slot will succeed
because of the semantics of unifying with a wild-card value.

Long unications or assignments to the parent structure (X0) are shortened with a wild-card
assignment. This is because the deep structure under test will not exist.

For example,

(X0 FOO BAR) = BAZ

becomes

(X0 FOO) = *WILD*

Checking unication of any long left-hand-side path is removed.

This is a special optimization on the above case. We could just shorten a checking unica-
tion as we do above for normal unication and explicit assignment. But unlike those two
equations, checking unications are dened to have no side-effects. So rather than include
an equation which will always succeed, we will simply remove it as redundant (but see Sec-
tion 7.4.2 on equation removal below).

Unication with a long right-hand-side path is wild-carded.

Suppose we have the equation:

151

(X0 FOO) = (X2 BAR BAZ)

Because the right-hand-side of this equation is a reference to a long path, we can safely
assume that the primary slot BAR of this path will already have been wild-carded (as above).
Therefore we know that the value we will retrieve when this is evaluated will always be
WILD. Because of this, we can simply save the work of the look-up, and substitute in the
wild-card as a compile-time constant:

(X0 FOO) = *WILD*

All multiple-value pushes

For the grammars which we have examined, multiple-value push equations such as:

(X0 MOD) > X1

are often structure-building, and in any case create the sorts of distinct values which cause us
packing problems and thus lead to unication-space blow-ups.

We replace all such push equations with a wild-card unication against the rst two elements
of the path:

(X0 MOD) = *WILD*

As we noted in Section 4.3.1, we do not remove grammatical head assignments such as:

X0 = X1

since these do not induce unication-space blow-ups by themselves, and wild-carding them would
render the unications essentially moot as a whole — essentially relaxing the grammar to simply its
context-free spine as a result.

7.4.2 Pseudo-Optimizations for Shallow Unication

We could simply apply the deep-structure-removal transformation described above and compile the
result, but we can be slightly more clever than this. Because we know that we will not be using
the unication values from the shallow unication grammar beyond the rst pass, but will instead
recalculate our nal unication value from scratch, we can safely make further modications to
the shallow unication grammar. We will now examine a number of optimizations and pseudo-
optimizations: modications to the grammar which improve the run-time behavior of the system
but change the resulting unication values.

152

Useless Unication Killing

By nding information about the way unications are used in the entire grammar, we can identify
some special equations for removal or other optimization. In order to accomplish this, we perform
two passes on the grammar.

Information Collection Before we can optimize the unication equations, we rst collect in-
formation about them. We are primarily interested in identifying the range of values which each
unication slot can potentially take.

Recall from Section 7.1.1 that there are two fundamental types of unication equations:

(path feature) = value

We use these to calculate feature-value pairs. If, for instance, we see an equation such as (X1
FOO) = +, we know that + is one of the possible values which slot FOO could take.

(l-path feature1) = (r-path feature2)

We refer to these as feature-feature unications. Should we encounter an equation (X0

BAR) = (X1 FOO), we know that slot BAR could take on any value which slot FOO could
take, and vice-versa.

In the rst pass, we apply the conditional-OR optimization described above in Section 7.3.1,
then prelter the sets of unication equations to remove deep-structure references as above, and
nally walk through the resulting shallow unication equations, collecting up the ranges of values,
and the feature-feature assignments which are encountered.

After we have collected up this information for the entire grammar, we take the symmetric
transitive closure of the union of unication slot ranges according to the feature-feature relation. So
for example if we had encountered the unication equations:

(X1 FOO) = +
(X0 BAR) = (X1 FOO)
(X2 BAR) = -

We could conclude that both of the slots FOO and BAR can take the values: +, +, undened .

153

Useless Unication Removal Once this information has been collected, the transformed, ltered
grammar is again traversed in order to actually produce the nal compiled unication values.

Any unication equations which involve a slot which is only unied with the value *WILD* or
is removed (i.e. set to undened) is simply deleted from the shallow-unication grammar, because
we can conclude that this unication slot is never usefully tested within the connes of the grammar.
(See Section 7.4.2 on equation removal below).

Similarly, for any equation which involves a slot which is only ever unied with the value
WILD, or tested for existence, non-existence, or is removed (set to undened), the assignment
to *WILD* can be changed to any single (globally consistent) value. This optimization is of value
because we know that this slot takes only two values, and thus could potentially be compiled into a
very space-efcient form.

OR Strength Reduction

We identied several optimizations to perform on disjunctions of unication equations.

Empty disjunction removed. Disjunctions (both normal *OR* and conditional *EOR*) that con-
tain no statements are simply removed. (But see Section 7.4.2 below.)

Single-term disjunction reduced to single term. For disjunctions with only a single list of state-
ments, that list of statements is substituted in place of the disjunction. For example, the disjunction:

... ((*OR* (statement1 statement2))) ...

becomes the sequence:

... statement1 statement2 ...

Wild-carded parallel path removal in disjunctions. When the wild-card removal described in
Section 7.4.1 is applied to the KANT grammar [55], an interesting structure is generated. For
example:

154

((*OR*
(((X0 FOO) = BAR))
(((X0 FOO) = QUUX))
(((X0 FOO) = *WILD*))))

The interesting feature of this structure is that it contains a disjunction over a set of single
statements, all of which contain the same left-hand-side, and one of which contains an assignment
to *WILD*.

Since an assignment to *WILD* will successfully unify with anything, we can safely replace
this entire disjunction with the single statement:

((X0 FOO) = *WILD*)

The exception to this is that if one of the statements contains the non-existential unication
UNDEFINED, it cannot be removed. So the structure:

((*OR*
(((X0 FOO) = *UNDEFINED*))
(((X0 FOO) = BAR))
(((X0 FOO) = QUUX))
(((X0 FOO) = *WILD*))))

could only be optimized into:

((*OR*
(((X0 FOO) = *UNDEFINED*))
(((X0 FOO) = *WILD*))))

This optimization is actually performed in two steps: rst all statements other than the one
containing the *WILD* (and any containing *UNDEFINED*) are removed, and then the single-
term disjunction optimization (above) applies.

Unication Equation Removal

Above we have seen two different ways in which unication equations can be removed. When the
equations in question are part of a simple top-level list, this removal can simply proceed.

The conditional-ORs optimization (described in Section 7.3.1) creates both a problem and an
opportunity for further optimization.

155

Complements of empty statements An empty statement — the result of removing one or more
equations — can be considered to be a statement which always succeeds with no side-effects. Seen
in this light, the converse of an empty statement is obviously an unconditional failure.

not(*SUCCEED*) --> *FAIL*

not(*FAIL*) --> *SUCCEED*

This is ne as-is, but we must then correctly handle this unconditional failure statement.

Failures in lists of equations Taking the complement of a disjunction containing a removed set
of equations will give us a conjunctive list of equations including a failure statement (thanks to
DeMorgan’s Law). Since a list of equations will only produce side-effects if the equations in that
list all succeed, we can replace such a list with a single failure:

(... *FAIL* ...)

becomes simply:

FAIL

Ordinary OR optimization Just as we can delete empty (or unconditional success) statements
from a conjunctive list of equations, we can also remove unconditional failure statements from a
disjunction:

(*OR* A B *FAIL* C)

becomes:

(*OR* A B C)

If we were creating an optimizing compiler for a programming language which was free of side-
effects, we could also simply substitute a succeed statement in place of a disjunction containing a
succeed statement. Unication (even pseudo-unication) is not this simple: because statements can
have side-effects, we must properly evaluate the terms in a disjunction.

On the other hand, accounting for these same side-effects causes us to keep the side-effect-free
success statements in a disjunction (or at least keep one of them). This is because these success

156

statements have the effect of allowing the disjunction to succeed without changing the unication
environment. For example, the disjunction:

(*OR* A B *SUCCEED* C ...)

becomes:

(*OR* A B C ... (do nothing))

Conditional OR optimization Like the ordinary disjunction, we can simply remove uncondi-
tional failures from a conditional-OR:

(*EOR* A B *FAIL* C)

becomes:

(*EOR* A B C)

Because of the conditional nature of a conditional-OR, there is an additional optimization which
can be performed for unconditional success statements. Any success causes the conditional-OR to
“short circuit” and stop evaluating its terms. Thus the unconditional success statement will always
cause the conditional-OR to “short-circuit” when it is evaluated; any disjunctive clauses after this
unconditional success will always be ignored. So these “dead” clauses can be deleted:

(*EOR* A B *SUCCEED* C ...)

becomes:

(*EOR* A B *SUCCEED*)

Approximated Unication Packing after Unication Function Evaluation

In Section 4.3.1, we discussed a method to approximately pack unication data disjunctions by
ignoring inter-slot dependencies and pushing the disjunctions down to the leaf level of the unication
value tree. This technique is helpful for assembling a single unication value from nodes which are
being packed together in the parser as part of the local ambiguity packing.

157

Because both ordinary- and conditional-OR statements can cause a proliferation of disjoined
unication values, we found that it was also helpful to apply this approximate packing technique to
the nal results of applying the shallow unication equations of a grammar rule to its children.

We also investigated adding this approximate re-packing everywhere, but this did not help —
see Section 7.5.1 below.

Removal of the Implicit Interdependency of Top-Level Unication Variables

As we discussed in Section 7.1.1 above, an interdependency of the individual top-level variable
values on each other can develop in the exact unication system.

We also found that we could ignore this interdependency at the top-most level in the rst-pass.
This is useful because there are many grammar rules which contain only a single list of a very small
number of unication equations. An example of such a rule is one of the rules for handling noun
phrases with number words:

(<NP> <==> (<Num> <N>)
(((x2 numword) =c +)
(x0 = x2)
((x0 card) = x1)))

If we just assume that there are no subtle interdependencies amongst the top-level unication
variables, then we can simply store the values of these top-level variables in e.g. LISP variables. By
doing this, many simple equations become very simple indeed; for example, the lexical-head setting
rule:

(X0 = X1)

can be compiled down to the LISP statement:

(setq X0 X1)

which in turn will be compiled down into very simple machine code: a single pointer assignment.

This represents much less work than the exact unier perform, since the exact unier must
iterate over all sets of trees representing associated variables. Even when there is only one set of
values, executing (X0 = X1) involves at least two, one-link tree traversals and a CONS or two.

158

7.4.3 Effectiveness of Shallow Approximate Unication

We have examined several ways to ‘cheat’ in order to reduce the work of the rst-pass unica-
tion system while attempting to remain close to level of pruning which the full (i.e. non-shallow)
unication equations give us.

We will use three different measures to gauge the effectiveness of these techniques. Of course
the primary criteria is the total amount of time spent parsing and searching the sentences. Any
technique which saves some time in the rst-pass parse, but which expands the size and structure
of the parse forest in such a way that the post-parse search must spend drastically larger amounts of
time searching for a result is not a net win, and thus is not preferable.

Minimizing over-all run-time also depends on the second pass search being fast (as well as
effective). We will examine how to perform this search in considerable detail in Section 8; for this
chapter we will simply take the best single-value and all-values searches as constants, and examine
how to best prepare a parse forest for them.

If a rst-pass unication does not overly slow the second-pass search, then we can consider two
other criteria: the amount of work which is done by the rst-pass unication system, and the size of
the resulting parse forests. Our ideals are for the amount of work which goes into the unication to
be low, and the size of the parse forests to be barely larger than those produced using the full (i.e.
not shallow) interleaved unication.

Size of parse forests

There are actually two different ways we can measure the size of a parse forest: we can measure the
total number of nodes used to represent the forest, and we can calculate the total number of parse
trees represented by the forest.

The total number of nodes used to represent the forest tends to under-represent the amount of
work which the post-parse search will need to perform. Although the all-values post-parse search
performs a simple depth-rst traversal, and thus visits every interior node twice (once while de-
scending, once while ascending), the amount of unication work performed is not linear in the
number of nodes visited.

(As we noted in Section 2.1.5, if the amount of work was always linear, or even polynomially
proportional, to the number of nodes in a packed parse forest, we would have a constructive proof
that . Alas, while our search techniques are effective, they are not that effective.)

For the single-value search, in order to eliminate an interior node from the search, the entire sub-

159

tree represented by this node must be searched: every possible combination of unication values
from all of the children must be considered before the node can be judged to be hopeless and
permanently removed from the search.

On the other hand, because both searches calculate and re-use partial values, neither has to
attempt to unify every single parse tree from scratch. So the number of trees represented by the
parse forest over-represents the amount of work which the search will need to perform.

We will cautiously use the total number of nodes measure with these considerations rmly in
mind.

Articial Data We will rst examine an articial example which was constructed to force a
prepositional-phrase attachment ambiguity. The following is a close variant of an example used
by Moore and Alshawi [95], as well as Oepen and Carroll [115].

Grease flows through the bearing seal (in the engine)*.

For this sentence, we examined the relationship between one of several measures of parser
efciency and the number of repetitions of the phrase “in the engine”, contrasting Full interleaved
Unication, Shallow Unication, and strictly Context-Free parsing.

Figure 7.3 compares the number of prepositional phrases in the input against the size of the
parse forest which was created in the process of parsing, for each of Full Interleaved Unication,
Shallow Interleaved Unication, and Context-free (i.e. no unication).

For this particular family of sentences, parsed using the KANT grammar, full interleaved uni-
cation parsing and shallow unication produce the same sized parse trees up to a limit of ten PPs.
We were only able to measure full interleaved unication for up to ten PPs, whereas we were able to
measure shallow unication and strict context-free parsing well beyond the limit of thirty displayed
in this graph. The reason for this is a blow-up in overall run-time, which we will examine below in
Section 7.4.3.

The unltered context-free grammar produces an increase in the size of parse forest which in-
creases very slightly with the number of prepositional phrases in the sentence. This increase is
due to an ambiguity in the base sentence (without any additional prepositional phrases) which is
prevented from occurring by the ltering action of both types of unication.

Real Data We can also make these same comparisons on real data. For this we chose the Catalyst
Ambiguity corpus (described in Section 5.4). Briey, these are 1447 natural sentences from heavy

160

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25 30

Nu
m

be
r o

f n
od

es
 in

 p
ac

ke
d

pa
rs

e
fo

re
st

Number of PPs

Legend:
Fully-interleaved Unification
Shallow Interleaved Unification
Context-Free (no unification)

Figure 7.3: Graph of the number of prepositional phrases vs. the number of nodes created in the
parse tree: Full Interleaved Unication, Shallow Interleaved Unication, and Context-free (i.e. no
unication).

equipment manuals; these sentences were chosen because each has some form of ambiguity.

Table 7.3 compares the total number of nodes created in running the Catalyst ambiguity corpus
for full interleaved unication parsing, with the parse passes of both shallow unication parsing and
context-free parsing (without any unication).

This table shows two very interesting things:

Full interleaved unication prevents the creation of about half of the nodes which would be
created according to the context-free backbone of this grammar.

Shallow unication is almost as good at ltering as full interleaved unication, allowing only
a small number of nodes to be created which full interleaved unication would have ltered
out.

Figure 7.4 shows a scatter-graph of the number of nodes created in the parse forest for each
sentence in our test-set. This graph compares full interleaved unication with both shallow unica-
tion and a context-free (i.e. no unication) parse. We can see two interesting things in this graph.
First, full interleaved unication substantially prunes the parse for virtually every test sentence. Sec-

161

Search type
total num.

nodes
percentage compared

to Interleaved U.
Interleaved Unication 466,945
Shallow Unication 467,919 100.2%
Context-Free (No Unication) 906,573 194.0%

Table 7.3: Comparison of number of nodes created for Interleaved Unication, Shallow Unication
(parse only), and Context-Free (no unication; parse only), on the Catalyst Ambiguity corpus (see
Section 5.4).

ond, shallow interleaved unication is doing almost as good a job of pruning as fully interleaved
unication. (These per-sentence results serve to conrm the over-all results shown in Table 7.3.)

Unication effort

The size of the parse forests is a rather remote measure: we are more interested in measuring (and
reducing) the amount of work which the system performs more directly.

We found that a good way measure the total amount of effort required to complete the unication
on an input was to measure the number of calls to a low-level routine in the unier. The routine we
chose to measure is called setvalue. This function takes an input tree, an operation to apply to
the tree, and a value (possibly expressed as a path of slots) to use with that operation, and returns
a tree which is the result of that operation. setvalue is implemented recursively, so that if the
value is a path (rather than an end-value), setvalue will search the tree for the rst slot element
specied in the value, and if this is found recursively call itself on the sub-tree and the remainder of
the value.

We estimate the total amount of unication effort by counting the number of times setvalue
has been called. In general, the fewer number of times that setvalue was called, the lower the
amount of unication work, and thus the faster the parse will run.

Articial Data Again we will rst consider results obtained from our articial ambiguity case.
Here we only consider Full and Shallow interleaved unication, since Context-Free parsing does
not make any use of unication, and thus does not make use of this function.

Figure 7.5 begins to demonstrate why there is a problem with full interleaved unication. For
this input sentence, full interleaved unication suffers from a steep increase in the number of calls
to setvalue as we approach ten repetitions of the PP, but shallow unication does not suffer from
this problem.

162

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

no

de
s

in
 p

ar
se

 tr
ee

 -
te

st
 c

on
di

tio
n

ac
co

rd
in

g
to

 le
ge

nd

nodes in parse tree - Full Interleaved Unification

Legend:
Shallow Unification
Context-free (no unification)
line of equality

Figure 7.4: Per-datum scatter-graph of number of nodes created during parse: Shallow Interleaved
Unication vs. Full Interleaved Unication, and Context-free (i.e. no unication) vs. Full Inter-
leaved Unication.

Real Data We have seen how the shallow unication technique does not blow up for a particularly
bad case, but we might ask how this technique performs on real inputs.

Table 7.4 lists the total amount of unication work performed for processing the Catalyst am-
biguity corpus. These results are encouraging, because the shallow unication performs only two-
thirds of the amount of unication work that full interleaved unication requires, while pruning
almost as effectively (as shown in Figure 7.4)

Figure 7.6 shows a scatter-graph of the number of calls to setvalue, comparing the full
interleaved unication parse technique to the parse portion of a shallow interleaved parse. This
graph shows that by this measure, the shallow unication technique saves a substantial amount of
unication effort in the parse pass.

163

0

50000

100000

150000

200000

250000

0 5 10 15 20 25 30

Nu
m

be
r o

f c
al

ls
to

 s
et

va
lu

e

Number of PPs

Legend:
Fully-interleaved Unification
Shallow Interleaved Unification

Figure 7.5: Graph of number of prepositional phrases vs. the number of calls to the setvalue
function for Full Interleaved Unication and Shallow Interleaved Unication.

Search type
Total calls to setvalue

in rst pass
percentage compared

to Interleaved U.
Full Interleaved Unication 8,150,477
Shallow Unication 5,346,790 65.6%
Context-Free (No Unication) n/a 0.0%

Table 7.4: Comparison of number of calls to setvalue for Interleaved Unication, Shallow Uni-
cation (parse only), and Context-Free (no unication; parse only), on the Catalyst ambiguity cor-
pus(see Section 5.4).

164

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

ca

lls
 to

 s
et

va
lu

e
- S

ha
llo

w
In

te
rle

av
ed

 U
ni

fic
at

io
n

(p
ar

se
 p

as
s

on
ly)

calls to setvalue - Full Interleaved Unification

Trendline equation:
1.3416*(x**0.9185)

Figure 7.6: Per-datum scatter-graph of number of calls to the setvalue function: Shallow In-
terleaved Unication (parse-pass only) vs. Full Interleaved Unication. The trend line,

, ts with an condence of 0.95.

165

Net Run-time

The measures which we have discussed above are ne and useful, but our principle goal is to reduce
the amount of time required to fully process the data. In order to improve in this way, we must also
measure it directly.

0

0.5

1

1.5

2

0 5 10 15 20 25 30

Ru
n-

tim
e

(C
PU

 s
ec

s)
 --

 p
ar

se
 p

as
s

on
ly

Number of PPs

Legend:
Fully-interleaved Unification
Shallow Interleaved Unification
Context-Free (no unification)

Figure 7.7: Graph of the number of prepositional phrases vs. the net run-time (in CPU seconds) of
the parse pass only, comparing Full Interleaved Unication, Shallow Interleaved Unication, and
Context-free (i.e. no unication).

Articial Data In Figures 7.7 and 7.8, we can see one way in which problems develop because
of ambiguity. The run-time for all parsing variations starts under 55 CPU-milliseconds for no ad-
ditional PPs, and has only risen to 100 milliseconds for six PPs. After this point, full interleaved
unication suffers from a sharp increase in run-time, reaching 1.7 seconds (1700 milliseconds) for
9 PPs and 6.6 seconds for 10 PPs.

In contrast, neither shallow interleaved parsing nor strictly context-free parsing suffer from this
blow-up in run-time for the parse pass – context-free parsing requires only 0.74 seconds of run-time
for the thirty PP case, and shallow interleaved parsing requires 1.7 seconds.

166

0.01

0.1

1

10

0 5 10 15 20 25 30

Ru
n-

tim
e

(C
PU

 s
ec

s)
 --

 p
ar

se
 p

as
s

on
ly

Number of PPs

Legend:
Fully-interleaved Unification
Shallow Interleaved Unification
Context-Free (no unification)

Figure 7.8: Graph of the number of prepositional phrases vs. the net run-time: same data as Fig-
ure 7.7, but with run-time plotted on a logarithmic scale.

Real Data After considering an articial worst-case, we must consider real (i.e. natural, rather
than created) inputs.

Table 7.5 compares the total run-times for three equivalent cases: full interleaved unication,
shallow unication parse with a post-parse search for all possible F-structures, and context-free
parse with an all-values post-parse search. For these data, the average run-times of full interleaved
unication and shallow unication with the post-parse search are approximately equivalent, but
starting with a strictly context-free parse is substantially slower than either interleaved unication
approach.

