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Abstract

For the analysis and retrieval of multimedia data, machine learning techniques have

been extensively applied to build models that map various feature vectors of the data

into semantic labels. As multimedia data come from a wide variety of domains (e.g.,

genres, sources), each having its distinctive data characteristics, models trained from

one domain do not usually generalize well to other domains. For example, the perfor-

mance of semantic concept detectors trained from news video drops 60-70% when they

are applied on documentary video. Meanwhile, it is prohibitively expensive to build

new models for each and every domain due to the high cost for labeling training exam-

ples. Therefore, techniques for adapting models across different domains are desirable

for better performance and reduced human cost.

In this thesis, we investigate a generic adaptation problem in multimedia and other

areas, which is to adapt supervised classifiers trained from one or more source domains

to a new classifier for a target domain that has only limited labeled examples. The

foundation of our work is a general framework for function-level classifier adaptation

based on the regularized loss minimization principle. Fundamentally different from

existing adaptation techniques, this framework adapts a classifier by directly modifying

its decision function rather than re-training over the data in source domains, making

it highly efficient and applicable to any type of classifier. Under this framework, one

can derive concrete adaptation algorithms by plugging-in any loss and regularization

functions, among which we elaborate on adaptive support vector machines (a-SVM)

and adaptive kernel logistic regression (a-KLR). We further extend this framework for

multi-classifier adaptation, namely adapting multiple existing classifiers into a classifier

for the target domain, in a way that the contributions of these existing classifiers

are automatically determined. We evaluate the proposed approaches in cross-domain
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semantic concept detection based on TRECVID corpora. The results show that our

approaches outperform existing (adaptation and non-adaptation) methods in terms

of accuracy and/or efficiency, and adaptation from multiple classifiers offers further

benefits. We also demonstrate the effectiveness of our approaches in adapting classifiers

of text documents and of EEG data.

We then focus on improving the cost-efficiency of adaptation by selecting and priori-

tizing adaptation tasks involving multiple classifiers. We approach this problem by first

conducting a comprehensive analysis of the generalizability of concept classifiers, which

is related to the cost-efficiency of adapting a classifier. This analysis reveals strong cor-

relations between generalizability and various meta-features of a classifier, ranging from

model structure to the distribution of its output. We show that generalizability can

be predicted quantitatively from these model meta-features using regression models.

Based on the predictions of generalizability, we propose several selective adaptation

methods for selecting the classifiers to be adapted and allocating their training exam-

ples such that they achieve higher overall post-adaptation performance than equally

adapting every classifier.
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Chapter 1

Introduction

The explosive growth of multimedia data makes their analysis, classification, and re-

trieval a critical problem in both research and industry. Machine learning techniques

are playing an increasingly important role in this area, where models are built for tasks

varying from classifying images into categories, detecting semantic concepts in video

shots, to matching image and video data with user queries. Since multimedia data

come from a variety of data domains, there is a need to generalize and adapt models

trained from one domain to other domains. Compared with building new models for

every domain, adapting existing models is beneficial in terms of reduced manual effort

for labeling training data and better performance, but also challenging given that data

distribution changes arbitrarily across domains. This thesis is dedicated to developing

efficient and principled approaches to adapting models across multimedia domains. We

will discuss the motivation, goal, and challenges of this research, and briefly overview

our approaches and the key contributions.

1.1 Motivation and Task Definition

Adapting models for multimedia data is necessary because such models in general have

poor generalizability across different domains, i.e., a model trained from one domain

performs much worse on the data from the other domains than on the data from the

same domain. This is mainly due to the change of data distribution across different

domains. Multimedia data are represented by feature vectors, or data points in feature

1
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space, and the distribution of these data points may change from one domain to an-

other. For example, if color histogram is the feature, the data distribution of C-Span

footage on political debates is very different from that of the footage in Discovery chan-

nel. An assumption critical to the success of machine learning techniques is that the

training and test data come from the same distribution. Therefore, the shift of data

distribution between two domains inevitably causes models trained from one domain

to fail to generalize to another.

An example in this case is semantic concept detection, where supervised classifiers

are built to distinguish whether a video shot is relevant or irrelevant to certain semantic

concepts. For example, a Studio classifier in news video distinguishes video shots

containing studio scene from those that do not contain studio scene. Such a classifier

is trained from labeled video shots from a certain news video channel. As shown in

Figure 1.1, the studio scenes from NBC and NTDTV channel look different in terms

of background, room setting, and the number of people. Therefore, the performance of

the Studio classifier trained from NBC drops from 0.83 AP (average precision) on NBC

to only 0.24 on NTDTV, while the performance of NTDTV’s classifier drops from 0.98

AP on NTDTV to 0.25 on NBC.

A straightforward way to address the generalizability problem is to build new models

for every domain. This is however a costly approach given that labeling multimedia

data is time-consuming and the size of training data needed to build reliable models

is large. According to the statistics on the TRECVID 2007 collaborative annotation

[78], roughly 215 intense man-hours were spent on labeling 50-hour video w.r.t 36

concepts in order to build models for another 50-hour video. In reality, the footage in

many video archives (e.g., YouTube.com) can easily exceed thousands of hours, and a

reasonably comprehensive semantic ontology contains hundreds of semantic concepts

[2]. Building models for every domain in real-world video archives is prohibitively

expensive. On the other hand, existing models trained from other domains provide

valuable information to similar tasks in a new domain, and should not be thrown away.

Exploiting the knowledge in these out-of-domain models reduces the number of labeled

examples otherwise needed for building new models from scratch, and consequently,

the human effort for labeling them and the cost for training models over them. So

compared with building news models, adapting existing models may require fewer



3NBC (English) NTDTV (Chinese)studio non-studio studio non-studioNBC’ Studioclassifier NTDTV’ StudioclassifierAP = 0.83 AP = 0.98AP = 0.24 AP = 0.25
Figure 1.1: The performance as average precision (AP) of “Studio” classifiers trained
from video in NBC or NTDTV news channel. There is a significant decline in perfor-
mance when a classifier trained from one channel is applied to another channel.

labeled examples to achieve the same performance, or achieve higher performance using

the same number of labeled examples.

Given the poor generalizability of existing models and the cost for building new ones,

adaptation of existing models becomes a solution providing a good tradeoff between

performance and efficiency. However, this problem has been overlooked and under-

studied in the multimedia research community. While there has been related work on

adapting concept detectors across correlated concepts [69, 112, 77] and adapting re-

trieval models across query classes [111, 60], very little effort [55] has been devoted to

the problem of adaptation across data domains. A systematic approach to this cross-

domain model adaptation problem is an important and challenging research topic.

