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Abstra
tLow-pro�
ien
y non-native speakers represent a signi�
ant 
hallenge for large-vo
abulary 
ontinuous spee
hre
ognition (LVCSR). A
ousti
 models are 
onfused by a heavy a

ent; language models are 
onfused bypoor grammar and un
onventional word 
hoi
e. La
k of 
omfort with the spoken language a�e
ts thefundamental properties of 
onne
ted spee
h that have been a fo
us of LVCSR resear
h; 
ross-word andinterword 
oarti
ulation, dis
uen
y, and prosody are among the features that di�er in native and non-nativespee
h.In this dissertation, I �rst address the problem of 
hara
terizing low-pro�
ien
y non-native spee
h. Onepopulation is examined in great detail: learners of English whose native language is Japanese. Propertiessu
h as 
uen
y, vo
abulary, and pa
e in read and spontaneous spee
h are measured for both general andpro�
ien
y-
ontrolled data sets. I further show that native and non-native spee
h 
an be distinguished usinga variety of statisti
al metri
s, in
luding perplexity and Kullba
k-Leibler divergen
e. Patterns in readingerrors and grammati
ality of spontaneous spee
h are quantitatively des
ribed. This analysis, while fo
usingon one speaker population, provides a model for 
hara
terizing non-native spee
h that the broader LVCSR
ommunity may �nd useful. The generalizability of this model is demonstrated by 
ontrasting the spee
h ofnative speakers of Mandarin with that of our primary speaker set.Se
ond, I explore methods of adapting to non-native spee
h. The test set is 
ontrolled for languageexposure and pro�
ien
y, and the task is a simpli�ed read news task tailored toward the lower-pro�
ien
yspeakers, who experien
ed limited su

ess in more diÆ
ult reading tasks like the widely-used Wall StreetJournal readings. I �nd that the largest gains in re
ognition performan
e 
ome through a
ousti
 adaptation,and present evaluations of adaptation and training te
hniques in
orporating native-language and a

enteddata. From a speaker-adapted baseline of 63.1% WER (the same models perform at 8% for Broad
ast NewsF0 spee
h), a 29% relative improvement is a
hieved through a 
ombination of adaptation and training. In
ontrast, gains from lexi
al modeling were found to be extremely small, even when investigated in 
onjun
-tion with retraining. I des
ribe data-driven and linguisti
ally-motivated algorithms for lexi
al modeling,presenting experimental results and dis
ussing possible reasons why the improvement was not larger.Finally, I present a novel method for dete
ting non-native spee
h. Without using any a
ousti
 features,I show how bilateral and multilateral dis
rimination 
an be a

omplished on the basis of features present intext. Both re
ognizer output and trans
ripts of non-native spee
h are identi�ed with high a

ura
y throughnaive Bayes 
lassi�
ation. The word and part-of-spee
h sequen
es that are found to be indi
ative of non-native spee
h provide an additional resour
e for 
hara
terizing non-native spee
h, whi
h leads to furtherinsights about the properties of non-native spoken language.
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Chapter 1
Introdu
tionIn the early 1990's, dialogues like the following were the target of intensive basi
 resear
h in spee
h re
ognitionand natural language understanding (Ward, 1990) .System: Wel
ome to Pittsburgh Airlines' automated 
ight information servi
e. Do you knowthe 
ight number?User: Five-twelve.System: Would you like arrival or departure information?User: Arrival.System: Flight 524 arriving on Tuesday, Feb 27th. Is that 
orre
t?User: No.System: What would you like to 
hange, the 
ight number or the date?User: The 
ight number.System: Please say the 
ight number.User: Five one two.System: Flight 512 arriving on Wednesday, Feb 28th. Is that 
orre
t?User: Yes.System: Flight 512 arrives in more than one 
ity. Would you like Boston Logan orCharleston, SC?...Today, at least one major airline provides an automated intera
tion exa
tly like this as the front-lineresponse to 
aller 
ight information queries. Clearly, spee
h re
ognition has begun to be embra
ed byindustry, whi
h sees it as an eÆ
ient repla
ement for human operators, and tolerated, however grudgingly,by users. We 
an expe
t to see more and more appli
ations of spee
h re
ognition in the real world as thete
hnology improves and publi
 a

eptan
e spreads.With real-world deployment, however, user diversity demands serious 
onsideration. Although the 
laimthat all users should be o�ered equal a

ess to spee
h re
ognition is not strong (people with poor readingskills do not have the same a

ess to newspapers as the highly literate, for example), it does appear thatspee
h re
ognition appli
ations are on a traje
tory to be
ome a default interfa
e for information disseminationsystems. A

ommodation of users whose language skills are somehow impaired is not only an interestingresear
h problem but also a signi�
ant fun
tional 
on
ern.1



2 CHAPTER 1. INTRODUCTIONIn the dialogue trans
ribed above, I, a native speaker, 
alled up to make the query. Although the 
ightnumber was misre
ognized at �rst, overall, the re
ognition quality was good, and I was able to get theinformation I required. I also asked a friend, a native speaker of Japanese who had lived in the United Statesfor two years, to 
all for the same information.System: Wel
ome to Pittsburgh Airlines' automated 
ight information servi
e. Do you knowthe 
ight number?User: Yes.System: Please say the 
ight number.User: (<H �ve hundred and twent- �ve hundred and twelve.System: Would you like arrival or departure information?User: Arrival.System: Flight 283 arriving on Tuesday, Feb 27th. Is that 
orre
t?User: "l? No 
ight �ve hundred and twelve pleaseSystem: What would you like to 
hange, the 
ight number or the date?User: O? So... 
ight number is �ve hundred and twenty no �ve hundred and twelveSystem: Please say the 
ight number.User: Flight number is �ve hundred and twelve.System: Flight 94 arriving on Wednesday, Feb 28th. Is that 
orre
t?User: No.System: What would you like to 
hange, the 
ight number or the date?User: Flight number, please.System: Please say the 
ight number.User: Five hundred and twenty.System: Flight 520 arriving on Wednesday, Feb 28th. Is that 
orre
t?User: Yes.System: Flight 520 arrives in more than one 
ity. Would you like Chi
ago O'Hare or KansasCity, MO?User: "C, no, no. Not twenty, twelve.System: Please repeat or rephrase that.User: s...s?System: Please repeat or rephrase that.User: <
li
k>In this 
ase, the speaker is prevented from �nding out what she wants to know by a 
ombination ofre
ognition errors and her diÆ
ulty responding appropriately to the system's prompts. One 
an envisionother situations in whi
h redu
ed English pro�
ien
y would diminish the e�e
tiveness of spee
h-driven ap-pli
ations. Di
tation systems, for example, are used by people ranging from physi
ians re
ording patientinformation to graduate students with typing injuries. Both of these groups have signi�
ant non-nativepopulations. Conversational trans
ription systems su
h as meeting re
ord and surveillan
e systems 
annotassume that all subje
ts will be 
uent speakers of the language. If a spee
h translation system is available tofa
ilitate English-Japanese 
ommuni
ation, it may be used not only by native English speakers but also bythe many others who speak English better than they speak Japanese. Language learning systems are limitedin their ability to o�er re
ognition-based lessons to the degree that spee
h re
ognition of new learners is notreliable.There are many levels at whi
h non-native spee
h di�ers from native spee
h. The term non-native



3spee
h, as widely used in the spee
h re
ognition 
ommunity (Byrne et al., 1998; Langlais et al., 1998;Lives
u and Glass, 2000; van Leeuwen and Orr, 1999; Witt and Young, 1997), 
overs an enormous range ofpro�
ien
ies and spee
h types. For a language like English, this range is in fa
t mu
h greater than the rangeof native spee
h, even when regional variation is 
onsidered. There are a few parameters, however, thatseem parti
ularly useful for en
oding non-native spee
h. A

ent, mode, lexi
al 
hoi
e, synta
ti
 soundness,and 
uen
y are aspe
ts of spoken language that 
an both des
ribe variation in native spee
h and be used todistinguish it from non-native spee
h.A

entThe word a

ent is the subje
t of some 
ontroversy. The 
onfusion (and genuine la
k of an absolute distin
-tion) between a

ent and diale
t, 
oupled with in
reasing awareness of negative asso
iations with markeda

ents and diale
ts, has prompted many to abandon both terms in favor of the more neutral and more vaguevariety. One of the reasons that it is so diÆ
ult to assign a s
holarly de�nition to the word a

ent is that inthe lay sense, a

ent is by de�nition not absolute; a listener per
eives an a

ent when the speaker's spee
h isdi�erent from his own. Although a
ademi
 publi
ations emphasize time and time again that there is no su
hthing as \una

ented" English (Lippi-Green, 1997; Wardhaugh, 1998), the sense of the word a

ent that isshared by native speakers will always be relative to one's own spee
h, and it is this understanding that isthe foundation for re
overy strategies.While we may la
k a 
lear set of features that 
hara
terize a

ent (Lippi-Green de�nes a

ents as \loosebundles of prosodi
 and segmental features distributed over geographi
 and/or so
ial spa
e"), lay listenersseldom have diÆ
ulty identifying presen
e or absen
e of a

ent; although the boundaries of a

ent may di�erfrom speaker to speaker, I submit that there are speakers whom any edu
ated native speaker would identifyas having a foreign a

ent. If we adopt Wardhaugh's de�nition of a

ent as \how [people℄ pronoun
e whatthey say" and a

ents as often having \
lear regional and so
ial asso
iations" (Wardhaugh, 1998), we 
ande�ne foreign a

ent as \pronun
iation that is asso
iated with a 
ountry or region in whi
h English1 is notthe primary language spoken."ModeThe amount of planning and attention required to generate an utteran
e 
an be quite di�erent for nativeand non-native speakers; attention used for utteran
e generation 
an also impa
t the a
tual produ
tion tothe degree that the number of 
ognitive 
y
les available for senten
e generation and arti
ulation is redu
ed(Pawley and Syder, 1983, p.208). Variables des
ribing the spee
h task, level of formality, and spoken languageperforman
e have sometimes been borrowed to des
ribe degree of attention as well, but sin
e we 
annotassume that the 
orrelation between these variables and attention is the same for native and non-nativespee
h I will modify the de�nition of the term mode as used in e.g. (Finke and Waibel, 1997) to des
ribe1English is used as the default \native language" in many of the examples and de�nitions in this thesis. This is for 
onvenien
eonly; all de�nitions, theories, and appli
ations are meant to be extensible to any human language.



4 CHAPTER 1. INTRODUCTIONthe degree of attention paid to utteran
e generation.Careful spee
h and 
asual spee
h are often o�ered in spee
h re
ognition literature as examples of speakingstyles (Eskenazi, 1997), e.g. Although Labov (1972) supported the idea that \styles 
an be ranged along asingle dimension, measured by the amount of attention paid to spee
h", more re
ent de�nitions in
orporateformality level (Wardhaugh, 1998) and relationship between speaker and listener (Bell, 1984). Rampton(1987) argues that parti
ularly in the 
ase of the non-native speaker, for whom attention to spee
h may bedistributed very di�erently from native speakers, Labov's de�nition is not appropriate. Generally speaking,the term style is 
urrently used to des
ribe systemati
 linguisti
 
hoi
es asso
iated with parti
ular situations(Finegan, 1994). One 
an separate situational appropriateness from degree of planning, and I will thereforerestri
t the de�nition of style to formality and diÆ
ulty level (audien
e-dire
ted lexi
al and stru
tural 
hoi
es)and use the variable mode to en
ode the degree of planning that goes into formulating an utteran
e. Thevariable register will be used to des
ribe task- and 
ontext-dire
ted lexi
al and stru
tural 
hoi
es.Mode, then, as I have de�ned it, varies along a 
ontinuum and is 
losely related to pro�
ien
y among non-natives. It also dire
tly a�e
ts performan
e. A native speaker and a non-native speaker of low pro�
ien
y
ould be speaking with the same style and in the same register (asking a stranger on the street for dire
tions,for example), but with modes representing very di�erent levels of attention. The greater 
ognitive load
onsumed by attention for the non-native speaker may a�e
t his ability to arti
ulate diÆ
ult phone sequen
es,resulting in a stronger a

ent than he would normally exhibit for isolated words. I assume that mode isdi�erent from the other parameters dis
ussed here in that it is not dire
tly evident in the spee
h that isprodu
ed; rather, it exerts an in
uen
e on how spee
h is produ
ed that is di�erent for native and non-nativespeakers.Synta
ti
 SoundnessLearners of a language are generally exposed to L2 grammar in the early days of their study, yet in
ompletemastery of syntax is one of the features that 
an mark even highly pro�
ient spee
h as non-native. Onetheoreti
al view of se
ond language a
quisition takes the Chomskian position that a
quistion of L1 grammaro

urs as 
hildren instantiate the biologi
ally endowed Universal Grammar, it does not agree on whether L2learners have a

ess to this resour
e (Ellis, 1997, p.66). It is 
lear that adult learners struggle with prin
iples,for example, 
o-referen
e through a re
exive, that are instantiated di�erently (or uniquely) in L1 and/orL2. It has also been observed that attention and learning stage 
an interfere with produ
tion of even thosesynta
ti
 
on
epts that L1 and L2 share, as with a
quisition of de�niteness for Polish learners of English(Van Dyke, 1997).Native speakers 
ertainly do not always demonstrate pres
riptively 
orre
t syntax. Soundness in instan-tiation of basi
 prin
iples like de�niteness marking, however, is 
ommon to native speakers. For the mostpoorly edu
ated native speaker, the senten
e \Flight number is �ve hundred and twelve" just sounds wrong,for reasons he would not know how to explain other than to say \you have to say the."In
orre
t instantiation of synta
ti
 prin
iples does not ne
essarily result in a synta
ti
ally in
orre
t sen-



5ten
e. Native speakers of German frequently 
onfuse past and past perfe
t in English. Imagine that a partywas thrown on Saturday night. On Monday morning, to be asked \did you go to the party?" would notseem unusual; the perfe
tly grammati
al \have you been to the party," on the other hand, would perplex,
ausing one to wonder if the party were still going on. This type of synta
ti
 misinstantiation is a subtle yetsometimes jarring sign of non-nativeness.Lexi
al Choi
eThe words 
hosen by a speaker to express a thought 
an also reveal whether he is native. A senten
e 
an besemanti
ally meaningful and synta
ti
ally 
orre
t yet noti
eably non-native. Let us 
onsider the followingsenten
e pairs.(1.1) a. What is the 
ost of a ti
ket for the 
on
ertb. How mu
h does a ti
ket for the 
on
ert 
ost(1.2) a. I'm going to have a jelly and peanut butter sandwi
hb. I'm going to have a peanut butter and jelly sandwi
h(1.3) a. Let's disassemble the puzzleb. Let's take apart the puzzleIn ea
h of these examples, the �rst is te
hni
ally 
orre
t but less likely to be spoken by a native speakerthan the se
ond. There are many regional di�eren
es in the way native speakers 
hoose words (British\lift" and General Ameri
an (GA) \elevator" being a familar example). A la
k of awareness of familiarlexi
al patterns, however, results in noti
eable idiosyn
rasies, as 
ontrasted with regionalisms, in non-nativespee
h. This variable 
an 
ause a parti
ular problem for spee
h re
ognition as the language model en
odesthe distribution of words in native spee
h.Fluen
yThe 
uen
y variable des
ribes the pa
e and smoothness of spee
h. Native spee
h is often dis
uent; nativespeakers ba
ktra
k, stutter, pause in the middle of a senten
e, and speak in fragments in 
onversationalspee
h. These e�e
ts show similarities even a
ross languages (Eklund and Shriberg, 1998). Spee
h dis
uen-
ies are not limited to 
onversational \modes;" they are found in read spee
h as well, when readers stumbleover the text. Pa
e, too, varies greatly in native spee
h. Some natives speak qui
kly; others speak slowly.Some speak in bursts, others with an even rhythm. However, it appears that measurements of 
uen
y 
an beused to distinguish native and non-native spee
h. Cu

hiarini et al. (2000), among others, show that pa
e
orrelates 
losely with per
eption of pro�
ien
y. Some non-native reading errors in spee
h are distin
tiveand quanti�able (May�eld Tomokiyo and Jones, 2001). While some dis
uen
ies seem to follow universalpatterns, others, in
luding the native-language interje
tions seen in the dialogue trans
ribed above, stronglyindi
ate that the speaker is non-native.It seems 
lear that native speakers are able to re
ognize non-native speakers based on features like a

ent,syntax, and 
uen
y. Children 
an identify and imitate spe
i�
 
hara
teristi
s of spee
h that mark it as typi
al



6 CHAPTER 1. INTRODUCTIONof a non-native group. When a listener is �rst exposed to a variety of non-native spee
h, he may initiallystruggle to understand it, but if he is a 
ooperative listener, he 
an often adapt very qui
kly. Humans arein
redibly well equipped to understand spee
h, and tolerate deviation relatively well.Unfortunately, neither of these skills have 
ome as naturally to the ma
hine. Computer understandingof spee
h is based on statisti
al models of patterns found in training 
orpora. When the a

ent, syntax,and lexi
al 
hoi
e of the speaker are not well-represented in a training 
orpus, the models must somehow beadapted if good re
ognition is to be a
hieved. We might imagine several angles for atta
king su
h adaptation.The a
ousti
 model spe
i�es the expe
ted mapping of a
ousti
 events to phoneti
 units. In a fully-
ontinuous 
ontext-dependent system su
h as the one that will be des
ribed in later 
hapters, this is anextremely �ne-grained representation. A
ousti
 events are modeled on a sub-phoneti
 level, and manymore variations are re
ognized as would be in a traditional phoneti
 analysis; in the re
ognizer used in thisdissertation, 118 distin
t realizations of /t/ in GA are modeled. The a
ousti
 model would be the naturalpla
e to represent phoneti
 di�eren
es in realization for a given speaker's a

ent.The lexi
on, whi
h des
ribes the phonemi
 makeup of words, would lend itself to modeling of phonemi
di�eren
es and phonologi
al adaptation in produ
tion. By altering the lexeme spe
i�
ations, phonemi
 sub-stitutions, epenthesis, elision, and in some 
ases phoneti
 realizational di�eren
es 
an be easily represented.The problem that arises is that the altered lexi
on may not intera
t with the a
ousti
 model as expe
ted.However, lexi
al modeling is a straightforward approa
h that has been used with modest su

ess for varietiesof native spee
h (Humphries and Woodland, 1997; Huang et al., 2000) and non-native spee
h for non-LVCSRtasks (Fung and Liu, 1999).The re
ognizer's understanding of how words o

ur in sequen
e is en
oded in the language model. Absenta natural language understanding 
omponent, the re
ognizer has no understanding of the meaningfulness ofa hypothesized utteran
e, and must rely on a statisti
al model to determine the likelihood of a sequen
e ofwords having been uttered. By adapting the language model, the restri
tions on probable word sequen
es
ould be relaxed for in
reased toleran
e of deviation from native patterns of spee
h. Alternatively, one 
ouldenvision training a statisti
al model of non-native spee
h, expli
itly representing patterns that are 
ommonin the spee
h of non-natives.Finally, the system itself 
ould be adapted for greater 
exibility in pro
essing non-native spee
h. Justas human listeners are able to ask the speaker to repeat himself, delay pro
essing while building 
ontext,and silently indu
e lexi
al, synta
ti
, and phoneti
 mappings from both positive and negative examples, asystem that endeavors to understand non-native spee
h 
ould in
orporate learning strategies with the aid ofdialogue and natural language understanding 
omponents.This investigation will be restri
ted to the re
ognizer 
omponents that model pronun
iation, namely thea
ousti
 model and the lexi
on.In this dissertation, I 
on
entrate prin
ipally on native speakers of Japanese. This speaker populationo�ers great potential for experimental 
ontrol; English edu
ation is standardized in Japan, and the Japanese



7population in Pittsburgh is large enough that �nding speakers with similar edu
ational ba
kgrounds andexposure to English was not diÆ
ult. The nature of Japanese-in
uen
ed English is well known, if not wellstudied, from both lexi
al and phonota
ti
 points of view. The many English words that have worked theirway into everyday Japanese spee
h have undergone semanti
 and phonologi
al transformations that 
an helpus to predi
t how Japanese natives will approa
h produ
tion of English. Be
ause nativized foreign words arerepresented in the Japanese s
ript, an array of orthographi
 mappings is a

essible that may provide furtheraid in developing a model of Japanese-in
uen
ed English.Appli
ations of this work are also likely to be of interest in Japan. Language tutoring systems that model aparti
ular native language (L1) well 
an present feedba
k in the 
ontext of linguisti
 elements that are knownto be problemati
 for speakers that share the user's L1. The Japanese government is 
urrently so 
on
ernedabout the English language ability of its 
itizens that it is 
onsidering the dramati
 step of making Englishan oÆ
ial language (Kawai, 2000). Su
h a requirement would in
rease the demand for English training,and possibly for English versions of natural language systems 
urrently available in Japanese. In su
h aneventuality, toleran
e of non-native English would be 
riti
al.Problem statementSpee
h re
ognition systems 
onsistently perform poorly on all but the most 
uent non-native speakers. Asspee
h re
ognition te
hnology moves into general use, a

ommodation of non-native speakers is both aninteresting resear
h problem and an important fun
tional 
on
ern.Thesis statementSpee
h re
ognition performan
e for lower-pro�
ien
y non-native speakers of English, spe
i�
ally native speak-ers of Japanese, 
an be signi�
antly improved through phonologi
al modeling of the non-native 
ondition.OrganizationThis do
ument is organized into seven 
hapters and three appendi
es. Chapter 2: Ba
kground and Re-lated Work surveys the ri
h history of the study of language a
quisition as well as relatively re
ent resear
hin spee
h re
ognition for non-native speakers; Chapter 3: Non-native Spee
h Database: Composi-tion and Chara
terization provides a des
ription of eli
itation and trans
ription methods and a thoroughanalysis of the JL1 and ML1 English read and spontaneous spee
h 
orpora; Chapter 4: A
ousti
 Model-ing des
ribes detailed experiments in a
ousti
 modeling for JL1 English; Chapter 5: Lexi
al Modelingdes
ribes linguisti
ally-motivated and data-driven modeling of phonologi
al interferen
e at the lexi
al level;Chapter 6: Hypothesis-driven A

ent Classi�
ation presents a novel and extremely e�e
tive methodfor dete
ting non-native spee
h that 
an be used to invoke the non-native modeling methods des
ribedin previous 
hapters; and �nally, Chapter 7: Con
lusion summarizes the main 
ontributions of thiswork and dis
usses dire
tions for future resear
h. Appendix A: Data Colle
tion and Speaker Pro�-
ien
y Evaluation lists database statisti
s and demographi
 information for the speakers; Appendix B:Phonologi
al Transformation Rules gives the rules used for linguisti
ally-motivated lexi
al modeling of



8 CHAPTER 1. INTRODUCTIONnon-native spee
h; andAppendix C: IPA-Arpabet Mappings provides a 
hart relating the InternationalPhoneti
 Asso
iation (IPA) symbols used for linguisti
 dis
ussions to the ASCII symbols 
ommonly used inthe 
ontext of spee
h re
ognition.



Chapter 2
Ba
kground and Related WorkThe idea of spe
ialized re
ognition of non-native spee
h has developed from two separate dire
tions. Inlanguage learning resear
h we have seen in
reased e�orts to use output from spee
h re
ognition appli
ationsto provide feedba
k and guidan
e to the student. The relationship between a
ousti
 s
ores and humanper
eption has been the fo
us of mu
h interest in this area, as have methods for measuring distan
e betweenthe student's spee
h and a model of \good" native spee
h. Resear
h in spee
h re
ognition, on the otherhand, has turned toward non-native spee
h as the systems be
ome a

urate enough and realisti
 enoughfor non-native speakers to want to use them. Progress in re
ognition of non-native spee
h is measuredprimarily by redu
tion in word error, whi
h is not a metri
 that 
an be dire
tly linked to su
h features asintelligibility. The goal of an LVCSR system is to model spee
h so that the word the speaker intended to sayis re
ognized; this may be a

omplished by building a model that is in
orre
t from a pres
riptive standpointand undesirable from a pedagogi
al standpoint but represents the speaker's intent.This 
hapter begins with a dis
ussion of se
ond language a
quisition (SLA) resear
h, whi
h has in
uen
edthe way 
omputational modeling of non-native spee
h is approa
hed. I then give an overview of how non-native spee
h has been approa
hed in the dis
iplines of 
omputer-aided language learning and LVCSR, and
on
lude by dis
ussing issues in eli
itation and re
ording.2.1 Se
ond Language A
quisitionDo non-native speakers 
arry over pronun
iation habits from their �rst language to their se
ond? This isthe question that resear
h in se
ond language a
quisition may help to answer. The assumption that learnerssystemati
ally substitute L1 phones for L2 phones is widespread in spee
h re
ognition.\A

ent usually 
omes from the arti
ulation habits of the speaker in her/his own native language."(Fung and Liu, 1999, p.1)\An alternative approa
h to [modeling℄ non-native spee
h is to assume that non-native speakers will9



10 CHAPTER 2. BACKGROUND AND RELATED WORKdominantly use their native phones, presumably by mapping the phones of the language they arespeaking (L2) to their native language (L1)." (van Leeuwen and Orr, 1999, p.1)\[The℄ te
hniques introdu
ed here are based on the underlying idea that a non-native speaker. . . willsubstitute sounds of his or her mother tongue for those foreign sounds he or she 
annot produ
e."(Witt and Young, 1999, p.1)Studies in SLA do not agree on this point, however. While the fa
t that native speakers of a language 
anoften guess a non-native speaker's L1 based on their arti
ulation of spe
i�
 phones is not disputed, whetherany sort of traje
tory in phoneti
 spa
e between spe
i�
 L1 and L2 phones is 
ommon to speakers of thesame L1 is the subje
t of many years of debate.2.1.1 Contrastive AnalysisContrastive Analysis (CA) is a bran
h of applied Linguisti
s introdu
ed in the 1930's whi
h is 
on
ernedwith \produ
ing inverted (i.e. 
ontrastive, not 
omparative) two-valued typologies (a CA is always 
on
ernedwith a pair of languages), and founded on the assumption that languages 
an be 
ompared" (James, 1980,p.3). CA theory 
laimed that \speakers tend to hear another language and attempt to produ
e utteran
esin it in terms of the stru
ture of their own language, thus a

ounting for their `a

ent' in L2," where a

entrefers not only to phonologi
al a

ent, but to all elements in the presentation of spee
h that mark the speakeras foreign (Ferguson, 1989, p.82). In SLA-oriented CA, 
omparable features of L1 and L2 are identi�ed anddes
ribed, and mismat
hes are identi�ed that are likely to lead to error on the part of the learner; CA issaid to be able to predi
t and diagnose errors. This appli
ation is based on the 
on
ept of linguisti
 transfer,whi
h is said to happen when knowledge about one language is applied (
orre
tly or not) to another andintuitively would seem to explain why language learners make the mistakes they do.The most serious arguments against CA were that its foundations were in stru
turalism and behavioral-ism, whi
h had begun to lose favor, and that in pra
ti
e, it was not an e�e
tive method for predi
tingerrors that learners a
tually make. Bri�ere (1966) reported on an experiment in whi
h Ameri
an studentswere played non-English sounds from Arabi
, Vietnamese, and Fren
h and asked to reprodu
e them. Whilethere were some 
ases of 
lear L1 transfer, Bri�ere found that in other 
ases the students approximated onenon-English sound with another (/r/ for /
/), whi
h would not be predi
ted by CA. Furthermore, it wasobserved that some of the non-English sounds were easier than others for the Ameri
an students to learn(Bri�ere gives the example of a voi
eless non-aspirated fortis dental stop as being easier than the dentalizedversion), a phenomenon for whi
h CA does not provide an explanation.2.1.2 Error AnalysisDissatisfa
tion with CA led to the development of a paradigm known as Error Analysis (EA). James (1998,p.2) identi�es two ways in whi
h language learners \stop short of native-like su

ess in a number of areas



2.1. SECOND LANGUAGE ACQUISITION 11of the L2 grammar" (Towell and Hawkins, 1994): \when their L2 knowledge be
omes �xed or fossilized,and when they produ
e errors in their attempts at it." This distinguishes them from native speakers, whoare de�ned as knowing their language perfe
tly. While mu
h is made in spee
h re
ognition resear
h of theimperfe
tion with whi
h native speakers use their language, in the Chomskian tradition this is a performan
eissue and should be distinguished from language 
ompeten
e.EA looks for systemati
 behavior in groups of learners, asking what types of errors out of all of thelanguage errors produ
ed by learners 
an be 
lustered together and be 
lassi�ed as \errors that nativespeakers of language X are likely to make," or \errors that speakers who do not 
ontrol a system of 
asemarking are likely to make." In EA, only L2 and the intermediate language IL, whi
h represents thelearner's understanding of L2 at a given time, are 
ompared for mismat
hes (re
all that in CA, L1 and L2were 
ontrasted).One major argument against EA is said to be that it does not a

ount for the fa
t that speakers oftenavoid elements of L2 that they �nd diÆ
ult (further dis
ussion to follow) and therefore do not make errorsthat EA would predi
t; another is that it in
orre
tly ignores the e�e
ts of transfer from L1.2.1.3 Transfer AnalysisRe
ognition of the theoreti
al short
omings of EA led to a return to favor of CA. Wardhaugh (1970) suggestedthat the problem with early CA was that it 
laimed to be able to predi
t errors by 
omparing only L1 andL2. EA was not quite a 
omplete solution to this problem; although it 
ould predi
t errors more a

uratelyusing its model of the learner's 
urrent understanding of L2, it did not take into a

ount in
uen
es of L1,whi
h 
annot be ignored. An alternative, weaker version of CA was proposed, whi
h 
laims only to be ableto \explain (or diagnose) a subset of a
tually attested errors { those resulting from [L1℄ interferen
e" (James,1998, p.5). This in
arnation of CA is referred to as language transfer, transfer analysis, or weak CA, and isdi�erent from EA in that the intermediate language IL is 
ompared to L1 and not L2; it is used primarilyas one tool within an EA-based analysis framework.2.1.4 Towards a model of non-native spee
hThe idea of the intermediate language IL, often known as interlanguage, as a legitimate, working language hasbeen developed to the point where it 
an really be taken as the basis of a 
omputational model of a learner'sspee
h. The problem for spee
h re
ognition, of 
ourse, is that ea
h speaker has an individual model, repre-senting the level of L2 understanding he has rea
hed and the in
uen
es of L1 and other languages to whi
hhe has been exposed; one would need a way to generalize in order to apply ideas from interlanguage theoryto a spee
h system. Nevertheless, it provides a theoreti
al ba
kground for thinking about implementing anerror model for LVCSR.Corder (1967) introdu
ed the term transitional 
ompeten
e to re
e
t the independent system of thelanguage that learners (both native and non-native) develop. Children a
quiring their native language do



12 CHAPTER 2. BACKGROUND AND RELATED WORKnot 
ontrol the full adult version of the language, but rather an intermediate language, just as L2 learnersdo. This 
on
ept was then revised, and the idea of the idiosyn
rati
 diale
t developed to better des
ribethe language spoken by the learner: it is a diale
t in that it shares important parts with other varieties ofthe language, and 
an be 
onsidered one version of that language (as opposed to a separate language), butis idiosyn
rati
 in that there are not enough speakers of that version to 
laim that they form any sort oflanguage 
ommunity, a 
hara
teristi
 that speakers of so
ial diale
ts share. This de�nition emphasizes thetransitional and unstable nature of the intermediate language.Tarone et al. (1983) dis
uss strategies that language learners use to over
ome diÆ
ulties in four majorareas: phonologi
al, morphologi
al, synta
ti
, and lexi
al. They identify the strategy 
lasses of transfer,overgeneralization, prefabri
ation, overelaboration, epenthesis and avoidan
e, most having an appli
ation inall four domains. Avoidan
e is further broken down into topi
 avoidan
e, semanti
 avoidan
e, appealingto authority (asking, using a di
tionary), paraphrase, message abandonment, and language swit
h. It isinteresting to 
onsider these strategies in two of the 
ontexts that 
on
ern us in spee
h re
ognition: sys-tem development and data 
olle
tion. Clearly, many of the strategies outlined 
an be dire
tly applied toerror modeling in the spee
h system; phonologi
al epenthesis and transfer (e.g. phoneme substitution), mor-phologi
al overelaboration (
hoosing un
ontra
ted forms), and lexi
al overgeneralization 
an be expli
itlyrepresented. The dis
ussion of 
ommuni
ation strategies, parti
ularly avoidan
e strategies, has impli
ationsfor training data 
olle
tion as well, however, perhaps even more for task-oriented systems than freely 
onver-sational systems, whi
h are traditionally 
onsidered more diÆ
ult. We often speak of the need to eli
it duringdata 
olle
tion words and expressions that will appear in real-world use of the system. How important is itto eli
it the same strategies that will be triggered when non-native speakers try to use a spee
h system? Or,
onversely, to avoid during data 
olle
tion the triggering of strategies that would not be invoked in real-worlduse? It may be the 
ase that in 
onversation, speakers have more 
exibility to appeal to strategies su
h asavoidan
e in order to hide an inability to pronoun
e 
ertain words or ask 
ertain questions; they 
an 
hooseanother word or another topi
, or 
hoose silen
e as their avoidan
e strategy. When they need to �nd outspe
i�
 information, however, they may resort to di�erent strategies to express themselves than they wouldin 
onversation.Tarone (1978a) investigates interlanguage phonology. For the spe
i�
 
ase of Japanese learners of English(and building on L. Di
kerson's 1974 dissertation (Di
kerson, 1974)), she notes that \
ertain phonologi
alenvironments are more favorable to the produ
tion of [s℄ and [z℄ than others." This e�e
t has importantimpli
ations for a
ousti
 modeling, as we will see in Chapter 4. Tarone looks with parti
ular interest at therole of the syllable in L2 phonologi
al a
quisition, asking why Ameri
an speakers, for example, struggle withthe arti
ulation of /Z/ in any syllabi
 
ontext other than that in whi
h it appears in English. She extends thisdis
ussion to the various strategies speakers of many languages invoke to help with the arti
ulation of non-CV (
onsonant-vowel) syllables. Disagreeing with Oller (1974), who emphasized the di�eren
e between theways 
onsonant 
lusters are simpli�ed in L1 a
quisition (deletion, redu
tion) and in L2 learning (epenthesis),



2.1. SECOND LANGUAGE ACQUISITION 13Tarone supports the idea of the CV syllable as a \universal arti
ulatory and per
eptual unit su
h that thearti
ulators tend to operate in basi
 CV programs in all languages" (Tarone, 1978b). She found a tenden
yin learners to simplify even 
onsonant 
lusters whi
h appeared in L1 using both epenthesis and deletion {she found that the preferen
e for a CV syllable was independent from the strategy used to form it and L1.In
orporating this idea of an L1-independent preferen
e for the CV syllable, Tarone identi�es �ve pro
essesand �ve 
onstraints asso
iated with L2 phonologi
al a
quisition.Pro
esses:1. negative transfer from L12. �rst language a
quisition pro
esses3. overgeneralization4. approximation5. avoidan
eConstraints:1. the inherent diÆ
ulty of 
ertain L2 sounds and phonologi
al 
ontexts2. the tenden
y of the arti
ulators to rest position3. the tenden
y of the arti
ulators to a CV pattern4. the tenden
y to avoid extremes of pit
h variation5. emotional and so
ial 
onstraintsThese pro
esses and 
onstraints intera
t to de�ne the learner's interlanguage phonologi
al system and 
anbe the basis for phonologi
al error analysis.The 
onsistent observation that few L2 pronun
iation errors 
an be tra
ed to dire
t L1 transfer is noteasy to re
on
ile with the 
lear 
onsensus that there are identi�able foreign a

ents, a dilemma that Beebe(1987) atta
ks in a study of myths about interlanguage phonology. If non-native pronun
iation errors do nothave their roots in di�eren
es between L1 and L2 phonology, why 
an a non-linguist 
lassify foreign a

entsby 
ountry when they 
annot so easily 
lassify grammati
al errors?Beebe presents a study whi
h supports �ndings from earlier studies (e.g. Di
kerson, 1974) but whi
hpresents data from �ve language groups, making it more 
omprehensive than previous studies. Beebe suggeststhat while native Ameri
an listeners may 
lassify a non-native phoneme that they hear as a parti
ular nativeone using re
overy strategies based on the English phonologi
al system, the phoneme may not be the onethat the speaker intended, and a
ousti
ally, may a
tually be quite distant from the phoneme that thelistener thinks he heard. This intuition 
ould shed some light on the agreement among native speakerson 
hara
teristi
s of parti
ular foreign a

ents while at the same time explaining the la
k of su

ess ofCA in explaining L2 pronun
iation errors. Beebe makes the further observation that most substitution



14 CHAPTER 2. BACKGROUND AND RELATED WORKerrors are phoneti
, and not phonemi
 as it it may appear to native listeners. Looking at the distribution ofEnglish /l/ attempts in native speakers of four Asian languages (Japanese, Chinese, Korean, and Indonesian),Beebe found that although the pronun
iation error rate was 46% (the 
al
ulation of this error rate was notdis
ussed), the rate of substitution of an r-variant was only 3%. Three-quarters of the /r/ errors werephoneti
 deviations from /l/, and not phonemi
 substitutions of /r/.Beebe's distin
tion between phonemi
 and phoneti
 errors is important when trying to tea
h pronun
i-ation, as her �ndings indi
ate that while her students may appear to be 
onfusing r and l, theirs are notthe sort of errors that minimal-pair training would 
orre
t. What they need to understand is why theirapproximations of /l/ do not sound to a native speaker like /l/, not how /r/ is di�erent from /l/. It isdiÆ
ult to know whether this distin
tion would be meaningful to the spee
h re
ognizer. On the one hand,one might 
on
lude that if it sounds like an /r/ to a native speaker, it will sound like an /r/ to the re
ognizer,and sin
e the re
ognizer 
an a

ept pronun
iation variants very easily, it would be simple to add /ra��k/ for\like" to the internal lexi
on. On the other hand, Beebe's resear
h suggests that while human listeners hearit as an /r/, they do so not be
ause it is spe
trally like an /r/, but rather be
ause of the 
omplex intera
tionbetween human auditory re
overy strategies and phonologi
al and semanti
 expe
tations.2.2 Computer-Aided Language LearningAs te
hnologies for pro
essing human language have matured, it has be
ome possible to view them as ped-agogi
ally valuable tools. Advan
es in spee
h re
ognition and parsing have been enthusiasti
ally re
eived inthe �eld of 
omputer-aided language learning (CALL), although the appli
ation of \te
hnology" in languagelearning systems ranges from the very simplisti
 to the overly optimisti
.Noting that this work fo
uses spe
i�
ally in the appli
ation of spee
h te
hnology to language learning,let us �rst 
onsider some 
ommon roles of spee
h in CALL systems.Intera
tive: re
ord and playba
k fun
tions, adding variety to otherwise tedious drillsQuantitative: providing feedba
k regarding a
ousti
 features like duration and F1/F2Probabilisti
: estimating the likelihood of an a
ousti
 model having produ
ed the a
ousti
 event providedby the speakerCommuni
ative: in
orporating spee
h with natural language understanding to a
t as a 
onversation part-nerIn an intera
tive 
ontext, spee
h is used to give the learner instant and repeated a

ess to his ownpronun
iations, and to those of native speakers that he wishes to emulate. Criti
al issues in
lude monitoring(if the learner has full 
ontrol over the intera
tion, will he pro
eed in the way that is most bene�
ial to him?)and feedba
k (without evaluation from a tea
her, will the learner know what he is doing wrong?) as well



2.2. COMPUTER-AIDED LANGUAGE LEARNING 15as authenti
ity, individual learning styles, and limitations in the hard-
oded pro
essing domain (Garrett,1995).At least one of these 
on
erns 
an be addressed by providing quantitative feedba
k to the user so thatde�
ien
ies and improvements in his spee
h are 
learly visible. Speaking rate and pause frequen
y are knownto have signi�
antly di�erent distributions in native and non-native spee
h (May�eld Tomokiyo, 2000) and
orrelate well with 
uen
y ratings given by spee
h therapists and phoneti
ians (Cu

hiarini et al., 1998).Eskenazi and Hansma (1998) have found that prosodi
 features that 
an be extra
ted dire
tly from thespee
h signal are also good indi
ators of 
uen
y and pronun
iation quality.While systems that o�er this kind of quantitative feedba
k without requiring the user to utter isolatedphones do need an a
ousti
 model to generate a time-phone alignment, they are not making a statementabout the relationship between the learner's spee
h and the information about native spee
h 
ontained inthe model. Many CALL systems use probabilisti
 output from the a
ousti
 model to derive a pronun
iations
ore. The s
ores themselves are then evaluated by 
omparing them to s
ores given by human listeners; as
oring algorithm is 
onsidered e�e
tive if it produ
es s
ores that 
orrelate well with s
ores that experien
edhumans, su
h as language tea
hers, give the speakers. Pronun
iation s
ores 
an also be given at di�erentlevels; a senten
e-level s
ore would give a speaker an idea of how good his overall pronun
iation is, whereasa phone-level s
ore would be useful for training arti
ulation of spe
i�
 phonemes.Bernstein et al. (1990) presented the �rst HMM-based pronun
iation evaluation system. They 
omparedperforman
e of senten
e-level models and monophone models for a read spee
h task, �nding that gradingresults 
orrelate best with de
isions by human graders when the senten
es were �rst aligned using the senten
emodels and s
ores 
al
ulated using the phoneme models. They reported high reliability and agreement amonghuman graders for ratings of pronun
iation quality.Fran
o et al. (1997) des
ribe HMM-based phone log-likelihood s
ores and phone log-posterior probabilitys
ores that were used to evaluate Ameri
an learners of Fren
h. They found that the posterior-based s
ores
orrelate better with human raters than the log-likelihood-based s
ores. They theorize that this is be
ausetheir 
al
ulation of the posterior s
ore in
ludes a normalizing term in the denominator that would balan
eout e�e
ts of individual speaker 
hara
teristi
s or a
ousti
 
hannel 
onditions. The authors also lookedat duration and found that duration-based pronun
iation s
ores performed similarly to the posterior-baseds
ores at the speaker level and somewhat worse, but better than the log-likelihood s
ores, at the senten
elevel. A 
ombination of posterior and duration s
ores at the senten
e level improved 
orrelation with humanraters somewhat over posterior s
ores used alone. The maximum 
orrelation they were able to a
hieve was62%, 
ompared to 65% inter-grader and 76% intra-grader 
orrelation. Extending the approa
h to s
oringof individual phonemes, Kim et al. (1997) report that at the phone level, while posterior-based s
ores still
orrelate best with human graders, 
orrelation of duration-based s
ores is very poor. They hypothesize thatthis is be
ause of the high variability of phone duration.



