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Abstract

This thesis addresses the problem of automatically constructing word clusters from plain
texts. While the speech community has done much work on word clustering, their goal has
been to improve language modeling and less attention has been paid to natural language
processing tasks. Furthermore, in previous clustering work, the domain was often very
limited and vocabulary size was small. (Some exceptions involve a series of works by the
IBM group.)

This thesis explores the utility of clustering techniques to large scale NLP tasks with
very large vocabularies. The criterion function employed in this work to measure the
clustering quality is the cross-entropy of the empirical word distribution function with
regard to the probability function of a class bigram language model. The main focus
of this research is to show that the improvement of clusters in terms of cross-entropy is
reflected in the improvement of NLP tasks, especially for rare events.

In order to support the above assumption, various methods to improve the clustering
quality are investigated, and the resulting clusters are evaluated through practical NLP
tasks including Part-Of-Speech tagging and proper name identification and classification.

Because rare events are very common in large scale NLP tasks, this work should be
interesting to researchers in many NLP fields including corpus linguistics, broad-coverage
terminology compilation and lexicography, text categorization and summarization, ma-
chine translation, as well as information retrieval and language modeling for speech recog-
nition.
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Chapter 1

Introduction

One of the fundamental issues concerning corpus-based NLP is that we can never expect
to know from the training data all the necessary gquantitative information for the words
that might occur in the test data if the vocabulary is large enough to cope with a real
world domain. In view of the effectiveness of class-based n-gram language models against
the data sparseness problem (Kneser and Ney 1993, Ueberla 1995), it is expected that
classes of words are also useful for NLP tasks in such a way that statistics on classes
are used whenever statistics on individual words are unavailable or unreliable. An ideal
type of clusters for NLP is one which guarantees mutual substitutability, in terms of both
syntactic and semantic soundness, among words in the same class (Brill and Marcus 1992).
Take, for example, the following sentences.

(a) He went to the house by car.

(b) He went to the apartment by bus.

(c) He went to the 7 by 7 .

(d) He went to the house by the sea.
Suppose that we want to parse sentences using a statistical parser and that sentences (a)
and (b) appeared in the training and test data, respectively. Since (a) is in the training
data, we know that the prepositional phrase by car is attached to the main verb went,
not to the noun phrase the house. Sentence (b) is quite similar to (a) in meaning, and
identical to (a) in sentence structure. Now if the words apartment and bus are unknown
to the parsing system (i.e. never occurred in the training data), then sentence (b) must

look to the system very much like (c), and it will be very hard for the parsing system to



tell the difference in sentence structure between (b) and (d). However, if the system has
access to a predefined set of classes of words, and if car and bus are in the same class, and
house and apartment are in another class, it will not be hard for the system to detect the
similarity between (a) and (b) and assign the correct sentence structure to (b) without
confusing it with (d). The same argument holds for an example-based machine translation
system. In that case, an appropriate translation of (b) is expected to be derived with an
example translation of (a) if the system has access to the classes of words. Therefore,
it is expected that building clusters of the vocabulary in terms of mutual substitutability
improves performance of NLP tasks. The mutual information (MI) clustering algorithm
proposed by Brown et al. (1992) is a promising candidate for a way of constructing such
word clusters from plain tezts. Since the amount of plain texts available on-line nowadays
is several orders of magnitude greater than that of human-annotated corpora, automatic
learning methods from plain texts such as MI clustering are quite attractive if it is the
case that the more texts we use the better results we obtain. This assumption, however,
has yet to be investigated.

Furthermore, clustering should be much more useful if the clusters are of variable
granularity. Suppose, for example, that we have two sets of clusters, one finer than the
other, and that word-1 and word-2 are in different finer classes. With finer clusters alone,
the amount of information about the association of the two words that the system can
obtain from the clusters is minimal. However, if the system is capable of falling back and
checking if they belong to the same coarser class, then the system can take advantage
of the class information for the two words. When we extend this notion of two-level
word clustering to many levels, we will have a tree representation of all the words in
the vocabulary in which the root node represents the whole vocabulary and a leaf node
represents a word in the vocabulary. Also, any set of nodes in the tree constitutes a
partition (or clustering) of the vocabulary if there exists one and only one node in the set
along the path from the root node to each leaf node. We will call such multi-level clusters
hierarchical clusters.

Hierarchical clustering is one direction to extend the conventional flat clustering (i.e. a

simple partition of the vocabulary). Another important direction to extend the paradigm



of clustering is to move from word-based clustering to compound-based clustering (Ushioda
1996b). In the above examples we looked only at the mutual substitutability of words;
however, a lot of information can also be gained if we look at the substitutability of word
compounds for either other word compounds or single words. Indeed, for many NLP tasks,
similarities among phrases or multiword compounds are more important than those among
individual words. Consider the following sentences.
(e) The music put Mary to sleep.
(f) The music put Professor Frederic K. Thompson to sleep.

Suppose that we want to translate sentence (f) to some language by an example-based
machine translation system with example data including sentence (e) and its translation.
In this case, what the system has to detect is that both “Mary” and “Professor Frederic K.
Thompson” represent a human. The similarity between “Mary” and “Frederic” as being
first names doesn’t help in this case. Similarly, the detection of a correspondence between
“CBS Inc.” and “American Telephone & Telegraph Co.” might be necessary in another
case. This observation leads us to construct classes of compounds rather than classes of
just words. Individual words can also be in the same class as multiword compounds, but
we will generically call such a class a class of compounds or simply a compound class.
While several methods have been proposed to automatically extract compounds (Smadja
1993, Su et al. 1994), we know of no successful attempt to automatically make classes of
compounds for large scale, broad coverage NLP, such as for processing news articles.

This thesis will explore the utility of the clustering technique to large scale NLP tasks
with very la;rge vocabularies. The criterion function used in this work to measure the
clustering quality is the cross-entropy of the empirical word distribution function with
regard to the probability function of a class bigram language model. The main focus
of this research is to show that the improvement of clusters in terms of cross-entropy is
reflected in the improvement of NLP tasks, especially for rare events. In order to show that,
various methods to improve the clustering quality will be investigated, and the resulting
clusters will be evaluated through practical NLP tasks including Part-Of-Speech tagging
and proper name identification and classification.

The organization of the thesis is as follows. In Chapter 2, previous work on data-



driven automatic clustering methods will be reviewed. Chapter 3 first describes previous
work on automatic clustering of words, then presents the basic framework of the word
clustering methods investigated in this thesis work. Chapter 4 quantitatively evaluates
cluster quality using Part-Of-Speech tagging as a representative example of NLP tasks
to which the clustering technique is directly applied. Chapter 5 extends the paradigm of
clustering from word-based clustering to compound-based clustering, and shows how word-
based clusters can be used to efficiently create compound clusters. Chapter 6 summarizes

the thesis and suggests future directions of this research.



Chapter 2

Cluster Analysis

This chapter reviews previous work on automatic clustering methods. So much work has
been reported on clustering that it is out of the scope of this thesis to cover the whole
range of clustering methods. Instead, we will give here a brief overview of two major
types of clustering, namely hierarchical clustering and optimization, and another newer
method called soft clustering which is designed to overcome a major defect of conventional
clustering techniques. Cluster analysis has been widely used in many fields of study in-
cluding biology, sociology, psychology, business, computer science, medicine, and many
others. Some of the characteristics of each type of clustering method are summarized
in Table 2.1. (Partition?) checks whether the method produces a partition of the data,
that is, whether there is no overlap between classes. (Revocable?) designates whether the
membership of an element to a class can be changed during the course of the clustering
process. (Global Criterion?) checks whether a global clustering criterion which drives the
clustering process must always be defined, where “global” means that every individual is
involved in the calculation of the criterion.! In the table, “-” means either the answer is
not fixed or the question is not applicable. Representative clustering methods of each type

will be described in the following sections.

'In optimization and soft clustering such a global criterion is always necessary, whereas in some hier-
archical clustering methods local information is enough. For example, in the single link method, whether
to merge two classes can be determined by comparing the local between-class distances for all the pairs of
classes, and it is not necessary to define a global criterion.



] Hierarchical | Optimization | Soft |
(a) (Partition?) YES YES NO
(b) (Revocable?) NO YES -
(c) (Global Criterion?) - YES YES

Table 2.1: Comparison of Clustering Methods

- Py S —— E level 1
B ,,;,,,kk._._._i--—-—-—-----—f----- level 2
i . — P
o e e ,}________;_____%__._. o level 3
| | b
A B C D E F

Figure 2.1: Example of Dendrogram

2.1 Hierarchical Clustering

Hierarchical clustering produces a multi-level partition of the data in which the whole
entities are partitioned into subgroups, each of which is further partitioned into its sub-
groups, and each of these is further partitioned, and so on. A hierarchical cluster can be
represented as a tree called dendrogram which shows how the entities are grouped.

Figure 2.1 shows a simple example of a dendrogram. At level-1 the whole entities are
divided into two groups, or classes, {A,B,C,D} and{E,F'}. At level-2 there are three classes
{A,B}, {C,D} {E,F}, and at level-3 all individuals constitute a class of their own, or, a
singleton.

Hierarchical clustering methods are classified into two types, agglomerative methods
and divisive methods, depending on whether the clustering process is bottom-up or top-
down. Agglomerative methods proceed by successive merges of the classes and divisive
methods repeat partitions of classes into their subclasses. In both cases the process is
irrevocable. This property enables the process to run fairly fast, but of course at the
cost of resulting cluster quality since a poor early partition or merge decision cannot be

modified in the later clustering stéps.



2.1.1 Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering methods start with n singleton classes, where n is
the total number of individuals to be clustered, and end with one class with n elements.
The process of merging is based on computation of similarities (or dissimilarities) between
two entities, where an entity is either an individual element or a class of individuals. Since
an individual can be seen as a singleton class, the similarities are in general defined on a
pair of classes. At each merging step, a pair of classes which are the most similar (or least
dissimilar), according to the defined similarity measure, is identified, and these classes
are merged to form a new class which replaces the two merged classes. Therefore, the
resulting dendrogram is a binary tree. In general we can think of a process in which more
than two classes are merged at once, but in practice the binary similarity measure is used
almost exclusively, largely due to computational restrictions. Agglomerative hierarchical
methods are classified according to the similarity measure adopted. Well-known methods
of this type in the literature include the single link method, the complete link method, the
centroid cluster method, the group average method, and Ward’s method.

The single link method defines dissimilarity (or distance) between two classes as the
distance between their most similar members (Sneath 1957). If individuals are represented
as nodes of a graph with edges being formed between nodes in the same class, and an
edge between the most similar pair of nodes in two classes C; and C';, then this method
produces a minimum spanning tree. Besides the simplicity, this method has an advantage
of invariance to monotonic transformations of the similarity data, which means that the
clustering result is not affected by any data transformation that retains the relative order
of similarity values between individuals. This method also possesses a well-known defect
called chaining which is a tendency to prefer incorporating new entities into existing
clusters to initiating new clusters. However, this very tendency can be advantageous if the
clusters have an elongated shape in the feature space, because most other methods tend
to erroneously chop elongated clusters.

The opposite of the single link method is the complete link method which defines the

distance between two classes as the distance between their most dissimilar members (Sokal

and Michener 1958).



Between the above two methods lie centroid cluster method and the group average
method (Sokal and Michener 1958). The centroid cluster method defines the distance
between two classes as the distance between the two class centroids. In this method it is

assumed that each individual is represented by a vector v of features. If 7" class consists

of ¢; elements vi, vi, . . ., vi then its centroid v? is given by
W T
W= e Vi (21)
Ci k=1

and the distance between two classes i and 7 is
d(i,j) =|| v = v7 |

In the group average method the distance between two classes is defined as the average
of the distances between all pairs of individuals in the two classes. That is,

J
mi‘T‘

d(i,j) = P
J m=1n=1

where asg is the p** element of class k. Note that only distances between individuals need
to be known to obtain the distance between classes; a co-ordinate of each individual need
not be known or even defined. This is in contrast to the centroid cluster method. When
co-ordinates or vectors of individuals are given, Euclidean distance can be used to define

the distance between classes:

d(zm, 73) =l vi, = VA |

In Ward’s method, the sum of squared errors (SSE) E, given below, is introduced as a
criterion of the quality of clusters (Ward 1963):
c  C ) _
E= 3 lvi-v? (2.2)
i=1 k=1
where ¢ is the number of classes and v* is the centroid of class 7 defined in equation 2.1.
At each clustering step SSE is calculated and a pair of classes is merged so that merging

the pair minimizes the increase in SSE.



2.1.2 Divisive Hierarchical Clustering

The first step in divisive hierarchical clustering methods is to divide the whole data set
into two classes, followed by successive partition. of classes into two subclasses. When
there are n individuals, there are 2°~! ways to split the whole set into two classes in the
first step. Therefore it is not practical to consider all the possible partitions except in the
case of a very small n. Two basic types of divisive methods are monothetic methods and
polythetic methods.

Monothetic methods primarily deal with binary data. Each class is divided into two
subclasses depending on whether the member possesses a specific feature or not. Associa-
tion analysis is of this type. In association analysis a class is divided in terms of presence
or absence of an appropriate feature for that class such that dissimilarity between the two
subclasses is maximized in terms of the division criterion associated with that feature.

In polythetic methods decision rules for partitioning are based on the values of multiple
features. The splinter group method proposed by MacNaughton-Smith et. al (1964) is of
this type. In this method the most dissimilar element to the rest of the class is picked as
the first element of the splinter group, and other elements which are more similar to the
splinter group than the rest of the class are added to the splinter group one by one until
moving the item begins to increase the predefined total cost.

In the minimum diameter clustering, a class diameter is defined to ‘be the largest dis-
tance between any pair of individuals in the class, and the class with the largest diameter
is divided into two subclasses so that the diameter of the larger of the two subclasses is as

small as possible.

2.2 Optimization Method

Optimization methods produce a flat partition of the data. An initial cluster is created
first, and then individuals are moved from class to class to optimize some predefined
clustering criterion. Although optimization methods only construct a one-level partition
of the data by itself, we can always create a hierarchical cluster by repeatedly applying
optimization methods to each class.

Variations of the optimization methods come from variations in the type of optimiza-



tion criteria. One of the most widely used criteria is the sum of squared errors given in
equation 2.2, and the k-means method (MacQueen 1967) is a representative of this kind.
In the k-means method, the number c of classes is predefined and initial guesses are made
for ¢ class centroids. This can be done by a random choice or by more elaborate means.

Then the following steps are repeated until there are no changes:
e assign each item to the nearest class centroid
e replace each class centroid with the mean of all the elements in the class

Some other well-known criteria can be derived from the scatter matrix commonly used

in multiple discriminant analysis (Wilks 1962). Consider the problem of partitioning a

set S of N individuals into ¢ disjoint classes Cy, Cs, ... , C.. We assume that each item
U1

is represented by a p-dimensional feature vector v = ... |. Let ¢; be the number of
Up

elements in C; and let v¢ be the mean of elements in C;. The total mean vector ¥ is given
by

Zv——chv

VES
Then the total scatter matrix T of S is given by

T = Z(V—V)(V—V)T
ves

The total scatter matrix can be rewritten as a sum of two terms as follows:

T = 3 (-4 F == V) + (-9

i=1vel;
= L 3 -V -+ L el R -9
i=1veC,;
+ (= -+ D - v =)
i=1 veC; =1 veC;
= W + B, (2.3)
where
W = iwk
W, = Z(v——vk)(v—vk)T (2.4)
vel



and
< PR —
B= ch(vk -V (vF-%)T
k=1

W is the within-class scatter matrix of class k which is a measure of how much elements
of kth class are dispersed within the class. B is the between-class scatter matrix. Since the
total scatter T does not depend on how the data are clustered, a desirable cluster is the
one for which the within-class dispersion is minimum and/or the between-class dispersion
is maximum. Several clustering criteria based on the scatter matrix have been proposed.
One criterion is to minimize the trace of W, which is the sum of the variation on each
feature. Another simple scalar measure of the variability within classes is the determinant
of the within-class scatter matrix. Detailed discussion on advantages and disadvantages
of scatter-based optimization criteria is given in Duda and Hart (1973).