Many learning tasks in multimedia can be formulated as a classification problem of

mapping feature vectors x of some type to semantic, categorical labels y. For example,

semantic concept detection is about mapping low-level features of video shots into a

binary label indicating the presence (or absence) of a semantic concept. A multimedia

retrieval model maps a set of similarity scores between an image (or video shot) and a

query into a label indicating relevance or irrelevance. Other tasks can be formulated

similarly. Therefore, supervised classifiers which learn such feature-label mapping f :

x → y are the most frequently used type of models for multimedia. The goal of this

thesis is to develop efficient and principled approaches to adapting supervised classifiers

across different domains, and use them to solve adaptation problems in multimedia and

other areas. Formally, we define domain and classifier adaptation as:
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Definition 1. A domain is a set of multimedia data generated from the same

data distribution p(x) and class-conditional distribution p(y|x). Concretely, a domain

is described by image or video data belonging to a certain genre, or created by a specific

producer, etc. For example, cartoon images and photographs are two image domains,

news video and documentaries are two video domains, and news video from different

channels can be also viewed as from different domains.

Definition 2. Cross-domain classifier adaptation is to adapt supervised clas-

sifiers for a given task trained from one or more source domains into a new classifier

that works well on a different target domain. We call the existing classifiers source

classifiers and the new classifier the target classifier. We further assume that (1)

the source domains are related to the target domain in the sense that source classifiers

have better-than-random performance on the target domain; (2) only a limited number

of labeled data are available in the target domain, while the labeled data in the source

domains are relatively sufficient.

The definition of domain implies that different domains may have different distri-

butions. In some cases, the data distribution p(x) changes across domains, while the

class-conditional p(y|x) stays the same. Even in this case, classifiers trained from one

domain are unlikely to capture the true p(y|x) due to the bias in the distribution of

its training data. For example, we train an Anchor classifier from CCVT news video,

where anchors always appear in studio setting, and apply it to CNN news video, where

anchors often appear outdoors. The standard of judging whether a video shot has an

anchor is always the same, which means p(y|x) remains the same, but the classifier

is probably unable recognize outdoor anchors as it has never “seen” them before. In

other cases, both p(x) and p(y|x) change across domains. For example, in a retrieval

model that maps various similarity scores into a relevance label, the influence of a

face similarity score (as a component of x) to the label y changes from people-related

queries to object-related queries. Since both p(x) and p(y|x) may change, we make no

assumption as to whether and how the distribution changes between the source and

target domain. This does not mean the two domains are totally irrelevant. Instead, we

assume that the source classifier is at least somewhat helpful to the task in the target

domain.
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1.2 Research Challenges

Model adaptation has been studied in different areas and a number of techniques have

been proposed. In machine learning, inductive transfer and multi-task learning methods

apply knowledge learned from one or more tasks to help solve related tasks [33, 20,

65, 67, 105, 119]. In data mining, techniques have been developed to recognize drifting

concepts from streaming data [61, 92, 102]. Specialized methods are also available for

adapting language models and parsers in natural language processing (NLP) [9, 53, 82]

and adapting acoustic models in speech recognition [45, 64]. Nevertheless, the state-

of-the-art techniques for adaptation are unable to meet all the challenges of adapting

models of multimedia data due to their unique characteristics. The challenges include:

• Modeling distribution changes of multimedia data is technically infeasible. As

mentioned, the data distribution p(x) almost always changes across multimedia

domains, and the class-conditional p(y|x) often changes too. Changes of p(x) are

difficult to capture because there are no generic and accurate (generative) mod-

els for the distribution of multimedia data, which can be represented by many

different features. Modeling changes of p(y|x) is even harder because, given our

problem setting, most of the data labels y are unavailable on the target do-

main. Indeed, modeling distribution change is a harder problem than classifying

the data, and solving it would make the solution to classification problems triv-

ial. Therefore, existing methods [13, 14, 93, 118] that rely on the knowledge or

assumptions about whether and how distribution changes are not suitable for

adaptation problems in multimedia. We need adaptation approaches requiring

no such knowledge or assumptions.

• Training on raw data from source domains is costly. Models for multimedia data

can be expensive to build because the data features are typically high-dimensional

and real-valued vectors, and the learning algorithms (e.g, SVM) have super-

linear training cost with respect to the data size. Training the target classifier

over data aggregated from all domains, a widely used approach in previous work

[32, 61, 65, 105], is inefficient given the large size of source data. Moreover, the

raw data in source domains can be unavailable or inaccessible due to copyright

or privacy issues, a typical example of which is surveillance video. An efficient
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approach is desired to exploit more compact representations of domain knowledge

than the raw data.

• There exist multiple source domains (classifiers) with different utility. Due to

the diversity of multimedia data, there are sometimes more than just one source

domain (e.g., video from different news channels), and therefore more than one

source classifier available for adaptation. These source classifiers are of different

levels of utility to the classification task in the target domain. There is a need

for an adaptation approach that takes advantage of all the source classifiers. In

this approach, the contribution of these source classifiers needs to be weighted to

reflect their utility to the target domain. To our knowledge, there has not been

a general method in the literature that can adapt multiple classifiers into one

classifier.

• The cost-efficiency of adaptation varies between classifiers. Some classifiers gen-

eralize better across domains than other classifiers, and therefore, the improve-

ment of their performance as the result of adaptation is not as great as those

that are less generalizable. This shows the cost-efficiency of adaptation, i.e., the

performance improvement against the number of training examples, is different

cross classifiers. To maximize the overall cost-efficiency of adaptation, one needs

to carefully select the classifiers to be adapted and prioritize them in terms of

the training examples each receives, rather than adapting every classifier equally.

Modeling and predicting classifiers’ generalizability to new domains, a challeng-

ing research problem by itself, is important for determining the cost-efficiency in

adapting each classifier.

The challenges discussed above are not specific to only multimedia data. The chal-

lenges on efficiency, on accommodating multiple source domains, and on analyzing clas-

sifiers’ generalizability, are general ones faced by any systematic approach to classifier

adaptation. We hope that by addressing these challenges, the adaptation techniques

developed in this thesis are not only applicable to problems in multimedia but general

enough to be used for problems in other areas.
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f(x) f(x)fs(x)source classifier delta function target classifier+ =

source domain target domain
pre-trained applylearn

Figure 1.2: The basic framework for function-level classifier adaptation. Red ‘+’ denotes
positive instances, blue ‘-’ denotes negative instances, and ‘?’ denotes unlabeled instances.
The components in shaded rectangles need to be learned.

1.3 An Overview of Our Approach

To address the challenges raised above, we organize our research in this thesis around

three correlated problems:

1. How to adapt a classifier from a source domain to a target domain in an efficient

and principled approach?

2. How to adapt multiple source classifiers into a target classifier in a way that

reflects their utility?

3. How to select and prioritize adaptation tasks based on predictions of classifiers’

generalizability, with the goal of maximizing the cost-efficiency of adaptation?