16 CHAPTER 2. BACKGROUND AND RELATED WORKIn related work at SRI, Ronen et al. (1997) assigned weights to phones based on how damaging mispro-nun
iation of the phone is to expert ratings of overall intelligibility (as per
eived by professional tea
hers).Ronen et al. found that in
orporating the weights in 
al
ulation of the overall senten
e s
ore improved
orrelation with human graders.Neumeyer et al. (1996) move towards text independen
e by introdu
ing a 
lass of algorithms whi
h donot require a referen
e senten
e or network to align the re
ognized spee
h to. They are able to stru
turethe exer
ises in su
h a way that the responses expe
ted from the user are highly 
onstrained, yet the useris provided with the illusion of 
exibility. Variations on this theme have also been su

essful (Eskenazi andHansma, 1998; Ehsani et al., 1997).Eskenazi (1996) showed that a
ousti
 s
ores from the re
ognizer 
an be used to dete
t speaker pronun-
iation errors, and that prosodi
 features that distinguish non-native from native spee
h are present in thespee
h signal. Comparing a
ousti
 phone s
ores a
ross speakers (10 native and 20 non-native speakers werestudied) for individual segments, Eskenazi found signi�
ant di�eren
es between native and non-native pro-nun
iation for several phonemes, indi
ating that pronun
iation error dete
tion based on a
ousti
 s
ore wouldbe su

essful. Working with expert tutors, Eskenazi examined possible measures of prosodi
 errors 
ontribut-ing to a

ent, �nding that segment duration ratios, number of pit
h peaks in a segment, and amplitude arefeatures that 
orrespond well with information human experts use to 
hara
terize a

ent. Eskenazi's Fluen
ypronun
iation tutor in
orporates this information to provide speakers with feedba
k on their pronun
iation(Eskenazi and Hansma, 1998).Kawai and Hirose (1997) report similar results, using Japanese monophone models for training nativespeakers of Chinese in pronun
iation of the Japanese long vowels and geminate 
onsonants known astokushuhaku. Duration is phonemi
 in Japanese, and while short vowels are similar to Chinese vowels,Chinese speakers often have diÆ
ulty produ
ing the long vowels. Using average phone durations of 20 nativespeakers as a guide, their system was able to tell speakers whether their pronun
iations were too long, tooshort, or a

eptable.It has been pointed out that for spee
h systems designed spe
i�
ally for pronun
iation training of apredetermined phoneme set, a template-based re
ognizer may provide more useful s
ores than an HMM-based system (Dalby et al., 1998). In their experien
e, while an HMM-based re
ognizer showed betteroverall re
ognition a

ura
y, a template-based system was more a

urate at re
ognizing vowel and nasal
ontrasts.It is not 
lear that spee
h re
ognition te
hnology has rea
hed the point at whi
h it 
an make judgementsas to 
orre
tness of pronun
iation that 
orrespond to human judgements at a satisfa
tory level (Langlais etal., 1998), although Kawai (1999) 
laims to have done so for some spe
i�
 sound types.Some systems 
ombine native models of the target L2 with native L1 models and non-native L2 modelsto build a system that 
an tell learners when their pronun
iation is 
loser to an L1 phone than the targetL2 phone. In his do
toral thesis, Kawai (1999) develops systems for English-speaking learners of Japanese



2.2. COMPUTER-AIDED LANGUAGE LEARNING 17and Japanese-speaking learners of English. He uses a bilingual monophone phoneme set and allows freetransitions during alignment between English and Japanese phonemes. In this way, he is able to model L1interferen
e in L2 arti
ulation, providing valuable feedba
k to the user.Ronen et al. (1997) use a framework in whi
h native and non-native models are trained and free tran-sitions are allowed between the native and non-native phoneme sets in de
oding. Non-native models weretrained on speakers that were given low pronun
iation s
ores by human graders. They used monophonemodels, having determined that system performan
e did not improve signi�
antly with the introdu
tion of
ontext-dependent models (their experien
e is shared by Witt and Young, (1997), who found that 
ontext-independent models allow better a

eptan
e/reje
tion a

ura
y). It is not mentioned whether the paththrough the mispronun
iation network 
orresponds with human listeners' judgements of nativeness of pro-nun
iation of the individual phonemes, but they did report a lower 
orrelation between ma
hine and humanjudgements of goodness of pronun
iation 
al
ulated with this approa
h than with an approa
h in whi
h ea
hea
h utteran
e is de
oded twi
e, on
e using native models and on
e using non-native models, and the HMMlog-likelihood s
ores are 
ombined to 
al
ulate a pronun
iation s
ore.Auberg et al. (1998) present an a

ent 
oa
h that tea
hes English pronun
iation to Japanese speakers.They use the IBM ViaVoi
e system for the re
ognition 
omponent of their system, whi
h tries to tea
husers to dis
riminate, identify, and produ
e sounds that are re
ognized as being problemati
 for Japaneselearners of English. They des
ribe the extensions that they made to the pronun
iation di
tionary to a

ountfor expe
ted mispronun
iations, notably the in
lusion of variants to re
e
t insertion of epentheti
 vowelsin 
onsonant 
lusters. Although they were su

essful in modifying the available tools to a degree thatsuited their purposes, using o�-the-shelf re
ognition software not designed to re
ognize non-native spee
h
an undermine the e�e
tiveness of CALL systems (Pri
e, 1998).Communi
ative systems address relevan
e and authenti
ity 
on
erns about CALL by not only evaluatingbut also understanding and responding to what the user says. The SUBARASHII Japanese tutoring system(Ehsani et al., 1997) allows beginning learners of Japanese to intera
t with a �
ti
ious Japanese person toperform simple problem-solving tasks. As the goal of SUBARASHII is not to 
orre
t speakers' mistakes butrather to give speakers experien
e using the language, signi�
ant 
exibility is allowed at the synta
ti
 andlexi
al level. Within the 
ontext of four 
onstrained situations (as an example, one of the situations involvesasking whether the �
ti
ious 
hara
ter would like to go see a movie on Friday), the model of a

eptableresponses from the user is augmented with probable errors and variations in phrasing. This allows the user
exibility in what he is allowed to say (
orre
t senten
es are not reje
ted just be
ause they are not exa
tlywhat the model predi
ted), and even with some errors, the user is able to intera
t with the system, as hewould in real life with a human listener.During re
ognition, monophone a
ousti
 models are used, and the sear
h is 
onstrained by the responsemodel. It would not be possible to take advantage of these restri
tions in a full 
onversational system, butin a system in whi
h the topi
 and dire
tion of the 
onversation 
an be highly 
onstrained (as is often the
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ase in language 
lassrooms!), Ehsani et al. found that \meaningful 
onversational pra
ti
e 
an be authoredand implemented and that high s
hool students do �nd these en
ounters useful." The re
ognition a

ura
yfor grammati
ally 
orre
t and in
orre
t utteran
es that were in the response model were 80.8% and 55.6%respe
tively. Re
ognition a

ura
y for utteran
es that were not in the response model was not reported.2.3 LVCSRThe CALL resear
h des
ribed above fo
used not on improving re
ognition quality but rather on using spee
hre
ognition, in some form or another, to aid language learning. A

urately re
ognizing heavily a

ented andpoorly formed non-native 
onversational spee
h has not been a priority in CALL, perhaps be
ause even withhigh-quality re
ognition, analyzing and providing feedba
k on 
onversation is very diÆ
ult.In large-vo
abulary 
ontinuous spee
h re
ognition (LVCSR), the obje
tive is to improve the system'sunderstanding of the speaker, not the speaker's language skills. There are a
ousti
, lexi
al, and languagemodels in an LVCSR system, all of whi
h 
an be adapted to more a

urately represent non-native spee
h.The better the representation, the better the re
ognition (or so one would hope).An early study of non-native speakers in LVCSR fo
used on Hispani
-a

ented English (Byrne et al.,1998). Initial word error rates were extremely high, averaging 73% in an unrestri
ted-vo
abulary task-basedtest. It is interesting to note how Byrne et al. evaluated the skill levels of their speakers. An intermediateskill level implied only some reading knowledge of English, yet the speakers were expe
ted to answer questionssu
h as \What is going on here" and \What will happen next," requiring non-trivial 
onversational skills.Advan
ed speakers required solid reading 
omprehension, and were assumed to be able to parti
ipate in anargumentative dialogue. It is doubtful that the same 
orresponden
e between reading and speaking skillswould apply to Japanese speakers. Most Japanese learners of English study the language in Japan before
oming to the United States, and 
an have a high level of 
ompeten
y in reading but extremely limitedability to 
arry on a 
onversation. The so
iologi
al 
ir
umstan
es surrounding Byrne's speakers' a
quisitionof English doubtless made his 
lassi�
ation the 
orre
t one for his target population, but it should be notedthat the 
orresponden
e between reading and speaking 
ompeten
ies will be di�erent for di�erent targetpopulations, and the data 
olle
tion proto
ol and ultimate system design should re
e
t this.Studies using more 
onstrained tasks or higher-pro�
ien
y speakers have had more su

ess in bringingword error rate to a reasonable level. Witt and Young (1999) have shown that for a simple task, fully-trained sour
e and target language model parameters 
an be interpolated to form a new set of a

ent-dependent models that perform well on speakers of di�erent native languages. For high-pro�
ien
y speakersand speakers of regional diale
ts, adaptation using sour
e-language data is e�e
tive to the point of beingsuÆ
ient (S
hwartz et al., 1997; Beaugendre et al., 2000), and target-language data may also 
ontribute toWER redu
tions in some 
ases (Liu and Fung, 2000a).The lexi
al model, or spe
i�
ation of the phones that make up a word 
an be modi�ed to more a

urately



2.4. MULTILINGUALITY 19represent the phone sequen
es a speaker is likely to utter. It has been shown that data-driven indu
tion ofpronun
iation variants 
an be su

essful for both foreign-a

ented speakers and regionally-a

ented nativespeakers. Humphries and Woodland (1998) derive a pronun
iation di
tionary for Ameri
an-a

ented Englishby aligning 
anoni
al phoneti
 trans
riptions of words to the result of phoneme re
ognition using Ameri
anspee
h and British a
ousti
 models, and training a de
ision tree on those alignments. The de
ision treeis then used to generate an Ameri
an pronun
iation di
tionary from a British pronun
iation di
tionary.Amdall et al. (2000) also 
olle
ted possible transformations by aligning referen
e to automati
ally-generatedpronun
iations, and show how small gains in a

ura
y for the WSJ non-native speakers 
an be a
hieved bypruning the list of word variants based on the probability of the rules invoked for the individual phonetransformations. Lives
u and Glass (2000) use a similar alignment-to-phone-hypothesis method to derivepronun
iation variants for speakers in the jupiter weather query system. Their obje
tive, like Amdall's, isto model non-native spee
h in general, as opposed to fo
using on a parti
ular L1 group. Fung and Liu (1999),on the other hand, 
on
entrate on English spoken by Cantonese native speakers. Although their approa
h topronun
iation variant derivation is not des
ribed in detail, it appears that they su

essfully use predi
tionsfrom a linguist as to what phone substitutions are likely to develop a lexi
al model that results in improvedre
ognition on the HKTIMIT isolated phone database.2.4 MultilingualityMultilinguality in spee
h re
ognition systems has re
eived signi�
ant attention as real-world systems beginto be deployed. When the primary fo
us of resear
h was on developing a reasonable model of spee
h, thea
tual language used for development was less important than the learning and modeling te
hniques thatwere being re�ned. Certainly, language-spe
i�
 issues, in
luding tones in Chinese, liaison in Fren
h, andvo
abulary spe
i�
ation in German, needed to be resolved, but resear
hers generally 
on
entrated theire�orts in modeling their own language and sometimes another widely used language su
h as English.As people 
ame to a
tually want to use these systems, however, the serious overhead involved in developinga re
ognizer in a new language, and 
omputational 
osts involved in running multiple re
ognizers, madesystems that 
ould re
ognize any of a number of languages attra
tive. A multilingual system typi
ally usesa 
ommon phone set to represent all languages it 
overs, sharing training data a
ross languages when thephones show similar properties, and making the task of adding a new language easier as the language andphoneme inventory of the overall system grows.While multilingual systems seem at �rst to be very 
lose to non-native systems, there are several 
ru
ialdistin
tions. In a multilingual system, users are presumed to be native, or at least near-native, speakers ofthe re
ognition target language. While they exhibit the variation that always is seen in native spee
h, theyare expert speakers that fully 
ontrol the syntax, semanti
s, and phonology of their language. All that weknow about pattern modeling for native speakers is valid for the di�erent languages in a multilingual system
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ause the languages are spoken by natives. There are no issues of L1 interferen
e between speaker groups.Multilingual systems do not fa
e the 
hallenge of modeling in
onsistent phonologi
al simpli�
ations beyondwhat is 
ommonly seen in 
uid native spee
h. In a multilingual system, the obje
tive is to suÆ
iently rep-resent the phoneme inventory of ea
h language, whi
h has been well-studied for all but the rarest languages.The problem of de
iding how models should be shared a
ross languages is a signi�
ant one, but should bedistinguished from the problem of modeling speakers who have a 
ommon target, the L2 phone set, but area
hieving it with varying degrees of su

ess.S
hultz and Waibel (1999) des
ribe a method for in
orporating new phonemi
 
ontexts in the allophoni
de
ision tree. Be
ause the phoneme sequen
es that o

ur in ea
h new language 
an be enumerated basedon either existing linguisti
 analysis or expansion of a text 
orpus to its phonemi
 representation, thosesequen
es that do not o

ur in any of the languages already modeled in the system 
an be spe
i�ed. Theauthors adapt the existing de
ision tree to the new phonemi
 environments by pruning ba
k the bran
hesa�e
ted by the new polyphones and re-growing those parts in
orporating the new a
ousti
 data and re-training the asso
iated distributions. S
hultz and Waibel report that his method results in a large de
reasein WER with only a fra
tion of the a
ousti
 data that would have been needed to fully train the newpolyphones.Imperl (1999) des
ribes an algorithm for 
lustering polyphones a
ross languages. He groups togetherpolyphones with a triphone distan
e under a 
ertain threshold to share training data and greatly redu
esthe number of polyphones represented in the system with only a small degradation in WER. K�ohler (1999)
ompares three methods for spe
ifying a phoneme inventory for a 
ontext-independent multilingual system,�nding that density 
lustering bootstrapped from the IPA representation of phones in di�erent languagesoutperforms both depending solely on the IPA symbol and using a purely data-driven 
lustering approa
h.K�ohler dis
usses the representational di�eren
e of these approa
hes, noting that the best-performing methodoperates at a sub-phone level, while using the IPA spe
i�
ation alone does not take advantage of this morespe
ialized modeling.2.5 Data Colle
tionSeveral proje
ts have in
luded the 
olle
tion and re
ognition of a

ented speakers. In addition to the Byrne
orpus, the Australian National Database of Spoken Language 
ontains data from non-native speakers, boththose who were born in Australia but 
laim a language other than English as their �rst and those who arrivedin Australia after puberty (Millar et al., 1994). Non-native speakers were mostly of South Vietnamese andLebanese Arabi
 ba
kgrounds, although representatives of other migrant populations were also in
luded.Bratt et al. (1998) des
ribes in detail the methodology used by SRI for 
olle
tion of read data fromAmeri
an learners of Latin Ameri
an Spanish. The non-native 
olle
tion was part of a larger proje
t inwhi
h many varieties of Latin Ameri
an Spanish were re
orded. Senten
es were primarily taken from Spanish



2.5. DATA COLLECTION 21newspaper texts and were balan
ed for length and phoneti
 
overage. A subset of the 43,460 utteran
es fromthe non-native speakers was phoneti
ally trans
ribed so that systemati
 pronun
iation errors by the non-native speakers, all native speakers of Ameri
an English, 
ould be analyzed. In their phoneti
 trans
riptions,trans
ribers were allowed to 
hoose from the union of the Spanish and English phone sets, and were alsoprovided with dia
riti
s to mark ways in whi
h a Spanish phone sounded non-native if the error was moresubtle than substitution of an English phoneme. Inter-
oder agreement was measured at the phone level,and it was found that [B℄, [D℄, [G℄, and [R℄ were the most 
onsistently trans
ribed as well as good predi
torsof native pronun
iation.One of the important questions to ask when developing a spee
h database is how well dis
uen
ies needto be represented. For language model training, we know that examples of 
ommon expressions and 
on-stru
tions are needed and must be eli
ited during data 
olle
tion. Does the same 
are need to be takenwith dis
uen
ies? It has been observed that although dis
uen
ies are a signi�
ant sour
e of error in Swit
h-board and hesitation words 
an be used to better predi
t other words (Shriberg and Stol
ke, 1996), betterdis
uen
y modeling does not signi�
antly improve re
ognition a

ura
y (Stol
ke and Shriberg, 1996). Willthis also be the 
ase for non-native speakers? How will non-native speakers di�er from native speakers intheir dis
uen
y patterns? These questions 
an only be answered by 
olle
ting and analyzing data 
ontainingdis
uen
ies. Dis
uen
y behavior appears to be similar a
ross English and Swedish (Eklund and Shriberg,1998), but we 
annot be sure whether a similar relationship exists between other language pairs, and if notwhether non-native speakers observe L1 dis
uen
y patterns, L2 dis
uen
y patterns, or a 
ombination, andhow dis
uen
ies are distributed when the speaker is not 
uent in the language being spoken.Many of the assumptions ordinarily made when 
olle
ting spee
h data are 
hallenged when working withpreviously unsampled populations. Eskenazi (1997) points out that speaker 
ompeten
e in linguisti
 skillsand reading ability are among the variables that must be re
ognized when re
ording data from 
hildren andspeakers of languages for whi
h there is not a high standard of litera
y. I have observed that when re
ordingnon-native speakers who are highly literate in their native language, similar variables must be 
onsidered,presenting a spe
ial 
hallenge for data 
olle
tion proto
ol design and exe
ution (May�eld Tomokiyo andBurger, 1999). One does not wish to frustrate the speaker, as doing so would tend to both 
ompromise theintegrity of the data and leave the speaker with negative feelings.In dis
iplines in whi
h re
ording of speakers for the purpose of analyzing patterns in spee
h has longbeen 
ommon pra
ti
e, ethi
al standards have evolved whi
h we might be en
ouraged to respe
t, espe
iallywhen it 
ould be per
eived that our interest in the speaker is be
ause his spee
h is somehow substandard.In his des
ription of the �eld methodology in the proje
t on linguisti
 
hange and variation, Labov (1984)des
ribes a number of issues in spoken data 
olle
tion, mentioning among other things how important it isthat speakers do not 
ome out of the data 
olle
tion experien
e feeling that they have been obje
ti�ed ormisunderstood.The interview is a te
hnique that is frequently used to gather data for the purposes of so
iolinguisti




22 CHAPTER 2. BACKGROUND AND RELATED WORKresear
h, and it 
losely parallels s
enario-based data 
olle
tion in the sense that both are 
ontrived situationsdesigned to eli
it natural spee
h that will be trans
ribed and analyzed. Both su�er from 
on
i
ting de�nitionsof what \natural spee
h" is and whether it 
an be eli
ited in the 
ontrived setting (and whether that matters).The primary di�eren
e is the amount and breadth of spee
h sought; for spee
h system training we need manyhours of spee
h from a variety of speakers, whereas mu
h so
iolinguisti
 resear
h fo
uses on the spee
h ofjust a few speakers. As we expand our data 
olle
tion endeavors to 
over new speaker populations, wewould bene�t from the insights of resear
hers in So
iolinguisti
s, where speakers of non-standard varietiesof languages su
h as English are often targeted.In an extensive dis
ussion of the interview, Briggs (1986) makes many points that seem relevant to data
olle
tion for LVCSR. He emphasizes the importan
e of understanding the meaning of the spee
h event (aninterview, or an intera
tion with a spee
h translation system, e.g.) for the speaker. Re
ording for a resear
hproje
t may be a familiar event for the resear
her, but not for the speaker. Reading aloud is 
ommonpla
ein Ameri
an s
hools, but parti
ipants of di�erent ba
kgrounds may be intimidated or even o�ended whenasked to read aloud. While native speakers of English 
ertainly vary in their 
omfort reading and speaking,when the resear
hers are also native speakers of English, there are far fewer 
ultural variables that 
an leadto misunderstanding.[The℄ hiatus between the 
ommuni
ative norms of the interviewer and interviewee 
an greatlyhinder resear
h, and the problems it engenders have sometimes abruptly terminated the interview. . . if the �eld worker does not take this gap into a

ount, he or she will fail to see how native
ommuni
ative patterns have shaped responses; this will lead the resear
her to mis
onstrue theirmeaning. (Briggs, 1986)The issue of eli
itation of natural spee
h has been given mu
h attention in areas of Linguisti
s, espe-
ially So
iolinguisti
s, where entire studies 
an revolve around the spee
h of just a few speakers, making it
ru
ial that the spee
h 
olle
ted truly represents the natural spee
h patterns of the speaker being studied.Wolfson (1976) de�nes the notion of natural spee
h \as properly equivalent to that of appropriate spee
h;as not equivalent to unself
ons
ious spee
h." She suggests that in some situations, it is natural to speak
arefully, and that 
areful spee
h in su
h 
ontexts should not be 
onsidered unnatural. By the same token,for semi-
uent non-native speakers, whether they are at a real information desk or re
ording a 
ontriveds
enario, their spee
h will most likely be planned. This means that we 
an probably allow speakers to makenotes of what they plan to say (if that makes them more 
omfortable). It may also mean that we don'tneed to make as mu
h of a distin
tion between read and spontaneous spee
h; it may be the 
ase that for thepurposes of training a non-native re
ognizer, read dialogues and even read texts may be mu
h more usefulthan they are for training a native system.



Chapter 3
Non-Native Spee
h Database:Composition And Chara
terizationThe di�eren
es between native and non-native spee
h 
an be quanti�ed in a variety of ways, all relevantto the problem of improving re
ognition for non-native speakers. Di�eren
es in arti
ulation, speaking rate,and pause distribution 
an a�e
t a
ousti
 modeling, whi
h looks for patterns in phone pronun
iation andduration and 
ross-word behavior. Di�eren
es in dis
uen
y distribution, word 
hoi
e, syntax, and dis
oursestyle 
an a�e
t language modeling. And, of 
ourse, as these 
omponents are not independent of one another,all a�e
t overall re
ognizer performan
e.Understanding how native and non-native spee
h di�er at all levels is 
learly an important �rst stepin atta
king the problem of non-native re
ognition. In this 
hapter, I present an analysis of rhythmi
 andlexi
al, and to a 
ertain extent synta
ti
, di�eren
es between the native and non-native spee
h samples Ihave 
olle
ted. This analysis is important for spee
h re
ognition, but has impli
ations for other areas ofnatural language pro
essing su
h as parsing and dis
ourse pro
essing.This 
hapter is stru
tured as follows. Se
tions 3.1, 3.2, and 3.3 des
ribe the proto
ol used to builda database of 
lean wide-band non-native spee
h. Re
ording, trans
ription, and annotation 
onventionswill be presented, as well as evaluation of speaker pro�
ien
y. In Se
tion 3.5 I present my analysis of thedata, des
ribing lexi
al distribution, speaking rate and pause distribution, dis
uen
ies, reading errors, andgrammati
ality in the native and non-native spee
h.3.1 Data 
olle
tionAt the time this thesis work began there were some small databases of non-native spee
h available. Inparti
ular, the LDC Wall Street Journal (LDC, 1994a) and Broad
ast News (LDC, 1997) databases havenon-native 
omponents, and are linked to widely-used native databases so results on non-native spee
h 
ould23



24 CHAPTER 3. NON-NATIVE SPEECH DATABASE: COMPOSITION AND CHARACTERIZATIONbe 
ompared to those for native spee
h. However, be
ause both of these databases were limited to readspee
h, I would not have been able to 
ompare 
hara
teristi
s of read and spontaneous spee
h for the samespeakers. My goal was also to examine patterns in spee
h of speakers who were of a lower pro�
ien
y levelthan those in the two read news databases. It was therefore my de
ision to 
olle
t my own database ofnon-native spee
h, following as 
losely as possible the data 
olle
tion 
onventions used in developing thesewell-known databases (LDC, 1996a).3.1.1 Pilot data 
olle
tion experimentsIn order to determine what type of data I would be able to 
olle
t, several pilot experiments were run with�ve lo
al speakers who were a
quaintan
es and known to be of the target English pro�
ien
y level. All werenative speakers of Japanese. They returned a number of times to 
omplete di�erent tasks, under di�erentre
ording 
onditions, and were asked for their rea
tions to ea
h situation. I de�ned my target data basedon their feedba
k. This approa
h is di�erent from the more 
onventional method of �rst 
hara
terizing thetarget data and then designing the task and re
ording proto
al to enable 
olle
tion of that data. My de
isionto 
ontrol for the native language and English pro�
ien
y of the speakers limited the potential speaker set,however, and I wanted to maximize the extent to whi
h lo
al speakers would be able to parti
ipate.Spontaneous spee
hMy de
isions in spontaneous spee
h 
olle
tion were heavily in
uen
ed by the experien
e of 
olleagues at theIntera
tive Systems Labs (ISL) at Carnegie Mellon University who have had many years of experien
e in
olle
ting spontaneous spee
h from native speakers in a variety of domains. Data that has been 
olle
ted atISL is used as a standard database in multi-site spee
h system development and evaluation (Burger et al.,2000; Ahlen et al., 1997). In most 
ases, a s
enario is designed and speakers are asked to 
onverse freely inthe 
ontext of that s
enario. The s
enario 
an be goal oriented, asking the speakers to s
hedule a meetingor make a hotel reservation; it 
an also be free in form, asking speakers to 
onverse about a 
ertain topi
.Completely un
onstrained spee
h 
an be 
olle
ted by simply re
ording 
onversations and dis
ussions withthe permission of the speakers.The non-native speakers who were invited for pilot experiments resisted both s
enario-based and un
on-strained spontaneous data 
olle
tion. They 
ited their la
k of 
on�den
e in produ
ing English senten
esas the primary reason for their dis
omfort. One of the speakers refused to do either task. The other fouragreed to re
ord, but two of the four 
omplained that the tasks were \hard" and \embarassing." Three ofthe �ve speakers said independently that they believed word would get out within the 
lose-knit PittsburghJapanese 
ommunity that the task was unpleasant and I would have diÆ
ulty re
ruiting speakers.The speakers were asked to do a third task in whi
h they were given prompts designed to eli
it naturalquestions on spe
i�
 topi
s. They strongly preferred this task. Although a prompted task 
an unnaturally
onstrain the types of words and expressions that are used (speakers tend to repeat the phrases in the



3.1. DATA COLLECTION 25Speaker Group Native Non-nativePrompt type English prompts English prompts Japanese promptsPerplexity 102.6 59.49 32.73Table 3.1: Perplexity of spoken English as eli
ited from native speakers, non-native speakers given English prompts,and non-native speakers given native-language prompts. Perplexity is measured with respe
t to a native languagemodel.prompt), I hypothesized that be
ause the speakers were already depending on learned templates in theirspee
h, the prompted spee
h might not be as distant from spontaneous spee
h as it would for native speakers.I also thought that giving speakers native-language prompts and asking them to formulate English queriesmight approximate the pseudo-translation pro
ess they were already going through in speaking English,and that su
h prompts might a
tually eli
it fairly natural utteran
es, whereas giving them English promptswould en
ourage them to use phrases that they were not familiar with and introdu
e spee
h errors thatwould not ordinarily o

ur.As an informal evaluation of this hypothesis, I examined how well a topi
-mat
hed language model pre-di
ted the English-prompted utteran
es, the native-language-prompted utteran
es, and a set of utteran
es bynative English speakers given the same English prompts. A standard measure of language model performan
eover a 
orpus is perplexity, whi
h is de�ned in e.g. (Manning and S
h�utze, 1999, p.510) to beppl = 2�1N logP (w1:::N)where N is the 
orpus size and the probability of the word sequen
e w1 : : :N is approximated, in the
ase of a trigram language model, asP (w1 : : : N) = NYi P (wijwi�2; wi�1). The results of the evaluation are shown in Table 3.1. The perplexity is dramati
ally lower for the Japanesespeakers, parti
ularly when the prompts are given in Japanese. This 
ould mean that the Japanese spee
his mu
h simpler than the native spee
h; it 
ould also mean that the Japanese speakers are relying on some�xed phrases that are 
ommon in native spee
h. The di�eren
e between the English-prompted and native-language-prompted spee
h suggests, as does an examination of the trans
ripts, that Japanese speakers aremore predi
table in their spee
h patterns when not in
uen
ed by the possibly unfamiliar English phrasingin the prompts.1Read spee
hIn addition to the spontaneous utteran
es, I wished to 
olle
t samples of read spee
h from ea
h user as well.As it turned out, this was also not straightforward, as speakers resisted reading text that was too diÆ
ult.1It should be noted that the subje
s reported no diÆ
ulty in understanding the English prompts, only that the phrasingswere not the ones they would have 
hosen.



26 CHAPTER 3. NON-NATIVE SPEECH DATABASE: COMPOSITION AND CHARACTERIZATIONWall Street Journal arti
les, for example, were unanimously ruled impossible by my panel. I 
hose to havespeakers read a modi�ed-vo
abulary version of the story of Snow White and several arti
les from an ar
hiveof news arti
les written for 
hildren. This was not a 
ompletely altruisti
 de
ision; 
ertainly, I did not wantto antagonize or embarass the speakers, but I also did not want re
ordings full of repeated attempts topronoun
e unfamiliar words, long pauses in the middle of words, and unintelligible segments. There wereplenty of these e�e
ts in the simpler readings, and asking the speakers to read texts of higher diÆ
ulty wouldonly serve to drive up the word error rate and lower my 
han
es of re
ruiting volunteers.Con
lusions from pilot experimentsThe issue of diÆ
ulty was not one I had previously en
ountered in 
olle
tion work with native speakers.Talking is something most native speakers do 
omfortably every day, and getting a gift 
erti�
ate for i
e
ream or pizza in ex
hange for a 
hat appeals to many people, parti
ularly those of the hungry undergraduatepersuasion. In working with the non-native speakers, I be
ame aware of a number of assumptions 
ommonlymade about data 
olle
tion that do not ne
essarily hold when the speakers are not pro�
ient in the language.There is a limited supply of speakers.Although re
ruiting speakers is never easy, the 
reative re
ruiter 
an always �nd new venues: re
ruitingspeakers in shopping malls, for example, or festivals. There are simply fewer non-native speakers to befound, parti
ularly when the data 
olle
tion must be 
ontrolled for fa
tors su
h as speaker pro�
ien
y ornative language.There is a risk of alienating the 
ommunity.Be
ause non-native speaker 
ommunities are often quite tight, opinions of the re
ording proje
t may spreadqui
kly. It is possible that members may rea
t negatively to the proje
t, feeling perhaps that the resear
heris asking them to do something unpleasant when the resear
her had no su
h intention. If word spreads thatthe proje
t should be avoided, it may be
ome impossible to re
ruit speakers from the target group. Theresear
her must be sensitive to 
ultural norms and possible misinterpretations of the purpose of the proje
t.All speakers are not equally able to perform the task.While native speakers vary in their abilities to read aloud or extemporize, this variation is limited to therealm of 
uent native spee
h. Non-native speakers range mu
h more in their abilities to perform di�erenttasks, and 
are must be taken in planning the data 
olle
tion to a

ount for variation in speaker ability,something whi
h is not ordinarily a fa
tor in native data 
olle
tion.The a
t of speaking, whether 
areful or not, represents a major 
ognitive load for the speaker.There is some 
ognitive load asso
iated with speaking for native speakers (Lamble et al., 1999). The morethought that must go into 
ompleting the task, the higher the 
ognitive load, and the more likely spee
herrors are to o

ur (Grant, 1999). However, this load is far lighter than the one experien
ed by non-native



3.1. DATA COLLECTION 27speakers. Non-native speakers must often struggle to remember what the rule is for moving the verb to theend of the senten
e, or if the word started with an /r/ or an /l/, not just how best to express their thoughts.The data 
olle
tion administrator may not understand intuitively how diÆ
ult or easy thetask is for the speaker.Native speakers have a general understanding of what is easy and what is hard for other native speakers.Even if they do not expe
t that reading a 
ertain Wall Street Journal arti
le will be diÆ
ult, they willqui
kly realize it when they see the speaker struggling. The resear
her's intuitions may not be 
orre
t withnon-native speakers, however.Some spee
h tasks (read/
areful/spontaneous) may be signi�
antly more diÆ
ult than othersfor the speakerAgain, while I re
ognize that normal native speakers vary in their abilities to 
omplete 
ertain tasks, thisvariation just does not 
ompare to the variation among non-native speakers. If a non-native speaker hasonly been edu
ated using read texts, spontaneous spee
h will be very diÆ
ult for him, whereas a speakerwho learned primarily by speaking may �nd reading aloud far more diÆ
ult.The speakers may per
eive the task as a test on whi
h they will be evaluatedThis was an issue that I fa
ed many times. Be
ause many speakers have learned the non-native languagein s
hool, they often feel that they are being tested when they are asked to use it in arti�
ial situationssu
h as data 
olle
tion. This worry makes the task more unpleasant for them and may a�e
t their speakingperforman
e. Speakers may or may not be more 
omfortable if this 
on
ern is addressed right away, but itis important for the resear
her to understand that speakers may be feeling judged.Speakers may not have a good idea of what they would say in a given situation, and may nothave said and heard something similar beforeFor example, I had assumed that one speaker's hesitations were be
ause he did not know the right words to
omplete a hotel reservation. It turned out that he had never had to make a hotel reservation even in hisnative language, and didn't know what sorts of things he 
ould ask for. He had not told me this when we�rst explained the task; it took some probing afterwards to understand what had happened.While it is not stri
tly ne
essary to ensure that the data 
olle
tion experien
e is a pleasant one for thespeakers, it is valuable to 
onsider doing so for two important reasons: 
on
ern for the feelings of the speaker,and 
on
ern for the integrity of the data. With regard to the latter, in 
olle
ting spee
h data for LVCSR,the goal is to obtain samples of spee
h that are representative of those that would o

ur when a speaker isusing the spee
h system for its intended purpose. If speakers are feeling embarassed or tense, if they arefrustrated, if they are pressured to use words and expressions that they normally would not, the utteran
esthey produ
e may be quite atypi
al of their usual spee
h. As for the former, respe
ting and being prepared



28 CHAPTER 3. NON-NATIVE SPEECH DATABASE: COMPOSITION AND CHARACTERIZATIONfor di�eren
es in expe
tations of the spee
h eli
itation pro
ess have long been a 
onsideration in dis
iplinessu
h as So
iolinguisti
s that rely on data 
olle
ted in �eld interviews (see Se
tion 2.5 for a dis
ussion).3.1.2 Data 
olle
tion proto
olBased on the information gathered during the pilot data 
olle
tion, the de
ision was made to have one groupdo the spontaneous re
ordings and read the fairy tale, and a se
ond group read a number of arti
les of
hildren's news from the magazine Time for Kids. The 
olle
tion of arti
les read by this se
ond group formthe Children's News Database (CND) that was designed for this dissertation. Some speakers were willingto do both tasks, so for those speakers there is an element of overlap in the database. Be
ause it was mu
heasier to re
ruit volunteers, more speakers were re
orded for the news reading task, whi
h in turn in
uen
edthe de
ision to fo
us primarily on read spee
h in the a
ousti
 modeling portion of this thesis work.Speaker re
ruitmentMost speakers were re
ruited lo
ally in Pittsburgh, although some were re
orded in Japan. The lo
al speakersresponded to bulletin board postings around the Carnegie Mellon and University of Pittsburgh 
ampusesand ele
troni
 mailing list announ
ements. The speakers in Japan were members of an English 
onversation
lub at Kyushu University. The only requirements were that speakers had studied English for at least sixyears, 
ontinued to experien
e some diÆ
ulty in speaking and understanding it, and had not spent morethan one month immersed in an English-speaking environment until after graduating from 
ollege.Potential speakers were given a des
ription of the tasks they would be asked to perform and told that itwould take between thirty minutes and one hour, and that they would be given a gift 
erti�
ate to a lo
almer
hant of their 
hoi
e.Demographi
 informationSpeakers were asked to �ll out a form to re
ord their gender, hometown, diale
t, exposure to English, andother 
hara
teristi
s. This information is provided in Appendix A.10.Anonymization and 
onsentEa
h speaker was assigned an identi�
ation number that was used to store the re
orded data and demographi
information. These assignments were known only to one resear
her, and the anonymization pro
ess wasexplained to the speakers. Ea
h speaker signed a do
ument stating that he or she agreed to be re
orded,with an optional release of their re
orded data for the purposes of playing ex
erpts at resear
h presentations.The do
ument also stated that speakers 
ould terminate their parti
ipation at any time, and was providedin both English and Japanese.



3.1. DATA COLLECTION 29S
enario 1. S
enario: Going to a restaurantYou read about the Lemongrass Grill in your guidebook and you would like to try it. Find out thefollowing about the Lemongrass Grill:� Type of food served� Pri
es� Hours� Reservation needed?� Distan
e from the Plaza Hotel� Transportation ba
k to the Plaza HotelFigure 3.1: Ex
erpt from eli
itation s
enario given to JL1 speakersRe
ording environmentBased on feedba
k from the pilot speakers, it was de
ided to have speakers re
ord onto a tape, alone ina quiet room. A digital audio tape (DAT) was used with a Sennheiser headset. Speakers were given thematerial with an explanation of the task and shown how to operate the DAT re
order. When they felt
omfortable with the devi
e and task and had �lled out the paperwork, the test administrator left the room.The speakers always knew how to �nd the administrator, and often 
ame to ask questions. In only one 
asedid the speaker fail to operate the DAT re
order 
orre
tly.TasksSpeakers parti
ipated in the spontaneous task, the read news task, or both. For the spontaneous task, thespeakers were given a set of s
enarios 
onsisting of an explanation of the setting and a number of prompts forqueries. An English example is given in Figure 3.1. The a
tual Japanese version is provided in Appendix A.6.Some speakers that parti
ipated in the spontaneous task were also re
orded reading the story of SnowWhite, whi
h is provided in Appendix A.7.For the read task, speakers were asked to read two or three arti
les from CND . They were told that theyshould make their best attempt to pronoun
e any unfamiliar words, and that if they made an error they
ould either 
ontinue or return to the beginning of the senten
e. All speakers read one 
ommon arti
le, thetext of whi
h is provided in Appendix A.4. The remaining two arti
les were unique to ea
h speaker.



30 CHAPTER 3. NON-NATIVE SPEECH DATABASE: COMPOSITION AND CHARACTERIZATIONAmountFifty-six native speakers of Japanese were re
orded. Of these, twenty-�ve re
orded the spontaneous taskonly, twenty-three re
orded the read news task only, and eight re
orded both.Twelve native speakers were re
orded under the same 
onditions. Of these speakers, one re
orded thespontaneous task only, �ve re
orded the read news task only, and six re
orded both. The �nal 
ompositionof the database is given in Table 3.2.3.2 Evaluation of speaker pro�
ien
ySo that re
ognition performan
e on individual speakers 
ould be put into the 
ontext of their level ofEnglish pro�
ien
y, all speakers were evaluated following the guidelines of the Speaking Pro�
ien
y EnglishAssessment Kit (SPEAK), a standardized evaluation pro
edure developed by the Edu
ational Testing Servi
eas part of the Test of English as a Foreign Language (TOEFL) program (SPE, 1987; Clark and Swinton,1979). SPEAK provides guidelines for rating non-native speakers of English in four 
ategories: overall
omprehensibility, pronun
iation, grammar, and 
uen
y. In a full SPEAK test, pro�
ien
y in two or moreof these 
ategories is assessed for ea
h of six tasks: reading from text, senten
e 
ompletion, telling a storydepi
ted by a series of drawings, answering questions about what is happening in a single drawing, answeringspoken questions, and des
ribing a printed s
hedule aloud.The ratings are on a four-point s
ale, from 0 to 3. The system assumes that speakers are non-native, so as
ore of 3 allows for some non-native patterns in pronun
iation, prosody, or usage as long as the spee
h is fully
omprehensible and 
losely approximates native spee
h. In e�e
t, then, this four-point s
ale is 
omparableto a �ve-point one in whi
h the top s
ore is reserved for native spee
h.The SPEAK guidelines provide simple but very spe
i�
 
riteria for assigning pro�
ien
y s
ores. These
riteria are listed fully in Appendix A.1. The following is an ex
erpt, listing the 
riteria for assigning s
oresin the 
omprehensibility 
ategory; these 
riteria 
over features found not only in read spee
h but also inspontaneous spee
h.



3.3. TRANSCRIPTION AND ANNOTATION 31Prompted Story NewsNative language # speakers # utteran
es # speakers # utteran
es # speakers # utteran
esJapanese 33 2257 13 795 31 3802English 6 436 6 548 10 1419Chinese 6 375 6 507 | |Table 3.2: General information about the non-native spee
h database0 Overall 
omprehensibility too low in even the simplest type of spee
h.1 Generally not 
omprehensible be
ause of frequent pauses and/or rephrasing, pronun-
iation errors, limited grasp of vo
abulary, or la
k of grammati
al 
ontrol.2 Comprehensible with errors in pronun
iation, grammar, 
hoi
e of vo
abulary items orinfrequent pauses or rephrasing.3 Completely 
omprehensible in normal spee
h with o

asional grammati
al or pronun-
iation errors. (SPE, 1987, p.16)For this thesis, speakers were only rated for pro�
ien
y in the �rst task, reading aloud from text. Ea
hspeaker was assessed by two quali�ed SPEAK raters, whose s
ores were averaged. In 
ases where the tworaters' diagnosti
 s
ores di�ered by more than 0.95, a third rater assessed the speaker and his s
ore wasaveraged with the s
ore 
losest to his to obtain the �nal rating for the speaker (the outlying s
ore wasthrown out). Ea
h speaker was rated on three separate passages, and these three s
ores were averaged togive a �nal diagnosti
 s
ore for that speaker in ea
h of three 
ategories: pronun
iation, 
uen
y, and overall
omprehensibility. All speakers read the same text, whi
h is given in Appendix A.5.3.3 Trans
ription and annotationRe
ordings were trans
ribed by one trans
riber and validated by at least one se
ond trans
riber. Thetrans
ription and annotation 
onventions were based on those used in the LDC trans
riptions of spontaneousspee
h (LDC, 1996b), with some extensions for trans
ription of read spee
h errors. In order to make theextended-format trans
riptions 
ompatible with the 
he
king program that was used, the surfa
e form isslightly di�erent from those used in the LDC 
onventions; the types of annotations made are the same,however, and the trans
ripts 
an easily be 
onverted to the LDC format.The trans
ribers used the TransEdit trans
ription tool. TransEdit was written by Susanne Burger andUwe Meier, graduate students aÆliated with the Intera
tive Systems Labs at CMU. TransEdit allows thetrans
riber to view and segment the spee
h waveform and either trans
ribe and annotate the spee
h froms
rat
h or annotate a prepared text in an embedded editing window. It runs in a Windows environment.



32 CHAPTER 3. NON-NATIVE SPEECH DATABASE: COMPOSITION AND CHARACTERIZATIONExamples of trans
ribed read and spontaneous passages are given in Appendi
es A.8 and A.9.3.3.1 Read spee
h trans
riptionIn trans
ribing read spee
h, trans
ribers worked from the same text that the speakers read, trans
ribing anydepartures from the original text. They brought the text up in the text editor and as they listened to ea
hre
ording they annotated the text to re
e
t what the speaker a
tually said.Allowing the trans
ribers to work from the original text sped up the trans
ription progress signi�
antlyand also in
reased the a

ura
y of the trans
riptions. A pilot trans
ription experiment had suggested thatwhile native trans
ribers tended to miss some types of reading error made by native speakers, this problemo

urred only rarely when trans
ribing the non-native spee
h. This is probably be
ause many native readingerrors are still examples of natural English and are therefore not as noti
eable as non-native reading errors.For example, in the following senten
e, both native and non-native speakers ex
hange singular and pluralnouns, but the reading error made by the native speaker results in a smooth and gramati
ally 
orre
t senten
eand the reading error was not 
aught until veri�
ation.(3.1) a. Then Clinton's lawyers will be given twenty-four hours to present the President's side(text)b. Then Clinton's lawyer will be given twenty-four hours to present the President's side(native reading)
. Then Clinton's lawyers will be given twenty-four hour to present the President's sides(non-native reading)Word-level annotationsTo produ
e a word-level trans
ription, the original text was preserved and any departures were inserted andmarked as reading errors, with the s
ope of any repeated segments indi
ated. The following forms of errorwere annotated:Insertions the speaker inserts a word that was not written in the text.(a) Will <;ins the> Fox's �lm sell as many a
tion �gures and fast food meals as The Little MermaidDeletions the speaker omits a word that was written in the text.(a) only a hundred <;del years> ago the rivers of Washington State and Oregon were jumping withsalmon(b) in most pla
es �shermen today 
at
h one third fewer Chinook salmon than they did in the earlynineteen <;del hundreds>Substitutions the speaker misreads a word (or words) as another English word (or words).



3.3. TRANSCRIPTION AND ANNOTATION 33(a) will all this e�ort <;1 &e�e
t> be worth it(b) settlers arrived in the early eighteen hundreds <;2 &eighteens>(
) the united states has strongly opposed japan's <;1 &united states> whaling pra
ti
esRepairs the speaker \rewinds" one or more words to 
orre
t something that he said.(a) restoring salmon populations to healthy levels will be an f-/upstair=/- upstreamg struggle foreveryone in the area(b) f-/Colonists may have used <;ins a> 
opper/- -/used 
opp=/- 
olonists may have used 
oppergRepeats/retra
es the speaker rewinds one or more words repeating exa
tly what he said, usually to re
overhis train of thought or to stall while thinking of what to say next.(a) f+/the/+ +/the/+ theg N M F S must approve these plans but some groups are already takingsteps(b) f-/some travel hundreds <;del of> miles/- <;meta oh> some travel hundreds of milesgNeologisms the speaker invents a word2.(a) Sin
e nineteen ninety �ve roaming wolves have killed eighty four sheep <;1 ~sheeps> and seven
attle(b) The ruins of what appears to be Cleopatra's pala
e lay buried in layers of mud seaweed<;1 ~seawood>and garbageMispronun
iations as most speakers are strongly a

ented, words are only marked as mispronoun
ed ifthey are arti
ulated in a way that 
annot be attributed to native language interferen
e. The majorityof mispronoun
ed words are words that were unfamilar to the speaker.(a) ...near the Columbia and *Willamette [w ih l y ax m eh t℄ river systemsUnintelligible words words that are only re
ognizable be
ause the trans
riber is looking at the originaltext, or arti
ulated segments that 
annot be marked as insertions or deletions be
ause they are notre
ognizable as words(a) The rarer the spe
ies the higher the pri
e the animal ((fet
hes)) abroad(b) Parents learn the truth about (()) how their 
hildren were murderedWord fragments the speaker either stops or starts in the middle of a word2This di�ers from native neologisms in that the speaker is not inventing a word in order to better 
onvey meaning; the speakerthinks that he is using an established word. Words that are marked as neologisms are made up of re
ognizable morphemeswhi
h, while not 
ombining to form an established word, show the speaker's understanding of English morphology and anattempt to �nd familiar parts in an unfamiliar word.



34 CHAPTER 3. NON-NATIVE SPEECH DATABASE: COMPOSITION AND CHARACTERIZATION(a) In f-/nineteen ni=/- nineteen ninetyg wildlife inspe
tors in Bangkok Thailand found six baby o=orangutans wedged into 
ra= 
rates(b) f-/Environment/- -/environmen=/- environment= *pause* f-/=alist=/- =alists gg the govern-ment and ordinary folks <;1 &folk> team up to save the salmonNoise and meta-utteran
e trans
riptionNon-human noises su
h as mi
rophone noise and distortion and environmental noise were marked in thetrans
ripts. Human noises su
h as breath sounds, 
oughing, and laughter were also marked.In addition to the inserted words marked in word-level annotations, speakers often inserted �ller wordssu
h as \um" and \uh" both in English and in their native languages, and also meta-level expressions su
has \oh" and \I'm sorry." These extra-text words were not annotated as insertions, but rather were given a�ller or meta annotation. This distin
tion was made so that insertions due to misreading 
ould be isolated.Native-language words were marked as su
h; a trans
riber with a familiarity with the native language of thespeaker did these annotations.Phoneti
 trans
riptionFor a sele
tion of the re
ordings, phoneme-level trans
riptions were produ
ed by trans
ribers experien
edin phoneti
 trans
ription. While the trans
ribers were restri
ted to the English phoneme set used by there
ognizer, they were permitted to add dia
riti
s indi
ating su
h e�e
ts as r-
oloring, devoi
ing, nasalization,lengthening, release deletion, and aspiration. There were many times that the trans
riber 
ould not identifya phone in the legal phone set that resembled the speaker's arti
ulatory produ
tion. In these 
ases, theexpe
ted phone given the 
anoni
al pronun
iation was used and marked as unre
ognizable. The phone setused by the trans
ribers is provided in Appendix C.3.3.2 Spontaneous spee
h trans
riptionNoise- and phone-level trans
riptions for spontaneous spee
h followed the same 
onventions as were used forread spee
h. Word-level trans
ription 
onventions followed the LDC's trans
ription manual for 
allhome3(LDC, 1996b) with the dis
uen
y trans
ription extentions des
ribed in Se
tion 3.3.1. Spe
i�
ally, the follow-ing events were annotated: human noises, non-human noises, �ller words (hesitation sounds), unintelligiblesegments (with or without best guess), foreign-language segments, partial words, idiosyn
rati
 words andneologisms, mispronun
iations, and asides and meta-level spee
h.Trans
ribing the spontaneous spee
h was very 
hallenging be
ause in many 
ases it was diÆ
ult todetermine what the speaker was trying to say. For example, for one poorly pronoun
ed utteran
e, the �rstand se
ond trans
ribers disagreed on what was said:3
allhome is a two-
hannel telephone spee
h task, so not all of the annotations allowed in 
allhome were needed for thenon-native trans
riptions.



3.4. TRAINING/TEST SET DEFINITIONS 35Trans
riber 1 f+/should I/+ should Ig go f-/four mo=/- with four monthsg timeTrans
riber 2 f+/should I/+ should Ig go f-/four mo=/- with four monthsg startNeither of these trans
riptions made sense in the 
ontext of the prompt, whi
h was roughly \ask what towear" in the s
enario \Going to a play." Only after a third trans
riber who was very familiar with Japanese-in
uen
ed English listened to the utteran
e many times did it be
ome apparent that the speaker meant tosay the following:A
tual utteran
e f+/should I/+ should Ig go f-/formal/- with formalg styleTrans
ribers were instru
ted to trans
ribe what they thought the speaker said. My reasoning was thata spee
h re
ognition system's goal is to mat
h the per
eptive skill of a 
ooperative native listener, and thatthe referen
e trans
ript should re
e
t what a native speaker hears.3.4 Training/Test set de�nitionsIn this se
tion, the native and non-native speaker sets that will be used in further experiments are spe
i�ed.These data sets are used for training, evaluation, 
ross-validation, and analysis.Training dataTraining data sets are used in the training of a
ousti
 models. Chapter 4 will refer frequently to the trainingdata. For this dissertation, training data was only 
olle
ted for non-native speakers and read spee
h.Evaluation dataEvaluation data is also referred to as test data. Re
ognition experiments always report results on onlyevaluation data unless otherwise spe
i�ed.Cross-validation dataCross-validation data is used when parameters su
h as word probabilities or language model weights mustbe estimated on a data set that is disjoint from the training and evaluation sets.Analysis dataAnalysis data is only used in this 
hapter, in dis
ussions of data 
hara
terization. Analysis data sets are notne
essarily disjoint from the 
orresponding training, evaluation, and 
ross-validation sets.Partitioning of the non-native read data into training, evaluation, and 
ross-validation sets was donebased on pro�
ien
y; 10 speakers who re
eived a SPEAK s
ore of between 1.83 and 2.17 were sele
ted forthe test set, and of the remaining speakers, three were arbitrarily sele
ted for the 
ross-validation set.Table 3.3 lists the number of speakers and number of utteran
es for ea
h of these data set types. An IDtag is also given to ea
h data set for ease of referen
e throughout the dissertation.