Figure 7.9 shows a per-sentence scatter-graph of the CPU time required to parse (but not search),
comparing full interleaved unication with shallow unication. This graph shows that compared to
fully interleaved unication, the shallow unication technique usually saves around 23% ()
of the over-all run-time of the parse pass. (Table 7.5 shows that the average savings is 16% of the
over-all run-time).

167

Search type
parse time

(CPU secs.)
post-search

time
Total
time

Full Interleaved Unication 68.35 n/a 68.35
Shallow Unication
with all-paths search 58.90 8.82 67.72
Context-Free (No Unication)

with all-paths search 87.40 18.99 106.39

Table 7.5: Comparison of parse times for Interleaved Unication versus Shallow Unication plus
All-Paths Post-Parse Search, on the Catalyst ambiguity corpus (see Section 5.4). The 1% difference
in total run-time is not considered signicant.

Conclusions

From these results, we can conclude that the shallow unication technique achieves the goal we
have set for it: this technique avoids the unication blow-up problems of full interleaved unication
for our most common case of ambiguity, while substantially preserving the pruning effect of using
full interleaved unication. We can also see that this technique does not substantially increase the
run-time cost of the parse phase of processing — in fact, it saves a bit of parse-pass run time. Since
this technique is saving time by doing less actual work, we will also have to efciently complete the
work of nding a parse.

But before we move on to see how we will attack this latter problem in the next chapter, we
will briey review two potential optimizations to shallow unication which did not turn out to be
fruitful.

168

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

CP
U

Ti
m

e
(s

ec
s)

 -
Sh

al
lo

w
In

te
rle

av
ed

 U
ni

fic
at

io
n

(p
ar

se
 p

as
s

on
ly)

CPU Time (secs) - Full Interleaved Unification

Trendline equation:
(0.8116*x)+0.0024

Figure 7.9: Per-datum scatter-graph total run-time (in CPU seconds) of the parse-pass for Shallow
Interleaved Unication (parse-pass only) compared to Full Interleaved Unication. The trend line,

, ts with an condence of 0.97.

169

7.5 Optimizations That Did Not Help

Like any research project, there are some ideas which seem promising when rst proposed, but on
further investigation do not turn out to be fruitful. In this section we consider three such ideas.

7.5.1 Approximated unication packing in disjunctions

In Section 7.1.1 above, we discussed how disjunctive statements cause data disjunctions.

We attempted to push the approximate packing technique to its logical conclusion by applying
this technique to the end result of every equation disjunction (both ordinary and conditional).

The choice of where and when to re-pack data disjunctions is a particular example of a classic
trade-off: on the one hand, re-packing helps prevent unication-space blow-ups by converting the
unication values to a smaller representation. On the other hand, re-packing takes some time to
perform, and it is quite possible to do it more often than necessary for optimal performance.

As we noted above in Section 7.4.2, we found that it was benecial to re-pack the results of
applying an entire grammar rules worth of unication equations. On the other hand, we also found
that adding an explicit re-packing step after the application of every (equation) disjunction (i.e.
OR or *EOR*) statement was actually more re-packing effort than necessary.

7.5.2 Length limits in approximate packing

Examination of the behavior of approximate packing suggested another possible optimization. In
some circumstances, the number of clauses in an approximate disjunction becomes very large.
These long disjunctions tend to to slow the evaluation of unication equations with paths running
through them because the unier must loop over the disjunction, attempting the unication operation
for each clause in turn.

We can easily impose a limit on the length of these disjunctions by simply replacing any long
disjunctive value with a wild-card.

For example, suppose that we are going to pack together the three F-structures ((A B) (C

D)),((A X) (C Y)), and ((A Y) (C Y)). Further suppose that we are applying the approx-
imate disjunction technique described above, and we have imposed a length limit: no disjunction
my contain more than two terms.

After packing the rst two F-structures, we will have:

170

((A (*OR* B X))

(C (*OR* D Y)))

But when we try to pack in the third F-structure, we will exceed our disjunction length limit for
the feature A. So instead we will replace this disjunction with the wild-card *WILD*. The result
will be:

((A *WILD*)

(C (*OR* D Y)))

Using these wild-cards to impose a length limit can eliminate the possibility of exponential
blow-up in the face of ambiguity, but will cause the F-structures to be over-generated even more
than the approximate packing technique.

Unfortunately, this length limitation did not improve the performance of our system. A test of
this technique on the Catalyst ambiguity corpus, using a shallow packing length limit of 2, showed
no measurable change in run-time. Imposing the limit increased the total number of calls to set-
value by 0.28%, virtually all of this increase was in the rst pass. The over-generation effect
caused a slight (0.2%) increase in the number of nodes created, which in turn increased number of
nodes searched in the second pass by 0.7

7.5.3 Vector Unier (is not faster)

In this system, the shallow unication is done with almost the same tree-structured unier that
the complex-valued unication uses. (The main difference is in the binding of top-level variables,
which destroys the implicit interdependency of these top-level variables as described in Section 7.4.2
above.)

However, unlike the complex-valued unication which will be used in the post-parse-search
(Chapter 8), we know that the shallow unication values are just that: shallow. Also, from the
precompilation analysis described above in Section 7.4.2, we know that many of the unication
slots take a bounded range of values.

We want the shallow unier to be as fast as possible. Because of these considerations, we
investigated the use of a radically different data structure for the shallow rst-pass unier: a vector
unier.

In a vector unier, where each value of a slot can be one (or more) of a small range of values,
the data is represented as a vector of bits. Each possible value of every slot is assigned a unique

171

offset in the vector of bits; a 1 bit indicates that the appropriate slot has the given value set, whereas
a 0 bit indicates that this slot does not have this value. The offsets of the bits are calculated during
compile time [12, p. 146], [78, pp. 257–259], [99, pp. 759—760].

((ROOT "clean") (MOOD IMP) (GAP -) ...)

list-valued features bit-vector-valued features

tree-structured unification values

Figure 7.10: Unication Tree-Structured Value to Bit-Vector Mapping

Figure 7.10 shows an example of mapping between values in a tree-structured unication value
and values in a structure containing both xed, list-valued slots and bit-vectors.

Unfortunately, we found this technique to cost more time than it saves. Recall from Section 7.1.1
above that we must often make a copy of the current environment before beginning to evaluate a
new list of equations, and that we must make several copies of the current values when interpreting a
disjunction special form (one for each subordinate list of equations, plus one for the over-all results).

Since our tree-structured unier is implemented using a copy-on-modication heuristic, initial-
izing these new environments in the tree unier is a single pointer assignment. Even when we are
storing the top-level variables individually, as described in Section 7.4.2 above, we need only make
a single pointer assignment for each variable. And since these refer to the parent and each of the
child nodes of the application of a rule, there are only small number of them.

Initializing a bit-vector is considerably more work – since the bit vector contains only values, we
cannot directly keep the copy-on-write behavior (at least, not without storing a separate reference
count [78, pp. 345–346] or some similar mechanism), so we must copy the entire vector. (Even if
we did keep a reference count, we would have to copy the entire vector the rst time we actually
modied an individual value, so the use of reference counting is unlikely to improve this situation.)

We found that the time saved in references and unication-value tree traversal was more than
used up by value copying: thus this technique used more time than it saved.

172

Chapter 8

Post-parse Search

Search well and be wise, nor believe that self-willed pride will ever be better than good
counsel.

— Aeschylus (525456 B.C.), Prometheus Bound [26, quote no. 3105]

8.1 Introduction

We have seen above in Chapter 3 that attempting to perform a whole parse, with interleaved full uni-
cation, can easily lead to an exponential blow-up of the parser. In this chapter, we investigate how
to avoid this problem by stepping around it: rather than performing the unication interleaved with
the Context-Free parse, we will delay performing the unication until after the parse is complete.

We will see that by stepping around the problems of interleaved unication, we can achieve
run-time performance comparable to the interleaved system in the average case, while avoiding the
exponential blow-ups that adversely affect the interleaved system. We will also see that the process
of computing a single, preferred, unication result is not nearly as simple as one might rst imagine
it to be.

Before we can examine results, we should better understand what the post-parse search must
accomplish, and how it does so.

Requirements and Goals The goal of the post-parse search is to nd the complete unication
value of a single best parse that fully unies, where the judgement of ‘best’ is made according to a
well-motivated disambiguator. The input to the post-parse search is a parse forest that is a superset
of all possible fully-unifying parse trees; the output is the unication value derived from a single,

173

complete, best parse tree.

The requirement for full unication is due to the superset nature of the input — the input is
guaranteed to contain all of the fully-unifying parses, but it is not guaranteed to contain only these
fully-unifying parses. (Allowing for this over-coverage is key to achieving acceptable performance
in the main parse.)

We also wish to perform this search without searching the entire parse forest [81, pp. 9–10].
This is because the parse forest may contain an exponentially large number of parses [151][81, pp.
53–55]. When parsing with a unication grammar, performing this search requires us to perform
unications. Recall from Chapter 3 that this exponential number of parses may produce a similar
number of unications. Of course we wish to avoid calculating all of these unication values;
instead we wish to keep the amount of work expended in the search as small as possible so as to do
a minimal amount of work.

8.1.1 Previous Approaches

Several previous systems have attacked the problem of disambiguation — nding a single preferred
parse tree or value — as part of their operation. Unfortunately, from our point of view, these ap-
proaches have been decient ways:

1. Several systems employ an interleaved parse, and then perform a separate disambiguation
step. Examples include KANT and KANTOO [87, 111]. The primary deciency of this
approach is that the all possible unication values must be computed. As we saw in Chapter 3,
this is likely to involve an exponential blow-up in the storage of the unication values. In
addition, the KANT disambiguator used to expand any disjunction in the nal unication
values to the top-most level, guaranteeing an exponential blow-up under ambiguity.

2. The Core Language Engine [4] uses a separate syntactic and all-parses semantic phase, and
disambiguates after the semantic phase is complete. Again, the primary deciency of this
approach is that in order to disambiguate we must rst calculate all possible unication values,
leading to an exponential blow-up.

3. Maxwell and Kaplan’s system [84] performs a context-free parse, and then passes the entire
set of unication equations to a constraint solving system. This does result in the efcient
computation of a single result, but in case of ambiguity does not choose between the ambigu-
ities in any separately controllable way.

174

4. Several systems have used weighted context-free grammars [149] to control disambigua-
tion. These include Slocum’s METAL machine translation system [140], which (according
to Thiel [149, p. 139]) traces its use of weights back to Robinson’s DIAGRAM parser [122],
as well as Charniak’s PARAGRAM parser [24]. Unfortunately, none of these systems use
unication-based grammars – they are all weighted context-free grammar parsers, and there-
fore are insufcient for our needs.

For this system, we wish to have it both ways: we want to efciently nd a single unication
result, and we want that result to be from a parse that is selected in a linguistically-motivated way
by a disambiguator.

8.1.2 Method of Attack

The general approach we shall adopt is to separate the search for a best parse which fully unies from
the disambiguation measure that determines which structures are better than which. By separating
out the search itself from the measure of goodness which drives the disambiguation, we are able to
separately prove that the search algorithm is correct, implement, and debug the search component,
while still being able to substantially modify the measure of goodness.

We also wish the search to be efcient, in the sense that if there are multiple parse trees which
will fully unify, the entire forest of all possible parse trees need not be traversed in the second pass
in order to discover a single best fully-unifying parse tree. Since, as we have seen in Section 3.3.1,
in the worst case there may be an exponentially-large number of individual parses (relative to the
input length), it could take a proportionally long amount of time to search though all possible parses
for the best over-all parse. Obviously we wish to avoid doing this if at all possible.1

This is the main reason why we chose not to frame this as a dynamic programming problem.
The general approach to solving this sort of optimization problem though dynamic programming
is to divide the potential solution into classes, and then traverse the entire tree in a bottom-up
manner, keeping the best answers for the situations separately. Finally, the over-all best solution
is chosen from amongst the nal answers [146]. The advantage of this approach is that it is often
linear in the total size of the tree (dependent, of course, on the details of the per-node calculations).
The disadvantage is that it requires not only the evaluation of the entire tree, but possibly multiple
repetitions of similar per-node operations for each of the different classes. This is much more
work than we would prefer to do to solve our problem.

1As we have argued in Chapter 2, our pseudo-unication system, and hence our parser, is quite capable of solving
-complete problems. It is quite possible to give our parser which requires an exponentially-long search.

175

In order to achieve acceptable performance, we adapted the general best-rst search [128, pp.
92–101] technique to our particular needs. In general we wish our disambiguator to be separated
from the search, and the search to treat the disambiguator measure of goodness as a ‘black box,’
without any internal knowledge of how this measure is calculated, but only a few general require-
ments on what can be examined in the search.

There are three general requirements that the goodness measure must obey in order for the search
to be efcient, and a fourth which greatly simplies the construction of the search. In designing the
search we will assume that:

The goodness value of a sub-tree is an additive combination of the goodness values of the
children and a local node attachment cost which is based on other information that is local to
the root node of the sub-tree. The partial value of a given node is not effected by the partial
value, or any other information, derived from any sister nodes.

The goodness measure is calculated in a bottom-up manner. The goodness of leaf nodes
is some predened constant; the over-all goodness of the root of a full tree is simply the
goodness value calculated for the root node of the tree.

The goodness measure must be monotonic increasing in value: the goodness value of a node
must be greater than the goodness value of any of that node’s children.

(For the full branch-and-bound search:) The cost function is composed, in part, of the sum of
the costs of the children.

This combination of requirements on the measure of goodness allows us to adapt the well-known
Best-First Branch-and-Bound Search [128, p. 116],[106, sec. II.4.2, pp. 354–367] to our particular
needs in order to perform the search in a relatively efcient manner.

8.2 The Search Component

As stated above, we have developed an Iterative-Deepening Greedy Best-First search that is special-
ized to nd the unication value of the best (according to the disambiguator) tree that fully unies,
while attempting to avoid calculating all combinations of unication possibilities.

176

8.2.1 Best-First Search

Best-rst searches are generally described by talking about searching for a best single leaf (terminal
node) within a tree covering all possible leaves. This over-loading of terminology will be somewhat
confusing for us, as we are actually searching amongst parse trees within a parse forest, but as this
is the standard terminology for these searches, we will stick with it for the moment.

According to Russell and Norvig [128, pp. 70–73], we can characterize searches in a nicely
abstract way:

Suppose we have some problem in which the search for a complete solution can be characterized
as a tree, where each node represents a partial solution, and an arc between nodes indicates that
the partial solution represented by the rst node can be extended to become the somewhat more
complete partial solution represented by the second node.

In addition to this, our problem must meet several other conditions:

We must be able to identify some single starting state, which we will refer to as the ini-
tial state(problem).

We can identify when the partial solution represented by some node is a complete solution.
We do this by arranging for the predicate function is goal to return true when applied to a
complete solution, and false when applied to an incomplete solution.

There must exist a cost function costfn which maps from partial or complete solutions to
numbers, such that if is a better solution than , then costfn costfn .

Note that this implies an important requirement on the estimation of partial solutions: For
every goal state which is reachable from some partial search state , costfn
costfn . The quality of the estimate will effect the search: the search will be better
when the estimate is closer to equality.

We can create a function expand state, which given a node will return a set of all nodes
which are one step further away from the root of the search tree (i.e. closer to a goal state).

When all of these conditions are met, we can formulate a search which repeatedly expands
the best node so far, until it reaches a goal state. Figure 8.1 shows pseudo-code for an example
best-rst-search formulated according to these conditions.

It is helpful to also dene two functions[128, pp. 92–97]:

177

best-first-search (problem, costfn) {
PriorityQueue PQ;

root = initial_state(problem);
push root, costfn(root) onto PQ;

loop {
if empty(PQ) then return FAIL;

node = pop(PQ);

if is_goal(node) {
return node;

} else {
newnodes = expand_state(node);
foreach newnode in newnodes {
push newnode, costfn(newnode) onto pq;

}
}

}
}

Figure 8.1: best-rst-search, after Russell & Norvig [128, gs. 3.10, 4.1].

is the (actual) cost of the path from the root of the search tree to node .

is the estimated cost of the cheapest path from to a goal node. We will require that
when is a goal node, .

If we use as our cost function for best-first-search, then we have uniform-cost
search. At the other extreme, if we use as our cost function, we have a greedy search.

A* search If we can combine the two above functions together, using as our
search cost function, this gives us A* search. is an estimate of the cost for the best path going
through . So by using as our cost function, we are searching by repeatedly expanding a node
along the estimated best path to a goal.

One crucial property of A* search is that it is an optimally efcient search: no other search is
guaranteed to expand fewer nodes than A* [128, p. 99], [31]. As a result, A* is very widely used to
solve searching problems.

178

The need for nested searches In order to nd a true goal state, it is necessary to unify the complete
search tree, though it is not necessary to unify the complete tree all at once. If we calculate this
unication result piece-wise, we will want to save and possibly re-use the partial unication results.
This is because without this re-use of partial solutions, we are sure to perform too many unications
when we don’t nd the best parse on the very rst try.

We can take advantage of these partial solutions by structuring our search to follow the natural
structure of the problem. Below we will show that a convenient way to do this for our problem is to
perform a recursive top-down search on the parse forest itself.

Unfortunately, the heuristic searches presented above (notably including A* search) have a
draw-back: they are not designed to be recursively nested — it is difcult to nest one search in-
side another search such that any optimality criteria (i.e. in A* search) still hold. At rst glance,
this seems conceptually easy: the outer search could simply consider using an inner nested search
to implement the expand state() procedure.

This is an simplistic answer. In order for such a nested search to be as efcient as a single A*
search (as measured by the number of nodes expanded), the outer search must provide the inner
search with a no-worse-than stopping criteria value, so that the inner search will just stop
searching if the best partial search node (the one at the front of the priority queue) is worse than this
value. The outer search can then use this criteria to prevent the inner search from pursuing a result
which is worse than the outer search’s second-best search possibility.

Figure 8.2 shows a conceptualized example of such a case. If the expansion from to is done
by an inferior search, this search must also be given the cost value of no-worse-than as
stopping value, so that the inner search from to (the search) does not bother expending a
lot of work coming up with a result which is ultimately more expensive than the estimated cost to

.

In addition, the inner search must be continuable from such a stopping point. Still considering
Figure 8.2, suppose that the search was stopped because no solution could be as good as the
estimated cost of getting to . Further suppose that the search returned an actual cost value for

which was higher than the initial estimate. In this case, the search must be continued using
this new, higher, actual cost as the revised stopping criteria, because there could still be an path
resulting in B being cheaper: .

We initially questioned whether adding this cost bounding to the search would be worth the
effort (both in terms of computational cost and difculty in implementation), and eventually tried
the search both without and with the cost bounding. Empirical results on this choice are quite

179

I

G2G1

B C

A

Figure 8.2: An example partial search tree

interesting

The complete best-rst branch-and-bound search is somewhat complicated. In order to present
our technique clearly, we will rst present the problem of searching a packed parse forest abstractly
in Section 8.2.2. Next, in Section 8.2.3, we will apply abstract search to the problem of nding
all possible unication values. In Section 8.2.4 we present the elements of our best-rst search,
and describe the pseudo-code for the branching-only version of the search. Finally, we discuss the
changes needed to implement full a branch-and-bound search in Section 8.2.5, along with pseudo-
code for this revised search.

8.2.2 Searching a parse forest

We can next turn our attention to the details of searching a parse forest. Recall that a parse forest is
a collection of nodes and links between nodes. Each node represents an instance of a production in
the grammar: an individual node will have one or more ordered sets of pointers to children nodes;
each of these ordered sets of pointers to children corresponds to one particular instance of a set of
nodes fullling the requirements to be the right-hand-sides of some rule, for which the left-hand-
side is represented by the parent node. A node is said to be packed if it contains more than one of
these sets of children [151, 23]. A schematic example of a packed node is shown in Figure 8.3.

A complete, top-down, depth-rst search of a parse forest is quite straight-forward. Figure 8.4

180

Node

Node

Node Node

Node:
begin
end
category
FS
best!cost
child!sets
...

Child set 1:
rule
cost
child!counter
children

rule
cost
child!counter
children

Child set 2:

...
rule
cost
child!counter
children

Child set n:

Figure 8.3: An example node structure.

presents an abstract depth-rst-search of a parse forest. This pseudo-code assumes that there is a
single top-level node to begin searching at; should there be multiple top-level nodes (representing
multiple ambiguous parses) one can simply form a super-node, which contains a set of (size-one)
sets of pointers to each of the actual top-level nodes as children. This super-node would then become
the new top-level node to search.

181

dfs(Node n) {
do anything needed before descending into children.
foreach child-set in n.children-sets {
do anything needed with the set of children before searching them.
foreach c in child-set {

if (is_leaf(c))
do something with the leaf node.

else
dfs(c);

}
do anything needed with the set of children after searching them.

}
do anything needed after descending into children.

}

Figure 8.4: Pseudo-code to perform a depth-rst search of a parse forest

182

8.2.3 An All-Paths Search of a Parse Forest

all-FSs(Node n) {
let retval be empty.

foreach child-set in n.children-sets {
do anything needed with the set of children

before searching them.

new child-fss[length(child-set)];

foreach i in length(child-set) {
c = child-set[i];

if (is_leaf(c))
child-fss[i] = get-child-FS(c);

else
child-fss[i] = all-FSs(c);

}

let this-child-fs = unify(node.rule, child-fss);

if (succeeded(this-child-fs))
retval = pack-fs(retval, this-child-fs);

}
return retval

}

Figure 8.5: Pseudo-code to nd all FSs of a parse forest via depth-rst search

Figure 8.5 adapts the abstract search from Figure 8.4 to the task of nding all of the F-Structures
of a packed parse forest in a manner very similar to the technique described by Carroll for unpacking
unication values [23, p. 59].

Table 8.1 compares fully-interleaved unication as described in chapters 3 and 7 with Shallow
Unication, as described in Sections 4.3.1 and 7.4, in concert with our implementation of the all-
paths search shown in Figure 8.5.

From these results, we can see that this combination results in 8% fewer calls to setvalue.
Because this function implements one of the basic operations of the unication package, we have
found that the number of calls to it is a good measure of the total amount of unication work which
system has had to perform [114].