The foundation of our work is a general framework for function-level classifier adap-

tation based on loss minimization principle, which is illustrated in Figure 1.2. In this

framework, a source classifier represented by its decision function f s(x) is adapted to a

new classifier f(x) for the target domain by adding a “delta function” ∆f(x) to f s(x).
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The delta function ∆f(x) is learned based on the labeled examples in the target do-

main and the source classifier f s(x), using a general objective function that attempts

to achieve two goals: (1) minimizing the classification loss (error) of the target classi-

fier f(x) on the labeled examples, and (2) minimizing a regularizer that penalizes the

distance between f(x) and f s(x) in the function space. In other words, it makes only

the smallest changes to f s(x) that are necessary for f(x) to correctly classify the la-

beled examples. In practice, this general framework can be “instantiated” into concrete

adaptation algorithms by plugging in specific loss and regularization functions into its

objective function. We elaborate on two of such algorithms, namely adaptive support

vector machines (a-SVM) and adaptive kernel logistic regression (a-KLR), where the

latter can be also derived from a probabilistic perspective. This addresses the problem

of adapting a classifier from a source domain to a target domain.

As a fundamental difference from existing approaches which utilize raw data from

the source domain, our framework utilizes the source classifier as a summary of the

knowledge distilled from the raw data. Using such a compact representation of domain

knowledge has important implications on the efficiency and applicability of our ap-

proach. First, the adaptation process is very efficient due to the freedom from training

over typically a large amount of labeled source data. The cost of adapting a classifier

based on limited target data is substantially lower than training over all the data, be-

cause the training cost of algorithms like SVM is super-linearly related to the data size.

Second, avoiding using raw data in source domains makes our approach applicable to

tasks where such data are unavailable or inaccessible, typical in applications involving

copyright-protected or privacy-related data such as surveillance video. Last but not

the least, our approach can be used to adapt a classifier of any type as long as it can be

represented by a decision function f(x), or more precisely, a “black-box” that outputs

a value for any input data point x.

While the basic framework can be used for adapting one classifier into another, in

practice there is often a need for adapting multiple classifiers into one target classifier.

To accommodate such need, we extend the basic framework into a more sophisticated

one for multi-classifier adaptation based on (still) regularized loss minimization princi-

ple. As shown in Figure 1.3, in this extended framework the target classifier f(x) is the

sum of the delta function ∆f(x) and a weighted ensemble of multiple source classifiers
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Figure 1.3: The extended adaptation framework with multiple source domains and domain
analysis. The components in shaded rectangles need to be learned.
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M(x), where the weights t = {t1, .., tM} reflect the utility of these source

classifiers w.r.t the target domain. Both ∆f(x) and t are learned simultaneously using

the original objective function augmented with a new regularizer on ‖t‖2. From this

extended framework, we derive multi-adaptive support vector machines (ma-SVM) as

a counterpart of a-SVM for multi-classifier adaptation. We show that the weights t

learned automatically in ma-SVM indeed reflect the utility of different source classifiers.

This addresses the second problem on adapting multiple classifiers into one classifier.

While the first two problems focus on the methods for classifier adaptation, the

third one focuses on improving the cost-efficiency of adaptation. Specifically, we in-

vestigate the problem of selecting and prioritizing adaptation tasks involving multiple

classifiers such that their overall performance is maximized after adaptation using a

fixed number of training examples. We approach this problem by conducting an em-

pirical study of concept classifiers’ generalizability, because generalizability affects the

potential room of improvement from adapting a classifier. The study reveals strong

correlations between the generalizability of a classifier and its various meta-features,

including the ratio of positive training data, model complexity, and the distribution

of its output. We build a regression-based generalizability model capable of predicting
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how well a classifier generalizes to (unlabeled) new domains from these meta-features.

Based on this generalizability model, we propose several selective adaptation methods,

which select and prioritize adaptation tasks such that the less-generalizable classifiers

are adapted with higher priority than the more-generalizable ones.

Throughout the thesis, the proposed approaches are evaluated on cross-domain se-

mantic concept detection, the task of adapting concept classifiers trained from one

domain to another domain, based on TRECVID video corpora [89]. The experiments

show that the classifiers adapted using our approaches consistently outperform by sig-

nificant margins both the original classifiers and new classifiers trained from scratch

using exclusively the target data, which demonstrate the benefits of classifier adap-

tation. It is also shown that the selective adaptation methods achieve higher overall

performance than adapting every classifier equally using the same amount of training

examples. We also apply our approaches to adaptation problems in other areas, such

as adapting classifiers of text documents and classifiers of EEG (brain signal) data,

which further confirms the effectiveness of our approaches.

1.4 Major Contributions

We summarize the major contributions of this thesis below:

• This thesis provides a comprehensive study on the issue of generaliz-

ability in semantic concept detection, a key learning task by itself and the

foundation of many other tasks in multimedia. While previous work evaluates

the performance of concept classifiers on its training domain, we focus on how

well their performance generalizes to new domains. Based on experiments on

TRECVID video corpora, this study reveals that in general concept classifiers

generalize poorly across different domains, whether the evaluated domains are

different news video channels or different video types, with an average relative

performance decline of 60% to 70% in our datasets. The poor generalizability, as

the study further reveals, is because the majority of concept classifiers (trained

by SVM) are unable to summarize the data and resort to a nearest-neighbor type

of approach in classification. This is, to our knowledge, the first comprehensive

study on the generalizability of semantic concept classifiers, and it emphasizes
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the need for classifier adaptation in multimedia.

• This thesis presents a survey of state-of-the-art techniques related to

model adaptation in several disciplines, including data mining, machine

learning, and multimedia. The survey shows that classifier adaptation across do-

mains is an important but overlooked topic in multimedia, although there has

been previous work on concept detection using the correlation between semantic

concepts and the adaptation of retrieval models. It also reviews techniques in

transfer learning, multi-task learning, incremental learning, sample-bias correc-

tion, and data mining of drifting concept, and discusses their connections and

differences with the adaptation techniques proposed in this thesis. Compared

with existing techniques which carry out adaptation at the data level, parameter

level, and/or representation level, our approach is unique and different in that it

is the only one we know that directly modifies the decision function of supervised

classifiers.