36 CHAPTER 3. NON-NATIVE SPEECH DATABASE: COMPOSITION AND CHARACTERIZATIONData set Used for Type of Domain Native # speakers # utteran
esID spee
h languageN-E-R evaluation read CND English 6 339N-A-R analysis read CND English N-E-R used for analysisN-A-story analysis read Snow White English 6 545N-A-S analysis spontaneous tourist English 6 334NN-E-R evaluation read CND Japanese 10 419NN-X-R 
ross-validation read CND Japanese 3 125NN-T-R training read CND Japanese 15 1343NN-A-R analysis read CND Japanese NN-E-R used for analysisNN-A-story analysis read Snow White Japanese 12 717NN-A-S analysis spontaneous tourist Japanese 32 2190C-A-story analysis read Snow White Mandarin 6 507C-A-S analysis spontaneous tourist Mandarin 6 375Table 3.3: Spe
i�
ations for training, evaluation, 
ross-validation, and analysis sets to be used throughout the thesis.Data set NN-E-R is 
ontrolled for pro�
ien
y3.4.1 Common arti
le for read spee
h evaluationAs noted in Se
tion 3.1.2, ea
h speaker 
ompleting the CND task read one arti
le in 
ommon with otherspeakers and one or two arti
les, depending on length, that was unique to that speaker. This test arti
lewill be known as CND1; the text is provided in Appendix A.4.3.5 Trans
ript analysisBe
ause spee
h re
ognition has only re
ently rea
hed the point where we 
an begin to 
onsider re
ognition oflower-pro�
ien
y spee
h in LVCSR tasks, the distin
tive 
hara
teristi
s of non-native spee
h, the propertiesthat make it di�erent from native spee
h, have not been well studied.3.5.1 Lexi
al distributionAlthough non-native speakers of the pro�
ien
y level I am examining do not have the range of vo
abularyand expression available to them that native speakers do, it is not 
lear that their spee
h, either individuallyor in the aggregate, 
ould be des
ribed as more restri
ted than that of native speakers. In the 
ontext of a
ertain task, native speakers often rely on standard words and phrases, whereas non-native speakers, perhapsperforming the task for the �rst time, may ea
h 
ome up with a unique way to ask the same question. Forexample, when prompted to ask about dress, most native speakers responded with \what should I wear,"while non-native speakers were more 
reative with their queries:(3.2) Do we need to wear the formal dress or we 
an wear the 
asual one?(3.3) What kind of 
lothes do I have to wear for there?(3.4) In what kind of dresses should I go there?(3.5) What should I wear to go there?



3.5. TRANSCRIPT ANALYSIS 37If we 
onsider this tenden
y in the 
ontext of Ja
kson's (1932) dis
ussion of \old, well-organized" and\new, now organizing" spee
h as des
ribed in Goldman-Eisler's (1958) observations that in utteran
e seg-ments of the former type, words are far more predi
table than those in segments of the latter type, thehypothesis that the proportion of now-organizing spee
h is mu
h greater in non-native spee
h is furthermotivated, if not expli
itly supported.Pawley and Syder (1983), too, examine \the puzzle of nativelike sele
tion." Although they do not presenta statisti
al analysis, they argue 
onvin
ingly that \by far the largest part of the English speakers' lexi
on
onsists of 
omplex lexi
al items in
luding several hundred thousand lexi
alized senten
e stems" (p.215),showing how su
h an interpretation of the mystery of nativeness explains how native speakers sele
t \naturaland idiomati
" senten
es from among those provided by a generative grammar without requiring 
hanges toexisting models of English grammar.In this se
tion, a number of perspe
tives on the question of how lexi
al items are distributed in sponta-neous non-native spee
h are presented. It should be noted that the 
orpora I am examining are very smalland not stri
tly suited to statisti
al analysis. Nevertheless, by looking at properties like word frequen
yand 
orpus entropy it is possible to gain some intuition about the 
hara
ter of non-native spee
h. One mayalso make predi
tions about the behavior of non-native spee
h by 
omparing early trends to do
umentedobservations about native spee
h.Word frequen
iesTable 3.4 shows the frequen
y rankings and o

urren
e rates of the top 25 words in both the JL1 and nativeprompted 
orpora, along with the frequen
y rankings in the other 
orpus. For example, the word \
ould"was the 8th most frequent word in the native 
orpus, but ranked 105th in the JL1 
orpus. \The," on theother hand, ranked �rst in the JL1 
orpus and se
ond in the native 
orpus.These frequen
ies tell us that there are some expe
ted similarities and some striking di�eren
es in theway individual words are used by the two speaker groups. Fun
tion words su
h as \the" and \ to", andpronouns like \I" and \you" are among the most frequent words in both the 
orpora. A 
loser look, however,reveals di�eren
es even in the distributions of words with equal ranks. For example, o

uren
es of \the"a

ount for nearly twi
e as large a per
entage of the JL1 
orpus as they do in the native 
orpus. It appearsthat there are two reasons for this: hyper
orre
tion and stru
tural 
hoi
es. Many of the instan
es of \the" inthe JL1 
orpus are in
orre
tly used - either no arti
le is ne
essary, or another word like \a" or \my" wouldhave been more appropriate. The JL1 speakers also tend to use noun phrases where a native speaker wouldhave 
hosen something else. For example, many of the JL1 speakers asked \What is the 
ost?" where anative speaker would have said \How mu
h is it?"\Go" and \get" have rankings that are almost the exa
t opposite of ea
h other in the two 
orpora. The
ontexts in whi
h these words are used are almost identi
al, but native speakers show a preferen
e for the
onstru
tion \How do I get to the hotel" and JL1 speakers for the 
onstru
tion \How do I go to the hotel."



38 CHAPTER 3. NON-NATIVE SPEECH DATABASE: COMPOSITION AND CHARACTERIZATIONBoth of these are 
orre
t in the grammati
al sense; however, a language model trained on native spee
h isnot going to assign as high a probability to the latter as one trained on JL1 spee
h might.The word \whi
h" ranks 25th in the JL1 
orpus, but only 306th in the native 
orpus. This is eviden
e ofa strong tenden
y on the part of JL1 speakers to use non-restri
tive relative 
lauses where native speakerswould omit the relative pronoun or use a modi�er.(3.6) a. Please give me the name of the restaurant whi
h is near my hotel.(Non-native)b. Are there any good restaurants near the hotel?(Native)(3.7) a. What is the leaving time of the return train whi
h is the �nal one?(Non-native)b. What time is the last train ba
k?(Native)The words \tell" and \
ould" are both approximately ten times as frequent in the native 
orpus as inthe non-native 
orpus. This is partly be
ause native speakers make heavy use of the expression \
ould youtell me. . . " in their queries. Although the senten
e \Where is the Empire State Building?" is perfe
tlygrammati
al, it would probably sound abrupt 
oming from a native speaker unless he and the person atthe (imagined) information desk were already looking at a map and dis
ussing dire
tions. \Tell" is usedonly rarely by the JL1 speakers, who show a preferen
e for words like \show" and \tea
h." This may be anavoidan
e strategy stemming from 
onfusion about usage of the words \say," \speak," \talk," and \tell,"whi
h English learners of many di�erent language ba
kgrounds report. It also may be eviden
e of dire
ttranslation from Japanese.The examples that have been given in this se
tion are very spe
i�
. The purpose of raising them was notto prove that non-native speakers always use \go" more than \get," or avoid 
omplex modal forms, althoughthat may be the 
ase. Rather, the obje
tive was to show that there are 
onsistent and signi�
ant di�eren
esin the distribution of words in the native and non-native spee
h samples that have been 
olle
ted, and thatthere are possible linguisti
 bases for the divergen
e. The question of whether these observations hold forother types of non-native data and how they 
an be exploited in modeling non-native spee
h is left to futureexploration.



3.5. TRANSCRIPT ANALYSIS 39Frequent words in JL1 spee
h Frequent words in native spee
hWord JL1 
orpus Native 
orpus Word Native 
orpus JL1 
orpusTHE 1 ( 8.37%) 2 ( 4.87%) I 1 ( 5.36%) 6 ( 2.78%)TO 2 ( 4.32%) 3 ( 4.74%) THE 2 ( 4.87%) 1 ( 8.37%)IS 3 ( 3.84%) 7 ( 2.07%) TO 3 ( 4.74%) 2 ( 4.32%)HOW 4 ( 3.59%) 8 ( 1.99%) YOU 4 ( 2.59%) 7 ( 2.57%)AND 5 ( 2.82%) 10 ( 1.89%) ME 5 ( 2.07%) 49 ( 0.45%)I 6 ( 2.78%) 1 ( 5.36%) IS 6 ( 2.07%) 3 ( 3.84%)YOU 7 ( 2.57%) 5 ( 2.59%) HOW 7 ( 1.99%) 4 ( 3.59%)WHAT 8 ( 2.24%) 22 ( 0.94%) COULD 8 ( 1.97%) 105 ( 0.19%)CAN 9 ( 2.08%) 18 ( 1.19%) AND 9 ( 1.89%) 5 ( 2.82%)GO 10 ( 1.60%) 29 ( 0.73%) GET 10 ( 1.75%) 22 ( 1.02%)IT 11 ( 1.56%) 13 ( 1.51%) A 11 ( 1.56%) 20 ( 1.09%)DO 12 ( 1.53%) 22 ( 0.59%) IT 12 ( 1.51%) 11 ( 1.56%)STREET 13 ( 1.48%) 15 ( 1.35%) TELL 13 ( 1.37%) 120 ( 0.15%)DOES 14 ( 1.42%) 91 ( 0.27%) STREET 14 ( 1.35%) 13 ( 1.48%)OF 15 ( 1.36%) 16 ( 1.21%) OF 15 ( 1.21%) 16 ( 1.36%)WHERE 16 ( 1.31%) 47 ( 0.46%) SO 16 ( 1.19%) 123( 0.15%)FROM 17 ( 1.28%) 61 ( 0.40%) CAN 17 ( 1.19%) 9 ( 2.08%)THERE 18 ( 1.16%) 19 ( 1.16%) THERE 18 ( 1.16%) 19 ( 1.16%)A 19 ( 1.09%) 12 ( 1.56%) THAT 19 ( 1.08%) 51 ( 0.43%)RESTAURANT 20 ( 1.03%) 34 ( 0.59%) WELL 20 ( 0.97%) 107 ( 0.17%)GET 21 ( 1.02%) 11 ( 1.75%) WHAT 21 ( 0.94%) 8 ( 2.24%)MUCH 22 ( 0.99%) 111 ( 0.22%) LIKE 22 ( 0.94%) 98 ( 0.20%)TICKET 23 ( 0.93%) { ( 0.00%) HOTEL 23 ( 0.89%) 47 ( 0.48%)TIME 24 ( 0.91%) 128 ( 0.16%) IN 24 ( 0.86%) 27 ( 0.85%)WHICH 25 ( 0.86%) 306 ( 0.03%) AT 25 ( 0.75%) 75 ( 0.29%)Table 3.4: Word frequen
ies in prompted spee
h: frequen
y rankings and o

urren
e ratesCommon n-gramsThe idea of individual word frequen
ies as an indi
ator of distan
e between 
orpora 
an be extended to wordsequen
es, whi
h give us more information about how the words are used in 
ontext. While the o

urren
efrequen
ies are mu
h lower, and the number of unique types mu
h higher than for individual words in thenon-native sample, one 
an still see patterns that suggest ideas for future modeling of non-native word usage.The most frequent trigram in the non-native data, \where is the," never appeared in the native dataat all. This is further eviden
e that the JL1 speakers favor simple questions where native speakers preferembedded forms. \Is there any" is another trigram that shows mu
h lower frequen
y in the native data,although it is part of a generi
 question (unlike \of �ne arts," whi
h is 
learly well-represented only be
ausethe native speakers were all speaking in the 
ontext of a s
enario that takes pla
e at the Museum of FineArts4). It turns out that fully 65% of the instan
es of this question use \any" improperly with a singular
ountable (non-mass) or plural noun, an event whi
h o

urred only 4% of the time \[be℄ there any" appearedin the native sample. For example, the Japanese speakers often formed questions like \is there any restaurant4The native speakers in this data set were all given the same s
enario. This meant that a number of n-grams appearedfrequent only be
ause the speakers were talking about the same thing. For the non-native re
ordings, the pla
e names in thes
enario were modi�ed after every 10 speakers.



40 CHAPTER 3. NON-NATIVE SPEECH DATABASE: COMPOSITION AND CHARACTERIZATIONFrequent trigrams in JL1 spee
h Frequent trigrams in native spee
hWord JL1 
orpus Native 
orpus Word Native 
orpus JL1 
orpusWHERE IS THE 1 ( 0.58%) { YOU TELL ME 1 ( 1.20%) 6 ( 0.43%)CAN I GET 2 ( 0.54%) 52 (0.18%) COULD YOU TELL 2 ( 1.08%) 18 ( 0.24%)DO YOU KNOW 3 ( 0.52%) 52 (0.18%) GET TO THE 3 ( 0.69%) 50 ( 0.13%)DOES IT TAKE 4 ( 0.46%) 32 (0.24%) I'D LIKE TO 4 ( 0.63%) 12 ( 0.33%)HOW LONG DOES 5 ( 0.44%) 77 (0.15%) TELL ME HOW 5 ( 0.54%) 41 ( 0.14%)YOU TELL ME 6 ( 0.43%) 1 ( 1.08%) TO GET TO 6 ( 0.51%) 164 ( 0.06%)IS THERE ANY 7 ( 0.43%) 130 ( 0.09%) MUSEUM OF FINE 7 ( 0.48%) 106 ( 0.09%)LONG DOES IT 8 ( 0.42%) 48 ( 0.18%) I NEED TO 8 ( 0.48%) 94 ( 0.10%)WHAT IS THE 9 ( 0.38%) 130 (0.09%) THE MUSEUM OF 9 ( 0.45%) 40 ( 0.15%)TO GO TO 10 ( 0.37%) 19 ( 0.27%) OF FINE ARTS 10 ( 0.45%) 92 ( 0.10%)HOW MUCH IS 11 ( 0.37%) 248 (0.06%) SO COULD YOU 11 ( 0.42%) 280 ( 0.04%)I'D LIKE TO 12 ( 0.33%) 3 ( 0.63%) IT TAKE TO 12 ( 0.39%) 14 ( 0.28%)WHAT KIND OF 13 ( 0.30%) 248 ( 0.06%) MORE INFORMATION ABOUT 13 ( 0.36%) 1274 ( 0.01%)IT TAKE TO 14 ( 0.28%) 11 ( 0.39%) PLEASE TELL ME 14 ( 0.33%) 280 ( 0.04%)GO TO THE 15 ( 0.26%) 41 ( 0.21%) LIKE TO GO 15 ( 0.33%) 43 ( 0.14%)MUCH IS THE 16 ( 0.25%) 248 ( 0.06%) TAKE TO GET 16 ( 0.30%) 164 ( 0.06%)WHAT TIME DOES 17 ( 0.24%) { I GET TO 17 ( 0.30%) 95 ( 0.10%)COULD YOU TELL 18 ( 0.24%) 1 ( 1.20%) COULD YOU EXPLAIN 18 ( 0.30%) 155 ( 0.05%)CAN I BUY 19 ( 0.23%) { WILL IT TAKE 19 ( 0.27%) 280 ( 0.04%)I GET THE 20 ( 0.22%) 655 ( 0.03%) TO GO TO 20 ( 0.27%) 10 ( 0.37%)HOW MUCH DOES 21 ( 0.22%) 248 ( 0.06%) TO GET THERE 22 ( 0.27%) 50 ( 0.13%)HOW FAR IS 22 ( 0.22%) 248 ( 0.06%) THE INTERSECTION OF 22 ( 0.27%) 1274 ( 0.01%)TURN TO THE 23 ( 0.20%) 248 ( 0.06%) TELL ME WHERE 23 ( 0.27%) 164 ( 0.06%)HOW TO GET 24 ( 0.20%) 56 ( 0.15%) LONG WILL IT 24 ( 0.27%) 280 ( 0.04%)WHAT TIME IS 25 ( 0.19%) 130 ( 0.09%) I WANT TO 25 ( 0.27%) 37 ( 0.16%)around here" and \is there any good sight points" whereas native speakers reserved \is there any" for massnouns (\Is there any seafood on the menu?") and paired plural nouns with are: \Are there any restaurantsnearby?"Perplexity and EntropyAs mentioned in Se
tion 3.1.1, the perplexity of the non-native queries was lower than the native querieswith respe
t to a language model trained on native spee
h. In other words, given a two-word history, thelanguage model was better able to predi
t the words in the JL1 spee
h than in the native spee
h. Thisobservation is also true at the individual speaker level, although there is far more varian
e in perplexities ofthe JL1 speakers, as 
an be seen in Figure 3.2. It should be noted that the individual speaker 
orpora arevery small ( � 750 words).To gain an understanding of how the non-native speakers di�er from ea
h other in their use of English,I examined the Kullba
k-Leibler (KL) divergen
e (Manning and S
h�utze, 1999, p.72) in the frequen
ies ofwords, word trigrams, and part-of-spee
h trigrams. While KL divergen
e does not tell us exa
tly where thedistributions of words and n-grams di�er, it does give us an idea of the magnitude of the di�eren
e. KLdivergen
e is de�ned as D(pjjq) =Xx p(x)log p(x)q(x)
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Figure 3.2: Native and non-native speaker perplexities with respe
t to a language model trained on in-domain nativespee
h. Speakers are listed along the x axis in order of in
reasing perplexitywhi
h represents the di�eren
e between modeling a distribution with the 
orre
t probability mass fun
tionp and the in
orre
t fun
tion q. To 
al
ulate word-level KL divergen
e, the frequen
y of ea
h word typethat appeared in all of the JL1 and native data, a total of 996 word types, was 
omputed for ea
h speaker
orpus. The frequen
ies were normalized by the number of word tokens in a 
orpus to obtain a distributionfor that 
orpus. Smoothing was then applied to distribute a probability mass of .01 a
ross the words thatdid not o

ur in that 
orpus. Using these frequen
y distributions, I was able to measure the word-level KLdivergen
e between two 
orpora.Word-frequen
y-level divergen
e is straightforward to measure, but may say less about how the speakeruses language than the breadth of his vo
abulary with respe
t to a �xed domain. Two native speakerswell-versed in the terms 
ommonly used in making travel arrangements, for example, may tend to use thesame sorts of words and expressions in forming queries, leading to low divergen
e between their spee
h.Two non-native speakers unfamiliar with the dis
ourse 
onventions in a given domain and with vo
abularieslimited to distin
t sets of words, on the other hand, may diverge mu
h more in their lexi
al 
hoi
es.Trigram-level divergen
e 
aptures di�eren
es in language use better, but be
ause of the size of the 
orporathere were very few trigrams with signi�
ant probability mass. Measuring divergen
e at the part-of-spee
hlevel redu
es the number of unique types to be 
ompared, possibly allowing a tighter model of ea
h speaker'sspee
h. Computation of word trigram and part-of-spee
h trigram KL divergen
e were set up as des
ribedabove, with the trigram frequen
ies repla
ing the word unigram frequen
ies. Part-of-spee
h tagging was



42 CHAPTER 3. NON-NATIVE SPEECH DATABASE: COMPOSITION AND CHARACTERIZATIONComparison (p-q) Word unigram Word trigram Part-of-spee
h trigramnative-native 1.04 9.61 4.48nonnative-native 3.06 13.67 7.25nonnative-nonnative 1.99 12.46 6.60Table 3.5: Kullba
k-Leibler divergen
e (relative entropy) of word and part-of-spee
h n-gram frequen
ies betweennative and non-native speaker 
orporadone using the MXPOST tagger (Ratnaparkhi, 1996); ungrammati
al senten
es in the spontaneous spee
hdid not appear to be a�e
ting tagging a

ura
y.Table 3.5 shows the average divergen
e for native and non-native speakers, both inter- and intra-group.When 
omputing the intra-group divergen
e, divergen
e between ea
h speaker 
orpus and all the others
ombined were 
al
ulated; these divergen
es were then averaged. The divergen
e between the native andnon-native 
orpora were 
onsistently higher than the intra-group divergen
es. Divergen
e between non-native speakers was also very high in all measurements. This is eviden
e that non-native speakers are moredi�erent from ea
h other in the way they use language than native speakers are.Vo
abulary growth rateThe vo
abulary growth rate measures the number of unique words that are introdu
ed as the 
orpus grows.When the 
orpus is small, ea
h new text (arti
le, 
olle
tion of utteran
es, et
.) 
ontains many word forms,words that have not been seen before. As more text is added, the growth rate slows, sin
e many of thewords in the new texts already appear in the 
orpus. The vo
abulary growth rate varies for di�erent typesof 
orpora { a 
orpus of bus s
hedule queries, for example, would have a slower growth rate than a 
orpusof unrestri
ted spontaneous spee
h. The di�eren
e between vo
abulary growth rates in di�erent languages
an be large; for 
omparable 
orpus types, the vo
abulary growth 
urve in English rea
hes saturation earlierthan it does in more highly in
e
ted languages like Spanish and agglutinative languages like Turkish.Vo
abulary growth rates are 
ompared a
ross languages and tasks in Figures 3.3 and 3.4. Figure 3.3shows how the di�eren
e between English and Spanish vo
abulary growth rates remains similar a
ross tasks:in broad
ast news, 
onversational spee
h, and meeting s
heduling, the rate of introdu
tion of unique words is
onsistently slightly higher in Spanish than in English. The vo
abulary growth rate is highest for broad
astnews and lowest for task-oriented dialogues (meeting s
heduling). The dis
repan
y between the 
urve pairsis greatest for the most restri
ted tasks, possibly be
ause gender and number agreement requirements inSpanish result in many word forms even when set phrases a

ount for a large proportion of the dialogue.Figure 3.4 
ompares vo
abulary growth rates for �ve languages in the single task of meeting s
heduling.German and Spanish have more extensive in
e
tional and 
ompounding systems than English does, produ
-ing faster vo
abulary growth. While only a small amount of data was available for Japanese and Korean, it isevident even from the part of the 
urve that is shown that the rate of introdu
tion of new words is extremelyhigh. These trends are highly dependent on how vo
abulary items are de�ned, however. For languages like
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Figure 3.3: English and Spanish vo
abulary growth for di�erent tasks. The number of unique word types is shownas a fun
tion of the number of word tokens in the 
orpus (Geutner, 1995)Japanese and Korean whi
h have no spa
es or few spa
es in their written form, a 
hoi
e has to be madeduring trans
ription about how the text units will be segmented. In the data that was used for the 
harts inFigure 3.4, the Japanese and Korean data was segmented at the bunsetsu level, whi
h 
orresponds roughlyto a noun or verb plus an arti
le, but 
an 
ontain modi�ers or noun-verb sequen
es as well. Naturally, thistype of segmentation results in a very high vo
abulary growth rate. When the Japanese meeting s
hedulingdata, for example, is segmented morphologi
ally, the growth rate looks mu
h like the English growth rateshown in Figure 3.4. However, this is not an entirely fair 
omparison, as the English text has not beensegmented morphologi
ally. In any event, the message to be derived from these 
urves is that languageswith similar properties show similar vo
abulary growth rates, and the di�eren
es between languages are
onsistent a
ross tasks. It 
an therefore be surmised that native and non-native English should have similarvo
abulary growth 
urves, and if they do not there is some fundamental property distinguishing them.A 
omparison of the vo
abulary growth rate in the spontaneous portion of my non-native database withnative databases of similar size and 
ontent is shown in Fig. 3.5. The native data from my spontaneousdatabase is also shown, although there is only a small amount. The two larger native 
orpora that I 
an
ompare the non-native trans
ripts to are a 
olle
tion of from intera
tions at an information booth anda 
olle
tion of hotel reservation and travel planning dialogues. In the information booth dialogues onlythe query side utteran
es were used to 
al
ulate vo
abulary growth rate; for the travel dialogues the sideinformation was not available so all utteran
es were used.
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Figure 3.4: Vo
abulary growth in �ve languages for the spontaneous s
heduling taskAs 
an be seen in Fig 3.5, the vo
abulary growth 
urve of the non-native tourist queries is similar in shapeto that of the native travel dialogues, and the native tourist queries seem to be following the same trend.Vo
abulary growth in the information booth dialogues is very fast; this is probably be
ause the lo
ations thatthe travelers are asking about are not restri
ted, meaning that ea
h new query may introdu
e not only a newproper noun but also new adje
tives des
ribing it, nearby landmarks, and other unseen words. The traveldialogues, whi
h are s
enario based, o�er a better 
omparison for this reason; a higher vo
abulary growthrate for the non-native speakers in a 
ontrolled s
enario-based task tells us that the non-native speakers areusing more unique words to express the same thing, while the same di�eren
e in an unrestri
ted task mayonly mean that the speakers are asking about di�erent topi
s.When 
al
ulating the vo
abulary growth rates, the trans
ripts from all the speakers were appended inthe order in whi
h they were re
orded. Be
ause the vo
abulary growth 
urve is fairly smooth, it does notappear to be the 
ase that ea
h speaker uses a radi
ally di�erent set of words - if they did, we would seelur
hes in the 
urve where a new set of trans
ripts was introdu
ed. Fig. 3.6 shows what the vo
abularygrowth 
urve for the non-native data would look like if the utteran
es were introdu
ed in random order.Although the 
urves are similar, the randomized 
urves are steeper where the 
orpus is small. It is likelythat this indi
ates that the speakers are indeed using slightly di�erent words and expressions; be
ause theutteran
es are in random order, there may be utteran
es from many speakers in the �rst 2000 words of the
orpus, introdu
ing a wider variety of words early on.
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Figure 3.5: Vo
abulary growth rates for native and non-native tourist domain spee
h.
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orpus with utteran
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ed in randomized orders



46 CHAPTER 3. NON-NATIVE SPEECH DATABASE: COMPOSITION AND CHARACTERIZATIONNon-native NativePhrase Contra
tion o

urren
es per
ent o

urren
es per
ent
an not 
an't 6 / 7 85.71 3 / 3 100.00did not didn't 3 / 4 75.00 3 / 8 37.50do not don't 30 / 31 96.77 9 / 10 90.00does not doesn't 3 / 3 100.00 2 / 2 100.00going to gonna 9 / 17 52.94 1 / 3 33.33i am i'm 35 / 42 83.33 23 / 44 52.27i have i've 3 / 26 11.54 0 / 15 0.00i will i'll 16 / 25 64.00 3 / 3 100.00i would i'd 59 / 67 88.06 13 / 31 41.94it is it's 35 / 43 81.40 4 / 4 100.00that is that's 17 / 23 69.57 6 / 14 73.91there is there's 2 / 8 25.00 4 / 5 80.00want to wanna 6 / 40 15.00 2 / 11 18.18what is what's 19 / 77 24.68 2 / 5 40.00where is where's 10 / 82 12.20 0 / 2 0.00you are you're 1 / 4 25.00 0 / 0 -you will you'll 6 / 13 46.15 0 / 0 -Table 3.6: Contra
ted forms in native and non-native spee
h. The number of o

urren
es of ea
h base form is givenalong with the number of times it is 
ontra
ted (
ontra
ted / total)Contra
tionsTable 3.6 shows the most 
ommon 
ontra
ted words and simpli�ed forms in the native and non-nativesamples. Be
ause the native 
orpus is small, some of the o

urren
es of the base forms are very low. It isinteresting, though, to see both the di�eren
e in the rates of o

urren
e of some 
ontra
table base forms andthe rates at whi
h the more 
ommon base forms are 
ontra
ted. In most 
ases where there is a signi�
antdi�eren
e between native and non-native rates of 
ontra
tion, it is be
ause one speaker set or the other isusing the expression in a 
ontext where it is not 
ontra
table. For example, depending on the synta
ti
 role,\I am" 
an be 
ontra
ted (\I'm going to the station") or not (\Can you tell me where I am?")Notably, \I am" o

urs proportionally mu
h more frequently in the native data, yet the 
ontra
tion rateis lower than in the non-native spee
h for the reason des
ribed above.As noted in Se
tion 3.5.1, the non-native speakers in my sample showed a strong preferen
e for simplequestions like \where is the train" over embedded questions su
h as \
an you tell me where the train is,"a

ounting for the di�eren
e in o

urren
e rates of \what is" and \where is", for example, in 
ontra
table
ontexts.3.5.2 Speaking rate and pause distributionFeatures des
ribing the pa
e and 
uen
y of spee
h are another point of 
ontrast between native and non-native speakers. In Table 3.7, the word rates, silen
e rates, average phone durations, and average pausedurations are listed for the native and non-native speakers in my data.Be
ause questions of timing 
an be highly speaker-dependent, and I wished to 
ontrast read and sponta-
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h, these 
al
ulations were done for a small set of 12 native speakers of Japanese who both readthe Snow White story and 
ompleted the spontaneous task. In addition to the native speakers of Japanese,�gures for six native speakers of Chinese are also shown.The word rate is the number of words the speaker utters per se
ond, not in
luding silen
es. Not surpris-ingly, the native speakers 
onsistently speak with a higher word rate than the non-native speakers, althoughthe e�e
t is less pronoun
ed for the read spee
h than the spontaneous spee
h. The other three features shownanswer the question of whether this is due to qui
ker arti
ulation of individual phonemes, fewer pauses be-tween words, or both. The silen
e insertion rate is the ratio of silen
e elements to words. For example, ifthe speaker says\On
e upon a time <pause> in a great 
astle <pause>, a Prin
e's daughter <pause> grew up happyand <pause> 
ontented, in <pause> spite of a <pause> jealous <pause> stepmother."the silen
e insertion rate is 7/22 = .32. The silen
e insertion rates for the two non-native groups are similar,and in both read and spontaneous spee
h are approximately twi
e that of the native spee
h. All speakergroups show a signi�
antly higher silen
e insertion rate in the read spee
h than in the spontaneous spee
h.Neither the phone durations nor the pause durations di�er signi�
antly when 
omparing read and spon-taneous, and native and non-native spee
h. The di�eren
e in speaking rate, then, is almost wholly due tothe number of inter-word pauses present in the non-native spee
h. This has 
lear 
onsequen
es for spee
hre
ognition: be
ause non-native speakers are relaxing the vo
al apparatus between words, the 
ross-word
oarti
ulatory e�e
ts present in native spee
h will not be as 
onsistently realized in non-native spee
h. Inter-word silen
e is triggered by a 
omplex 
olle
tion of fa
tors that are not ne
essarily related to the phonologi
alenvironment, su
h as diÆ
ulty of and familiarity with the word, overall 
omprehension of the text, and fa-tigue. The same 
ross-word phoneme pair that saw a pause inserted three senten
es earlier may be readwith native-like elision when the words involved are easier or the senten
e is shorter, meaning that modelingnon-native 
ross-word behavior may not be as straightforward as just turning o� 
ross-word modeling.word rate silen
e insertion rate phone duration pause durationspeaker spont read spont read spont read spont readJapanese 2.42 2.33 0.17 0.49 0.11 0.11 0.10 0.09Chinese 2.70 2.28 0.18 0.47 0.11 0.11 0.10 0.12Native 4.01 3.84 0.10 0.22 0.08 0.07 0.10 0.11Table 3.7: Speaking rate and pause distribution statisti
s for non-native speakers. The word rate is reported interms of words per se
ond. The silen
e rate is a silen
e-to-word ratio. Average phone duration and pause durationare measured in se
onds.



48 CHAPTER 3. NON-NATIVE SPEECH DATABASE: COMPOSITION AND CHARACTERIZATION3.5.3 Dis
uen
iesIt has been observed that native spontaneous spee
h 
ontains many instan
es of abandoned words, stutters,restarts, repetitions, �ller words, and other dis
uen
ies, some of whi
h o

ur systemati
ally enough towarrant in
orporation in the language model (e.g. Shriberg and Stol
ke, 1996). Dis
uen
ies often o

urwhen the speaker is sear
hing for the right word or expression, or is pronoun
ing a word that is diÆ
ultto arti
ulate; they 
an also o

ur when the speaker is reading aloud and 
omes to a word that he does notknow how to pronoun
e, or simply trips over his tongue. Native speakers may attempt to repair prosodi
errors when they rea
h a point in the senten
e where they realize that they have used inappropriate stresspla
ement or intonation. Non-native speakers may go ba
k to re-read a phrase when they have stumbledover an unfamiliar word. For both native and non-native speakers, read spee
h is not always smooth.Figure 3.7 shows graphi
ally the di�eren
e in native and non-native (JL1 only) speaker rates of repair,repetition, fragments, and �ller words in the read news data. A dis
uen
y rate is de�ned as the number oftimes the dis
uen
y o

urs per hundred words:# of dis
uen
ies# of words � 100The JL1 speakers show signi�
antly higher rates of all types of dis
uen
y that were measured. Interest-ingly, although the non-native retra
e rate was over three times the native retra
e rate, the retra
e length, orthe number of words that the speaker \rewinds" after an interruption, is similar for native and non-nativespeakers. This retra
e rate agrees with those reported by Eklund and Shriberg (1998), who found paralleldis
uen
y patterns in native Swedish and English spee
h.3.5.4 Reading errorsAlthough in a read spee
h task the speaker's utteran
e is supposed to mat
h what is written on the page, thereare often many dis
repan
ies. This is parti
ularly problemati
 in appli
ations where the sear
h is 
onstrainedto follow an expe
ted word sequen
e. In my database, the non-native speakers showed signi�
antly higherrates of both dis
uen
ies and reading errors.For the purposes of this work, a reading error is de�ned as the deletion of a word that was part of thetext to be read, the insertion of a word that was not in the text, or the substitution of one word for another.These errors o

ur in both native and non-native spee
h. When native speakers read aloud from text, theymay absorb an entire phrase or senten
e at a glan
e and repeat it from short-term memory. Although this
onversion is almost instantaneous, the en
oding and de
oding pro
ess (i.e. visual to semanti
 to a
ousti
)
an introdu
e error. A se
ondary sour
e of reading error in native spee
h is the layout of the text on thepage. Native speakers seem more likely to make errors at line boundaries and when the text is presented invery narrow 
olumns, although this has not been formally analyzed here.In the non-native spee
h samples analyzed in this dissertation, the speakers appear to read one word at atime; they often pause between words (whi
h 
ontributes to the high silen
e rate) and do not show the same
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Repeat rate(0.07)Repeat rate(0.4)Abandoned fragment rate(0.51)Abandoned fragment rate(1.42)Repair rate(0.7)Repair rate(2.04)Retra
e rate(0.71)Retra
e rate(2.23)Average retra
e length(2.55)Average retra
e length(2.42)Filler word rate(0.0)Filler word rate(0.42)

Legend: NativeNonnative

Figure 3.7: Dis
uen
y rates for native and non-native (JL1) speakers in the CND reading task



50 CHAPTER 3. NON-NATIVE SPEECH DATABASE: COMPOSITION AND CHARACTERIZATIONError type Non-native NativeMorphologi
al variant 55.74% 21.27%Orthographi
ally similar 27.76 48.93Semanti
ally similar but orthographi
ally distant 0 8.51Misread numeral 3.91 2.1Neologism 3.42 0Fun
tion word substitution 3.32 12.50A-the 1.66 6.25Other 4.20 0Total number of errors 1555 47Table 3.8: Breakdown of non-native and native misread wordstenden
y to substitute semanti
ally similar words or phrases. In fa
t, many substitutions are 
ompletelyinappropriate semanti
ally, indi
ating that the speaker does not understand what he is reading. Whilesemanti
ally inappropriate substitutions do o

ur in native spee
h { most native speakers have experien
edrea
hing the end of a passage of text with the realization that they have no idea what they have just read!{ they are mu
h less frequent.Of the 21,958 words in the entire native data base, there were only 8 inserted words, 9 deleted words, and57 misread words, an average of .39 extra-text words per 100. In 
ontrast, in the 67,669-word JL1 subsetof the non-native database, speakers averaged 2.77 extra-text words per 100. A breakdown of the main
ategories of misread words is shown in Table 3.8. Numbers for native speakers are shown for referen
e, butas the number of a
tual native reading errors was very small, this distribution may not be representative ofthe a
tual distribution in native spee
h.Substitution of a morphologi
al variantAlthough native and non-native reading errors fell into the same general 
ategories, the errorful nativesenten
es were far more likely to be semanti
ally meaningful and synta
ti
ally 
orre
t than the errorfulnon-native senten
es. For example, the following two senten
es both 
ontain examples of singular-pluralsubstitutions.(3.8) Native morphologi
al substitutionsa. Do
tors are studying the pill's e�e
t on patients(original text)b. Do
tors are studying the pill's e�e
ts on patients(spoken)(3.9) Non-native morphologi
al substitutionsa. Ameri
an students perform poorly on standardized tests(original text)b. Ameri
an student perform poorly on standardized tests(spoken)
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tion word substitutionAnother 
ategory of error that appeared in both native and non-native spee
h is fun
tion word substitution.It is easy for a native speaker who has understood the general meaning of the senten
e to 
arelessly substituteone fun
tion word for another without 
hanging the impa
t on the listener. It is also easy for a non-nativespeaker who is only reading words left to right without full 
omprehension to substitute a fun
tion wordthat 
ompletely 
hanges the meaning of a senten
e or even makes it meaningless..(3.10) Native fun
tion word substitutionsa. As if that task were not 
hallenging enough...(original text)b. And if that task were not 
hallenging enough...(spoken)(3.11) Non-native fun
tion word substitutionsa. The amount of time students spend on homework is in
reasing(original text)b. The amount of time students spend as homework is in
reasing(spoken)In a spe
ial 
ase of fun
tion word substitution, \a" and \the" are inter
hanged. This pair alone wasresponsible for nearly one-third of non-native fun
tion word substitutions, but more signi�
antly, insertionand deletion of \a" and \the" a

ounted for half of all insertion and deletion errors. No other patternswere apparent in the types of words that were inserted and deleted. There was also a surprising number ofinstan
es of a/the substitution in native spee
h. An informal examination of a/the substitution in nativeand non-native spee
h suggests again that the native speakers will make these errors, but only when the theintegrity of the senten
e is preserved; this hypothesis is diÆ
ult to verify, however, as the sour
e texts (andopportunities for ungrammati
al substitution) are not the same, and grammati
ality and 
omprehensibilityjudgements vary from listener to listener.Substitution of an orthographi
ally similar wordWhile both native and non-native speakers substituted orthographi
ally similar words, native speakers againtended to 
hoose words that preserved the integrity of the senten
e, if not the meaning.(3.12) Native orthographi
 substitutionsa. The politi
s of the region have always been unstable(original text)b. The politi
s of the religion have always been unstable(spoken)(3.13) Non-native orthographi
 substitutionsa. Environmentalists oppose 
onstru
tion of the Three Gorges Dam(original text)b. Environmentalists oppose 
onstru
tion of the Three George Dam(spoken)



52 CHAPTER 3. NON-NATIVE SPEECH DATABASE: COMPOSITION AND CHARACTERIZATIONSubstitution of a semanti
ally similar wordNative speakers sometimes substitute semanti
ally similar but orthographi
ally dissimilar words; this errornever o

urred in the non-native sample.(3.14) Native semanti
 substitutionsa. Tremendous 
hange is anti
ipated over the next few years(original text)b. Tremendous 
hange is anti
ipated over the next several years(spoken)NeologismsIn neologisms, non-native speakers make up a word. Sometimes these are 
ompositions of 
ommon baseforms and 
ommon endings that are inappropriate together. At other times they are unsu

essful attemptsto read an unfamiliar word. This type of error did not appear in the (small) native sample.(3.15) Native neologismsa. But rain is nothing new for Northwesterners(original text)b. But rain is nothing new for Northwesterns(spoken)(3.16) Non-native neologismsa. The diamonds sat glittering in the sand(text)b. The diamonds sat glitting in the sand(spoken)3.5.5 Experiment 1:Dete
tion of non-native spontaneous spee
h by native judgesExperiment 1: Introdu
tionIt is suspe
ted that ungrammati
ality and unnaturalness in non-native spontaneous spee
h are a fa
tor inre
ognition error (e.g. Lives
u and Glass, 2000). Be
ause the statisti
al language models that are widelyused in spee
h re
ognition are designed to �nd and learn patterns, a mismat
h in the patterns that appearin the training and test data will 
ontribute to suboptimal performan
e of the model.How ungrammati
al is non-native spee
h? The answer to this question depends on the de�nition ofgrammati
ality, and even the de�nition of spee
h. Large bodies of work in linguisti
s rest on the assumptionthat native speakers are all 
ompetent judges of grammati
ality, and indeed there are many sequen
esof words that any native speaker would 
ag as ungrammati
al. Many of these studies, however, examinehypothesized senten
es that may never have been uttered and are asso
iated with no a
ousti
 features { they
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h. Real spee
h, even native spee
h, is full of ungrammati
alities; �ller words, word fragments,and un�nished thoughts pepper spontaneous spee
h.The statisti
al measurement of perplexity provides a measure of the predi
tability of a 
orpus of text.While predi
tability is not the same as grammati
ality, if a language model is trained on grammati
al nativespee
h, it is not unreasonable to expe
t that a measurement of perplexity with respe
t to that model willbe based to some extent on impli
it grammati
al 
onstraints. What, then, does the observation that theJapanese utteran
es are lower in perplexity than the native utteran
es say about non-native spee
h? Thatit is more grammati
al than native spee
h? Probably not. All that we 
an infer is that the non-nativeutteran
es 
ontain patterns that also appeared in the training data; we have no idea whether these patternsare used appropriately in either the semanti
 or the synta
ti
 
ontext.Another way to quantify the \non-nativeness" of an utteran
e is to measure the 
onsisten
y with whi
hindependent native judges identify it as non-native. This method has the disadvantage of being utteran
e-based; a short utteran
e that is all wrong is given the same non-native label as a long utteran
e that is almost
orre
t. We obtain a dire
t measurement of the distan
e between the native and non-native 
orpora, however,that is independent of a 
on
ept of grammati
ality that may not be important for 
onveying meaning inspontaneous spee
h.Experiment 1: Data599 utteran
es from data sets N-A-S and NN-A-S were arbitrarily sele
ted for this experiment, with anaverage of 34 utteran
es from 6 native and 12 non-native speakers.Experiment 1: MethodFour native judges were asked to 
lassify the 599 utteran
es. Be
ause all of the non-native speakers werestrongly a

ented, the judges were only allowed to see the trans
ripts. Judges were not told the per
entageof non-native speakers in the sample. Utteran
es were presented to the judges in random order, varyingfrom judge to judge. An average of 34 utteran
es per speaker was presented to the judges.Experiment 1: ResultsTable 3.9 shows the pre
ision and re
all of judgements from ea
h of the native speakers. The pre
isionmeasures how many of the utteran
es judged to be non-native a
tually were non-native, and the re
allrepresents how many of the non-native utteran
es were identi�ed as su
h. For example, for judge 1, 85%of the utteran
es judged to be non-native were a
tually non-native and 15% had been uttered by nativespeakers. 68% of the non-native utteran
es were 
orre
tly labeled as non-native, and 32% were labeledas native. The pre
ision is mu
h higher overall than the re
all, meaning that the native judges seldommistakenly label an utteran
e as non-native, but are not as good at identifying non-native utteran
es.pre
ision = # of times a non-native utteran
e was judged non-native# of non-native judgements



54 CHAPTER 3. NON-NATIVE SPEECH DATABASE: COMPOSITION AND CHARACTERIZATIONGrader Pre
ision Re
all1 0.85 0.682 0.87 0.543 0.88 0.444 0.89 0.46Table 3.9: Pre
ision and re
all of native judgements of non-nativenessFull agreement 3/4 judges agreed A
tualJudged so A
tually so Judged so A
tually so totalsJudgements of nativeness 282 200 118 46 260Judgements of non-nativeness 57 57 72 67 339Table 3.10: Agreement of native judges, and 
orresponding a
tual labels of the utteran
esre
all = # of times a non-native utteran
e was judged non-native# of non-native utteran
esTable 3.10 shows how well the native judgements agreed, and for di�erent levels of agreement how wellthe judgements 
orresponded with the a
tual labels. Of the 599 utteran
es, 260 were a
tually from nativespeakers and 339 were from non-native speakers. In 282 of their judgements, all four native judges agreedthat the utteran
e was native, and in 57 of their judgements all judges agreed that the utteran
e was non-native. Of the 282 utteran
es that the judges fully agreed were native, only 200 a
tually were, while all 57of the utteran
es all four judges agreed were non-native were truly non-native.Experiment 1: Con
lusionThe results in this experiment show that while native speakers seldom mis-identify a native utteran
e asnon-native, they are only able to dete
t half of the non-native utteran
es; the other half are judged to benative. This may mean that the half of the non-native utteran
es judged native are grammati
ally 
orre
tand lexi
ally typi
al of native spee
h. It is important to keep in mind, however, that native spontaneousspee
h is often ungrammati
al and dis
uent. It is likely that in many 
ases, the judges have no way to tellwhether a spee
h \error" is a spontaneous e�e
t or a non-native e�e
t, and are therefore relu
tant to markan utteran
e non-native. Ungrammati
alities in native spontaneous spee
h may also be responsible for thefalse judgements of non-nativeness.



Chapter 4
A
ousti
 ModelingA foreign a

ent, as viewed separately from features su
h as in
orre
t syntax or unusual word 
hoi
e thatalso mark a speaker as non-native, is 
hara
terized by sound. An interdependent 
olle
tion of properties,in
luding melody, 
aden
e, and segmental realization must be mastered for a non-native speaker to \lose"his a

ent. An a

ent, not ne
essarily a foreign one, is per
eived when the listener dete
ts patterns that aredi�erent from the ones he is used to hearing or identi�es with una

ented spee
h.In this 
hapter, I explore how a

ent is represented in the a
ousti
 model and how the a
ousti
 model
an be adapted to better handle variation in non-native spee
h. Spe
i�
ally, I investigate the 
ontributionof di�erent types of a
ousti
 material to a
ousti
 model improvement. Using native English data, Japanese-a

ented English (L2) data, and native Japanese (L1) data, I demonstrate how re
ognizer performan
e 
anbe improved with respe
t to speaker idiole
t, via speaker adaptation, and habits shared by speakers of a
ommon L1, via training and adaptation to the non-native 
ondition.This 
hapter is stru
tured as follows. In Se
tion 4.1, I des
ribe the baseline system on whi
h my experi-ments build. In Se
tion 4.3, I use the baseline a
ousti
 models to �nd where modeling of non-native spee
his poor. In Se
tion 4.4, I do
ument how adaptation to the speaker and 
ondition 
an improve re
ognizerperforman
e. In Se
tions 4.5 and 4.6, I present experiments in system training with L1 and L2 data. Isummarize improvements in a
ousti
 modeling in Se
tion 4.7.4.1 Baseline systemAll re
ognition experiments des
ribed in this dissertation used the Janus Re
ognition Toolkit jrtk (Finke etal., 1997). Re
ognition experiments are done ex
lusively on the CND read spee
h database, spe
i�
ally datasets N-E-R, NN-E-R, NN-T-R, and NN-X-R. The baseline system for CND used a
ousti
 models trained onBroad
ast News data and an interpolated language model 
ombining broad
ast news text (150M words) ,written news text (10M words), written CND ar
hive text (1M words), and 
hildren's literature text (1Mwords). Interpolation weights were estimated using arbitrarily sele
ted subsets of the training and 
ross-55



56 CHAPTER 4. ACOUSTIC MODELINGvalidation data sets NN-T-R and NN-X-R. Language modeling will be dis
ussed further in Se
tion 4.1.3.CMU/ISL's Broad
ast News (ISL-BN) system sele
ted be
ause it was the most robust available, havingbeen trained on a large amount of data that varied in spee
h type and re
ording 
ondition while remainingwithin the news domain. Pilot tests of several systems showed that the BN system o�ered the best initialbaseline. Be
ause there are some 
onsistent di�eren
es between the BN task and the 
hildren's news task,the BN system was adapted somewhat for optimal performan
e on the Children's News (CND) task. Thisse
tion des
ribes the initial 
on�guration of the system, the measures taken to maximize performan
e onCND , and my veri�
ation that any mismat
h between the system and the task does not 
ompromise myinterpretation of overall results.4.1.1 Baseline a
ousti
 modelsThe a
ousti
 models for the broad
ast news system were trained on approximately 66 hours of data re
ordedfrom radio-broad
ast news programming. The a
ousti
 data was not limited to 
lean broad
ast spee
h,but also in
luded spontaneous broad
ast spee
h (known as F0 spee
h), spee
h over telephone 
hannels (F1),spee
h in the presen
e of ba
kground musi
 (F2), spee
h under degraded a
ousti
 
onditions (F3), and spee
hfrom highly pro�
ient non-native speakers (F4), all 
onditions that o

ur from time to time in radio news(Garovolo et al., 1997).The baseline re
ognizer is a quinphone system with 2000 
odebooks sharing 6000 distributions.a quinphone system: the allophoni
 models take into a

ount the two phones pre
eding and the twophones following ea
h base phone.with 2000 
odebooks: 2000 allophoni
 groups are re
ognized; ea
h allophoni
 group is modeled withGaussian mixtures des
ribed by the same means and 
ovarian
essharing 6000 distributions: ea
h allophoni
 group is a 
olle
tion of allophones that 
an be des
ribed byasso
iating di�erent weights with the means and 
ovarian
es that model the parent allophoni
 group.There are a total of 6000 sets of weights in the system.Vo
al tra
t length normalization and 
epstral mean subtra
tion are applied at the speaker level. Lineardis
riminant analysis (LDA) is used to �nd the most dis
riminative of the MFCC, delta, and power featuresand redu
e the dimensionality of the feature fe
tor des
ribing ea
h frame. This re
ognizer has an overallWER of 19.7%, with a WER on the 
lean (F0 only) subset of the test data of 9.4%. System details ofISL-BN and the Broad
ast News test set are summarized in Table 4.1.