Another type of optimization methods is reshuffling. Starting with some initial cluster,
increase in the optimization criterion by the reallocation of an individual from its current
class to another class is calculated for each individual, and each individual is moved to

another class so as to maximize the increase in the criterion.

2.3 Soft Clustering

In all of the methods described so far, it is assumed that any individual either is or is not
a member of a particular class. This type of clustering is called hard or crisp clustering. In
soft clustering, in contrast, each individual has a degree of membership in each class. The
fuzzy-k-means method (Bezdek 1981), which is an extension of the k-means method, is an
example of this type. The (hard) k-means method can be reformulated as the problem
of minimizing the within-class sum-of-squared error criterion Jy in equation 2.5 under

conditions 2.6 through 2.8:

JE Zn:i:u,k Il Vk—$]]2 {2.5)

k=1i=1
Vi, k uik € {0,1} (2.6)
Vk 3 A= 1 (2.7)
1=1

11



Vi 0< Y ux<n (2.8)
k=1

V1,.., vV, are feature vectors of n individuals, v!,..,v¢ are c class centroids, and u;;, corre-
sponds to v ’s membership to class i. Conditions 2.6 and 2.7 imply that each individual
belongs to one and only one class, and condition 2.8 ensures that there is no empty class.
In the fuzzy-k-means method, 2.5 and 2.6 are modified as follows:
ko [

JS == Z Zuz’kw ” Vi — Iny; “2 (2.9)

k=1:=1
Vi, k u;x € [0, 1], (2.10)
where 1 € (1,00) is an fuzzy exponent (Bezdek 1981), and m,; is the fuzzy mean of class
i. Note that the degree of class membership %;; can take any real value between 0 and 1.

The necessary conditions for minimizing Js are given by Bezdek (1981) as follows:

2
|| Vi — my ||7¥-T
3
2 =1 || v —amy ||TA
YRy Uik ¥V

e = -1 Uik Vk 2.12
' i mal L)

Similar to the case of the hard k-means method, the optimum class centroids and mem-

Uiy = (2.11)

bership functions can be obtained in the following iterations:

e obtain initial set of class centroids my, .., m.
e repeat until changes in class centroids are less than some threshold value

— update degrees of class membership using equation 2.11

— update class centroids using equation 2.12

The fuzzy exponent 1 determines the degree of fuzziness (i.e., the degree of overlap between
classes) of the final configuration.

Lee (1997) also proposed centroid-based soft clustering which uses free energy as a
clustering criterion to create hierarchical clusters of words. Saul and Pereira (1997) and
Rooth et al. (1999) formalized soft clustering of words in the framework of Expectation-

Maximization (EM) algorithm. Details of these methods will be given in the next chapter.
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Chapter 3

Word Clustering

This chapter first describes previous work on automatic clustering of words. Following
that, the basic framework of the word clustering methods investigated in this thesis work
is presented. Finally, examples of word clusters obtained by various clustering methods
are illustrated and compared. Quantitative evaluation of cluster quality is presented in

the next chapter.

3.1 Previous Work: Automatic Clustering of Words

Several algorithms have been proposed for automatically constructing partitions of the
vocabulary based on a corpus. They are basically classified into three types. One type
is based on shuffling words from class to class starting with some initial set of classes
(Kneser and Ney 1993, Ueberla 1995, Martin, Liermann and Ney 1995). The optimization
methods discussed in the previous chapter use this type. A second type is agglomerative
hierarchical clustering. Bottom-up merging of classes is repeated starting from a set of
singleton classes, which contain only one word (Brown et al. 1992). The last type, divisive
hierarchical clustering, is a top-down method which iteratively partitions classes into their
subclasses starting with some initial configuration (McMahon and Smith 1996, Pereira,
Tishby and Lee 1993, Li and Abe 1996). The majority of these algofithms have been
developed for the purpose of improving language modeling for speech recognition. The
task of language models is to estimate probability value for each word in a predefined
vocabulary according to the context in which the word appears. In the n-gram model,

which has been the most popular and successful model, a context is defined as the sequence
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of the (n — 1) previous words. In general, as the value of n increases, the predictive power
of the language model increases, but at the same time the reliability of the model as a
whole decreases because the data becomes more sparse. Word clusters are used to avoid
the problem of data sparseness, or, in other words, to generalize the linguistic information
in the training data.

Work by Kneser and Ney (1993) is a typical example of shuflling-based clustering.
Starting with some initial partition of the vocabulary, a shuffling process is repeated until
some termination criterion is met. Kneser and Ney used a single class containing all the
words in the vocabulary as an initial partition in the case of an English vocabulary. In the
process of shuffling, they allowed moving a word to a newly created empty class. With
the conventional bigram-based maximum likelihood criterion, however, this would result
in a set of singleton classes (except for a possible effect of stacking in a local optimum),
which corresponds to a word bigram model. To avoid this, they introduced a modified
optimization criterion which they call the leaving-one-out likelihood. The leaving-one-out
likelihood is essentially the same as the maximum likelihood except that instead of using
the entire training corpus wywsy ... wp, the training corpus with the single event (wi—1, w;)
removed is used for training, and only one sample (w;_y, w;) is used as the held-out part to
simulate unseen events. This process of slicing out the held-out event is repeated IV times
so that all NV partitions with one held-out event are considered in the optimization. This
leaving-one-out method is a special type of cross-validation. By using the leaving-one-out
likelihood, the process stops creating a new class at a certain point with the optimum
number of classes. This method can find an optimum number of classes automatically,
but at the expense of introducing another parameter, a discount constant, which should
depend on the data size as well as the types of the data and therefore must be empirically
determined.

Ueberla (1995) extended Kneser and Ney's algorithm to deal with clustering using
higher order n-grams. He also proposed a heuristic to speed up the algorithm. Time
complexity becomes a crucial problem when the data size or the vocabulary size becomes
large. The time complexity of Kneser and Ney’s algorithm is O *V x (V + C?)), where

V' is the vocabulary size, C is the number of classes, and I is the number of iterations
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of shuffling. With the heuristic version of the algorithm proposed by Ueberla, the time
complexity becomes O(I{V? + V « C + C?)). According to Ueberla, C? is dominant in
(V + C?) because C crucially determines the quality of the resulting language model and
one would therefore like to choose it as big as possible. In that case, the dominant term
before the improvement is 7V C? and the dominant term after the improvement is 7V?,
and the latter is much smaller. Ueberla’s clustering experiment with one million words
of WSJ corpus shows that the quadratic growth of execution time with respect to the
number of classes can be reduced to nearly linear time by his heuristics. However, the V?
term is still a big obstacle when we try to process a large vocabulary in the range of tens
of thousands.

The second type of clustering algorithms (i.e. bottom-up merging algorithms) is rep-
resented by the mutual information (MI) clustering algorithm proposed by Brown et al.
(1992). The process is basically as follows. Suppose we have a vocabulary of size V" and
a large text. Then we first assign each word in the vocabulary to its own distinct class.
Starting with the V singleton classes, we repeatedly merge a pair of classes according
to some information theoretic criterion until C' classes remain, where (' is a predefined
number of classes. The criterion used is the average mutual information (AMI) between
pairs of adjacent classes. Brown et al. showed that the partition of the vocabulary that
maximizes the AMI also maximizes the likelihood of a bigram class model generating the
text. The pair of classes whose merging reduces AMI the least is chosen to be merged.
With certain optimization and approximation, the time complexity of this algorithm can
be reduced to as low as O(VC?). This is linear in the size of the vocabulary. A more
detailed description of this algorithm will be given in Section 3.3.1.

The MI clustering algorithm was also proposed initially to improve the quality of lan-
guage modeling. However it has been shown, in a series of papers by the IBM group, that
this algorithm is also useful for other purposes, including the construction of decision tree
Part-Of-Speech tagging models (Black et al. 1992) and parsing models (Black et al. 1993,
Magerman 1994) as well as a maximum entropy model for prepositional phrase attachment
(Ratnaparkhi and Roukos 1994). However, no quantitative analysis of the effects of the

quality of clusters on the performance of these models has yet been made.
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The last type of clustering, a top-down method, includes work by McMahon and Smith
(1996). They conducted a binary top-down form of word clustering and employed AMI
as an optimization criterion. Their goal of constructing word clusters was also to improve
statistical language models. Instead of constructing a single flat layer of word classes, how-
ever, they constructed hierarchical clusters of words and proposed a multilevel smoothed
bigram model which used the hierarchical clusters. Their clustering algorithm is as follows.

Suppose that a training corpus and a vocabulary V are given. First, an initial binary
tree representation ¢ of the vocabulary is constructed by randomly assigning bit strings to
words. The first bit of a word represents a position (left or right) of the word in the first
level (depth 1) of the binary tree. Let s be the depth of the binary tree. Then there are

2% classes at depth s. Now, starting with depth s = 1, do the following.
1. Calculate the AMI at depth s for the current tree ¢ as follows:

M,(t) = E Pr(c;c;)log % ;

Ci,Cy

where ¢; and c; are word classes at depth s.

2. Shuffle words among classes in depth s for a higher M;(t) value until no single move

of a word leads to a higher M,(t) value.

3. Fix the partition at depth s; increment s by 1.

If s reaches some predefined number then stop; otherwise go to step 1.

The cost of each iteration of this algorithm is O(V?) for vocabulary size V. For V on
the order of tens of thousands, this is too expensive. Therefore, they processed only the

most frequent 569 words in the vocabulary using this top-down method in their experiment.

All three types are driven by some objective function, in most cases by perplexity or
average mutual information. The merit of the bottom-up merging algorithm for the pur-
pose of constructing hierarchical clustering is that we can easily convert the history of the
merging process to a tree—structured representation of the vocabulary. On the other hand,

this type is prone to being trapped at a local optimum. The first type (shuffling-based) is
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more robust to the local optimum problem, but the quality of classes greatly depends on
the initial set of classes, and finding an initial set of good quality is itself a very difficult
problem. Moreover, the first type only provides a means of partitioning the vocabulary
and it doesn’t provide a way of constructing a hierarchical clustering of words. The third
type, a top-down method, can provide a way to construct hierarchical clusters, but its
time complexity is too large for a large scale task. In this work we adopt the merging
approach and propose a method of constructing hierarchical clusters. An attempt will also

be made to combine the first two types of clustering.

Soft Clustering of Words

All of the three types of word clustering methods discussed above are what is called
hard clustering in which any word either is or is not a member of a particular class. Most
of the large scale word clustering methods reported in the literature are hard clustering.
Moreover, in the above cases any two classes are either disjoint or else one completely
contains the other. The latter case happens when the cluster is hierarchical. However,
these types of clusters cannot completely capture the nature of ambiguity natural language
exhibits. An obvious example is a homonym. The word bank can be in the same class as
treasury or it can be in a totally different class containing words like shore or dike. 1t is
not unusual for the same word to be in different classes depending on the context in which
the word occurs. One way to cope with this is to construct a cluster with overlapping
classes. Another way is to treat each homonym as a different entity. In this case each
occurrence of a word in the text has to be disambiguated with respect to a word sense,
which itself is a new issue and constitutes one research area (Schutze 1992, Dagan and
Itai 1994, Yarowsky 1995, Pedersen and Bruce 1997).

A more general approach is to construct soft clustering in which each word is a member
of multiple classes with some probability. Pioneering work in this direction was conducted
by Pereira et al. (1993) and Lee (1997). The vocabulary to be clustered in their work
is a set of nouns, and the raw knowledge for the clustering is a set S of pairs (z,y),

where y is a verb and z is the head noun of y’s direct object. They collected these pairs
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using the combination of a statistical POS tagger (Church 1988) and a regular expression
pattern matching method (Yarowsky 1992). The occurrence of each pair is assumed to be
independent.

Their clustering method is divisive and hierarchical. The system starts with a single
cluster and successively splits each cluster into two clusters. Each cluster is represented by
the cluster centroid ¢ which is placed at the weighted average over all data points 2. For
each head noun z, the probability distribution of z over the set ) of the verbs is defined
by P(y|z) (or simply P(:|z)), and the dissimilarity, or distance, of two nouns zy, z, is

measured by the KL Divergence of their distributions:

_ z1)log 2lZ1)
D(z1]]x2) = y;YP(yl D09 )

Instead of measuring distances of all the pairs of nouns, they only use distances of nouns
and cluster centroids for their modelling.

The search for the proper parameter settings is guided by two principles, minimum
distortion and maximum entropy. The closed-form solution that extremizes the two criteria

is given by the following equations:

P(cls) = w (3.1)

P(yle) = ) P(ele)Pure(yle), (3.2)

where g is a free parameter, d(z,c) is a notational shorthand for D(Pyrg(-|z)||P(-|¢)),
Pure(ylz) is the empirical distribution of a noun z, and Z, = ), exp(—pBd(z,c)) is a
normalization function. For a fixed value of 3, the search for the proper parameter values

is a two-step iteration:

e membership probabilities P(c|z) are calculated by equation 3.1 with fixed centroid

distributions P(y|c),
e obtained values of P(c|z) are plugged into equation 3.2 to update P(y|c),

and this cycle is repeated until the parameters converge. The whole process is then

repeated with a gradually increasing value of 3 until 5 reaches some predefined maximum
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value By 4x. At each incrementation of 3 value, classes {or class centroids) are split into
two or more subclasses. Therefore the final number of classes is controlled by Sprax. A
hierarchical structure is constructed by tracing the history of each class split.

Saul and Pereira (1997) formalized a method of soft clustering of words as an Expectation-
Maximization (EM) algorithm. They constructed a class-based bigram model in which
the mapping from words to classes is probabilistic. The model predicts that word wy is

followed by word we with probability

e
Pr(wg|w,) = Z Pr(ws|e)Pr(clw)

i |

The hidden variable in this model is the class label ¢ to which each word w; belongs with
some probability Pr(c|w;). Pr(wsz|c) denotes the probability that the word w; directly
follows words in the given class ¢. EM algorithm is applied to estimate these parameters
of the hidden variable models. It is guaranteed that the overall log-likelihood of the model
generating the training text increases at each iteration of updates of the model parameters.
Although both Brown et al. (1992) and Saul and Pereira (1997) decompose conditional
bigram probabilities Pr(ws|w;) using class-based parameters, the latter method has an
advantage, besides the softness of the clustering, in that the log-likelihood is directly
optimized in the process of parameter estimation. The utility of this soft clustering method
demonstrated through experiments is that the model is intermediate both in size and in
accuracy between unigram (C' = 1) and bigram (C = V') models. It is also demonstrated
that the model assigns non-zero probability to all the bigrams in the unseen test set, which
is a useful feature when we construct language models.

Rooth et al. (1999) also proposed an EM-based soft clustering method. Unlike the
method of Saul and Pereira, in which clusters are derived directly from a plain text,
their method uses a sample of pairs of verbs and nouns which participate in grammatical
relations of either verbs and their subjects or transitive verbs and their objects. These
pairs are gathered by parsing sentences. The model treats verbs (v) and nouns (n) as
conditioned on a hidden class ¢ € C. The joint probability of a pair (v,n) is decomposed
using class-based parameters as follows:

Pr(v,n) = Z Pr{g.vn) = Z Pr(c)Pr(v|c)Pr(n|c)
celC cel
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The conditioning of two words v and n on each other is made only through the classes c.
Accordingly, the classes to be constructed are not classes of individual words, but classes
of pairs of verbs and nouns. The evaluation of the models is conducted through a pseudo-
disambiguation task which is similar to the task Pereira et al. (1993) and Lee (1997) have
employed to demonstrate the usefulness of the obtained clusters. The task is to judge
which of two verbs v and v’ is more likely to take a given noun n as its argument. No
comparison is given, however, with alternative approaches. The model is also applied to
create a lexicon of several hundred verbs with subcategorization frames which are labeled
with latent classes.

Although soft clustering is no doubt better suited for NLP tasks than hard clustering,
several important issues have to be further explored. One issue is its heavy computational
demand. In the case of Pereira et al. (1993) and Lee (1997), the time required to update
the membership probabilities using equation 3.1 is O(CV?), and the time to update all
the centroid distributions using equation 3.2 is also O(CV?). Therefore the total running
time is O (K CV'?), where K is the total number of iterations for all values of 3. As a result,
this method is prohibitively expensive for large vocabularies.! In case of Saul and Pereira,
no analysis of time complexity is given, but the maximum number of classes reported is
32.