We can also see that the amount of time required by the interleaved unication technique to

183

Search type
total num.

nodes total num.arcs
total calls

to setvalue
Interleaved Unication 466,945 293,610 8,150,477
Shallow Unication
with all-paths search 467,919 293,849 7,536,736

Search type
parse time

(CPU secs.)
post-search

time
Total
time

Interleaved Unication 68.35 n/a 68.35
Shallow Unication
with all-paths search 58.90 8.82 67.72

Table 8.1: Comparison of parse times for Interleaved Unication versus Shallow Unication plus
All-Paths Post-Parse Search, on the Catalyst ambiguity corpus (see Section 5.4). The difference in
total run-time is not signicant.

parse is comparable with the total amount of time required to parse with shallow unication, and
then search the full parse forest for the set of all unication values.

All-Paths blows up under extreme ambiguity We are interested in improving the behavior of
the parser under the stress of extreme ambiguity. Unfortunately, performing an all-paths post-parse
search is no better under extreme ambiguity than fully-interleaved unication is.

We show this by constructing articial data which exhibits extreme PP-attachment ambiguity by
starting with a plausible sentence, and adding zero or more repetitions of a plausible prepositional
phrase:

Grease ows through the bearing seal in the engine .

(The outputs for several initial exemplars were checked to ensure that there was indeed a PP-
attachment ambiguity for the unication grammar.)

These test sentences were then used as inputs to several congurations of our system to investi-
gate the run-time behavior of the system.

The graph in Figure 8.6 shows the run-time used both for an all-choices single-pass parse, and
for two different two-pass parses; one of which rst nds the forest of all context-free parses and
then calculates all F-structures for that forest, the other rst calculating the back-bone forest using
the shallow interleaved unication techniques described in Sections 4.3.1 and 7.4.

For all of these runs, the system is getting somewhat bogged down calculating the unication
values for the different possible ways to resolve the PP attachment ambiguity. The two-pass system

184

1

10

100

1 10

Ti
m

e
(s

ec
s)

Number of PPs

"or_run_time.tsv"
"cfall_run_time.tsv"

Figure 8.6: Runtime Used for: Single-pass OR-packing (“or”) and 2 pass: C-F 1st pass with all-
values 2nd pass (“cf-all”)

is behaving somewhat differently than the single-pass one, using slightly less run-time to calculate
the eventual results. On the other hand, we can also see that the all-values second-pass parse tech-
nique has run-time characteristics similar to the interleaved unication approach, and that both are
suffering from a blow-up in required run-time under increasing ambiguity.

8.2.4 A Backtracking Greedy search for a best parse

Our original aim was not to search the parse forest for a packed representation of all valid F-
structures, but instead to search for the best complete F-structure according to our disambiguation
cost calculator. In order to avoid unnecessary computations, we use the disambiguation costs and
cost estimates to guide the search. Since not every combination of children will unify together, this
search turns out to be non-trivial. We now turn to the task of designing this particular search.

In Section 8.2.3, we saw that it is convenient to search the parse forest by directly searching
through the nodes of the forest; it is particularly evident from Figure 8.5 that unication is con-
venient to do in this sort of traversal. On the other hand, in Section 8.2.1, we have seen that the
customary way to frame a best-rst search is with single search queue. What we want is a search
which allows us to traverse the parse tree in a convenient fashion, while still allowing for a search

185

that is relatively efcient (both in terms of amount of traversal done and number of search states
expanded).

Since we believe that unication is the most expensive part of this process, we will create a
search which traverses nodes of the parse forest. We will search for the best F-structure of a node
by (in part) recursively searching the node’s children for their best F-structure. We will accomplish
this by putting enough information into the data structure of a node that we can perform this search.

The basic search It is extremely convenient to frame the search in terms of some basic routines
used to control the search. Let us start by dening a pair of routines:

get-first-fs gets the best F-structure and cost of a node. Should there be no best FS,
then get-first-fswill return an indication of failure.

get-next-fs gets the next F-structure and cost: the best-valued FS and cost that is no
better than the one we have most recently asked for. Should there be no “next” FS, then
get-next-fswill return a failure.

Suppose we have called get-first-fs and then get-next-fs. If we call get-next-
fs again, we will get the third-best FS for this node. We will further stipulate that we can get all of
the F-structures by calling get-first-fs once, and if it succeeds, then calling get-next-fs
until this fails.

These will ultimately be convenient, once fully implemented, since we can get the top- com-
plete F-structures, in disambiguation cost goodness order, by calling get-first-fs once on the
top-level node in the parse forest, and then calling get-next-fs on this node times.

Saving the disambiguation cost value In order to support the search for the best value efciently,
we will store a disambiguation cost value with each node. For packed nodes, those containing a
choice over multiple sets of children, this per-node disambiguation cost value will hold the best of
the disambiguation costs of the sets of children. In addition, each set of children will hold its own
disambiguation cost.

We will also calculate these values in the rst-pass parse, so that we can use the values as esti-
mates of the nal disambiguation costs. We will note here that since not all of the parses that result
from the rst-pass parse will fully unify, these disambiguation goodness values are only estimates.
On the other hand, we will see below that they serve as fairly good estimates of the nal values.

186

Memoization We will see below that it is fairly common to ask for the -th-best F-structure for a
given node repeatedly during a search of one of that node’s parents. Since the search is for the best
parse that fully unies, unication is at the core of the process. Further, we have argued above that
unication is a potentially expensive process. In order to improve the efciency of our search, it is
convenient to memoize the (FS, cost) result pairs that we calculate from searching a node, so that we
can restore these values when asked without having to recompute them (recursively) from scratch.
This will be useful for two reasons: rst, the search at a given node may require looking at the rst
few F-structure choices for a given child, and second, we may end up re-using results for a node in
a part of the search which has descended via a different path.

P PV

VP VP

S

N N N N

NP

VP PP

NP NP

PP PP1 2

1 2

1 3

3

2a 2b

1 1 2 3 421

Figure 8.7: An example of multiple attachment

Figure 8.7 shows an example of the latter. In this example, the PP node is a child of both
NP and VP . If we had rst tried the VP attachment, but discovered that its rule couldn’t unify
VP with PP , we might end up also trying the NP attachment (by descending down the VP
NP PP NP path). In this case, since we had already calculated one or more F-structures
for PP , we might be able to simply re-use these values. (This re-use is not universally doable,
however — we investigate this question more fully in Section 10.3.2 below.)

The base cases get-first-fs and get-next-fs are easy to implement for leaf nodes: if

187

the leaf has only one FS, then get-first-fs will return it, and get-next-fs will return
failure. And if the leaf has more than one FS, then get-first-fswill (deterministically) return
one of them, the rst call to get-next-fswill return the second, the second call to get-next-
fs will return the third, and so forth.

Correctly implementing these functions for a non-leaf node is considerably more complicated.
We will start with an overly simplistic case: suppose we only had one set of children, containing
only one child. In this case, to get the best FS, we can simply call get-first-fs on the child
node, and then try to unify the result with the current rule. We do not explicitly code for this case,
but instead assure that the full search will have this behavior under these conditions.

Multiple children: expanding the search by dimension The search becomes much more dif-
cult when a node has one set of multiple children. In this case, the principal question is:

If we have more than one child, and the “best” combination of each doesn’t unify, where do
we search next? For which child should we ask for the next-best result?

Consider Figure 8.8. This gure shows a schematic for searching the space of two children,
under the condition that there is no particular combination of these children which would merit a
different node-attachment score.

The axis denotes the relative disambiguation cost measure for the rst child, the axis is
similarly so for the second child. Open points indicate combinations of children which do not
successfully unify at this node; solid dots indicate combinations which do unify. The total cost of
a given combination of children will be the sum of the costs of the children; thus we will take the
Manhattan distance as the total cost. Our goal is to nd the least-cost point, in this diagram marked
as point , while trying the smallest number of combinations of the children, and while recursively
expanding the smallest number of choices of each child (i.e. asking for the second-best, third-best,
fourth-best, etc. choice for a child when these are not in the end necessary).

For this search, we will satisfy the second goal, that of avoiding expanding the children, by
expanding the search space in an as-needed way. We can think of this as a search itself: we will
start with the best point (i.e. the best of each of the children). From then on, whenever we need
to consider more space, we shall do so by expanding in the direction of the smallest estimated
incremental cost.

Suppose that we have expanded child though the -th choice, and child though the -th
choice, and we need to expand the search space. If we believe that the combination will

188

best combination

combination
of children:

Point key: This

Radius of
cost equal to point "e"

Se
co

nd
 c

hi
ld

 c
os

t

First child cost

Does not unify

Unifies with cost at
least as good as point "a"

Unifies, but with cost
greater than point "a"

a b

c d

e

Figure 8.8: Example search space for two children

be lower-cost than the combination, we will expand the space by generating all the search
points .

An example of this technique is shown in Figure 8.9. In this gure, we show the expansion of
the search space as a set of expanding rectangles. Of course, in the general case of children, each
dimensional expansion will entail generating all the points within the current bounds for a -
dimensional space. For example, if we had three children rather than two, with current limits ,
and were expanding the search to cover the th entry of the second child, we would generate all
of the search points:

189

best combination

combination
of children:

Point key: This

Radius of
cost equal to point "e"

Se
co

nd
 c

hi
ld

 c
os

t

First child cost

Does not unify

Unifies with cost at
least as good as point "a"

Unifies, but with cost
greater than point "a"

a b

c d

e

1

2 3

5
4

6

7

8 9

Figure 8.9: Example search space, showing order of dimension search. Note that in the general case
of children, each dimensional expansion will generate a -dimensional slice.

...

One way of understanding this expansion is that the space of possible combinations of children
forms a polyhedron in a -dimensional space, and that the dimension expansion is actually selecting

190

a facet2 of that polyhedron [106, ch. I.4, pp. 83–113].

In order to support expanding the search in this way, every child-set will have to have a set of the
current maximums explored so far. We have already seen in Section 8.2.1 that the general solution
to the question ‘where do we search next?’ is the use of a priority queue. And although it is tempting
to assume that the elements on the queue must all be of the same type, there is no such limitation.
In order to get the right behavior from our search, we will have to put two different types of objects
on our search queue:

Dimensions to expand as described just above

Points (particular combinations of children) to search.

When a dimension is at the top of the queue, we will expand the search as above, placing the
generated points back on the queue. When a point is on the queue, we will try that particular
combination of children to see if it works.

The reason why we need only expand the search by dimensions and points is put must succinctly
by Nemhauser and Wolsey in Proposition 3.4 of Integer and Combinatorial Optimization:

Proposition 3.4. Every inequality for that represents a face of of
dimension less than dim is irrelevant to the description of .
[106, p. 90]

The upshot of this is that for a search, we need only generate dimensions to expand (i.e. facets)
and points of our solution.

Additional considerations There are three other factors which complicate the search somewhat:

It is not true that the best combination of the best children will be the best solution to this node.
Not even if they all unify. Due to the long-distance-relationship nature of disambiguation cost,
the nal full cost may be worse than predicted for this attachment.

A combination which unies may return a worse cost than we had estimated. It is possible
that some child just never gets as good a cost as we estimate it should.

2A facet of a -dimensional polyhedron is a -dimensional afnely independent set of extreme points on the
exterior of the polyhedron [106, pp. 88–90].

191

If we have more than one sets of children, and the “best” combination of the best children
doesn’t unify, where do we search next?

Fortunately we can use the search queue to address all of these problems as well. In the case of
both the rst and second of these considerations, when we nally do try a point combination and
discover that it unies, we will also re-calculate the local part of the disambiguation cost. If this
cost is greater than we anticipated, we can simply place the nal F-structure onto the search queue,
along with its actual cost. This will then come to the top of the queue only if it is the lowest-cost
solution.

To address the third, we can add a fourth search type to represent the expansion of a new child-
set in the search. When this type is encountered, we can try the best combination of the children of
this child-set, and also set up the dimension searches for the child-set as well.

Thus, the way we will simultaneously address the considerations we mentioned above is to
dene a total of four different types of objects which can be placed on a search queue. To re-cap,
these types are:

1. CHILD-SET: new child set to search

2. DIM: expand one dimension (one child) by one.

3. POINT: evaluate some particular point

4. FS: an already-evaluated FS

Given these four different types of search queue elements, the complete search is simply a matter
of initializing the queue with a CHILD-SET item for each of the child-sets, and then processing
according to the top of the queue until we nd an F-structure. The only additional complication is
that because we may be addressing points in different sets of children, every search item (except
for the FS) must indicate which child-set it is part of. So, for example, the third-best choice for the
rst child, and the fourth-best choice for the second child of the second child-set would be the index

. (Recall that our counts are zero-based, so is the best of each of two children of the
rst child-set.)

Cost Estimation Finally, there is one remaining issue which we have not fully addressed: the
estimation of the disambiguation cost, which drives the choice between the whether we will decide
that some F-structure is good enough, or whether we need to keep searching.

192

As we noted above in Section 8.1.2, and will describe in more detail below, the full disambigua-
tion cost for a given node is an additive combination of two factors: the costs of the children, and a
node attachment cost.

For the children, there are three possible cases for estimating a cost:

When we have never investigated some child, we are examining the best combination (i.e.
the point). In this case, we have an estimated value for this best combination of
children and local node attachment from the rst-pass, so we just use this value.

We may have already calculated the -th-best F-structure for a given child. If so, we already
have also calculated the actual cost, so we just use it.

Finally, when we have not already calculated the -th-best FS, we know that we have calcu-
lated the -st-best FS (due to the way the dimensions are expanded). We can safely use
this as an estimate, since the cost of the -th-best FS cannot be any lower. (It could, however,
be the same, so this is the right choice of estimate to use.)

The other factor that goes into the full cost is the local node attachment cost. For that, we must
be able to calculate what the most optimistic, or best possible, node attachment cost will be. This,
then, is what is used for the estimation.

There are two other types we must estimate costs for: child-sets and dimensions. For an unex-
plored child-set, we have not explored any of its children, so as above we just use as our estimate
the cost value we got for this child set from the rst pass.

This leaves the estimate for extending some dimension by one. We will note here that since
the cost function is additive, the most optimistic reasonable cost estimate is to combine the most
optimistic local node attachment cost, the best cost for each of the other children, along with the
estimate for the -st cost of the child which corresponds to the dimension in question.

The Branching-Only Search Algorithm

We have discussed the search queue, the items which go onto the search queue, and the estimation
of costs. We will now put them together into a complete algorithm. For ease and clarity, we will
rst consider a branching-only (i.e. without bound constraints), unoptimized version of the search.

There are two aspects to the correctness of our search algorithm which we will need to keep in
mind: the search must be complete: if repeatedly called until no further results are available, it must

193

have tried every fruitful parse tree contained in the parse forest. In addition, we wish to be sure that
the order of the search is correct: it must return the valid results in order of overall cost.

We will rst re-cap the actions of the search functions at leaf nodes. Then, for the case of non-
leaf nodes, we will consider the actions of each of the core functions get-nth-fs,get-first-
fs and get-next-fs. Finally we will argue that this search is complete and gives results in the
correct order.

Leaf nodes For the base case, a leaf node will only contain one single F-structure. The obviously
correct action on a leaf is for get-first-fs to return this result, and get-next-fs to return
failure. get-nth-fswill then return the result for index 0, and failure for any higher index.

get-nth-fs (get-nth-fs n node) has three possible actions:

If the nth result for node has already been computed and memoized, then it is set as the
current value of node, and we return success.

If we know that all of the possible results for node have been computed, but there are fewer
than n of them, then we return failure.

Otherwise:

– if some earlier-than-n result of node has been computed, then we set the node to last
computed result.

– else we call get-first-fs; if it fails, then we return failure.

then we call get-next-fs repeatedly until we either have computed the nth result (in
which case we return success), or get-next-fs fails, in which case we also return failure.

get-rst-fs get-first-fs is only responsible for initializing or reinitializing the search of a
node.

If the node has been previously visited and has a memoized best result, the node is set to it
and success is returned.

Otherwise if the node has not been previously searched, it sorts the packed sets of children into
estimated-cost order, and initializes the search priority queue, pushing a CHILD-SET search

194

item onto the search queue for each packed set of children, using the (rst-pass) estimated
cost of combination of children as the estimated cost.

Finally, get-first-fs calls get-next-fs to compute the best result, and returns what-
ever it returns.

get-next-fs Finally consider get-next-fs. get-next-fs assumes that the search priority
queue has already been set up, and its job is to keep removing and evaluating items from off of the
search queue until the next-best answer has been found or the queue becomes empty.

If the queue becomes empty before a result is found, then the node is declared to be fully
searched. If no successful results were ever computed for this node (i.e. none have been mem-
oized), then the node is declared hopeless.

When the queue is not yet empty, there is still work to be done for this node. Consider the
actions of each of the types of items which could appear on the search queue:

1. CHILD-SET. The best values of each of the children are recursively calculated. If all such
values can be retrieved, then unication of these values is attempted with the unication
function associated with this child-set. If this unication succeeds, the resulting value is
pushed onto the stack as an FS item.

If no best value can be calculated for any one of the children, then we know that this child-set
is fruitless, and no further processing is done.

If all children have best results (whether or not this child-set actually unies), then the current
maximum counters are initialized to . Finally, for every child which could have
multiple values, a DIM item is pushed onto the queue using the sum of the actual child costs
and the best possible attachment cost for this child-set as the estimated cost.

2. DIM. A dim item contains a (child-set, child index) pair, which selects a particular child
(index) of that child-set. The current maximum count for that child of that child-set ()
is then incremented by one. If the corresponding child number could have a result of
(i.e. either that child has not been fully searched or it does in fact have that many memoized
results), then POINTS are generated for this child-set for every combination of children of
this child-set from zero up to the current maxima, for all children other than number :

195

Where be the index of child to next increment, be the number of children in this child-set,
index over children, and be the current maximum for the th child, and is the set of
POINTs to add to the search queue.

Finally, if child could possibly be incremented to index , then this DIM is placed
back on the queue, with estimate cost

3. POINT. A point is simply evaluated: values for the respective index (as stored in the
POINT item) of each of the children are recursively calculated. If all such values can be
retrieved, then unication of these values is attempted with the unication function associated
with this child-set. If this unication succeeds, the resulting value is pushed onto the stack as
an FS item.

4. FS.When an FS item comes to the top of the search stack, we know that this FS is a best next
item, because its actual cost is at least as good as the optimistic estimated cost of any other
possibility. So it is memoized and success is returned.

Correctness We must ensure that the search will cover all valid combinations of the children of
a node. This is a proof by induction on the height of a node in the parse forest, starting with the
leaves and working up. For ease and clarity, we will consider a version of the search without any
optimizations rst.

If one considers the combined action resulting from the evaluation of the CHILD-SET, DIM,
and POINT search items, as well as the action of the dimension counts, one can see that slices
of points are generated in the manner depicted in Figure 8.9, and that every possible point (i.e.
combination of choices over children) for all sets of children are considered. This demonstrates that
our algorithm is complete: it will search the entire space.

Further, because the search queue is set to pop off items in a least-cost-rst order, and because
the estimates are optimistic, whenever we encounter an FS item on the queue, we know that no
possible other choice of children of any other child-set could be better. Therefore get-next-fs
will produce results that are ordered from best to worst.

Finally, since our search is trivially correct for the base-case of leaf nodes, and correct for any
interior node (from immediate parents of the leaves on up), we can see that it is also correct for the
top-most node of the entire parse forest.

196

Our branching-only search implementation

There is one obvious optimization that we found worth making to the algorithm presented just above
in Section 8.2.4. While it is not the case that the best combination of children of the lowest-cost
child-set will always result in the best FS, it is often the case that this is so. In order to avoid doing
work that is potentially redundant, we will avoid setting up the priority queue until after we have
tried to use this best combination. Figure 8.11 shows the nal version of the pseudo-code for the
branch-only search, which includes this rst-point optimization.

197

get-nth-fs (n node) {
if we have memoized FS number n
set current FS and cost from the memoized values for this index
return that FS

else if (n == 0)
return get-first-fs (node);

else
let k = the number of currently memoized FSs
set current FS and cost to the last (number k-1) memoized values
do (n-k) times {

get-next-fs (node);
}
return current FS

}

get-first-fs (node) {
if this node is marked hopeless
return FAILURE.

else if node is a leaf node
or we have already computed some number of FSs

then return the first (best) FS.
else
try best (0,0,...,0) combination of children for first set of children.
If they unify,

memoize cost and FS, and return them.
else

return (get-next-fs(node));
}

init_queue (PQ) {
Initialize search PQ to have a CHILD-SET entry for each of the
second thorugh last child set.
Use the search-cost from the first-pass as the estimated cost of each child.

for each child of the first child-set
If the child has multiple descendants

push new DIM entry for this (child-set = 0, child) combination.
}

Figure 8.10: Pseudo-code for branching-only version of get-nth-fs, get-rst-fs, and init-queue

198

get-next-fs (node) {
if this node is marked hopeless, or fully searched, or is a leaf node

then return FAILURE.

if (PQ not initialized) init_queue(PQ);

loop {
if the PQ is empty
if node has some memoized FSs

mark node as fully searched
else

mark node as hopeless
return FAILURE

s = pop the top value off the PQ;
if (s.type == CHILD-SET)
try best (0,0,...,0) combination of children for this set of children.
If they unify

push the result on the PQ.
for each child with multiple descendants

push new DIM entry for this (child-set, child) combination.

else if (s.type == DIM)
re-estimate cost for this dimension.
if new cost estimate is more than the next item on PQ

push s back onto PQ with new cost estimate
else

increment cur_count(s.dim) by 1
forall combinations of points from 0..cur_count(d), d != s.dim

push a new POINT entry for this combination onto PQ
with newly estimated cost for this POINT.

if (child[s.dim] can be incremented past cur_count(s.dim))
estimate cost for this dimension (including increment)
push s back onto PQ with new cost estimate.

else if (s.type == POINT)
set children to s.dims combinations
Unify node; if this works, push resulting FS onto PQ

else (s.type == FS)
memoize cost and FS, and return them.