4.1. BASELINE SYSTEM 57Number of 
odebooks 2000Number of distributions 6000Total number of Gaussians 104,746Polyphone window 5 phones (2 pre
eding and 2 following)Features used MFCC, delta, delta-delta, powerDi
tionary size 40,000Language model type trigram; Kneser-Ney ba
ko�; 
uto�=2Language model training 
orpus 160 million wordsLanguage model perplexity 155OOV rate 1.1Number of test speakers 81Average number of utteran
es per speaker 5.8WER (F0) 9.4%Table 4.1: System details for the baseline system and the Broad
ast News test set4.1.2 Experiment 2:Determining the error due to system mismat
hIntrodu
tionThis experiment addresses the questions of 
hannel mismat
h and speaker variability. It should be noted thatthe only potential sour
e of 
hannel mismat
h is the unique features of the re
ording devi
e and environment;there is no di�eren
e in bandwidth or sampling rate between the BN and CND data. However, it is possiblethat the ISL-BN a
ousti
 models perform better on BN spee
h than lo
ally-re
orded CND spee
h be
ausethe 
hannel used in re
ording the evaluation data is more similar to those found in the training data. Ifthis is the 
ase, we would need to be 
on
erned that any improvements we see from adaptation do not
ome from better modeling of the non-native 
ondition but rather better modeling of the 
hannel 
onditions.This experiment is not meant to be an exhaustive evaluation, but rather an informal 
on�rmation that any
hannel mismat
h is not severe enough to invalidate future experimental results.DataTo set an initial error rate for system mismat
h experiments, a 484-word segment of NPR a
ousti
 data wassele
ted. This segment will be known as NPR1, and is approximately equal in length to the test arti
le thatall CND speakers read. The NPR1 text is given in Appendix A.2. This data was read by a single announ
er(speaker PA1) during a single broad
ast under F0 
onditions.So that spee
h from the professional BN announ
er 
ould be dire
tly 
ompared to spee
h from a lo
allyre
orded speaker, a graduate student (speaker LS) was asked to read the NPR1 text. This student also read



58 CHAPTER 4. ACOUSTIC MODELINGRead by LM s
ore WERNPR1-PA1 professional announ
er 1 102.6 6.4NPR1-LS lo
al speaker 102.6 7.4NPR2-PA2 professional announ
er 2 112.6 22.8NPR2-LS lo
al speaker 112.6 14.7CND1-LS lo
al speaker 115.3 13.2Table 4.2: Comparison of re
ognizer performan
e on BN and CND data, after unsupervised adaptation, using theISL-BN language modelevaluation arti
le CND1 that was read by all native and non-native test speakers (see Se
tion 3.4).Be
ause the NPR1 and CND1 texts di�ered substantially in language model s
ore, the lo
al speaker wasasked to read a se
ond BN passage (NPR2) that was taken from an on-the-s
ene segment and re
eived as
ore from the ISL-BN language model that was mu
h 
loser to that given to CND1. This text is given inAppendix A.3. This text was originally spoken by a se
ond BN announ
er (PA2).MethodBe
ause the non-
hannel-related 
onditions of the NPR1 re
ording (speaker, spee
h mode, environment)
ould not be dupli
ated, it was ne
essary to approximate the 
onditions using a lo
al speaker and assess theerror introdu
ed by the approximation. This experiment therefore addresses two potential sour
es of error.1. Speaker variability: lo
al speaker vs. BN speakers2. Channel mismat
h: lo
al and BN re
ordings of BN textsIt will not be possible to �nd an exa
t value for 
hannel mismat
h. However, based on these two
omparisons, we 
an draw 
on
lusions about the severity of the mismat
h and the likely e�e
t on furtherexperiments. Corresponding results from text CND1 are given here for referen
e only; the issue of languagemodel mismat
h will be dis
ussed in greater detail in Se
tion 4.1.3.ResultsLanguage model s
ore and WER for NPR1, NPR2, and CND1 spoken by speakers PA1, PA2, and LS aregiven in Table 4.2.Speaker LS is not re
ognized quite as well as speaker PA1 reading the same text. This di�eren
e 
ouldbe due either to 
hannel mismat
h or speaker variability. The di�eren
e (6.4 vs. 7.4) is not large, and wealso see from Table 4.2 that the ISL-BN system performs substantially better on speaker LS than speakerPA2 (14.7 vs. 22.8) when those two speakers are reading the same text.Con
lusionsThe observation that ISL-BN re
ognizer performed nearly as well on lo
al speaker LS as professional an-noun
er NPR1, and mu
h better on speaker LS than speaker NPR2, suggests that the e�e
t of 
hannel



4.1. BASELINE SYSTEM 59Language modelTest set BN baseline InterpolatedNPR1-PA1 7.4 8.9NPR2-LS 14.7 16.2CND-LS 13.2 12.7Table 4.3: Measurements of WER for lo
al speaker 1 
omparing baseline BN and interpolated language models onbaseline BN and CND test setsmismat
h is mu
h smaller than the e�e
t of speaker variability. The prin
ipal 
on
lusion that I will drawfrom this experiment is that while there may be a slight mismat
h in the a
ousti
 
hannel, the e�e
t afterspeaker adaptation is not severe enough to 
ompromise the interpretation of future experimental results.4.1.3 Language modelingThe BN language model is a trigram model using Kneser-Ney ba
ko� (Kneser and Ney, 1995) with a trigramfrequen
y 
uto� of 2 (trigrams that only o

ured on
e in the training 
orpus were treated as unseen). Thetraining data 
onsisted of 150 million words of trans
ribed broad
ast news text and 10 million words ofwritten news text.This is a very large and robust language model. However, slightly higher WER rates found in Ex-periment 2 (see Table 4.2) for the CND data 
ompared to BN data for the same speaker suggested thatthere might be a small mismat
h between the type of language used in the adult-oriented BN text and the
hild-oriented CND text. This potential mismat
h was addressed by interpolating two independent trigramlanguage models with the larger BN language model. These two new language models were built from CNDar
hive text and non-CND news written for 
hildren. Context-independent interpolation weights were es-timated from the training and 
ross-validation 
orpora NN-X-R and NN-T-R. This interpolated languagemodel is used in a �nal res
oring pass of the word latti
e for a 5.5% relative de
rease in WER for the six-speaker native test set. The interpolation results in a relative redu
tion in perplexity on the CND test dataof 16%.Table 4.3 shows that interpolating the language models de
reases WER for lo
al test speaker LS on CNDdata and in
reases WER for both speaker LS and professional an
hor PA1 on BN data.Language model parametersThere are two user-spe
i�ed parameters that are used in jrtk when in
orporating the language model s
oresinto the sear
h: the language model weight lz and the word insertion penalty lp. These parameters 
anhave a signi�
ant e�e
t on the re
ognition out
ome, and it was my observation that the optimal values fornon-native speakers were quite di�erent from those for native speakers.Table 4.4 shows the e�e
t the language model parameter settings have on re
ognition a

ura
y for nativeand non-native speakers. These �gures represent the true optimal parameter values on native and non-native



60 CHAPTER 4. ACOUSTIC MODELINGParameter settings Native Non-nativelz=36; lp=18 (optimal for native speakers) 17.5 78.8lz=70; lp=90 (optimal for non-native speakers) 39.7 63.1Table 4.4: Comparison of WERs when the language model weight lz and word insertion penalty lp are set tomaximize performan
e for native and non-native speakerstest sets N-E-R and NN-E-R (see Table 3.3 for a des
ription of data sets); the values a
tually used in there
ognition experiments presented in this dissertation were 
al
ulated for an independent 
ross-validationset and resulted in slightly di�erent WER measurements.The higher optimal lz value for non-native speakers indi
ates that the system performs best whenrelying more heavily on the language model than is ne
essary for native speakers. This is not an unexpe
tedobservation, as the a
ousti
 model does not provide as useful information as it does for native speakers. Thehigher optimal lp value may indi
ate that non-native speakers are inserting noises and epentheti
 phonesthat are re
ognized as distin
t words without a high penalty for inserting words.For many types of experiment, the language model parameters are stri
tly �xed for simpli
ity of 
om-parison. Be
ause one of the goals of this work is to dis
over the relationships between di�erent non-nativeadaptation te
hniques, I sometimes re
al
ulate the language model parameter settings for optimal perfor-man
e. These re
al
ulations are always done on the independent 
ross-validation set NN-X-R.New word handling in the language modelIn order to eliminate variability due to out-of-vo
abulary (OOV) error, all words in the test sets are addedto the di
tionary. A 
lass-based 
omponent of the interpolated language model allows these OOV wordsto be added to the language model with the same probabilities as in-vo
abulary words whi
h have similarmeanings.4.1.4 Pronun
iation di
tionaryThe CND di
tionary is based on a 20,000-word di
tionary developed for the Broad
ast News task. Withthis di
tionary, the out-of-vo
abulary (OOV) rate on the CND arti
les is approximately 5%. In order toeliminate variability due to OOV error, all words that appear in the test utteran
es are in
luded in thedi
tionary. Pronun
iations for unusual proper names and other words of non-English origin are given in theCND text and 
an be entered into the di
tionary as-is; pronun
iations of other OOV words were taken froma mu
h larger pronun
iation di
tionary.All di
tionary adaptation experiments des
ribed in Se
. 5 were built on top of this baseline di
tionary.



4.1. BASELINE SYSTEM 61Number of 
odebooks 2000Number of distributions 2000Total number of Gaussians 104,746Polyphone window 5 phones (2 pre
eding and 2 following)Features used MFCC, delta, delta-delta, powerSpeaker adaptation supervised MLLR on 50 utteran
esDi
tionary size 26,110Language model type trigram; Kneser-Ney ba
ko�; 
uto�=2Language model interpolation BN, 
hildren's news, 
hildren's storiesLanguage model training 
orpus 161.2 million wordsLanguage model perplexity 300OOV rate 0Number of native test speakers 6Number of non-native test speakers 10Average number of utteran
es per speaker 38WER (F0) 18.0%Table 4.5: System details for the ISL-CND system and the CND test set4.1.5 Overall CND performan
e and 
on
lusions about the baseline systemBaseline re
ognizer performan
e for one speaker was given in Se
tion 4.1.2. In this se
tion the baselineperforman
e for the CND system (ISL-CND ) on the native test set that will be used throughout thisdissertation is given.The CND native test set 
onsists of six speakers, all reading the same arti
le. ISL-CND uses the interpo-lated language model and domain-adapted di
tionary des
ribed in Se
tions 4.1.3 and 4.1.4. Details of thissystem and the test set are given in Table 4.5.Performan
e for all six native test speakers is listed in Table 4.6. Although the average WER is higher forCND than for BN, for the reasons dis
ussed throughout Se
tion 4.1 I have 
on
luded that this dis
repan
yis due to inherent 
hara
teristi
s of the speakers and the task and not any mismat
h or 
aw in the a
ousti
and language modeling.Speaker 204 205 206 207 240 241 averageWER 20.5 15.2 20.1 20.8 18.5 12.7 18.0Table 4.6: Baseline re
ognizer performan
e on the six native CND test speakersEstablishing that the a
ousti
 mismat
h error is small and that baseline performan
e mat
hes that ofthe 
urrently best-performing spee
h re
ognizers allows us to have 
on�den
e that optimizations that aremade for non-native speakers are due to better modeling of non-native spee
h and not to general system
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ProficiencyFigure 4.1: WER plotted against SPEAK pro�
ien
y s
ore. Native spee
h is given a s
ore of 4; noti
eably non-nativespee
h, even if 
ompletely intelligible, 
an s
ore no higher than 3improvements. The matter of speaker variability, however, will not be ignored; as will be seen, variabilityamong non-native speakers is extreme, and exploring the intera
tion between speaker 
hara
teristi
s andmodeling te
hniques will be a theme throughout this thesis.Figure 4.1 puts the baseline performan
e of the ISL-BN system in the 
ontext of pro�
ien
y, showingWER for the native and non-native test sets as well as a group of four higher-pro�
ien
y speakers. Thenative test set N-E-R is that shown in table 4.6 and is the one that will be used in all a
ousti
 modelingexperiments unless otherwise spe
i�ed. The non-native test set NN-E-R is a pro�
ien
y-
ontrolled set of 10speakers; as dis
ussed in Chapter 3, this set of speakers all s
ored between 1.83 and 2.17 on a s
ale from0 to 4 using the SPEAK assessment (SPE, 1987). We 
an see three 
lear 
lumps in the �gure. Althoughthere is variation among the native speakers (those with a pro�
ien
y s
ore of 4), re
ognizer performan
e forall native speakers is better than that for any non-native speakers. Re
ognition of the four high-pro�
ien
yspeakers is better than that of any lower-pro�
ien
y speaker. It is these lower-pro�
ien
y speakers that arethe fo
us of this dissertation.4.2 Signi�
an
e testingAll improvements reported in this dissertation are statisti
ally signi�
ant unless it is spe
i�
ally stated thatthe improvement is insigni�
ant. The NIST statisti
al test pa
kage released with the s
oring pa
kage s
tk(NIST, 2000) was used to measure statisti
al signi�
an
e; spe
i�
ally, a mat
hed-pairs test was used toevaluate sub-utteran
e-level di�eren
es in re
ognizer performan
e.



4.2. SIGNIFICANCE TESTING 634.2.1 Basi
 steps in signi�
an
e testingThe pro
edure for testing signi�
an
e of any 
hange 
onsists of the following steps.1. Establish the null hypothesis, H0, and the alternate hypothesis, Ha. In the 
ase of measuring re
ognizerimprovement, the null hypothesis says that improvements we are seeing are a result of 
han
e.2. Spe
ify a test statisti
 (fun
tion) Y that dis
riminates between H0 and Ha.3. Spe
ify the \extreme" value (one-sided or two-sided) of Y in the dire
tion of Ha. To show an improve-ment in error rate, the small extreme supports Ha.4. Cal
ulate the probability (p-value) of seeing Y at and beyond its observed value.5. If the p-value is less than a �xed value (0.05, 0.01, e.g.), reje
t the null hypothesis. In the 
aseof measuring re
ognizer improvement, this represents the 
on
lusion that the results are not due to
han
e.4.2.2 Spe
ial 
onsiderations for spee
h re
ognizer evaluationMany people think of signi�
an
e testing in the 
ontext of an experiment in whi
h an experimental groupthat has been exposed to some sort of pro
ess is 
ompared to a 
ontrol group that has not. In su
h a s
enario,the null hypothesis H0 is that any di�eren
es between the two groups are 
oin
idental and the pro
ess hadno real e�e
t. When we 
ompare an improved spee
h re
ognizer to a baseline re
ognizer, we are doingsomething slightly di�erent. We generally want to test the re
ognizer on a �xed test set, so that di�eren
esin WER 
an be attributed solely to di�eren
es in the algorithm or model. However, this means that thereis no experimental group; the exa
t same set of utteran
es is pro
essed by both the baseline re
ognizer andthe new re
ognizer. In this situation, we are not 
on
erned with inherent variation between two data setsthat might make the pro
ess appear to have an e�e
t, but rather with the external validity of the singledata set. Although upon �rst 
onsideration this may appear to simplify the problem, a more sophisti
atedstatisti
al approa
h is a
tually required (Gilli
k and Cox, 1989) than would be if ea
h re
ognizer were testedon an independent test set.4.2.3 Test statisti
st-testThe t-test is useful when one wants to take into a

ount the magnitude of the di�eren
e between the twosystems. Additionally, it in
orporates the varian
e among the samples in the normalization term, so datawith less varian
e is more signi�
ant. t = �� �q s2N



64 CHAPTER 4. ACOUSTIC MODELINGfor:� the sample mean� the real means2 the sample varian
eN the sample sizeHowever, this t-test does not take into a

ount the varian
e in the real distribution, whi
h is importantwhen one is 
omparing two systems. Therefore, the following variation is used:t = �� �q s21n1�1 + s22n2�1for:� the mean of the error rates of system 1� the mean of the error rates of system 2var1 the varian
e in the error rates of system 1var2 the varian
e in the error rates of system 2n1 the number of samples from system 1n2 the number of samples from system 2The t-test for re
ognizer evaluation makes two 
ru
ial assumptions:1. the distribution of outputs (error rates) is normal2. the outputs of the system are independentIt has been argued that the latter does not hold in the 
ase of spee
h re
ognizer evaluation (Gilli
k andCox, 1989).Mat
hed pairs testThe mat
hed pairs test 
an be used when the independen
e assumption does not hold. It has been said thatthis is the 
ase in spee
h re
ognition, when the errors made in re
ognizing word wi 
an a�e
t how word wi+1is re
ognized.The mat
hed pairs test is a way of formulating a two-sample problem as a one-sample problem, bymaking the sample points di�eren
es between outputs of the two systems instead of the outputs themselves.The data is segmented su
h that the errors made in one segment are independent of the errors made inthe neighboring segments. In spee
h re
ognition, utteran
es 
an usually be the segments. The p-value thenanswers this question: if the average di�eren
e in performan
e of the two systems is zero, what is the 
han
ethat random sampling would result in an average as far from zero (or further) as observed in this experiment?The mat
hed pairs test is exe
uted as follows. For n segments, de�neZi = N iA �N iB ; i = 1; 2; : : : ; n



4.3. ISOLATING PROBLEMATIC SOUNDS 65where:N iA the number of errors in the i'th segment for system AN iB the number of errors in the i'th segment for system BEstimate the mean and varian
e of the Zi's:�̂Z = nXi=1 Zin�̂2 = 1n� 1 nXi=1 (Zi � �̂Z)2Then de�ne a variable W: W = �̂Z�̂Z=pnand determine whether the probability of W being the observed value is greater than your signi�
an
elevel �.Sin
e the distribution of the means of di�eren
es of error rates tends to a normal distribution, andthe number of segments is large (greater than 50), the probability 
an be approximated using a normaldistribution. That is, if f(x) is the normal distribution, x is W and y = f(x) is your p-value.4.2.4 Signi�
an
e testing in this dissertationIn this dissertation, I used a two-tailed mat
hed pairs test to measure statisti
al signi�
an
e. When I statethat a result is signi�
ant or highly signi�
ant, I mean that it is signi�
ant using this test at the p < 0:005level. In a few instan
es, I refer to a result as being \barely" signi�
ant. By this I mean :05 > p > :01.4.3 Isolating problemati
 soundsIn 
hapter 3, a number of di�eren
es between native and non-native spee
h that 
an be expe
ted to a�e
tre
ognizer performan
e were quanti�ed. In this se
tion, I present a 
omplementary analysis, examining howwell the baseline a
ousti
 models 
apture the phonologi
al properties of non-native spee
h.4.3.1 Phoneti
 
onfusionPhoneti
 
onfusion is a measure of how often an individual phone sounds like a di�erent phone. This gives anindi
ation of how a

urate the a
ousti
 models are with respe
t to the input spee
h. An analysis of phoneti

onfusion 
an also provide 
andidates for phone-substitution-based lexi
al modeling.Unfortunately, phoneti
 
onfusion �gures derived from re
ognizer output 
an be diÆ
ult to interpret.Failure to a

urately re
ognize a phone may be be
ause the pronun
iation is not 
orre
t, but it 
ould also
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aw in the a
ousti
 model. In this thesis, I wish to address the former 
ase and thereforewill attempt to isolate 
onfusions that are 
ommon only in re
ognition of non-native spee
h.A phoneti
 
onfusion matrix is built by 
al
ulating, for ea
h phone in the phone inventory, how frequentlyit was misre
ognized as ea
h other phone in the inventory. Depending on the obje
tive of the analysis,
onfusions 
an represent either segmental or framewise 
omparisons. For example, let us say that senten
e(1) was misre
ognized as something more like (2).(1) THEN THEY SWIM UPSTREAM IN A FIERCE WRONG WAY STRUGGLE TO THEIR BIRTHPLACE(2) THEN THEY SWIM UP STREAMING FEARS RUNWAYS TRAVELED TO THEIR BUS PLACEIsolating the words \upstream in a �er
e wrong way struggle to" for more detailed examination, we 
anidentify the errors /n/ ! /N/, /�/ ! /N/, /s/ ! /z/, /O/ ! /�/, /N/ ! /n/, /2/ ! /�/,/g/ ! /v/, and/t/ ! /d/ in a phone-by-phone 
omparison:1� p s t r i m I n � f i r s r O N w e�� s t r 2 g ë" t u� p s t r i m I N f i r z r 2 n w e�� z t r � v ë" d t uleading to the following phoneti
 
onfusion matrix shown in Table 4.7, where the pres
ribed phones areshown verti
ally and the re
ognized phones are shown horizontally.These 
onfusions would be said to have been generated through a segmental breakdown of word re
ognition.While this sort of breakdown is simple to do and is a useful method for �nding potential pronun
iationvariants, it does not represent 
onfusion due to phone insertion and deletion well. For example, in themisre
ognition upstream in a fier
e! up streaming fears, the /�/ sound in the word \a" is e�e
tivelyabsorbed in the model for /N/. In the matrix given above, the mapping /�/ ! /N/ is given equal weight tothe mapping /�/ ! /O/. This is not stri
tly appropriate, however. A more a

urate estimate of phoneti

onfusions 
an be found by either 
al
ulating mappings on a frame-by-frame instead of a segmental basis orrestri
ting the word re
ognition so that the sour
e of phone insertions and deletions is known.Framewise estimation of 
onfusionTo generate a framewise estimation of phoneti
 
onfusions using word re
ognition output, the a
tive phonesin the input spee
h and re
ognizer output are 
ompared for ea
h 10-ms window.
1For simpli
ity of illustration, the re
ognized phone string shown here is more a

urate than it a
tually was. In a
tualexperiments, no language model was used, and the 
onfusions were mu
h higher. The words 
orresponding to the phone stringsare provided only for illustration.
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onfusion matrix



68 CHAPTER 4. ACOUSTIC MODELING(. . . upstream in a. . . ). . . 22222222222pppppppppssssssssssstttttttttrriiiiiiiiiiiiiimmmmmmmIIIIIIIIIIInnnnnnnn����. . .. . . 22222222222pppppppppssssssssssstttttttttrriiiiiiiiiiiiiimmmmmmmIIIIIIIIIINNNNNNNNNNNNN. . .0ms 100ms 200ms 300ms 400ms 500ms 600ms 700ms 800ms 900ms 1000ms 1100msNow, instead of the partial matrixN 0 11 0n 0 0 11� 12 0 12� n Nwe have the following.I 0 0 111 1011N 0 2121 0 0n 0 0 88 0� 1115 0 415 0� n N IBe
ause phone transition times in the re
ognition output rarely mat
h up exa
tly with the a
tual times,using a framewise estimation introdu
es a large number of small 
onfusions. The /I/ ! /N/ 
onfusion inthe new matrix represents su
h a 
ase. Although individual instan
es of transition mismat
h are typi
allyvery short, overall, they 
an introdu
e a signi�
ant amount of noise, parti
ularly for phones whose averageduration is itself not long. This is one of the disadvantages of framewise estimation of phoneti
 
onfusion.Underspe
i�ed alignmentAnother way to ensure a straightforward (and not ne
essarily one-to-one) mapping between phones in theinput spee
h and the re
ognizer output is to for
e the system to generate a spe
i�
 number of phones. Inunderspe
i�ed for
ed alignment, the user 
an spe
ify some features of the word that is to be re
ognized andthen allow the re
ognizer to \�ll in" the missing features to generate a full phoneti
 spe
i�
ation for thatword. For example, it may be known that vowels are a major sour
e of phoneti
 
onfusion. In order to �ndthe vowel pairs that are most 
onfusible, the user may opt to �x the 
onsonants and only allow the re
ognizera 
hoi
e where a vowel sound is expe
ted. The re
ognizer would be presented with a phone network, thebest path through whi
h it 
an 
al
ulate via a Viterbi sear
h:



4.3. ISOLATING PROBLEMATIC SOUNDS 69

b �!!!! 2 aaaaaaaa u !!!!���� æ QQQQQQQQ U �������� Ä �������� o�u ���������� E SSSSSSSSSSSS o�� �������������
e��

TTTTTTTTTTTTTT O
�������

�������
�� I

AAAAAAA
AA

AAAAAAAAA a�u
���������

�������
��� i

LLLLLLL
LLL

LLLLLLLLLL a��
����������

BBBBBBBBBBBBB 6
�������������

T p l �!!!! 2 aaaaaaaa u !!!!���� æ QQQQQQQQ U �������� Ä �������� o�u ���������� E SSSSSSSSSSSS o�� �������������
e��

TTTTTTTTTTTTTT O
�������

�������
�� I

AAAAAAA
AA

AAAAAAAAA a�u
���������

�������
��� i

LLLLLLL
LLL

LLLLLLLLLL a��
����������

BBBBBBBBBBBBB 6
�������������

s

In this example, the word is \birthpla
e" and the 
anoni
al pronun
iation is [bÄTple��s℄. However, imaginethat the speaker a
tually says something more like [bA:TpW�REs℄. Running an underspe
i�ed for
ed alignmentof the input spee
h to the network would tell us whi
h model sequen
e best mat
hes the speaker's pronun-
iation, in this 
ase perhaps [b6TplEs℄.Underspe
i�ed for
ed alignment, then, 
an be used to generate strings of phonemes similar to thosegenerated through phoneti
 expansion of word re
ognition output. The former o�ers several advantages.First, the user 
an restri
t sour
es of variation a

ording to the obje
tive of the study. Se
ond, there is nointerferen
e from the language model; only the a
ousti
 mat
h is optimized. Third, framewise estimation of
onfusion 
an be a

omplished without introdu
ing noise due to phone transition time mismat
h. Finally,one-to-many and many-to-one relationships beween 
anoni
al and empiri
al phone sequen
es (representingepenthesis, simpli�
ation, e.g.) 
an easily be explored.An underspe
i�ed for
ed alignment of sample senten
e (1) produ
es the following mapping (the top lineis the fully spe
i�ed for
ed alignment result, the same as the one given above).(. . . upstream in a. . . ). . . 22222222222pppppppppssssssssssstttttttttrriiiiiiiiiiiiiimmmmmmmIIIIIIIIIIInnnnnnnn����. . .. . . 66666666666ppppppuuussssssssssstttttttttrriiiiiiiiiiiiiimmmmmmmiiiiiiiiiinnnnnnnn����. . .In this 
ase, the underspe
i�
ation allowed a 
hoi
e between all vowels, between 
onsonants with the samepla
e of arti
ulation, between nasal 
onsonants, and between /l/ and /r/. In addition, epentheti
 vowelswere allowed post-
onsonantally. The fa
t that in the presen
e of a 
hoi
e the alveolar nasal is 
orre
tly
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ognized but the pre
eding high front vowel is not indi
ates that a
ousti
ally, the 
onfusion is between /i/and /I/, not between /n/ and /N/. The mappings in the word-re
ognition-based example were in
uen
ed bythe words in the lexi
on, the 
oarti
ulatory relationship between /I/ and /N/, and the high frequen
y of themorpheme \-ing," among other fa
tors.Figure 4.2 shows phoneti
 
onfusion in the training data2 estimated via underspe
i�ed for
ed alignment.The size of the bubble at ea
h point represents the magnitude of the 
onfusion. For example, 
onfusionbetween /u/ and /U/ is high for non-native speakers. It is also high for native speakers, however. Thenon-native spee
h is 
hara
terized primarily by greater degrees of a
ousti
 
onfusion between the same pairsof phones that are 
onfusible in native spee
h.Unrestri
ted phoneme re
ognitionA third method of generating a phoneti
 trans
ription of input spee
h is phoneme re
ognition. In normalLVCSR, information about the words and word sequen
es that are meaningful in a language is used to helpidentify phones. Normal native spee
h is full of departures from the pres
ribed pronun
iation. For example,the alveolar nasal in \one-way struggle" 
an be highly labialized in anti
ipation of the labiovelar approximant.With the knowledge that \one" is an English word and that \one-way" is a 
ommon word sequen
e in English,the human listener may per
eive the nasal as an /n/ when a
ousti
ally and arti
ulatorily it is 
loser to an/m/. Higher-level linguisti
 knowledge 
ontributes greatly to su

essful re
ognition of 
onne
ted spee
h, andword-based re
ognition generally produ
es a far more a

urate sequen
e of phones than phoneme re
ognition.Nevertheless, phoneme re
ognition 
an be a useful tool for exposing idiosyn
rasies in the produ
tion ofwords. In unrestri
ted phoneme re
ognition, the de
oder is run with a uniform language model3 and witha lexi
on 
ontaining only phonemes. If there are 46 phonemes, there would be 46 \words" in the lexi
on.The result of the sear
h is the sequen
e of phones representing the a
ousti
 models that best mat
hed theinput spee
h at ea
h point in time. Phoneme re
ognition hypotheses 
an then be used in the same way asword re
ognition hypotheses or underspe
i�ed alignment hypotheses for segmental or framewise estimationof phoneti
 
onfusion.Figure 4.3 shows phoneti
 
onfusion estimated via a framewise 
omparison of phoneme re
ognition hy-potheses. Although the phoneme re
ognition error is similar for native and non-native speakers (52.1% and57.2% respe
tively), the native 
onfusions seem to be distributed more evenly a
ross phoneme pairs whilethe non-native 
onfusions are 
on
entrated in 
ertain \
at
hall" phones. Spe
i�
ally, /I/,/t/, and /silen
e/tend to be hypothesized inappropriately by the re
ognizer.The frame-by-frame values for 
anoni
al pronun
iation and phoneme re
ognition output for a non-nativespeaker's realization of the phrase \upstream in a" are juxtaposed below. This is the same sequen
e that2\Training data" in this 
ase is the part of the CND database designated for further a
ousti
 model training (N-T-R andNN-T-R). This set of data was not involved in training of the a
ousti
 models used to generate phoneti
 trans
riptions.3Syllabi
 and phonota
ti
 
onstraints 
an be introdu
ed by assigning likely phone sequen
es higher probabilities in thelanguage model.
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4.3. ISOLATING PROBLEMATIC SOUNDS 73has been used to illustrate word re
ognition based and unrestri
ted alignment based phoneme generation.(. . . upstream in a. . . ). . . 22222222222pppppppppssssssssssstttttttttrriiiiiiiiiiiiiimmmmmmmIIIIIIIIIIInnnnnnnn����. . .. . . kkkkk666666ppppppppppssssssssÙÙÙÙÙÙÙÙÙÙÙÙiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnnnnnnnnnnnEE. . .Both the valuable information and undesirable noise that phoneme re
ognition hypotheses 
ontain areapparent in this example. The �rst substitution, /2/ ! /k/, is pe
uliar. The speaker does produ
e apronoun
ed glottal stop at the onset of the word \upstream," whi
h would probably not be present insmooth native spee
h and may be the sour
e of the re
ognizer's per
eption of a voi
eless velar stop. Indeed,this phenomenon may partially explain the surprisingly high rate of substitution of voi
eless stops for vowels.The sequen
e /tr/ is re
ognized as /Ù/, whi
h is plausible as this 
ombination 
an be palatalized in nativespee
h as well. Quality of the phoneme re
ognition degrades toward the end of the phrase, however, wherethe �nal 
onsonant in \upstream" and the initial vowel in \in" are lost altogether.In Se
tion 4.6 and Chapter 5 phoneti
 
onfusion will be used to predi
t phone substitutions. Bothframewise 
onfusion through unrestri
ted phone re
ognition and segmental 
onfusion through underspe
i�edalignment will be used.Context-dependent vs. 
ontext-independent modelsIn the previous paragraphs, I have dis
ussed methods that 
an be used to generate phoneti
 trans
riptionsfor estimation of phoneti
 
onfusion. It is also important to 
onsider the type of a
ousti
 model that is beingmat
hed to the input spee
h. The models used in ordinary LVCSR are usually 
ontext-dependent, that is,they model the a
ousti
s of a given phone in a given 
ontext. If they were trained on native spee
h, however,they may not a

urately re
e
t the phoneti
 
ontexts that trigger variation in non-native spee
h.In all of my 
al
ulations of phoneti
 
onfusion, phoneti
 trans
riptions were generated using 
ontext-independent models. While the 
ontext-independent models are asso
iated with an in
reased word errorrate, analysis of phoneti
 
onfusion and 
omparison of 
onfusion in native and non-native spee
h is morestraightforward with 
ontext-independent models. I also wished to avoid allowing phonota
ti
 and 
oarti
-ulatory patterns found in native spee
h to in
uen
e the mat
h of models to non-native spee
h.4.3.2 Polyphone 
overageOne of the reasons that modi�
ations to the di
tionary may not work well is that the new phonemi
 tran-s
riptions 
an in
lude phone sequen
es that were not in the training data. For example, if the pronun
iation/da��lEkuto/ is proposed as a variant for the word \dire
t," the sequen
e /Ekuto/, whi
h never appeared inthe training data, is introdu
ed. Even if the variant is an a

urate re
e
tion of the speaker's pronun
iation,



74 CHAPTER 4. ACOUSTIC MODELING(. . . swim) upstream in a �er
e (wrong . . . )� p s t r i m I n � f i r sm � p s m I n � n � f � f i rm � p s t m I n � � f i r s� p s t r f i r s rp s t r i i r s rs t r i mt r i m Ir i m IFigure 4.4: Illustration of how polyphones are de�ned for the utteran
e fragment \. . . (swim) upstream in a �er
e(wrong-way struggle). . . "be
ause no polyphone model was ever trained for this sequen
e, the trained model for the 
anoni
al pronun-
iation might mat
h the input spee
h better than the generi
 model that serves as a ba
ko� model for theunseen variant polyphone.I have found that the polyphone 
overage, or per
ent of polyphones in a test data set that appeared inthe training 
orpus, is mu
h lower for non-native speakers than for native speakers. To 
al
ulate polyphone
overage, a referen
e 
orpus is generated, in this 
ase by aligning the training data to the manual tran-s
riptions using the baseline di
tionary. Twelve per
ent of the words in the baseline di
tionary have variantpronun
iations listed, averaging 1.2 variants per word with variants. As part of the alignment pro
ess, thevariant that most 
losely mat
hes the a
tual pronun
iation is identi�ed, yielding a more a

urate phoneti
representation than a non a
ousti
ally derived phoneti
 expansion of the words in the manual trans
riptionwould. The number of polyphones in this referen
e 
orpus is then 
al
ulated. In the ISL-BN re
ognitionsystem, ea
h phone in the data is asso
iated with a polyphone 
omprising that phone and the two pre
eding(one if the phone is word initial) and two following (one if the phone is word �nal) phones. In the 
ase ofutteran
e-initial and utteran
e-�nal phones, no pre
eding/following phones are in
luded in the polyphonesequen
e. The breakdown of an example utteran
e fragment into polyphones is shown in Figure 4.4.Table 4.8 lists the polyphones asso
iated with ea
h phone that appears in the example utteran
e fragment.Four phones appear more than on
e, and for those phones multiple polyphones are listed. There are a totalof fourteen polyphones in this example. There are 5.5 million polyphone tokens and 4.1 million polyphonetypes in the referen
e 
orpus. Of the fourteen polyphones in the example, only eight, or 57%, were amongthe 4.1 million polyphone types that appeared in the referen
e data. This utteran
e fragment, then, has apolyphone 
overage of 57%.



4.3. ISOLATING PROBLEMATIC SOUNDS 752 p s t r i m I n fm 2 p s m 2 p s t 2 p s t r p s t r i s t r i m t r i m I r i m I m I n � m I n � � f i rn 2 f i r s r f i r s r � f i r sTable 4.8: Polyphones asso
iated with ea
h phone that appears in the utteran
e fragment \. . . (swim) upstream ina �er
e (wrong-way struggle). . . "4.3.3 Experiment 3:Polyphone 
overage after phone substitutionsIntrodu
tionTo �nd how the polyphone 
overage is a�e
ted by phone insertions and deletions 
ommon in non-nativespee
h, I generated several experimental 
orpora for whi
h polyphone 
overage was measured. In ea
h 
ase,the input spee
h was aligned to the manual trans
riptions using the variant-sensitive pro
edure des
ribedabove. The referen
e 
orpus used for all 
onditions was the trans
ribed NN-E-R 
orpus.In this experiment, three variables are adjusted: phoneti
 expansion di
tionary, speaker nativeness, anda
ousti
 model type. Insights into the polyphoni
 makeup of non-native spee
h will 
ome from 
omparing
overage of non-native spee
h before and after introdu
tion of non-native variants in the di
tionary. Theseresults 
annot be a

urately interpreted, however, without examining how the same 
hanges in the di
tionarya�e
t 
overage of native spee
h, and whether alignment using 
ontext-dependent models yields signi�
antlydi�erent polyphones from those generated using 
ontext-independent models.DataPolyphone 
overage measurement requires a test 
orpus and a training 
orpus. The per
entage of polyphonesin the test 
orpus that also o

ur in the training 
orpus is the polyphone 
overage of the test 
orpus. For thisexperiment, the test 
orpora were the shared arti
les from N-E-R and NN-E-R; the training 
orpus was theunique arti
les read by ea
h speaker in NN-E-R. Be
ause the trans
ribed training 
orpus will be expandedphoneti
ally based on the 
anoni
al pronun
iations in the di
tionary, the fa
t that the arti
les were originallyread by non-native speakers does not a�e
t the estimation. Phoneti
 expansion of the test 
orpora will bedis
ussed below.MethodPotential non-native variation in pronun
iation was allowed by augmenting the baseline di
tionary withvariants generated using several 
omplementary methods. One set of variants was produ
ed using informationabout the phonota
ti
 stru
ture of the speaker's native language. Another set was based on the phoneti

onfusion measurements presented in Se
tion 4.3.1. Hand-
oded variants were also added, along with variantsderived from native-language representations of loanwords from English. These di
tionaries are des
ribedin greater detail in Se
tion 5. The expanded di
tionary is very large (1.13 million words); the number of
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tionary expanded di
tionary expanded di
tionarynative non-native native non-native native non-nativePolyphone tokens 92.1 93.7 65.4 46.9 73.8 52.8Polyphone types 92.1 93.4 61.7 42.6 69.4 48.2Table 4.9: Polyphone 
overage of native and non-native spee
hbase words is the same as in the baseline di
tionary, but instead of 12% of the words having variants listed,99% are asso
iated with variants, averaging 48 variants per word. If one were attempting de
oding with thisdi
tionary, the sear
h spa
e would be enormous. Be
ause I am doing alignment, however, the word sequen
eis known and the re
ognizer is only asked to determine whi
h of a given list of phone sequen
es best mat
hesthe input spee
h. By allowing variants generated by a variety of methods, I maximize the probability thata model sequen
e that truly mat
hes the input spee
h is found. Comparisons of the di�erent methods andthe 
ontribution of variant pronun
iations to re
ognition a

ura
y are dis
ussed in Se
tion 5.Polyphone 
overage (the per
entage of polyphones in the test 
orpus that also o

urred in the training
orpus) was measured for the baseline and expanded di
tionaries using the 
ontext-independent models andfor the expanded di
tionary using the 
ontext-dependent models.ResultsTable 4.9 shows polyphone 
overage for native and non-native speakers. We 
an see that the polyphone
overage of the non-native data is mu
h higher when the non-native pronun
iations are for
ed to 
onform to
anoni
al pronun
iation standards (66.7% 
overage with the baseline di
tionary) than when more 
exibilityto identify the true phone sequen
e is allowed (43.1% 
overage with the expanded di
tionary). This says thatthe non-native speakers are produ
ing phone sequen
es for whi
h polyphones would not have been trained.However, we 
an also see from Table 4.9 that 
overage of native spee
h de
reases (79.7% to 63.0%) whenthe alignment is not restri
ted to 
anoni
al pronun
iation standards.Con
lusionsPronun
iations that were intended to be representative of non-native spee
h are registering as the 
losestmat
h for native as well as non-native realizations of the words. There are several possible explanations forthis. First, poor quality in the a
ousti
 models may be 
ausing the wrong variant to be sele
ted. Se
ond,the native speaker may a
tually be pronoun
ing the words in a way that is 
loser to the sele
ted \non-native" variant than the 
anoni
al pronun
iation. Third, the variant may have been one that was derivedfrom phoneme re
ognition output, and might re
e
t internal bias in the a
ousti
 model more than trueL1-
onditioned variation.All three of these hypotheses are probably 
orre
t in some 
ases. One might 
onsider evaluating the �rstby 
omparing 
ontext-dependent and 
ontext-independent results using the expanded di
tionary; be
ause



4.3. ISOLATING PROBLEMATIC SOUNDS 77CI models CD modelsnative non-native native non-nativeHand-
oded 8.0 9.8 9.4 13.4Phoneme re
ognition 75.0 61.4 74.3 57.0Underspe
i�ed alignment 9.0 5.0 8.3 6.2Linguisti
ally motivated 7.5 22.5 7.6 21.8Derived from L1 representations of loanwords 0.5 1.3 0.4 1.7Table 4.10: Sour
e of pronun
iation variants sele
ted during alignmentthe 
ontext-dependent models are more a

urate than the 
ontext-dependent models, if the problem is withmodel quality we should see a signi�
ant de
rease in the number of non-native variants that mat
h to nativespee
h, whi
h indeed we do. However, this is not a fair 
omparison, as the 
ontext-dependent models enfor
epre
isely the 
onstraints that I wish not to be bound by in my investigation of the \true" realizations of wordsin spee
h. The se
ond and third hypotheses 
an be investigated by looking at the variants that were 
hosen.Distributions of variant types sele
ted using 
ontext-dependent and 
ontext-independent models are given fornative and non-native speakers in Table 4.10. The most striking di�eren
es are that linguisti
ally-motivatedvariants are sele
ted more often for non-native speakers than for native speakers, and that variants derivedthrough phoneme re
ognition are sele
ted more often for native speakers than for non-native speakers. Thissuggests that many of the variants identi�ed in native spee
h are tied to the way phones are modeled inthe re
ognizer, supporting the third hypothesis. We also have from Table 4.10 
lear eviden
e that thelinguisti
ally-motivated variants 
apture non-native spee
h phenomena.4.3.4 Impli
ations for a
ousti
 modelingKnowledge of the distribution of sounds and the relationship between pres
ribed and re
ognized phonesin native and non-native spee
h will guide us as we strive to improve a
ousti
 modeling of the non-native
ondition. We have seen that 
onfusion between numerous phones is higher for non-native speakers than fornative speakers. The pairs /I,i/, /O,o/, and /T,s/ are satisfying to see highlighted in the 
onfusion matri
es asthese are substitutions one might predi
t from either a linguisti
 analysis of Japanese or experien
e listeningto Japanese natives speaking English. By the same token, however, the absen
e of pairs like /Ä,6/ and/l,r/ in the matrix is disappointing. It was observed in experiment 3 that 
ompared to the native test setN-E-R, a large number of the phone sequen
es that appear in non-native test set NN-E-R do not o

ur inthe 
orresponding training data.In the following se
tions, I will des
ribe a number of methods for improving performan
e of the a
ousti
models on Japanese-a

ented English, in
luding some spe
i�
ally intended to 
ountera
t problems of phoneti
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onfusion and polyphone 
overage. Approa
hes like MLLR adaptation and Viterbi training with a

enteddata will address issues of phoneti
 
onfusion, poor overall modeling of non-native spee
h, and some insertionand deletion of phones. Dis
repan
ies in the polyphones found in native and non-native spee
h require moresophisti
ated modeling, and I will present results for training and adaptation of the polyphoni
 de
isiontrees.4.4 AdaptationIn speaker adaptation, a
ousti
 models that have been trained for general spee
h are adjusted so that theybetter model the spee
h 
hara
teristi
s of a spe
i�
 
ondition. Adaptation does not have to be limited toindividual speaker adaptation; general models 
an be spe
ialized to 
ompensate for di�eren
es in a
ousti
environment or the 
hara
teristi
s of a group of speakers. Non-native speakers with strong a

ents are natural
andidates for adaptation be
ause of the magnitude and 
onsisten
y of many deviations from standard nativepronun
iation.A
ousti
 adaptation 
an be applied in either the feature spa
e or the model spa
e. Feature-spa
e methodsin
lude 
epstral mean subtra
tion and vo
al tra
t length length normalization, both of whi
h are appliedin the ISL-BN system. Adaptation te
hniques 
ommonly applied in the model spa
e in
lude maximumlikelihood linear regression (MLLR) and maximum a posteriori (MAP) adaptation.Pilot experiments on the non-native data indi
ated that adaptation would be 
ru
ial if a level of re
ognizerperforman
e on whi
h further experiments would be meaningful were to be a
hieved. In this se
tion I
ompare appli
ations of MLLR and mixed-style, or simpli�ed MAP, adaptation, using both native-languageand a

ented data. I dis
uss both the di�eren
es between the two approa
hes and experimental results ofapplying them for non-native spee
h.4.4.1 Model-spa
e adaptationThe two types of adaptation that I dis
uss in this se
tion operate by modifying the parameters of thea
ousti
 model, spe
i�
ally the means of the Gaussian mixture models that represent ea
h phoneti
 state.This se
tion fo
uses on using adaptation to estimate a better general model of Japanese-a

ented Englishbefore individual speaker adaptation is applied to further spe
ialize the model.MLLR is an example of what is 
alled transformation-based adaptation. In transformation-based adapta-tion, a single transformation operation is applied to all models in a transformation 
lass. The transformationfun
tion is estimated from a small amount of held-out data. In the Janus implementation of MLLR, theoptimal number of transformation 
lasses is determined dynami
ally.In mixed-style adaptation, the model parameters are re-estimated individually. Using held-out adaptationdata, sample mean values are 
al
ulated. An updated mean is then found by shifting the original value towardthe sample value. If there was insuÆ
ient adaptation data for a phone to reliably estimate a sample mean,