Another issue is the very utility of the softness for NLP tasks. Suppose a word w
belongs to class C; with probability p; for ¢ = 1,2,3,...n. Suppose further, for simplicity,
that all p’s except p; and py, are nearly equal to zero. Then two major senses? are depicted
in the cluster. This may be useful by itself for lexicographical purposes. However, when
the cluster is used for NLP tasks, the context in which w occurs may very well give more
accurate information than the cluster’s probabilities. For example, the word bank in the
context of “river bank” has very little chance of being related to {reasury even if the two
clusters’ probabilities clearly indicate that the financial usage of the word is much more
common than the geographical one. How to integrate the a priori probabilities of soft
clusters with the context information is still an open question.

Regarding the utility of soft clustering, Lee and Pereira (1999) suggested that the

! Actually, the maximum size of vocabulary reported is 1000.
2The sense distinction referred to here does not necessarily correspond to that found in dictionaries.
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advantage of soft clustering over hard clustering may be computational® rather than in
modeling effectiveness. In the evaluation of soft clusters in the pseudo-disambiguation
task, they employed two heuristic ways of generalizing information on word distribution
using clusters: one is to use the weighted avera,gé of contributions of all the clusters to
which the word in question belongs, and the other is to simply use the estimate of the
nearest cluster to the word. Their conclusion is that the weighted-average method never
seems to outperform the nearest-cluster method, indicating that hard clustering is enough
for this particular task. Further improvement of soft clustering technique seems to be

required to take full advantage of the softness of clusters.

3.2 Word Clustering for NLP Tasks

As described in the previous section, various approaches have been proposed for cluster-
ing words, mostly for the improvement of language modeling. The majority of successful
methods use, as optimization criterion for clustering, the log-likelihood of the model gen-
erating the clustering text, or equivalently, the cross-entropy of the model with respect to
the empirical word distribution. This cross-entropy is often re-expressed as perplexity, and
it is widely known that language models with lower perplexity generally produce better
speech recognition results.

Some pieces of work that show practical use of clustering for NLP tasks include Char-
niak (1997) as well as those by the IBM group mentioned earlier. In his probabilistic
context-free parsing model, Charniak used clusters of head words for conditioning proba-
bilities of derivations instead of conditioning by individual heads. It is shown that using
word classes for purposes of smoothing has a moderate effect of increasing parsing accu-
racy.

Compared to the efforts to improve language modeling, however, less attention has been
paid to the application of clustering techniques to NLP tasks. In particular, very little work
has been done to quantitatively assess the effects of clustering quality on the performance
of NLP tasks. The aim of this dissertation is to investigate how the improvement of

entropy-based clustering techniques improves performance of NLP tasks. In particular,

3Their argument is based on the fact that the problem of finding a partition that minimizes some
optimization function is NP-complete.
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it is shown that using cross-entropy measures to cluster words and compounds according
to their mutual substitutability improves performance on NLP tasks, especially for rare
events. In the following sections the basic framework of the word clustering methods

investigated in this thesis work is presented.

3.3 MI Clustering and Hierarchical Word Clustering

In this section, we will first describe the MI clustering algorithm which serves as a base
line upon which various kinds of improvements will be made. The MI clustering algorithm
presented here is based on Brown et al. (1992), although an important formula is modified
for the sake of mathematical soundness (Ushioda 1996a). Following that, a hierarchical

word clustering algorithm will be presented.

3.3.1 Mutual Information Clustering Algorithm

Suppose we have a text of T words, a vocabulary of V words, and a partition 7 of the
vocabulary which is a function from the vocabulary V to the set C of classes of words in
the vocabulary. Brown et al. showed that the likelihood L(7) of a bigram class model

generating the text is given by the following formula:
Liry=-H+1 (3.3)

Here H is the entropy of the 1-gram word distribution, and I is the average mutual infor-

mation (AMI) of adjacent classes in the text and is given by equation 3.4:

Pr(cies
Fes C]Zc? Pr(ciez) log ———‘_—Pr(cl()Pr()cz) (3.4)
Since H is independent of 7, the partition that maximizes the AMI also maximizes the
likelihood L(7) of the text. Therefore, we can use the AMI as an objective function for
the construction of classes of words.
The mutual information clustering method employs a bottom-up merging procedure.
In the initial stage, each word is assigned to its own distinct class. We then merge two

classes if the merging of them induces minimum AMI reduction among all pairs of classes,

and we repeat the merging step until the number of the classes is reduced to the prede-
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fined number C. The time complexity of this basic algorithm is O(V?) when implemented

straightforwardly, as can be seen below.
A. There are in total V — C' = O(V) merging steps.

B. After n merging steps, V — n classes remain, and in the next merging step we have to
investigate (V 5 ”) = O(V?) trial merges, only one of which will be made effective

in the later process.

C. One trial merge at step n involves summations of (V — n)? = O(V?) terms for the

calculation of AMI in equation 3.4.

Therefore the total time complexity is O(V?).
By eliminating redundant calculation, however, the time complexity can be reduced to

O(V?) as described in some detail below. In short, the point is that part C can be done

in constant time by:

1. computing only those terms in equation 3.4 whose values have changed by the pre-

vious merge (O(V?) = O(V)).

2. storing the result of all the trial merges at the previous merging step (O(V) =

o(1)).

Suppose that, starting with V classes, we have already made V - k merges, leaving k

classes, Cy (1), Cx(2), .. , Cx(k). The AMI at this stage is given by the following equations:

I, = Z ax (1, m) (3.5)
I,m
a&(l, m) = pu(l, m) log —2ee ™) (3.6)

ple(l)pri(m)
where py(l, m) is the probability that a word in C(I) is followed by a word in Ci(m), that
is,

pr(l,m) = Pr(Ci(l),Cr(m)), (3.7)

and

ple(l) =3 pe(l,m), pri(m) = pp(l,m). (3.8)

{
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Summation Region for Ly(lm)
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{(Llm) 1 1<i<k 1<m <k
Entire Summation Region
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(b) () (d) Summation Region for L&31, m)

The circle in @ indicates that class i here is
different from class 1 for Ly(l,m) | that is:

Figure 3.1: Summation Region (1) Cr i) = Culisi)
K -1(i) = 1+]

Figure 3.2: Summation Region (2)

In equation 3.5, ¢;’s are summed over the entire kX k class bigram table in which cell (I, m)
represents ¢ (I, m). Now suppose that we investigate a trial merge of Cy (i) and C}(j) and
compute the AMI reduction, Li(i,7) = Ix — Ix(?, ), by this merge, where I;(,j) is the
AMI after the merge. As illustrated in figure 3.1, the summation region of equation 3.5
can be represented as a union of three parts, (a), (b) ,(c) minus (d). Out of these four
parts, the summation over region (a) does not change its value by the merge of Cj(7)
and Cy(j). Therefore, to calculate Lk (i,7), the summation region can be reduced from a
two dimensional region (a square region) to a one dimensional region (lines), hence, the
complexity of part C can be reduced from O(V?) to O(V). Using the notation Ci(i + j)
which represents a class created by merging Cj(¢) and Ci(7), the AMI reduction can be
given by equation 3.9:

Li(i,5) = sk (0)+sx(f) =g (6, 5) —qu (5, 8) = (D el i40)+ D ar (47, m)+qx(i+7,i+7))
1#1,7 m#i,J
(3.9)

where
sk(i) = Y ae(l,3) + D qi(i, m) — qr(i, 1) (3.10)
| m
After calculating L’s for all the pairs of classes, we choose the pair for which L is

least, say, Ci(¢) and Ci(j) with ¢ < j, then we merge that pair and rename the new
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merged class as C—1(7), and go on to the next merging step with a new set of k-1 classes.
Except for Ci(7) and Ci(7), all the classes are indexed the same way after the merge, that
is, we rename Ci(m) as Cx_1(m) for m # ¢, 5. If j # k, we rename Ci(k) as Cr_1(j). If
j =k, Ci(k) just disappears after the merge. |

Further optimization is possible by storing all the values of Lj in the previous merging
step. Suppose that the pair (Ck(¢),Cx (7)) was chosen to merge, that is, L (¢, 7) < Lk (I, m)
for all pairs ({,m). In the next merging step, we have to calculate L(i” L(I,m) for all
the pairs (I,m). Here we use the superscript (¢,7) to indicate that (Ci(7),Cr(j)) was
merged in the previous merging step. Now note that the difference between L( j)(l,m)
and Li(l,m) is that Lf:‘_“?])(l,m) is the AMI reduction by merging class /[ and class m
after merging class ¢ and class j, whereas Ly ({,m) is the AMI reduction by merging class
! and class m without merging class ¢ and class j. Therefore, the difference between
Lgfl)(l,m) and Li(l,m) only comes from the terms which are affected by merging the
pair (Ck(?), Ck(j)). To see it graphically, the summation regions of the class bigram table
for L}:fl)(l,m) and Li(l,m) are illustrated in Figure 3.2. Because the summation over
the region {(z,y)|z # i,7,,m and y # 1,7,{,m} does not change its value by the merge
of class i and class j, or the merge of class [ and class m, that region is omitted in the
graph. Furthermore, as shown below, most regions in the graph cancel each other out
when we calculate L(”)(I, m) — Li(l,m), leaving only a number of point regions, hence
the complexity of part C can be reduced to constant.

Since Ly(l,m) = Iy — Iy(l,m) and L) (1, m) = 1{") — 189) (1, m),

LN m) — Le(t,m) = = (189 (1, m) = Lt m)) + (12 - In). (8.11)

Some part of the summation region of I( ‘J)(J m) and [} cancels out with a part of I,g ’?1) or

a part of Ix(l,m). Let I;(c_'l)(l, m) , Ix(l,m) , ,E’J) and I}, denote the values of Is(c—’J1)(l’ m)

, Ip(l,m) , T g‘_ﬂ) , and [}, respectively, after all possible cancellations have taken place.

Then, we have
LENm) = Li(tm) = (0 m) - Im) + () - 1), (3.12)
where
B9m) = qrorl+m,i) + geoa 6,14+ m) (3.13)
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Figure 3.3: Summation Region (3)

It,m) = qel+m ) + g, 1+ m) + gl +m,7) + qe (G, L +m)  (3.14)
B9 = qror (6 0) + qeer (6,m) + qeor (13) + qeor (m, ) (3.15)

Ir = @, )+ q(,m)+ a5, ) + (i, m) + g, ) + ge(l, 5)
+ gr(m, 1) + gx(m, ) (3.16)

The summation region of the I's in equation 3.12 is illustrated in Figure 3.3. Brown et
al. seem to have ignored the second term of the right hand side of equation 3.12 and used
only the first term to calculate Lg;jl)(l,m) — Li(l,m). * For the sake of mathematical
completeness, we will use equation 3.12.

Even with the O(V?) algorithm, however, the calculation is not practical for a large
vocabulary of order 10* or higher. Since part A must require O(V) time, part B is
the only part which can be modified. In part B we allowed all the possible pairs of
classes to be considered for merging, but we can restrict the domain of possible merging
pairs to investigate as follows. We first make V singleton classes out of the V words in
the vocabulary and arrange the classes in descending order of frequency, then define the
merging region as the first C' 4 1 positions in the sequence of classes. So initially the C'+1

most frequent words are in the merging region. Then we:

4 Actually, it is the first term of equation 3.12 times (-1) that appeared in their paper, but we believe
that it is simply due to a misprint.
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Merging History: Dendrogram
Merge(A, B > A)
Merge(C, D = C) = @
Merge(C, E = C)
Merge(A, C > A)
Merge(X,Y>Z) reads ®

"merge X and Y and name I_I% 5‘_\
the new class as Z" ® © ®

Figure 3.4: Dendrogram Construction

1. Combine the pair of classes whose merger results in the minimum AMI reduction.

2. Put the class in the (C + 2)™ position into the merging region and shift each class
ging reg

after the (C' 4 2)™? position to its left.

3. Repeat 1. and 2. until C classes remain.

With this algorithm, the time complexity becomes O(C?V) which is practical for a work-
station with V in the order of 100,000 and C up to 1,000.

3.3.2 Hierarchical Word Clustering Algorithm

The simplest way to construct a tree-structured representation of words is to construct a
dendrogram as a byproduct of the merging process; that is, to keep track of the order of
merging and make a binary tree. A simple example with a five word vocabulary is shown
in Figure 3.4. If we apply this method to the above O(C?V) algorithm straightforwardly,
however, we obtain for each class an extremely unbalanced, almost left branching subtree.
The reason is that after classes in the merging region are grown to a certain size, it is
much less expensive, in terms of AMI, to merge a singleton class with lower frequency into
a higher frequency class than to merge two higher frequency classes with substantial sizes.

A new approach we adopt incorporates the following steps:®

1. Ml-clustering: Make C classes using the mutual information clustering algorithm

with the merging region constraint mentioned in (cf. § 3.3.1).

2. Outer-clustering: Replace all words in the text with their class token® and execute

® According to personal communication with John Lafferty, essentially the same algorithm for Hierar-
chical Word Clustering presented here was independently developed and used at IBM as early as 1991. It

Jjust wasn’t published.
®In the actual implementation, we only have to work on the bigram table instead of the whole text.
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binary merging without the merging region constraint until all the classes are merged
into a single class. Make a dendrogram out of this process. This dendrogram, D;qs,

constitutes the upper part of the final tree.

3. Inner-clustering: Let {C(1),C(2),...,C(C)} be the set of the classes obtained at step

1. For each i (1 < ¢ < C) do the following:

(a) Replace all words in the text except those in C(i) with their class token. Define
a new vocabulary V' = V} U V,, where V] = {all the words in C(i)}, Vo =
{C1,Cs,..,C;-1,Ci+1,Cc}, and C; is a token for C(j) for 1 < j < C. Assign
each element in V’ to its own class and execute binary merging with a merging
constraint such that only those classes which only contain elements of ¥ can
be merged. This can be done by ordering elements of V' with elements of V)
in the first |V;| positions and continuing to merge with a merging region whose

width is |V]| initially, decreasing by one with each merging step.

b) Continue merging until all the elements in ¥} are put in a single class.
ging g

Make a dendrogram D,,; out of the merging process for each class. This dendrogram
constitutes a subtree for each class with a leaf node representing each word in the

class.

4. Combine the dendrograms by substituting each leaf node of Dyyo with the corre-

sponding Dgyp.

This algorithm produces a comparatively balanced binary tree representation of words
in which those words which are close in meaning or syntactic feature are close in position.
Figure 3.5 shows an example of D,y for one class out of 500 classes constructed using this
algorithm with a vocabulary of the 70,000 most frequently occurring words in the Wall
Street Journal Corpus. In this example, the depth of the whole tree is 33, whereas the
simple dendrogram method with the same text and vocabulary creates trees with depth
1000 or more. Finally, by tracing the path from the root node to a leaf node and assigning
a bit to each branch with zero or one representing a left or right branch, respectively, we

can assign a bit-string (word bits) to each word in the vocabulary.
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Figure 3.5: Sample Subtree for One Class

3.3.3 Example of Clusters

Some representative examples of clusters are given in this section. A 50 million-word
text of Wall Street Journal articles is processed to create a set of 500 word classes by
MI clustering. Five rounds of reshuffling (cf. § 3.4) are then applied. The size of the
vocabulary is 70,000.

One distinctive feature of clusters created by the MI clustering method is that the size

of classes varies considerably. The distribution of class sizes is given in Figure 3.6. A point

t (X,Y) shows that there are Y classes in the cluster whose size is between X —9 and X.
The maximum size is as large as 6213. One the other hand, there are 124 classes whose
size is one (singleton classes). The average class size is 140, and the standard deviation is
368.

Table 3.1 shows the three largest classes. Words are listed in descending order of
frequency in the text, and each list is truncated at an arbitrary point. The number of
elements in each class is, from top to down, 6213, 3077, and 1540.