• This thesis proposes a general framework for function-level classifier adap-

tation. It differs from existing adaptation methods in that it directly modifies

a classifier’s decision function based on the regularized loss minimization prin-

ciple. The rationale underlying this framework can be interpreted as to make

only minimal but necessary modifications to a classifier to allow it to correctly

classify labeled training examples in the target domain. Because the adaptation

is achieved through modifications of the decision function instead of re-training

over the “old data” (i.e., raw data in source domains), this framework is highly

efficient, capable of adapting any type of classifier that can be represented with

decision functions, and also applicable to tasks where the old data are not avail-

able. From this framework one can derive virtually an infinite number of concrete

adaptation algorithms by plugging in different loss and regularization functions

into its objective function. We elaborate on two of such algorithms, adaptive

SVM and adaptive KLR, the latter of which provides a probabilistic perspective

to this framework. Experiments show that the proposed approach outperforms

other alternatives in performance and/or efficiency in cross-domain semantic con-

cept detection as well as other tasks such as the adaptation of text classifiers.
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• Based on this basic framework, this thesis proposes an extended framework

for multi-classifier adaptation, which adapts multiple source classifiers into

one target classifier. This is, to our knowledge, the first method for many-to-

one adaptation. Since the source classifiers are not equally useful, weights are

introduced into the framework to control their contribution. These weights are

learned automatically to reflect the utility of each source classifier w.r.t the target

domain. From this extended framework, we derive multi-adaptive support vector

machine (ma-SVM) as a counterpart of a-SVM for multi-classifier adaptation.

Experiments show the benefit of multi-classifier adaptation over single-classifier

adaptation in cross-domain concept detection.

• We have proposed several selective adaptation methods to improve the overall

cost-efficiency of adaptation. Based on the knowledge about the generalizability

and/or learnability of each classifier, these methods select and prioritize adap-

tation tasks involving multiple classifiers, such that their overall performance is

maximized after adaptation using a fixed number of training examples. To sup-

port selective adaptation, we have explored an empirical approach to pre-

dicting the generalizability of semantic concept classifiers. Our study

has has revealed strong correlations between the generalizability of a classifier

and its various meta-features, including the ratio of positive training data, model

structure, and the distribution of its output. We have built a regression model

to predict the generalizability of a classifier based on these meta-features. Ex-

periments have shown that this model is capable of accurately predicting the

performance of a concept classifier on a new, unlabeled domain other than its

training domain.

The remainder of the proposal is organized as follows. Chapter 2 surveys related

works on model adaptation in the area of multimedia, machine learning, data min-

ing, and others. Chapter 3 studies the issue of generalizability in semantic concept

detection, a representative learning task in multimedia and the benchmark task for

our proposed approaches. Chapter 4 describes the general framework for function-level

classifier adaptation, and a-SVM and a-KLR as two concrete algorithms derived from

this framework. Chapter 5 further extends this framework to enable adapting multiple
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classifiers into one classifier in a way that their utility is properly modeled. Chap-

ter 6 investigates the generalizability of semantic concept classifiers as well as how to

predict generalizability and use it for selective adaptation. Chapter 7 explores the ap-

plication of the proposed approaches in adaptation tasks outside the multimedia area,

such as cross-domain text categorization. Finally, Chapter 8 summarizes the thesis and

discusses further directions.



Chapter 2

Literature Review

In this section, we review previous work related to cross-domain model adaptation in

different research areas. We first discuss the approaches to adaptation problems in

multimedia, for which the proposed techniques are intended. This is followed by a

review of related works on transfer and multi-task learning, sample bias correction,

and incremental learning in the machine learning area, concept drift detection in data

mining, and adaptation techniques for specific tasks such as speech recognition and

natural language processing. In our review, we will also discuss the connections and

differences between these existing techniques and our approach.

2.1 Adaptation in Multimedia

The analysis, classification, and retrieval of multimedia data heavily involve the train-

ing of various machine learning models, particularly supervised classifiers. In image

classification and semantic concept detection [4, 25, 49, 77, 89, 91, 95, 101, 106, 112],

supervised classifiers are used to map features representing images or video shots into

labels indicating the categories or concepts they belong to. These classifiers are trained

from manually labeled data using classification algorithms such as support vector ma-

chines (SVM) and neural network. Multimedia retrieval models [4, 60, 104, 111, 110]

are used to combine the relevance scores computed from multiple knowledge sources,

such as keyword similarity and image similarity. The combination weights are often

estimated using classifiers such as logistic regression, which are trained from previous

14



15

queries and their (labeled) results [60, 111, 110]. As suggested by Natsev et al. [71],

both semantic concept detection (classification) and retrieval can be viewed as the same

problem, i.e., classifying multimedia data as relevant or irrelevant w.r.t categories or

queries. While supervised classifiers are perhaps the most widely used learning models

in multimedia, there are many other types of models, such as models for annotating im-

ages with keywords [11, 15, 47, 54], for labeling video shots with person names [85, 114]

and with locations [113].

In terms of models’ performance and labeling cost, there are significant benefits

in adapting existing models across different domains. However, the problem of model

adaptation is in general overlooked or at best understudied, partly due to the evaluation

method used in multimedia. Models for multimedia data are often evaluated with

the training and test data coming from the same domain, which eliminates the need

for model adaptation. For example, image retrieval and image annotation models

[11, 25, 43] are often trained and tested on selected subsets of the Corel image collection

[1], which contains high-quality photos. Most semantic concept detection and video

search models [4, 49, 71, 77, 91] are trained and tested on the TRECVID collection [89]

of a particular year, which contains video footage of either documentary or broadcast

news video. While this evaluation setting is legitimate as long as the training and

test data do not overlap, it does not represent the real-world scenarios where we have

to deal with data from multiple domains simultaneously. The need for adaptation

becomes apparent if we want to reuse existing models while shifting from one domain

to another.

Previous work along several directions can be related to model adaptation in mul-

timedia. One of them is semantic concept detection based on the correlations between

multiple concepts. Methods for this problem learn classifiers of multiple concepts simul-

taneously and allow these models to influence each other, so that they perform better

than classifiers learned independently for individual concepts. For example, Naphade

et al. [69] explicitly modeled the linkages between concepts via a Bayesian network that

implicitly offered ontology semantics in a video collection. Amir et al. [4] concatenated

the prediction scores of various correlated concepts into a long feature vector called

“model vector”, based on which a SVM classifier was built for each concept. Yan et

al. [112] proposed a series of probabilistic graphical models to mine the relationships
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between concepts. In addition, Qi et al. [77] proposed correlative multi-label (CML)

framework, and Chen and Hauptmann [28] proposed multi-concept discriminative ran-

dom field (MDRF) to automatically identify concept correlations and learn concept

classifiers simultaneously. These last two methods are similar in spirit because they

both capture the correlations between concepts by modifying the regularization term

in the objective function of the respective learning algorithm (support vector machines

in [77] or logistic regression in [28]). Additionally, this problem has also been studied

by Snoek et al. [91] and by Wu et al. [109]. However, their methods focus on the cor-

relation between models for different semantic concepts, while the focus of this thesis

is on the adaptation of models across data domains.