4.4. ADAPTATION 79no adaptation is performed. The degree of shift toward, or interpolation weighting fa
tor of, the samplevalue is globally applied to all transformations. This is where mixed-style adaptation di�ers from true MAPadaptation, in whi
h interpolation weights are estimated separately for ea
h transformation. Be
ause similargains have been observed in MAP and mixed-style adaptation (Soltau, 2001), I will use the simpli�ed form.All referen
es to MAP adaptation in this dissertation therefore des
ribe not true MAP adaptation, butmixed-style adaptation.Both MLLR and MAP adaptation are popular and e�e
tive in boosting LVCSR performan
e (Woodland,1999). Be
ause transformation-based adaptation de�nes a transformation fun
tion for the entire 
lass, it 
an
al
ulate an updated mean even for phones that did not appear with 
riti
al frequen
y in the adaptationdata. For this reason, it 
an be e�e
tive when not mu
h data is available. However, a transformation fun
tionthat is optimal for the 
lass may not be optimal for all individual models, and with MLLR one runs the riskof applying the fun
tion improperly and shifting some means away from the observed sample value. Thisdoes not happen with MAP adaptation, as ea
h parameter is adapted separately. When the adaptation datais representative of the test data, MAP adaptation performan
e improves as the amount of adaptation datain
reases. With only a small amount of adaptation data, however, MLLR tends to provide the better model(Doh, 2000).4.4.2 Experiment 4:Adaptation to the non-native 
onditionIntrodu
tionThere were two questions that I sought to address through adaptation exeriments.1. Does L1 material provide better adaptation data than a

ented L2 data?2. Does MAP adaptation perform better than MLLR adaptation for non-native spee
h?The �rst question is important for two reasons. First, 
olle
ting L1 data is sometimes easier than 
olle
tinga

ented L2 data. For well-represented L1s like Japanese and Spanish, L1 a
ousti
 
orpora might already beavailable. And by using L1 data to adapt, the potential 
ombinatorial problem of having to 
olle
t spee
hdata for ea
h L1-L2 pair 
an be avoided. Se
ond, L1 data might provide a more 
onsistent representation ofnon-native spee
h than L2 data does. If the variation in phoneti
 realization is very great in the a

entedL2 spee
h, new sample means may not be very meaningful, and adapting to them may degrade rather thanimprove the model. The best performan
e might be a
hieved by �rst adapting to 
onsistent data that isrepresentative of the a

ented spee
h and then adapting to individual idiosyn
rasies in the realization ofspe
i�
 phones. The problem with this argument, of 
ourse, is that it assumes a regular mapping betweenL1 and a

ented L2 phones, a suggestion that has been disputed in e.g. (Bri�ere, 1966).
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ond question asks whether transformation-based or Bayesian adaptation is more appropriate fornon-native spee
h. One might spe
ulate that be
ause the non-native data is highly variable the risk ofimproperly applying transformation fun
tions would be high, suggesting that MAP adaptation would be thebetter 
hoi
e as long as there is enough adaptation data. This is only a hypothesis, however, so one wouldlike to address the question empiri
ally.In these experiments, I use the 10-speaker pro�
ien
y-
ontrolled set of Japanese-a

ented English (NN-E-R) as the test set.DataThe L1 data that was used for these experiments was Japanese read news from the Nikkei Shimbun. Thisdata was sele
ted be
ause it was similar in task and topi
 to the Japanese-a

ented English data. The data
olle
tion methods and environments were identi
al.The a

ented L2 adaptation data was drawn from the training set of Japanese-a

ented read news data(NN-T-R).The test data was the pro�
ien
y-
ontrolled non-native set NN-E-R.Experiment 4.1: MLLR adaptationMethodPrior to individual speaker adaptation, MLLR adaptation based on spee
h from varying amounts of adap-tation spee
h was applied. First, the number of adaptation speakers was varied; as with individual speakeradaptation, 50 utteran
es from ea
h speaker were used. Performan
e was 
al
ulated for 3, 5, 10, and 15adaptation speakers. Se
ond, the number of speakers was �xed, but the number of utteran
es from ea
hspeaker was varied. Performan
e was 
al
ulated for 240, 444, 811, and 1296 words, evenly drawn from10 adaptation speakers. These numbers approximate the number of words in the 3, 5, 10, and 15-speakeradaptation sets.ResultsFigure 4.5 shows the results of applying MLLR with L1 and L2 data. While adaptation with a

entedL2 data leads to improved performan
e, adapting with L1 data results in a performan
e degradation thatin
reases with the amount of adaptation data used.The bene�t from adaptation with larger amounts of adaptation data is 
lear, at least up to the 10-speakerlevel. One might wonder whether it is the variety among speakers or simply the number of adaptationutteran
es from one speaker that 
ontributes most to the gain. Figure 4.6 shows how performan
e 
hangeswhen the adaptation utteran
es are distributed evenly over 10 di�erent speakers. As we 
an see fromFigure 4.6, the 
urves are steeper when the adaptation words are not distributed evenly a
ross speakers; onemay 
on
lude that the e�e
t of in
reasing amounts of adaptation data is stronger when the amount of spee
h
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Figure 4.5: MLLR adaptation using L1 and L2 adap-tation data and varying numbers of adaptation speakers 52

54

56

58

60

62

64

66

68

70

0 100 200 300 400 500 600 700 800 900

W
E

R

number of adaptation words

L2 adaptation data
L1 adaptation data

Figure 4.6: MLLR adaptation with with L1 and L2adaptation data and varying numbers of adaptationwordsfrom ea
h adaptation speaker rea
hes a 
riti
al level. When the adaptation words are distributed evenlya
ross speakers, the bene�t is not seen as qui
kly be
ause there is initially more diversity in the adaptationdata set.Experiment 4.2: MAP adaptationMethodThe MAP adaptation implementation used in these experiments is an approximation to the standard al-gorithm in whi
h the original means are shifted toward the sample means using a single experimentally-determined interpolation weight, instead of 
al
ulating the shift individually for ea
h senone. This methodhas been found to produ
e equivalent or better results than the traditional implementation (Soltau, 2001).ResultsPerforman
e after MAP adaptation is shown in Figure 4.7. On the horizontal axis is the degree of shifttoward the sample mean (the interpolation weight). When the interpolation weight is 1, the adapted meanis identi
al to the sample mean. When the interpolation weight is 0, the adapted mean is identi
al to theprior mean (i.e., there is no adaptation).As with MLLR adaptation, we see a degradation in performan
e when adapting with L1 data. Whenadapting with L2 data, we see that the optimal interpolation weight is 0.75.Con
lusionsA 
omparison of MLLR and MAP adaption is given in Table 4.8. MAP adaptation performs signi�
antlybetter than MLLR adaptation, at least when the amount of adaptation data is large.
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Figure 4.8: Comparison of MLLR and MAP adaptationfor 15 adaptation speakers4.4.3 Adaptation for pro�
ient speakersThe 
onsistent observation in these experiments that adapting with L1 data results in a performan
e degrada-tion is disappointing, as it reinfor
es the 
on
lusion seen elsewhere in LVCSR and NLP that 
lever modeling
annot 
ompete with plenty of well-mat
hed data. It also 
ontrasts with the results 
ited in (Liu and Fung,2000a). It was my initial hypothesis that the lower pro�
ien
y levels in my test set were responsible; pro�-
ient speakers may have a strong a

ent, but if their spee
h is stable, it may be easier to attribute 
onsistentmispronun
iations to interferen
e from L1. Spe
i�
 interferen
e from L1 for less pro�
ient speakers, on theother hand, may not in
uen
e arti
ulation as mu
h as other e�e
ts en
ountered along the learning 
urve do.Unfortunately, this does not appear to be the 
ase. Figures 4.9 and 4.10 show adaptation results for fourpro�
ient speakers. We see the same trend as for the less pro�
ient speakers; using L1 data to adapt tothe non-native 
ondition results in a performan
e degradation while L2 data improves performan
e, and thedegradation/improvement grows with the amount of adaptation data. While the improvements are small,the degradation is even more severe than it is for the less pro�
ient speakers, both for varying numbers ofadaptation speakers and varying numbers of adaptation words distributed evenly a
ross adaptation speakers.4.4.4 Con
lusions from adaptation experimentsThe 
lear result from experiments performed on the data 
olle
ted for this dissertation is that adaptationto the non-native 
ondition is su

essful when a

ented L2 adaptation data is used and harmful to overallWER when L1 adaptation data is used. This trend holds for both the lower-pro�
ien
y spee
h that is thetarget of this resear
h and the type of high-pro�
ien
y spee
h that has been more widely studied (althoughthe sample of high-pro�
ien
y spee
h available for this resear
h was small).
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Figure 4.9: MLLR adaptation for pro�
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Figure 4.10: MLLR adaptation for pro�
ient speakersvarying number of adaptation words4.5 TrainingIn Se
tion 4.4, I 
ompared methods and data sour
es for adaptation, and found that the greatest WERredu
tion 
omes with �rst using MAP to adapt to the non-native 
ondition, and then applying MLLR againto those adapted models to adapt to the 
urrent speaker. In this se
tion I show how WER 
an be furtherredu
ed through retraining of the system using L1-dependent data. I investigate whether better results 
anbe a
hieved with L1 data or a

ented L2 data, and present a number of variations on the standard trainingpro
edure that improve re
ognition performan
e.In dis
ussions of re
ognition system development, I will fo
us on two phases: building the de
ision treethat des
ribes allophoni
 variation, and re�nement of the parameters that des
ribe the probability of a
ertain sound being asso
iated with a 
ertain a
ousti
 model. The �rst may be referred to as 
lustering,and the se
ond as training. For 
larity, I will use the term building to refer to the pro
ess of 
reating a newre
ognition system from s
rat
h, a pro
ess whi
h is sometimes also 
alled training.4.5.1 Experiment 5:Building a system with a

ent-dependent dataIntrodu
tionIt was shown in Se
tion 4.4 that while using a

ented data for adaptation improves re
ognition performan
e,adapting with L1 data results in a performan
e degradation. In speaker adaptation, the model inventory iskept the same, but the expe
tation of what a model sounds like is shifted towards what has been seen in thelimited set of adaptation spee
h. The L1 data does not have the 
han
e to make its maximal 
ontribution,as the model inventory is based on the polyphones found in native spee
h; two allophones that are quitedi�erent in L1 may be used to update the same model if the two 
ontexts do not trigger variation in English.
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ontexts that are meaningful in L1, we 
an use the L1 data to its fulladvantage.I will 
ompare a system built with a mixture of L1 and native English data with a system built witha mixture of a

ented L2 and native English data. The large amount of native data 
ontributes to therobustness of the model, while the smaller amount of L1-spe
i�
 data ensures that L1-spe
i�
 phone sequen
esand phone realizations are seen during 
lustering and training.DataThe L1-spe
i�
 (native Japanese and Japanese-a

ented English) data used in this experiment was the sameas that used for adaptation experiments des
ribed in Se
tion 4.4.2.The L1 data that was used for these experiments was Japanese read news from the Nikkei Shimbun.This data was sele
ted be
ause it was similar in task and topi
 to the Japanese-a

ented English data. Thedata 
olle
tion methods and environments were identi
al. Approximately 3 hours of this data was used fortraining.The entire training set of Japanese-a

ented read news data (NN-T-R) was used for this experiment.This set totals approximately 3 hours of spee
h from 15 speakers.The test data was the pro�
ien
y-
ontrolled non-native set NN-E-R.MethodThe pro
edures for building the two systems were identi
al. Both were bootstrapped from the baselinesystem, with initial labels written using those a
ousti
 models. For ea
h system, a new Linear Dis
riminantAnalysis (LDA) matrix was 
omputed, with 
odebook and distribution parameters then 
al
ulated by k-means and trained for seven epo
hs. The result of this pro
ess was a 
ontext-independent system. Toin
orporate phoneti
 
ontext, a new model was 
reated and trained for ea
h polyphone whose frequen
ywas above a 
ertain threshold. A de
ision tree was then grown to �nd polyphones whose 
entral phones aresimilar and 
an be used to train the same model. LDA, kmeans, and Viterbi training were applied again to
omplete the 
ontext-dependent system.Before de
oding the test data, optimal language model parameters were found using 
ross-validationdata, so the language model parameters used in testing the two systems were not the same. Speaker-adapted weights were estimated by applying MLLR on 50 utteran
es of unseen adaptation data from ea
hspeaker.ResultsFigure 4.11 shows the WER redu
tion a
hieved by rebuilding the system with L1-dependent data. Resultsare shown both for the test set average and the individual speakers. The baseline WER is given as a lineplot to make it easy to see for whi
h speakers the rebuilt system results in a degradation. Overall, there is no
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Figure 4.11: WER redu
tion from rebuilding the system with L1 and a

ented L2 datasigni�
ant di�eren
e between the system rebuilt with L1 data and the baseline system. The improvementsin the system rebuilt with a

ented data, however, are highly signi�
ant (p < :001, mat
hed pairs t-test).4.5.2 RetrainingGiven the observed positive 
ontribution of in
orporating a

ented data in system building, it was of interestto determine whether the e�e
t 
an be approximated by limiting the spe
ialization to 
lustering or training.I began with the retraining 
ase, whi
h is the more straightforward of the two. To retrain using the a

enteddata, two Viterbi training iterations were run on the fully trained baseline a
ousti
 models des
ribed inSe
tion 4.1. To 
larify the e�e
t this has, let us brie
y review the Viterbi training pro
ess.Review of Viterbi TrainingAs des
ribed in e.g. (Rabiner, 1990), a hidden Markov model 
onsists of possible states S = s1� � �sN andobservations O = o1: : :oM and parameters �, A, and B de�ned as follows:� the initial state distributionA the state transition probability distributionB the observation symbol probability distributionAs HMMs are used for spee
h re
ognition, an observation o 
orresponds to an a
ousti
 event that isheard, and the states si 
orrespond to phonologi
al units. In this explanation, I will assume that the unit ofrepresentation is the phoneme.



86 CHAPTER 4. ACOUSTIC MODELINGIn Viterbi training, the values of �, A, and B are iteratively re�ned to more a

urately predi
t the initialstate, transitions between states, and asso
iation of states with observations (phonemes with sounds). Thisis a

omplished by �rst using the 
urrent parameters to estimate the most probable sequen
e of states, andthen updating the parameters based on the number of times ea
h state and observation were seen.The Viterbi algorithm (Forney, 1973) is used to �nd the state sequen
e q1� � �qT that best mat
hes thea
ousti
 sequen
e given the model parameters. In training, the word sequen
e, and therefore the pres
ribedphoneme sequen
e, is known. However, the exa
t time alignment of states must be established. For the wordsequen
e \upstream in a," dis
ussed in Se
tion 4.3.1 (assuming a somewhat faster speaking rate), the truetime alignment might look like the following.(. . . upstream in a. . . )2s3s3s3s3s3s3ps9s9s9s9ss7s7s7s7s7s7s2s2s2s2s2t s8r s4s4s4s4s4s4s4i s6s6s6m s1s1s1s1s1s1I s8s8s8s8n s3s3�0ms 100ms 200ms 300ms 400msThere are a number of fa
tors that make arriving at the 
orre
t alignment diÆ
ult, in
luding poor initialmodeling of some phones, noises, silen
es between words, and phone transitions that don't fall at 10msintervals. The alignment typi
ally gets more a

urate with ea
h training iteration, be
ause the model usedto estimate it improves.After an alignment has been found, the model parameters are updated so that the model is optimal giventhe new 
ounts.4.5.3 Experiment 6:Retraining with non-native dataIntrodu
tionWhen a system that has been built on native spee
h is trained with non-native data, the updates to the modelparameters will re
e
t the sound-state mappings that are present in the data. If the non-native speakers are
onsistent in their deviations from native spee
h, the model shift should result in better re
ognition. If thenon-native data is in
onsistent, however, using it to train the model 
an result in a general degradation ofthe model.In Se
tion 4.4, I showed that re
ognition improves with speaker adaptation. By training using thea

ented data, I am essentially extending this approa
h, updating not only the mixture means but also themixture weights and 
ovarian
es (the full representation of the observation model B). We also bene�t fromthe iterative 
omponent of the training pro
ess. Based on the improvements that were seen with adaptationon a

ented data, one would expe
t that the model does improve with training on a

ented data.
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ented L2 (Japanese-a

ented English) data used in this experiment was the same as that used foradaptation experiments des
ribed in Se
tion 4.4.2 and rebuilding experiments des
ribed in Se
tion 4.5.1.The entire training set of Japanese-a

ented read news data (NN-T-R) was used for this experiment.This set totals approximately 3 hours of spee
h from 15 speakers.The test data was the pro�
ien
y-
ontrolled non-native set NN-E-R.MethodThe baseline a
ousti
 models des
ribed in 4.1 were trained two additional forward-ba
kward iterations usingonly the 3 hours of a

ented data.ResultsTable 4.11 shows the results of training two epo
hs on the same 15 training speakers (representing 3 hoursof a
ousti
 data) that were used for adaptation experiments. The improvement in overall WER was highlysigni�
ant as measured by the mat
hed-pairs test des
ribed in Se
tion 4.2.baseline retrainedSpeaker WER WER208 64.8 42.9209 65.0 74.2212 74.0 54.2216 59.6 40.8218 64.6 36.4220 64.7 59.1221 92.2 38.6222 57.4 36.5225 77.3 53.9227 53.6 34.8AVG 67.3 47.2Table 4.11: Improvements in WER for the retrained systemCon
lusionRetraining in only the �nal phase with the a

ented data results in a signi�
ant drop in WER, yielding thebest performan
e so far.



88 CHAPTER 4. ACOUSTIC MODELING4.5.4 Experiment 7:Model interpolationIntrodu
tionIn an e�ort to de
rease word error further, I experimented with model interpolation. As the retraineda
ousti
 models (from here on 
alled non-native models) were trained on a small amount of data, there is adanger of over�tting, a problem whi
h has been addressed by smoothing the models via interpolation with amore robust model (e.g. Huang et al. (1996)). In the native and non-native model sets, there is a one-to-onemapping between senones (atomi
 a
ousti
 units, generalized sub-triphones in ISL-BN; 
.f. Hwang (1993))representing the same phoneti
 
ontext. In the native model, the mixtures of Gaussians are based on manytraining samples, while in the non-native model, the mixtures of Gaussians are probably over�tted to thenon-native training data. My goal is to move the non-native distribution towards the native distribution tothe point of maximum robustness.DataNo a
ousti
 data was involved in this experiment. The two model sets that were interpolated were thebaseline model set and the retrained model set generated from Experiment 6.The test data was the pro�
ien
y-
ontrolled non-native set NN-E-R.MethodTo a
hieve the goal of moving the non-native distribution towards the native distribution to the point ofmaximum robustness, I interpolated ea
h element of the 
orresponding native and non-native mean and
ovarian
e ve
tors as well as the distribution weights. Spe
i�
ally, for ea
h non-native senone SA in asystem with R mean ve
tors in ea
h 
odebook and an underlying feature spa
e dimensionality of N , themean ve
tor �, the 
ovarian
e matrix C, and the distribution weight ve
tor d are interpolated with those ofthe native senone SB to 
reate senone model SC :8i 2 R:8j 2 N:�Cij = �Aijw + �Bij(1� w)28i 2 R:8j 2 N:CCij = CAijw + CBij (1� w)28i 2 R:dCi = dAi w + dBi (1� w)2Where w is the experimentally determined weighting fa
tor.The new 
ovarian
es were 
al
ulated in this way in order to �nd a medium between the smaller varian
esin the native models and the larger varian
es in the non-native models. It was not my intent to re-
al
ulatethem to represent the varian
e a
ross all native and non-native samples. The 
ounts that are stored to re
ordthe number of times ea
h senone was seen in the training data were also updated.
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ewith the original a
ousti
 models. A weight of 1 represents performan
e with the new models.ResultsFigure 4.12 shows the e�e
t on word error rate of interpolating with di�erent weights w. The optimalweighting fa
tor was found to be .72; this 
ontrasts with the result in Witt and Young (1999), whi
h foundthe optimal weighting fa
tor to usually be less than .5 with a similar interpolation s
heme.Con
lusionThe model interpolation yields an improvement of 6.25% relative over the retrained models, whi
h is signi�-
ant. The fa
t that an improvement is a
hieved at all indi
ates that there is a small overtraining e�e
t withthe retraining; the retrained models are slightly overspe
ialized toward the spe
i�
 speakers in the trainingset NN-T-R, and interpolating these models ba
k with the baseline models adds robustness that leads tobetter performan
e on unseen test speakers.4.6 ClusteringNon-native speakers are known to have diÆ
ulty a
quiring 
ontext-
onditioned phoneti
 
ontrasts when theL2 phoneme is per
eived as 
orresponding to an L1 phoneme that is not subje
t to, or does not trigger, thesame variation (Flege, 1993). For example, in English, the word-�nal stop 
ontrasts /p,b/, /t,d/, and /k,g/are distinguished not only by voi
ing but also by length of the pre
eding vowel. This e�e
t is so profoundthat even when the �nal phone itself displays the 
orre
t voi
ing 
hara
teristi
s, if the length of the pre
edingvowel is inappropriate the �nal phone 
an easily be mistaken for its voi
ed/voi
eless 
ounterpart. Japanese,on the other hand, exhibits 
ontext-
onditioned variation that does not o

ur in English; voi
eless 
onsonants
an trigger devoi
ing of the following high vowel and 
ome 
onsonants undergo heavy palatization pre
eding/i/. If the Japanese speakers are 
arrying these allophoni
 relationships over into their English arti
ulation,and failing to observe those appropriate in English, the 
ontext de
ision tree that was built on native spee
hmay not represent very a

urately the environments that are phonologi
ally 
riti
al for them.



90 CHAPTER 4. ACOUSTIC MODELINGIt is not a 
ertainty, however, that the native de
ision tree will not arrive at an a

eptable model for asegment of non-native spee
h, or that a de
ision tree trained on non-native data will spe
ify a better model.To understand why, let us 
onsider the de
ision tree growing pro
ess.4.6.1 Review of phoneti
 
lusteringThe purpose of phoneti
 
lustering in jrtk is to �nd the phoneti
 units that behave similarly in an environ-ment and pool examples of them to build a single model. The phoneti
 unit that the ISL-BN system usesfor this is the sub-phone: the beginning, middle, and end of a phoneme are re
ognized as separate units.Number and 
onsisten
y of training examples 
ontribute to the quality of the model; the 
lustering pro
edureuses information about the phoneti
 environment to group a
ousti
 samples in the way that maximizes both
onsisten
y and number of training examples in ea
h group. Modeling at the sub-phone level allows data forthe middle part of a phone, whi
h may show little e�e
t from neighboring phones, to be pooled, while thebeginnings and ends may be more appropriately modeled separately as features like voi
e onset and releasevary a

ording to 
ontext.jrtk uses a de
ision tree to �nd the optimal groupings and 
lassify input spee
h samples in de
oding.Questions about the previous and following two phonemes are asked to �nd the split that 
reates the besttwo new data subsets. Figure 4.13 shows what the tree might look like. In the 
ase of the phone /l/, the mostimportant question (measured in terms of entropy redu
tion) is whether or not the 
urrent phone o

urs at aword boundary (0=wb?). Be
ause jrtk represents both word ends and word beginnings as word boundaries,a se
ond question is asked to determine whether the 
urrent /l/ is word �nal (+1=wb?). When the answerto this question is no (n), the tree stops asking questions, indi
ating that di�eren
es in realization of word-initial instan
es of /l/ are not signi�
ant enough to warrant spe
ialized modeling. All a
ousti
 samples ofword-initial /l/ are \bu
keted" together to build a single model, designated model 48.Model 73 is also de�ned fairly early in the tree. This model represents instan
es of /l/ that are pre
ededby a /u/ but are neither word-�nal nor word-penultimate. We 
an see from the number of 
ounts in model73's bu
ket that o

uren
es of this 
ontext in the training data were relatively rare. It is likely that thesamples were bu
keted together at this point not be
ause they were similar but be
ause their number hadapproa
hed the minimum required for 
reating a model.4.6.2 Native trees and non-native inputIn the previous se
tion, I alluded to the two reasons that training data samples are bu
keted together torender an a
ousti
 model: similarity and sparsity. As long as test speakers exhibit the same 
hara
teristi
sas the training speakers with respe
t to these two features, the a
ousti
 models will des
ribe their spee
h aswell as they did the training speakers. What happens when the training and test data is mismat
hed?The English word \Pa
i�
" is familiar to many Japanese speakers. It is lexi
alized in Japanese, o

uring,for example, in the name of a popular sports league. It is phonologi
ally simple, and its realization in
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92 CHAPTER 4. ACOUSTIC MODELINGthe non-native training data was very 
onsistently [paSifikW�℄, 
ontrasting with the likely native realization[p�"sIfIk^℄. It is easy to see how the native a
ousti
 models, whi
h are designed to distinguish pairs like [i,I℄,[s,S℄, and [k,k^℄, will not give the intended phone sequen
e a high s
ore in de
oding. Let us explore trainingthe phonemes /I,s,k/ with Japanese-a

ented samples of the word \Pa
i�
" and the native-based de
isiontree./I/ and /i/ are highly 
ontrastive in English. Although ea
h exhibits allophoni
 variation, notably induration for /i/ and redu
tion for /I/, these symbols do not normally des
ribe the same phoneti
 event.4They are a
ousti
ally very 
lose, however, and many questions are asked in the de
ision tree in order toproperly model /I/ in parti
ular. In Japanese-a

ented English, nearly all instan
es of /I/ are realized as [i℄.The pool of training data for /I/ may be split up ne
essarily as samples are assigned to 
ontexts that aremeaningful in English, but there is no failure on the part of the system to identify environments in whi
h/I/ undergoes allophoni
 alternation, and this is a relatively 
ommon phone whi
h should not su�er greatlyfrom data splitting. When speaker adaptation is subsequently applied, a general /I/ ! [i℄ mapping shouldbe learned.In Japanese, /s/ pre
eding /i/ is always realized as [S℄. It 
an be very diÆ
ult for Japanese nativesto produ
e the English phone sequen
es [si℄ (and by extension [sI℄). Be
ause English speakers do observea 
ontrast in this environment, it might be thought that the English de
ision tree would not isolate thisallophone of /s/ for spe
ialized modeling, bu
keting a
ousti
 samples that are 
lose to /S/ in with morepure /s/ examples. However, in the baseline de
ision tree, the questions +1=syllabi
, +1=front-vowel,and +1=high-vowel, des
ribing the phoneti
 
ontext f/i,I/g are the �rst to be asked. Although /S/-/s/substitution before /i/ is an error that 
an signi�
antly de
rease intelligibility and lead to 
onfusion in thesear
h, it is not modeled inappropriately in the de
ision tree, and individual speaker adaptation shouldaddress the realizational problem.The epentheti
 [W�℄ appearing after /k/ presents a di�erent kind of problem. This is not a substitutionerror, but rather an insertion error, resulting in the new polyphone /fIku#s/ (assuming that the next wordis \salmon"). A pre-/u/ 
ontext is re
ognized in the de
ision tree, but more spe
i�
 modeling of the full
ontext was not deemed ne
essary in native-based 
lustering. It is possible that this /k/, and the following/u/ (if the epentheti
 vowel is to be modeled as /u/), will bene�t from 
lustering with non-native data.Although a

ented speakers vary in allophoni
 distribution in ways that native speakers do not, it isnot ne
essarily the 
ase that non-native-based 
lustering will help, as I have attempted to illustrate. In thefollowing se
tions, I address this question empiri
ally, des
ribing two methods for in
orporating non-nativedata in the 
lustering pro
ess.4I have thus far avoided 
hara
terizing the phone inventory used in re
ognition as phoneti
 or phonemi
. It is in fa
tin
onsistent. Certain phoneti
ally distin
t sounds, su
h as [k,k^,kh℄, are trans
ribed as the phonemi
 /k/ with the expe
tationthat 
ontextual 
lustering will assign them to di�erent models. In other 
ases, allophoni
 variants are assigned full phonemi
status. Morphophonologi
al variation is always represented phoneti
ally.



4.6. CLUSTERING 93Training data sour
e Hours of data Quinphone 
overage WERtypes tokensNative 60 92% 92% 63.1%Non-native 3 50 57 78.4Non-native (
heating) 3 91 99 40.8Table 4.12: E�e
t on WER of re-growing the tree with non-native data4.6.3 Re-growing the treeBy re-growing the tree from s
rat
h with a suÆ
ient amount of non-native data, one would expe
t to 
aptureimportant patterns of allophoni
 distribution in Japanese-a

ented English. I did not �nd the three hoursof training data to be suÆ
ient for this task, however. The number of polyphones is small; only 10% of thepolyphone types (46% of tokens) in the full native training data set appear in the small non-native trainingdata set. By 
ontrast, 92% of the polyphone types (and 92% of tokens) in the non-native data appear in the60 hours of native data.Table 4.12 shows how re
ognizer performan
e degrades when the tree is trained with only the smallnon-native data training set. The WER �gures represent performan
e after post-
lustering LDA, kmeans,and training on the 3 hours of non-native data. Results from 
lustering with native and non-native trainingdata are 
ontrasted with the result from a 
heating experiment, in whi
h training speakers' readings ofthe evaluation arti
le were in
luded in the training data. When all of the evaluation polyphones (althoughthe 
overage does not a
tually rea
h 100%, as reading errors and dis
uen
ies add new polyphones for ea
hspeaker) are represented by multiple examples in the training data, word error de
reases dramati
ally. Al-though the new de
ision tree may handle the polyphones it has seen in suÆ
ient quantity in the non-nativedata more appropriately than the native tree would, the overall system su�ers greatly from the loss of therobustness that the native tree provides.4.6.4 Experiment 8:De
ision tree adaptationIntrodu
tionIn order to in
lude questions relevant to non-native spee
h in the de
ision tree without rebuilding it froms
rat
h, I adapted the Polyphone De
ision Tree Spe
ialization (PDTS) (S
hultz and Waibel, 1999) methodfor porting a de
ision tree to a new language. This method was originally designed to support multilingualre
ognition systems that use data from a number of di�erent languages to train models representing a broaderrange of phonemes than would o

ur in one language. Ea
h time a new language is added, it brings with itphonemes and polyphones that have not yet been seen by the system. PDTS allows questions to be asked



94 CHAPTER 4. ACOUSTIC MODELINGabout these new polyphones in the de
ision tree and new model mixture weights to be trained for themwithout dis
arding the questions about the polyphones that the new language shares with the old one.DataThe a

ented L2 (Japanese-a

ented English) training data used in this experiment was the same as that usedfor adaptation experiments des
ribed in Se
tion 4.4.2 and rebuilding experiments des
ribed in Se
tion 4.5.1.The entire training set of Japanese-a

ented read news data (NN-T-R) was used for this experiment.This set totals approximately 3 hours of spee
h from 15 speakers.The test data was the pro�
ien
y-
ontrolled non-native set NN-E-R.MethodWhile I am not working with a new language, phone substitution, elision, and epenthesis in non-nativespee
h 
an introdu
e many new polyphones, as was shown in Se
tion 4.3.2. To use the PDTS method, I�rst identi�ed new polyphones by aligning the training utteran
es using the expanded di
tionary des
ribedin Se
tion 4.3.2. In
luded in the di
tionary were variants generated from linguisti
 rules, free phonemere
ognition, and underspe
i�ed alignment. The re
ognizer sele
ted the best a
ousti
 mat
h for ea
h wordduring alignment, generating a list of new polyphones. The new polyphones were then integrated into thede
ision tree, with bran
hes pruned ba
k to the point where the new polyphone data 
ould be inserted, andre-grown with new spe
ialization where the new data showed suÆ
ient internal diversity or divergen
e fromthe native data.ResultsAlthough I observed a large performan
e gain from PDTS on 
ross-validation data, only a small improvementover the baseline was seen for test data, as shown in Table 4.13. The 
ross-validation data is used to �ndthe optimal language model settings before evaluation on the test set. Re
ognizer performan
e on this dataset is normally an a

urate predi
tor of re
ognizer performan
e on the test data, as veri�ed by periodi
spot 
he
ks. However, as we 
an see from table 4.13, the 
ross-validation data was quite positively a�e
tedby PDTS where the test data was negatively a�e
ted. This trend held for varying pruning thresholds, thenumber of polyphone samples ne
essary in the adaptation data to justify a new bran
h. It is diÆ
ult tounderstand why this should be the 
ase; 
ross-validation, test, and adaptation speaker sets are all mutuallydisjoint, and the test utteran
es used for evaluation on both 
ross-validation and test speakers were notin
luded in the adaptation data. Be
ause all evaluation speakers are reading the same arti
le, there is nodependen
y on the number of new polyphones. A 
he
k of the language model parameters on the test data
on�rmed that the settings that were sele
ted as optimal during 
ross-validation were also optimal for the testdata. The 
ross-validation speakers did have slightly lower pro�
ien
y ratings than the test speakers, so onepossible (and intuitively plausible) explanation would be that PDTS is more e�e
tive for lower-pro�
ien
yspeakers.



4.6. CLUSTERING 95Cross-validation data Test dataBaseline 61.6 63.1Baseline di
tionary 59.6 60.3Expanded di
tionary 56.5 65.9Expanded di
tionary and higher threshold 54.9 64.9Table 4.13: System performan
e after PDTSCon
lusionThe question of why PDTS performed better for the 
ross-validation speakers than for the test speakers isinteresting, but somewhat tangential as the standard methodology for evaluation in LVCSR bars us frominvestigating individual di�eren
es in performan
e between test and 
ross-validation speakers. More relevantis the question of why PDTS did not perform better in the main evaluation on the test speakers. As hasbeen mentioned earlier in this se
tion, PDTS only grows a new set of bran
hes for polyphones that didnot appear in the training data. While we do not have new polyphones in the pres
ribed pronun
iationas we would if adding a new language, I demonstrated in Se
tion 4.3.2 that the phoneti
 realization ofwords in non-native spee
h 
ontains polyphones that are not found in native spee
h and would not havebeen 
onsidered in building the de
ision tree. In this respe
t, there is a potential for seeing the samesort of improvement that S
hultz and Waibel (1999) observed when adding Portuguese to a multilingualsystem. However, in the 
ase of a new language, adaptation and test speakers are native speakers and 
anbe expe
ted to exhibit 
onsisten
y in allophoni
 variation { this is the premise supporting the entire de
isiontree 
lustering approa
h that has worked so well in LVCSR. When speakers are not natives or pro�
ientnon-natives, they may not share tenden
ies to similar environmental in
uen
e as they individually approa
harti
ulation of English. The observation that performan
e with the baseline di
tionary, in whi
h only nativepolyphones are 
onsidered, is stronger than with the expanded di
tionaries, whi
h allow the newly-trainedpolyphones, is eviden
e to support the hypothesis that although new polyphones do exist in non-nativespee
h their realizations are not 
onsistent enough a
ross speakers to bene�t from spe
ialized modeling.By examining only allophoni
 behavior in 
ontexts that are not found in English, PDTS also does nottake into a

ount variation in the many 
ontexts that are. For example, there is quite some variability inJapanese natives' realization of English /f/ and /h/. [f℄ does not o

ur in Japanese other than in loanwords./h/ pre
eding /u/ is realized as a bilabial fri
ative, and depending on the speaker may sound to a nativeGA listener as either [f℄ or [h℄. Loanwords that originally 
ontained /f/ may be realized with either [f℄ asin [o�sW℄ (\oÆ
e") and [h℄ as in [terehon℄ (\telephone"). Confusion in nativization of loanwords, speakervariability in realization of [F℄ in Japanese, and redu
ed arti
ulatory performan
e when 
on
entrating onspeaking English all 
ontribute to a general in
onsisten
y in produ
tion of /f/ and /h/; the trans
riptions
ontain a number of su
h substitutions as \feet/heat," \who'd/food," and \follow/hollow." The baselinede
ision tree for /f/, however, bu
kets together all 
ontexts in whi
h the following segment is a rounded
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ousti
 modeling resultsvowel that does not pre
ede /w/,/r/, or /Ä/. No distin
tion is made between high round vowels and lowround vowels. The de
ision tree would never learn through PDTS that /f/ behaves di�erently before /u/than before /O/ be
ause the polyphones o

ur in English and have already been a

ounted for in the de
isiontree.4.7 Summary of a
ousti
 modeling resultsIn this 
hapter, I have shown how appli
ation of a
ousti
 model training and adaptation te
hniques 
on-tributes to in
reased re
ognition a

ura
y on non-native spee
h. A summary of the individual 
ontributionsof ea
h method is shown in Figure 4.14.The baseline word error rate for the pro�
ien
y-
ontrolled set of non-native test speakers was 63.1%after MLLR speaker adaptation. Adapting the allophoni
 de
ision tree to the non-native 
ondition (PDTS)redu
es WER to 60.3%. A
ousti
 model adaptation to the non-native 
ondition via MLLR adaptationon three adaptation speakers (MLLR-3) prior to test speaker adaptation redu
es WER to 58.1%. MLLRadaptation to the non-native 
ondition with 15 adaptation speakers (MLLR-15) redu
es WER to 54.2%.Rebuilding the system from s
rat
h with a

ented data (Rebuild-L2) redu
es WER to 53.6. MAP adaption



4.7. SUMMARY OF ACOUSTIC MODELING RESULTS 97with 15 (MAP-15) speakers redu
es WER to 51.7%. Additional training iterations using 3 hours of non-native spee
h (Retrain) redu
es WER to 48.1%. Finally, interpolation of the retrained models with thebaseline models with an interpolation weight of .3 redu
es WER to 45.1%, a 29% relative redu
tion in errorover the baseline.Among the te
hniques that I did not �nd to work well on this data were rebuilding the system with L1data, adaptation with L1 data, and PTDS with additional training.Phoneti
 
onfusion is mu
h higher in the non-native data than in similar native data, with the most
onfusible phone pairs in non-native spee
h being /m" ,m/, /O,o/, /f,h/, /b,v/, and /u,U/. A number of these
onfusions are also signi�
ant in native spee
h; /u,U/ and /b,v/ were the most 
onfusible pairs for nativespeakers. Other 
onfusions that were notably higher in non-native spee
h in
lude /�,Z/, /E,e��/, and /S,s/.As dis
ussed in Chapter 3, non-native speakers make use of a variety of strategies as they build their
ompeten
e in spoken language. Phonologi
al simpli�
ation, su
h as insertion of vowels to break up 
onso-nant 
lusters and failure to observe 
omplex allophoni
 patterns in the se
ond language, 
an introdu
e phonesequen
es that never o

urred in the training data and were not in
orporated into the polyphone de
isiontree. Although a 
exible alignment of non-native utteran
es to referen
e text revealed that there are indeedmany new polyphones in the non-native spee
h, of the de
ision tree to the non-native spee
h resulted in onlya small improvement in re
ognition a

ura
y. Possible explanations in
lude that environmental in
uen
e isnot 
onsistent a
ross speakers or within one speaker's arti
ulation; that di�eren
es in allophoni
 alternationin environments that exist in both English and Japanese are more signi�
ant than expe
ted; and that phoneinsertions, deletions, and substitutions are e�e
tively absorbed in the 
ourse of speaker adaptation.





Chapter 5
Lexi
al ModelingThe lexi
al model spe
i�es how phones 
ombine to make words. By modifying the native lexi
al model we
an represent segmental substitutions, insertions and deletions frequent in non-native spee
h. If speakers ofa 
ommon native language are known, or are found, to systemati
ally substitute1 one phone sequen
e foranother, this substitution 
an be in
orporated in the lexi
al model for a more a

urate representation of thephonemi
 realization of words.There are several problems with lexi
al modeling that make it not as straightforward a solution toadapting to foreign a

ents as it might seem. First, a more a

urate phonemi
 representation may not belinked to an in
rease in re
ognizer a

ura
y. Se
ond, 
ontext-sensitive speaker adaptation is very e�e
tive inlearning speaker-dependent deviations in phoneti
 realization, and independently modifying the phonemi
representation may 
ountera
t the bene�ts of adaptation. And third, whether substitutions a

ented speakersappear to make are true phonemi
 substitutions is an open question, as dis
ussed in Se
tion 2; neither humanper
eption nor re
ognizer error is an unbiased indi
ator of the underlying form of non-native spee
h.Nevertheless, lexi
al modeling is a non-data-intensive, linguisti
ally intuitive approa
h to adapting tonon-native spee
h that has been applied with su

ess in alignment-based tutoring appli
ations (Auberg etal., 1998) and limited domains (Lives
u and Glass, 2000) and for new varieties of native spee
h (Humphriesand Woodland, 1997). Dire
t modi�
ation of the lexi
al model also seems appropriate for L2 words thathave been nativized in L1, although one must be wary of arbitrarily assigning L1-L2 phone mappings.In this 
hapter, I 
ompare data-driven and linguisti
ally-motivated methods for �nding probable phonemi
representations of English words in Japanese-a

ented spee
h.

1Throughout this 
hapter, I will use the term substitute to refer to repla
ement of one phone sequen
e with another,subsuming the insertion 
ase and the deletion 
ase. 99



100 CHAPTER 5. LEXICAL MODELING5.1 Ba
kgroundThere are two primary 
onsiderations in lexi
al modeling: spe
ifying probable phone sequen
e transforma-tions and in
orporating them, for optimal re
ognizer performan
e, in the sear
h. Transformations 
an bespe
i�ed either by predi
ting, based on linguisti
 eviden
e, likely mappings between L1 and L2 phones, or byinferring mappings from re
ognizer output. Both methods have been found to be su

essful in di�erent 
on-texts. Fung and Liu (1999) based mappings between English and Cantonese on average formant frequen
iesin native spee
h. Auberg et al. (1998) and Kawai (1999) sele
ted mappings based on the minimal pairs thatwere to be taught in their language tutoring systems. Humphries and Woodland (1997) found that Britishphone representations of Ameri
an spee
h 
ould be derived from unrestri
ted phoneme re
ognition of Amer-i
an data using a British system. Similar data-driven approa
hes to transformation inferen
e have beenused by Huang et al. (2000) for Mandarin diale
ts, Amdall et al. (2000) for pro�
ient non-native speakersof English, and Suzuki et al. (2000) Japanese-a

ented English.On
e a des
ription of potential variation has been 
ompleted, the list of a
tual variants for base lexi
alforms that will be allowed in the sear
h must be 
ompiled. Let us take as an example the English word\abroad." Generating all 
ombinations of the sample phonemi
 substitutions /�/ ! /6/,/b/ ! /bu/, /r/! /l/, /O/ ! /o/, and /d/ ! /do/, all reasonable for Japanese-a

ented English, yields 31 variants:/6blOd/ /6brOd/ /6bulOd/ /6burOd/ /�blOd/ /�brOdo/ /�bulOdo/ /�burOdo//6blOdo/ /6brOdo/ /6bulOdo/ /6burOdo/ /�blOdo/ /�brod/ /�bulod/ /�burod//6blod/ /6brod/ /6bulod/ /6burod/ /�blod/ /�brodo/ /�bulodo/ /�burodo//6blodo/ /6brodo/ /6bulodo/ /6burodo/ /�blodo/ /�bulOd/ /�burOd/A thoughtful implementation of potential Japanese-English transformation rules, allowing 
ommonlyobserved substitutions only in 
ontextually plausible positions, generates an average of 40 variants per baseword in the lexi
on. This is not a tra
table sear
h spa
e for the re
ognizer, both in terms of sheer size andin terms of 
onfusability; new variants are very similar to existing words, and dis
riminating between thembe
omes an extremely diÆ
ult task.E�e
tive prioritization of variants, then, is 
riti
al. Humphries and Woodland (1998) suggest using ade
ision tree to 
hoose the most probable variants given phonemi
 
ontext, with a maximum of four variantsper word. Amdall et al. (2000) sele
t transformation rules based on log likelihood in an adaptation set,pruning the list using a pruning heuristi
. Lives
u and Glass (2000) rank rules by maximum likelihood intraining data and determine a pruning fa
tor by evaluating performan
e on development data.In the next two se
tions I will do
ument the response of the re
ognizer to a number of prioritizationand pruning methods for linguisti
ally-motivated and data-driven modeling of the non-native data set. Allre
ognition experiments use the best-performing a
ousti
 models des
ribed in Chapter 4.