The first class in the table is a class of family names, the second class is a class of
company names. The third class is some mixture of family names and company names.
Unlike categorization, clustering only divides elements into classes and we cannot control
the nature of each class to be created. We can at best identify common characteristics of

elements in a class after the classes are formed. 7

"There are, however, ways to influence the nature of each class by controlling the initial state of MI
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Gorbachev Baker Miller Jackson Trump Morris Boesky Wilson Davis Greenspan Icahn
Wright Milken Hall Meese Moore Taylor Cohen Robertson Walsh Yeltsin Murphy An-
derson Volcker Gray Jacobs Pickens Edelman Murdoch Shultz Walker Hart Gates Levine
Bennett Robinson Casey Keating Perot Reed Freeman Adams lacocca Evans Buchanan
Ryan Kelly Friedman Simmons Wolf Regan Siegel Weiss Brennan Levy Darman Cook
Schwartz Seidman Kaufman Buffett Salinas McCarthy Cox Johnston Strauss Bilzerian
Goldberg Sununu Pierce Li Hammer Abrams Powell Mitterrand Posner Coleman Garcia
Griffin Gross Castro Rice Tisch Thornburgh Perelman Stern Shaw Klein Olson Web-
ster Peterson Fitzwater Schneider Mandela Greenberg Tsongas Clarke Katz Peters Meyer
Hoffman Mulheren Goldstein Breeden Deng Goodman Giuliani Levin Owen Stein Lorenzo
Weinberger Ruder Yeutter Nakasone Henderson Farley Simpson Lucas McFarlane Skinner
Roth Cole Chapman Sanders Dixon Rosenberg Porter Reilly Takeshita Stempel Rosen
Hirsch Miyazawa Schmidt Duncan Gonzalez Poehl Kerkorian Bailey Koch Kerrey ...

Ford Salomon Chrysler Moody Texaco Citicorp Boeing CBS Warner Time Apple
PaineWebber GE Sun Digital Toyota RJR Campeau Kodak Microsoft Intel Fidelity Honda
Nomura Sony Exxon Coca-Cola UAL Nissan BankAmerica Prudential-Bache Irving Guin-
ness Allied Prudential Sterling Lotus Compaq USX MCI MCA Lockheed USAir Occidental
Northrop Gillette Robins Unisys Burlington LTV Philips NCR Chevron AMR Henley Xe-
rox Mesa Mobil Amoco Macy BP Farmers ITT GTE B.A.T Toshiba Volkswagen Motorola
NCNB Dome Pillsbury Allegheny Allegis Siemens Harcourt Macmillan Kraft WPP Daiwa
Genentech Avon Revlon Southland Nova Mazda Tenneco Arco Hewlett-Packard PepsiCo
Rockwell Hanson Nikko Cray Nestle Orion Integrated Polaroid Greyhound Monsanto Equi-
table TRW Unocal SmithKline Aetna Coors Nynex NEC Reebok Fiat Southmark Hitachi
Zenith Dominion Wal-Mart Fujitsu Upjohn Interco Seagram Volvo McCaw Lucky Viacom
Hyundai Wickes Jaguar Reliance Nintendo Resorts Sotheby Corona Firestone Grumman
Gannett Coniston Beatrice Wedtech USG Bristol-Myers Allied-Signal Travelers Pfizer ...

Morgan Smith Goldman Johnson Brown Kidder King Price Harris Saddam Young Maxwell
McDonnell Williams Saatchi McDonald Scott Simon Phillips Turner Allen Ross Lewis Jor-
dan Clark Thompson Hughes Fox Campbell Green Montgomery Franklin Mitchell Bass
Marshall Cooper Wang Stone Sullivan Dayton Thomson Hunt Clinton Parker Stevens Nel-
son Edwards Singer Murray Rogers Wood Hilton Hamilton Rose Brooks Lilly Steinberg
Stewart Rothschild Corning Grant Foster Grace Fisher Bernstein Dillon Collins Baxter
Schwab Andersen Morton Mason Jefferies Burns Gould Graham Rich Morrison Armstrong
Bradley Taft Webb Marietta Bull Lane Christie Love Blair Stephens Olivetti Harper Kel-
logg Perry Marion Barnett Bryan Fleming Phelps Norton Gilbert Rockefeller Wagner
Sharon McDermott Case Nielsen Marcus Spencer Wasserstein Forstmann Harrison Tyson
Sherman Palmer Holland Fairfax Suzuki Putnam Kay Gabelli Barron Richardson Myers
Matthews Forbes Dell Jefferson Moran Butler Gibson Scudder Keefe Solomon Needham
Carson Whittle Todd Sharp Hampton Willis Rule Hunter Fish Snyder Hoffmann-La ...

Table 3.1: Large Classes
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Figure 3.6: Distribution of Class Sizes

., the of to a and in that for is $ said on it by with at as from was be are have an will
would about they ...

Table 3.2: Examples of Singleton Classes

Some elements of the singleton classes are listed in Table 3.2. Most punctuation marks,
prepositions, auxiliary verbs and determiners form singleton classes because their distri-
butional characteristics are quite unique.

Table 3.3 shows examples of relatively coherent classes, and Table 3.4 shows some

examples of bad classes.

The obtained cluster is further processed to create a hierarchical cluster using the
method described in § 3.3.2. Figure 3.7 shows the distribution of bit length of word bits.
The maximum length is 33 and the average length is 21.7. If the tree were completely

balanced, the tree depth would have been 17.

clustering. For example, by using similar words as seeds in each initial class, we can expect to collect other
similar words in the process of clustering. However, this method tends to create classes of a mixture of
different subgroups unless the initial similar words are really similar in terms of the clustering criterion.
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second third fourth fifth sixth seventh eighth 10th 11th ninth 14th rate. 12th 13th 15th
17th 16th 100th 50th 25th 30th 40th Caesarean 24th 70th 60th 27th 22nd 23rd 26th 200th
35th 75th aft 49th 38th 34th 46th 36th 28th 43rd 31st 51st 37th 29th 500th 45th 90th
33rd 80th 2,000-mile 41st 150th

two three five four six seven nine eight ten twelve two-and-a-half eleven twenty thirty
14-hour halcyon **Four fifty fifteen three-and-a-half forty better-off two-dozen sixty one-
and-a-half

still probably really certainly hardly obviously surely definitely undoubtedly scarcely
presently gonna doubtless unquestionably assuredly

major big leading key prominent dominant well-known prestigious high-profile pivotal
full-service staunch world-class state-chartered thorny high-flying pioneering reputed bud-
ding highflying reputable predominant top-tier die-hard Chicago-area price-depressing
Boston-area preeminent U.S.-flagged knotty barrier-free sub-par self-respecting similar-
sized top-10 world-famous reflagged wintry big-bank non-German trend-setting swanky
price-firming modest-sized big-stock once-proud non-lawyer hair-trigger second-story once-
thriving post-Challenger once-powerful late-summer heckuva fast-growth beaten-down

Japan Europe Canada Britain France China Mexico Israel Brazil Australia Switzerland
Italy Taiwan Singapore Spain India Poland Messrs Nicaragua Sweden Russia Argentina
Turkey Pakistan Lebanon Egypt Panama Cuba Hungary Baghdad Belgium Indonesia
Syria Chile Afghanistan Venezuela Peru Hawaii Norway Ireland Malaysia Tehran Thailand
Austria Yugoslavia Colombia Czechoslovakia Greece Finland Lithuania Libya J.P humans
Portugal Cambodia Denmark L.A Romania Angola Managua Nigeria Croatia Algeria Haiti
Bulgaria Honduras Sens Dealer Burma ...

significant great huge serious substantial sharp negative broad modest temporary wide
massive deep severe broader fundamental considerable rapid solid slight dramatic minor
tremendous steep sweeping sudden hefty bitter sizable partial constant mere comprehen-
sive strict stiff longstanding mild meaningful prolonged bold near-term genuine persistent
gradual precise nominal drastic vigorous chronic spectacular dismal lasting decent stunning
tangible sheer scant profound lingering handsome broad-based swift respectable periodic
continuous far-reaching meager concerted dire recessionary definite simultaneous ...

analysts traders dealers economists brokers experts critics participants specialists pro-
fessionals observers forecasters skeptics commentators pundits meteorologists NMTBA
wags demographers cynics timers Saxony market-watchers nutritionists catalogers con-
trarians audiophiles furriers psychotherapists numismatists seers Angelenos term-limits
Fed-watchers weathermen ophthalmologists

saying adding concerned showing talking calling worried asking convinced confident not-
ing indicating charging meaning suggesting demanding arguing skeptical claiming alleging
betting afraid assuming predicting explaining knowing recommending complaining hopeful
declaring insisting worrying signaling fearing asserting contending ensuring fearful stating
believing recalling realizing acknowledging concluding discovering speculating revealing
estimating confirming demonstrating conceding unsure implying proclaiming inconceiv-
able apprehensive sensing hinting boasting remembering pretending fretting unconvinced
inquiring noticing forgetting bragging imagining cautioning netting pausing bandied mut-
tering ...

Table 3.3: Examples of Good Classes
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Table 3.4: Examples of Bad Classes
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Figure 3.7: Distribution of Word Bits Length
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Word Word Bits |
acknowledgment | 00011001000111111110
acknowledgement | 000110010001111111110
billion 011011010100

billon 011011010101

between 1000110110100

betwen 1000110110101

million 01101101000

milion 01101101001011100

millon 01101101001011101

milllion 0110110100101111
possibility 00011001000100100
possiblity 00011001000100101
uncollectible 001111100110001111010110
uncollectable 0011111001100011110101110

Table 3.5: Example of Misspelled Words

Some examples of subtrees are given in Figure 3.8. Note that two words in the figure,
spokeman and spokewoman, are misspelled. Since distributional characteristics of a com-
mon misspelled word and of the correctly spelled word are quite similar, these words tend
to come close to each other. Other such examples are given in Table 3.5. Many hyphen-
ated words also behave quite similarly to non-hyphenated counterparts as exemplified in

Table 3.6.

3.4 Improvement of Clustering Quality

Since the MI clustering algorithm is a greedy algorithm, the process is prone to being
trapped at a local optimum. Indeed, a further refinement of clusters is possible after the
completion of MI clustering, and we will discuss in this section methods to improve the
quality of clusters, and give examples of improved clusters. More rigorous evaluation of

cluster quality is presented in the next chapter.

Data Size

Perhaps the simplest method to improve the quality of clusters is to increase the amount
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non-communist
noncommunist

[Word [ Word Bits
peacekeeping 0111101100001111000
peace-keeping 0111101100001111001
nonmilitary 011110110110110110
non-military 0111101101101101110
semiannually 001000001110101100
semi-annually 001000001110101101
non-Communist | 00100001111110011100

001000011111100111010
001000011111100111011

Asia-Pacific
Asian-Pacific

001000011111100111100
00100001111110011110100

high-flying

001111100000111110110

highflying 001111100000111110111
loan-loss 001101001011000

loanloss 001101001011001
buy-outs 00011011001100

buyouts 000110110011010

run-up 00011110010101010100
runup 00011110010101010101
falloff 0001111001010101111010
fall-off 00011110010101011110110
preset 00111110001010101010110110
pre-set 00111110001010101010110111
supply-demand | 0011010110100101111110
supply/demand | 0011010110100101111111
anti-takeover 001101011011100
antitakeover 0011010110111010
Iran-Iraq 0011111011011111100
Irag-Iran 0011111011011111101
midsized 0011010100111000100
midsize 00110101001110001010
mid-sized 00110101001110001011
lawmaking 0010001000010111101010
law-making 0010001000010111101011
write-down 000110000100010000
writedown 000110000100010001
buy-back 0001100111110110
buyback 0001100111110111

Table 3.6: Example of Hyphenated Words
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of the clustering text. However, as far as the MI clustering method is concerned, we know
of almost no quantitative analysis of the effects of the data size on the quality of clusters.
From a practical point of view, it is important to know how much data is enough for a
specific purpose or where the effect of increasing the data size begins to saturate.

Table 3.7 and Table 3.8 show how some of the classes change as the size of clustering

text is increased.

Reshuffling

Other approaches to improving clustering quality are intended to compensate for the
greediness of the MI clustering algorithm, which only guarantees local optimum. One such
approach is to introduce a reshuffling process after the completion of MI clustering (Brown

et al. 1992). The reshuffling process is as follows:

1. Pick a word from the vocabulary. Move the word from its current class to another

class if that movement increases the AMI most among all the possible movements.
2. Repeat step 1 going from the most frequent word through the least frequent word.

This constitutes one round of reshuffling. In order to introduce the reshuffling process into
hierarchical clustering, we only have to conduct the above reshuffling process just after
step 1 (MI-clustering) of the hierarchical word clustering process (cf. § 3.3.2). Another
way of looking at this approach is that it is a combination of a shuffling-based clustering
method and a bottom-up merging method in which the result of the latter is used as a
reliable initial set of classes for the former.

Table 3.9 show examples of how classes change after conducting five rounds of reshuf-

fling.

Stepwise Clustering
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Clustering Text Size: 5 million words

second third fourth whole bottom fifth sixth golden inner seventh eighth earliest longest
10th 11th feasibility 10-day ninth rocky onetime 12th Gallup 50-year-old 13th Serbian
marathon soft-spoken nominating year-old sticky Rainbow 33-year-old Bulgarian centrist
haunting three-hour violin hapless long-delayed polygraph breakaway 50th slippery nine-
member slender just-ended dilutive fast-paced Fight steamy fox Beat graveyard fateful
reclusive sophomore 30th pre-election mercurial Crocodile 90-minute domino four-member
watchful Zionist condensed roiling long-established Mick payment-in-kind 60th ...

Clustering Text Size: 10 million words

second third fourth fifth sixth seventh eighth 10th 11th foreseeable 10-day ninth 14th 12th
13th 15th faint half-day four-week 25th Yiddish 30th April-June full-length canine 24th
January-March crusty Janesville 27th PRC 23rd 26th pecking 35th living-room trembling
swan not-too-distant nitty-gritty medium-priced halo forseeable 36th 1973-75 28th odds-on
titular dining-room 29th two-edged Jun. pituitary lowest-paid red-haired quiche opening-
day A-B stained-glass spindly AFC on-camera ...

Clustering Text Size: 20 million words

third second fourth fifth sixth seventh eighth mentally 10th 11th foreseeable ninth 14th
12th 13th 15th 17th 16th 11-20 half-day four-week 50th 1-10 25th 21-31 30th 40th right-
hand gentler proverbial 24th January-March 60th 27th July-September 22nd yearago 21-30
23rd 26th 35th mid-'80s not-too-distant 1-20 non-partisan upper-middle forseeable 34th
46th 36th 28th odds-on 40-minute 31st 29th 90th 33rd languid fattest 1-ranked fifth-grade
butyl 150th three-run spindly Bedford-Stuyvesant AFC biannual CENSUS

Clustering Text Size: 50 million words

fourth second third fifth sixth seventh eighth 10th 11th ninth 14th 12th 13th 15th 16th
11-20 1-10 25th 21-31 30th April-June right-hand 24th 27th July-September 22nd 21-30
23rd 26th 35th 75th 1-20 01-10 49th 600-ship 34th 36th 28th 43rd 31st 29th 45th 4-5 33rd
5-6 girdle recession-plagued

Table 3.7: Example of Data Size Dependency (1)
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Clustering Text Size: 5 million words

below around above behind beyond exceeding exceeds aboard strengthens underneath feast
highlighting understate cornered outweighs alters overhauls notched decorate jeopardizes
toasted usurped vented versed straddling hobbling unheeded crisscrossed mannequins ap-
proximating Molotov affixed blurs apprehend chucked spurns priming peppering eludes
dramatizing thr onged slitting '

Clustering Text Size: 10 million words

above around below behind beyond exceeded exceeding exceeds misstated aboard equals
beside enhances equaled underneath outpacing harassing insults misidentified intensifies
outweighs bloodied commemorating exaggerates overhanging dilutes outstrips epitomizes
smeared unheeded bores apprehend re-creating thumbed priming curtails higher. winging
overestimates

Clustering Text Size: 20 million words

around above below behind beyond exceeding exceeds aboard equals alongside under-
neath outstripping outweighs exaggerates re-examining smeared approximating dissecting
unhinged pronouncing amongst meteorology higher. askew outweighing overestimates
neutralizes

Clustering Text Size: 50 million words

above around below behind beyond exceeding exceeds equals underneath outweighs exag-
gerates outstrips Chg. approximating undervalues outweighing

Table 3.8: Example of Data Size Dependency (2)
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Before reshuffling

fourth second third fifth sixth seventh eighth 10th 11th ninth 14th 12th 13th 15th 16th
11-20 1-10 25th 21-31 30th April-June right-hand 24th 27th July-September 22nd 21-30
23rd 26th 35th 75th 1-20 01-10 49th 600-ship 34th 36th 28th 43rd 31st 29th 45th 4-5 33rd
5-6 girdle recession-plagued

After reshuffling

second third fourth fifth sixth seventh eighth 10th 11th ninth 14th rate. 12th 13th 15th
17th 16th 100th 50th 25th 30th 40th Caesarean 24th 70th 60th 27th 22nd 23rd 26th 200th
35th 75th aft 49th 38th 34th 46th 36th 28th 43rd 31st 51st 37th 29th 500th 45th 90th
33rd 80th 2,000-mile 41st 150th

Before reshuffling

net pretax gross after-tax pre-tax per-capita non-interest unearned aftertax spendable

After reshuffling

net pretax gross after-tax pre-tax per-capita non-interest unearned noninterest aftertax
paid-in paid-up spendable

Table 3.9: Reshuffling

Example of the effect of reshuffiing. Clustering text size is 50 million words.