Other related research is on adapting multimedia retrieval models towards new

queries, either with or without users’ feedback on retrieval results. Relevance feedback

methods for content-based image retrieval [29, 84] update the initial query represen-

tations and/or distance metrics in the feature space based on user feedbacks in order

to improve retrieval results. Since query point and distance metric are integral part of

a retrieval model, relevance feedback can be understand as the adaptation of the re-

trieval model. For video retrieval, Yan [110] proposed to construct the retrieval model

for a new query as a mixture of existing models of several predefined “query classes”,

and update the model based on users’ implicit and explicit feedbacks to better reflect

the characteristics of the new query. This work is extended by Kennedy et al. [60] to

allow query classes to be automatically discovered. These methods are designed for

specific feature representation and retrieval algorithms and not applicable to general

adaptation problems.

The work on these two problems is mainly about the adaptation or knowledge trans-

fer between semantic concepts and/or user queries. The problem of adapting between

two data domains has been overlooked, although due to the diversity of multimedia

data the problem is by no means less important. To our knowledge, the only work

besides ours on this problem has been that from the Digital Video and Multimedia

(DVMM) Lab at Columbia University. Jiang et al. [55] introduced cross-domain SVM

(CDSVM) as an algorithm for adapting an existing SVM model to a new domain

based on a (small) number of labeled examples in it, and later used this algorithm

in the concept detection task in TRECVID 2007 [23]. CDSVM shares the same goal
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as our proposed algorithm, adaptive SVM (a-SVM), but the two algorithms are very

different. CDSVM essentially adds the support vectors of the original model, weighted

by their similarity to the distribution of the new domain, as additional training data

besides those from the new domain. This means it re-trains the model over a merged

set of labeled data from both old and new domain. In comparison, a-SVM directly

modifies the decision function of the existing model and avoids using any data from

the old domain, which implies better efficiency and applicability. Their difference will

be discussed in detailed in Section 4.3.2.

To summarize, the issue of model adaptation has been studied for some specific

problems in multimedia, yet there lacks a generic and systematic approach. In this

thesis, we take a unified view of various adaptation problems in multimedia, and at-

tempt to find a generic and systematic approach to these problems. Specifically, we will

focus on adapting supervised classifiers since they are arguably the most widely used

model in multimedia. A generic approach avoids the need of developing algorithms for

different problems, and allows people to treat emerging adaptation problems with ease.

2.2 Transfer and Multi-Task Learning, Incremental

Learning, and Sample Bias Correction

In machine learning, several directions of research are related to the problem of cross-

domain model adaptation. Transfer learning and multi-task learning are both about

applying knowledge learned from some tasks to help other related tasks. Specifically,

the former focuses on the transfer of knowledge from one task to another, while the

latter focuses on learning models for multiple related tasks together. Cross-domain

model adaptation can be viewed as transfer learning between multiple datasets on

the same task, and our approach in this thesis can be treated as a novel type of

transfer learning approach. Also related to model adaptation are incremental learning,

which continuously updates a model based on subsets of the training data, and sample

bias correction, which deals with learning problems where the distribution of test and

training data are different. We review previous work in these directions and discuss

their relation to our problem.
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2.2.1 Transfer learning

Transfer learning (TL) aims to apply knowledge learned from auxiliary tasks, where

labeled data are usually plenty, to help develop an effective model for a related target

task which has only limited labeled data. There is no formal definition of “related

tasks”, and in practice it refers to either related learning problems on the same dataset

(e.g., detecting Sky and Outdoor in news video), or the same learning problem on

different datasets (e.g., detecting Outdoor in news video as well as in movies). After

the notion was first introduced by Thrun [97] about a decade ago, techniques have been

proposed to transfer the knowledge at different levels of abstraction, including the data

level, representation level, and parametric level.

Data-level transfer techniques augment the training data of the target task with

labeled data from auxiliary tasks in order to build a better model for the target task.

This has been the approach taken by the TL algorithm based on k-nearest neighbor

[97], based on support vector machines by Wu and Dietterich [105], based on logistic

regression by Liao et al. [65], and based on AdaBoost by Dai et al. [32]. While some

of these methods (e.g., [105, 32]) do not explicitly add auxiliary data into the training

set, a close examination reveals that such data implicitly play the role of additional

training data. A key issue in these methods is the weight of the data from the auxiliary

tasks, which can be specified manually [105] or according to the degree of “mismatch”

between the auxiliary and target data [65, 32]. Inefficiency is the major disadvantage

of these methods, because training can be expensive when there is a large amount of

auxiliary data. This poses a serious problem for multimedia, where data features of

hundreds or even thousands of dimension are typical, making training over large data

set particularly inefficient.

Representation-level approaches learn an effective feature representation and/or dis-

tance metric from the auxiliary tasks and use it for the target task. The first work

on transfer learning by Thrun [97] proposed to learn both a new data representation

and a distance function from the labeled data in auxiliary tasks. In order to help

models generalize, Ben-David et al. [33] derived a common representation such that

the distribution of the auxiliary and target data appear to be similar. Raina [79] used

unlabeled images collected from various sources to learn high-level feature representa-

tions that can make image classification tasks easier in general. These approaches are
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obviously more general and efficient than data-level transfer learning methods, since

the representation needs to be learned only once and is applicable to many other tasks.

There has been some work in multimedia that shares the same spirit as representation-

level adaptation. Probabilistic graphic models such as Latent Dirichlet Allocation

(LDA) [16] and its variations like Correspondence-LDA [15], exponential-family Har-

monium [103] and its variations like Dual-wing Harmonium [108], have been used to

derive lower-dimensional representations of image/video data from their raw features,

in either unsupervised or supervised manner. In the supervised case, these models

learn new data representations using the data labels w.r.t some semantic categories,

making them essentially equivalent to representation-level adaptation. Unlike in the

text domain, however, no significant performance improvement has been reported on

large-scale multimedia data analysis. For example, the Oxford team in TRECVID 2007

concept detection task shows that submission based on LDA-derived features offers lit-

tle or no improvement over submissions using raw features [75], and harmonium model

was also ineffective in similar tasks [3]. This shows the difficulties of learning better

feature representations from multimedia data.

Parameter-level approaches use the parameters of the models learned previously

from related tasks to form a “prior” for the model parameters to be learned for the

target task. The new model can be thought as a “posterior” obtained by updating

the prior based on the labeled examples in the target task. Many approaches chose

Bayesian logistic regression with a Gaussian prior on the parameters as the learning

algorithm for the target task. In Marx [67], both the mean and variance of the prior

are inherited from the parameters of the existing models for related tasks. Similarly,

Raina et al. [80] constructed a Gaussian prior with its covariance matrix encoding

the word correlations derived from text classification tasks and applied it to similar

tasks. Zhang [120] combined Rocchio algorithm with logistic regression via a Gaussian

prior to yield a low-variance model for adaptive filtering. Fei-fei [42] incorporated the

Bayesian prior into an object recognition model for images such that it can recognize

new object categories with very limited training examples.