}
}

Figure 8.11: Pseudo-code for branching-only version of get-next-fs

199

8.2.5 Full branch-and-bound search

The search presented in Sections 8.2.4 and 8.2.4 is not as good as it could be, in that it performs
more unications than necessary. To see why, consider what happens when we have a node with
two sets of children (and), and the estimated cost of child-set is lower than the estimated
child-set of , but this estimate of turns out to be overly optimistic (because some of the ‘best’
children of don’t successfully unify), and the true cost of is higher than the true cost of . The
branching-only search will happily pursue a result from , even when it turns out that this result
may be more expensive than we could get from .

What we really want to do is to search child-set , but to (possibly temporarily) abandon this
search if it becomes more expensive than the estimated cost for . And to bound the components of
the search not only by the next-best child-set, but more generally by the next-best item of the search
queue.

As we hinted at in Section 8.2.1, the addition of cost bounding to our search is a non-trivial
change. The principle reason for this is that in the branching search, there were only two possible
results of trying out some particular sub-tree: either that particular combination worked, or it didn’t.
If it worked, then we remember the result and return it. If it didn’t, then we go on to a different
combination. In either case, we are done with the current combination.

Cost bounding adds a third possibility: this combination is too expensive to work within a given
cost budget. This result is problematic, because we cannot just forget about our current combination
— we will need to save it away, along with a revised cost estimate, because we might have to try it
again later.

Branch-and-bound search algorithm

We have to make several adjustments to our algorithm to account for the possibility that the cost is
too great, and the proof that the algorithm is correct becomes slightly more difcult. Rather than
largely duplicate the algorithm as presented in Section 8.2.4, we simply highlight these differences:

For both get-nth-fs and get-first-fs, if the saved value is more expensive than the
cost-bound, then these functions return too-expensive.

For get-next-fs, whenever the cost of the cheapest item on the search queue is greater
than the cost-bound, we must (temporarily) stop the search and return too-expensive.

We will assume that the cost function is composed, in part, of the sum of the costs of the

200

children.

Finally, in get-next-fs the evaluation of POINT and CHILD-SET entries must also
involve cost bounding. We must impost a tight bound on the allowable cost of recursive calls
to get-nth-fs used in evaluating a set of children. To impose this bound, we rst calculate
a local-cost-bound as the minimum of either the cost-bound we were called with, or the cost
estimate of the second item on the search queue.

We then initialize a post-cost-est with the cost estimate that was associated with this POINT
entry in the search queue. Finally, for each child , we then bound each of the
recursive calls to get-nth-fswith bound :

bound lcoal-cost-bound attach-cost-est estcost

local-cost-bound point-cost-est estcost

If any of these recursive calls return too-expensive, the POINT or CHILD-SET is returned
to the search queue. When we do this, we re-calculate the estimated cost for this item. If this
POINT or CHILD-SET is still viable then we place the item back on the search queue with
a new cost which is the maximum of this new estimate and local-cost-bound . (The reason
for this is that the new estimate may be lower than local-cost-bound , but we know we
were unable to evaluate this point for less than this amount.

Finally, the top-level call to get-first-fs is given an extremely high (but nite) cost
bound, one higher than the cost of any actual solution.

There are two keys to understanding the cost bounding. The rst is the observation that the
existence of an item on the search queue implies that we believe that we can nd a solution with this
cost.

By extension, a second entry on a search queue implies that an alternative exists, with this
second entry’s cost.

Because of the tight bound described above, as far as some particular instance of get-next-
fs is concerned, a cost-bound from our parent implies that the parent (or possibly some th-
grandparent) believes that it can nd an alternate solution, with a fractional cost equivalent

Finally, these solutions may not actually be available at the estimated costs, so a search cannot
ever be completely abandoned due to a cost over-run, but merely suspended in favor of a better-

201

looking prospect.

Branch-and-bound search implementation

Now that we have considered revisions to the search algorithm, we can examine the pseudo-code in
detail. Figures 8.12, 8.13, and 8.14 show complete pseudo-code for the revised search.

get-nth-fs (n node) {
if we have memoized FS number n
set current FS and cost from the memoized values for this index
return that FS

else if (n == 0)
return get-first-fs (node);

else
let k = the number of currently memoized FSs
set current FS and cost to the last (number k-1) memoized values
do (n-k) times {

get-next-fs (node);
}
return current FS

}

Figure 8.12: Pseudo-code for branch-and-bound version of get-nth-fs

202

get-first-fs (node, cost_bound) {
if node is marked hopeless

return FAILURE.
else if node is a leaf node

or we have already computed some number of FSs
if the old cost is <= cost_bound
return the first (best) FS.

else
return TOO-EXPENSIVE

else if PQ has been set up for node (but no results were found)
return (get-next-fs (node, cost_bound))

else
try best (0,0,...,0) combination of children for first set of
children bounded by cost_bound
If they unify,
memoize cost and FS, and return them.

else if they were TOO-EXPENSIVE
if node is a packed node (with more than one set of children)

init_queue (PQ)
push {CHILD-SET 0, cost_bound} onto PQ
return (get-next-fs (n, cost_bound));

else
return TOO-EXPENSIVE

else
return (get-next-fs(n));

}

init_queue (PQ) {
Initialize search PQ to have a CHILD-SET entry for each of the
second thorugh last child set.

Use the search-cost from the first-pass as the estimated cost of each child.

for each child of the first child-set
If the child has multiple descendants
push new DIM entry for this (child-set = 0, child) combination.

}

Figure 8.13: Pseudo-code for branch-and-bound versions of get-rst-fs and init queue

203

get-next-fs (node, cost_bound) {
if node is marked hopeless, or fully searched, or is a leaf node
then return FAILURE.

if (PQ not initialized) init_queue(PQ);

loop {
if the PQ is empty

if node has some memoized FSs
mark node as fully searched

else mark node as hopeless
return FAILURE

if the cost of the next item on PQ > cost_bound, return TOO-EXPENSIVE
s = pop the top value off the PQ;
local_cost_bound = min(cost_bound, cost of NEXT item on PQ);

if (s.type == CHILD-SET)
try best (0,0,...,0) combination of children for this set of
children with bound local_cost_bound.
If they unify

push the result on the PQ.
for each child with multiple descendants
push new DIM entry for this (child-set, child) combination.

else if TOO-EXPENSIVE
re-estimate cost of this CHILD-SET
push s back onto PQ with cost max(re-estimate, local_cost_bound).

else if (s.type == DIM)
re-estimate cost for this dimension.
if new cost estimate is more than the next item on PQ or cost_bound

push s back onto PQ with new cost estimate
else

increment cur_count(s.dim) by 1
forall combinations of points from 0..cur_count(d), d != s.dim
push a new POINT entry for this combination onto PQ

with newly estimated cost for this POINT.
if (child[s.dim] can be incremented past cur_count(s.dim))
estimate cost for this dimension (including increment)
push s back onto PQ with new cost estimate.

else if (s.type == POINT)
set children to s.dims combinations, with cost bound local_cost_bound.
if TOO-EXPENSIVE

re-estimate cost of point
push s back onto PQ with cost max(re-estimate, local_cost_bound).

Unify node; if this works, push resulting FS onto PQ

else (s.type == FS)
memoize cost and FS, and return them.

}
}

Figure 8.14: Pseudo-code for branch-and-bound version of get-next-fs

204

Proofs of Correctness and Optimality

Now that we have considered the changes to the search to allow cost bounding, and examined
the pseudo-code for our actual implementation, we can conclude our examination of the search
component with arguments that our search is both correct and optimal.

Correctness As for the simple branching (only) search, the key to the correctness of the branch-
and-bound search is that it is complete, in the sense that if we call get-first-fs on some given
node, and then repeatedly call get-next-fs on that node until it fails, we will have considered
every combination of children from all of the child-sets of that node. The main difference between
the bound-only search and the branch-and-bound search is that the branch-and-bound search may
delay looking at some points longer than the branch-only search will, due to the cost bounding, but
will eventually evaluate every combination of children.

Since the handling of DIMs has not changed — successful processing of a CHILD-SET still
results in the generation of the same DIMs, and these DIMs still generate all the same POINTS,
we know that we will generate all of the POINTS we need to in order to search a node.

In the branch-and-bound search, there are only two things that happen to a POINT once it has
been put onto the search stack:

1. The POINT is fully evaluated. This results in one of:

An FS which is memoized and returned (cost is as good as next item on stack.)

An FS which is put back on the stack (cost is worse than next item on stack.)

No FS. The only way for this to happen is for unication of the children to fail.

2. It is not fully evaluated, due to a cost over-run. In this case:

the POINT is put back on the stack with a strictly higher cost (as long as the cost is
better than ‘hopelessly bad’

So long as there is a nite limit on these costs, if a node is properly initialized (by calling
get-first-fs), and then called for more results by repeated calling of get-next-fs until it fails
(because of its search queue becoming empty), every possible POINT will have been evaluated for
that node.

Finally, because the top-level call to get-first-fs is given a threshold which is higher than
any actual solution, we will either nd a solution or discover that no solution exists. As a result,

205

either some solution will be found, or the search is completed unsuccessfully, in which case the
top-level node has no solutions.

A comparison of branch-and-bound search against A* search The proof of the optimality of
our branch-and-bound search depends on a comparison between the action of our search and the
action of an A* search with identical handling of the child-sets of a node. Before comparing the
action of these two types of searches, we must sketch the operation of such an A* search.

A
/ \
/ \

B C
/ / \

/ / \
D1 E1 E2

Figure 8.15: An example search tree

First consider Figure 8.15. For the purpose of our example, suppose that the nodes have the
following initial cost estimate relationship: , , , , and .
Also suppose that state won’t unify.

Now consider an A* search applied to this search tree. This search would have a single priority
queue for the search, with points encoding the intermediate stages of a search stored on the priority
queue.

Now consider the actions of an A* search as it explores this search tree:

A* actions:
stack starts as: (A)
pop A: (A has two child-sets: B & C)

push B
push C

(stack now C, B)
pop C (C has two child-sets: E1 & E2)

push E1
push E2

(stack now E1, B, E2)
pop E1
Discover E1 goal state, but doesn’t work; keep searching

(stack now B, E2)
pop B

push D1
(stack now D1, E2)

pop D1

206

Discover D1 goal state; terminate

In comparison, consider the actions of our branch-and-bound search on this same search tree:

Branch-and-bound search actions:
search (A, inf)

push B, C on local stack
pop C
search (C, cost(B))

push E1, E2 on local stack
pop E1
search (E1, min(cost(B), cost(E2)) = cost(B))

return FS for E1
C fails to unify with E1; drop search item
E2 more expensive than cost(B); return TOO-EXPENSIVE

new est cost(C) = max(cost(B)+epsilon, cost(E2)) = cost(E2)
put (C, new est = cost(E2)) back on heap
pop B
search (B, cost(C) = cost(E2))

(node only has D1)
search (D1, min(cost(E2), inf))

return FS for D1
B succeeds in unifying with D1
return FS for B

A succeeds in unifying with B
return FS for A

Optimality We can see that for our example, an A* would consider the search nodes in the same
order as our branch-and-bound search does. This is not a coincidence: if we were to create an A*
search, with the same structure to the A* search tree as is implied in our branch-and-bound search,
then our branch-and-bound search will search the same nodes in the same order as the A* would.

P
/ \

... ...
/ \
X Y

Figure 8.16: Example case for proof

We will show this though contradiction: let P be the top of a search subtree, which is the ancestor
of two interior search nodes X and Y. (This situation is shown in Figure 8.16.) Now suppose that
at some point in the search, the branch-and-bound search chooses to pursue X but the A* search

207

would have chosen Y. For the A* search to choose Y, The estimated cost of Y must be strictly less
expensive than the estimated cost of X.

But for this to happen, either X’s parent must have incorrectly continued a search when it should
have stopped due to a cost over-run, or X’s parent was called with an overly-high cost-bound.
The former obviously should not happen, and a close examination of how POINTs are handled
reveals that the latter cannot happen either (see Section 8.2.5). Since this situation cannot occur, our
supposition is contradicted, and therefore we can conclude that in this case the branch-and-bound
search will match an A* search in action.

Since the packing of nodes (with the implied choice over sets of children) is the only way in
which structural ambiguity is expressed in the parse forest, it is trivial to see that we can use this
case to inductively prove the fully general case, starting at the leaf-nodes of the search and working
back toward the root.

So we can conclude that our branch-and-bound search will actually search the a parse forest in
the same order as an A* search would. As we pointed out in Section 8.2.1, we know that A* is
an optimally efcient search — given the same estimator function, no other search could examine
a smaller number of nodes and still be correct in all cases. Because of the equivalence we have
demonstrated, we can conclude that our branch-and-bound search is also optimal for this problem.

Actual Performance

Search type
total num.

nodes searched
calls to setvalue

during search
search time
(CPU secs.)

All-paths 906,218 5,456,111 18.99
Branch-only 1,132,905 5,999,155 50.67
Branch-and-Bound 1,329,872 5,588,761 56.30

Table 8.2: Comparison of number of nodes searched and amount of unication work done for all-
paths, (best-value) branch-only, and branch-and-bound searches, with Context-Free (only) rst-pass,
on the Catalyst ambiguity corpus (see Section 5.4).

Table 8.2 compares the search effectiveness of the branch-only and branch-and-bound searches
when applied to a parse forest resulting from a context-free (only) rst pass. We have seen in
Table 7.3 of Chapter 7 that performing an interleaved unication as part of the parse cuts down the
total number of nodes used (and hence the total amount of structure) by almost a factor of two.
Failing to do this ltering substantially adds to the amount of work which a post-parse-search must
perform.

This is particularly true of the single-best searches (as opposed to the all-values search). When a

208

node further up the tree will not unify at all, every combination of children will be attempted before
this node is declared to be hopeless, which means that the search will spend a lot of time on this
useless sub-tree. This effect accounts for the very long search times which we observe in Table 8.2.

Search type
total num.

nodes searched
calls to setvalue

during search
search time
(CPU secs.)

All-paths 203,806 2,189,946 8.82
Branch-only 175,304 1,412,759 8.56
Branch-and-Bound 174,767 1,365,715 8.45

Table 8.3: Comparison of number of nodes searched and amount of unication work done for all-
paths, (best-value) branch-only, and branch-and-bound searches, with shallow rst-pass unication,
on the Catalyst ambiguity corpus (see Section 5.4).

Table 8.3 compares these searches on the parse forests generated by a rst pass parse which
uses the shallow interleaved unication described in Sections 4.3.1 and 7.4. These results are much
better — we can see that the shallow unication ltering is doing a very good job of removing the
parts of the parse forest which the search would have wasted a lot of time fruitlessly searching.

We can clearly see that both the branch-only and branch-and-bound searches are avoiding ex-
amining all of the nodes of the parse forest, and both variants are performing substantially fewer
unication operations (i.e. calls to setvalue) than the all-values search needs.

The bounding of the branch-and-bound only slightly reduces the number of unication opera-
tions performed over the branch-only search by some 3%. On the other hand, the run-time of the
branch-and-bound search is not signicantly better than the branch-only search. The extra calcula-
tion of the search bounds takes small additional amounts of time to perform, and the action of the
bounding and the possible under-estimate of the cost of some sub-trees may some extra effort as
well (see Section 8.2.5). All this extra effort is done in the time that is saved by performing 3%
fewer unications, so on these data there is no net improvement.

8.2.6 N-Best search

Because we have designed our Branch-and-bound search centered around the get-first-fs and
get-next-fs functions, it is natural for us to ask how much additional effort is required to nd
the next-best several unication values, in comparison to the effort to nd the best value.

Table 8.4 summarizes the additional amount of work required to extract the second through (up
to) thirtieth-best unication value, using the full branch-and-bound search. From this table, we can
see that the cost of extracting the n-best answers is relatively inexpensive. Finding the top three
unication values is only twice as expensive as nding the best value, and nding up to thirty best

209

Maximum n-best
Unication values

total num.
nodes searched

calls to setvalue
during search

search time
(CPU secs.)

time relative
to 1-best

1 174,767 1,382,824 8.33
2 264,223 1,782,497 14.08 1.69
3 315,064 2,010,934 16.62 2.00
6 393,087 2,338,569 20.63 2.48

10 449,358 2,597,434 23.83 2.86
20 516,518 2,930,944 27.92 3.35
30 552,507 3,120,056 30.13 3.62

Table 8.4: Comparison of effort to calculate n-best results for a variety of values of n on the Catalyst
ambiguity corpus. Work represented by number of nodes searched, amount of unication work
done, and total search time.

requires less than four times the time to nd the best answer.

The graph in Figure 8.17 presents the run-time results of Table 8.4 in graphical form. From this
graph we can see that the rate of increase in required time to nd the -best values is substantially
sub-linear in .

This effect is due to three main factors. The primary factor that is that not every sentence in
this test corpus has as many distinct readings as we are searching for in the limit. However, in this
corpus every sentence does have at least two readings. The comparison of required effort to nd the
second-best () and third-best () unication values shows that the memoization technique
implemented in the get-nth-fs function (Figure 8.12) is performing well.

Finally, the cost increase for over , compared to over , is due to
the optimization in the implementations for get-first-fs: if the best combination of children
unies, then this answer is returned without setting up any of the search mechanism. The full search
stack is only set up when the best combination of children does not unify, or when a second-best
answer is required.

Dynamic Dimensional Analysis of Search

Recall from Section 8.2.4 above, where we introduced backtracking search, that in our search ex-
pansion we expand by dimensions and points. Also recall that expanding by a dimension entails
increasing the current search limit for the dimension in question by one, and then generating all of
the combinations of points to ll out this expansion.

Finally, recall that we said that expanding by a dimension for a child-set with children involves
generating all combinations of search points in a -dimensional space. And that this is therefore

210

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

To
ta

l s
ea

rc
h

tim
e

(C
PU

 s
ec

s)
 fo

r t
es

t s
et

n: Maximum number of values found

Legend:
Shallow Interleaved Unification

Figure 8.17: Maximum number of unication values to nd versus search time (in CPU-seconds)
for nding those n-best values.

exponential in the number of children.

A reasonable question to ask is: how often does this occur in practice. In particular, how often
do we expand 3-or-more-dimensional children (i.e. have to generate a 2-or-more-dimensional slice
of points) in practice?

Table 8.5 shows the static distribution of the number of non-terminal symbols in the right-hand-
sides of rule in the KANT grammar. From this table, we can see that the vast majority of rules
contain at most two non-terminals. Simply reasoning from this distribution can be misleading,
however, because some of these rules may be used much more often than others, and we are mainly
interested in the dynamic behavior of the system.

In order to see how the system behaves in practice, we instrumented the function which expands
by a DIM and generates POINTs to count the number of children it is expanding over every time it
is called. We then re-ran the n-best test as above on the Catalyst ambiguity corpus.

Table 8.6 presents a summary of these counts. DIMs with sets of children of length were
expanded. (Although there is a one rule with ve non-terminal children in the KANT grammar, it
was not ever used in the processing of this test corpus.)

From Table 8.6 we can see that the dynamic behavior of the system is very favorable with respect

211

number of total number
non-terminals of rules

in right-hand-side in grammar
0 133
1 384
2 381
3 80
4 3
5 1

Table 8.5: Static distribution of the number of non-terminals in the right-hand-sides of the KANT
grammar rules.

Maximum number of children expanded by
n-best 1 2 3 4

1 6645 2743 205 20
69% 28.5% 2.1% 0.2%

2 58326 16097 1216 88
77% 21.2% 1.6% 0.1%

3 125333 33446 2515 168
6 220226 58643 4271 256

10 337685 90425 6372 353
20 484300 130213 8904 460
30 647467 174575 11648 575

Table 8.6: A comparison of the number of dimensions in DIMENSION expansions for the branch-
and-bound search, for a variety of n-best maxima. Percentages of the total number of counts are
shown in italics for the single-best and 2-best cases. Tests were run on the Catalyst ambiguity
corpus (see Section 5.4), using Shallow Interleaved Unication in the rst pass parse.

to the number of children participating in dimension expansions. For the single-best case, we are
expanding a node with a single child or two children most of the time — expansions of a space
covering 3 or more children only accounts for 2.3% of the total.

When the search is expanded to look for the two best over-all unication results, the distribution
becomes slightly more favorable; DIM expansions of 3 or more children only account of 1.7% of
the total number. For , the ratios of expansion stay approximately proportional to the
case.

From these results, we can conclude that even though our search algorithm is exponential in the
lengths of the rules, this is not a problem in practice.

212

8.3 Disambiguation Cost Calculator

As we have stated above, we opt to interleave the process of disambiguation into the process of cal-
culating the nal unication values, which is done after we have found a superset forest of possible
parse trees. Since the search, as described above in Sections 8.2.4 and 8.2.5, handles the task of
searching for the best parse, the problem of disambiguation is reduced to making sure that preferred
parses are scored ‘better’ than less-preferred ones.

This isolation of function reduces the difculty of creating the disambiguator, and allows the
disambiguation technique to be modied without worrying about the details of the search. In this
section, we examine the cost calculation function that drives the disambiguation process.

8.3.1 Algorithmic Requirements

In order to work with our search, there are two conditions that our cost calculator must meet:

1. The cost function must be estimable, and the estimate must never be greater than the actual
cost value.

2. The cost function for a sub-tree must be dependent on (or conditioned by) only the contents
of that sub-tree — it must not depend on the contents of any other sub-tree.

One important detail to keep in mind when creating such a disambiguation scoring system is that
one does not either select or rule out parses; rather, one penalizes less-preferred parses more than
more-preferred ones. Also, in order to maintain monotonicity one must never apply a bonus to some
particular parse, but rather one makes sure to penalize all the other choices. A clear understanding
of this is key to the successful implementation of a disambiguator in this system.