5.2. LINGUISTICALLY-MOTIVATED MODELING 1015.1.1 Terminology and phoneti
 symbolsThe symbols that I use to represent sounds in spee
h will be familiar to users of IPA representations.This symbol set will help to fa
ilitate a 
ommon understanding of the transformations that I des
ribe.It is important to be 
lear, however, that the symbols a
tually used in the lexi
on represent somethingslightly di�erent. In this 
hapter, I use phoneti
 symbols to illustrate four di�erent things. The 
anoni
alpronun
iation of a word is an abstra
tion whi
h will be des
ribed using IPA symbols delimited by slashes,that is, a standard phonemi
 spe
i�
ation. The realization of a word in spee
h will be des
ribed using IPAsymbols delimited by bra
kets, a phoneti
 spe
i�
ation. Transformations a
tually applied to the lexi
on willalso use IPA symbols, but without delimiters, so as not to imply that the symbols in the lexi
on 
orrespondto any pre
ise IPA spe
i�
ation. In dis
ussions of the internal representation or output of the re
ognizer, Iwill use the arpabet symbol set, whi
h is des
ribed in Appendix C.5.2 Linguisti
ally-motivated modelingA
quisition of non-native phonology, as noted in Chapter 2, has been very well-studied, in terms of both thegeneral a
quisition pro
ess and the spe
i�
 
ase of Japanese-a

ented English.5.2.1 Some phonologi
al properties of Japanese-a

ented EnglishWhile we have 
on
i
ting reports of the nature of phoneti
 produ
tion in non-native spee
h, literature inESL des
ribes 
onsistent trends in the English of Japanese natives that 
an be used for empiri
al evaluation.EpenthesisJapanese has a stri
t (C)V syllable stru
ture, the only ex
eptions being /n/, whi
h 
an be syllabi
, andgeminate 
onsonants. Vowel length is phonemi
. Epenthesis of the vowels /i,o,u/ to simplify 
onsonant
lusters and for
e open syllables is 
ommon in Japanese-a

ented spee
h. These intrusive vowels have beenshown to a�e
t intelligibility (Tajima et al., 1997), and frequen
y of epenthesis has not been found to belinked to familiarity with or nativization of the word (Tajima et al., 2000). Be
ause vowels are often devoi
edfollowing a voi
eless 
onsonant in Japanese (Akamatsu, 1997), epentheti
 vowels in Japanese-a

ented English
an be very subtle.Full-quality vowelsJapanese has a �ve-vowel system, with vowels realized in positions similar to the �rst, se
ond, �fth, seventh,and eighth 
ardinal vowels [i,e,a,o,u℄. Vowels are always full quality, and sequen
es of vowels are not diph-thongized. The system of vowel redu
tion in English is not easily a
quired by Japanese speakers, whi
h 
an
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antly a�e
t intelligibility as full quality in vowels is linked to a per
eption of stress for native Englishlisteners (Giegeri
h, 1992).Confusion stemming from nativization and orthographyEnglish words represented in the Japanese syllabary are ubiquitous in Japan. Loanwords are frequent, thenative syllabary is sometimes used to make the introdu
tion to formal study of English more gentle, andmovie posters, newspapers, and karaoke s
reens are all likely to 
ontain foreign words and names renderedin the Japanese s
ript. This easy dependen
y on a familiar orthography fa
ilitates fossilized mappings ofEnglish sounds to Japanese ones. Moreover, be
ause some English sounds are represented by the sameJapanese 
hara
ters (/l/ and /r/, /v/ and /b/, /6/ and /2/ among others), speakers may not only havetrouble with the phoneti
 distin
tion but also with remembering whi
h the original phone was. The formersituation may be addressed with adaptation to the speaker's idiosyn
rati
 realization of the target phone,but the in
onsisten
y introdu
ed by the latter may well be best addressed by allowing multiple variants inthe lexi
on.Observation of Japanese allophoni
 patternsThere are some notable allophoni
 alternations in Japanese that are not found in English. For example, /s/is realized as [S℄ pre
eding /i/. While speakers with formal exposure to English are generally aware that thephoneti
 distin
tion between [si℄ and [Si℄ is 
ontrastive, produ
tion is often a problem.5.2.2 Transformation rulesBased on resear
h in ESL for Japanese natives, a set of 
ontext-sensitive transformation rules was 
ompiled.For ea
h word in the lexi
on, an ar
 was added to the pronun
iation network for ea
h appli
able substitution.For the example in Se
tion 5.1 of the word \abroad," we have the following base pronun
iation network.fb � b r O d fb
If we re
ognize the potential substitutions /�/ ! /a/,/b/ ! /bu/, /r/ ! /l/, /O/ ! /o/, and /d/ !/do/, we obtain the following pronun
iation network, whi
h generates all of the variants listed in Se
tion 5.1.��������������������HHHHH�����AAAAA�����������������6� b u rl Oo d o fb



5.2. LINGUISTICALLY-MOTIVATED MODELING 103Canoni
al SampleRule Word pronun
iation realizationr ! l reason /riz�n/ [lizan℄; ! o / ft,dg # adult /�d2lt/ [adaRWto℄j ! ; / $ i year /jir/ [iÄ℄Table 5.1: Sample transformation rules. The symbol $ represents a syllable boundaryPronun
iation networks are 
reated in this way for ea
h base word in the lexi
on. A full list of trans-formation rules is given in Appendix B; several examples are shown in Table 5.1, ea
h with a phoneti
trans
ription of an instan
e of a word in the training data in whi
h the transformation was observed.However a

urate the rules, the appli
ation is not foolproof be
ause the base lexi
on 
ontains a numberof trans
ription in
onsisten
ies. For example, the syllable-initial /r/ in words like \generator" is oftentrans
ribed as a syllable-�nal /Ä/, leaving a vowel at the head of the next syllable. This means that the ruleÄ ! 6 / $, whi
h generates the appropriate variant /sÄÙIN/ ! [s6ÙIN℄ for \sear
hing" also generatesthe inappropriate variant �EnÄe��tÄ ! �En6e��tÄ for \generator." Also, 
ompound words appear to behavedi�erently at 
omponent boundaries than the same phone sequen
e would at an ordinary syllable boundary,and this sort of 
ompositional information is not available in the lexi
on. However, be
ause this lexi
on isonly used for bootstrapping the variant extra
tion pro
ess, it does not appear that the spurious paths havea negative e�e
t.5.2.3 Asso
iating probabilities with transformationsHaving established whi
h transformations would be allowed, I next explored ways of assigning probabilitiesto individual transformations and transformation 
ombinations. Enumerating all paths through the newpronun
iation networks yields 915,672 realizations for 22,761 words, 
ompared with 26,110 realizations inthe baseline lexi
on. Using this very large lexi
on, I aligned the a
ousti
 data from training set NN-T-R(whi
h will not be used for further training) to the trans
ripts. All variants were assigned equal initialprobabilities, so the one representing the 
losest a
ousti
 mat
h was sele
ted during alignment.This pro
ess generates a list of realizations that o

urred in the re
orded data. There are several waysto interpret the list.Word-based interpretationIn a word-based interpretation, variants that were sele
ted during for
ed alignment are added to the testlexi
on. This approa
h has the disadvantage of not generalizing to words that were not en
ountered in thealignment data. However, it has the advantage of ensuring that all new variants are plausible, whi
h isnot ne
essarily the 
ase when applying transformation rules to new words. I tested two implementations ofword-based transformation:



104 CHAPTER 5. LEXICAL MODELING1. l ! r2. r ! l3. I ! iTable 5.2: Rules applied in di
tionary R1W1 Variants that represented more than 20% of o

urren
es of the base word in the alignment datawere sele
ted for the test lexi
onW2 Variants that o

urred more than twi
e in the alignments were sele
ted for the test lexi
onThese thresholds were determined by two 
riteria: keeping the di
tionary size to less than 60,000, andnot ex
eeding an average of three pronun
iation variants per word. Implementation W1 is biased towardinfrequent words; if a word appears only twi
e in the training data and one instan
e is a variant, that variantwill ex
eed the minimum frequen
y threshold of 50% and be added to the lexi
on. The nature of my taskmakes this bias parti
ularly strong. Be
ause many words only o

ur in one arti
le, and no two trainingspeakers read the same arti
le, if a speaker's pronun
iation of that word is idiosyn
rati
 the probability ofthe variant mat
hing his spee
h will be high. Implementation W2 is biased toward frequent words.Rule-based interpretationIn a rule-based interpretation, instead of adding the exa
t variants that were sele
ted during alignment, one�nds the rules that were most frequently invoked to generate the variants sele
ted during alignment andapply them to the test di
tionary. This method generalizes easily to new data, but be
ause it operates onall words in the test lexi
on only a few transformations 
an be implemented without ex
eeding the optimallexi
on size.R1 Rules that applied more than 500 times in the training set were applied to the baseline test lexi
onto generate new variants for testingThe sele
ted rules are given in Table 5.2. Be
ause the appli
ation of just these three rules expanded thelexi
on size to 60,244, no variations on this implementation were tested.Phone-based interpretationIn a phone-based interpretation, one examines the individual phone substitutions that o

urred in the wordswhi
h were sele
ted during alignment and use them to generate a new lexi
on. This method has the samegeneralization bene�t as the rule-based approa
h. With the additional information about the phoneti
environment, however, the appli
ation of transformation rules 
an be restri
ted based on 
ontext.



5.2. LINGUISTICALLY-MOTIVATED MODELING 1051. I ! i 9. Ä ! 6 17. m ! mu 25. v ! vu 33. k ! ku 41. f ! fu2. r ! l 10. e�� ! ei 18. z ! zu 26. � ! �i 34. p ! pu 42. 6r ! 63. l ! r 11. t ! to 19. j ! i 27. s ! su 35. N ! ngu 43. T ! Tu4. � ! 6 12. v ! b 20. dz ! z 28. s ! S 36. d ! � 44. O�� ! oi5. D ! z 13. O ! o 21. d ! do 29. w ! u 37. N ! n 45. wU ! u6. � ! i 14. T ! s 22. a�� ! ai 30. a�u ! au 38. g ! gu 46. w ! o7. � ! 6 15. 2 ! 6 23. Ù ! Ùi 31. S ! Si 39. r ! 6 47. u ! 28. l ! lu 16. Ä ! 6 24. U ! u 32. ji ! i 40. Z ! � 48. e�� ! EiTable 5.3: Top 
ontext-independent phone substitutions in alignment dataIn the word-based approa
h I did not need to �nd the base-to-variant alignments be
ause the for
edalignment result gives us pre
isely this information. When we repla
e the words in the aligned utteran
es withtheir phoneti
 expansions, we have instan
es of both insertion and deletion in the empiri
al phone sequen
e,and must re-establish the alignment at the phone level. Be
ause the variant 
andidates were generated bythe phonologi
al transformation rules, I knew whi
h 
anoni
al phone sequen
es 
ould potentially experien
ea deletion. Of these, only two appeared with signi�
ant frequen
y in the training data: dz ! z and ji! i . I ele
ted to treat the sequen
es /dz/ and /ji/ as single units, allowing them to align to [z℄ and [i℄respe
tively to allow deletions. Spe
i�
ally, all instan
es of syllable-�nal D Z and syllable-initial Y IY wererepla
ed with the symbols D Z and Y IY in both the 
anoni
al expansions and the empiri
al expansions.Similarly, allowable insertions were represented by new symbols, so that there were e�e
tively no insertionsor deletions. These expansions were then aligned using the NIST s
lite s
oring pa
kage (NIST, 2000). Itwas ne
essary to resolve some alignment errors by hand:Text: solar power is the keyInitial alignment: s ow l axr p aw axr IH **** z DH ax k iys ow l axr p aw axr IY Z UW z ** ax k iyCorre
t alignment: s ow l axr p aw axr IH z DH ax k iys ow l axr p aw axr IY Z UW Z ax k iyThese 
ases were rare, however, and easy to dete
t automati
ally; this example, Z UW was listed among theinsertions, but be
ause ; ! /zu/ was not one of the original transformation rules, its appearan
e indi
atedan alignment ambiguity.A 
ontext-independent implementation of the phone transformations derived from these alignments wouldexpand the lexi
on very qui
kly, as in implementation R2. Be
ause the top rules in R2 were all 
ontext-independent, applying the top three phone transformations found in the phone-level interpretation yieldsessentially the same lexi
on. The top 
ontext-independent phone transformations found in phone-level



106 CHAPTER 5. LEXICAL MODELINGNumber of substitutions Lexi
on size1 346452 478863 602754 926825 9304710 186735Table 5.4: Growth of the lexi
on with the appli
ation of 
ontext-independent substitutionsanalysis are given in Table 5.3. Table 5.4 shows how the lexi
on size expands with the number of substitutionsapplied.I tested two lexi
ons generated using 
ontext-independent phone substitution probabilities.P1 Only the most frequently o

urring phone substitution was applied to the base lexi
on to generatethe test lexi
onP2 The top two most frequently o

urring phone substitutions were applied to the base lexi
on togenerate the test lexi
onContext-dependent substitution frequen
ies were 
al
ulated for both three- and �ve-phone windows.The most frequent 
ontext-dependent substitutions are given in Tables 5.5 and 5.6. The in
uen
e of wordfrequen
y is obvious when looking at substitutions given the broader 
ontext. The �rst �ve 
an 
learly beattributed to o

urren
e of \the," \�fty/�fteen," \were," \with," and \dollars." This is not ne
essarily a badthing, as better modeling of frequent words would be expe
ted to have a greater e�e
t than better modelingof rare words. It is only mentioned so that the bias is understood.Two appli
ations of 
ontext-dependent phone-level substitution were implemented.P3 Phone substitutions that o

urred more than seven times in the 
ontext of a given 3-phone windowwere applied to generate the test lexi
onP4 Phone substitutions that o

urred more than on
e in the 
ontext of a given 5-phone window wereapplied to generate the test lexi
onIn the 5-phone window 
ase, the pruning was not ne
essary to limit lexi
on size, but was applied forsmoothing purposes.Implementations P3 and P4 estimate probability of a phone substitution in 
ontext based on frequen
y.A 
ontrasting implementation for the wider 
ontext used de
ision tree learning of phone substitutions.
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1. I ! i / l N 9. I ! i / k N 17. j ! i / # u 25. I ! i / w n2. I ! i / r s 10. � ! 6 / m n 18. ji ! i / # r 26. I ! i / w D3. I ! i / r z 11. Ä ! 6 / t # 19. l ! r / 6 Ä 27. I ! i / s k4. Ä ! 6 / w # 12. I ! i / w T 20. v ! vu / � # 28. � ! 6 / z n5. l ! r / # � 13. T ! s / # r 21. r ! l / E i 29. � ! 6 / # n6. m ! mu / a�� # 14. z ! zu / � # 22. l ! r / I i 30. r ! l / # i7. I ! i / d s 15. l ! r / Ä i 23. � ! 6 / p t 31. T ! s / # a�u8. z ! zu / I # 16. v ! b / # a�� 24. I ! i / S p 32. dz ! z / n #Table 5.5: Most frequent substitutions 
onditioned on a 3-phone window

1. � ! 6 / #D ## 9. I ! i / #s ks 18. d ! do / �n ## 26. I ! i / ## t#2. I ! i / #f ft 10. I ! i / #S p# 19. I ! i / tr p# 27. r ! l / fO ##3. Ä ! 6 / #w ## 12. ji ! i / ## rz 20. I ! i / #b g� 28. D ! z / wI ##4. I ! i / #w T# 13. � ! 6 / a�uz nd 21. D ! z / ## i# 29. l ! r / wI ##5. l ! r / d6 Äz 14. � ! 6 / �p tr 22. T ! s / ## a�uz 30. I ! i / #w l#6. l ! r / ri i# 15. v ! vu / #� ## 23. � ! 6 / ## v# 31. I ! i / ## n#7. l ! lu / wI ## 16. � ! 6 / #k nt 24. I ! i / #D s# 32. D ! z / ## �#8. z ! zu / #I ## 17. I ! i / #w D# 25. I ! i / ## z# 11. v ! b / ## a��bTable 5.6: Most frequent substitutions 
onditioned on a 5-phone window



108 CHAPTER 5. LEXICAL MODELINGP5 Phone substitutions were predi
ted with a de
ision tree trained on transformations observed in a5-phone window of 
ontext.The publi
ly available C4.5 pa
kage (Quinlan, 1993) was also used to learn likely transformations. C4.5requires two input sour
es: a spe
i�
ation of attributes that should be 
onsidered in making a de
ision aboutthe transformation, and a set of training data that provides the values for those attributes and the 
orre
t
lass for a series of training examples. In my appli
ation of C4.5, I allowed �ve attributes: the 
anoni
alidentity of the phone whose surfa
e form is to be predi
ted, and the 
anoni
al identities of the two pre
edingand two following phones. I 
hose to learn transformations on a word-by-word basis; although the identitiesof the phones in pre
eding and following words were available, I did not use them for predi
ting the surfa
eform of the phone. There were two reasons for this de
ision. First, as was dis
ussed in Chapter 3, inter-word pauses are twi
e as frequent in the non-native spee
h database as in the native spee
h database (seeTable 3.7), and 
ross-word 
oarti
ulatory e�e
ts are not strong. Speakers tend to pronoun
e words one byone, as they have learned them. Se
ond, when we are building the new pronun
iation networks from thebaseline lexi
on, we have no 
ross-word 
ontext to work with. One 
an only make predi
tions based on thephones that make up ea
h word. There would be no reason to use attributes for de
ision tree growing thatwe know will not be available for 
lassi�
ation. C4.5 does allow a wild 
ard value for attributes, whi
h 
ouldbe used at word boundaries; I ele
ted to spe
ify a boundary phone value instead, so that word-initial andword-�nal e�e
ts 
ould be 
onsidered.For ea
h word in the training data, then, there were as many training examples provided as phones inthe 
anoni
al pronun
iation. In order to simplify estimation of deletion, phone sequen
es that 
ould undergosimplifying elision were represented as a single symbol, as des
ribed earlier in this se
tion. For the word\abroad," with the 
anoni
al form [�brOd℄ and an empiri
al realization of [abulod℄, the training data wasspe
i�ed as follows.Two pre
eding phones Canoni
al form Two following phones Surfa
e realization<s> <s> � b r 6<s> � b r O bu� b r O d lb r O d <s> or O d <s> <s> d
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ally-motivated lexi
al modelingIntrodu
tionThe pre
eding se
tion des
ribed a number of methods for augmenting the pronun
iation networks. In thisexperiment, I test re
ognition with all eight methods to see if any result in an improvement in re
ognizerperforman
e.DataIn these experiments, the test data remains �xed, as for previous experiments, to the pro�
ien
y-
ontrolledtest set NN-E-R, while the pronun
iation lexi
on is varied. The eight test lexi
ons des
ribed so far in thisse
tion are summarized below.W1 Variants that represented more than 20% of o

urren
es of the base word in the alignment data weresele
ted for the test lexi
onW2 Variants that o

urred more than twi
e in the alignments were sele
ted for the test lexi
onR1 Rules that applied more than 500 times were applied to the baseline test lexi
on to generate new variantsfor testingP1 Only the most frequently o

urring phone substitution was applied to the base lexi
on to generate thetest lexi
onP2 The top two most frequently o

urring phone substitutions were applied to the base lexi
on to generatethe test lexi
onP3 Phone substitutions that o

urred more than seven times in the 
ontext of a given 3-phone window wereapplied to generate the test lexi
onP4 Phone substitutions that o

urred more than on
e in the 
ontext of a given 5-phone window were appliedto generate the test lexi
onP5 Phone substitutions were predi
ted with a de
ision tree trained on transformations observed in a 5-phonewindow of 
ontext.MethodAppli
ations of all eight methods were tested through a
ousti
 res
oring of the word latti
e 
reated for ea
hutteran
e during initial de
oding. One of the disadvantages of lexi
al modeling is that adding pronun
iationvariants to the lexi
on in
reases 
onfusability in the sear
h. Latti
e adaptation is a te
hnique whi
h uses
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REBEL

HELD

  
  SHELLED CITY

CINDY

STUDY

SERBIAN

OF GOMA
A

IN

REBEL

HELD

  
  SHELLED CITY

CINDY

STUDY

SERBIAN

OF GOMA

CITY/1

CITY/2

A

INFigure 5.1: Latti
e segment for the text \THE REBEL HELD CITY OF GOMA" before (top) and after (bottom)adding pronun
iation variants for the word \CITY"a word transition latti
e to 
onstrain the sear
h spa
e before pronun
iation variants are added. The newlatti
e is then res
ored at the a
ousti
 level. For this data, it was determined experimentally that addingnew links results in better performan
e than repla
ing links.Figure 5.1 shows a segment of a latti
e before and after in
orporation of pronun
iation variants for theword \
ity." For ea
h link bound to the word \
ity" (standard GA form [sIRi℄), links for the two pronun
iationvariants CITY/1 [siti℄ and CITY/2 [Siti℄ are added.Speaker adaptationMLLR adaptation based on 50 adaptation utteran
es was applied for ea
h speaker. All lexi
al adaptationmethods were tested with and without allowing the new pronun
iations for a
ousti
 adaptation. It might bethought that allowing the new pronun
iations would always result in better adaptation; if a new pronun
iationis found to be the best a
ousti
 mat
h before adaptation, it might make the most sense to adapt the phonesspe
i�ed in its path to the a
ousti
 adaptation data than the phones spe
i�ed in the 
anoni
al path foran even better a
ousti
 mat
h. On the other hand, allowing the new pronun
iations might be viewed as
ounterprodu
tive to adaptation; yes, the new phone sequen
e might be a better initial mat
h, but the pointof adaptation is to learn an individual speaker's preferred realization of the phone he is trying to pronoun
e,whi
h is most likely the 
anoni
al phone. If adaptation examples are siphoned o� to update a di�erentphone, the true target model does not learn the idiosyn
rati
 realization as well, and the alternate modelmay be 
onfused by the adaptation example if it is not 
onsistent with other examples for whi
h it is thetrue base model.ResultsI did not observe any statisti
ally signi�
ant (p < :01, 2-tailed t-test) 
hanges from applying any of the eightmethods des
ribed above to generate alternate lexi
ons. Table 5.7 gives re
ognizer performan
e for ea
h
ase.



5.3. DATA-DRIVEN MODELING 111WER % of test words VariantsLexi
on baseline adapt lexmod adapt Lexi
on size with new variant per wordbaseline 45.1 45.1 26110 N/A 1.17W1 45.5 46.1 27180 14.9 1.19W2 46.8 46.6 26229 9.2 1.19R1 46.8 47.1 60244 48.8 2.40P1 45.9 47.0 34628 20.0 1.55P2 45.9 46.6 47862 37.7 2.03P3 46.4 46.9 31595 18.6 1.46P4 44.9 45.1 31152 20.5 1.53P5 45.6 46.0 31200 12.0 1.28Table 5.7: Lexi
on statisti
s and re
ognizer performan
e for rule-based lexi
al modeling. Separate WER �guresare given for de
oding with new pronun
iations allowed (lexmod adapt) and ex
luded (baseline adapt) in speakeradaptation5.3 Data-driven modelingAlthough linguisti
ally-motivated lexi
al modeling is attra
tive from a theoreti
al point of view, and is theonly option when adapting to a new speaker group for whi
h no a
ousti
 adaptation data is yet available,it assumes a model of human spee
h that may 
on
i
t with what is meaningful for the re
ognizer. There
ognizer does not yet have the sophisti
ated ability of a human to per
eive sounds in the 
ontext of syntaxand semanti
s and a myriad of so
iolinguisti
 fa
tors. It is not 
ompletely inferior, however; its model ofhow sounds map to phoneti
 units is 
omplex, identifying 118 distin
t realizations of /t/, for example, wherea linguist might only re
ognize �ve or six.In this se
tion I des
ribe experiments in data-driven lexi
al modeling. In data-driven modeling, there
ognizer is involved from the start, telling us whi
h phones it per
eives when presented with an a
ousti
stream.5.3.1 Initial mappingsIn Se
tion 5.2, I obtained initial phone mapping 
andidates via an analysis of Japanese and Japanese-a

entedEnglish. In this se
tion, I will des
ribe how similar mappings were obtained using phoneme re
ognition.An initial phoneme re
ognition pass was done using 
ontext-dependent a
ousti
 models, a uniform phonelanguage model, and a phone lexi
on. Phoneme re
ognition error was 67.2% for the non-native test speakers.Segmental alignment of the phone re
ognition hypotheses to the phone expansions of the referen
e textyielded a list of frequent substitution, insertion, and deletion errors. The ten most frequent of ea
h type oferror is given in Table 5.8.



112 CHAPTER 5. LEXICAL MODELINGSubstitutions Insertions Deletionss ! z ; ! SIL � ! ;n ! N ; ! t n ! ;"I ! i ; ! d t ! ;t ! d ; ! p r ! ;t ! p ; ! n "I ! ;� ! u ; ! i l ! ;i ! I ; ! � d ! ;"I ! I 2 ; ! r � ! ;� ! E ; ! z m ! ;t ! SIL ; ! garbage k ! ;Table 5.8: Most frequent substitution, insertion, and deletion errors as found by aligning phone re
ognition hypothe-ses to phone expansion of referen
e textAlthough we now have what seems to be a plausible list of substitutions, insertions, and deletions, usingit to predi
t errors that will be seen in individual lexi
al items is tri
ky. For example, in the utteran
efragment \Ameri
an kids spend more time...," there are a number of deletion errors that are not obviouslyattributable to phonologi
al e�e
ts.� m E r I k � n k I d z s p E n d m O r t a�� mD E Ä k N � s p E n l t a�� mA framewise alignment of the type dis
ussed in Se
tion 4.3.1 would provide us with a straightforwardmapping, but it is not 
lear that this mapping is what one would want for lexi
al modeling. Rules like � !D / # m and dmO ! ; / n r3 
annot be said arise from anything other than poor a
ousti
 modeling(listening to the a
ousti
 data 
on�rms that these phonemes are indeed arti
ulated), and it is not the roleof lexi
al modeling to 
ompensate for su
h inadequa
y. Rather, I fo
used on substitutions that 
ould beas
ribed to some sort of phonologi
al interferen
e.I ele
ted to use these initial segmental mappings to bootstrap an underspe
i�ed alignment pass. Under-spe
i�ed alignment is des
ribed in detail in Se
tion 4.3.1. With this method, we allow the system to �nd thebest mat
h among a list of plausible substitutions (in
luding insertions and deletions) that were dete
tedduring phoneme re
ognition, while enfor
ing stru
ture on the alignment in the form of the approximatenumber of phones that are to be identi�ed. Features of plausible substitutions were de�ned as follows.1. Having the same or a similar pla
e or manner of arti
ulation as the 
anoni
al phone2The ISL-BN re
ognizer treats stressed and unstressed /I/ as separate phonemes.3It should be noted that this is an extreme example illustrating the problem of deletion errors. Insertion and deletion errorswere in general well balan
ed in this data.



5.3. DATA-DRIVEN MODELING 1132. Representing deletion in the initial phone sequen
e that 
reates an open syllable3. Representing insertion in the initial phone sequen
e that 
reates an open syllable4. Sharing at least one vowel feature with the 
anoni
al phone (both high vowels, for example)5. Representing de
omposition or monophthongal realization of a diphthong6. Having a possible mapping to the same Japanese orthographi
 symbol as the 
anoni
al phoneIf none of these features were present, the substitution was not allowed. Underspe
i�ed alignment generatesa new surfa
e phone sequen
e for whi
h a mapping to the 
anoni
al form is easily derived. With thismapping, we 
an dupli
ate experiments 
arried out for linguisti
ally-motivated modeling to understandwhi
h approa
h, if either, leads to an improvement in re
ognizer performan
e.5.3.2 Experiment 10:Data-driven lexi
al modelingIntrodu
tionTesting for data-driven lexi
al modeling 
losely paralleled that of rule-based modeling. The purpose ofthis experiment was to determine whether data-driven modeling results in an improvement in re
ognizerperforman
e where linguisti
ally-motivated modeling does not.DataIn these experiments, the test data remains �xed, as for previous experiments, to the pro�
ien
y-
ontrolledtest set NN-E-R, while the pronun
iation lexi
on is varied. The eight test lexi
ons des
ribed so far in thisse
tion are summarized below.Lexi
ons asso
iating di�erent probabilities with substitutions were de�ned as follows.D1 The top two most frequent 
ontext-independent substitutions were applied to generate the testlexi
onD2 The top three most frequent 
ontext-independent substitutions were applied to generate the testlexi
onD3 Phone substitutions that o

urred more than seven times in the 
ontext of a given 3-phone windowwere applied to generate the test lexi
onD4 Phone substitutions that o

urred more than on
e in the 
ontext of a given 5-phone window wereapplied to generate the test lexi
on



114 CHAPTER 5. LEXICAL MODELINGWER % of test words VariantsLexi
on baseline adapt lexmod adapt Lexi
on size with new variant per wordbaseline 45.1 N/A 26110 N/A 1.17D1 44.9 45.0 37436 26.7 1.57D2 45.5 45.0 51847 42.7 2.16D3 45.2 45.5 58267 58.7 2.57D4 45.8 45.6 45108 52.6 2.19Table 5.9: Lexi
on statisti
s and re
ognizer performan
e for data-driven lexi
al modeling. Separate WER �guresare given for de
oding with new pronun
iations allowed (lexmod adapt) and ex
luded (baseline adapt) in speakeradaptationAs with the linguisti
ally-motivated experiments, new pronun
iation paths were added via latti
e adaptation,and MLLR adaptation was applied both allowing and ex
luding the new pronun
iations.MethodThe testing method was the same as that des
ribed in Se
tion 5.2.4. A word latti
e was generated duringan initial de
oding pass using the baseline lexi
on; pronun
iation variants were added to the latti
e and ana
ousti
 res
oring pass was run to generate the �nal hypothesis.ResultsRe
ognizer performan
e with data-driven lexi
al modeling is summarized in Table 5.9. As with thelinguisti
ally-motivated lexi
al modeling, there is no signi�
ant di�eren
e in re
ognition a

ura
y for any ofthe new lexi
ons.5.4 Con
lusions from lexi
al modeling experimentsThis investigation of lexi
al modeling for low-pro�
ien
y Japanese speakers of English has not found that anyof a number of approa
hes 
ontributes signi�
antly to improved re
ognizer performan
e. I now examine whythis is the 
ase, �rst 
onsidering in more detail the lexi
al modeling approa
hes mentioned in Se
tion 5.1.Amdall et al. (2000) report an improvement from 29.2% WER to 28.3% for Wall Street Journal (LDC,1994a) using a data-driven lexi
al modeling approa
h. This represents a 3% absolute improvement. Ourgeneration of lexi
ion D3 is similar to the method they des
ribe. Both approa
hes use unrestri
ted phonere
ognition to obtain initial 
ontext-dependent phone mappings. Confusability 
onstraints are then enfor
ed,in the form of phonota
ti
 
onstraints in our 
ase and restri
tion to the single most probable phone substitu-tion in a given triphone 
ontext in their system. A phone substitution 
andidate derived this way is 
alled,in their terminology, a \rule." I will borrow their usage in this 
omparison; this usage should not be 
onfused



5.4. CONCLUSIONS FROM LEXICAL MODELING EXPERIMENTS 115with the phone substitution rules operating on phone 
lass abstra
tions and variable-length 
ontexts used togenerate lexi
on R1. Rule �ring frequen
y 
onstraints are applied in both Amdall's method and mine; ruleso

urring in the training data fewer than 6 and 7 times respe
tively are not 
onsidered in testing. The testset (WSJ) is read news, just as mine is. The primary di�eren
es, then, are my use of maximum likelihoodinstead of log-likelihood in 
al
ulating substitution probabilities, and the higher overall pro�
ien
y of thespeakers.Lives
u and Glass (2000) report an improvement from 20.9% to 18.8% for the jupiter weather querysystem. This represents a 10% relative improvement. The jupiter task is quite di�erent from ours: it isa spontaneous task but highly restri
ted in domain (lexi
on size 2000 
ompared to 26000 for our task); noattempt is made to 
ontrol or estimate the pro�
ien
y of speakers; and the goal, as in Amdall's system, is toadapt to non-native spee
h in general as opposed to one speaker group in parti
ular. It is diÆ
ult to 
ompareour implementations dire
tly, as jupiter uses a FST-based de
oder and en
odes pronun
iation variants inthe form of a phoneme 
onfusion FST that is 
omposed with the existing a
ousti
, lexi
al, and languageFSTs, but Lives
u and Glass's generation of phone substitution 
andidates is similar to our methods D1 andD2. They �rst obtain initial 
ontext-independent phone 
onfusions by aligning referen
e trans
ripts withunderspe
i�ed alignment output, allowing variable-length substitutions. This 
onfusion matrix is representedas an FST, whi
h 
an be pruned to optimize re
ognition a

ura
y; Lives
u and Glass found, however, thatthe best performan
e 
ame with no pruning. This last result is the most striking di�eren
e between ourexperien
es. They found that the lexi
on size was in
reased to only 1.5 times its original size from addingall 
onfusions dis
overed through an underspe
i�ed alignment based 
onfusion estimation method almostidenti
al to ours; our lexi
on size expanded to 36 times its original size. This may be be
ause their speakersshowed less variation in pronun
iation; it 
ould also be that their inital a
ousti
 models were more tolerantof deviant pronun
iations. The spe
i�
 vo
abulary may play a role as well; if the words used in the weatherquery task are mostly 
ommon and familiar words, the speakers may be able to pronoun
e them moresu

essfully than in the read news tasks.Fung and Liu (1999) report an improvement from 30.8% to 26.7%, for the undes
ribed \HKTIMIT"re
ognition task. Fung and Liu use a purely knowledge-based approa
h, working with linguists to identifysounds that do not o

ur in Cantonese and probable substitutes from the English phone set. This methodparallels our linguisti
ally-motivated variant generation pro
ess. A total of 43 transformation rules areidenti�ed in our system, 
ompared to 28 in Fung and Liu's, but it may be the 
ase that Fung and Liu use
ontext-independent rules, in whi
h 
ase ea
h rule would apply to more instan
es in the lexi
on. Fung andLiu see their lexi
on size double with the appli
ation of their rules; they therefore require no pruning tomaintain a manageable lexi
on size and 
onfusability level. We do not know, however, exa
tly how the rulesare applied; if the realization estimated to be the most probable for ea
h word is simply added to the lexi
on,a doubling in size of the lexi
on is to be expe
ted. Our lexi
on grows as qui
kly as it does be
ause alternatelinks are added to the word pronun
iation networks for ea
h possible substitution; pruning of this network



116 CHAPTER 5. LEXICAL MODELINGto identify the likely paths through the entire network based on training data is an integral part of ourmethod. Be
ause we do not know the spe
i�
s of the HKTIMIT task, it is diÆ
ult to 
ompare our resultsdire
tly, but the original TIMIT task (LDC, 1994b) is a read spee
h task 
overing 2342 unique phoneti
ally-engineered senten
es. The lexi
on size is 6100. Although there was no formal or informal evaluation ofspeaker pro�
ien
y, be
ause the speakers were all 
ollege students in a bilingual environment one 
an assumethat their exposure to English is fairly extensive. In fa
t, one of the motivations of Fung and Liu's work isthat 
ode-swit
hing is frequent among students at the university, and an ASR system deployed there willneed to be able to handle both Cantonese and Cantonese-a

ented English.Humphries and Woodland (1998) su

essfully used lexi
al modeling of a

ent variation in WSJ to re
og-nize Ameri
an-a

ented spee
h with a British re
ognizer. They report an improvement of 21.3% to 18.6%,a relative gain of 13%. (This is their result after speaker adaptation; they share our observation that pro-nun
iation modeling is more e�e
tive with unadapted, or lower-quality, a
ousti
 models.) As in our method,they begin with an unrestri
ted phone re
ognition pass, aligning the results to the referen
e trans
ript togenerate phoneme 
onfusions in 
ontext. Rather than run an additional plausibility-
onstraining pass, aswas done by Amdall and by Lives
u as well as in our system, Humphries moves dire
tly to a de
ision tree
lustering phase. This approa
h most 
losely resembles our method D4, in whi
h we found the most likelysubstitution using de
ision tree 
lustering after enfor
ing plausibility 
onstraints on the initial phoneme
onfusion matrix via underspe
i�ed alignment. We did not work with de
ision trees in data-driven lexi
almodeling be
ause results from linguisti
ally-motivated modeling indi
ated that de
ision-tree-based pruningdid not produ
e signi�
antly di�erent results from maximum-likelihood-based pruning. We also used theC4.5 algorithm (Quinlan, 1993), where Humphries and Woodland used the CART algorithm (Brieman etal., 1984).It is my interpretation, based on these observations and experien
e with phoneti
 trans
ription of theCND data, that the speakers in the present study are at a phase in their development of spoken English inwhi
h deviations from standard English pronun
iation are very 
omplex. As they build their arti
ulatoryskills, they are in
onsistent in phoneti
 realization where speakers with more experien
e, however heavilya

ented, have developed idiosyn
rati
 arti
ulatory habits. Training and adaptation, whi
h model spee
h ata �ne sub-segmental level, are more appropriate than even 
ontext-sensitive segmental modeling. With thisin mind, it is probably not insigni�
ant that the speakers have all been in the United States for only a shorttime after having extensive formal study of English. It would not be unreasonable to think that their spokenEnglish is undergoing 
omplex 
hanges as they are suddenly exposed to many new varieties of English, andwork to transfer an a
ademi
 knowledge of the language to a physiologi
al 
ompeten
e. The su

ess of lexi
almodeling for native spee
h would support this hypothesis, as native speakers are more 
onsistent in theirphoneti
 realizations of words than non-native learners are.Another fa
tor that may play a role in the e�e
tiveness of lexi
al modeling is re
ognition task. Althoughexperiments with re
ognition of spontaneous spee
h for my speakers 
learly indi
ate that spontaneous spee
h



5.4. CONCLUSIONS FROM LEXICAL MODELING EXPERIMENTS 117is a harder problem for LVCSR, it may be better suited for lexi
al modeling. In read spee
h su
h as that inmy task and in Amdall's, the speakers 
annot 
hoose the words they speak. They 
annot avoid words thatare diÆ
ult to pronoun
e, and may struggle with words that are new to them. In query-based tasks su
has Lives
u and Glass's jupiter weather query system, speakers approa
h the system with something theywant to know, and 
an rely on words and �xed phrases that are familiar to them. Read spee
h, while onlymildly a�e
ted by a speaker's 
ommand of syntax and semanti
s of the language and as su
h \easier," maynot be a strong 
andidate for either rule-based or data-driven modeling at the lexi
al level.





Chapter 6
Hypothesis-Driven A

entClassi�
ationIn order to take advantage of the te
hniques for modeling non-native spee
h des
ribed in previous 
hapters,the system must know that the speaker is non-native. A nativeness de
ision 
an be either binary, 
lassifyingthe spee
h sample as native or not, or multilateral, asso
iating the spee
h sample with a spe
i�
 nativelanguage or language group. In this 
hapter, I demonstrate that 1) high-a

ura
y nativeness 
lassi�
ation
an be implemented and 2) it improves overall system performan
e signi�
antly, as measured by the mat
hed-pairs test dis
ussed in Se
tion 4.2.6.1 Problem Des
riptionThere are many features distinguishing native and non-native spee
h, as has been dis
ussed in Chapter 3.The key de
isions in designing a 
lassi�er are whi
h of those features to use and what 
lassi�
ation algorithmwill make best use of the sele
ted features in the data that is available. These are not independent de
isions.For example, the �rst formant frequen
y (F1) of spe
i�
 phonemes in 
ontext may allow very a

uratedis
rimination, but if those 
ontexts do not appear frequently in the training data, it may be impossible tobuild a robust model to 
lassify them. De
ision tree learning may be theoreti
ally possible given the amountof data available, but if the target fun
tion does not have dis
rete output values, spe
ifying the splittingquestions may be diÆ
ult.Another 
onsideration in designing a 
lassi�er for spee
h re
ognition is the re
ognizer itself. The mosta

urate 
lassi�
ation may not result in the best re
ognizer performan
e. It might be best to treat the mostpro�
ient non-native speakers as native speakers for the purposes of a
ousti
 model sele
tion. Pro�
ien
ymay also not be well 
orrelated with re
ognition a

ura
y; the best overall system performan
e may bea
hieved by 
lassifying some of the less pro�
ient speakers as native.119



120 CHAPTER 6. HYPOTHESIS-DRIVEN ACCENT CLASSIFICATIONIn formulating the a

ent 
lassi�
ation problem, I 
on
entrated on �nding properties of non-native spee
hthat 
an be easily and reliably extra
ted and that give a meaningful result for spee
h re
ognition. These
riteria led to the development of a hypothesis-driven approa
h, using naive Bayes 
lassi�
ation for bothbinary and multilateral dis
rimination.This 
hapter is stru
tured as follows. In Se
tion 6.2 the prin
iples behind hypothesis-driven 
lassi�
ationare des
ribed. Se
tion 6.3 provides an overview of Bayesian 
lassi�
ation. The software pa
kage usedfor 
lassi�
ation experiments is also des
ribed here. Experimental design and results, in
luding end-to-endsystem results with 
lassi�
ation-based model swit
hing, are presented in Se
tion 6.4. Finally, a dis
ussion ofthe dis
riminative features in this formulation of the a

ent 
lassi�
ation problem is presented in Se
tion 6.5.6.2 Hypothesis-driven Classi�
ationThis approa
h to a

ent 
lassi�
ation, or more properly L1 
lassi�
ation, bases the 
lassi�
ation de
ision onre
ognizer hypotheses of what was said. The hypothesis 
an be either a word hypothesis, generated using aword-based lexi
on and language model, or a phone hypothesis, generated using a lexi
on made up only ofphones and optionally a language model (e�e
tively a phonota
ti
 model).Determining the nativeness of the speaker is framed as a do
ument 
lassi�
ation problem. For ea
htraining speaker (native and non-native), a set of training utteran
es is de�ned and re
ognizer hypothesesare generated. This data set is not unlike a set of arti
les, ea
h written by a di�erent writer, originatingfrom two di�erent publi
ations. If di�eren
es in the individual preferen
es of writers are overshadowed bydi�eren
es in the stylisti
 themes of their publi
ations, it is possible to 
ategorize do
uments a

ording tosour
e using statisti
al algorithms, as was shown in (Argamon-Engelson et al., 1998). I extend this idea tonativeness 
lassi�
ation, asking a 
lassi�er to de
ide whether a set of utteran
es is representative of nativespee
h based on a training 
orpus of native and non-native spee
h \do
uments."There are two important advantages in formulating the problem this way. First, one may build on a largebody of resear
h in ma
hine learning and do
ument 
lassi�
ation. My 
hoi
e of naive Bayes 
lassi�
ationis based on 
onsistently strong performan
e in do
ument 
lassi�
ation tasks (Lewis, 1998) and favorable
omparison to other 
lassi�
ation te
hniques when 
lass distributions are not radi
ally skewed (Yang andLiu, 1999).Se
ond, by using the re
ognition hypothesis instead of a
ousti
 features, one takes the behavior of there
ognizer into a

ount without relying on an a
ousti
 s
ore whose interpretation may not be straightforward.Other resour
es that have been su

essfully used in a

ent dis
rimination in
lude a
ousti
 features, su
h asF0 (Fung and Liu, 1999), and s
ore from a set of 
ompeting L1-spe
i�
 a
ousti
 models (Teixeira et al.,1996). Using 
ompeting a
ousti
 models requires building the models, whi
h is expensive in terms of both
omputation and data; a more troublesome issue with this approa
h, however, is that a Viterbi s
ore from anHMM built from one set of data is not ne
essarily 
omparable to a s
ore from an HMM built from another
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ousti
 features, while very dis
riminative, may not 
apture the most meaningful distin
tionsfrom the point of view of the re
ognizer. If the goal of the 
lassi�
ation is solely to determine whethera speaker is native or non-native, a
ousti
 features may o�er the best basis for dis
rimination. I assume,however, that the nativeness 
lassi�
ation will be used to trigger spe
ialized modeling, and that a nativere
ognizer may respond better to some non-native speakers than a non-native model will. In these 
ases,impli
it modeling of re
ognizer behavior in the 
lassi�
ation engine may lead to more appropriate, althoughnot ne
essarily more stri
tly a

urate, 
lassi�
ation.The question of appropriate versus a

urate 
lassi�
ation is largely moot given the target population, asnon-native a
ousti
 models performed better than native models on all target speakers. However, it maybe
ome more important as the pro�
ien
y range of LVCSR system users broadens.A further advantage of hypothesis-based 
lassi�
ation is that the re
ognizer itself may be treated as abla
k box. This permits the algorithm to be implemented without a

ess to the internal workings of there
ognizer, an option whi
h may be attra
tive to users of 
ommer
ial software pa
kages or resear
hers inother areas of NLP who are not interested in manipulating re
ognizer 
omponents.6.3 Bayesian Classi�
ationBayesian 
lassi�
ation is well suited to the task of L1 
ategorization for several reasons. Bayesian learningmethods support probabilisti
 hypotheses, whi
h allow a nativeness threshold to be set or the result to bein
orporated with other sour
es of information. Bayesian 
lassi�
ation in
orporates the marginal probabilityof the 
lass, so knowledge of the distribution of speakers likely to use the system 
an help to improve
lassi�
ation a

ura
y. Bayesian models also handle 
on
i
ting examples gra
efully, and are not as vulnerableto data sparsity problems as methods like de
ision tree learning that iteratively partition training data.6.3.1 Bayes de
ision theoryThe obje
tive in Bayes de
ision theory is to minimize the probability of de
ision error. For example, if thereare two possible out
omes !i and !j , and it is known that !i o

urs three-quarters of the time and !j o

ursone quarter of the time, always guessing !i will result in the lowest de
ision error rate. The poli
y of alwaysguessing !i is 
alled a de
ision rule and 
an be stated as:De
ide !i if P (!i) > P (!j); otherwise de
ide !j : (6.1)If information beyond the basi
 o

urren
e probabilities is available, that information 
an be in
orporatedin the de
ision rule. For example, if !i represents warm weather and !j represents 
old weather, the a prioriprobability of warm weather may be higher, but if it is snowing out, one 
an guess that the weather isprobably 
old. If x represents snow falling, we 
an amend the de
ision rule to be:
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ide !i if P (!ijx) > P (!j jx); otherwise de
ide !j : (6.2)In order to minimize de
ision error, Bayes de
ision theory 
alls for sele
ting the 
ourse of a
tion thatresults in the smallest expe
ted loss, or risk. Ea
h possible 
ourse of a
tion �i is asso
iated with a risk R:R(�ijx) = 
Xj=1 �(�ij!j)P (!j jx)where �(�ij!j) is the loss asso
iated with 
hoosing 
ourse of a
tion �i. Spe
i�
ally, Bayes de
ision theorypres
ribes sele
tion of the state ! that that maximizes the a posteriori probability P (!j jx), a 
ourse ofa
tion that will minimize the risk R.6.3.2 Naive Bayes 
lassi�
ationIn 
lassi�
ation problems, the states !j are 
lasses and the feature ve
tors x are properties of the data,for example, word distributions in text 
lassi�
ation tasks. A Bayes 
lassi�er uses Bayes de
ision rule todetermine whi
h 
lass the present data belongs to. Restating Rule 6.2 in terms of 
lasses 
i and utteran
esu gives De
ide 
i if P (
iju) > P (
j ju); otherwise de
ide 
j (6.3)or more generally De
ide 
i if P (
iju) > P (
kju) for all k 6= i (6.4)Although we probably do not know the 
onditional probabilities P (
ju), we 
an 
al
ulate them using Bayesrule. P (
iju) = P (uj
i)(P (
i)P (u) (6.5)Be
ause the probabilities of the utteran
es are 
onstant a
ross 
lasses, Equation 6.5 
an be simpli�ed asP (
iju) = P (uj
i)(P (
i) (6.6)The task of the 
lassi�er, then, is to assign an utteran
e to a 
lass 
̂ su
h that
̂ = argmax
i P (
iju)= argmax
i P (
i)P (uj
i) (6.7)
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es u to a set of word attributes ai (indi
ating presen
e orabsen
e of a word, perhaps, or word 
ounts), we have the following.
̂ = argmax
i P (
i)P (a1; a2 � � � anj
i) (6.8)A naive Bayes 
lassi�er is a spe
ial kind of Bayes 
lassi�er. The naive Bayes assumption is that theattributes used for des
ription are all 
onditionally independent (Manning and S
h�utze, 1999). If a featureve
tor u, whi
h represents an utteran
e, is thought of as a set of individual word features, the naive Bayesassumption says that their o

urren
es are independent. This is, of 
ourse, not stri
tly true; grammati
al
onstraints and lexi
al relationships 
ertainly in
uen
e the presen
e and order of words. However, theassumption simpli�es the model, and the de
ision made 
an still be optimal (Domingos and Pazzani, 1997),approa
hing the performan
e of neural network and de
ision tree learning models (Mit
hell, 1997). Applyingthe naive Bayes assumption brings us to
̂ = argmax
i2C P (
i)Yj P (aj j
i) (6.9)where the 
is are 
lasses that are members of a 
lass set C and the ajs are word-level attributes.6.4 ExperimentsIn this se
tion, I des
ribe the design of a hypothesis-driven Naive Bayes 
lassi�er and the methodology usedto evaluate it. I 
ompare 
lassi�
ation based on hypotheses and trans
riptions, on read and spontaneousspee
h, on words and phonemes, on words and parts of spee
h, and on phonemes and phone 
lasses. I�nd that not only is L1 
lassi�
ation based on re
ognizer hypotheses possible, it is more a

urate than
lassi�
ation based on manual trans
riptions of native and non-native spee
h.Three experiments in a

ent 
lassi�
ation are des
ribed in this se
tion: word-based binary 
lassi�
ationof the speakers in test sets N-E-R and NN-E-R as native or non-native; word-based binary and multilateral
lassi�
ation of native English, Japanese, and Chinese speakers; and phone-based binary 
lassi�
ation of thespeakers in test sets N-E-R and NN-E-R. Be
ause the general methodology and materials are the same forall three experiments, they are dis
ussed here; text data and individual experimental results are des
ribedin dis
ussions of ea
h experiment.6.4.1 General methodologyIn order to frame a

ent dete
tion as a do
ument 
lassi�
ation problem, �les 
ontaining utteran
e text are
reated for ea
h speaker. The utteran
e text 
an be trans
riptions of utteran
es or re
ognizer hypotheses(word-level or phone-level).
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ation of both read and spontaneous spee
h was evaluated. For spontaneous spee
h experiments,data sets N-A-S, NN-A-S, and C-A-S were used. Read spee
h experiments examined 
lassi�
ation on datasets N-E-R and NN-E-R. Ea
h speaker in this data set reads 3 arti
les, one of whi
h was 
ommon to allspeakers, as des
ribed in Se
tions 3.1.2 and 3.4. Four train/test 
onditions were evaluated in read spee
hexperiments:A Train and test on shared arti
leB Train and test on disjoint arti
lesC Train on disjoint arti
les; test on shared arti
leD Train on shared arti
les; test on disjoint arti
leFor 
onditions A and B, leave-one-out training and testing was done in order to maximize the size ofthe training set. That is, for ea
h speaker in the 
ombined N-E-R and NN-E-R sets, a 
lassi�
ation modelwas trained on all the other speakers to dis
riminate between native and non-native do
uments. A

ura
yof that model was then tested on the held out speaker. Overall 
lassi�
ation a

ura
y was 
al
ulated byaveraging a

ura
y for all leave-one-out tests.For 
onditions C and D, there was no need for leave-one-out testing as training and testing were done onseparate data sets.The baseline a