There are more specialized TL approaches. For instance, Taylor and Stone [96]

proposed a transfer algorithm for reinforcement learning, and Heitz et al. [51] described

a landmark-based model for transfer of the “essence” of object classes learned from
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cartoon images to natural images. While most TL techniques assume only one auxiliary

task, Marx et al. [67] explored transfer learning with multiple auxiliary tasks and

provided a simple solution. Rosenstein et al. [83] studied the impact of the relatedness

between the target and auxiliary tasks on the performance of transfer learning.

The framework to be proposed in this thesis can be viewed as transfer learning at

a more abstract level: the function level. Our framework aims to directly adapt the

decision function of one or more auxiliary classifiers into the decision function of a clas-

sifier for the target data. Function-level transfer enjoys many benefits, including high

efficiency due to the freedom from training over auxiliary data and broad applicability

to adapt any type of classifiers. To our knowledge, the most similar work in the litera-

ture has been that by Schapire et al. [86], which modifies the AdaBoost algorithm such

that the Kullback-Leibler divergence between the classifier learned and a prior model

representing human knowledge is minimized. However, this method is specialized for

AdaBoost, while our framework is able to adapt classifiers of any type.

2.2.2 Multi-task learning

Multi-task learning (MTL) explores the dependency between related tasks and learns

models for them simultaneously, in order to achieve better performance than learning

each task independently. Unlike in TL where the knowledge transfer is unidirectional

(from auxiliary tasks to target task), in MTL the knowledge transfer is be mutual and

between any related tasks. Despite the difference on problem setting, MTL approaches

provide important references to our model adaptation approach because both of them

deal with knowledge transfer between tasks.

Similar to the approaches for TL, most MTL approaches support the transfer of

knowledge either at the representation level or at the parametric level. Representation-

level approaches [5, 6, 7, 20, 119] map original data features into a latent feature space

(i.e., representation) shared by all the tasks, and then learn models for each task inde-

pendently based on this common feature space. This shared feature representation can

be derived using different principles and techniques, such as maximizing independence

through latent independent component analysis in Zhang et al. [119], maximizing spar-

sity (i.e., lower dimension) in Argyriou and Evgeniou [7], and so on. A related method

is that by Niculescu-Mizil and Caruana [73], which learns the structure of a Bayes
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net from related tasks. Parametric-level approaches assume the model parameters of

related tasks are related in a certain way and are to be learned together. In Bakker

and Heskes [10], the model parameters of related tasks must share one Bayesian prior,

while in Evgeniou et al. [39, 38] they are constrained by a regularization term in the

objective function that penalizes their difference. The work in [116] extended the idea

to a hierarchical Bayesian method, where the models of related tasks are represented by

Gaussian processes (GPs) constrained in the function space, i.e., their decision func-

tions must be close to each other in the function space. In addition, Lawrence and

Platt [63] studied sample selection strategies in MTL, and Ben-David and Schuller [12]

provided a mathematical notion of task relatedness.

2.2.3 Incremental learning

Incremental learning, or online learning, is to continuously update a model based on

(different) subsets of the training data. It is preferred over training a model in one batch

using all the data, when the latter is computationally expensive due to large data size,

or when new training data become available after the model is trained. There are many

incremental learning methods for updating classifiers especially SVMs. For example,

Syed et al. [94] proposed to update a SVM model by re-training it from the support

vectors of the existing model and the new data combined. Cauwenberghs and Poggio

[21] further extended it by allowing also decremental learning of SVM.

On the surface, our adaptation approach is similar to incremental learning methods

because both update existing classifiers based on additional labeled examples. Never-

theless, there are fundamental difference between them in terms of their assumption,

goal, and approach. Incremental learning assumes that all the training data come from

the same distribution, and their goal is that the incrementally trained models are iden-

tical or close to models trained in one batch. In comparison, our adaptation approach

accommodates distribution changes across domains, and it does not require the adapted

models to be close to batch-learned models (and they should not be). Moreover, most

incremental learning methods involve at least part of old training data (e.g., support

vectors) in the training, so they are not as efficient as our approach which directly

adapts the existing classifier and uses absolutely no old data. Given these differences,

our adaptation approach can be used as an efficient incremental learning algorithm,
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but existing incremental learning algorithms are inappropriate for model adaptation.

2.2.4 Sample bias correction

Another line of research focuses on learning tasks where the training and test data

distribution is known to be different, a problem known as sample selection bias or co-

variance shift. In this problem setting, the training sample is governed by an unknown

distribution p(x|λ) while the unlabeled test data is governed by a different unknown

distribution p(x|θ). The training and test distribution may differ arbitrarily, but the

basic assumption is that there is only one true unknown conditional distribution p(y|x).

The goal is to find a classifier f : x 7−→ y that can accurately classify the test data.

Many sample bias correction methods are based on the theorem that the expected

loss on test distribution p(x, y|θ) equals the weighted expected loss on the training

distribution as p(x, y|λ) p(x|θ)
p(x|λ)

. This means one can train a classifier that minimizes

the loss on the test distribution by minimizing the weighted loss on the training data,

where the loss on each instance x needs to be weighted with instance-specific scaling

factor p(x|θ)
p(x|λ)

. Since p(x|λ) and p(x|θ) are typically unknown, Shimodaira [88] and

Sugiyama et al. [93] proposed to estimate p̂(x|λ) and p̂(x|θ) from the training and

test data using kernel density estimation, and then use p̂(x|θ)
p̂(x|λ)

to resample or weight

the training examples in the training of classifiers. Instead of estimating the data

distribution p(x|λ) and p(x|θ), the methods of Zadronzy [118] and of Bickel and Scheffer

[14] directly estimate the ratio p(s = 1|x, λ, θ) ∝ p(x|θ)
p(x|λ)

, where s is a selector variable

that decides whether an example x drawn under the test distribution p(x|θ) is moved

into the training set (s = 1) or not (s = 0). In practice, p(s = 1|x, λ, θ) is estimated

from the training and test data, usually by a discriminative approach [14]. Besides,

Huang et al. [52] proposed a kernel mean matching method that sets the weights

of training instances such that the first moment of training and test data matches.

Bickel et al. [13] improved upon these methods by integrating the weight estimation

and model training into a unified discriminative framework. Fan [41] suggested to use

simple model averaging technique to alleviate the effect of sample bias.