8.3.2 Useful disambiguators can be implemented within these criteria

In order to demonstrate that this is a reasonable framework for the implementation of disambigua-
tors, we implemented a non-trivial knowledge-based disambiguator modeled on the disambiguator
used in an earlier version of the KANT [87, 111, 90] system. Though the disambiguator described
in [90] is similar in nal result, the techniques used to reach this result are completely different.

For those more statistically inclined, we also sketch a method of incorporating a statistical dis-
ambiguator into this system.

213

An example knowledge-based disambiguator

One important class of disambiguators are those that are based on knowledge of the syntax of some
particular language. An example knowledge-based disambiguator has been implemented in this
system; the experimental results presented below include the use of this disambiguator.

The disambiguator is based on three heuristics proposed by Kimball [60] and Frazier [38].
Application of these heuristics to disambiguation in parsing was investigated by Whittemore and
Ferrara [159], Hindle and Rooth [47], and Mitamura, et al. [90]. Here we list them in order of
importance:

1. Certain prepositions, when applied to certain nouns, will prefer to attach to certain verbs over
an attachment to a close-by noun [159, 47, 90]. In Figure 8.7, VP could be selected over
VP if the triple was a preferred attachment set.

2. Near attachments are preferred over far ones [60, 47, 90]. Again referring to Figure 8.7, VP
would be preferred over VP by this criterion because the head-word of VP , namely , is 1
word away from the head-word () of the non-head child (NP). In contrast, the head-word
of VP (also) is 4 words away from the head-word () of non-head child PP .

3. Shallow productions are preferred over deep ones [38, 47, 90]. In Figure 8.7, VP , with a
maximum depth of 4 (VP VP NP PP N), would be preferred by this
criterion over VP with a maximum depth of 5 (VP NP PP NP PP
N).

The system maintains a disambiguation-cost structure for every successful production within the
parse forest. This record contains both the partial cost for a sub-tree, along with other information
that is of use to the disambiguation scoring system.

The cost of a given production is equal to the sum of the costs of its children, plus a penalty
for making an attachment. When any of the children nodes have a packed choice over sets of
grandchildren, the best choice of children is used for the score or the parent. Similarly, if the parent
contains a packed choice over sets of children, the score for the parent will be the best score for any
of its children.

The penalty for the attachment is assessed according to the guidelines above:

Of topmost importance, we have triples of Verb-Prep-Noun that prefer to associate together.
The way we persuade this to happen is to penalize any attachment of a PP that matches one
of these triples to anything other than a preferred verb.

214

We do this in the actual implementation by maintaining a set of tables. In the lexical look-up
pass, we save away the (SEM) slots of the unication values of all words. Whenever we
construct a PP, we look up these SEM values for both the Prep and the child object. (The
unication optimizer, described in Section 7.4.2 above, is told that the (SEM) slot is used
in order to prevent unications of this slot from being optimized away.) We then look up
this pair in a (hash) table of “interesting” verbs, and add the set (list) of verbs to part of the
disambiguation-cost information.

Finally, when attaching anything, we look to see if there is something in the appropriate
portion of the disambiguation-cost record. If so, we look to see if the (SEM) slot of the
lexical head of this production appears in the list in the disambiguation-cost record. If so, it
gets a small value (e.g. 0) added to the cost; if not, it gets a large value (e.g. 200). This value
is at least an order of magnitude greater than the multiplier on crossing-cost below.

At the middle level of importance, we prefer near attachments to far ones. We do this by
keeping track of the word-position of the lexical heads of all rules. Then, when attaching
elements of a production together, we add up the absolute value number of words between the
lexical head and every non-head element. This sum is multiplied by a middle-level multiplier
(e.g. 10) and added to the cost of the production.

At the lowest level, we prefer shallow productions to deep ones. We do this by adding a small
penalty (e.g. 1) for every production which is created.

Though this scoring system may seem complicated, it is actually quite straight-forward to imple-
ment and inexpensive. The core of the scoring component is under 300 lines of code, and calculating
the score costs less than 2% of the total run-time of the system.

Fitting a statistical disambiguator into this framework

The frame-work for this disambiguator is amenable to statistical as well as knowledge-based tech-
niques. As we have said in Section 8.1.2 above, it is quite useful to separate the calculation of
the disambiguation cost from the search itself, and that we can use any cost function which obeys
certain locality measurements outlined in Section 8.3. A nal requirement is that the cost must be
additive.

Although we implemented the reference disambiguation cost calculator in a knowledge-based
way, there is no a priori reason why we must do so. We could just as easily have implemented the
cost calculator in terms of likelihood.

215

In order to obey our locality constraints, we must frame the likelihood calculation in terms of
the (informal) equation:

node attachment node
child children node

child (8.1)

We can modify equation 8.1 by taking negative log probabilities. If we dene the function
as:

(8.2)

Then substituting this into our probability estimate gives us the familiar form of our disambigua-
tion cost:

node attachment node
child children node

child (8.3)

It is possible that other probabilistic disambiguation methods could be used within this frame-
work, so long as the ultimate cost function can be framed so as to meet the requirements given at
the beginning of this section.

8.3.3 Sensitivity of Search to Choice of Cost Function

The results shown above in Tables 8.3 and 8.4) were run using the cost calculator described in
Section 8.3.2. While these results are quite encouraging, we should question how dependent they
are to the choice of cost calculator.

In order to understand how sensitive the search is to the choice of cost calculator, we evaluated
the system using a variety of cost functions:

Full Knowledge-Based — This is the cost function described above in Section 8.3.2.

Crossings — For this cost function, the cost of any tree is equal to ten times the sum over the
non-lexical-head children of the number of words between the lexical head each child and the
lexical head of the tree, plus a penalty of 1 for each production in the tree. (This is exactly
second and third terms of the Full Knowledge-Based cost function without the Verb-Prep-
Noun triple PP attachment cost term.)

216

Size of Tree — For this cost function, the cost of any tree is equal to the number of nodes in
that tree.

Reverse Crossings — This cost function is like the Crossings cost function, except that we
select for the greatest number of crossings by subtracting the count of crossings from the
number of children times the total span of words for the tree. As a result, this function will
prefer trees with high numbers of crossings; completely the opposite action of the Crossings
cost function.

Cost function
total num.

nodes searched
calls to setvalue

during search
search time
(CPU secs.)

Full Knowledge-Based 174,767 1,365,715 8.45
Crossings 164,296 1,321,747 7.65
Size of Tree 164,256 1,344,632 6.85
Reverse Crossings 163,631 1,317,104 7.46

Table 8.7: Comparison of the search effort required for the branch-and-bound search using several
cost functions, test running on the Catalyst ambiguity corpus.

Table 8.7 shows the results of these comparisons. Although the run-times, number of nodes
visited, and number of calls to setvalue varies for these different cost functions, the variations
are not that great.

The cost function effects the run-time in two different ways. Directly, some cost functions (such
as the Full Knowledge-Based one) are more expensive to compute than others (such as the Size of
Tree function, which is of essentially trivial cost). Indirectly, the cost function can drive the search
to consider a greater number of choices before discovering the best one, which will also increase
computation.

In fact, this comparison shows that the Full Knowledge-Based cost function is somewhat worse
than the other functions both in terms of driving the search to discover an answer (a fully-unifying
tree) quickly, and in the raw cost to compute the function itself.

Due to the non-monotonic nature of unication — that some combinations of child nodes will
not successfully unify — it is important for the cost function to work in cooperation with the gram-
mar, rather than at odds against it.

In terms of raw speed, the best case situation for the post-parse search is a cost function which
guides the search to nd a completely unifying tree on the rst traverse of the parse forest down to
the individual leaves and back up.

In contrast, the search will run slowly if the cost function which carefully guides the search

217

to attempt to combine children, each containing many alternate deep trees, in ways which do not
ultimately unify. Such at-odds behavior would cause the search to waste substantial amounts of
time generating all combinations of the children’s sub-trees. In the worst case, such a cost function
would require the search to examine all possible parse trees before nding one that fully unies. Of
course, since there are an exponentially large (in the input length) number of possible trees for some
inputs, such a worst-case cost function would cause the search to spend exponentially large amounts
of time looking for an answer.

Ultimately, however, we cannot judge a cost function to be “good” simply in terms of reducing
the search time – a good cost function will select parses we prefer (based on some set of criteria
possibly involving run-time or possibly not) over parses we do not want.

218

Chapter 9

Evaluation of the System

“If you didn’t test it, it doesn’t work.”

— Bob Colwell, Intel

In the previous four chapters, we have examined this system in detail. We have discussed the
high-level design of the multi-pass architecture in Chapter 5, the rst-pass interleaved unication
backbone parser in Chapter 6, the optimizing unication compiler and shallow grammar generator
in Chapter 7, and the 1-best post-parse search with disambiguator in Chapter 8.

As part of this examination, we have investigated many of the aspects of this system in detail.
We have discussed the ambiguity problem, and seen how the design of the system attempts to
address the problems related to this phenomenon. We have seen the system successfully avoid these
problems for both our natural and articial development test corpora.

In this chapter, we will demonstrate some level of generality of our solution by testing the
system with unseen data – test data which we have not previously run though the system, and for
which we will not attempt to ‘tune’ the system. These tests will demonstrate that our system has
not become accidentally “trained” to the development test conditions, but instead implements more
general solution to the problems we have pointed out.

For this demonstration, we present two sets of experimental results. For the rst evaluation, we
examine the behavior of the system, running with the same grammar we used for development, on
new data (i.e. data which we have not previously used). This evaluation will demonstrate that our
techniques are not inadvertently ‘trained’ on the development data, but work in the target domain
generally.

For the second evaluation, we use new test data on a new test grammar. This test examines the

219

behavior of our techniques much more generally, extending beyond the domain we have developed
our techniques for into a different, and only partially related domain.

9.1 Experimental Methodology and Conditions

All of the tests described in this document were conducted on an Apple Macintosh (R) PowerBook
(R) G3-series (“WallStreet”), updated with a PowerLogix BlueChip G3 CPU card. The test machine
has a CPU clock rate 466 MHz, 1 MB of level-2 cache running at half-speed (i.e. 233 MHz), and
288 MB of main memory on a 64-bit-wide bus running at 66 MHz [79]. The test machine ran
MacOS version 9.1.

The parser was compiled and run using Macintosh Common Lisp version 4.2, with options
(speed 3) (safety 3) (space 0) (compilation-speed 0).

9.2 Test on the Catalyst System

We wish to assure that the optimizations we have made are not specic to our development test set,
the Catalyst ambiguity corpus. In order to determine whether these optimizations are effective for
the KANT system in general, we tested our parser running with the KANT grammar on a previously-
unseen corpus of sentences.

9.2.1 About the KANT grammars

For this test we used the same grammar as for the system development. The KANT grammar [20, 89,
110, 111] has a total of 982 rules, of which 19 are duplicates of the context-free parts with different
unication rules. There are 544 distinct context-free symbols in the back-bone of the grammar. The
grammar has an average of 4.36 unication equations per rule.

This grammar is designed to handle a substantial, though restricted, subset of American English,
as well as SGML-based mark-up indicators.

9.2.2 About the Catalyst 10k corpus

As we mentioned in Chapter 1, the KANT system parser is used to check conformance to a con-
trolled language [87, 111]. This system has been deployed at a manufacturer of heavy equipment for

220

over a decade now [55]. In order to help improve the performance of the system, the manufacturer
collected a number of heavy equipment manuals in 1997.

For nal testing, we selected 10,000 sentences at random from among these data. The chosen
sentences range in length from 1 to 100 words, with an average length of 15.97 words per sentence,
and a median length of 14 words. The test set data is a total of 977965 characters long, for an
average of 97.8 characters per sentence.

Sample Test Sentences. The following ten sentences were chosen at random from out of this
10,000 sentence test set.

For 3-phase applications, the terminal blocks are labeled
<label>L1</label>, <label>L2</label>, and <label>L3</label>.

Maximum Inlet Manifold Air Temperature

Pressure tap for<?Pub Tag AddTerm> venturi throat pressure
<?Pub /AddTerm>(front of the valve body)

<pubref><pubtype>Special Publication</pubtype><media><formno>
JEHP1026</formno></media><pubtitle>Information and Requirements
Sheet</pubtitle></pubref>

Refer to <pubref><pubtype>Disassembly and Assembly</pubtype>
<media><formno>RENR1466</formno></media><ie-topic><pubtitle>
Vane Pump (Hydraulic and Steering) - Install</pubtitle>
<ieref controlno="i00995088"></ie-topic></pubref>.

Refer to <pubref><pubtype>Operation and Maintenance
Manual</pubtype><ie-topic><pubtitle>S·O·S Oil
Analysis</pubtitle></ie-topic></pubref> for information that
pertains to obtaining a sample of the engine oil.

Replace any O-ring seal that is worn or damaged.

<salesmdl>D9R </salesmdl>(all models)

The backup alarm remains disconnected.

The oscillation and delay of the weld bead allows the same
size of electrodes to apply wider, more uniform weld beads.

221

9.2.3 Results on the Catalyst corpus

Parse type Search type
parse
time

post-parse
search time

Total
time

Fully-Interleaved n/a 348.72 n/a 348.72
Restricted all-values 309.78 43.73 353.51
Shallow single-best 309.41 44.21 353.62
Wild-carded all-values 303.81 33.76 337.57
Shallow single-best 303.03 35.05 338.08

Table 9.1: Test on the Catalyst 10,000-sentence evaluation corpus: break-down of total run times
for Interleaved Unication, and both Restricted and Wild-carded shallow unication; each with
all-values and single-best-value Post-Parse Search. Variations in parse times for identical parse
congurations are due to sampling noise.

Parse type Search type Number of nodes:
Created Searched

Fully-Interleaved n/a 2,374,027 n/a
Restricted all-values 2,660,450 941,775
Shallow single-best 2,660,450 838,353
Wild-carded all-values 2,388,946 796,385
Shallow single-best 2,388,946 707,118

Table 9.2: Test on the Catalyst 10,000-sentence evaluation corpus: total number of nodes (i.e. inac-
tive arcs) created in the parse, and searched.

Table 9.1 shows the run-time results for the Catalyst 10,000-sentence test corpus. These re-
sults compare performing a fully-interleaved unication parse with combining either a Restricted
or Wild-Carded shallow unication parse with either an all-values or single-best-value post-parse
search.

These results are consistent with those of Table 5.1 of Chapter 5: on average it is 3.1% faster to
parse using the wild-carded shallow grammar and then search for either one or all complete uni-
cation values than to perform a single heavy-weight interleaved unication parse. This advantage is
statistically signicant, with P = 1.39794E-67 for a single-tailed, matched-pair T-test.

These results also show that there is a slight but statistically signicant run-time advantage
to using the wild-carded version of the shallow unication grammar over using straight negative
restriction on this parser for this corpus. (For an explanation of these conditions, see Sections 5.3.1
and 7.2 above.)

Table 9.2 shows the number of nodes created in the parse pass, and searched in the post-parse
search for these same ve parser congurations, and Table 9.3 shows the number of calls to the

222

Parse type Search type Number Calls to setvalue:
parse search total

Fully-Interleaved n/a 39,459,589 n/a 39,459,589
Restricted all-values 16,046,039 11,366,785 27,412,824
Shallow single-best 16,046,039 6,459,305 22,505,344
Wild-carded all-values 26,714,294 7,537,036 34,251,330
Shallow single-best 26,714,294 5,304,235 32,018,529

Table 9.3: Test on the Catalyst 10,000-sentence evaluation corpus: total number of calls to set-
value in parse and post-parse search.

setvalue function. These results are also consistent with our development test ndings: the Wild-
Carded shallow grammar requires more unication effort (here measured as calls to setvalue)
than the Restricted shallow grammar, but the parse forests produced are smaller for the Wild-Carded
grammar, resulting in signicantly fewer parse forest nodes being searched to compute the nal
unication value or values.

Figure 9.1 shows a sentence-by-sentence comparison of the net CPU time requirements of two
parser congurations. For this graph, the simple single-pass Full Interleaved Unication parser
conguration is compared against the two-pass technique using Wild-carded Shallow Unication
and a single-best post-parse search. Each point represents a single sentence; the CPU time required
to parse using the single-pass Full Interleaved Unication conguration determines the horizontal
offset, and the time required for the two-pass conguration determines the vertical offset.

This gure also includes a linear trend line, , with goodness-of-t measure
, indicating that this linear equation ts the data quite well. Points to the right and

below the diagonal are sentences for which the one-pass parser is slower than the multi-
pass single-result parser, whereas points to the left and above are sentences for which the one-pass
parser was faster. As we have seen above in Table 9.1, this two-pass conguration is 3.1% faster
than the one-pass conguration on average. This is a signicant difference (P = 1.39794E-67 for a
single-tailed, matched-pair T-test).

9.2.4 Conclusions from this test

The main conclusion we can draw from the results of this test is that shallow unication with post-
parse search is competitive with straight-forward interleaved unication parsing. In fact, we have
seen that it is very slightly faster on average.

We have also seen that for some outliers, the shallow parse plus single-value search strategy
avoids the ambiguity problems, and even in a extreme outlier case where this strategy suffers from

223

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

CP
U

Ti
m

e
(s

ec
s)

 -
Sh

al
lo

w
un

ific
at

io
n

pa
rs

e
wi

th
 b

es
t s

in
gl

e
un

ific
at

io
n

po
st

-s
ea

rc
h

CPU Time (secs) - Interleaved unification

lines:
equality: x = y
Trendline: 0.8797 x + 0.0031

Figure 9.1: Complete test on the Catalyst 10,000-sentence evaluation corpus: Scatter-graph of parse
time for full interleaved unication parse vs. wild-carded shallow unication parse plus single-best
search times.

a blow-up as well, it is still much faster than doing a single fully-interleaved unication parse.

9.3 Tests on a Broadcast News grammar

Along with considerations of tuning to the test data, we might also ask to what extent our system
is tuned specically for the development grammar. In this section, we examine the behavior of the
parser on a grammar other than the one we have developed for.

The domain for this test is the parsing of closed-captions from a business news broadcast [112].
This was chosen because it is a real, rather than created, domain, with quite a bit of richness in the
language used.

For these next results, it is important to note that we have not attempted to correct, or even test
the behavior of our system on this grammar prior to the running of these tests. The purpose of this
particular evaluation is to determine how general our techniques are in practice, independent of the
actual details of the grammar.

224

9.3.1 About the Broadcast News Grammar

The Broadcast News grammar, built by Krzysztof Czuba [29], contains 272 rules and approximately
3000 individual unication equations. This grammar is substantially smaller than the KANT gram-
mar, though it is still non-trivial.

This grammar was also developed with different goals than the KANT grammar used throughout
the development of this system. The KANT grammar was developed to conform to a carefully
controlled subset of English [55]. In contrast, the Broadcast News grammar was designed for wide-
coverage of unrestricted American English; as a result it is much more prone to ambiguity than the
KANT grammar is.

9.3.2 Test sentences

The test set is 53 sentences, also provided by Krzysztof Czuba. These were collected via a closed-
captioning reader from the “Market Wrap” cable television broadcast in 1997, and only slightly
“cleaned-up” to remove obvious mistranscriptions. The sentences range in length from 2 through
38 words. Of these, 40 parse; 13 do not.

These test sentences are not particularly difcult, other than in length. Most generate only one
or two distinct F-structures, though three of them generate over 90 F-structures.

The following example sentences are taken from out of this test set:

TOSCO sealed a deal to buy the west coast operations of UNOCAL
also known as "76 Products" company for about $1.4 billion.

TOSCO will become the nation’s largest independent refinery.

UNOCAL says it will use some of the proceeds to pare down debt
and will consider a stock repurchase plan.

9.3.3 Results on Broadcast News transcriptions

Table 9.4 shows the run-time results for the Broadcast News 53-sentence test corpus. These results
compare performing a single-pass fully-interleaved unication parse with four combinations of two-
pass strategy. These four combinations are the result of combining either a Context-Free (only) parse
or Wild-Carded shallow unication parse with either an all-values or single-best-value post-parse
search.

225

Parse type Search type
parse
time

post-parse
search time

Total
time

Fully-Interleaved n/a 2.11 n/a 2.11
Context- all-values 9.37 1.09 10.46
Free single-best 9.35 10.47 19.82
Wild-carded all-values 1.94 0.38 **2.32
Shallow single-best 1.93 0.39 **2.32

Table 9.4: Test on the Broadcast News 53-sentence evaluation corpus: break-down of total run times
for Interleaved Unication, and both Restricted and Wild-carded shallow unication; each with all-
values and single-best-value Post-Parse Search. **Note that for shallow unication, one sentence
incorrectly failed to parse. This failure is examined in Section 9.3.5. Variations in parse times for
identical parse congurations are due to sampling noise.

Parse type Search type Number of nodes: Number Calls to setvalue:
Created Searched parse search total

Fully-Interleaved n/a 7,057 n/a 456,117 n/a 456,117
Context- all-values 25,837 103878 41,354 323,186 364,540
Free single-best 25,837 259674 41,354 586,272 627,626
Wild-carded all-values 8,968 4442 260,131 119,719 379,850
Shallow single-best 8,968 4681 260,131 85,664 345,795

Table 9.5: Test on the Broadcast News 53-sentence evaluation corpus: break-down of: total number
of nodes (i.e. inactive arcs) created in the parse, and searched; total number of calls to setvalue
in parse and post-parse search.

It is important to note that in this test, 40 of the 53 sentences parse, and 13 correctly fail to parse
in all congurations. However, one additional sentence fails to parse for both shallow unication
congurations.

This sentence fails in the shallow rst-pass parse itself. This failure demonstrates that the uni-
cation subsetting system is somewhat dependent on the grammar itself. We investigated this failure
briey, and determined that there is a subtle interaction between grammar features which the sub-
setting optimizer fails to account for, causing incorrect behavior for this grammar. We discuss this
exceptional case in Section 9.3.5 below.