ura
y to whi
h 
lassi�
ation a

ura
y should be 
ompared is 
al
ulated by dividing thenumber of test speakers in the most 
ommon training 
lass by the total number of test speakers. This isthe a

ura
y that would be a
hieved by a model that always guesses the most 
ommon 
lass found duringtraining. For example, in the N-E-R and NN-E-R sets there are 8 native and 10 non-native speakers. Alwaysguessing \non-native" would yield a baseline a

ura
y of 56% (10/18). Baseline a

ura
ies are listed for ea
hexperiment.6.4.2 MaterialsTo 
arry out the experiments des
ribed in this se
tion, I made use of publi
ly available 
lassi�
ation andpart-of-spee
h software pa
kages. These are des
ribed here, along with the 
on�guration of the re
ognizerthat was used for the 
lassi�
ation experiments.Text 
lassi�
ationThe Rainbow statisti
al text 
lassi�
ation pa
kage (M
Callum, 1996) was used for all 
lassi�
ation exper-iments. Rainbow implements a naive Bayes 
lassi�er for text, with a number of features spe
ialized for
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ations. In running Rainbow, no feature sele
tion1 was used. Token unigrams, bigrams, and insome 
ases trigrams were treated as independently o

urring features. Pun
tuation and 
apitalization wereremoved from the trans
riptions to make them 
onsistent with the hypotheses.Preliminary experiments showed that words 
ommonly 
onsidered stopwords, su
h as fun
tion words,
ontributed signi�
antly to dis
rimination. Therefore, in all of the experiments des
ribed in this 
hapter, nolist of stopwords to ex
lude was de�ned.Be
ause the data set was relatively small, the training and test sets were de�ned by a random partitioningof the full data set into 70% training and 30% testing. This random partitioning was repeated 20 times and
lassi�
ation a

ura
y was averaged over the 20 trials for ea
h experiment. The full data set for ea
hexperiment 
onsisted of exa
tly one \do
ument" from ea
h of the speakers.Re
ognizerThe re
ognizer used to generate the hypotheses was the ISL-BN system des
ribed in Se
tion 4.1. BaselineWER on native spee
h was 18.0% in the CND read news task and 63.1% on non-native spee
h. The 
hoi
e touse a system that performs poorly on non-native spee
h was motivated by the expe
tation that a nativeness
lassi�
ation will be used to trigger spe
ialized non-native modeling, and that the initial pro
essing will bedone with the standard native a
ousti
 models.Part-of-spee
h taggingIn some of the experiments that will be des
ribed, words in the utteran
e sets were repla
ed by their parts ofspee
h using the publi
ly available MXPOST toolkit (Ratnaparkhi, 1996). MXPOST is a maximum entropytagger that a
hieves 96.6% a

ura
y on unseen Wall Street Journal arti
les. Be
ause the data set evaluatedin (Ratnaparkhi, 1996) is similar to ours in both 
ontent and genre, I assume that tagging a

ura
y on theCND database is similarly high.Read and spontaneous spee
hFor this thesis, both read and spontaneous spee
h were 
olle
ted from the non-native speakers, and both wereused in the investigation of L1 
lassi�
ation. Upon �rst 
onsideration, it may be thought that spontaneousspee
h is easier to 
lassify than read spee
h be
ause the di�eren
es in word 
hoi
e 
ontribute to the de
ision.2However, the ultimate goal is to use re
ognizer hypotheses for 
lassi�
ation, and re
ognition errors introdu
enoise that may diminish this e�e
t somewhat. I wished to both establish whether spontaneous spee
h 
an1In dis
ussions of text 
lassi�
ation, the term feature sele
tion refers to limiting the vo
abulary used for 
lassi�
ation.Common feature sele
tion te
hniques in
lude using only 
ontent words and using only words that appear with high frequen
y.Feature sele
tion typi
ally improves 
lassi�er performan
e, so results may have been even higher with judi
ious feature sele
tion.2Although, as noted in Se
tion 6.3.2, I am e�e
tively ignoring word order and syntax in my 
lassi�
ation model, the presen
eand frequen
y of individual words and n-grams strongly in
uen
es the 
lassi�
ation de
ision, as will be dis
ussed in followingse
tions.
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lassi�ed with greater a

ura
y than read spee
h 
an and analyze the di�eren
es in the wordfeatures that 
ontribute most to L1 
lassi�
ation of these two types of spee
h.A se
ond reason for ele
ting to study 
lassi�
ation of both read and spontaneous spee
h was that readspee
h 
an be restri
ted in a way that allows one to 
ontrol variables su
h as vo
abulary, diÆ
ulty, and
ontent. By having speakers all read the same text, one 
an isolate the 
ontribution of re
ognition error to
lassi�
ation a

ura
y. One 
an also evaluate the 
lassi�er in ways that are not possible when the data isspontaneous, by 
omparing training on a single arti
le that is read by all speakers with training on a disjointset of arti
les, for example.Finally, a number of important spee
h re
ognition appli
ations and tasks target spee
h that is read.Language tutoring appli
ations, in whi
h speakers are often asked to read spe
i�
 words and senten
es, andspeaker-dependent enrollment, in whi
h users must read aloud from text to allow the system to adapt totheir voi
e, are two examples. In these 
ases, a nativeness 
lassi�er would need to base its de
ision only ondi�eren
es in the way the speakers read the same pie
es of text. Pre
isely this situation will be addressed inthe \train/test on a 
ommon arti
le" evaluation.Trans
riptions and re
ognizer hypothesesIn order to understand the performan
e of hypothesis-driven 
lassi�
ation, it is important to subje
t 
lassi-�
ation of manual trans
riptions to the same evaluations. If 
lassi�
ation of hypotheses is less a

urate than
lassi�
ation of trans
riptions, one 
an predi
t that L1 
lassi�
ation will improve as re
ognition te
hnologydevelops. If re
ognition a

ura
y is very poor, it may also only be meaningful to evaluate 
lassi�
ation ontrans
riptions. If, on the other hand, 
lassi�
ation of hypotheses is more a

urate than 
lassi�
ation oftrans
riptions, we are given eviden
e of a synergisti
 relationship between the re
ognition and 
lassi�
ationpro
esses.A 
omparison of 
lassi�
ation on hypotheses and trans
riptions tells us more than just whi
h is morea

urate. We also learn about the words and types of words that are important in dete
ting non-nativespee
h in these two data types. While the obje
tive of integrating L1 
lassi�
ation in this thesis work isto improve the overall performan
e of the re
ognition system, the same type of 
lassi�
ation 
an be usedin text-based natural language pro
esses su
h as language modeling and parsing. The value of a thoroughexamination of L1 
lassi�
ation of both re
ognition hypotheses and trans
ripts, then, 
learly extends beyondthe immediate 
ontext of spee
h re
ognition for low-pro�
ien
y non-native speakers.6.4.3 Experiment 11:Word-based 
lassi�
ation of read spee
hIn word-based 
lassi�
ation experiments, the features used as input to the 
lassi�er were word identities andparts of spee
h. There are several reasons for looking at parts of spee
h as well as word identities. First, itredu
es the size of the feature set, allowing more robust modeling and handling of unseen words. Se
ond, it
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rimination. Third, it
ompensates somewhat for re
ognition error. Finally, it in
reases the experimental validity of using uniquerenditions of a single arti
le, read by all speakers, for training and/or testing.DataIn read spee
h experiments, data sets N-E-R and NN-E-R were used for training and testing in the four
on�gurations des
ribed in Se
tion 6.4.1. The baseline 
lassi�
ation a

ura
y of 
lassi�
ation on this dataset is 56%, a
hieved by always guessing that the speaker is not native, the state with the highest a prioriprobability (
f. Equation 6.1).Ea
h of the four experimental 
onditions reveals unique properties of the data and its 
lassi�
ationpotential. When training and testing on the 
ommon arti
le, a high 
lassi�
ation a

ura
y shows that evenwhen the printed words were exa
tly the same, reading errors made by native and non-native speakers wereenough to identify them. When training and testing on unique arti
les, a high 
lassi�
ation a

ura
y showsthat the 
lassi�er is extremely robust, and that patterns that mark non-native spee
h are independent ofthe words and phrases in the text. High 
lassi�
ation a

ura
y when the training arti
les are all the sameand test arti
les were all unique shows that the patterns found in non-native readings of one text are sodis
riminative that they generalize to dete
t non-nativeness in a wide variety of texts. And high 
lassi�
ationa

ura
y when the training arti
les are all di�erent and the test arti
les are all the same shows that non-native speakers display 
onsistent (found in all renditions of the test arti
le) and text-independent (learnedfrom a set of disjoint arti
les) idiosyn
rasies in reading.Do
uments were 
reated for ea
h speaker 
onsisting of either trans
riptions of a reading of an arti
le orre
ognizer hypotheses of a reading of an arti
le. For evaluating 
lassi�
ation based on part of spee
h, thewords in the do
uments were repla
ed by their part of spee
h as assigned by MXPOST (Ratnaparkhi, 1996).For this experiment, an additional do
ument set was 
reated to evaluate the hypothesis that a 21% vs.58% WER is in and of itself dete
table. In order to establish whether the 
lassi�er is modeling the way there
ognizer responds to non-native spee
h or simply the higher word error, I arti�
ially raised the word errorrate of the native spee
h. This was a

omplished by adding white noise to the signal until the word errorrate was 
lose to that of the non-native spee
h (56%).ResultsTable 6.1 shows results of training and testing a naive Bayes 
lassi�er under the four 
onditions des
ribedabove. Classi�
ation a

ura
ies are given for both trans
riptions and re
ognizer hypotheses. The moststriking result is that 
lassi�
ation of hypotheses is 
onsistently more a

urate than 
lassi�
ation of tran-s
riptions. This is strongly 
ounterintuitive, as the re
ognizer is generally viewed as a noisy 
hannel thatwould be expe
ted to mask non-native patterns. Yet the e�e
t is 
onsistent and highly signi�
ant (p < :005)as measured by a mat
hed-pairs test.Although the 
lassi�
ation a

ura
y for the noise-added hypotheses de
reases, it is still mu
h higher than
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ommon arti
le (trans) 83% 74%train and test on 
ommon arti
le (re
) 94 100train and test on 
ommon arti
le (high-WER re
) 66 77train and test on disjoint arti
les (trans) 41 40train and test on disjoint arti
les (re
) 47 77train on disjoint arti
les; test on 
ommon arti
les (trans) 56 56train on disjoint arti
les; test on 
ommon arti
les (re
) 56 95train on 
ommon arti
les; test on disjoint arti
les (trans) 56 56train on 
ommon arti
les; test on disjoint arti
les (re
) 56 83Table 6.1: Classi�
ation a

ura
y of read spee
h for two-way 
lassi�
ation of Japanese and Ameri
an English speakersreading texts in English. Baseline is 56%.the baseline, suggesting that there is something spe
ial about the re
ognition errors made on non-nativespee
h. The observation that 
lassi�
ation in the non-noise-added 
ase is based to some degree on featuresof high-WER spee
h, as opposed to non-native spee
h, should not be thought of as indi
ating that su
h
lassi�
ation is invalid. If a high word error rate is a feature of non-native spee
h, using it as a basis for
lassi�
ation is not illegitimate. It only indi
ates that WER plays a signi�
ant role in dis
riminating betweenre
ognizer output for native and non-native speakers.Another important observation is that 
lassi�
ation based on parts of spee
h outperforms 
lassi�
ationbased on word identities in almost all 
ases. This is parti
ularly true when disjoint arti
les are involved, a
ondition under whi
h word-identity 
lassi�
ation never ex
eeds the baseline and is often 
onsiderably worse.When training on a disjoint set of arti
les and testing on the 
ommon arti
le, the 
lassi�er dete
ts non-nativespee
h with 95% a

ura
y using parts of spee
h, 
ompared to 56% (baseline) a

ura
y when using words.This is eviden
e, as dis
ussed above, that the same patterns that are found in all speakers' renditions of the
ommon arti
le are present in di�erent speakers' readings of disjoint arti
les. Under the same 
onditions,however, the 
lassi�er performs no better than the baseline when the input is trans
riptions instead ofre
ognizer output; di�eren
es in word distribution among the disjoint arti
les overshadow the non-nativee�e
ts in the trans
riptions.6.4.4 Experiment 12:Word-based 
lassi�
ation of spontaneous spee
hThis experiment examines 
lassi�
ation of spontaneous spee
h. The re
ognition a

ura
y on the spontaneousspee
h was so poor that 
lassi�
ation of re
ognizer hypotheses was not evaluated. Re
ognition of spontaneousspee
h has not been a fo
us of this thesis, and I did not optimize the re
ognizer for performan
e on this task.
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lassi�
ation results on trans
riptions are quite interesting, and are in
luded here.DataThe domain was tourist-domain queries; speakers were prompted in their native language to ask questionsof an agent about spe
i�
 sights and events, as des
ribed in Se
tion 3.1.2. For spontaneous 
lassi�
ationexperiments, data from all speakers in sets N-A-S, NN-A-S, and C-A-S (6 English, 31 Japanese, and 6Chinese natives) was used.The proper names that appear in the queries are unique to ea
h native speaker group, biasing 
lassi�
ationbased on word identities. When re
ording, ea
h speaker was given a s
enario that in
luded lo
al sight andevent names, information su
h as ti
ket pri
es that should be obtained, and a general des
ription of thesituation. The s
enarios were 
hanged after ea
h 5 to 10 speakers. S
enarios were given to more than onespeaker so that multiple examples of non-native pronun
iations of unfamiliar words would appear in thedata. S
enarios were 
hanged regularly to maximize the phoneti
 breadth of the data. This balan
e isappropriate for data 
olle
tion for LVCSR, but was not the best for 
lassi�
ation. Using part-of-spee
h tagsinstead of word identities, therefore, was not just desirable for better 
lassi�
ation but was ne
essary for afair evaluation. Be
ause my 
on
ern about bias was limited to proper nouns, I performed a third type ofevaluation in whi
h only nouns were repla
ed with their parts of spee
h. Examples of the word-identity,part-of-spee
h, and noun-only part-of-spee
h do
uments are:Do
ument type Example senten
eword-identity What is the business hours of Ti�anyPOS WP VBZ DT NN NNS IN NNPPOSNoun What is the NN NNS of NNPResultsTable 6.2 shows results of L1 
lassi�
ation based on words in spontaneous spee
h. Classi�
ation a

ura
y isshown for various 
ombinations of the three speaker groups (native English, Japanese, and Chinese). Be
ausebaseline 
lassi�
ation a

ura
y is estimated by always 
hoosing the most 
ommon 
lass, and the number ofspeakers in ea
h 
lass in the training and test data varies for the di�erent 
on�gurations, baseline a

ura
y forea
h 
on�guration is spe
i�ed in Table 6.2. For example, for a three-way native/japanese/
hinese de
ision,we had 31 Japanese, 6 native, and 6 Chinese speakers in the training set. The total training set size is 43speakers. If the most 
ommon 
lass is always guessed, the a

ura
y of the 
lassi�er will be 31/43, or .72.Nearly all experimental 
lassi�
ation a

ura
ies are signi�
antly higher than the 
orresponding baseline.In most 
ases, the mixed word-POS (the POSNoun 
olumn in the table) data is most a

urately 
lassi�ed.For binary native/non-native de
isions, 
lassi�
ation was nearly perfe
t. A

ura
y de
reased somewhat for athree-way de
ision; interestingly, it was also for this 
ondition that repla
ing nouns with their part-of-spee
htags did not signi�
antly improve 
lassi�
ation a

ura
y.These results may prompt one to ask why 
lassi�
ation is most a

urate with mixed word-POS data. It



130 CHAPTER 6. HYPOTHESIS-DRIVEN ACCENT CLASSIFICATIONClasses baseline word-identity POS POSNounNative/Japanese 83% 90% 84% 97%Native/Chinese 50 100 100 100Native/Japanese/Chinese 72 90 74 89Native/Japanese/Chinese 72 89 83 89 (n � 3)Native/all non-native 72 87 76 96Native/all non-native 72 96 90 98 (n � 3)Japanese/Chinese 83 93 86 100Japanese/Chinese 83 86 80 100 (n � 3)Table 6.2: Classi�
ation a

ura
y of spontaneous spee
h. Baseline 
lassi�
ation a

ura
ies for the di�erent 
onditionsare given in the table. Figures annotated with (n � 3) indi
ate that trigrams, and not just unigrams and bigrams,were used for 
lassi�
ation.would not be unusual to expe
t that sin
e the noun repla
ement was done to 
ompensate for a bias in the data,this 
on�guration would result in a

ura
ies somewhere between those of pure word and pure part-of-spee
hbased 
lassi�
ation. The answer may be that the mixed 
ondition provides just enough generalizability whileexploiting the dis
riminative power of spe
i�
 non-noun word sequen
es. This intuition is supported by ananalysis of features important in 
lassi�
ation; singular nouns are highly indi
ative of non-native spee
h,while 
ertain personal pronouns and asso
iated verb forms su
h as \you" and \am" are indi
ative of nativespee
h. The former asso
iation would not be apparent if only word identities were used, and the latter wouldbe hidden if all words were repla
ed by their parts of spee
h. The a
tual word and part-of-spee
h sequen
esthat 
ontributed most to dis
rimination will be dis
ussed in detail in Se
tion 6.5.6.4.5 Experiment 13:Phone-based 
lassi�
ation of read spee
hPhone-based 
lassi�
ation experiments mirrored the word-based 
lassi�
ation experiments for read spee
h.Only hypotheses were evaluated be
ause phone-level manual trans
riptions of all the data were not available.Whereas for word-based 
lassi�
ation word identities were repla
ed with their parts of spee
h for a moregeneral model, for phone-based 
lassi�
ation phone identities were repla
ed with the symbols C (for 
onso-nants) and V (for vowels). Be
ause the feature set in this latter 
ase only had two members, the 
lassi�erwas permitted to 
onsider sequen
es of length up to 5.DataIn phone-based 
lassi�
ation experiments, the features used as input to the 
lassi�er were phone identitiesand 
lasses (vowel or 
onsonant). Phoneme hypotheses for data sets N-E-R and NN-E-R were generated by



6.4. EXPERIMENTS 131Condition phone phone 
lassA 100 86B 92 80C 88 71D 76 82Table 6.3: Classi�
ation a

ura
y of read spee
h. Baseline is 58%.the ISL-BN re
ognizer that produ
ed the word hypotheses, with the standard lexi
on repla
ed by one inwhi
h ea
h phoneme was treated as an independent word, and the word language model repla
ed by a phonetrigram language model. This may not be the most a

urate phoneme re
ognizer, but it did not require anyadditional training of a
ousti
 models3 and was 
ompletely suÆ
ient for the task, as will be evident.ResultsResults for phone-based 
lassi�
ation are shown in Table 6.3. A

ura
ies of phone-identity 
lassi�
ation arehigher than those for phone 
lass (C/V) 
lassi�
ation ex
ept when the training data was the 
ommon arti
leand the test data was disjoint arti
les. This suggests that a phone-based model built from multiple examplesof a limited set of phone 
ontexts does not generalize well, although performan
e of that same model isperfe
t on new renditions of the 
ommon arti
le.The biggest di�eren
e between word-based and phone-based 
lassi�
ation is seen when training andtesting arti
les are all disjoint. With data like this, the best performan
e of word-based 
lassi�
ation is 77%,using part-of-spee
h tags. Classi�
ation of phone identities is mu
h more a

urate, at 92%.6.4.6 Con
lusions from 
lassi�
ation experimentsThe results in these experiments show that 
lassi�
ation of re
ognizer hypotheses 
an be extremely a

uratefor both binary and multilateral de
isions. The test 
ondition that is most likely to be of general interest forappli
ation to spee
h re
ognition is 
ondition B, in whi
h all training and test arti
les are disjoint.6.4.7 A

ent-dependent re
ognitionThe obje
tive of L1 
lassi�
ation, of 
ourse, is to trigger a swit
h in the way spee
h is pro
essed. Fornative speakers, and possibly non-native speakers with 
ertain 
hara
teristi
s, standard a
ousti
 models,language models, and lexi
on would be used. If the speaker is found to be non-native, spe
ialized modelingwould be invoked. In this se
tion, I des
ribe how L1 
lassi�
ation would �t into an LVCSR system, showing3Although no new a
ousti
 models were trained for the phoneme re
ognizer, be
ause phones were treated as individual wordsand the internal representation in the re
ognizer suppresses 
ross-word 
ontexts of distan
e greater than one, the 
ontextualmodels are no longer quinphone models but rather triphone models.



132 CHAPTER 6. HYPOTHESIS-DRIVEN ACCENT CLASSIFICATIONNon-native Speakers Native Speakersnative non-native native non-nativeSpeaker models models Speaker models models221 82.2 59.5 206 20.1 51.6227 47.0 39.1 202 22.8 53.4222 58.8 50.5 201 26.3 59.1208 61.6 47.5 203 29.7 63.6218 59.3 46.6 204 20.3 62.1216 62.8 47.0 240 18.5 54.2220 62.6 53.0 207 19.4 62.5225 77.0 59.4 205 15.0 49.5212 66.5 52.7209 64.7 64.7AVG 64.3 52.0 AVG 21.5 57.0Table 6.4: Performan
e of native and non-native a
ousti
 models on native and non-native speakers, given in termsof WERhow re
ognition a

ura
y would improve with optimal 
lassi�
ation and demonstrating that my methodapproa
hes this level of performan
e.Gold standardThe gold standard for a

ent 
lassi�
ation in an a

ent-dependent re
ognition system is measured by 
al
ulat-ing overall system performan
e given optimal 
lassi�
ation performan
e. At this point, I am only 
onsideringan a
ousti
 model swit
h, so optimal 
lassi�
ation performan
e would mean identifying a speaker as nativeif and only if that speaker is re
ognized better by the native a
ousti
 models.Re
ognition a

ura
y of native and non-native a
ousti
 models is shown in Table 6.4. The optimal resultfor ea
h speaker is highlighted. In this 
ase, native speakers are always re
ognized best by the native modelsand non-native speakers are always re
ognized best by the non-native models. If the best-performing modelset is always used, the overall WER for all 18 speakers will be 38.7%, 
ompared with 45.6% if the nativemodels are always used. This is the gold standard for overall system performan
e whi
h I hope to approa
hwith automati
 
lassi�
ation.System implementation and evaluationTo implement on-the-
y a

ent-dependent re
ognition, I used the output of my naive Bayes L1 
lassi�er todetermine whether to use a
ousti
 models optimized for native or non-native spee
h for a �nal re
ognitionpass. Ideally, in su
h a system one would like to use disjoint sets of utteran
es for 
lassi�er training and
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hing Hypothesis-driven swit
hingWER 45.6 54.2 38.7 40.3Table 6.5: Overall re
ognizer performan
e when L1 
lassi�
ation is used to swit
h to non-native a
ousti
 modelstesting, so I will use the phone-based 
lassi�
ation, whi
h a
hieved the best performan
e for disjoint arti
les.The algorithm for running a

ent-dependent re
ognition is as follows.1. Generate a set of initial phone hypothesis using native 
ontext-dependent a
ousti
 models, a lexi
onwith entries representing phonemes, and a language model built from phoneme distributions in thelanguage model training 
orpus.2. Pass the set of hypotheses through a 
lassi�er that has been trained on phoneme hypotheses of nativeand non-native spee
h3. If the hypothesis is 
lassi�ed as native, re-re
ognize the spee
h with a word lexi
on and a word languagemodel4. If the hypothesis is 
lassi�ed as non-native, re-re
ognize the spee
h with 
ustomized a
ousti
 models,a word lexi
on, and a word language model.This pro
ess 
an be streamlined by generating word hypotheses in step 1 and 
lassifying based on thosehypotheses; if the speaker is judged to be native, the initial hypothesis will be
ome the �nal hypothesis.Be
ause the 
lassi�
ation a

ura
y for word tokens is not as high as for phoneme tokens when testing ondisjoint senten
e sets, one 
ould boost system performan
e either by using a 
ommon set for 
lassi�
ation orbiasing the 
lassi�er to prefer false negatives to false positives. I have found that falsely identifying nativespeakers as non-native is more harmful than falsely identifying non-native speakers as native; the mismat
hbetween the native spee
h and the non-native a
ousti
 models is severe.Table 6.5 shows the performan
e of the on-the-
y a

ent-dependent re
ognition system, 
omparing itwith the gold standard des
ribed above. One native speaker was in
orre
tly 
lassi�ed as non-native; allother 
lassi�
ations were 
orre
t.6.5 Dis
riminative Features in Non-native Spee
hIn order to understand the 
lassi�er's behavior, it is helpful to look at the individual word, part-of-spee
h,phone, and phone 
lass n-grams that 
ontribute most to su

essful dis
rimination. Rainbow provides this inthe form of a list of tokens that have a high probability of being found in do
uments in 
lass A and a lowprobability of being found in do
uments in 
lass B. This term is known as the log-odds ratio.
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hNative Non-native Native Non-nativeNMFS the;the noun(pl) noun(sing)the;NMFS in;in determiner prepositionnineteen;hundreds the noun(pl);preposition preposition;prepositionhundreds;now in adje
tive;noun(pl) noun(sing);noun(sing)hundreds that gerund;parti
le parti
le;prepositionhabitats;and habitat;and noun(s);verb(3s) 
ardinal#;
ardinal#'ll;grow �shers noun(pl);modal verb(past)Table 6.6: Most dis
riminative word and part-of-spee
h n-grams in trans
ripts of read spee
h, sorted by log-oddss
ore6.5.1 Trans
riptions of read spee
hTable 6.6 shows the words and parts of spee
h that were important in dis
riminating between native andnon-native trans
ripts of the shared arti
le, sorted by log-odds s
ore. The top word indi
ating native spee
hwas \NMFS," whi
h was an a
ronym for the National Marine Fisheries Servi
e. The native speakers alwaysread this smoothly, while the non-native speakers often repeated and misread letters. The top n-gram forthe non-native speakers, on the other hand, was a repetition of the determiner \the." Non-native speakersfrequently repeated words in their reading, possibly be
ause they were unfamiliar with the next word. Theterm \nineteen hundreds" also played an important role in identifying native spee
h. This token was writtenin numerals in the text (\1900s"), and non-native speakers often did not know how to read it aloud. Whethera speaker read \habitats" or \habitat" (the 
orre
t word was \habitats") was another 
lue to nativeness
lass. Reading errors involving singular-plural 
onfusion were extremely 
ommon in the non-native spee
h,and relatively rare in the native spee
h.The singular-plural distin
tion was also important in dis
riminating based on part of spee
h. A numberof plural nouns was found to be the primary indi
ator of nativeness. It is important to keep in mind at thispoint that speakers were all reading the same arti
le; the fa
t that plural nouns were found to be indi
ativeof native spee
h does not ne
essarily indi
ate a preferen
e on the part of native speakers for plural nouns,but rather a tenden
y of non-native speakers to misread plural nouns as singular in a text where plural nounswere frequent.6.5.2 Re
ognizer hypotheses of read spee
hTable 6.7 shows the important word and part-of-spee
h n-grams in dis
riminating between re
ognizer hy-potheses of the shared read arti
le. The most striking di�eren
e, and the one most en
ouraging for furtherwork in 
lassi�
ation of re
ognizer output, is the word \salmon." This was an arti
le about salmon popula-
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hNative Non-native Native Non-nativethe that noun(pl) verb(past)salmon and noun(pl);preposition personal pronounwill to adje
tive;noun(pl) noun(sing)with it noun(pl);modal 
oordinating 
onjun
tionsalmons we adje
tive \to"the;NMFS someone determiner;adje
tive noun(s);verb(past)habitats some determiner;noun(pl) personal pronoun;verb(past)Table 6.7: Dis
riminative word and part-of-spee
h n-grams in re
ognizer hypotheses of read spee
htions, so this token appeared many times. In the native spee
h, it was generally re
ognized 
orre
tly. In thenon-native spee
h, however, it was usually not, but was rather misre
ognized as \some," \someone," and\simon," among other words. Misre
ognized native produ
tions of the word \salmon," on th e other hand,did not tend to be misre
ognized this way, but rather as the plural \salmons," whi
h, in
identally, is not the
orre
t plural form and did not appear in the arti
le but was allowed in the sear
h be
ause it was produ
edon o

asion by non-native speakers.Turning to the part-of-spee
h-based 
lassi�
ation in the right-hand part of Table 6.7, we 
an see thatplural nouns 
ontinue to play a role in nativeness de
isions. This is true for the noisy native data set aswell as the baseline native data set. The top token on the non-native list is the past tense verb. It is notobvious why this form is so indi
ative of non-native spee
h. Past tense verbs also help to identify non-nativespee
h in trans
ripts, indi
ating that non-native speakers are indeed on o

asion reading past tense formsinappropriately, but the asso
iation is mu
h stronger in the re
ognizer output. My hypothesis is that thenon-native speakers move less smoothly from word to word, and that epentheti
 vowels, unnatural 
onsonantreleases, and inter-word human noise are taken by the re
ognizer to be a past tense ending.6.5.3 Spontaneous spee
hDis
riminative tokens for spontaneous spee
h are given in Table 6.8. The word tokens in
lude tokens rep-resenting singular, plural, and proper nouns, avoiding overtraining on spe
i�
 pla
e names. Be
ause this isspontaneous spee
h, we are no longer looking at reading errors, but rather genuine preferen
es in word usagefor the di�erent speaker groups. The non-native data set 
onsists of speakers of both Chinese and Japanese.Nouns, spe
i�
ally singular, non-proper nouns, are a strong indi
ator of non-nativeness. I have observeda tenden
y on the part of the non-native speakers to form senten
es around noun phrases, saying, forexample, \what is the pri
e of the ti
ket of the show" where a native speaker might say \how mu
h doesthe show 
ost." Native speakers use more personal pronouns in their queries to the agent, as eviden
edboth by the importan
e of the personal pronoun in the part-of-spee
h-based 
lassi�
ation and related verb
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hNative Non-native Native Non-nativeam noun(s) \to";verb(base) noun(sing)proper noun the preposition wh-adverb
an;you the;noun(s) personal pronoun verb (3s)more is;the verb(base) verb(3s);determinermore;noun is adje
tive;noun(pl) determinergive;me noun(s);noun(s) adje
tive(
omp.);noun(s) wh-adverb;verb(3s)give how noun(sing);modal determiner;noun(sing)Table 6.8: Dis
riminative word and part-of-spee
h n-grams in trans
riptions of spontaneous spee
hPhones Phone 
lassesNative Non-native Native Non-nativedh ih CCC Vth hh CC VVer ao CCCC VCCVaxr iy C VCax ow CCCCC CVVax;th aa CCCCV CV
h ih;ih VCCCC VVCxn ng CVCCC VCCVCjh ae CCCVC CVCCVdh;ey hh;ih CCCV CVVCTable 6.9: Dis
riminative phone and phone 
lass n-grams in phoneme hypothesesforms like \am." Senten
es like \I'm interested in seeing the Empire State Building, 
an you give me moreinformation" are 
ommon in the native data, where non-native speakers showed a strong preferen
e forsimple 
onstru
tions like \how do I go to the Empire State Building." This tenden
y also partly explainsthe importan
e of wh-adverbs (how, when, where, why) in identifying non-native spee
h.6.5.4 Dis
riminative phone sequen
esPhone identitiesTable 6.9 shows the phone unigrams and bigrams that were most dis
riminative in this test 
ase. Mostof the phones indi
ative of native spee
h are ones that are known to be diÆ
ult for non-native speakers,parti
ularly speakers of Japanese. R-
olored vowels, redu
ed vowels, and the interdental 
onsonants are
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lassi
 examples; when running phoneme re
ognition with no lexi
al model, these phonemes are simplynot found in Japanese-a

ented spee
h. Instead, simple vowels like [A℄ and [i℄ are hypothesized with greatfrequen
y.There are two surprising entries in this table, however. First, the voi
ed a�ri
ate [�℄. /�/ is 
ommonin Japanese, and while a narrow phoneti
 trans
ription would make distin
tions between the realizations inEnglish and Japanese (Akamatsu, 1997), the di�eren
es are not at all obvious to the untrained ear. Thisphone is not one of the ones that would �rst 
ome to mind when 
ompiling a list of 
ommon pronun
iationerrors made by Japanese natives, perhaps be
ause native English speakers are not sensitive to the kinds ofdeviations in this phone in Japanese-a

ented English (as they might be in German-a

ented English). There
ognizer, however, apparently does per
eive a signi�
ant di�eren
e, whi
h is a small pie
e of eviden
e tosupport automati
, rather than linguisti
ally-motivated, modeling of pronun
iation errors. The 
ontrovertingeviden
e is that word-level substitution and deletion errors involving /�/ are not frequent, and /�/ doesnot show a high 
onfusability with any one parti
ular phone.The other puzzling observation is that [�℄ is indi
ative of Japanese spee
h. This phoneme is not foundin Japanese, and many Japanese speakers have a tenden
y to substitute a ba
k-
entral low vowel. Thissubstitution often does not a�e
t intelligibility. Here we have the reverse of the [�℄ situation: a phone whi
hone might predi
t would 
onsistently undergo substitution, and might be better represented by another phonein the phoneme inventory. This is not merely linguisti
 
onje
ture; both trained phoneti
ians and ordinarytrans
ribers marked many instan
es of [�℄ as having been mispronoun
ed as [A℄. Nevertheless, the re
ognizer�nds this phone more frequently in re
ognizer hypotheses of non-native spee
h than in hypotheses of nativespee
h. This di�eren
e may be related to the tenden
y of native speakers to neutralize this phoneme, andothers, in unstressed syllables and weak forms of words. It 
ould be that native realizations of both [�℄ and[A℄ in 
uent spee
h are often redu
ed to the point that they sound like [�℄ to the re
ognizer, if a phoneme isdete
ted at all. Non-native realizations, on the other hand, may be of fuller quality.Table 6.10 shows results of phoneme re
ognition on native and non-native realizations of the word \
an,"from the senten
es \Humans and salmon 
an pea
efully 
oexist" and \Industry 
an be barred from usingland." There is often no vowel re
ognized in the native realizations of this weak-form word; in the one 
asethat there is it is a redu
ed vowel. However, in the non-native realizations, there is nearly always a full vowelre
ognized by the phoneme re
ognizer, almost always /�/.While this is an interesting problem, the veri�
ation of my hypothesis will be left to future exploration.Phone 
lassesThe 
onsonant-vowel strings that are hypothesized are not at all surprising when 
onsidering the two groupsI am attempting to distinguish. Frequent 
onsonants and 
onsonant 
lusters are 
lear indi
ators of nativespee
h, while frequent vowels and CV-type syllables are indi
ators of Japanese-a

ented spee
h.The reader may be surprised by the long sequen
es of 
onsonants that were found to be indi
ative of native
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an pea
efully 
oexist Industry 
an be barredNative Non-native Native Non-nativek n k ae n k k ae mk m n iy ae n k k ae mk m t iy ae n k k ae mk n k ae m k n k nk n k ae m k k ae nk ax n ih ae n k k aek n k eh m k sh ae mTable 6.10: Phoneme re
ognition on native and non-native realizations of 
anspee
h. It is important to remember that the phone hypotheses represent what the re
ognizer per
eives, andnot ne
essarily what the user intended to utter. 5-
onsonant sequen
es are not supposed to be 
ommon inEnglish. However, it is easy for short or redu
ed phones to be absorbed by the models of the surroundingsounds. Native speakers are also notorious for not obeying the arti
ulatory and phonologi
al rules of theirlanguages; modeling pronun
iation variation in 
uent native spee
h is the subje
t of a growing body ofresear
h (Finke and Waibel, 1997; Liu and Fung, 2000b; Nakajima et al., 2000; No
k and Young, 2000).What we see from the list of dis
riminative phone 
lass sequen
es in Table 6.9 is that be
ause of propertiesof the re
ognizer and of the spee
h, a reasonably 
onstrained phoneme re
ognizer �nds phone 
lass sequen
esin native spee
h that it does not in non-native spee
h, and those sequen
es are highly dis
riminative.6.6 Appli
ation to language tutoringAlthough this method was originally designed to 
lassify speakers as native or non-native, one 
ould imaginealso using it to o�er feedba
k to a speaker who is learning to speak a language. Those features that arefound to be most dis
riminative in terms of de
iding whether a speaker is native or non-native 
ould bethought of points that the user might wish to improve. Rather than o�er feedba
k on spe
i�
 produ
tionsof phones, su
h a system would �rst identify general problem phones or phone sequen
es for ea
h speaker,and then present exer
ises to the user that target those phones.To determine the pronun
iation problems that are most damaging for the user, he would �rst be askedto read from a text. Underspe
i�ed re
ognition hypotheses for that text would then be treated as the solenon-native training do
ument to be 
ontrasted with the native training do
uments. Be
ause we 
an assumethat the speaker is non-native, building a robust 
lassi�
ation model is not as important as identifying phonerealizations that distinguish the speaker from the native training set.Taking underspe
i�ed alignment results for the shared set of arti
les (this is a 
ase in whi
h having alltraining and test speakers read from the same text is desirable, as a de
ision will be based only on phone



6.7. SUMMARY AND CONCLUSIONS 139221 227 222 208 218 216 220 225 212 209ax ax ax ax ax ax ax ax ax axdh axr ih ah ih dh ae axr ae axraxr dh ae dh ah ih ih dh ay ihey ah axr axr axr axr axr ae ey dhah th dh th ey ah aw th iy eray ey ah er ix ae dh ah axr theh er ey ey dh th hh eh eh eyth ix xl ng ay er eh ix dh xlxl ih th ix xl ey th er aw aesh ae uh ae er sh ah hh ah awTable 6.11: Phones whi
h are found to be most problemati
 for ea
h speaker using the 
lassi�
ation-based methodrealization and not on phone distribution), I measured native/non-native 
lassi�
ation a

ura
y on phoneunigrams to be 100% for a 20-trial held-out test. Underspe
i�ed alignment hypotheses, then, appear too�er a sound basis for 
lassi�
ation. If we look at the phones that are found to be dis
riminative whenthe non-native model is built from the spee
h of a single speaker, we 
an see whi
h realizations are mostdamaging to him in terms of di�erentiating his spee
h from that of native speakers. Table 6.11 shows theten most problemati
 phones for ea
h speaker as 
al
ulated using this method.This is only an idea for an appli
ation of a

ent 
lassi�
ation; to establish its validity as a pedagogi
altool one would have to measure how well the \damaging phones" identi�ed by the 
lassi�er 
orrelate withhuman per
eption of a

ent, and also determine whether speakers' pronun
iation improves with use of thesystem. However, atta
king the problem of pronun
iation tutoring by �nding the areas that most mark aspeaker as non-native 
ontrasts with the more 
ommon approa
h of analyzing individual arti
ulations, andis an interesting dire
tion for future work.6.7 Summary and 
on
lusionsIn this 
hapter I have shown that high-a

ura
y text-based nativeness 
lassi�
ation 
an be implemented andimproves overall system performan
e signi�
antly. A text-based 
lassi�
ation method, one that operates onthe re
ognizer hypotheses as opposed to a
ousti
 features, was 
hosen be
ause of both its novelty and thepotential for its appli
ation in situations when a

ess to a
ousti
 features is not desirable. For example,the output of the 
lassi�er des
ribed in this 
hapter 
ould be used to swit
h to a non-native grammar forparsing, or to separate native from non-native utteran
es in language modeling; it 
ould also be paired witho�-the-shelf re
ognition software that does not allow a

ess to a
ousti
 features. Although similar methodshave been used to identify the author and sour
e of publi
ation of a written text, somewhat similar tasks,



140 CHAPTER 6. HYPOTHESIS-DRIVEN ACCENT CLASSIFICATIONto my knowledge, this is the �rst time naive Bayes based text 
lassi�
ation te
hniques have been applied to
lassi�
ation of spoken language.The method des
ribed here performs well in 
lassifying trans
riptions of spontaneous spee
h for both2-way (native/non-native, Japanese/Chinese, et
.) and 3-way (Native/Japanese/Chinese) distin
tions. Per-haps more surprising is that both trans
riptions and hypotheses of read spee
h 
an also be 
lassi�ed withhigh a

ura
y. In the CND task, all arti
les were originally written by native speakers; The fa
t that the
lassi�er 
an identify the reader as native or non-native shows that the types of reading errors made by nativeand non-native speakers are highly dis
riminative. The most interesting observation is that hypotheses are
lassi�ed more a

urately than trans
riptions. This 
learly says that the re
ognizer is responding di�erentlyto native and non-native spee
h.Stopwords, those extremely 
ommon words that are often ex
luded from 
onsideration in 
lassifyingnative-produ
ed text, were found to be extremely dis
riminative. Pruning the 
lassi�
ation vo
abulary toa list of only 70 words brought a

ura
y of the most diÆ
ult task, 
lassi�
ation of speakers as native ornon-native when ea
h reading unique arti
les, to 87%.Phoneme re
ognition hypotheses were in general a better sour
e of input data than word re
ognitionhypotheses. If a mandatory two-pass pro
ess in an option, the re
ognizer 
an be used to �rst produ
e aphone hypothesis, and then re-re
ognize the utteran
e at the word level with the appropriate a
ousti
 models.On
e a speaker has been 
lassi�ed as native or non-native, the system 
an re-re
ognize the utteran
eusing 
ustomized a
ousti
 models. For our test set (N-E-R + NN-E-R), automati
 model swit
hing yieldeda relative improvement of 9% over using native a
ousti
 models for all speakers.



Chapter 7
Con
lusionNon-native spee
h is very diverse. Even restri
ting this study to a spe
i�
 L1 group, pro�
ien
y level,task, and mode of spee
h, we have seen tremendous intra- and inter-speaker variation in the produ
tion ofspoken language. As speakers traverse the learning 
urve, they experiment with sounds and words, sometimesgenerating 
ommon patterns and sometimes generating one-of-a-kind events that defy 
lassi�
ation. Be
ausea

urate re
ognition depends on �nding and modeling spee
h patterns, this diversity poses a substantial
hallenge for LVCSR.The results presented in this dissertation show that while there are many elements of non-native spee
hthat remain diÆ
ult to model, a small amount of a
ousti
 data 
an be put to e�e
tive use in de
reasingre
ognition error for non-native speakers. In this 
hapter, I summarize major results and 
ontributions anddis
uss promising dire
tions for extensions of this work.7.1 SummaryIn this se
tion, the prin
ipal results and observations from ea
h 
hapter in the main body of the dissertationare outlined.Chapter 3 Chara
terization of non-native spee
h� Native and non-native spee
h 
an be distinguished using a number of qualitative measures, in-
luding{ Word frequen
y{ N-gram frequen
y{ Perplexity{ KL divergen
e (more variability in non-native spee
h than native spee
h)� Vo
abulary growth rate for non-native speakers higher for native speakers, both individually andin the aggregate� Use of 
ontra
tions is di�erent for di�erent L1 groups� Frequent pauses in non-native spee
h a

ount 
ontribute to a signi�
antly slower overall spee
hrate and inhibit 
ross-word 
oarti
ulation141



142 CHAPTER 7. CONCLUSION� Reading errors are frequent in non-native spee
h; 2% of words in spee
h do not mat
h the sour
etext� Substitutions in reading are most frequently morphologi
al variants for non-natives and ortho-graphi
ally similar words for natives� Native judges show high re
all but low pre
ision dete
ting non-nativeness in trans
ribed utteran
esChapter 4 A
ousti
 modeling� Context-dependent models perform better than 
ontext-independent models for low-pro�
ien
yLVCSR� Optimal language model settings for native and non-native spee
h are signi�
antly di�erent� Phoneti
 
onfusion o

urs in the same pairs as native spee
h, but is more extreme� Polyphone 
overage de
reases for both native and non-native speakers when non-
anoni
al pro-nun
iations are allowed both for native and non-native speakers� MAP adaptation performs better than MLLR for adaptation to the non-native 
ondition with alarge adaptation data set� A

ented L2 data is a better sour
e of adaptation data than L1 data� Additional forward-ba
kward iterations with L2 data give the greatest performan
e gains, at 30%relative word error rate redu
tion� Interpolation of retrained models with baseline models improve performan
e furtherChapter 5 Lexi
al modeling� In a large-vo
abulary system, adding pronun
iation variants to the lexi
on before de
oding 
anseverely degrade re
ognizer performan
e. A
ousti
 res
oring after adding variants to the latti
eresults in superior re
ognition a

ura
y� For the task and speakers that this dissertation 
enters on, neither data-driven nor linguisti
ally-motivated approa
hes to variant derivation 
ontribute to signi�
antly redu
ed WER. This maybe true of lower-pro�
ien
y spee
h in general� Allowing variant pronun
iations that are asso
iated with a parti
ular L1 group during speakeradaptation does not appear to signi�
antly a�e
t the quality of the adaptationChapter 6 A

ent 
lassi�
ation� Naive Bayes 
lassi�
ation 
an be used to make a

urate bilateral and multilateral de
isions aboutthe speaker's L1� Re
ognition output is more reliably 
lassi�ed than trans
ripts� Spontaneous spee
h is more reliably 
lassi�ed than read spee
h� Using a mixture of words and part-of-spee
h tags maximizes 
lassi�
ation a

ura
y� Phone-based 
lassi�
ation outperforms word-based 
lassi�
ation when training and test texts areall disjoint� Classi�
ation results 
an be used to swit
h between native and non-native a
ousti
 models for asigni�
ant redu
tion in overall WER7.2 Major 
ontributionsPrimary 
ontributions of this work 
an be summarized as follows.