Another method of compensating for the greediness of the MI clustering is to undo
bad merging judgements after the completion of clustering. Figure 3.9 shows the amount
of AMI reduction for each merging step. A 50 million-word text of Wall Street Journal
articles is used to create a set of 500 word classes. The size of the vocabulary is 70,000
and initial 70,000 singleton classes are merged until 500 classes remain. One natural way
of identifying bad merging steps is to fit the plots in Figure 3.9 with some curve and judge
that those plots above the fitted curve correspond to bad merging steps. Then for each
class in the final clusters we can identify which words were put into the class by a bad
judgement and eliminate these words from the class as impurities. In this way, we can
purify each class. The eliminated words can then be re-classified starting with a set of
purified classes.

A simple fit is made by averaging AMI reduction values of 1000 nearest points. Ta-
ble 3.10 shows examples of classes before and after cutting off high AMI reduction points
using this fit. Irrelevant words are more likely to be eliminated than relevant words.

Another merit of this method is that after the purification of the classes, we can tok-
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Figure 3.9: Reduction of Average Mutual Information

enize each class and replace all the words in the same class with a single token both in the
text and in the vocabulary. As a consequence, the size of the vocabulary is reduced and
hence the memory required to store the bigram table is reduced. This produces room for
processing more text data with a larger vocabulary using the same memory. Additionally,

the whole process can be repeated step by step.

Clustering with Multiple Texts (Cross-Validation)

Although the above method has several good features, it does not actually alleviate
the very greediness of the algorithm. That is because we cannot completely eliminate the
effect of having introduced impurities into a class even if they are removed at a later time,
since some impurilies may attract another impurity which may remain in the class till the

end. A more dynamic way of ascertaining the goodness of each merging step is to consult
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Before removal

unit division subsidiary arm affiliate segment radius Marketplace distributorship dispenser
al. PHILIPS cocoon Seles VOLVO commissary subsidary divison

After removal

unit division subsidiary segment Marketplace distributorship dispenser

Before removal

say suggest worry argue indicate predict contend insist complain warn acknowledge con-
cede speculate assert allege fret reckon fretted grumble concur brag grouse stipulate decry
bemoan theorize laud fantasize confide bicker fume Survive opine

After removal

say suggest worry argue indicate predict contend insist complain warn acknowledge con-
cede speculate assert allege fret reckon grumble concur brag bemoan theorize

Before removal

report study review survey estimate forecast poll compound projection boycott chart tally
encyclical Bendjedid

After removal

report study review survey forecast poll projection boycott tally encyclical

Before removal

years months weeks decades quarters Vegas generations centuries Raton Aires Cynwyd
Lumpur Colinas thirds Vegas-based feng gigaflops eons Burkina millennia

After removal

years months weeks decades quarters generations centuries thirds

Before removal

yesterday Friday Monday Tuesday Wednesday Thursday Saturday Sunday Sundays semi-
annually halts Fridays weekdays Thursdays semi-annually Showdown Pornography E.E
Linjeflyg *Based Cited Marineland T.J K.C

After removal

yesterday Friday Monday Tuesday Wednesday Thursday Saturday Sunday Fridays

Table 3.10: Class Purification
Example of removing merging steps with high AMI reduction.
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multiple texts on whether a pair of classes should be merged at each merging step. In
the case of two texts, one example of the procedure is as follows. First, two sets of word
bigram tables are created, a main table from one text and a sub-table from the other text.
Then MI clustering is conducted with the main table, but when the merging judgement is
not reliable enough, we consult the sub-table. The reliability of a merging judgement can
be evaluated by comparing the AMI reduction of the merging with some threshold value
that can be a function of the frequencies of the classes to be merged or some other factors.

The intuition behind this method is as follows. Suppose we have two texts, say a set of
WSJ articles in 1988 and in 1989. Two words, especially if they are low frequency words,
may just happen to appear in the same context often in one text, but never in the other
text. In that case it is likely that those two words are not related and should not be put in
the same class. Clustering with multiple texts is expected to enable this and other kinds
of cross-validation.

A somewhat simpler variant to this cross-validation is to use two texts independently
and combine the results. For example, if four words 4, B, C and D are grouped together
into one class when one text is used for clustering, and A, B, C and E are put into one
class when the other text is used, then we can assume that D and FE are not as relevant
as the other three words are, or that their relevance is more context dependent. Then we
can expect to create a less noisy or more coherent class by eliminating these less relevant
words. This method, however, is based on the assumption that matching classes from two
clusters is easy, so using two texts from very different sources is not practical.

Table 3.11 compares the results of this method with the results of regular MI clustering.
A 50 million-word text of Wall Street Journal articles is split half and half, and the two 25
million-word texts are processed independently to create two cluster sets with 500 classes.
A class from one set is considered to correspond to a class from another set if the total
frequency, counted in the 50 million-word text, of all words common to both classes is
more than half of the total frequency of each of the classes. Then the two corresponding
classes are replaced with a new class consisting of only the words common to the two
classes. Irrelevant words are much more likely to be eliminated by taking the intersection

than relevant words, similar to the case of Stepwise Clustering discussed above.
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Original

unit division subsidiary arm affiliate segment radius Marketplace distributorship dispenser
al. PHILIPS cocoon Seles VOLVO commissary subsidary divison

Cross-validation

unit division subsidiary glut subsidary

Original

say suggest worry argue indicate predict contend insist complain warn acknowledge con-
cede speculate assert allege fret reckon fretted grumble concur brag grouse stipulate decry
bemoan theorize laud fantasize confide bicker fume Survive opine

Cross-validation

say suggest worry argue indicate predict contend insist complain warn acknowledge con-
cede speculate assert allege fret reckon grumble concur grouse stipulate decry bemoan
theorize fume opine

Original

report study review survey estimate forecast poll compound projection boycott chart tally
encyclical Bendjedid

Cross-validation

report study survey forecast poll cap compound projection chart tally gerrymander

Original

years months weeks decades quarters Vegas generations centuries Raton Aires Cynwyd
Lumpur Colinas thirds Vegas-based feng gigaflops eons Burkina millennia

Cross-validation

years months weeks decades quarters centuries seasons Cynwyd summers innings para-
graphs thirds millennia

Original

yesterday Friday Monday Tuesday Wednesday Thursday Saturday Sunday Sundays semi-
annually halts Fridays weekdays Thursdays semi-annually Showdown Pornography E.E
Linjeflyg *Based Cited Marineland T.J K.C

Cross-validation

Monday Tuesday Wednesday Thursday Saturday Sunday semiannually Saturdays Mon-
days Fridays weekdays Thursdays

Table 3.11: Example of Crossvalidation
Original classes created using the 50 million-word text of Wall Street Journal articles
is compared with cross-validation classes created by processing two sets of 25 million-word text
independently and taking intersection of the two results.
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Chapter 4

Evaluation of Clustering Quality

This chapter presents a quantitative evaluation of cluster quality using Part-Of-Speech
tagging as a representative example of NLP tasks to which the clustering technique is
directly applied. Improvement of cluster quality in terms of the clustering criterion (cross-

entropy) is reflected in the improvement of the NLP task.

4.1 Introduction

In the field of corpus-based NLP, Part-Of-Speech (POS) tagging (Church 1988, Brill 1992,
Cutting et al. 1992, Mikheev 1997) and parsing (deMarcken 1990, Jelinek et al. 1990,
Lari and Young 1990, Magerman 1994, Collins 1996, Charniak 1997, Ratnaparkhi 1998)
have attracted a significant amount of attention, partly because they serve as a basis
for many other NLP tasks such as machine translation, information extraction and text
summarization. In particular, POS tagging has been a central topic in the past several
years because more and more training data is becoming available in many languages. In
addition, many existing parsing systems use a POS tagger as a preprocessor to constrain
the divergence of ambiguities (Charniak et al. 1994, Pereira and Schabes 1992). Many
other techniques for structural analysis, such as verb frame extraction (Manning 1993,
Ushioda et al. 1993, Briscoe and Carroll 1997), also use a POS tagger as a preprocessor.
Therefore, we will choose POS tagging as a representative example of NLP tasks in which
clustering quality is evaluated. In this chapter, we investigate utilization of clusters in
two different types of POS tagging - a decision tree-based POS tagger and a class-based

Markov tagger.
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4.2 Decision-Tree Part-Of-Speech Tagger

MI clustering and hierarchical clustering experiments are performed using plain texts from
six years of the Wall Street Journal Corpus to create clusters and hierarchical clusters
(word bits). The sizes of the texts are 5 million words (MW), 10MW, 20MW, and 50MW.
The vocabulary is selected as the 70,000 most frequently occurring words in the entire
corpus. The number C of classes is set to 500, a realistic compromise considering that the
larger C produces better clusters while the time complexity increases quadratically with
the increase of C. The obtained hierarchical clusters are evaluated via the error rate of the
ATR Decision-Tree Part-Of-Speech Tagger.

The ATR Decision-Tree Part-Of-Speech Tagger is an integrated module of the ATR
Decision-Tree Parser which is based on SPATTER (Magerman 1994). The tagger employs
a set of 441 syntactic tags, which is one order of magnitude larger than that of the Uni-
versity of Pennsylvania Treebank Project. Training texts, test texts, and held-out texts
are all sequences of word-tag pairs. In the training phase, a set of events are extracted
from the training texts. An event is a set of feature-value pairs or question-answer pairs.
A feature can be any attribute of the context in which the current word word(0) appears;
it is conveniently expressed as a question. Tagging is performed left to right. Figure 4.1
shows an example of an event with the current word like. The last pair in the event is a
special item which shows the answer, the correct tag of the current word. The first two
lines show questions about the identity of words around the current word and tags for
previous words. These questions are called basic questions. The second type of questions,
word bits questions, are on clusters and word bits such as is the current word in Class 295%
or what is the 29th bit of the previous word’s word bits?. The third type of questions are
called linguistic questions. Such questions could concern membership relations of words
or sets of words, or morphological features of words.

Out of the set of events, a decision tree is constructed. The root node of the decision
tree represents the set of all the events with each event containing the correct tag for the
corresponding word. Probability distribution of tags for the root node can be obtained
by calculating relative frequencies of tags in the set. By asking for the value of a specific

feature on each event in the set, the set can be split into N subsets where N is the
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Event-128:

{
( word(0), “like” } ( word(-1), “flies” ) { word(-2), “time” ) { word(1), “an” ) { word(2), “arrow” )

{ tag(-1), “Verb-3rd-Sg-type3” ) { tag(-2), “Noun-Sg-typeld” )
T {Basic Questions)
{ Inclass?(word(0), Class295), “yes” ) { WordBits(Word(-1), 29), “1” )
T (WordBits Questions)
{ IsMember?(word(-2), Set(“and”,“or”,“nor”)), “no” ) ( IsPrefix?(Word(0), “anti”), “no” )
e e e . (Linguistic Questions)
{ Tag, “Prep-type5” )

}

Figure 4.1: Example of an Event

Text Size (words) | Training Test | Held-Out
WSJ Text 75,139 | 5,831 6,534
ATR Text 76,132 | 23,163 6,680

Table 4.1: Texts for Tagging Experiments

number of possible values for the feature. We can then calculate the conditional probability
distribution of tags for each subset, conditioned on the feature value. After computing
for each feature the entropy reduction incurred by splitting the set, we choose the feature
which yields the largest entropy reduction. By repeating this step and dividing the sets
into their subsets we can construct a decision tree whose leaf nodes contain conditional
probability distributions of tags. The obtained probability distributions are then smoothed
using the held-out data. In the test phase the system looks up conditional probability
distributions of tags for each word in the test text and chooses the most probable tag
sequences using beam search.

Texts from the Wall Street Journal corpus of the Penn Treebank Project (Marcus et
al. 1994) and the ATR corpus are used for the tagging experiment. The WSJ texts are
re-tagged manually using the ATR syntactic tag set. The ATR corpus is a comprehensive
sampling of Written American English from many different domains, displaying language
use in a very wide range of styles and settings. (Black et al. 1996).

Table 4.1 shows the sizes of texts used for the experiment. Figure 4.2 shows the tagging

error rates plotted against various clustering text sizes. Of the three types of questions,
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Figure 4.2: Tagging Error Rate

basic questions and word bits questions are used in this experiment. To see the effect of
introducing word bits information into the tagger, we performed a separate experiment in
which a randomly generated bit-string is assigned to each word! and basic questions and
word bits questions are used. The results are plotted at zero clustering text size. For both
WSJ texts and the ATR corpus, the tagging error rate dropped by more than 30% when
using word bits information extracted from the 5MW text, and increasing the clustering
text size further decreases the error rate. At 50MW, the error rate drops by 43%. This
shows the improvement in the quality of clusters with increasing size of the clustering text.
Overall high error rates are attributed to the very large tag set and the small training set.
One notable point in this result is that introducing word bits constructed from WSJ texts
is as effective for tagging ATR texts as it is for tagging WSJ texts even though these texts
are from very different domains. So the obtained hierarchical clusters are considered to
be portable across domains.

Figure 4.3 contrasts the tagging results using only word bits with the results using

1Since a distinctive bit-string is assigned to each word, the tagger also uses the bit-string as an ID
number for each word in the process. In this controlled experiment bit-strings are assigned in a random
way, but no two words are assigned the same word bits. Random word bits are expected to give no class

information to the tagger except for the identity of words.
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Figure 4.3: Comparison of WordBits with LingQuest & WordBits

both word bits and linguistic questions for the WSJ text. The zero clustering text size
again corresponds to a randomly generated bit-string. Introduction of linguistic questions
is shown to significantly reduce the error rates for the WSJ corpus. Note that the depen-
dency of the error rates on the clustering text size is quite similar in the two cases. This
indicates the effectiveness of combining automatically created word bits and hand-crafted

linguistic questions in the same platform, i.e., as features.

Effect of Reshuffling

Figure 4.4 shows the tagging error rates with word bits obtained by zero, two and five
rounds of reshuffling with a 23MW text. Tagging results presented in Figure 4.3 are also
shown as a reference. Although the vocabulary used in this experiment is slightly different

from the one used in the other experiments, we can clearly see the effect of reshuffling for
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Figure 4.4: Effects of Reshuffling for Tagging

both the word-bits-only case and the case with word bits and linguistic questions. After
five rounds of reshuffling, the tagging error rates become much smaller than the error rates

using the 50MW clustering text with no reshuffling,.

4.3 HMM Tagger

4.3.1 Tagging Model

A decision-tree based NLP system is suited to take advantage of class information in
terms of word bits. Many levels of class information enable the system to detect both
broad and subtle word differences. However, word bits usually require unnecessarily many
parameters for a system with no capability of automatically selecting meaningful features.
One bit string representing a word incorporates much more information than necessary to
distinguish the word from others in the vocabulary. A partition of the vocabulary, or a
flat cluster, on the other hand, incorporates less information than necessary to distinguish

the word from others, but requires many fewer parameters. This type of information is
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particularly useful when there is no other information on the word.