Aside from this failing sentence, the remaining results are encouraging. Without any effort to
either tune the grammar to this parsing system or tune the optimizer to this grammar, we are getting
acceptable results. Both of the shallow two-pass congurations are slower than the full interleaved
unication conguration, but only by 10%, a small additional cost. The shallow unication grammar
is creating parse forests which are 27% larger on average than those created by the Full Interleaved
Unication conguration.

226

The Context-Free rst-pass congurations show a stark contrast with the shallow unication
system: both Context-Free rst-pass congurations are worse than performing a Full Interleaved
single-pass parse by at least a factor of ten. This slow-down is principally due to the substantially
larger parse forests created by the Context-Free parse. These are larger than the parse forests created
by the full interleaved unication parse by a factor of 3.7. Creating such large parse forests not only
takes additional time in the rst-pass parse itself, but also creates much more work for the second-
pass search to do, resulting in slower times for each pass.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

CP
U

Ti
m

e
(s

ec
s)

 -
Sh

al
lo

w
un

ific
at

io
n

pa
rs

e
wi

th
 b

es
t s

in
gl

e
un

ific
at

io
n

po
st

-s
ea

rc
h

CPU Time (secs) - Interleaved unification

Trendline equations:
1.0066*x+0.0038

Figure 9.2: Test on the Broadcast News 53-sentence evaluation corpus: Scatter-graph of parse
time for full interleaved unication parse vs. wild-carded shallow unication parse plus single-best
search times.

Figure 9.2 illustrates a sentence-by-sentence comparison of the net CPU time requirements of
two parser congurations. For this graph, the simple single-pass Full Interleaved Unication parser
conguration is compared against the two-pass technique using Wild-carded Shallow Unication
and a single-best post-parse search.

These data conrm our conclusions based on the over-all run-times; aside from the failure of one
sentence, the shallow unication conguration is performing acceptably on a completely untuned
system.

227

9.3.4 Test on Articially Bad Data

In order to investigate the worst-case behavior of the system on the Broadcast News grammar, we
once again employ the PP-attachment ambiguity test. For these data, the test was of the form:

That deal will be in stock .

Where the prepositional phrase in stock is repeated one or more times.

Results on this test.

0

0.5

1

1.5

2

2 4 6 8 10 12

Ru
n-

tim
e

(C
PU

 s
ec

s)

Number of PPs

Legend: (top to bottom at 2 PPs)
Context-Free parse + 1-best search
Context-Free parse + All-Values Search
Shallow Unification + All-Values Search
Shallow Unification + 1-best search
Fully-interleaved Unification

Figure 9.3: Net run-time requirements for the prepositional phrase attachment test on the Broadcast
News grammar for a variety of conditions (see Legend above).

Figures 9.3 and 9.4 show the results of running the system with the Broadcast News grammar
on the prepositional phrase attachment case, with run-times shown on linear and logarithmic scales
respectively.

From Figure 9.3, we can see that the Context-Free parse followed by best single-value search
conguration is clearly the worst, suffering a blow-up after 6 prepositional phrases.

The three all-values congurations: the single-pass Fully Interleaved Unication, and both

228

0.01

0.1

1

10

2 4 6 8 10 12

Ru
n-

tim
e

(C
PU

 s
ec

s)

Number of PPs

Legend: (top to bottom at 2 PPs)
Context-Free parse + 1-best search
Context-Free parse + All-Values Search
Shallow Unification + All-Values Search
Shallow Unification + 1-best search
Fully-interleaved Unification

Figure 9.4: The same net run-time requirements for the PP-attachment test on Broadcast news as
shown in Figure 9.3. In this graph, the run-time is plotted on a logarithmic scale.

Context-Free and Shallow Unication rst-pass parses followed by an all-values search, suffer a
blow-up at the same point. Beyond 8 prepositional phrases, none of these congurations exhibit
acceptable run-time performance.

Finally, the shallow unication parse plus best single-value post-parse search blows up beyond
10 prepositional phrases. From Figure 9.4 we can see that this blow-up is more gentle than for
the all-values conguration, and the “knee” is further out. For the 8 PP case, the shallow parse
plus single-best search requires about a quarter of the run-time required by the single-pass full
interleaved unication parse. That said, this conguration is still suffering from a blow-up in the
unication space. While the single-value search helps reduce the effect of the blow-up for this
grammar, it does not eliminate it entirely.

We investigated this blow-up in order to determine why it was occurring for the single-value
search case. One of the effects we discovered was that the post-parse search was spending a lot of
time trying out (partial) parse structures which were desirable from the stand-point of the disam-
biguator, but eliminated by the unication equations of the grammar. Worse, these structures were
eliminated based tests for deep structure – exactly the kind of tests which we eliminate in the rst
pass. This caused the search component to spend a lot of time pursuing fruitless search paths.

229

A second reason for the blow-up was related to the multiple-value blow-up which occurred in
outliers which we found in the Catalyst 10,000-sentence test (Section 9.2 above). Several rules in
the Broadcast News grammar contain a sequence of disjunctions. Evaluation of each of these rule
disjunctions may cause large numbers of data disjunctions to be created (see Section 7.1.1 above).

We found that it is benecial to “re-pack” disjunctions, so as to remove redundant elements from
them whenever they are created. For example, we would wish to replace the value:

(*OR* a b c a b)

with the value:

(*OR* a b c)

For the KANT system, we found that we could do an adequate job of eliminating redundancies
by simply testing for equality by using the LISP equal predicate.

This equal test is exact for atomic values, and in the KANT grammar it is a sufcient test even
for complex values. While it does not eliminate all of the redundancy in the complex values, we
found that it does reduce most of this redundancy in practice.

Not so for the Broadcast News grammar. The evaluation of unication expressions tends to
rearrange items in an unordered set. The evaluation of different clauses in a rule disjunction may
order these rearrange the values of otherwise equivalent unication values in different ways. The
sequences of disjunctions seem to create an explosion of mostly equivalent, but differently-ordered
unication values. Because we are not using an exact test for the redundancy removal, these equiv-
alent structures are not recognized as such in this grammar.

That said, adopting an exact unication equivalence test is not without cost. In our system, such
a test would be substantially more computationally expensive than the LISP equal predicate, and
the redundancy reduction is performed quite often for both of these grammars. Since more exact
redundancy removal was not an issue for the KANT grammar, we have not fully investigated the
computational impact of exact redundancy removal.

9.3.5 Outliers in the Broadcast News corpus

In Section 9.3, we observed two different kinds of exceptional behavior when our system was used
with the Broadcast News corpus. There are two directions we could take to further improve the
performance of our system on this domain.

230

The rst option for improvement is to modify the grammar to be more compatible with the multi-
pass parsing strategy. This is certainly possible, and even desirable due to the preliminary, proof-of-
concept nature of the grammar. Modications to make this grammar more amenable to the shallow
parsing strategy would pay particular attention to the use of shallow versus deep features, with an
understanding that deep structure tests are deferred to the second pass, and thus are expensive.

The second direction we could take would involve modifying this system to be more compatible
with this grammar. These modications would specically include further work on the shallow
unication calculator to better handle this grammar, with particular attention paid to the sentence
which incorrectly fails to parse.

The longer-term improvement most likely to yield improved performance would be extending
the search to use more top-down information. In investigating the unfavorable behavior of the
prepositional-phrase attachment test, we found that the post-parse search was spending a lot of time
trying out (partial) parse structures which were desirable from the stand-point of the disambiguator,
but eliminated by the unication equations of the grammar. Worse, these structures were eliminated
based on tests for deep structure – exactly the kind of tests which we eliminate in the rst pass.

To take better account of these tests, we would have to include the use of more top-down infor-
mation, both unication values and disambiguator cost information, in the post-parse search.

We found that including top-down constraints in the search was well beyond the scope of this
work; the reasons for this are explained in Section 10.3.2, on future research directions, below.

9.3.6 Conclusions from the Broadcast News tests

Applying our techniques, without any grammar-specic specialization, to this domain is clearly
extending the useful range of performance.

While our techniques do not simply avoid all possible blow-ups, they were not in fact designed
to do so. Unication is a very powerful technique, and while it is possible to reduce the negative
impact of the interaction of some unication features, it is not possible to eliminate them entirely.

231

9.4 Retrospective Examination

In the previous sections, we have seen that we have met our major goals for this system. Since
much of the development effort of the system concentrated on performance, one might ask how
much improvement we have made over the course of development.

In this section, we look at this question from three different angles. First, we will briey compare
this system to the GLR version 8-4 system of Tomita et al. [155]. After this internal comparison,
we examine a summary of improvements which had the greatest impact on average-case run-time.
Finally, we examine the performance of several worst-case sentences on a very early version of the
system and on the latest version in order to see how well we have done at xing the outlier problem
for several known cases.

9.4.1 Comparison to GLR

Since this system was designed as a functional replacement for Tomita’s (extended) GLR parser, a
comparison between the two parsers is inevitable.

A direct comparison between these two parsers was complicated by the fact that we have not
ported the complete GLR system to the Macintosh test environment. As a result, to compare the
relative speeds of these two parsers, we will have to make a sequence of approximations.

The most recent test of GLR which we performed was in December of 1999. For this test, GLR
version 8-4 [155] 5382.40 CPU-seconds to run the complete development test-set (see Section 5.4.1
above) on a Sun IPX workstation, with a 40 MHz processor, 64 MB of memory, running Lucid
Common LISP 4.0.

In January of 2001, the fully interleaved conguration of an earlier version of this system took
1243.8 CPU-seconds to run on this same Sun workstation. The same conguration took 946.7
CPU-seconds on a Macintosh PowerBook 2400c with a 180 MHz PowerPC 603e processor.

Later, in July of 2001, a different previous version of this system took 513.35 CPU-seconds turn
on the PowerBook 2400c, and also took 87.48 CPU-seconds on the Macintosh PowerBook G3 with
a 466 MHz PowerPC processor (the nal test platform).

On the basis of these numbers, we can derive an approximate comparison of the speeds of these
two machines:

Mac 603e-180 1.31 times faster than Sun IPX.

232

Mac G3-466 5.87 times faster than Mac 603e-180.

Therefore Mac G3-466 approximately 7.7 times faster than Sun IPX.

As a result, we can fairly safely assume that GLR v. 8-4 would require approximately 700
CPU-seconds to run on the Mac G3-466 ().

As reported in Table 5.1 of Chapter 5, the fully interleaved conguration of the nal system took
a total of 82.29 CPU-seconds to parse the development test corpus.

Therefore, the fully-interleaved conguration of this system is approximately 8.5 times faster
than GLR version 8-4.

9.4.2 Summary of Improvements

Table 9.6 shows the over-all cumulative effects of optimizations to the unication system. From
this table, we can see that most of our improvements in average run-time performance were due to
improvements in the handling of disjunctions in the unication system.

Performing this retrospective evaluation revealed an interesting bug in the original unier. The
original unier from the GLR version 8-4 code [155] had a hidden dependency on the LISP compiler
used to run it (Lucid Common LISP). When we back-ported this old unier into our system, we
discovered that many more sentences (61) in our development test-set failed due to computational
blow-ups than originally occurred with the earlier GLR-based system.

Because the nal system does not suffer any sort of blow-up for these sentences, we can observe
a 4.2% greater coverage simply due to this effect.

233

Unier Search Number of Parse Search Total
type type Sents Parsed Time Time Time

Original
unier:

Fully-Interleaved
Unication 1363 1324.62 n/a 1324.62

Always
Unpacking

Shallow Unication,
all-paths search 1386 176.83 1973.20 2150.03

PUSH
operator

Shallow Unication,
single-best search 1422 175.84 68.06 243.90
Fully-Interleaved

Unication 1404 849.89 n/a 849.89
Conditional OR
Data Unpacking

Shallow Unication,
all-paths search 1408 170.91 442.47 613.38

PUSH
operator

Shallow Unication,
single-best search 1423 169.82 39.31 209.13
Fully-Interleaved

Unication 1423 68.35 n/a 68.35
No

Data Unpacking
Shallow Unication,

all-paths search 1423 58.90 8.82 67.72
PUSH

operator
Shallow Unication,

single-best search 1423 58.89 8.45 67.34
Final

unier:
Fully-Interleaved

Unication 1423 68.79 n/a 68.79
No

Data Unpacking
Shallow Unication,

all-paths search 1423 58.88 8.93 67.81
no PUSH

(precompilation)
Shallow Unication,
single-best search 1423 58.97 8.51 67.48

Table 9.6: Comparison of four behaviors of unication system: the original behavior of the uni-
cation system from GLR [155] (updated only to correctly handle shallow unication features),
Only performing unication data disjunction unpacking to handle conditional OR operators, with
unwinding conditional ORs in the grammar preprocessing, and the nal conguration: unwinding
conditional ORs and PUSH operators in the grammar preprocessing.
Results are total run time for Interleaved Unication, Shallow Unication plus All-Paths Post-Parse
Search, and Shallow Unication plus Single-best Post-Parse Search, on the Catalyst ambiguity de-
velopment corpus (see Section 5.4). All sentences were run with a 10-CPU-second time-out.

234

9.4.3 Improvements for Selected Worst-Case Sentences.

We have presented a number of analyses of over-all performance of the system. In this section we
analyze several particular test sentences in order to better see the improvements in the behavior of
the system in detail.

For this detailed examination, we will look at a set of problematic sentences, and examine the
behavior of the parser on these sentences. We will examine four versions of the unication system,
concentrating on the handling of disjunctions and multiple-value PUSH commands because most of
the extremely bad behavior of early versions of this system were due to poor handling of these two
features of the unier.

Disjunctions within unication values are typically generated either through the packing of am-
biguous rules or the evaluation of a unication rule disjunction. As we argue in Sections 7.2 and
7.3.1 above, this unpacking is extremely dangerous. To see this in practice, we investigate the
behaviors of these example sentences on four different unication system congurations:

The original behavior of the unication system from GLR [155] (updated only to correctly
handle shallow unication features). In the original KANT unication system, these data
disjunctions would be “unpacked” before evaluating any unication rule that referenced a
value within the scope of the disjunction.

Only performing unication data disjunction unpacking to handle conditional OR operators.
All other data disjunctions are handled by traversing the disjunctive trees in-place.

Unwinding conditional ORs in the grammar preprocessing, so that no data disjunctions are
unwound. No special handling of multiple-value (PUSH) unication equations.

Final unication system: unwinding conditional ORs and re-writing of PUSH operators in
the grammar preprocessing.

Moderate PP ambiguity

The rst set of sentences we examine demonstrate a moderate level of Prepositional Phrase attach-
ment ambiguity, and the dangers of unpacking data disjunctions:

A. There is a makeup valve <callout>22</callout> for each line of
output oil.

235

B. Bores in the block for all camshaft bearings except front
bearing

C. Operate the engine in gear at low idle rpm for 5 minutes.

These tree sentences exhibit a moderate level of ambiguity: sentences A and B each contain
two PPs, and sentence C contains three. While these can be considered simple sentences, all are
problematic for the original unier.

Unier Search Sentence Number Num. Calls to Total Parse +
type type Number of Parses setvalue Search Time

Original A 97 209,586 112.175
unier Fully-Interleaved B timeout 600

C timeout 600
A 7 7,220 0.099

Conditional OR
Data Unpacking Fully-Interleaved B 16 10,524 0.209

C 188 138,919 96.20
Fully-Interleaved A 1 4,336 0.037

B 4 5,665 0.041
C 8 12,049 0.075

Final
unier Shallow Unication A 1 3,702 0.073

1-best search B 1 4,649 0.073
C 1 6,400 0.101

Table 9.7: Comparison of unication congurations on example sentences A,B,& C:
A. There is a makeup valve callout 22 /callout for each line of output
oil.
B. Bores in the block for all camshaft bearings except front bearing
C. Operate the engine in gear at low idle rpm for 5 minutes.
Results are for either Interleaved Unication, or Shallow Unication plus Single-best Post-Parse
Search as indicated.

We can see from Table 9.7 that all three exhibit a blow-up for the original unier.

Removing the unication unpacking operations for all but Conditional OR handling substan-
tially helps, allowing sentences A and B to each parse in under a quarter second of CPU time.
Sentence C remains problematic, however. Much of the CPU time goes into handling attachment
ambiguities due to the nal PP, and a bad interaction between the attachment ambiguity and a
multiple-value assignment of the PP structures.

Removing all data unpacking from the unier by precompiling out the Conditional ORs and the
multiple-value pushes shows its worth for these sentences, allowing all of them to parse in a small

236

fraction of a second. Further, applying this precompilation substantially improves the parsing speed
for each sentence.

Multiple-value Unication Problems

As we mentioned in Section 7.3.3, we discovered a problem related to multiple-value assignment in
the unication system. Our next example sentence is one of the two test sentences which allowed
us to discover this problem:

D. The possible sources of positive voltage on connector
<code>J1</code> are contacts <code>J1</code>, <code>J4</code>,
<code>J5</code>, <code>J6</code>, <code>J10</code>,
<code>J11</code>, <code>J12</code>, <code>J13</code>,
<code>J14</code>, <code>J15</code>, <code>J16</code>,
<code>J17</code>, and <code>J19</code>.

In this sentence, there is no particular ambiguity problem. However, the unication system
handles the long string of conjoined elements through the use of a multiple-value PUSH assignment.

Unier Search Number Num. Calls to Total Parse +
type type of Parses setvalue Search Time

Original
unier Fully-Interleaved 9 40,774 0.836

Conditional OR
Data Unpacking Fully-Interleaved 9 39,061 0.273

Fully-Interleaved 1 2,135,719 3.883
EOR

Precompilation
Shallow Unication

1-best search 1 540,921 1.058
Fully-Interleaved 1 12,019 0.095

Final
unier

Shallow Unication
1-best search 1 9,749 0.111

Table 9.8: Comparison of unication congurations on example sentence D:
The possible sources of positive voltage on connector code J1 /code
are contacts code J1 /code , code J4 /code , code J5 /code ,
code J6 /code , code J10 /code , code J11 /code ,
code J12 /code , code J13 /code , code J14 /code ,
code J15 /code , code J16 /code , code J17 /code , and
code J19 /code .

Results are for either Interleaved Unication, or Shallow Unication plus Single-best Post-Parse
Search as indicated.

Table 9.8 shows an interesting facet of the development effort: xing the disjunction unpacking
caused a problem with multiple-value handling that did not previously exist.

237

When run with the original unier, this sentence parses fairly quickly. Unpacking data dis-
junctions only for the handling of Conditional ORs shows a further benet, giving a factor of three
speed-up for sentence.

Unlike most of the other sentences, however, removing all unpacking by precompiling the Con-
ditional ORs out of the grammar does not help, but substantially hurts the parser’s performance on
this sentence, resulting in a factor of over 14 slow-down of the parser.

Removal of the multiple-value PUSH equations, as described in Section 7.3.3, improves the
system for this sentence once again. The combination of this technique and the precompilation
of Conditional ORs improves the run-time and reduces the number of calls to setvalue by a
substantial amount.

Extreme PP Ambiguity

Our nal example demonstrates extreme prepositional phrase and subordinate clause attachment
ambiguity:

E. A load sensing system provides a constant flow for a
given directional control spool position by maintaining
a constant pressure difference across the orifice that
is made by the directional control spool.

This sentence contains a combination of prepositions for, by, and across, that, which can either
be a preposition or a subordinating conjunction in the KANT grammar, and three complex noun
phrases.

This sentence caused the original parser conguration to time out. In order to better understand
the behavior of the parser, we also examined two simplied versions of this sentence. For each of
these, we removed some portion of the end of the original sentence:

E1. A load sensing system provides a constant flow for a
given directional control spool position by maintaining
a constant pressure difference across the orifice.

E2. A load sensing system provides a constant flow for a
given directional control spool position by maintaining
a constant pressure difference.

238

Table 9.9 shows a summary of results for attempting to parse the original sentence, as well as
the two simplied variations of it.

The original sentence proved to be too hard for the parser running with either the original unier,
or the unier which only unpacked data disjunctions for handling of Conditional ORs. The behavior
of the parser while running each of the two simplied sentences hints at the reason for this failure:
the addition of the phrase “across the orice” causes the parser to take over six times as long, and
produces over 3.5 times as many top-level unication values for each of these two conditions. Close
examination of these unication values revealed that they were largely redundant, but structured in
such a way as to obscure this redundancy from the duplicate removal code in the parser.

In contrast, the parser running with Conditional OR precompilation shows a marked difference
in behavior. The original sentence, which had required far too much time and memory to compute
for the early congurations, now requires only a quarter CPU-second to parse, and the redundant
unication values have been eliminated.

Finally, the addition of multiple-value PUSH removal further aids the parsing speed of this
sentence when the system is set to perform a shallow parse followed by a 1-best post-parse search.

Conclusions from Example Sentences

All of these sentences highlight some particular aspect of improvement to the system by the removal
of a problematic case. While each sentence was chosen in order to highlight some improvement,
they were all taken from real data rather than being articially constructed.

The results for these sentences highlight the over-all improvements shown in Table 9.6: coverage
has been improved by 4.2%, parse times have been reduced by as much as a factor of 20, and most
importantly, no known outliers remain.

239

Unier Search Sentence Number Num. Calls to Total Parse +
type type Number of Parses setvalue Search Time

Original E2 198 83,140 6.321
unier Fully-Interleaved E1 771 187,582 42.315

E timeout 600
E2 306 85,099 6.329

Conditional OR
Data Unpacking Fully-Interleaved E1 1071 184,662 38.841

E timeout 600
Fully-Interleaved E2 4 17,039 0.124

E1 8 20,027 0.141
E 16 43,007 0.254

EOR
Precompilation Shallow Unication E2 1 11,228 0.121

1-best search E1 1 12,928 0.134
E 1 20,129 0.223

Fully-Interleaved E2 4 17,191 0.121
E1 8 20,179 0.139
E 16 43,227 0.253

Final
unier Shallow Unication E2 1 11,232 0.146

1-best search E1 1 12,932 0.160
E 1 20,133 0.247

Table 9.9: Comparison of unication congurations on example sentence E, and two simplied
variations of it:
E2. A load sensing system provides a constant flow for a given direc-
tional control spool position by maintaining a constant pressure differ-
ence.
E1. A load sensing system provides a constant flow for a given direc-
tional control spool position by maintaining a constant pressure differ-
ence across the orifice.
E. A load sensing system provides a constant flow for a given directional
control spool position by maintaining a constant pressure difference
across the orifice that is made by the directional control spool.
Results are for either Interleaved Unication, or Shallow Unication plus Single-best Post-Parse
Search as indicated.