Despite the advance on sample bias correction methods, several difficulties limit

their applicability on our problem. One of them is the difficulty of estimating the
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distribution of multimedia data p(x), not to mention its change across different do-

mains. While several generative models for image and video data exist [15, 108], they

are specialized for certain features (e.g., color histogram) and have not shown to be

effective. Moreover, in multimedia the class-conditional p(y|x) often changes across

domains. This violates the basic assumption of sample bias correction and renders all

the aforementioned methods inapplicable. Thus, in this thesis we try to adapt models

without articulating how the data distribution changes across domains.

2.3 Concept Drift in Data Mining

Domain adaptation is also related to the problem of concept drift in data mining

research on streaming data. Concept drift means the statistical properties of a target

variable or concept, which a model is trying to predict, changes over time due to the

change of some hidden context. An example of concept drift is spam detection from

a user’s daily emails, where the definition of spam may change over time (e.g., to

include email advertisements) and the types of spam can change drastically with time.

Concept drift may involve changes of the target concept definition (i.e., p(y|x)) and/or

the change of the data distribution (i.e., p(x)).

In data mining, there are two major approaches to detecting a drifting concept

in time-evolving data. The first approach selects training instances using a temporal

window with fixed or adaptive size that moves over the data stream, possibly weights

the selected instances by their utility to the target concept, and uses them to build a

single classifier. This has been the approach employed by Klinkenberg and Joachims

[61], and by Cunningham et al. [31]. The second approach maintains a set of base

classifiers trained from each segment of the data stream, and combines their outputs

on the test data in the form of a weighted ensemble. Wang et al. [102], Street and Kim

[92], and Kolter and Maloof [62] adopted this approach.

Despite being proposed for streaming data, the aforementioned methods can be

used to solve domain adaptation problems if we treat each domain as a data chunk

from a data stream. However, methods for concept drift usually make implicit assump-

tions about the underlying distribution of the data stream. One assumption in many

approaches [102, 61] is that the distribution of current data chunk is similar to that of
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the most recent data chunks. Based on this assumption, models for detecting concepts

in the current data should be built mainly from the recent data, and the ensemble

approach should also select and weight the base classifiers from recent data chunks.

While such assumption may be reasonable in temporally correlated streaming data,

no similar assumptions can be made on the distributions of data domains, which may

differ arbitrarily. In fact, as discussed in Chapter 1, measuring the relatedness between

different domains is one of the key challenges in this thesis. A related work from data

mining is from Fan [40], which analyzes the impact of combining “old data” for training

and proposes an efficient and systematic way to selecting useful data.

2.4 Adaptation in Other Areas

Model adaptation has been also studied in the context of specific problem domains,

such as natural language processing and speech recognition. In natural language pro-

cessing (NLP), there is often a need to adapt language models, parsers, and models for

other tasks (e.g., named-entity detection) from one corpus to other corpora. Through

experiments on Wall Street Journal corpus and Brown corpus, Gildea [46] found that

statistical parsing models, especially the bi-gram statistics, are corpus-specific, and

suggested a technique to pruning model parameters to achieve better generalization

ability. Hwa [53] proposed a two-stage adaptation process to first train a grammar

from a fully-labeled old domain, and then re-estimate the probabilities of the gram-

mars from a sparsely-labeled new domain. Roark and Bacchiani [82] proposed to adapt

a lexicalized probabilistic context-free grammar (PCFG) from an old domain to a new

domain. Their approach is to compute the maximum a posterior (MAP) estimation

of the model parameters under a prior distribution given by the old (“out-of-domain”)

models. In [9], the same approach is applied to adapt language models across corpora,

where a language model is a generative model governing the distribution of terms

and phrases in documents. In addition, Shen et al. [87] explored adapting a general

HMM-based named-entity recognizer trained from newswire documents to biomedical

documents. While most of the aforementioned models are generative ones, Chelba

and Acero [27] proposed to adapt maximum entropy classifiers for recovering correct

capitalizations in uniformly-cased text based on MAP estimation of model parameters.
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Model adaptation has also been extensively studied in speech recognition, where

the model mismatch problem can be caused by different speakers, dialects, speaking

styles, and environments (noise levels). Since the acoustic model of a speech recognition

system is usually based on hidden Markov model (HMM), most adaptation methods

adjust the parameters of the HMM model to better fit the target data. Such methods

include speaker adaptation methods based on maximum-a-posterior (MAP) [45], Max-

imum Likelihood Linear Regression (MLLR) [64], Vocal Tract Length Normalization

(VTLN) [99], and noise adaptation methods such as parallel model combination (PMC)

[44]. All the above methods are specialized to the (generative) acoustic models used in

speech recognition systems.

The aforementioned techniques exploited the domain knowledge of the highly spe-

cialized models in NLP or speech recognition. They can offer little help to solving the

general adaptation problem in multimedia.



Chapter 3

Generalizability in Semantic

Concept Detection

Semantic concept detection is a critical learning task in multimedia and also the foun-

dation of many other tasks. The goal of semantic concept detection is to automatically

determine whether certain semantic concepts (e.g., Studio, Outdoor, and Sports) are

present in images and/or video shots, where a video shot is a sequence of video frames

taken by a single camera operation. The general approach is to build a supervised

classifier for each concept from labeled images or video shots. The classifier can be

represented as a function f : x → y that maps the low-level feature x of an image

or video shot into a score y which indicates its degree of relevance to concept (larger

scores mean higher relevance). The score y can be converted into a binary label that

indicates the presence or absence of the concept in the image or video shot. Such con-

cept classifiers can be trained using various classification algorithms such as support

vector machines (SVMs), logistic regression, etc.

Concept classifiers are typically evaluated by their within-domain performance, or

performance on data from the same domain as their training data, often through cross

validation. The performance can be high due to overfitting, i.e., the classifier fits the

training data very well without the ability to generalize beyond the training data.

There has been very little study on the cross-domain performance of concept classifiers

[100], defined as their performance on data from domains other than their training

domain. We believe cross-domain performance is a more rigorous and realistic metric,

26
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as it measures not only how well a classifier fits its training data but more importantly

how well it generalizes beyond such data. In this section, we conduct a comprehensive

survey on the generalizability of semantic concept classifiers by comparing their within-

domain performance to their cross-domain performance. We also investigate the reason

behind the poor generalizability of concept classifiers. This study provides insights on

the importance and challenges of the model adaptation problem in multimedia.

3.1 Experiment Set-up

We design a series of experiments to explore the generalizability issue in semantic con-

cept detection. This involves building concept classifiers from one domain and compar-

ing their performance on the data from the same domain (within-domain performance)

to their performance on data from other domains (cross-domain performance). To

make the findings general and convincing, we choose the data, semantic concepts, and

classification algorithms that are frequently used in the literature and representative of

the state-of-the-art. Meanwhile, we propose new performance metrics which overcome

the limitations of existing metrics and measure generalizability better.