A series of experiments are conducted to examine the usefulness of flat clusters for
improving the accuracy of POS tagging of unknown words by an HMM tagger. It is well
known that for a supervised POS tagging, tagging error rate for unknown words (words
that never appeared in the training data) is much higher than that for known words.
The aim of the experiments is to show that tagging accuracy for unknown words can be
improved if the class of the unknown words is known and that the better cluster we use,
the better result we obtain.

The base form of the HMM tagger is constructed following Ken Church’s trigram-
based POS tagger (Church 1988). In this model the joint probability of the tag sequence
T = titq...t, occurring with a given word sequence W = wjws...w, is given by:

_ i ) |
Pr(T|W)Pr(W) = Pr(t1)Pr(tz|t1) [[ Pritilti—r, ti—2) [] Pr(w;lt;)

i=3 j=1

In this formula, Pr(t;|t;—1,t;—2) is a state transition probability which, in this model,
refers to the probability that a word with tag ¢; appears after seeing a tag sequence of
t;_1t;—2. Pr(w;|t;) is an emission probability which refers to the probability that a word
with tag ¢; turns out to be w;. The tagger is purely probabilistic and contains no linguistic
rules.

The tagger is trained and tested using manually tagged texts from the Wall Street
Journal corpus of the Penn Treebank Project (Marcus et al. 1994). There are 25 directories
of tagged WSJ corpus, and we used 21 directories for training and another 3 directories for
testing. The training set contains about one million words and the test set contains 171
thousand words. The tagging accuracy of the basic HMM POS tagger for this data was
95.6 %, but the tagging accuracy for unknown words was as low as 62.7 %. The tagging
accuracy of 95.6 % is comparable to other results in the literature (Black et al. 1992,
Brill 1993). Because the training set is considerably large, only 2.48 % of the test set is
unknown words (4245 words out of 171000). The low tagging accuracy for unknown words
comes from the fact that for an unknown word the emission probability Pr(w;|¢;) cannot
be estimated from the training corpus and thus an arbitrary small value is used instead.

No lexical information is used in this case. Even if the word never appeared in the training
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corpus, however, if some words of the same word class as the word in question appeared in
the training corpus, we can use the emission probability of the class as an approximation.
The following is the HMM tagging model which incorporates class information for tagging

unknown words.

e Transition probability Pr(t;|t;_1,t;_2) and emission probability Pr(w;|t;) are trained

from the training data.
e (lass-based emission probability Pr(class;|t;) is trained from the training data.

e Test sentences are tagged using the following model:

Pr(T\W)Pr(W) = Pr(t1)Pr(ta]t1) ﬁ PPt tis) ﬁ Pr{V:lt;)
i=3 j=1

where Pr(Vj|t;) is a word emission probability when the word is a known word.

Otherwise a class emission probability is used.

4.3.2 Experiments on the WSJ Corpus

Figure 4.5 shows the POS tagging accuracy for unknown words with different clusters and
with varied training text size. The x-axis is the average mutual information of the entire
WSJ POS-tagged corpus with respect to the clusters, and the y-axis is the POS tagging
accuracy for unknown words.

Clusters used are, from left to light:

e CL1: obtained from 5 million words of WSJ corpus

e CL2: obtained from 10 million words of WSJ corpus

e CL3: obtained from 20 million words of WSJ corpus

e CL4: obtained from 50 million words of WSJ corpus

e CL5: obtained from 50 million words of WSJ corpus, and reshuffled once

e CL6: obtained from 50 million words of WSJ corpus, and reshuffled twice

e CL7: obtained from 50 million words of WSJ corpus, and reshuflled five times.
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Figure 4.5: POS Tagging Accuracy for Unknown Words with Varied Training Sizes and
Clusters
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Baselines show POS tagging accuracy without using class information. Again, it can be
seen that POS tagging accuracy for unknown words is considerably increased by using class
information, and the better cluster (with respect to AMI measure) we use, the better result
we obtain. Also, it is shown that the effect of using clusters is greater when the training
data is more sparse. For example, in the case of T4 (245,000 word training data) with
CL7, the accuracy is increased from 43.5 % to 77.8 % with class information. The tagging
error rate became less than half (56.5 — 22.2: 39 %). It was found in this experiment
that the total tagging accuracy, not only the tagging accuracy for unknown words, can be
improved by this simple method, especially for smaller training sets. Figure 4.6 shows the
overall tagging error rate with varied POS-tagged training text sizes.

As the training text size decreases from 1 million words to 200,000 words, the overall
tagging error rate increases considerably. With class information (CL7), however, the
change is much slower. For example, with a 200,000 word training text, the error rate is
still restrained at 5 % when the cluster CL7 is used. It takes a training data more than
twice as large to obtain the same error rate without using cluster information.

Figure 4.7 shows the POS training text size dependency of
1. tagging accuracy for unknown words

2. tagging accuracy for unknown words which belong to some class of CL7 (i.e. words

which never occurred in the training data but whose class is known)

3. tagging accuracy for unknown words which belong to no class in CL7 (i.e. unknown

words which have no class information)

4. the ratio of occurrences of unknown words which belong to some class of CL7 (i.e. out

of all the occurrences of unknown words, how many of them have class information)

It is clear from this figure that the tagging accuracy for unknown words is higher for
smaller training texts because more unknown words have class information. It can also be
inferred from this figure that the upper bound of tagging accuracy for unknown words in
this tagging model is about 83 %. Note that in this model class information is used only

for unknown words.
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4.4 Domain Dependence

The major utility of clusters lies in their generalization power. Predicting the distributional
characteristics of a word through the characteristics of its class is one example of using the
generalizability of clusters. Another important aspect of generalizability is cross-domain
portability, that is, how useful the clusters created in one domain are for processing texts
in another domain. In order to investigate the cross-domain portability of clusters, texts

from Associated Press newswire articles were used as clustering texts and the obtained

clusters were applied to the POS tagging task of WSJ articles.
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The following clusters are created using 39.4 million words of 1990 Associated Press

newswire:
e APCLI1: obtained from 5 million words of AP newswire
e APCL2: obtained from 10 million words of AP newswire
e APCL3: obtained from 20 million words of AP newswire
e APCL4: obtained from the entire 1990 AP newswire (39.4 million words)

The vocabulary clustered here is the set of the 70,000 most frequently occurring words
in the entire 1990 AP newswire. Figure 4.8 shows the POS tagging accuracy for unknown
words with different clusters and with varying training text size. Asin Figure 4.5, baselines
show POS tagging accuracy without using class information. Compared with Figure 4.5,
the POS tagging accuracy for unknown words is 3 to 6 % lower for each training text, but
still the improvement of the accuracy over the baseline is significant. This suggests that
clusters created in one domain are useful in another domain if both are at least in the
same category of news articles.

Another way of examining the difference of the effect of clusters across domains is to
compare the AMI of texts from different domains with respect to clusters obtained in one
of the domains. Figure 4.9 shows the AMI of 1990 AP newswire with respect to WSJ
clusters plotted against the AMI of 50 million words of WSJ articles with respect to the
same clusters. The relation between the two is almost linear and this also suggests the
portability of WSJ clusters to the domain of AP newswire. The linearity of the plots also
indicates that over-learning or over-fitting of clusters to the WSJ texts is not occurring in
the range of this figure. One of the reasons may be that the number of the classes in the
cluster, 500, is small enough to alleviate over-learning.

Another notable point in Figure 4.9 is that the effect of reshuffling is significant. The
increase of AMI achieved by reshuffling 5 times using a 50MW clustering text is twice
as large as the increase of AMI caused by increasing the text size from 20MW to 50
MW. However, as will be shown later (Figure 4.11), the effect of word-by-word reshuffling
begins to saturate around 5 iterations. We do not know of any other procedures to further

increase AMI.
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4.5 Split & Merge Clustering

We have so far seen that word-by-word reshuffling is a promising candidate as a way to
improve cluster quality. We discuss here alternative ways to improve cluster quality and
quantitatively compare them. One way would be to move two words at a time in the
process of reshuffling. But this dramatically increases the computational burden. Another
way would be to introduce simulated annealing. Boltzmann Machine-like annealing, how-
ever, is computationally intensive for a very large vocabulary. A new method we propose
here is a kind of deterministic annealing, which does move multiple items at a time, but
the group of items to be moved together is neither searched extensively nor generated in
a random process as in simulated annealing.

The basic idea is based on the observation illustrated in Figure 4.10. We first create
a hierarchical cluster using 50MW of WSJ text following the steps presented in § 3.3.1.
The number C of classes in step 1 (MI-clustering) of § 3.3.1 is 500. When we construct
dendrograms in step 2 (outer- clustering) and in step 3 (inner-clustering), we assign the
loss v in AMI to the corresponding branch of the tree. For example, if merging some
pair of classes (Cy,C3) induces minimum MI loss among all possible pairs of classes, we
merge C; and Cy to create new class C, and we assign the corresponding MI loss value
to the branch (Cy,C2), or equivalently, to the node C3. In this way, we can construct a
hierarchical cluster in the form of a binary tree whose branches have corresponding MI loss
values («). Out of such a hierarchical cluster, we can then construct clusters (partitions
of the vocabulary) of an arbitrary granularity using a threshold value 8 for a’s. Given a
hierarchical cluster and a threshold value ¢, we search, in a bottom-up manner, such nodes
(say B nodes) whose a value is smaller than # but whose parent nodes are greater than or
equal to 8. Then the set of all such nodes (B’s) constitutes a partition of the vocabulary
in such a way that all leaf nodes (i.e. individual words) which are descendants of node B
are in the same class represented by node B.

Figure 4.10 shows the number of classes (B’s) created in this way plotted against the
threshold @ in a log-log scale. The linearity in this figure can be interpreted in such a way
that a linear function of log(#) represents the depth of the tree (hierarchical cluster). When

g is very small, we have a large number of very small classes, and all elements in a class
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are considered to be quite correlated in terms of mutual substitutability. For example,
when ¢ = 1.0e-5 (bits), we have 12876 classes, and {after-tax, aftertax} constitutes one
class and {pretax, pre-tax} constitutes another class. This motivates us to bind elements
of those “microclusters” together and move “microclusters” instead of individual words
while reshuffling. So the following is the new method we propose.

Given an initial cluster with C classes of words,

1. set @ = Byegin and iterate 2 through 8 while 8 < fpy

2. conduct hierarchical clustering using the current cluster with C classes
3. create a set of microclusters with @ as described above

4. conduct outer-clustering on the microclusters until C classes remain

5. reshuffle microclusters among C classes of microclusters until no movement increases

AMI

6. for each class of microclusters, merge elements {words) of all the microclusters in

the class and create one big class of words ( then we have C classes of words)
7. conduct one round of word-based reshuffling on the result of 6
8. set @ = [ # times (some constant > 1) ]

We will call this method “Split&Merge Clustering” because we repeat the step of splitting
C classes of words into microclusters followed by the step of merging microclusters back

to C big classes. Steps 2 through 8 constitute one iteration.

4.5.1 POS Tagging of Unknown Words

Because the reshuffling step (step 5) is incorporated inside the routine, Split&Merge Clus-
tering converges faster than word-by-word reshuffling. As an example of this method, we
conducted Split&Merge Clustering with three iterations. The values of § were 4.0 x 107°,
1.0 x 1074, and 2.5 x 107 for each iteration and the numbers of corresponding micro-
clusters were 4504, 2195, and 1060, respectively. Figure 4.11 shows the value of AMI

after each iteration for Split&Merge Clustering and for word-based reshuffling. Note that

62



Split&Merge Clustering can achieve AMI values which are well above the upper-limit of
word-based reshuffling. As far as Mutual Information-based clustering is concerned, this
new method performs better than any conventionla.l method, with the possible exception
of the computationally intensive simulated annealing method. It is also expected that the
Split&Merge Clustering method can be used with global objective functions other than
MI as long as construction of hierarchical clusters is possible using these functions.
Figure 4.12 shows the AMI for the same clusters as in Figure 4.11 for 1990 AP newswire.
Again, Split&Merge Clustering achieves higher AMI values with no sign of over-fitting.
Figure 4.13 shows POS tagging accuracy for unknown words using the same clusters
as in Figure 4.12. This figure illustrates the practical applicability of the clusters created

by Split&Merge Clustering.
4.5.2 Number of Classes

One of the fundamental problems with MLE-based models is that the more parameters the
model includes, the better it can fit the training data. This is the over-training problem.
To prevent over-learning, some external constraints on the number of parameters might be
incorporated. In the case of MI clustering, we can obtain higher AMI with larger number
of classes, so some constraints on the number C of classes might be effectively introduced.
However, the number C of classes is a parameter which must be predefined before starting
the clustering process, so we have to repeat the whole clustering process for each number
of classes. Moreover, there is no guarantee that the optimal number of classes in terms of
the clustering optimization criterion with a particular type of constraint is also optimal in
terms of the NLP tasks on which the class-based approach is applied.

A better approach, which we propose here, is to create clusters of varying sizes at the
computational cost of one full clustering step, without repeating MI clustering for each C,
and to choose desirable numbers of classes for a specific NLP task. Actually, this part of
the new method has already been presented in Section 4.5. Given an initial hierarchical
cluster, we just create sets of classes following step 3 in Section 4.5 with varying values of
§. Each value of @ corresponds to a different number C of classes.

Using the hierarchical cluster created in the experiments in Section 3.3.3 as an initial
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cluster, clusters of varying number of classes from one to 2000 are created and class-based
POS tagging accuracy for unknown words is evaluated for each class (Figure 4.14).

For the evaluation, five sets of text, each containing 4000 sentences (around 96,500
words), are extracted from the POS-tagged WSJ corpus, and each set is used as training
data. For each training set remaining four sets are separately used as a test set, and the
average accuracy of the 20 combinations of training and test sets are plotted in the figure.
The graph shows that the tagging accuracy saturates at around 1000 classes. To compare
the result with regular MI clustering, a separate set of clusters with varying numbers
of classes is created by the MI clustering method (step 1 of Section 3.3.2). Due to the
quadratic growth of computation time and memory with the increase of the number of
classes, MI clustering with class numbers of more than 1500 were not attainable. Although
there is still a slight increase in tagging accuracy between 1000 and 1500 classes for MI
clustering, Split&Merge Clustering at 1000 classes performs best in the figure. Two impor-
tant points are made clear in this section. First, Split&Merge Clustering provides a simple
solution to the problem of determining the number of classes, and secondly, higher perfor-
mance of an NLP task can be achieved with clusters created by Split&Merge Clustering

than clusters created by MI clustering.

4.6 Comparison with Previous Work on Part-Of-Speech Tag-
ging

A considerable amount of work has been presented in the literature on POS tagging, but

we will restrict discussion in this section to reports on POS tagging of the WSJ corpus

among which direct quantitative comparison is possible.

Weischedel et al. (1993) proposed an HMM-based POS tagging model in which infor-
mation on word spelling is directly incorporated as model parameters for disambiguating
unknown words. In this model the joint probability of the tag sequence T' = ¢1tg...0,
occurring with a given word sequence W = wjws...w,, is given by:

n n
Pr(T|W)Pr(W) = Pr(t1)Pr(tz|t:) [[ Pr(tilti-1, ti-2) H r(w;t;)
i=3 j=1

For tagging unknown words, the emission probabilities of a word given a tag are assumed
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to be proportional to the product of the probabilities of specific morphological forms:
Pr(w;|t;) = Pr(unknown-word|t;) Pr(capital-feature|t;) Pr(endings, hyphen|t;)

In this model, the only lexical information used for tagging unknown words is morpho-
logical features of words.

Brill (1993) proposed a transformation-based POS tagging method. The method is
rule-based, although it incorporates numerical values to score and order candidate rules to
be fired. There are two types of rules (or transformations): lexical transformations, which
are used to learn the most likely tag for each word, and context-triggered transformations
which are used to improve the tagging performance by adding contextual information.
Both types of transformations are automatically learned from the training corpus by in-
stantiating transformation templates which are compiled manually. Out of the 16 lexical
transformation templates Brill used, 14 refer to spelling features like suffixes and prefixes.