240

Chapter 10

Conclusions and Future Directions

After long days of training the result begins to tell and the beast is faced round,
A nature so wild and ungoverned is nally broken, he has become gentler;
But the tender has not yet given him his full condence,
He still keeps his straw rope with which the ox is now tied to a tree.

— D.T. Suzuki, tr. Oxherding Picture number 4 [147]

10.1 Conclusion: Shallow Unication Preferable

In the experiments above, we have seen that combining the shallow unication technique with a
post-parse search for a single best unication result results in a parser that is in the average case
competitive with an ordinary single-pass parser (both in terms of time and space), and also can
avoid a common class of ambiguity blow-up that the single-pass parser is subject to. From this,
we can conclude that the multi-pass technique, interleaving some of the unication equations in the
parse, is the superior approach.

10.2 Contributions

In this section we will summarize the contributions of this work to the state of the art Natural
Language Processing.

For each contribution, we summarize the results from this study that are relevant to the conclu-
sion, as well as any recent results of other in the literature. Finally, we try to assess the generality of
each conclusion.

241

That said, we do not claim to be better able to perceive the hidden limitations to our study than
any other researcher. Therefore, we expect that any researcher who might consider adopting our
techniques will be as willing to judge these techniques experimentally as we have been willing to
judge those of others.

10.2.1 Evidence that delayed unication is preferable over single-pass interleaved
unication.

We demonstrated that performing a shallow interleaved unication parse, followed by some sort
of search for unication values, can save unication effort and potentially time over performing an
single-pass full interleaved unication parse.

This conrms the results of Maxwell and Kaplan [85] and Oepen and Carroll [115], who have
found very similar results in their respective systems.

This is a very general result, as it suggests a general strategy for parsing.

10.2.2 Evidence that interleaved unication is generally preferable to fully-delayed
unication evaluation

Maxwell and Kaplan [85] argued that it is preferable to delay unication processing until after a
complete context-free parse forest has been found.

In contrast to this, Oepen and Carroll [115] found that it was preferable to delay the calculation
of unication equations which create complex structures until after the main parse, but to calculate
simple-value-producing unication equations in an interleaved fashion, as a ltering technique.

Our results conrm those of Oepen and Carroll. We found that the calculation of these simple-
valued unication results can substantially reduce the amount of parse forest structure which must be
searched in order to calculate a complete unication value. This interleaved unication calculation
saves time both in the parse and in the post-parse search over using a simple Context-Free parse to
calculate the parse forest.

This result is very general, and is potentially applicable to any unication-based system. This is
due to the general ltering nature of Natural Language Unication Grammars. That our conclusion
conrms that of Oepen and Carroll is therefore not a surprise.

242

10.2.3 Evidence that single value search is preferable over all-values search.

We also demonstrated that performing a shallow interleaved unication parse, followed by a best
single-value search, is preferable over performing either a single-pass full interleaved unication
parse, or a partially-unifying parse followed by a search for all possible unication values. We
demonstrated that this two-pass strategy can avoid some problems which cause the single-pass
parser to require resources exponentially proportional to the input.

This result is also very general, and applicable to many unication parsing systems. To sum-
marize the arguments found in Chapters 3 and 4, any unication grammar which creates a unique
representation of each distinct parse tree, running in a parser which nds all possible unication
values for each input, is susceptible to an exponential resource blow-up in the face of ambiguous
input.

10.2.4 A novel technique to automatically produce a shallow unication grammar
from a complex-valued grammar.

We have also demonstrated that we can gain the advantages of a two-pass parsing strategy without
requiring the grammar author to write two separate grammars. We do so by introducing a novel
technique

While this technique is related to the Negative Restriction processing proposed by Oepen and
Carroll [115], we extend this by automatically separating the existential testing and structure-
building behaviors of unication equations, preserving the former in the parse pass while delay-
ing the latter until the post-parse search. We have shown that this technique produces a signicant
improvement over simple negative restriction.

This technique is fairly general, since it is applicable to any complex-valued unication gram-
mar. This technique has applicability both in the context of multi-pass parsing, and more generally
in the interpretation and optimization of Natural Language Unication systems.

10.2.5 Approximation of Shallow Interleaved Unication Values.

We have demonstrated that it is preferable in our system to perform a parse pass using a shallow
unication grammar, throw out the rst-pass unication results, and calculate the nal unication
value or values from scratch. We demonstrated that because we are committed to completely recal-
culating the nal unication value, we can make approximations to the rst-pass unication values
with impunity. We have investigated several approximations which reduce the cost of the parse-pass

243

unications and improve the ability of the parser to effectively pack local ambiguities together.

Our use of approximation and complete recalculation of the nal unication value is in contrast
to the common usage of unication Restriction currently in the literature. Previously, both positive
restriction [136] and Negative Restriction [45, 156, 115] have been applied to the grammar in order
to calculate partial exact unication results. These results are then augmented with the remaining
restricted unication equations to compute a complete unication value.

This technique is somewhat less general than those above, as it is specically limited to multi-
pass unication systems where all but the nal unication values are discarded. That said, we
have shown that the strategy of discarding unication values calculated early in the process is a
good one in practice for multi-pass parsing systems. Once such a strategy has been adopted, the
approximation of unication values in the earlier passes becomes applicable.

10.2.6 Techniques in Unication Optimization

One valid criticism of current work in Computational Linguistics in general, and parsing of natural
language in particular, is that the eld has become somewhat disconnected from the study and
construction of compilers for computer languages.

We have demonstrated that many of the successful high-level optimization techniques com-
monly used in compilers [1] are adaptable to unication parsing. We do so by treating unication
as a programming language, and optimize this language by reasoning about the effects of each of
the unication statements.

Although the specic techniques we demonstrated are applicable to our specic pseudo-
unication system, the general strategy of treating unication as a programming language is much
more generally applicable. When such a strategy is adopted, nding ways to optimize that program-
ming language naturally follows.

In addition, we also presented several pseudo-optimizations for the shallow grammar — op-
erations which produce unication results that are similar to, but not exactly equal to the more
expensive operations they replace. These are quite specic to our system, but naturally follow from
the combination of strategies we chose to adopt. We have no doubt that similar optimizations could
be found in other environments.

244

10.2.7 Single-value Post-Parse Search Algorithm

We have proposed a novel technique to simultaneously disambiguate and calculate a single unica-
tion value corresponding to a single preferred parse tree. In order to perform this calculation, we
treat the problem as one of search, rather than of simple calculation.

We present a novel algorithm to perform this single-value post-parse search, and prove the
optimality of our algorithm.

This technique is in contrast to the all-values calculations proposed by e.g. Maxwell and Ka-
plan [85], and Oepen and Carroll [115].

This algorithm is fairly general, and with some adaptation should be applicable to a wide variety
of parsing tasks related to the calculation of a single parse tree.

This algorithm is not dependent on the use of a chart parser in the rst pass, but only depends on
the parser producing a packed parse forest as a result. The specic algorithm depends on the parse
forest being of a particular form, but could be adapted to other forms of representation.

10.2.8 Advances to Context Free parsing

We have demonstrated that we can substantially reduce the amount of processing in a Chart Parser
by structuring the grammar into a tree. To support this, we developed a novel variant of the Chart
algorithm [34, 58] which efciently uses this grammar structure. We have also shown how to in-
tegrate this tree-structured grammar with Left-Corner ltering, and that these two techniques work
well combination.

Although this technique was developed specically for the chart parsing algorithm, it is poten-
tially applicable to other context-free parsing algorithms as well. (It is important to note, however,
that this optimization is implicit in the optimization of states of an L-R parser [2], and thus is already
done in e.g. GLR [151].)

10.2.9 A complete description of implementation.

The results of this work rest on an efcient parser implementation — all of the experimental results
depend on the quality of this implementation. In order to promote the use of these techniques, we
describe them fully, including detailed descriptions of the implementation of each piece.

245

10.2.10 Empirical investigation of many engineering trade-offs.

In many cases the superiority of some technique over a contrasting one is not clear. We have per-
formed targeted empirical investigations of many such choices in order to make good engineering
choices. These results have been presented throughout this work.

Although the specic results of these trade-offs are specic to our system, we hope that other
researchers in Computational Linguistics will take similar care when implementing their systems.
We therefore offer these detailed investigations as exemplars of Software Engineering practice as
applied to Computational Linguistics.

10.3 Future Directions

There are a number of fairly straight-forward techniques that could be added to this system, but
are additional improvements rather than being central to the design and structure of the system.
Since these techniques are not critical to the demonstration that the over-all system can meet the
goals of being simultaneously good according to the standards of Linguistics, Theoretical Computer
Science, and Software Engineering, these techniques can be safely classied as beyond the scope of
this work. Below are several such directions.

10.3.1 Dynamic Optimization of the Shallow Interleaved Unier

We presented a method to statically reduce a complex-valued unication grammar to form a shal-
low unication grammar. We also presented several techniques to statically optimize this shallow
unication grammar.

An obvious extension to the static optimization of the rst-pass shallow unication grammar
is to further optimize the grammar by using information about how the unication values are used
dynamically.

It is extremely likely that some features will limit a set of parses more than other features. One
could imagine determining which features are the “best” at doing this (by some measure). Armed
with this additional information, one could both re-order the interleaved unication equations in
order to be more likely to fail (and thus prune) early, and also to simply remove tests that are
extremely unlikely to fail, or are in fact never tested against, as redundant.

It should be obvious that both of these techniques could potentially speed up the rst pass.
The work then is to gure out how to collect the data, how to form the measure (e.g. maximum

246

likelihood, maximum entropy, etc.), whether re-ordering in fact helps, and for what sort of cut-off
is redundant elimination best.

Because the current system does not use a pure unication system (as we have discussed above
in Section 3.2), the unication equations cannot be simply re-ordered without potentially changing
the semantics of the unication equations taken as an ordered set. As a result, these suggested
modications are less trivial than they might seem at rst glance.

10.3.2 Top-down constraints in the post-parse search

Unication constraints

There is an outstanding technical question involving the propagation of constraints (both unication
constraints and disambiguation preferences): Should some constraints be propagated from the top,
downward during the post-parse search?

For this system, all unication is done in a bottom-up manner: both in the interleaved unication
of the rst pass parser, which operates in a fundamentally bottom-up manner, and in the second pass
search where the unication is done while returning out of the tree search, which makes it a bottom-
up process as well.

There is good reason to believe that some portions of the second pass search could be avoided by
percolating unication constraints down the search tree starting at the root (whole sentence) nodes.
For example, consider the following three rules with unication equations:

foo

baz
foo

baz
foo

If these are evaluated in a top-down manner, rule 1 will be evaluated rst; this will have the side-
effect of causing any constituent which is attached to this rule as a child to have the unication

247

value foo set to the value “+”. If rules 2 and 3 are attempted in order to ll this open non-terminal,
rule 2 will fail because it requires foo to be set to “-”, whereas rule 3 may succeed because this
setting is compatible.

In a pure unication system, the propagation of unication constraints is easily accomplished,
though we will note that this advantage is not in our view sufcient to counterbalance the computa-
tional problems which we discussed in Section 3.3.7.

If we had a pure pseudo-unication [153] system, we could consider this as well. This is true
because the side-effects of assigning values could be reasonably controlled, and it should not matter
whether the side-effect values are propagated up or down the tree of a given parse.

S

*S1 S2

T...

Figure 10.1: Propagation of Unication features in a Packed Forest

That said, the action of propagating values down the tree is not without cost. Consider Fig-
ure 10.1; suppose we have sub-tree T, which is used in analysis S1 and S2.

Suppose that both S1 and S2 will be successful, but that S1 side-effects the values of T in such
a way that the top-level S unications will rule this out. It is important in this case not to allow any
side-effects of S1 to modify any values used in S2, since the existence of S1 should not have any
effect on the unication values derived through S2.

Alternately, suppose that S2 will ultimately be successful, but S1 will not, and that search will
examine S1 before S2. It is important that any top-down constraints in S1 not be allowed to effect
the unication value in T — otherwise these values could have an erroneous effect on S2. In a
top-down search, it is important to search T while descending from the S2 path, even if T (or some
part of T) was ruled out while descending from S1. In the general case we can only save and re-use
partial result values which are all calculated in the same direction. So if we are propagating results
downward, and ultimately need to back-track up the tree, any results we might have calculated must
be discarded in order to assure correct evaluation of these same unication values should we choose
an alternate path down to the same lower level parts of the tree.

Because of the need to discard results from incompatible paths, downward propagation of uni-

248

cation values may very well lead to more computation, rather than less. In our second scenario, the
evaluation of T as a child of S1 would cause T to be left not fully evaluated, so a full descent would
be required while descending from S2.

Without any top-down constraints, but instead calculating all values in a strictly bottom-up fash-
ion, on the way “back up” the tree, T would be fully searched during the S1 search, and when we
got to S2 we would not have to recompute any values in T, but could simply (and correctly) re-use
a memoized value from our previous visit there.

Also, if the search is restricted to a fairly small superset of the actual valid parses, this downward
propagation of unication values will only result in roughly twice as many unication operations as
we actually need. Because we ultimately want the unication value from a top-level node as a result
of calculating the unication values from the bottom up, all of this proposed top-down unication
work only serves to better prune the search.

Whether this will ultimately improve the performance of the second pass search is an empirical
question. Unfortunately, it is not a question we can readily answer. The grammar we are currently
using includes call-outs to (LISP) functions. Many of these call-outs assume that the unication
values are calculated in a strictly bottom-up fashion — in some cases, calling these call-outs with
top-down values will cause the functions to fail because they use values which are calculated from
further down the tree. As these values would not have been computed at the time these call-out are
called, they will erroneously fail.

This is a research direction which we could not conveniently investigate within the bounds of
this thesis. The unication framework that we use in this system is not pure — the side-effects
of unications do not propagate backwards. In the bottom-up-oriented unication case, when a
unication function (a set of unication equations) is applied to the values associated with a set
of child constituents, the calculated result is then associated with the parent constituent. In the
process of evaluating this function, the children’s values may be changed due to side-effects of
the individual unication equations. These modied values are not propagated downward, but are
instead discarded.

As a result, we must leave the question of whether top-down unication constraints are better or
worse as open for future investigation.

Disambiguation preference constraints

The question of whether it is better or worse to impose top-down constraints on the disambiguation
cost calculator mirrors this same question for unications.

249

The problem is that for the search as described in Chapter 8, the disambiguation cost is not really
separate from the unication value (i.e. F-structure). If a different set of constraints are propagated
down to a node, any memoized values for that node must be thrown out and recalculated from
scratch, potentially losing the advantage of memoization.

10.3.3 Automatic Promotion of shallow unication features into the Context-Free
grammar spine.

One interesting suggestion of Maxwell and Kaplan [85] was to promote some simple feature values
into the context-free spine itself, by subcategorizing the relevant sub-set of rules.

So, for example, if we discover that a VP attachment is often done when foo has value +,
but not when it is -, then we might contemplate creating two complete sets of all the VP creation
rules, one marked e.g. VP foo + and another marked VP foo -. If these duplications are promoted
sufciently far “down” the grammar, then we could potentially save a lot of time by entirely avoiding
the evaluation of rules that specify the wrong setting of foo.

Maxwell and Kaplan propose this, but wrote that they ended up doing the splitting entirely by
hand. Since we will be calculating which features of the shallow unication are least useful, by
symmetry we will also be able to tell which are most useful.

One possible way to gain extra speed in parsing might be to promote these features into the
context-free spine of the grammar, in a way similar to that proposed by Maxwell and Kaplan. If
one parameterizes either the minimum utility needed for promotion, or the number of parameters
to promote into the grammar, the result would be a nicely automatic method for optimizing the
grammar.

10.3.4 Optimization of the Context-Free grammar.

One of the more ambitious classes of optimizations that could be performed involves recognizing
and changing the structure of the context-free grammar for the rst pass, and then programmatically
compensating for this change during the second.

One such optimization is PP-folding [145]. Consider the context free grammar:

Suppose that we could recognize such a construction, and for the rst pass substitute the following:

250

(Where * is the Kleene-closure star [48], i.e. (PP)* refers to zero or more repetitions of PP.)

It should be evident that these two constructions generate (and thus recognize) the same lan-
guage. It should also be evident that the latter does not suffer from the ambiguity problems of the
former, because it implicitly gathers all the ambiguous attachments together.

Of course, for the purposes of the second pass search, whenever the second construction is
encountered, the rst construction would have to be simulated for the purposes of calculating the
unication value. The reason that this is an ambitious optimization is that this substitution will
interact with the post-parse search and disambiguation cost calculator described above in Chapter 8.
This interaction may be subtle and difcult to resolve. Consider, for example, the following four
rules:

It might be possible to programmatically combine these into:

But simulating the original rules in the second pass may be difcult and involved. Since we have
already attacked the problem of ambiguity in the chart parser itself, it is not clear that we would gain
anything computationally by this transformation, and even if such an advantage does exist it is by
no means clear that the extra trouble of simulating the original rules would be worth the gain.

251

252

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley Series in Computer Science and Information Processing.
Addison-Wesley, Reading, MA, 1985.

[2] Alfred V. Aho and Jeffrey D. Ullman. Principles of Compiler Design. Addison-Wesley
Series in Computer Science and Information Processing. Addison-Wesley, Reading, MA,
1977.

[3] James Allen. Natural Language Understanding. Benjamin/Cummings, Redwood City, CA,
second edition, 1995.

[4] Hiyan Alshawi, editor. The Core Language Engine. ACL-MIT Press Series in Natural
Language Processing. MIT Press, Cambridge, MA, 1992.

[5] Apple Computer, Inc. Inside Macintosh, volume 1. Addison-Wesley, Reading, MA, 1985.

[6] Ronald Baecker. Towards an efcient characterization of graphical interaction. In Baecker
and Buxton [7], pages 471–481.

[7] Ronald M. Baecker and William A. S. Buxton, editors. Readings in Human-Computer
Interaction: A Multidisciplinary Approach. Morgan Kaufmann Publishers, Los Altos, CA,
1987.

[8] K. L. Baker, A. M. Franz, P. W. Jordan, T. Mitamura, and E. Nyberg. Coping with
ambiguity in a large-scale machine translation system. In Proc. 15th Intl. Conf. on
Computational Linguistics (COLING-94), pages 90–94, Kyoto, August 1994. ACL.

[9] Kathryn L. Baker. Delayed Evaluation of Linguistic Constraints. Ph.D. thesis, Carnegie
Mellon University, Language Technologies Institute, CMU, Pittsburgh PA, May 2002.
CMU-LTI-02-173.

[10] G. E. Barton, R. C. Berwick, and E. S. Ristad. Computational Complexity and Natural
Language. Computational Models of Cognition and Perception. MIT Press, Cambridge,
MA, 1987.

[11] Jon Bentley. Writing Efcient Programs. Prentice-Hall, Englewood Cliffs, NJ, 1982.

[12] Jon Bentley. Programming Pearls. Addison-Wesley, Reading, MA, 1986.

253

[13] Jon Bentley. More Programming Pearls. Addison-Wesley, Reading, MA, 1988.

[14] A. Berger, S. Della Pietra, and V. Della Pietra. A Maximum Entropy Approach to Natural
Language Processing. Computational Linguistics, 22(1):39–71, 1996.

[15] Sylvie Billot and Bernard Lang. The Structure of Shared Forests in Ambiguous Parsing. In
Proc. 27th Ann. Mtg. Assn. Comp. Ling., pages 143–151, Vancouver, June 1989. ACL.

[16] M. Bouckaert, A. Pirotte, and M. Snelling. Efcient Parsing Algorithms for General
Context-free Grammars. Inf. Sci., 8(1):1–26, Jan 1975.

[17] R. Brachman and H. Levesque. The Tractability of Subsumption in Frame-Based
Description Languages. In Proc. AAAI-84, pages 34–37, Austin, TX, August 1984. Wm.
Kaufmann, Inc.

[18] T. Briscoe and J. Carroll. Generalized Probabilistic LR Parsing of Natural Language
(Corpora) with Unication-Based Grammars. Computational Linguistics, 19(1):25–59,
1993.

[19] Ralf D. Brown. Example-Based Machine Translation in the Pangloss System. In Proc. 16th
Intl. Conf. on Computational Linguistics (COLING-96), pages 169–174, Copenhagen,
August 1996.

[20] J. G. Carbonell and M. Tomita. Knowledge-based machine translation, the CMU approach.
In Sergei Nirenburg, editor, Machine Translation: Theoretical and methodological issues,
chapter 5, pages 68–89. Cambridge University Press, Cambridge, England, 1987.

[21] Jaime G. Carbonell and Philip J. Hayes. Recovery Strategies for Parsing Extragrammatical
Language. Computational Linguistics, 9(3–4):123–146, 1983.

[22] Bob Carpenter and Gerald Penn. ALE The Attribute Logic Engine (User’s Guide).
Technical report, Carnegie Mellon University, Lab for Comp. Ling., CMU, Pittsburgh PA,
1994. CMU-LCL-94-6.

[23] John Andrew Carroll. Practical Unication-based Parsing of Natural Language. Ph.D.
thesis, University of Cambridge, Computer Laboratory, September 1993.

[24] Eugene Charniak. A Parser with Something for Everyone. In M. King, editor, Parsing
Natural Language, pages 117–149. Academic Press, London – New York, 1983.

[25] Noam Chomsky. Three models for the description of language. IRE Transactions P.G. on
Info. Theory, 2(3):113–124, 1956.

[26] The Columbia World of Quotations, 1996. available at:
http://www.bartleby.com/66/.