7.2. MAJOR CONTRIBUTIONS 143A 
hara
terization of low-to-mid pro�
ien
y Japanese-in
uen
ed English. Native speakers ofJapanese are of great interest in non-native spee
h re
ognition; they represent a large potential audien
efor language-learning software, and 
omparatively low speaking pro�
ien
ies for equivalent study of Englishmakes their spee
h a greater 
hallenge for LVCSR than that of many other L1 groups. The properties ofspee
h known to be important for LVCSR have not been thoroughly examined for this group, however.This dissertation provides an extensive analysis of linguisti
 features su
h as syntax, lexi
al 
hoi
e, 
uen
y,and inter-speaker variation, 
omparing read and spontaneous spee
h, for lower-pro�
ien
y native speakersof Japanese.A frame of referen
e for 
hara
terizing language use in other non-native speaker groups.While this dissertation fo
uses on one speaker group, the metri
s used for spee
h 
hara
terization are generaland similar analyses 
an be performed for any native language or pro�
ien
y level. Limited three-way
omparisons between native speakers of English, Japanese, and Mandarin are provided to demonstrate howmultilingual analysis 
ould be approa
hed.A 
ontrolled study of spee
h errors and LVCSR performan
e for a spe
i�
 L1 ba
kground,English pro�
ien
y, spee
h mode and task. It is known that non-native spee
h varies widely, and thatvariation has a negative e�e
t on re
ognition a

ura
y. Most examinations of non-native LVCSR, however,target either high-pro�
ien
y speakers or a range of speaker pro�
ien
ies. By 
ontrolling these variables,this dissertation is able to provide strong statements about the 
hara
ter of the data and its response tostatisti
al modeling and re
ognition.An evaluation of adaptation and training methods and data sour
es for non-native spee
hre
ognition. Through a 
omparison of adaptation methods, training data sour
es (L1 vs. L2), and trainingdata amounts, this dissertation shows how 
ompensation for foreign a

ent 
an be expe
ted to improve withdi�erent modeling te
hniques.Signi�
ant improvements in LVCSR performan
e for low-pro�
ien
y read spee
h. The ex-periments des
ribed here resulted in a 30% relative improvement in re
ognizer a

ura
y, 
losing nearly halfof the gap between performan
e on native and non-native spee
h.A 
omparison of linguisti
ally-motivated and data-driven approa
hes to pronun
iation mod-eling for non-native spee
h. Although this dissertation did not �nd that lexi
al modeling improvedre
ognition signi�
antly for this data set, it provides a detailed 
omparison of variant generation and prun-ing te
hniques that 
an be used as a basis for pronun
iation modeling for other pro�
ien
ies and L1 groups.A novel and a

urate method for dete
ting non-native utteran
es. A
ousti
 and lexi
al modelingexperiments were designed to maximize re
ognizer performan
e for a L1-spe
i�
 re
ognition system. If this



144 CHAPTER 7. CONCLUSIONre
ognizer is then to be used in 
onjun
tion with a native system or other L1-spe
i�
 systems, a model-swit
hing strategy must be employed. The method presented in this dissertation is extremely a

urate inbinomial and multinomial 
lassi�
ation of both re
ognizer hypotheses and trans
riptions.7.3 Future dire
tionsThe resear
h presented in this dissertation only begins to address the 
omplex problem of modeling the diversepopulation of non-native speakers. While I have tried to explore the issues that I did 
hoose thoroughly,there were many tempting paths that I 
hose, in the interest of time, not to follow. A few are listed below.7.3.1 Allophoni
 modelingAlthough the implementation of allophone tree adaptation dis
ussed in Chapter 4 was not e�e
tive for thisdata set, I believe that allophoni
 modeling has a great deal of promise. A more sophisti
ated allophoni
adaptation method may be able to 
apture L1-spe
i�
 alternations in phoneti
 environments that o

urin both L1 and L2. An allophoni
 model that en
odes L1-dependent variation is parti
ularly appropriatefor systems that target a spe
i�
 speaker group; one might expe
t that the in
uen
e of environment onphoneti
 realization, of whi
h most speakers are unaware, is the least likely to be a�e
ted by speaker-internal in
onsisten
y. If allophoni
 alternations are indeed 
onditioned on the same 
ontexts when speakingL2 as when speaking L1, adaptation of all polyphones, and not just those that are introdu
ed through phoneinsertion, deletion, and substitution, may 
ontribute to a de
rease in WER.7.3.2 Speaker dependen
ySpeaker adaptation, whi
h has been found to greatly improve re
ognizer performan
e, targets speaker-spe
i�
e�e
ts in the a
ousti
 model. Speaker dependen
y in the lexi
al model, however, has not been addressed.Experiments in lexi
al modeling suggest that although global modeling does not improve re
ognizer perfor-man
e, individual speakers are modeled better by some methods than others, and adapting the lexi
al modelbased on speaker-dependent properties may result in an in
rease in re
ognition a

ura
y.7.3.3 Extension to other languagesIn order to present a 
ontrolled study of L1-dependent LVCSR, only native speakers of one language weretargeted in this dissertation. The overhead involved in 
olle
ting a
ousti
 data for multiple languages, andensuring relative uniformity of language ba
kground and skill among speakers, also prevented the investiga-tion from extending the range of L1s beyond the limited study of Mandarin natives presented in Chapter 3.Whether the same adaptation methods are e�e
tive for speakers of other languages, and if not what that



7.4. ILLUSTRATIVE EXAMPLES 145tells us about both L1-spe
i�
 in
uen
es on L2 and the nature of non-native spee
h in general, has been leftto future exploration.7.3.4 Language modelingAdaptation of the language model, whi
h des
ribes likely sequen
es of words, has not been addressed inthis dissertation. It was observed, however, that speakers of 
ertain L1s show 
ommon patterns in senten
e
onstru
tion. It is possible that re
ognizer performan
e 
ould be improved by in
orporating these patternsin the language model, and language model adaptation is a natural extension of this work.7.4 Illustrative examplesWith all of the word error rate �gures, performan
e 
harts, and adheren
e to LVCSR evaluation 
onventionsthat prevent us from making simple observations about the spe
i�
 errors seen in the test set (therebyavoiding, to use a timely analogy, \tea
hing to the test"), it is easy to lose tra
k of what the 
hanges inperforman
e that we are seeing really mean. The examples represent the re
ognition result, after adaptation,of one randomly 
hosen utteran
e for some of the models that have been dis
ussed in this dissertation.Misre
ognized words are shown in itali
s.



146 CHAPTER 7. CONCLUSIONReferen
e environmentalists the government and ordi= ordinary folks team up to save the northwest'swon= wondrous wild salmonBaseline and that meant that the state department and the 
ourt that ordinary folks teamed up tosay that no s
ientist but under a 
ight attendantPDTS1 environment that against the government and a quarter ordinary folks teamed up to savethe northwest's one hundred 
ight attendantMLLR-3 environment that against the government and all that ordinary folks teamed up to seethat and also based on wonders like exxonMLLR-15 environment that the state department and the 
ourt that ordinary folks teamed up to seethat northwest one wonders like exxonRebuild-L2 environment baptist the government and order ordinary folks team up to save thenorthwest's one hundred slide onMAP-15 environment the list the government and 
alled ordinary folks team up to save thenorthwest's one wonderful like sonRetrain and that meant the least the government and ordered ordinary folks teamed up to save the+interp northwest's one wonders like sonLexi
al environmental risks the government and all that ordinary folks team up to save themodeling northwest's one wonders wild sonThe progression through better and better stages of modeling is evident from these examples. Wemove from a hypothesis that really gives the reader no 
lue as to what the speaker was trying to say to ahypothesis that is extremely 
lose, showing eviden
e of 
onfusion surrounding similar phones (/l,r/ and /t,k/in \environmentalists"/\environmental risks"), word fragments (\ordi=" re
ognized as \all that," \won="re
ognized as \one"), and unusual words (\wondrous," \salmon").While there are still 
learly problems that remain to be resolved, the experiments in this dissertationshow how mu
h ground 
an be 
overed with a small amount of data and te
hniques that are for the most partwidely used. We may never be able to 
oax native-level performan
e out of the re
ognizer for low-pro�
ien
ynon-native spee
h, but this work suggests that spee
h re
ognition for non-native speakers is a realisti
 goal,and outlines analysis and adaptation methods that will 
ontribute to rea
hing it.
1The abbreviations used here are the same as those given in the summary of a
ousti
 modeling results in Figure 4.14 onpage 96



Appendix AData 
olle
tion andspeaker pro�
ien
y evaluationA.1 SPEAK rating 
riteriaPronun
iation0 Frequent phonemi
 errors and foreign stress and intonation patterns that 
ause the speaker to beunintelligible.1 Frequent phonemi
 errors and foreign stress and intonation patterns that 
ause the speaker to beo

asionally unintelligible.2 Some 
onsistent phonemi
 errors and foreign stress and intonation patterns, but speaker is intelligi-ble.3 O

asional nonnative pronun
iation errors, but speaker is always intelligible.Grammar0 Virtually no grammati
al or synta
ti
al 
ontrol ex
ept in simple sto
k phrases.1 Some 
ontrol of basi
 grammati
al 
onstru
tions but with major and/or repeated errors that interferewith intelligibility.2 Generally good 
ontrol in all 
onstru
tions with grammati
al errors that do not interfere with overallintelligibility.3 Sporadi
 minor grammati
al errors that 
ould be made inadvertently by native speakers.Fluen
y0 Spee
h is so halting and fragmentary or has su
h a nonnative 
ow that intelligibility is virtuallyimpossible.1 Numerous nonnative pauses and/or a nonnative 
ow that interferes with intelligibility.2 Some nonnative pauses that do not interfere with intelligibility3 Spee
h is smooth and e�ortless, 
losely approximating that of a native speaker.Comprehensibility0 Overall 
omprehensibility too low in even the simplest type of spee
h.1 Generally not 
omprehensible be
ause of frequent pauses and/or rephrasing, pronun
iation errors,limited grasp of vo
abulary, or la
k of grammati
al 
ontrol.2 Comprehensible with errors in pronun
iation, grammar, 
hoi
e of vo
abulary items or infrequentpauses or rephrasing.3 Completely 
omprehensible in normal spee
h with o

asional grammati
al or pronun
iation errors.147



148 APPENDIX A. DATA COLLECTION AND SPEAKER PROFICIENCY EVALUATIONA.2 NPR1Relief workers have returned to the rebel held 
ity of Goma in eastern Zaire in a se
ond attempt to distributefood to starving refugees.The B. B. C.'s Alan Little reports the �rst 
onvoy was held up at the border.The B. B. C.'s Alan Little reporting from Goma town.The government of Zaire says the entry of aid 
onvoys from Rwanda represents a violation of territorialsovereignty.The supplies 
arried by the 
onvoy are the �rst to rea
h eastern Zaire from rwanda sin
e last spring.Canada has o�ered to lead a multinational military for
e to help ease the refugee 
risis in Zaire.A third gasoline storage tank has erupted in 
ames at a petroleum storage fa
ility near Mexi
o City.At least a dozen people have been injured and about twenty four hundred have been for
ed to eva
uate theirhomes.The �re was triggered by an explosion in two storage tanks holding more than four million gallons of gasoline.Fire�ghters have been spraying a 
urtain of water in an e�ort to 
ontain the blaze.More snow is falling this morning in northern Ohio and other parts of the great lakes region tens of thousandsof homes remain without ele
tri
ity.From member station W. C. P. N. in Cleveland Joe Smith reports.A Delta airlines jetliner slid o� a runway at Cleveland's snowy Hopkins international airport last night.No one was injured.It was the se
ond su
h in
ident at the airport in as many days.This is N. P. R. news.Meetings in advan
e of an e
onomi
 summit in Cairo have failed to produ
e any breakthrough in negotiationson the withdrawal of Israeli troops from the west bank 
ity of Hebron.Se
retary of state Warren Christopher met with Palestinian leader Yasser Arafat.The state department says the session yielded no dis
ernible progress.President Clinton met meets with 
ongressional leaders today in a sear
h for 
ommon ground.Ways to balan
e the budget are at the top of the agenda.Mr. Clinton insists the two sides are not that far apart.He has suggested the administration and 
ongressional republi
ans pi
k up where they left o� before thepoliti
al 
onventions.Twenty students were arrested Monday during a protest at the University of California Riverside.They were demonstrating against an aÆrmative a
tion proposition that was passed by California voters lastweek.For member station K. C. L. U. Je� Barry reports.Court a
tion begins in orange 
ounty California today on O. J. Simpson's e�ort to regain 
ustody of his twoyoungest 
hildren eleven year old Sidney and eight year old Justin.The 
hildren have been living with the parents of their mother Ni
ole Brown Simpson sin
e she was murderedtwo and a half years ago.The question for the 
ourt is whether they will stay with their grandparents or move in with their father.This is national Publi
 Radio News from Washington.



A.3. NPR2 149A.3 NPR2The guardians of the ele
troni
 sto
k market NASDAQ who have been burned by past ethi
s questionsare moving to head o� market fraud by toughening the rules for 
ompanies that want to be listed on theex
hange Marketpla
e's Philip Boro� reports.As part of the proposals penny sto
ks will be eliminated from NASDAQ These trade for literally pennies.Less than a dollar a share.They are the sto
ks of spe
ulative 
ompanies.On wall street they are the longest of the long shots.Some penny sto
ks grow into established 
orporations.Others are shell 
ompanies.In
orporated �rms without assets or prospe
ts.Some of these are sold by small unsavory brokerage �rms that dump them upon gullible investors.David Whit
omb is a Rutgers University �nan
e professor and frequent NASDAQ 
riti
.That is the real 
hange it is redu
ing the status of 
heap sto
ks so.that at least NASDAQ is not giving them its seal of approval.Also these 
ompanies will no longer appear in newspapers on NASDAQ's list.And Whit
omb says investors may be less prone to buy them if they are not listed in the paper.NASDAQ oÆ
ials say they are not only trying to �ght fraud by raising listing standards they are doing aperiodi
 tuneup of their market Whi
h they hope will help promote publi
 
on�den
e In New York.I am Philip Boro� for Marketpla
e.Today the Dow Jones industrial average gained thirty eight and three quarter points.Details when we do the numbers.Later on tonight's program life in the fast lane.And 
oming up next a fast food Godzilla joins the burger wars in Japan.I am David Bran
a

io this is Marketpla
e.Ameri
an popular 
ulture whether it is ro
k and roll fashion or Hollywood movies has long been an importantexport Even though statisti
ians have a hard time measuring its value.Take fast food.When the �rst Ameri
an style burger joint opened in London's fashionable Regent street some twenty yearsago it was mobbed.Now it is Asia's turn.As the people in the far east get ri
her they are anxious to try and able to a�ord burgers fries pizza and
hi
ken The latest entrant is Burger King.Its C. E. O. Robert Lowes arrived in Japan to laun
h a belated e�ort to grab a share of the 
ountry's annual�ve billion dollar burger market.Marketpla
e's Tokyo bureau 
hief Jo
elyn Ford reports.Asia is in the midst of a fast food rush and Burger King is the latest Ameri
an 
hain to try to get a bite ofthe booming business.So far this year Burger King has opened �ve outlets in the Tokyo area and it plans to expand to thirty �veby the end of the year.The world's number two burger 
hain is twenty years and over a thousand outlets behind its ar
hrivalM
Donald's but Burger King C. E. O. Robert Lowes says better late than never.The fastest growing markets in the world today are essentially Latin Ameri
a and Asia Pa
i�
.I �nd it very diÆ
ult to 
omprehend any 
ompany who desires to be one of the better global 
ompanies inthe business that it is in ignoring those markets.Lowes says in Asia the demographi
 re
ipe is right for growing the fast food market.As the e
onomies develop as you know more women work in the workpla
e it demands more 
onvenien
eand while sometimes the dual in
ome families they are making more money I think they want the higherquality produ
ts.There is a long list of Ameri
an fast foods that have su

essfully made the long mar
h to Asia.From Seoul to Singapore hungry 
onsumers 
an grab pizzas burgers and 
hi
ken.But the wel
ome mat is not always out.In some markets there has been a nationalist ba
klash to western fast food joints.



150 APPENDIX A. DATA COLLECTION AND SPEAKER PROFICIENCY EVALUATIONTake India for example.Earlier this year a farmer's group ransa
ked a K. F. C. outlet and M
Donald's was met with protests byfarmers when it opened its �rst lamb burger restaurant last month.Patri
ia Horvath is an analyst with U. B. S. se
urities in Tokyo.



A.4. CND1 151A.4 CND1 A SAFETY NET FOR SALMONEnvironmentalists, the government and ordinary folks team up to save the Northwest's wondrous wildsalmonPa
i�
 salmon have never had it easy. Sure, the �sh begin life gently enough, wiggling around in sun-dappled 
reeks and pools with their brothers and sisters. When they are bigger, they set o� downstream tothe o
ean, where they'll grow up.But after a few years in the o
ean, life gets tough. Something in their nature tells them that it's time togo home. Salmon �nd their way ba
k to the mouth of the river that 
arried them to the o
ean. Then theyswim upstream in a �er
e, wrong-way struggle to their birthpla
e. Some travel hundreds of miles! Theyjump against the 
urrents and waterfalls that on
e 
arried them out to sea. After they rea
h their birthpla
e,females lay eggs to 
ontinue the 
ir
le of life. Then the salmon die of exhaustion and old age. What a wayto go!As if that journey weren't 
hallenging enough, the people who share the salmon's habitat have made lifeeven harder. Pollution, over�shing and habitat destru
tion threaten salmon spe
ies with extin
tion. Only100 years ago, the rivers of Washington State and Oregon were just jumping with salmon. But in mostpla
es, �shermen today 
at
h one-third fewer Chinook salmon than they did in the early 1900s. Now thegovernment has de
ided to get serious about res
uing these silvery symbols of the wild Northwest.Save The Salmon: It's The LawLast week the National Marine Fisheries Servi
e (NMFS) announ
ed that nine kinds of salmon andrelated �sh would be prote
ted under the Endangered Spe
ies A
t. One of those, the Upper ColumbiaChinook salmon, is now listed as endangered. The other eight �sh are 
onsidered threatened.The 26-year-old Endangered Spe
ies A
t is one tough environmental law. When a spe
ies is prote
tedunder the a
t, industry 
an be barred from using land where the endangered animal might be found. Ordinary
itizens also fa
e stri
t rules about using prote
ted habitat.But there's no way to keep people away from the salmon habitats, and that makes prote
ting the salmonreally tri
ky. At least 5 million people, in
luding those in the big 
ities of Portland and Seattle, live near theColumbia and Willamette river systems, where threatened salmon swim. No use of the Endangered Spe
iesA
t has ever a�e
ted so many people.The new rules will 
hange the way people farm, �sh, harvest timber, build homes, use water and 
hemi
als,and work (see 
hart). Restoring salmon populations to healthy levels will be an upstream struggle foreveryone in the area. But so far, Northwesterners say they are up for the 
hallenge."The salmon are an important part of our lives," said Seattle Mayor Paul S
hell last week. "We under-stand that preserving our environment has a dire
t impa
t on our quality of life and our e
onomy." Will AllThis E�ort Be Worth It?Over the next two months, publi
 oÆ
ials, Native Ameri
an leaders, businesses and environmental groupswill 
ome up with plans for meeting the law's requirements. The NMFS must approve these plans, but somegroups are already taking steps to help the salmon. They want to get a head start on the far-rea
hing and
ostly 
hanges that will be needed.Rollie S
hmitten, dire
tor of the NMFS, hopes that the people of Washington and Oregon will 
ontinueto support e�orts to save the salmon, even when it means making expensive 
hanges in how folks live andwork. He says that in the end, their personal sa
ri�
es and higher taxes will pay o�. "Humans and salmon
an pea
efully 
oexist and even enhan
e ea
h other's quality of life," says S
hmitten.After all, both spe
ies thrive on the same things: 
lean water, green shade trees and a safe pla
e to 
omehome to.



152 APPENDIX A. DATA COLLECTION AND SPEAKER PROFICIENCY EVALUATIONA.5 TFK1After a few years in the o
ean, life gets tough. Something in their nature tells them that it's time to gohome. Salmon �nd their way ba
k to the mouth of the river that 
arried them to the o
ean. Then they swimupstream in a �er
e, wrong-way struggle to their birthpla
e. Some travel hundreds of miles. They jumpagainst the 
urrents and waterfalls that on
e 
arried them out to sea. After they rea
h their birthpla
e,females lay eggs to 
ontinue the 
ir
le of life. Then the salmon die of exhaustion and old age.Last week the National Marine Fisheries Servi
e announ
ed that nine kinds of salmon and related �shwould be prote
ted under the Endangered Spe
ies A
t. One of those, the Upper Columbia Chinook salmon,is now listed as endangered. The other eight �sh are 
onsidered threatened. The 26-year-old EndangeredSpe
ies A
t is one tough environmental law. When a spe
ies is prote
ted under the a
t, industry 
an bebarred from using land where the endangered animal might be found. Ordinary 
itizens also fa
e stri
t rulesabout using prote
ted habitat.Over the next two months, publi
 oÆ
ials, Native Ameri
an leaders, businesses and environmental groupswill 
ome up with plans for meeting the law's requirements. The NMFS must approve these plans, but somegroups are already taking steps to help the salmon. They want to get a head start on the far-rea
hingand 
ostly 
hanges that will be needed. Rollie S
hmitten, dire
tor of the NMFS, hopes that the people ofWashington and Oregon will 
ontinue to support e�orts to save the salmon, even when it means makingexpensive 
hanges in how folks live and work. He says that in the end, their personal sa
ri�
es and highertaxes will pay o�. "Humans and salmon 
an pea
efully 
oexist and even enhan
e ea
h other's quality oflife," says S
hmitten.A.6 Japanese prompts.S
enario 2. Restaurants
"J?O,$IVC/,+aF$k the Lemongrass GrillK)vKT3&H7F$^9#the LemongrassGrillKD$FJ<N`\rRMF/@5$#� ?A}N9+� MJ� DH~V� =sO,W+� the Plaza Hotel +iNw%� the Plaza HotelX"k~KhkY-P9&O<4JI



A.7. SNOW WHITE 153A.7 Snow WhiteSNOW WHITE AND THE SEVEN DWARVESOn
e upon a time in a great 
astle, a Prin
e's daughter grew up happy and 
ontented, in spite of ajealous stepmother. She was very pretty, with blue eyes and long bla
k hair. Her skin was deli
ate and fair,and so she was 
alled Snow White. Everyone was quite sure she would be
ome very beautiful. Though herstepmother was a wi
ked woman, she too was very beautiful, and the magi
 mirror told her this every day,whenever she asked it."Mirror, mirror on the wall, who is the loveliest lady in the land?" The reply was always; "You are,your Majesty," until the dreadful day when she heard it say, "Snow White is the loveliest in the land." Thestepmother was furious and began plotting to get rid of her rival.Calling one of her trusty servants, she bribed him with a ri
h reward to take Snow White into the forest,far away from the Castle. Then, unseen, he was to put her to death. The greedy servant, attra
ted to thereward, agreed to do this deed, and he led the inno
ent little girl away. However, when they 
ame to the fatalspot, the man's 
ourage failed him and, leaving Snow White sitting beside a tree, he mumbled an ex
useand ran o�. Snow White was all alone in the forest.Night 
ame, but the servant did not return. Snow White, alone in the dark forest, began to 
ry bitterly.She thought she 
ould feel terrible eyes spying on her, and she heard strange sounds and rustlings that madeher heart thump. At last, over
ome by tiredness, she fell asleep 
urled under a tree.At last, dawn woke the forest to the song of the birds, and Snow White too, awoke. She found a pathand walked along it, hopefully. On she walked till she 
ame to a 
learing. There stood a strange 
ottage,with a tiny door, tiny windows and a tiny 
himney. Everything about the 
ottage was mu
h smaller than itought to be. Snow White pushed the door open."I wonder who lives here?" she said to herself, looking round the kit
hen. "What tiny plates! And spoons!There must be seven of them, the table's laid for seven people." Upstairs was a bedroom with seven neatlittle beds. Going ba
k to the kit
hen, Snow White had an idea."I'll make them something to eat. When they 
ome home, they'll be glad to �nd a meal ready." Thatevening, seven tiny men mar
hed home singing. But when they opened the door, to their surprise they founda bowl of hot soup on the table, and the whole house very 
lean. Upstairs was Snow White, fast asleep onone of the beds. The 
hief dwarf shook her gently."Who are you?" he asked. Snow White told them her sad story, and tears 
ame to the dwarves' eyes.Then one of them said, as he noisily blew his nose:"Stay here with us!""Hooray! Hooray!" they 
heered, dan
ing joyfully round the little girl. The dwarves said to Snow White:"You 
an live here and keep house while we're down at work. Don't worry about your stepmother leavingyou in the forest. We love you and we'll take 
are of you!" Snow White gratefully a

epted their hospitality,and the next morning the dwarves set o� for work. But they warned Snow White not to open the door tostrangers.Meanwhile, the servant had returned to the 
astle, with the heart of a deer. He gave it to the 
ruelstepmother, telling her it belonged to Snow White, so that he 
ould 
laim the reward. Highly pleased, thestepmother turned again to the magi
 mirror. But the mirror replied: "The loveliest in the land is still SnowWhite, who lives in the seven dwarves' 
ottage, down in the forest." The stepmother was very angry."She must die! She must die!" she s
reamed. Dressing herself as an old woman, she put a poisoned applewith the others in her basket. Then, taking the qui
kest way into the forest, she 
rossed the swamp at theedge of the trees. She rea
hed the bank unseen, just as Snow White stood waving goodbye to the sevendwarves on their way to work.Snow White was in the kit
hen when she heard the sound at the door: KNOCK! KNOCK!"Who's there?" she 
alled."I'm an old woman selling apples," 
ame the reply."I don't need any apples, thank you," she replied."But they are beautiful apples and so jui
y!" said the velvety voi
e from outside the door."I'm not supposed to open the door to anyone," said the girl."And quite right too! Good girl! If you promised not to open up to strangers, then of 
ourse you 
an'tbuy. You are a good girl indeed!" Then the old woman went on.



154 APPENDIX A. DATA COLLECTION AND SPEAKER PROFICIENCY EVALUATION"And as a reward for being good, I'm going to make you a gift of one of my apples!" Without a furtherthought, Snow White opened the door just a tiny 
ra
k, to take the apple."Isn't that a ni
e apple?" Snow White bit into the fruit, and as she did, fell to the ground in a faint: thee�e
t of the terrible poison left her lifeless instantly.Now 
hu
kling evilly, the wi
ked stepmother hurried o�. But as she ran ba
k a
ross the swamp, shetripped and fell into the qui
ksand. No one heard her 
ries for help, and she disappeared without a tra
e.Meanwhile, the dwarves 
ame out of the mine to �nd the sky had grown dark and stormy. Loud thundere
hoed through the valleys and streaks of lightning ripped the sky. Worried about Snow White, they ran asqui
kly as they 
ould down the mountain to the 
ottage.There they found Snow White, lying still and lifeless, the poisoned apple by her side. They did their bestto bring her around, but it was no use.They wept and wept for a long time. Then they laid her on a bed of rose petals, 
arried her into theforest and put her in a 
rystal 
oÆn.Ea
h day they laid a 
ower there.Then one evening, they dis
overed a strange young man admiring Snow White's lovely fa
e through theglass. After listening to the story, the Prin
e (for he was a prin
e!) made a suggestion."If you allow me to take her to the Castle, I'll 
all in famous do
tors to waken her from this strangesleep. She's so lovely, I'd love to kiss her!" He did, and as though by magi
, the Prin
e's kiss broke the spell.To everyone's astonishment, Snow White opened her eyes. She had amazingly 
ome ba
k to life! Now inlove, the Prin
e asked Snow White to marry him, and the dwarves relu
tantly had to say good bye to SnowWhite.From that day on, Snow White lived happily in a great 
astle. But from time to time, she went ba
k tovisit the little 
ottage down in the forest.



A.8. EXAMPLE OF A TRANSCRIPT OF READ SPEECH 155A.8 Example of a trans
ript of read spee
h3.26 5.41 #rustle# Storming Disney's Kingdom6.07 14.33 /br/ *Anastasia leads the 
harge as rival studios <;1 &studio> move in ontoon town #rustle#16.00 23.65 {-/A headstr=/- a <;1 &an> headstrong} Russian prin
ess will try to win yourheart this week23.80 30.53 Fox Animation Studios <;1 &studio> is /ls/ {-/re=/- *releasing} its first
artoon feature /br/ Anastasia30.81 51.24 Like Disney Studios' best loved hits /br/ the movie features a beautiful((heroine)) <;del a> devilish ((villain)) /ls/ 
ute animal sideki
ks 
at
hysongs /br/ a plot that *rewrites history and an all star 
ast doing voi
es51.82 60.31 Fox wants to {-/pro=/- prove} #rustle# that a 
artoon movie doesn't haveto 
ome from Disney in order to be a winner with kids60.98 74.19 /br/ The movie whi
h opens November twenty first /br/ is based on the truestory of a royal prin
ess who disappeared in the nineteen /br/ seventeenrevolution in Russia74.69 84.31 /ls/ The {-/part=/- partly} 
omputer animated ba
kgrounds of great 
itiesand snowy lands
apes are {-/brea=/- ((breathtaking))}84.33 89.26 /ls/ Anastasia herself is a smart /br/ lovable *heroine90.07 99.76 But it takes more than #pause# gorgeous 
artooning and #pause# /ls/ goodstorytelling to make a hit animated movie these days100.12 105.47 /br/ Will kids and parents buy Anastasia toys games and videos <;1 &video>too106.01 109.09 Will they go see the movie more than on
e109.37 119.04 Will <;ins the> Fox's #pause# film sell as many a
tion figures and fastfood /br/ meals as The Little Mermaid or ((Aladdin))119.29 129.03 /br/ Anastasia's pro= produ
ers who spent about /br/ fifty three milliondollars making the movie have their fingers 
rossed129.72 139.03 I really hope it will {-/
om=/- /ls/ 
ompete} with the best Disneypi
tures says Fox movie 
hief Bill <;1 &billy> {-/*me
hani
/- Me
hani
}140.62 155.62 The 
ompany that has #begin rustle# ruled the animation #pause# kingdom forsixty years does not plan to sit still #end rustle# while a little prin
essgrabs for the 
artoon movie throne156.36 161.36 Disney will try to lure kids away from Anastasia this month161.46 171.41 /br/ Its new Robin Williams movie Flubber /br/ and nineteen eighty nine'sThe Little Mermaid will 
ompete against Fox's film in theaters172.18 174.75 /br/ Are we going to make it easy for them /ls/174.73 178.83 /ls/ No says Disney movie group 
hairman Ri
hard Cook179.22 181.03 /br/ Are we going to 
ompete181.03 181.79 You bet182.10 185.95 Don't be fooled by the pretty songs and s
enery185.97 187.25 This is war188.83 190.97 /br/ How A Mouse Be
ame A Giant191.53 201.63 It all started in nineteen thirty seven <;1 &seventh> #pause# with a movieabout a fair skinned beauty and seven short guys202.90 210.80 The first movie length 
artoon was Walt Disney's /br/ eighty two minuteSnow White and the Seven Dwarfs211.46 216.05 The animated musi
al delighted audien
es all over the world216.51 222.84 Disney {-/went/- went on} to make more than thirty animated featuresand had little 
ompetition223.30 233.22 The 
ompany has sold millions of dollars' worth of toys /br/ games*
lothes and videos /br/ based on its popular {-/
=/- 
hara
ters}



156 APPENDIX A. DATA COLLECTION AND SPEAKER PROFICIENCY EVALUATIONA.9 Example of a trans
ript of spontaneous spee
h1.23 4.93 /ls/ alright /uh/ where is the the [Empire State Building ((IY M P AY ER ST EY T B IH L D IY NG))℄ /ls/ lo
ated5.57 7.72 /uh/ how mu
h is admission fee7.8 10.84 /uh/ how long do you think it take to look around11.36 17.12 is there any /n/ /n/ any good pla
e to see /ah/ near [Empire State Building((IY M P AY ER S T EY T B IH L D IY NG))℄17.15 20.75 is there any good restaurant around in the around there /h#/21.4 28.76 {-/how long i=/- (how long is)} how long is it from the [Edison ((EH D IH S AH N))℄[Hotel ((HH OW T EH L))℄ to to the [Empire State Building ((EH M P AY ERS T EY T B IH L D IH NG))℄32.80 37.4 /uh/ what kind of restaurant is it #noise# the [Chelsea Bistro and Bar((CH EH L S IY B IY S T R OW EH N B AA R))℄37.58 42.06 /h#/ and how mu
h do I expe
t to pay for the the restaurant /h#/42.78 45.24 /uh/ what is the business hour45.66 48.5 /uh/ do you think I need a reservation49.09 55.15 /uh/ how long is it from here to the /uh/ from the [Edison ((EH D IH S AH N))℄[Hotel ((HH OW T EL))℄ to that to that restaurant /h#/55.45 65.73 /uh/ do you have any suggestions *pause* {+/when I finish/+ *pause* when Ifinish} my dinner *pause* to go ba
k to the [Edison ((EH D IH S AH N))℄[Hotel ((HH OW T EH L))℄ say like bus or /uh/ subway #noise#67.55 71.90 how long does it how long does it take to go to [Long Island((L AO NG AY L IH N T))℄72.0 76.41 /uh/ what kind of /uh/ transportat= transportation is available /h#/76.79 81.35 /ls/ /uh/ do you know how mu
h it is like for the bus or train /h#/81.6 84.63 /uh/ is there anything interesting in [Long Island ((L AO NG AY L IH N T))℄84.96 86.06 /ls/ /uh/86.45 88.64 is there any good restaurants89.59 95.01 /uh/ do you what time is the last bus last ship or last train96.58 101.17 where is the [Ro
kettes ((R AO K IH T))℄ [Ro
kettes ((R AO K IH T S))℄ lo
ated#noise# /um/103.36 110.33 {+/how long/+ *pause* how long} is it from the [Ro
kettes ((R AO K IH T S))℄to the most /uh/ to the nearest transportation110.63 112.57 when does the show begin #
li
k#112.61 114.88 when does the show /uh/ finish115.38 117.0 /ls/ how mu
h is the ti
ket117.28 119.96 /h#/ /uh/ {+/how 
an I/+ how 
an I} buy the ti
ket



A.10. SPEAKER DEMOGRAPHICS 157A.10 Speaker Demographi
sA.10.1 Speakers 
ompleting the read taskYears studying Years immersed inSpeaker ID Gender L1 Age English English Pro�
ien
y s
ore201 f english 30 | | 4203 f english 19 | | 4204 m english 23 | | 4205 m english 37 | | 4206 f english 19 | | 4207 m english 20 | | 4240 m english 25 | | 4241 m english 26 | | 4242 m english 32 | | 4208 * f japanese 29 7 1.5 1.94209 * m japanese 29 8 0.75 1.94210 f japanese 33 8 0 1.83211 f japanese 57 8 0 1.11212 * m japanese 31 8 2 2.11213 f japanese 29 8 0 1.06214 f japanese 29 8 0 1.00215 f japanese 25 6 2 2.00216 * m japanese 36 10 0.33 1.94217 m japanese 27 6 9 2.83218 * f japanese 26 10 3 2.00219 f japanese 34 8 7 2.67220 * m japanese 31 10 1.5 2.11221 * f japanese 31 10 1.5 1.83222 * f japanese 23 10 0.50 2.17223 f japanese 26 10 3.5 2.44224 f japanese 32 5 11 2.83225 * m japanese 31 10 2.5 1.89226 f japanese 30 10 7 2.05227 * f japanese 29 17 0.67 1.89228 f japanese 25 9 0.67 2.00229 f japanese 26 8 0.50 2.17230 m japanese 25 10 0.50 1.44231 f japanese 31 7 1.3 1.22232 f japanese 28 8 1.5 2.00233 m japanese 33 10 0.17 1.89234 f japanese 34 10 0.50 2.00235 f japanese 31 8 0 1.33236 f japanese 36 8 1 1.00237 m japanese 40 6 0 1.00239 m japanese 40 8 1.75 1.33Speakers with an asterisk (*) by their names were part of the pro�
ien
y-
ontrolled test set.



158 APPENDIX A. DATA COLLECTION AND SPEAKER PROFICIENCY EVALUATIONA.10.2 Speakers 
ompleting the spontaneous taskSpeaker ID Gender L1 Age Years studying English Years immersed in English009 m english 19 | |010 f english 19 | |012 f english 30 | |102 f english 25 | |108 m english 26 | |105 m english 22 | |106 m english 41 | |806 m taiwanese 24 0 14801 f mandarin 24 10 1802 f mandarin 28 15 1808 f mandarin 29 17 1805 f mandarin | 1 9804 m mandarin 24 10 0803 m mandarin 30 7 1807 m mandarin 27 13 1001 m japanese 27 6 3002 f japanese 27 10 2003 f japanese 31 10 0.42004 f japanese 31 15 8005 f japanese 29 7 1.5006 f japanese 28 13 1.5007 f japanese 31 15 8008 f japanese 29 7 1.5011 m japanese 31 8 2013 f japanese 28 13 1.5014 f japanese 22 8 .5015 f japanese 21 7 1016 f japanese 21 7 3017 f japanese 31 3 0.58018 m japanese 21 9 0019 m japanese 22 10 0020 m japanese 21 15 0021 m japanese 26 8 2022 f japanese 26 7 1023 m japanese 27 25 0.42024 m japanese 26 6 8025 f japanese 29 7 1.5026 m japanese 29 8 2027 m japanese 29 8 0.75028 f japanese 29 7 0.67029 f japanese 25 8 0.25030 f japanese 42 12 17031 f japanese 30 6 0.58032 m japanese 30 15 1033 f japanese 20 3 4034 m japanese 19 10 0035 f japanese 19 6 0.25036 f japanese 28 8 0.25037 m japanese 35 3 0038 f japanese 20 3 1039 m japanese 23 8 1040 m japanese 23 0 18



Appendix BPhonologi
al transformation rulesThis appendix lists the transformation rules used to produ
e the di
tionaries des
ribed in Se
tion 5.2.2. Inthe �rst 
olumn are the rule tags. The rule is given in the se
ond 
olumn. The symbols used in the rulesrepresent the units in the lexi
on, i.e., the base phone is the one that was in the 
anoni
al trans
ription andthe surfa
e phone is the one that will be added. An example of a word that is a�e
ted by the transformationis shown for ea
h rule, with the 
anoni
al lexi
on entry and a phoneti
 trans
ription of an instan
e of thatword in the training data in whi
h the transformation was observed. Be
ause the units of representationare di�erent, the surfa
e symbol on the right side of the rule may not mat
h its 
ounterpart in the phoneti
trans
ription. The phoneti
 trans
ription is shown to give as a

urate a portrait as possible of the a
tualrealization. Distin
tions that were not phonemi
 in the original lexi
on, su
h as [a,6℄ and [o,o:℄, are suspendedin the new lexi
on. Some global transformations were added to resolve trans
ription in
onsisten
ies in thelexi
on.This list shows rules for adding paths to the pronun
iation networks. These are not repla
ement rules.MA-3 s ! S / fi,I,Ig 
itizen /sItIz�n/ [Sitizun℄MA-3 h ! f / fu,Ug hood /hUd/ [Fu:d℄MA-3 f ! h / fO��,o,Og telephone /tEl�fon/ [tElEho:n℄MA-4 w ! ; / fu,Ug woman /wUm�n/ [u:man℄MA-5 w ! u / fi,I,Ig wish /wIS/ [uIS:℄MA-5 w ! u / fe��,Eg wedding /wEdIN/ [uEdINgu℄MA-5 w ! u / fO��,o,Og water /wOtÄ/ [uO:ta:℄MA-6 d ! � / fi,I,Ig 
andidate /k�ndIde��t/ [kjan�ideit℄CC-1 d ! ; / z$ needs /nidz/ [ni:zu℄CC-2 ; ! o / ft,dg C handmade /h�ndme��d/ [h6ndomEido℄CC-3 ; ! i / f�,Ù,Sg C hit
hhiking /hIÙha��kIN/ [hiÙ:ihaikingu℄CC-5 ; ! u / fp,b,f,v,T,D,s,z,Z,g,k,m,l,¶g C diÆ
ult /dIfIk�lt/ [difikaluto℄CC-4 w ! u / fp,b,f,v,T,D,s,z,Z,g,k,m,l,¶g swam /sw�m/ [suam℄CC-6 w ! u / f�,Ù,Sg V S
hweitzer /Swa��tsÄ/ [Suai¶a:℄CC-6 w ! u / ft,dg V twelve /twElv/ [tuElubu℄CC-7 w ! ; / fu,Ug woman /wUm�n/ [u:man℄CC-8 w ! u / $ fO��,o,Og wove /wov/ [uovu℄CC-8 w ! u / $ fe��,Eg wedding /wEdIN/ [uEdINgu℄CC-8 w ! u / $ fi,I,Ig weekend /wikEnd/ [uikuEnd℄CC-9 j ! ; / $ i year /jir/ [iÄ℄CC-12 N ! n / fk,gg Bangkok /b�NkOk/ [baNkok℄CC-13 N ! ngu / $ Hemingway /hEmINwe��/ [hEmINgue:℄
159



160 APPENDIX B. PHONOLOGICAL TRANSFORMATION RULESFV-1 ; ! i / f�,Ù,Sg # bridge /brI�/ [buri�:i℄FV-2 ; ! u / fp,b,f,v,T,D,s,z,Z,g,k,m,l,¶g # reptile /rEpta��l/ [rEputa��:lu℄FV-3 ; ! o / ft,dg # adult /�d2lt/ [adaRWto℄FV-4 N ! ngu / # swimming /swImIN/ [suimiNgu℄RL-1 r ! ; / fO��,o,Og $C morphology /mOrf6l��i/ [mo:folo�i℄RL-2 r ! 6 / fO��,o,Og $V moreover /mOrovÄ/ [mo6o:v6:℄RL-3 r ! 6 / fO��,o,Og # more /mOr/ [mo6℄RL-4 r ! ; / fa��,a�ug C Arkansas /6rk�nsO/ [6:k6nso:℄RL-7 r ! 6 / V C 
art /k6rt/ [k6:t℄RL-8 r ! 6 / V $ heirloom /Erlum/ [e6lum℄RL-9 r ! 6 / V # gear /gir/ [gi6℄RL-11 Ä ! 6 / $ sear
hing /sÄÙIN/ [sa:Ùingu℄RL-12 Ä ! 6 / C sear
hing /sÄÙ/ [sa:Ùi℄RL-13 Ä ! 6 / # sir /sÄ/ [sa:℄MD-1 a�� ! 6i like /la��k/ [laik℄MD-2 O�� ! oi boy /bO��/ [boi℄MD-3 e�� ! Ei make /me��k/ [meik℄MD-4 a�u ! 6u house /ha�us/ [haus℄MD-5 � ! j6 / k 
ash /k�t/ [kjat℄MP-13 T ! s breath /brET/ [blEs℄MP-14 D ! z then /DEn/ [zEn℄MP-15 v ! b never /nEvÄ/ [nebÄ℄MP-16 R ! t water [wORÄ℄ [uO:ta:℄MP-18 Z ! � measure /mEZÄ/ [me�a℄MA-1 l ! r pla
e /ple��s/ [prEs℄MA-2 r ! l reason /riz�n/ [lizan℄MP-1 fO��,o,Og ! oMP-2 fe��,Eg ! EMP-3 fi,I,Ig ! iMP-6 f�,6,2,�g ! 6MP-9 fu,Ug ! u



Appendix Carpabet-IPA mappingsNOISES VOWELS+BR breathing AA 6+HU human noise AE �+NH non-human noise AH 2+SM lip sma
k AX �+TH throat 
learing AO O+LA laughter EH E+F semanti
 noise (um, uh) ER "ÄAXR ÄDIPHTHONGS IH IIX IAW a�u IY "iAY a�� OW oEY e�� UH UOY O�� UW uCONSONANTSB b K k SH SCH Ù L l T tD d M m TH TDH D N n V vDX R NG N W wF f P p Y jG g R r Z zHH h S s ZH ZJH �SPECIAL PHONESSyllabi
 
ontinuants Unreleased stopsXL ë" PD p^XM m" TD t^XN n" KD k^
161



162 APPENDIX C. ARPABET-IPA MAPPINGSReferen
es[Ahlen et al.1997℄ Sondra Ahlen, Brian Connelly, Mi
helle Corkadel, Rob Malkin, Anuj Vaidya, and RodolfoVega. 1997. Data 
olle
tion s
enarios for 
-star travel domain. Te
hni
al Report CMU-LTI-97-153,Carnegie Mellon University.[Akamatsu1997℄ Tsutomu Akamatsu. 1997. Japanese Phoneti
s: Theory and Pra
ti
e. Lin
om Europa,New
astle.[Amdall et al.2000℄ Ingunn Amdall, Filipp Korkmazskiy, and Arun C. Surendran. 2000. Joint pronun
iationmodeling of non-native speakers using data-driven methods. In Pro
. ICSLP, Beijing.[Argamon-Engelson et al.1998℄ Shlomo Argamon-Engelson, Moshe Koppel, and Galit Avneri. 1998. Style-based text 
ategorization: What newspaper am I reading? In AAAI Workshop on Learning for TextCategorization.[Auberg et al.1998℄ Stefan Auberg, Nelson Correa, Vi
toria Lo
ktionova, Ri
hard Molitor, and MartinRothenberg. 1998. The A

ent Coa
h: An English Pronun
iation Training System for Japanese Speakers.In Pro
. Spee
h Te
hnology in Language Learning (STiLL).[Beaugendre et al.2000℄ Fr�ed�eri
 Beaugendre, Tom Clase, and Hugo van Hamme. 2000. Diale
t adaptationfor mandarin 
hinese. In Pro
. ICSLP.[Beebe1987℄ Leslie M. Beebe. 1987. Myths about interlanguage phonology. In Georgette Ioup and Steven H.Weinberger, editors, Interlanguage Phonology: The A
quisition of a Se
ond Language Sound System, Issuesin Se
ond Language Resear
h. Newbury House, Cambridge, MA. Originally presented at the NationalTESOL Convention, San Fran
is
o, 1980.[Bell1984℄ Allan Bell. 1984. Language style as audien
e design. Language in So
iety, 13:145{204.[Bernstein et al.1990℄ Jared Bernstein, Mi
hael Cohen, Hy Murveit, Dimitry Rtis
hev, and Mit
hel Wein-traub. 1990. Automati
 evaluation and training in english pronun
iation. In Pro
. ICSLP, Kobe.[Bratt et al.1998℄ Harry Bratt, Leo Neumeyer, Elizabeth Shriberg, and Hora
io Fran
o. 1998. Colle
tionand Detailed Trans
ription of a Spee
h Database for Development of Language Learning Te
hnologies. InPro
. ICSLP.[Brieman et al.1984℄ L. Brieman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984. Classi�
ation andRegression Trees. Wadsworth, In
.[Bri�ere1966℄ Eugene Bri�ere. 1966. An investigation of phonologi
al interferen
e. Language, 42(4):768{796.[Briggs1986℄ Charles Briggs. 1986. Learning How to Ask: A So
iolinguisti
 Appraisal of the Role of theInterview in So
ial S
ien
e Resear
h. Cambridge University Press, Cambridge.[Burger et al.2000℄ Susanne Burger, Karl Weilhammer, Florian S
hiel, and Hans G. Tillmann. 2000. Verb-mobil data 
olle
tion and annotation. In Wolfgang Wahlster, editor, Verbmobil: Foundations of Spee
h-to-Spee
h Translation, Arti�
ial Intelligen
e, pages 539{552. Springer, July.[Byrne et al.1998℄ William Byrne, Eva Knodt, Sanjeev Khudanpur, and Jared Bernstein. 1998. Is Automati
Spee
h Re
ognition Ready for Non-Native Spee
h? A Data Colle
tion E�ort and Initial Experiments inModeling Conversational Hispani
 English. In Pro
. Spee
h Te
hnology in Language Learning (STiLL).[Clark and Swinton1979℄ John L. D. Clark and Spen
er S. Swinton. 1979. An Exploration of SpeakingPro�
ien
y Measures in the TOEFL Context. TOEFL Resear
h Report 4, Edu
ational Testing Servi
e.[Corder1967℄ S. P. Corder. 1967. The signi�
an
e of learners' errors. International Review of AppliedLinguisti
s, 5(4):161{170.[Cu

hiarini et al.1998℄ C. Cu

hiarini, H. Strik, and L. Boves. 1998. Quantitative assessment of se
ondlanguage learners' 
uen
y: an automati
 approa
h. In Pro
. ICSLP, Sydney.[Cu

hiarini et al.2000℄ Catia Cu

hiarini, Helmer Strik, Diana Binnenpoorte, and Lou Boves. 2000. To-wards an Automati
 Oral Pro�
ien
y Test for Dut
h as a Se
ond Language. In Pro
. ESCA Workshop onIn
orporating Spee
h Te
hnology in Language Learning (InSTIL), Dundee.[Dalby et al.1998℄ Jonathan Dalby, Diane Kewley-Port, and Roy Sillings. 1998. Language-Spe
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 Pronun-
iation Training Using the HearSay System. In Pro
. Spee
h Te
hnology in Language Learning (STiLL).
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al Variability in theSpee
h of Japanese Learners of English. Ph.D. thesis, University of Illinois.[Doh2000℄ Sam-Joo Doh. 2000. Enhan
ements to Transformation-Based Speaker Adaptation: Prin
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ond Language A
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tion of foreign speakers' pronun
iation errors for se
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ording New Populations, Fasterand Better Labelling. In Pro
. Eurospee
h.[Ferguson1989℄ Charles A. Ferguson. 1989. Language tea
hing and theories of language. In James E. Alatis,editor, Georgetown University Round Table on Languages and Linguisti
s 1989. Georgetown UniversityPress.[Finegan1994℄ Edward Finegan. 1994. So
iolinguisti
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tives on register. 
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