Brill (1993) comparatively evaluates the performances of a transformation-based POS
tagger (Brill tagger) and a probabilistic tagger on small training corpora. The first 1,000
sentences (about 23 thousand words) of the POS-tagged WSJ corpus were used for the
lexical training of the Brill tagger and the second 1,000 sentences were used for the training
of contextual transformation rules. The last 2,787 sentences (about 65 thousand words)
of the WSJ corpus were used as a test corpus. To compare the performance of the Brill
tagger with that of a probabilistic tagger, Brill re-implemented Weischedel’s HMM tagger
(HMM-MORPH). (a) and (b) in Table 4.2 are cited from Brill’s report on the comparison
of the Brill tagger with Weischedel’s HMM tagger. In order to compare these results with
the performances of other approaches, we prepared the same training and test data from
the WSJ corpus as described in Brill’s report. To check the consistency, the Brill tagger
was run on the prepared data ((c) in Table 4.2) and it was confirmed that our experimental
setting is the same as in Brill’s report. Note that we used 2,000 sentences (1,000 sentences
for training lexical rules and 1,000 sentences for training contextual rules) in total to train
the Brill tagger. Since (a) in Table 4.2 (HMM-MORPH) shows the result with only the
training text of 1,000 sentences, however, we split the first training text of 1,000 sentences

into two 500-sentence texts and reran the Brill tagger with the first 500-sentence text for
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lexical training and the second 500-sentence text for contextual training. (d) in Table 4.2
shows the result. The Brill tagger still outperforms HMM-MORPH for tagging unknown
words. In all of the following experiments in this section, training and testing are carried
out on the same corpora as were used above, that is, the text of 1,000 sentences, called
Corpus-A, for training and the last 2,787 sentences of the POS-tagged WSJ corpus for
testing.

Ratnaparkhi (1998) applied the Maximum Entropy (ME) framework to the task of POS
tagging. The ME framework provides a way of obtaining the most unbiased probability
distribution of a variable among a set of probability distributions that satisfy certain
constraints on probability distributions. In Ratnaparkhi’s ME model for POS tagging,
the probability distribution whose entropy is maximized is the conditional probability of a
tag given the context of the current word, and the constraints are expressed in the form of
feature expectations whose values are given as observed expectations of the features in the
training data. A feature can refer to any information that might help to predict a tag, such
as spelling of the current word or tags of the surrounding words. For tagging rare words
including unknown words, special features are used that encode spelling characteristics of
the words such as prefix, suffix, (upper) case, and hyphenation.

Ratnaparkhi’s ME POS tagger is run on the same corpora as used above ((e) in Ta-
ble 4.2).

(f) and (g) in Table 4.2 show the performance of the HMM-based tagger described in
Section 4.3.1 without and with class information for tagging unknown words, respectively.
Although ME performs slightly better than HMM-CLASS for unknown words, HMM-

CLASS performs best in total word accuracy.

Combining Distributional and Morphological Features

One distinctive feature of HMM-CLASS is that it does not use morphological (spelling)
features of words at all. In all the other approaches discussed above, morphological features

of words play a central role for tagging unknown words. A natural question is whether we
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Unknown Word Accuracy ! Total Word Accuracy

(2) HMM-MORPH (cited) 7.7 91.0
(b) Transformation-Based (cited) 81.2 92.7
(c) Transformation-Based

(2000 sentences for training) 81.18 92.90
(d) Transformation-Based

(1000 sentences for training) 79.52 90.82
(e) Maxmum Entropy | 80.54 91.67
(f) AMM 49.74 86.55
(g) HMM-CLASS 79.01 91.98
(h) HMM-CLASS + DTree

(without context) 82.78 92.67
(i) HMM-CLASS + DTree

(with context) 83.48 92.80
(j) HMM-CLASS + ME

(without context) 84.03 92.90
(k) HMM-CLASS + ME

(with context) 85.54 - 93.17
(1) HMM + DTree

(without context) 74.94 91,12
(m) HMM + DTree

(with context) 73.41 90.84

Table 4.2: Comparison of POS Tagging Accuracies
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can combine class information and morphological information to obtain higher accuracy.
One way of combining the two is to incorporate class features and morphological features
directly into the process of searching the best tag sequences. Another way, which is chosen
here, is as follows. We split the original training corpus (Corpus-A) into 90 % training data
and 10 % held-out data and conduct HMM-CLASS tagging with 10-fold cross-validation.
The parameters tuned by cross-validation are those of a learner which learns error patterns
of tagging unknown words using HMM-CLASS. Morphological features of unknown words,
as well as the tagging results of the base tagger (HMM-CLASS), are used as features of
the learner. We tested two types of learner. One is a decision tree learner for which the
commercially available C4.5 (Quinlan 1993) is used. Another learner is based on a ME
model that we implemented along the lines described in Rosenfeld (1994). For each of
the learners, we trained and tested the learner with two types of error patterns. One is
simple error patterns which contain a set of morphological features of an unknown word to
be tagged and the predicted tag by the base tagger (HMM-Class) along with the correct
tag for training. The other error patterns additionally contain context information, that
is, predicted tags of words immediately before and after the unknown word to be tagged.
(h)-(k) in Table 4.2 show the result. HMM-CLASS+ME+context performs best and its
accuracy for unknown words is higher than HMM-CLASS by 6.5 percentage points. The
error rate for unknown words of HMM-CLASS+ME+-context is 25.7 % smaller than that
of ME and 29.4 % smaller than that of the Brill tagger. This clearly shows that a consid-
erable benefit is obtained by combining distributional characteristics of words (expressed
in the form of clusters) and morphological features of words. As a controlled experiment,
10-fold cross-validation is also conducted with HMM tagging with no class information
(HMM+DTree). (1) and (m) show the results of decision tree learners. HMM+DTree
performs slightly better than HMM-MORPH, but worse than HMM-Class and far worse
than HMM-Class+DTree. This result also shows that theses models work better together.

4.7 Conclusion

This chapter has demonstrated that word clusters created with cross-entropy as an objec-

tive function can improve performance of POS tagging tasks, especially for rare events such
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as tagging unknown words or tagging with small training data. It also has demonstrated
that improvement of clusters in terms of cross-entropy (or equivalently AMI in this case)
is reflected in the improvement of the NLP task. Purely distributional characteristics of
words expressed in the form of clusters has been éhown to be as useful as morphological
features of words in POS tagging tasks, and moreover, the two apparently orthogonal
types of features can be combined to produce considerably better performance than any
single type of features. The combination of clusters and spelling features of words has
been shown to have an error rate of tagging unknown words which is at least 25 % lower
than that of other previous approaches examined here, including an HMM tagger with
only morphological information for unknown words, a transformation-based POS tagger,
and a Maximum-Entropy model. Future work includes application to other NLP tasks

and direct incorporation of the class information into various NLP engines.

73



Chapter 5

From Word Clustering to
Compound Clustering

5.1 Introduction

The obvious problem we face when we construct classes of compounds is that the possible
number of compounds is too large if we try to handle them individually. However, if
we represent compounds by a series of word-classes! instead of a series of words, we can
constrain the explosion of the number of compounds..One approach to this is to bundle
quite similar compounds in a small subclass and treat them as a single compound. Suppose
that we have a set of word classes and that some word class, say WC397, contains almost
exclusively first names, and another class, say WC381, contains almost exclusively family
names. Then the chain of classes “WC397_W(C381” represents one pattern of human
names, or one group of two-word compounds representing human names. There are of
course many other patterns, or class chains, of different lengths which represent human
names. Therefore, our aim is to collect all the different class chains which are syntactically
and semantically similar and put them in one compound-class.

In the following subsection, we will describe one approach to this goal which is com-

pletely automatic and very fast.

5.2 Compound Clustering Method

One approach for compound clustering consists of the following three steps:

We use the term word-class for a class of words to make a clear distinction from a compound-class.
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1. Identification of Class Chains

First, we replace each word in a large text with its word-class. We then use mutual
information as a measure of the “stickiness” of two classes, and identify which class
pair should be chained. Let MI(C1,C2) be mutual information of adjacent classes
C1 and C2 in the text. Then we form chain “C1.C2” if

MI(C1,C2) = log E%?% > 6 (5.1)

for some threshold 8.

If it is found in the series of three classes “C1 C2 C3” in the text that (C1,C2)
forms a chain and (C2,C3) also forms a chain, then we simply form one large chain
C1.C2.C3. In a similar way we form a chain of maximum length for any series of

classes in the text.

2. Construction of Reduced Text and New Vocabulary

Each class chain identified is then replaced in the text with a token which represents
the chain. We call such a token a class chain token. After the scan through the text
with this replacement operation of a class chain with its token, the text is represented
by a series of word-classes and class chain tokens. The word classes remaining in the
text are the ones which don’t form a chain in their context. Those word classes are

then converted back to their corresponding words in the text. 2

The resulting text is the same as the original text except that a multiword compound
which matches one of the extracted class chains is represented by a class chain token.
We will call this text the reduced tert. Out of the reduced text, a new vocabulary
is created as a set of words and tokens whose frequency in the reduced text is more

than or equal to some threshold.

3. Compound Clustering

We conduct MI-clustering {step 1 of the word bits construction process) using the

reduced text and the new vocabulary. The classes we obtained, which we will call

2The conversion of a word-class to a word is not a one-to-one mapping, but with the context in the text
the conversion is unique. In the actual implementation, the text can be represented by a series of (word,
word-class) pairs and no <onversion actually needs to be carried out.
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compound-classes, contain words and class chain tokens. Each class chain token in a
compound-class is then ezpanded. This means that all the multiword compounds that
are represented by the class chain token in the text are put into the compound-class.
After expanding all the tokens, the tokens are removed from the compound-classes.
This results in compound-classes containing words and multiword compounds. It is
also possible to construct hierarchical clustering of compounds if we follow all the

steps in the word bits construction process after this step.

5.3 Improvement of Compound Clusters

The compound clustering method described above uses a simple linear concatenation of
classes for constructing longer compound patterns. An advantage of this method is that
it is fast; it takes only linear time with respect to the text size and no iteration is needed.

A more elaborate method is to iterate the process of binary concatenation as follows.
Each step of binary concatenation involves either one instance of concatenating two items
or one round of the binary concatenation process through all possible pairs of items. After
each step of binary concatenation, the identified pairs are added to the token vocabulary as
new entries, and mutual information for the new token vocabulary is recalculated. Note
here that a word class is a minimum unit of items, and the initial token vocabulary is
simply a set of word classes. Although this iterative process is far more time consuming
than the above method, this class-based approach is expected to significantly reduce the

computational burden, and possibly produce a better result than the above method.

5.4 Evaluation of Compound Clusters

It is not a simple task to quantitatively evaluate the quality of obtained compound clusters
for NLP tasks. Perhaps the best way is to integrate the obtained compound clusters into
an existing NLP system like a parser or an example-based machine translation system
and evaluate the performance of the system. Since no such system is available, however,
this kind of evaluation is out of the scope of this work. Another way of evaluating the
obtained compound clusters is to evaluate the coherence of each compound cluster. In

a preliminary experiment which will be described in the next section, it was found that
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some of the compound classes are semantically coherent. Such compound classes include
classes of proper names such as organization names and person/place names. For those
classes, direct precision measurements can be made. Also as in the case of word clusters, a
linguistically intuitive evaluation will be given by Villustra,ting lists of obtained compound

classes with varied clustering conditions.

5.4.1 Compound Clustering Experiment

Plain texts from two years (1987 and 1988) of the Wall Street Journal Corpus were used
to create compound clusters. The compound clustering method described in Section 5.2
was used. The total volume amounts to about 40 million words of text. The word-classes
used in this experiment are taken from the result of MI clustering with the 50MW text
followed by five rounds of reshuffling. The quality of the compound clusters depends on
the threshold # in equation 5.1. We used #=3 following “a very rough rule of thumb” used
for word-based mutual information in (Church and Hanks, 1990).

Out of the 40MW text, 7,621 distinct class chains and 287,656 distinct multiword
compounds are extracted. To construct a new vocabulary, we selected the words and
tokens that appeared more than four times in the reduced text. The size of the new
vocabulary is 60,589 and it contains 4,685 class chain tokens. Some of the compound-
classes that were obtained are shown in Table 5.1 through Table 5.5. Figures on the left of
each cell represent frequencies of the compound in the entire corpus and the compounds
are listed in descending order of frequency in each class, and the lists are truncated at an
arbitrary point.

Table 5.1 shows most frequent compounds in Compound-class-171 and Table 5.2 is an
excerpt from the least frequent part of the same compound class. Compound-class-171
consists of names with titles many of which are politicians’ names. Note that compounds
that appeared only once in the entire corpus of 40MW can be quite reliably and efficiently
extracted. An interesting example is that Interior_Minister_Friedrich-Zimmermann and
Interior_Minister_Friedrich_Zimmerman should be the same person and both are extracted
even though they appeared only once. Compound-class-179 (Table 5.3) contains multiword

company names. Compound-class-221 (Table 5.4)consists of multiword compound nouns
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4390 President.Reagan 2956 Mr._Reagan

2742 Mr. Bush 2137 Mr._Dukakis

960 Judge_Bork 884 Ronald_Reagan

846 George _Bush 645 Michael_Dukakis
483 Treasury_Secretary_James_Baker | 477 Mr._Holmes

465 Vice_President_George_Bush 456 Gov._Dukakis

453 Gen..Noriega 450 Mrs._Thatcher

416 someone_who 388 Mrs._Aquino

366 Mr._Roh 358 Gen._Secord

343 Mr._Lawson 342 Adm._Poindexter
324 anyone_who 323 Mr._Dole

296 Lt._Col._North 288 Jimmy_Carter

270 Sen. Dole 265 Mr._Mulroney

261 Mr._Quayle 260 Sen._Bentsen

249 Mr._Chirac 241 Mr..Gephardt

237 Mr..Marcos 232 Vice_President_Bush
228 Sen._Quayle 228 Mr._Carter

224 Mr._Chun 223 Prime_Minister_Margaret_Thatcher

Table 5.1: Compound Class 171 (high frequency part)

from several specific semantic domains including money, surgery and natural environment,
but most of the frequent compounds are money-related terms. Compound-class-256 (Ta-
ble 5.5)is worth special attention because although single words and multiword compounds
are mixed almost evenly in the high-frequency part, most of the single words are abbrevi-
ations of organizations, mostly public organizations, and the multiword compounds also
almost exclusively represent public organizations. F7'C and Federal Trade_Commission
also represent the same entity. Another point to note here is that the pattern of case is
not uniform in this list. Although both “Defense Department” and “British government”
represent political organizations, the former consists of only capitalized words and the
latter doesn’t.