[27] Thomas H. Cormen, Charles E. Leiserson, and Ronald L Rivest. Introduction to Algorithms.
McGraw-Hill and MIT Press, Cambridge, MA, 1990.

[28] Krzysztof Czuba, 1998. personal communication.

254

[29] Krzysztof Czuba. Efcient parsing strategies for syntactic analysis of closed captions. In
Proc. 1st. NAACL Student Workshop, Seattle, May 2000. ACL.

[30] Craig A. Damon. Selective Enumeration. Ph.D. thesis, Carnegie Mellon University,
Computer Science, CMU, Pittsburgh PA, July 2000. CMU-CS-00-151.

[31] Rina Dechter and Judea Pearl. The Optimality of A*. In L. Kanal and V. Kumar, editors,
Search in Articial Intelligence, chapter 5, pages 166–199. Springer-Verlag, New York,
1988.

[32] F. L. DeRemer. Simple LR(k) grammars. Comm. ACM, 14(7):453–460, July 1971.

[33] Jochen Dörre and Andreas Eisele. Feature logic with disjunctive unication. In Proc. 13th
Intl. Conf. on Computational Linguistics (COLING-90), volume 2, pages 100–105, Helsinki,
1990.

[34] Jay Earley. An efcient contest-free parsing algorithm. Comm. ACM, 13(2):94–102,
February 1970.

[35] Encyclopædia Britannica, Inc. Encyclopædia britannica online. Availiable at:
http://www.eb.com.

[36] Alex Franz. TUT: A tree unication toolkit. Technical report, Carnegie Mellon University,
Lang. Tech. Inst., CMU, Pittsburgh PA, 1992. CMU-CMT-92-131.

[37] Christopher W. Fraser, David R. Hanson, and Todd A. Proebsting. Engineering a simple,
efcient code generator generator. ACM Letters on Programming Languages and Systems,
1(3):213–226, Sep 1992.

[38] Lyn Frazier. On Comprehending Sentences: Syntactic Parsing Strategies. Ph.D. thesis,
University of Connecticut, 1978.

[39] G. Gazdar, E. Klein, G. Pullum, and I. Sag. Generalized Phrase Structure Grammar.
Harvard U. Press, Cambridge, MA, 1985.

[40] Kenneth Goodman and Sergei Nirenburg, editors. The KBMT Project: A Case Study in
Knowledge-Based Machine Translation. Morgan Kaufmann, San Mateo, CA, 1991.

[41] S. L. Graham, M. A. Harrison, and W. L. Ruzzo. An improved context-free recognizer.
ACM Trans. Programming Languages and Systems, 2(3):415–462, 1980.

[42] T. V. Grifths and S. R. Petrick. On the relative efciencies of context-free grammar
recognizers. Comm. Assoc. Computing Mach., 8(5):289–300, 1965.

[43] Abelson H., G. J. Sussman, and J. Sussman. Structure and Interpretation of Computer
Programs. The MIT EECS Series. MIT Press, Cambridge, MA, 1985.

[44] Samuel P. Harbison and Guy L. Steele Jr. C: A Reference Manual. Tartan
Laboratories/Prentice Hall, New Jersey, 1984.

[45] S. P. Harrison and T. M. Ellison. Restriction and termination in parsing with
feature-theoretic grammars. Computational Linguistics, 18(4):519–530, 1992.

255

[46] Paul Heckel. The Elements of Friendly Software Design. Warner Books, New York, 1984.

[47] Donald Hindle and Mats Rooth. Structural ambiguity and lexical relations. Computational
Linguistics, 19(1):103–120, 1993.

[48] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Series in Computer Science. Addison-Wesley, Reading, MA,
1979.

[49] W. John Hutchins and Harold L. Somers. An Introduction to Machine Translation.
Academic Press, 1992.

[50] Ray Jackendoff. Syntax: A Study of Phrase Structure. Linguistic Inquiry. MIT Press,
Cambridge, MA, 1977.

[51] Bonnie John, 2001. personal communication.

[52] John F. Kennedy, speaker. Ich bin ein Berliner. Availiable at:
http://www.debateinfo.com/hall of fame/speeches/jfk2.html, June
1963.

[53] Mark Johnson. The computational complexity of GLR parsing. In Masaru Tomita, editor,
Generalized LR Parsing, chapter 3, pages 35–42. Kluwer, Dordrecht, 1991.

[54] Hans Kamp and Uwe Reyle. From Discourse to Logic. Studies in Linguistics and
Philosophy. Kluwer, Dordrecht, student edition, 1993.

[55] C. Kamprath, A. Adolphson, T. Mitamura, and E. Nyberg. Controlled Language for
Multilingual Document Production: Experience with Caterpillar Technical English. In Proc.
Second Int. Workshop on Controlled Language Applications (CLAW ’98), 1998.

[56] Ronald M. Kaplan and Joan Bresnan. Lexical-functional grammar: A formal system for
grammatical representation. In The Mental Representation of Grammatical Relations,
chapter 4, pages 173–281. MIT Press, Cambridge, MA, 1982.

[57] Robert T. Kasper. A unication method for disjunctive feature descriptions. In Proc. 25th
Ann. Mtg. Assn. Comp. Ling., pages 235–242, Stanford, 1987. ACL.

[58] Martin Kay. Algorithm schemata and data structures in syntactic processing. In Readings in
Natural Language Processing. Morgan Kaufmann, Los Altos, CA, 1986 (1980).

[59] B. Kiefer, H.-U. Krieger, J. Carroll, and R. Malouf. A bag of useful techniques for efcient
and robust parsing. In Proc. 37th Ann. Mtg. Assn. Comp. Ling., pages 473–480. ACL, 1999.

[60] J. P. Kimball. Seven principles of surface structure parsing in natural language. Cognition,
2(1):15–47, 1973.

[61] James R. Kipps. GLR parsing in time . In Masaru Tomita, editor, Generalized LR
Parsing, chapter 4, pages 43–59. Kluwer, Dordrecht, 1991.

[62] R. Kittredge and J. Lehrberger, editors. Sublanguage: Studies of Language in Restricted
Semantic Domains. deGruyter, Berlin – New York, 1982.

256

[63] Kevin Knight. Unication: A multidisciplinary survey. ACM Computing Surveys, 21(1),
March 1989.

[64] D. E. Knuth. On the translation of languages from left to right. Inf. Contr., 8(6):607–639,
December 1965.

[65] Vipin Kumar and Laveen N. Kanal. The CDP: A Unifying Formulation for Heuristic
Search, Dynamic Programming, and Branch-and-Bound. In L. Kanal and V. Kumar, editors,
Search in Articial Intelligence, chapter 1, pages 1–27. Springer-Verlag, New York, 1988.

[66] Peter Ladefoged. A Course in Phonetics. Harcourt Brace Jovanovich, New York, second
edition, 1982.

[67] Butler Lampson. Hints for computer system design. IEEE Software, 1(1), January 1984.

[68] Alon Lavie. GLR*: A Robust Grammar-Focused Parser for Spontaneously Spoken
Language. Ph.D. thesis, Carnegie Mellon University, Computer Science, CMU, Pittsburgh
PA, May 1996. CMU-CS-96-126.

[69] Alon Lavie. GLR*: A robust parser for spontaneously spoken language. In Proc.
ESSLLI-96 Workshop on Robust Parsing, 1996.

[70] Alon Lavie, 1998. personal communication.

[71] Alon Lavie, 1999. personal communication.

[72] Alon Lavie, February 2000. public comment at 6th Intl. Wkshp on Parsing Technologies.

[73] Alon Lavie, 2000. personal communication.

[74] Alon Lavie, 2001. personal communication.

[75] Alon Lavie and Carolyn P. Rosé. Towards optimal ambiguity packing in
unication-augmented context-free parsers, 1999.

[76] Alon Lavie and Carolyn P. Rosé. Optimal Ambiguity Packing in Context-Free Parsers with
Interleaved Unication. In Proc. 6th Intl. Wkshp on Parsing Technologies, pages 147–158,
Trento, Italy, February 2000. ACL/SIGPARSE.

[77] Kevin Lenzo, 1997. personal communication.

[78] Harry R. Lewis and Larry Denenberg. Data Structures and Their Algorithms. Harper
Collins, New York, 1991.

[79] Low End Mac. PowerBook G3 Series. Availiable at:
http://www.lowendmac.com/pb2/g3series.shtml.

[80] soc.culture.german faq. Availiable at:
http://www.watzmann.net/scg/index.html, March 2001.

257

[81] William A. Martin, Keneth W. Church, and Ramesh S. Patil. Preliminary analysis of a
breadthrst parsing algorithm: Theoretical and experimental results. Technical report,
Massachusetts Institute of Technology, Lab. for Computer Science, MIT, Cambridge MA.,
June 1981. MIT/LCS/261.

[82] William A. Martin, Keneth W. Church, and Ramesh S. Patil. Preliminary analysis of a
breadth-rst parsing algorithm: Theoretical and experimental results. In Leonard Bolc,
editor, Natural Language Parsing Systems, pages 267–327. Springer-Verlag, New York,
1987.

[83] Y. Matsumoto and et al. BUP: A Bottom-Up Parser Embedded in Prolog. New Generation
Computing, 1:145–158, 1983.

[84] John T. Maxwell and Ronald M. Kaplan. An overview of disjunctive constraint satisfaction.
In Proc. (1st) Intl. Wkshp on Parsing Technologies, pages 18–27, Pittsburgh, August 1989.
Carnegie Mellon.

[85] John T. Maxwell and Ronald M. Kaplan. The interface between phrasal and functional
constraints. Computational Linguistics, 19(4):571–589, 1993.

[86] Tom McArthur, editor. The Oxford Companion to the English Language. Oxford University
Press, 1992. available at: http://www.xrefer.com/entry/442255.

[87] T. Mitamura and E. Nyberg. Controlled English for Knowledge-Based MT: Experience with
the KANT System. In Proc. TMI-95, 1995.

[88] T. Mitamura, E. Nyberg, K. Baker, D. Svoboda, E. Torrejon, and M. Duggan. The
KANTOO MT System: Controlled Language Checker and Knowledge Maintenance Tool.
In Proc. NAACL 2001 (Demonstration), 2001.

[89] T. Mitamura, E. Nyberg, and J. Carbonell. An efcient interlingua translation system for
multi-lingual document production. In Proc. 3rd Machine Translation Summit, Washington
D.C., 1991.

[90] T. Mitamura, E. Nyberg, E. Torrejon, and R. Igo. Multiple Strategies for Automatic
Disambiguation in Technical Translation. In Proc. TMI-99, 1999.

[91] Teruko Mitamura, 2000. personal communication.

[92] Yusuke Miyao. Packing of feature structures for efcient unication of disjunctive feature
structures. In Proc. 37th Ann. Mtg. Assn. Comp. Ling., pages 579–584. ACL, 1999.

[93] Robert Moore, 2000. personal communication.

[94] Robert Moore. Improved left-corner chart parsing for large context-free grammars. In Proc.
6th Intl. Wkshp on Parsing Technologies, pages 171–182, Trento, Italy, February 2000.
ACL/SIGPARSE.

[95] Robert Moore and Hiyan Alshawi. Syntactic and Semantic Processing. In Alshawi [4],
pages 129–148.

258

[96] Frank Morawietz. Chart parsing as constraint propagation. In Proc. 6th Intl. Wkshp on
Parsing Technologies, pages 315–316, Trento, Italy, February 2000. ACL/SIGPARSE.

[97] Stephen E. Morrisson. unpublished manuscript, 1983.

[98] Stephen E. Morrisson, 2002. personal communication.

[99] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
San Francisco, 1997.

[100] Mikio Nakano. Constraint projection: An efcient treatment of disjunctive feature
descriptions. In Proc. 29th Ann. Mtg. Assn. Comp. Ling., pages 307–314, Berkeley, 1991.
ACL.

[101] M.-J. Nederhof and G. Satta. Efcient tabular lr parsing. In Proc. 34th Ann. Mtg. Assn.
Comp. Ling., pages 239–246, Santa Cruz, June 1996. ACL.

[102] Mark-Jan Nederhof. Generalized left-corner parsing. In Proc. 6th Conf. European Assn.
Comp. Ling., pages 305–314, Utrecht, The Netherlands, 1993. ACL.

[103] Mark-Jan Nederhof. An optimal tabular parsing algorithm. In Proc. 32nd Ann. Mtg. Assn.
Comp. Ling., pages 117–124, Las Cruces NM, 1994. ACL.

[104] Mark-Jan Nederhof and Janos J. Sarbo. Increasing the applicability of lr parsing. Technical
report, Katholieke Universiteit Nijmegen, Dept. of Infomatics, Toernooiveld, 6525 ED
Nijmegen, The NETHERLANDS, March 1993. NIJT-93-06.

[105] Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure. J.
Assn. Comp. Mach., 27(2):356–364, April 1980.

[106] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization.
John Wiley & Sons, New York, 1988.

[107] G. van Noord, M-J. Nederhof, R. Koeling, and G. Bouma. Conventional Natural Language
Processing in the NWO Priority Programme on Language and Speech Technology.
Technical report, Rijksuniversiteit Groningen, Vakgroep Alfa-informatica & BCN, March
1996.

[108] Gertjan van Noord. An efcient implementation of the head-corner parser. Computational
Linguistics, 23(3):425–456, March 1997.

[109] Donald A. Norman. The Psychology of Everyday Things. Basic Books, New York, 1988.

[110] E. Nyberg and T. Mitamura. The KANT System: Fast, Accurate, High-Quality Translation
in Practical Domains. In Proc. 14th Intl. Conf. on Computational Linguistics (COLING-92),
1992.

[111] E. Nyberg and T. Mitamura. Controlled Language and Knowledge-Based Machine
Translation: Principles and Practice. In Proc. First Int. Workshop on Controlled Language
Applications (CLAW ’96), 1996.

259

[112] E. Nyberg and T. Mitamura. A real-time mt system for translating broadcast captions. In
Proceedings of MT Summit VI, 1997.

[113] E. Nyberg and T. Mitamura. The KANTOO Machine Translation Environment. In Proc.
AMTA 2000, 2000.

[114] Eric Nyberg, 1998. personal communication.

[115] Stephan Oepen and John Carroll. Ambiguity Packing in Constraint-based Parsing —
Practical Results. In Proc. 1st. NAACL, Seattle, May 2000. ACL.

[116] Paul W. Placeway. Tree-structured chart parsing. In Proc. 6th Intl. Wkshp on Parsing
Technologies, pages 317–318, Trento, Italy, February 2000. ACL/SIGPARSE.

[117] Paul W. Placeway. Tree-structured chart parsing with left-corner and look-ahead constraints.
Technical report, Carnegie Mellon University, Lang. Tech. Inst., Carnegie Mellon U.,
Pittsburgh, PA, 2000. CMU-LTI-00-161.

[118] Carl Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar. Studies in
Contemporary Linguistics. U. Chicago Press, Chicago, 1994.

[119] V. R. Pratt. Lingol – a progress report. In Advance Papers of the Fourth International Joint
Conference on Articial Intelligence, pages 422–428, Tbilisi, Georgia, USSR, 1975.

[120] Roger S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill, New
York, 5th edition, 2001.

[121] Elaine Rich and Kevin Knight. Articial Intelligence. McGraw-Hill, New York, etc., 2nd
edition, 1991.

[122] J. J. Robinson. Diagram: A grammar for dialogues. Comm. Assoc. Computing Mach.,
35(1):27–47, Jan 1982.

[123] Carolyn P. Rosé. Robust Interactive Dialogue Interpretation. Ph.D. thesis, Carnegie Mellon
University, School of Computer Science, CMU, Pittsburgh PA, 1998. CMU-CS-96-126.

[124] Carolyn P. Rosé, 1999. personal communication.

[125] Carolyn P. Rosé and Alon Lavie. LCFLEX: An efcient robust left-corner parser, 1999.

[126] Kenneth H. Rosen. Discrete Mathematics and its Applications. McGraw Hill, fourth
edition, 1999.

[127] D. J. Rosenkrantz and P. M. Lewis. Deterministic left corner parsing. In IEEE Conference
Record of the 11th Annual Symposium on Switching and Automata Theory, pages 139–152.
IEEE, 1970.

[128] Stewart Russell and Peter Norvig. Articial Intelligence: a modern approach. Prentice-Hall,
New Jersey, 1995.

260

[129] Geoffrey Sampson. MT: A Nonconformist’s View of the State of the Art. In Margaret King,
editor, Machine Translation Today, pages 91–110. Edinburgh University Press, Edinburgh,
1987.

[130] The Santayana Edition. available at: http://www.iupui.edu/s̃antedit.

[131] H. Sawaf, K. Schütz, and H. Ney. On the use of grammar based language models for
statistical machine translation. In Proc. 6th Intl. Wkshp on Parsing Technologies, pages
231–241, Trento, Italy, February 2000. ACL/SIGPARSE.

[132] Robert Sedgewick. Algorithms in C. Addison Wesley, 1990.

[133] Peter Sells. Lectures on Contemporary Syntactic Theories. CSLI Lecture Notes. CSLI,
Stanford, 1985.

[134] Patrick Shann. Experiments with GLR and Chart Parsing. In Masaru Tomita, editor,
Generalized LR Parsing, chapter 2, pages 17–34. Kluwer, Dordrecht, 1991.

[135] S. M. Shieber, H. Uszkoreit, F. C. N. Pereira, J. J. Robinson, and M. Tyson. The Formalism
and Implementation of PATR-II. Technical report, SRI International, AI Center, SRI
International, Menlo Park, CA, 1983.

[136] Stuart M. Shieber. Using restriction to extend parsing algorithms for complex-feature-based
formalisms. In Proc. 23rd Ann. Mtg. Assn. Comp. Ling., pages 145–152, Chicago, 1985.
ACL.

[137] Stuart M. Shieber. An Introduction to Unication-based Approaches to Grammar. CSLI
Lecture Notes. CSLI, Stanford, 1986.

[138] Daniel Sleator and Davy Temperley. Parsing english with a link grammar. Technical report,
Carnegie Mellon University, Computer Science, CMU, Pittsburgh PA, 1991.
CMU-cs-91-196.

[139] Daniel Sleator and Davy Temperley. Parsing english with a link grammar. In Proc. 3rd Intl.
Wkshp on Parsing Technologies. ACL/SIGPARSE, August 1993.

[140] J. Slocum. METAL: The LRC Machine Translation System. Technical report, University of
Texas, Linguistic Research Center, 1984. Working Paper LRC-84-2.

[141] Standard Performance Evaluation Corporation. SPEC CPU2000.
http://www.spec.org/cpu2000/.

[142] Standard Performance Evaluation Corporation. SPEC CPU95 Benchmarks.
http://www.spec.org/osg/cpu95/.

[143] Guy L. Steele Jr. Common LISP the Language. Digital Press, second edition, 1990.

[144] Thomas A. Sudkamp. Languages and Machines. Addison Wesley, second edition, 1997.

[145] Dean F. Sutherland, 1999. personal communication.

[146] Dean F. Sutherland, 2001. personal communication.

261

[147] Daisetz Teitaro Suzuki. The Manual of Zen Buddhism. The Eastern Buddhist Society, 1935.
available at: http://www.sacred-texts.com/bud/mzb/.

[148] Dr. Seuss (Theodor Seuss Geisel). The Lorax. Random House, 1971.

[149] M. Thiel. Weighted parsing. In Leonard Bolc, editor, Natural Language Parsing Systems,
pages 137–158. Springer-Verlag, New York, 1987.

[150] Hideto Tomabechi. Quasi-destructive graph unication. In Proc. 29th Ann. Mtg. Assn.
Comp. Ling., pages 315–322, Berkeley, 1991. ACL.

[151] Masaru Tomita. Efcient Parsing for Natural Language. Kluwer, Boston, 1986.

[152] Masaru Tomita. An efcient augmented-context-free parsing algorithm. Computational
Linguistics, 13(1–2):31–46, Jan–Jun 1987.

[153] Masaru Tomita and Kevin Knight. Pseudo-unication and full-unication. Technical report,
Carnegie Mellon University, Lang. Tech. Inst., CMU, Pittsburgh PA, 1988.
CMU-CMT-88-MEMO.

[154] Masaru. Tomita and Eric H. Nyberg. Generation kit and transformation kit, version 3.2
user’s manual. Technical report, Carnegie Mellon University, Lang. Tech. Inst., CMU,
Pittsburgh PA, 1988. CMU-CMT-88-MEMO.

[155] Tomita, M., et al. The generalized lr parser/compiler/interpreter, rt version 8-4. unpublished
source code, 1988.

[156] Arturo Trujillo. Computing FIRST and FOLLOW Functions for Feature-Theoretic
Grammars. In Proc. 15th Intl. Conf. on Computational Linguistics (COLING-94), pages
875–880, Kyoto, August 1994. ACL.

[157] Pascal Van Hentenryck. Constraint satisfaction in logic programming. MIT Press,
Cambridge, MA, 1989.

[158] J. H. Van Lint and R. M. Wilson. A Course in Combinatorics. Cambridge University Press,
Cambridge, 1992.

[159] Greg Whittemore and Kathleen Ferrara. Empirical study of predictive powers of simple
attachment schemes for post-modier prepositional phrases. In Proc. 28th Ann. Mtg. Assn.
Comp. Ling., pages 23–30, Pittsburgh, June 1990. ACL.

[160] M. Wirén. A comparison of rule-invocation strategies in context-free chart parsing. In Proc.
3rd Conf. European Assn. Comp. Ling., pages 226–233, Copenhagen, Denmark, 1987. ACL.

[161] Theodore Ming-Tao Wong, 2001. personal communication.

[162] David A. Wroblewski. Nondestructive graph unication. In Proc. 6th Nat. Conf. on AI
(AAAI87), volume 2, pages 582–589, Seattle, Washington, July 1987. AAAI.

[163] D. H. Younger. Recognition and parsing of context-free languages in time . Information
and Control, 10(2):189–208, February 1967.

262