In order to measure the performance of this compound clustering method, a consistency
check is performed for one class. The objectiveis to check what proportion of the identified
members of the class actually deserves to be included in the class. Because this kind
of judgement is very difficult in general, we must choose a class whose membership is
quite clear to identify. By this criterion we chose compound class 179 because it is quite

easy to decide if some compound is a correct company name or not. From the 40MW
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1 Democratic_Sen._Harry _Reid

1 Democratic_Sen._George McGovern

1 Democratic_Sen._Edmund_Muskie

1 Democratic_Sen._Carl_Levin

1 Democratic_Sen._Alan _Dixon

1 Democratic_Rep._-William _Meyer

1 Democratic.Rep. -William_Gray

1 Democratic_Rep._Peter_Kostmayer

1 Democratic_Rep._Mike Lowry

1 Democratic_Rep. Mel _Levine

1 Democratic_Rep..John_Cavanaugh

1 Democratic_Rep._James McClure

1 Democratic_Rep..George _Miller

1 Democratic_Rep._Gary_Ackerman

1 Democratic_Rep._Doug_Barnard

1 Democratic_Rep._David_Bonior

1 Democratic_Rep._-Bob_Carr

1 Democratic_Mayor_Raymond_Flynn

1 Democratic_Leader_Jim_Wright

1 Democratic_Governor_Jim_Blanchard

1 Democratic_Gov..Robert_Kerrey

1 Democratic_Gov._Richard_Lamm

1 Democratic_Gov.-Madeleine_Kunin

1 Democratic_Gov._Joseph_Brennan

1 Democratic_Gov._Jim_Blanchard

1 Democratic_Gov._Charles_Robb

1 Democratic.Gov._.Bob_Kerrey

1 Democratic_Congressman_David_Nagle

1 Democratic_Chancellor_Helmut_Schmidt

1 Democratic_Chairman_Robert_Strauss

1 Democratic_Chairman_Richard_Wiener

1 Confederate_Gen._Sidney_Johnston

1 Vice_President_Warren_Lasko

1 Vice_President_Sylvia_Brenner

1 Vice_President_Diana_Aldridge

1 Vice_President_Carlos_Morales

1 Vice_President_Bill_Reidy

1 Vice_Chairmen_Randall_Tobias

1 Vice_Chairman_Martin_Shugrue

1 Vice_Chairman_Bill_Ryan

1 Vice_Adm._Dudley_Carlson

1 State_Sen._Barry_Keene

1 State_Rep._Bud_Gardner

1 Rear_Adm._Stuart_Platt

1 Prime_Minister_Paul_Schlueter

1 Prime_Minister_Karoly_Grosz

1 Prime_Minister_Fidel _Castro

1 Prime _Minister_Felipe_Gonzales

1 Managing_Editor_-Henry Muller

1 Maj._Gen._Schuyler_Bissell

1 Labor_Secretary_Ray_Donovan

1 Justice_Secretary_Hector_Rivera

1 Interior_Minister_Friedrich_Zimmermann

1 Interior_Minister _Friedrich_Zimmerman

1 Interior_Minister_Cesar_Gaviria

1 Interior_Minister_Abel_Salinas

1 Foreign_Minister_Alexander_Bessmertnykh

1 Finance_Minister_Ludwig_Erhard

1 Finance_Minister_Leslie_Navarro

1 Economics_Minister_Carlos_Solchaga

1 Deputy_Mayor_Luis_Salazar

1 Defense Secretary_Paul_Thayer

1 Defense Secretary_Frank-Gaffney

1 Commerce_Minister_Alejandro_Martinez

1 Associate_Director_Craig_Simmons

1 Assistant_Administrator_Rita_Lavelle

Table 5.2: Compound Class 171 (low frequency part)
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1373 General _Motors_Corp.

1211 Drexel_Burnham_Lambert_Inc.

1153 Ford _Motor_Co.

1000 International _Business Machines_Corp.

965 General_Electric_Co.

923 Shearson_Lehman_Brothers_Inc.

858 Chrysler_Corp.

811 First_Boston_Corp.

739 Merrill Lynch_&_Co.

691 Morgan_Stanley & _Co.

671 Shearson_Lehman_Hutton_Inc.

640 News_Corp.

610 American_Telephone_& _Telegraph_Co.

577 PaineWebber_Inc.

509 Prudential-Bache_Securities_Inc,

441 Texaco Inc.

391 McDonnell Douglas_Corp.

391 Dean_Witter_Reynolds_Inc.

342 Time_Inc.

336 AMR_Corp.

334 CBS_Inc.

332 American_Express_Co.

296 Campeau_Corp.

289 BankAmerica_Corp.

288 Du_Pont._Co.

268 Allegis_Corp.

254 General Dynamics_Corp.

253 Digital_Equipment_Corp.

252 Kohlberg_Kravis_Roberts_&_Co.

248 Exxon_Corp.

1 Chase_Federal Savings_& _Loan_Association

1 USAA Federal _Savings_Bank

1 Liberty Federal Savings_Bank

1 Fayez_Sarofim_& _Co.

1 Dean_Witter_& _Co.

1 Bear_Stearns_& _Co.

1 Shearson_Lehman_Hutton_Ltd.

1 Westdeutsche_Landesbank_Girozentrale_Inter

national S.A.

1 Merrill Lynch_Capital_Markets_Ltd.

1 Merrill.Lynch.Capital _Markets_Group.

1 Luz_International_Ltd.

1 Bear_Stearns_Asset_Management_Inc.

1 Thorndike_Deland_Associates_Inc.

1 International Services_ Management_Ltd.

1 International Management_Consultants_Inc.

1 International _Explorer_Services_Ltd.

1 International Development_Systems_Inc.

1 Mezzanine_Fund_L.P.

1 Merrimack_Bancorp_Inc.

1 Finish_Line_Inc.

1 Eagle_Bancorp_Inc.

1 ELDERS_IXL_Ltd.

1 ECI_Telecom_Ltd.

1 Cunard_Line_Ltd.

1 Carena_Bancorp_Inc.

1 Britannia_Airways_Ltd.

1 American_Cyanamid_Inc.

1 Alpha_Service S.A.

1 Aloha_Airlines_Inc.

1 Abington_Bancorp.Inc.

Table 5.3: Compound Class 179
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2984 common stock

2035 preferred_stock

1528 cash flow

909 bank_debt

849 long-term_debt

733 foreign_debt

708 subordinated_debt

707 senior_debt

587 balance_sheet

207 short-term_debt

198 balance_sheets

194 cost_overruns

187 corporate_debt

185 debt_load

183 convertible_preferred _stock

152 international_debt

131 debt_outstanding

120 Class_B_stock

113 debt_ratings

110 cumulative_preferred stock

106 corporate I0Us

102 current_delivery

93 preferencestock

89 ozonelayer

85 buffer_stock

79 unsecured_debt

76 convertible_preferred

75 external_debt

74 debt_offering

73 current_contract

70 blood_clots

62 Class_B_common

61 cumulative_convertible_preferred _stock

58 corporate_governance

1 working-capital_debt

1 unregistered_debt

1 unfunded_debt

1 speculative-grade_debt

1 single-A-rated_debt

1 shorter-term_debt

1 serial_debenture

1 revolving_debt

1 non-interest-bearing.debt

1 lower-yielding_debt

1 interest-paying-debt

1 interest-bearing_debt

1 interest-bearing_debenture

1 high-yielding_debt

1 high-yield_debenture

1 high-rate_debt

1 government-backed_debt

1 general-obligation_debt

1 equity-linked_debt

1 double-A-rated_debt

1 dollar-denominated _10Us

1 asset-backed_debt

1 FMS_debt

1 ECU-denominated_debt

1 senior_cumulative_convertible_preferred stock

1 redeemable_cumulative_junior_preferred _stock

1 convertible_cumulative_exchangeable_preferred_stock

1 redeemable_convertible_preferred _stock

1 non-cumulative_convertible_preferred_stock

1 junior_convertible_preferred _stock

1 exchangeable_pay-in-kind_preferred_stock

1 exchangeable_cumulative_preferred _stock

1 convertible_subordinated _preferred_stock

1 convertible_senior_preferred stock

1 convertible_.exchangeable_preference_stock

1 convertible_cumulative_preferred stock

Table 5.4: Compound Class 221
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6475 Fed

6276 SEC

3415 Reagan_administration

2530 IRS

2351 Pentagon

2270 Justice_Department

2252 Navy 1736 Commerce Department
1634 FDA 1433 Army

1384 FCC 1329 FDIC

1271 Federal_Reserve_Board 1262 State_Department

1125 Bundesbank 1062 EPA

1026 FAA 1001 IMF

992 Labor_Department 885 Agriculture_Department
835 FBI 747 NASD

687 Defense_Department

667 Federal_Home_Loan_Bank_Board

661 British_government

652 NRC

647 Finance Ministry

640 Japanese government

622 FTC 603 UAW
497 Kremlin 489 PRI
482 Transportation-Department 475 PLO
460 Federal_Trade_Commission 458 CFTC

1 South_Korean_central_bank

1 East_Coast_money-center_bank

1 West_German_embassy

1 West_German_Army

1 South_Korean_navy

1 South_Korean_army

1 South_African_embassy

1 Roman_Catholic_diocese

1 North_Korean_government

1 Senate Steering_Committee

1 Senate_Permanent_Subcommittee

1 Senate_Judiciary _Subcommittee

1 Senate_Investigations_Subcommittee

1 Senate_Health_Committee

1 Senate_Campaign_Committee

1 Senate_Banking_Subcommittee

1 Senate_Banking_.Committees

1 Senate_Appropriations_Committees

1 Senate_Agricultural_Committees

1 House_Trade_Subcommittee

1 House_Intelligence_Committees

1 House_Banking_Committees

1 House_Agricultural _Committee

1 Homeless_Task_Force

1 Flood_Control_Authority

1 Fair_Trade_Committee

1 Fair_Housing_Amendments

1 Bay_Transit_Authority

1 Senate_Finance_Committees

1 Senate_Commerce_Committees

1 House_Finance_Subcommittee

1 House_Agriculture_Subcommittee

Table 5.5: Compound Class 256
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text, we randomly chose 3,000 occurrences of multiword compounds which are members
of compound class 179. By manual analysis, it was found that 133 identified compounds
were wrong. The precision is therefore 95.6 %. Most of the errors are due to the truncation
of correct company names. For example, from the string “North American Philips Corp.”,
only “Philips Corp.” was extracted. Although “Philips Corp.” is itself a correct company
name, we treated this instance as an error because our judgement is occurrence-based.
Only one time was a compound irrelevant to company names extracted (a person name).
For a controlled experiment which will be described shortly, all the incorrect compounds
were corrected by hand and a standard file was created which contained all the correct
2,999 occurrences of company names.

One merit of the current approach is that the identification of a compound-class is
carried out in time linear with the text size. Therefore, by associating a word with its word-
class as a feature in the lexicon, and by storing class chain patterns and their membership
in compound classes, we can carry out a real time identification of the compound-classes
without actually storing the compounds in the lexicon.

As a controlled experiment within the above experiment, we conducted word-based
compound extraction and compared the result with the above result. Instead of calculating
the mutual information of adjacent classes, the mutual information of adjacent words was
calculated for all the bigrams in the text. Then using various MI threshold values, words
were chained in a similar way as described in Section 5.2, and compounds were identified.
We then determined how many of the occurrences of company names in the standard file
were identified in the word-based compound extraction experiment. The MI threshold
values were varied from 1.0 to 6.0 with a step of 0.5, but the precision of the word-based
approach with respect to the standard file was always below 80 %.

The main reason the class-based approach is superior to the word-based one is asso-
ciated with the data sparseness problem. Most of the previously proposed methods to
extract compounds or to measure word association using mutual information (MI) either
ignore or penalize items with low co-occurrence counts (Church and Hanks 1990, Su, Wu
and Chang 1994), because MI becomes unstable when the co-occurrence counts are very

small. Take for example the class chain “WC397_WC381” discussed in Section 5. Table 5.6
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word-MI bi-count word-1 word-2 class-MI ecl-bi-count class-1 class-2
24.2 1  Detlev Rohwedder 5.7 52240 397 381
23.2 4 Nomi Ghez 5.7 52240 397 381
22.9 2  Mikael Salovaara 5.7 52240 397 381
21.0 4 Patricio Aylwin 5.7 52240 397 381
19.7 8 Karlheinz Kaske BT 52240 397 381
18.6 25 Hans-Dietrich Genscher 5.7 52240 397 381
17.7 18 Clyde Prestowitz 5.7 52240 397 381
15.4 2 Jules Kroll 5.7 52240 397 381
12.6 3 Joel Segal 5.7 52240 397 381
10.7 1 Elizabeth McNamara 5.7 52240 397 381
9.2 6 Richard Epstein 5.7 52240 397 381
7.0 2  Carl Olson 5 52240 397 381
6.7 6 Michael Cook 5.7 52240 397 381
5.9 1 Brian Jacobs 5.7 52240 397 381
4.5 3 Michael Moore 5.7 52240 397 381
3.8 1 Gary Miller 5.7 52240 397 381
2.2 1 William Walsh 5.7 52240 397 381
2.1 1 David Morris 5.7 52240 397 381
1.9 1 Michael Wright 5.7 52240 397 381
1.6 1 Thomas Baker 5.7 52240 397 381
0.3 1 John Jackson 59 52240 397 381
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shows some examples of compounds matching the pattern “WC397_W(C381” in the 40MW
text. Each column shows, from left to right, word-based MI for the word bigram (WORD-
1,WORD-2), co-occurrence frequency of the word bigram, the first word, the second word,
class-based MI for the class bigram (CLASS-1, CLASS—Q), co-occurrence frequency of the
class bigram, the word-class of WORD-1, and the word-class of WORD-2. Note that the
numbers for class-based entries are the same for all the compounds because we collected
compounds with the same class chain. Although all are compounds of a first name and a
family name, the word-based MI varies considerably. This is because frequencies of first
names and family names vary considerably while frequencies of pairs of first names and
family names in the list are very small. For example, “John” and “Jackson” are very com-
mon first and second names, but the name “John Jackson” appeared only once in the text.
Therefore the word-based MI becomes very small. On the other hand, because “Detlev”
and “Rohwedder” were very rare names in WSJ news articles in 1987 and 1988, the MI
becomes very high even though “Detlev Rohwedder” appeared only once in the text. In
contrast, the class-based MI is very stable because the co-occurrence frequency of the two
classes is as high as 52240. When we examine frequencies of all the compounds in the text
that match “WC397_-W(C381”, it turns out that more than 80 % of the compounds appear
less than five times in the text. This shows how the data sparseness problem is critical for
compound extraction and how the class-based approach can alleviate this problem.
Compound clustering has potential application in many areas. As mentioned in Intro-
duction, one obvious candidate application is example-based machine translation in which
similarity or substitutability among multiword compounds are more important than those
among individual words. Compound clustering can also alleviate weakness of hard clus-
tering; the problem of homonym, or more generally, sensitivity to the context. Although
bank of "river bank” and that of ”investment bank” are treated as the same entity in
hard clustering of words, successful compound clustering methods should put these two
compounds into totally different compound classes since distributional characteristics of
the two compounds are expected to be quite different. Related to the problem of con-
text sensitivity, compound clusters are also expected to provide information sources of

new dimensionality to probabilistic parsing methods. In the comparative analysis of re-
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cent successful probabilistic parsing methods, Charniak (1997) has shown that collecting
statistics based on word classes of head words of constituents can improve the performance
of the parser. Since distributions of a compound which contain a given head word provides
more specific and reliable information on the context in which the compound occurs than
the distributions of the head word itself, compound clusters are expected to be useful for
probabilistic parser. Compound clusters could also be useful for broad-coverage terminol-
ogy compilation and lexicography, information retrieval and language modeling for speech

recognition.
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Chapter 6

Conclusion

The research in this thesis addresses the problem of automatically constructing word
clusters from plain texts and applying them to corpus-based natural language processing
tasks to alleviate the data sparseness problem. The major contribution of this thesis work
is the experimental demonstration of our claim that the improvement of clusters in terms
of cross-entropy is reflected in the improvement of NLP tasks, especially for rare events.
Various methods for improving and extending the conventional MI clustering algorithm
were studied and experimentally evaluated. It was shown that word clusters created with
these methods can improve performance of POS tagging tasks, especially for rare events
such as tagging unknown words or tagging with small training data, and that clusters with
higher AMI improve tagging accuracy more. We have also shown how word clusters can be
used to construct compound clusters in an efficient and reliable way. It was demonstrated
that for the purpose of compound extraction, class-based mutual information is much
more reliable than word-based one.

Because rare events are very common in large scale NLP tasks, this thesis work should
be interesting to researchers in many NLP fields including corpus linguistics, broad-
coverage terminology compilation and lexicography, text categorization and summariza-
tion, machine translation, as well as information retrieval and language modeling for speech
recognition.

This research can be extended to many different directions. The clustering criterion
used in this work is based on bigram language modelling, and the model can be at least

theoretically naturally extended to trigram language modelling. How to constrain the ex-
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plosion of computation time is the practical problem, but a hybrid of both bigram-based
and trigram-based components might be a realistic compromise. Another direction for fu-
ture research is to directly integrate the cluster information to various NLP engines. NLP
systems which use context information as features, such as decision tree-based systems
or méxi'mum entropy-based systems, can readily incorporate word class and compound
class information. Compound class information should also be useful for example-based
machine translation systems. It would also be interesting to consider how to utilize au-
tomatic clustering to improve the efficiency of terminology compilation. Because of the
dramatic development of internet, it has now become a major resource for terminology
compilation. Accordingly, automatic or semi-automatic way of compiling new words and
nev\;’ compounds are seriously desired and automatic clustering might play an important

role in this problem.
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