3.1.1 Test data

An ideal corpus for studying generalizability must consist of data from multiple do-

mains. A good choice is the video collections used in TREC Video Retrieval Evaluation

(TRECVID) [89]. TRECVID is an annual workshop sponsored by the National Insti-

tute of Standards and Technologies (NIST) to promote research in content-based video

retrieval in large collections via an open, metrics-based evaluation. It has defined a set

of retrieval-related tasks for evaluation, including shot boundary detection, high-level

feature extraction (a.k.a semantic concept detection), and automatic and interactive

search. From 2002 to 2007, the TRECVID collection varies on a yearly basis from

movies to broadcast news video and documentary video. Among all the TRECVID

collections, we select the development set of the collection used in 2005 and in 2007,

which are referred to as TV05DEV and TV07DEV respectively in this thesis.

The TV05DEV collection contains 86 hours of broadcast news video from 6 TV

channels, including CNN, NBC, MSNBC, CCTV, NTDTV, and LBC. Among them,
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CCTV and NTDTV are in Chinese (Mandarin), LBC is in Arabic, while the others are

in English. The data in each channel come from 2-3 different news programs in that

channel, e.g., the footage from CNN is from “Live From CNN” and “Anderson Cooper

360”. Due to the difference on editing styles, target audience, and many other factors,

the data from different channels exhibit very different characteristics. The 86-hour

footage has been automatically partitioned into 61,901 video shots [74] and the shot

boundaries are provided. The footage is relatively evenly distributed across different

channels, with largest channel containing 11,025 shots and the smallest one having

6,481 shots.

The TV07DEV collection contains 50 hours of news magazine, science news, news

reports, documentaries, educational programming, and archival video provided by the

Netherlands Institute for Sound and Vision, which can be collectively described as

documentary video. This set has 21,532 shots, and there is no further partitioning into

subsets.

In both TV05DEV and TV07DEV collection, each video shot is represented by the

frame in the middle of its temporal duration, denoted as its “keyframe”. A keyframe is

described by a 225-d color moment feature computed from 5×5 grids and a 48-d Gabor

texture feature. We concatenate them into a 273-d feature vector representing the video

shot. In several TRECVID evaluations through 2006 (e.g., [24]), this frequently used

feature has shown to provide performance on par with other state-of-the-art features.

3.1.2 Semantic concepts

Labels for a set of semantic concepts are available on the shots of the TV05DEV

and TV07DEV collection. The shots in TV05DEV were manually annotated with

respect to 39 concepts as part of the Light Scale Concept Ontology for Multimedia

(LSCOM-Lite) project [68]. The shots in TV07DEV were annotated through a col-

laborative effort [8] with respect to the same set of concepts expect 3 concepts (thus

totally 36 concepts). The 36 common concepts are Airplane, Animal, Boat Ship, Build-

ing, Bus, Car, Charts, Computer TV-Screen, Court, Crowd, Desert, Explosion Fire,

Face, Flag-US, Maps, Meeting, Military, Mountain, Natural-Disaster, Office, Outdoor,

People-Marching, Person, Police Security, Prisoner, Road, Sky, Snow, Sports, Studio,

Truck, Urban, Vegetation, Walking Running, Waterscape Waterfront, and Weather.
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The 3 concepts left out from TV07DEV are Entertainment, Government-Leader, and

Corporate-Leader because they have no or very few relevant shots in TV07DEV.

These concepts cover a wide variety of types, including objects (e.g., Car), visual

scenes (e.g., Sky), semantic topics (e.g., Military), human activities (e.g., Meeting), etc.

There is also a large difference between concepts in terms of their frequency, which is

defined as the ratio of shots relevant to a given concept against all the shots. Some

general concepts have frequency around 50%, such as Face and Outdoor, while many

rare concepts have frequency below 1%, such as Prisoner and Airplane. The frequency

of a concept also varies between the two collections and between different channels of

the TV05DEV collection.

3.1.3 Performance metric: AP and ∆AP

Average precision (AP) has been frequently used as the performance metric in semantic

concept detection. Given a concept classifier’s output in the form of relevance scores

on a set of test video shots, we rank the shots in descending order of their score, and

compute AP as the average of the precisions of this ranked list truncated at each of

the relevant shots:

AP =

∑N
r=1(P (r)× rel(r))

# of relevant shots
(3.1)

where r is the rank, N is the total number of shots, rel(r) is a binary function with

output 1 or 0 indicating whether the rth shot is relevant to the concept or not, and

P (r) is the precision of the list truncated at rank r. To measure the performance of

multiple classifiers, we use mean average precision (MAP) which is equal to the average

of multiple APs.

While AP is a good metric of rank quality, it is incomplete and misleading as the

metric of classifier performance. The baseline of AP should be the AP of a “ran-

dom classifier” that sorts the test shots completely randomly. Given the definition in

Eq.(3.1), it is easy to see that the baseline AP of a concept is not zero, because no mat-

ter how low the relevant shots are ranked, P (r) becomes non-zero after r reaches the

first relevant shot. Although the baseline AP is not constant due to random ranking, it

is easy to show mathematically that the expectation of baseline AP of a given concept

is equal to the frequency of that concept, i.e., the ratio of positive shots against all
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shots. This means different concepts have different AP baselines, and these baselines

have nothing to do with how well concept classifiers perform.

The difference on baselines causes several problems in the use of AP. First, it makes

concept classifiers less comparable. For example, an Outdoor classifier with 0.9 AP

is not necessarily better than a Studio classifier with 0.8 AP, since the baseline (fre-

quency) of the latter is much lower. Even for the same concept, the classifiers built

on different collections are still not comparable because the concept’s frequency varies

with collections. The second problem comes with using MAP as the metric of average

performance on multiple concepts. Because concept frequency varies greatly, some-

times by orders of magnitude, MAP can be easily dominated by the AP of a concept

with a much higher frequency than the rest. Meanwhile, a rare concept whose positive

instances occur in nearly identical form (e.g., commercials) typically has a very high

AP if one such instance is in the training data. This results in a large but somewhat

deceptive improvement on MAP, without any generalizability to other domains. Last

but not the least, AP alone is unable to capture the generalizability of a concept clas-

sifier. For example, if we know the within-domain and cross-domain performance of

a classifier is 0.9 AP and 0.8 AP respectively, we are still unable to judge how gen-

eralizable the classifier is. The answer also depends on the baseline. If the baseline

is 0.7 AP, the classifier in fact loses half of its performance; if the baseline is 0.4 AP,

then it loses only 20% of its performance. Since our focus is on the generalizability of

classifiers, we must introduce new metrics that capture generalizability more precisely.

A concept classifier can be more precisely evaluated in terms of how much better it

performs than a random classifier. Thus, we define a normalized performance metric

delta AP (or ∆AP), which is set to the difference between the AP of a concept classifier

and the expected baseline AP of this concept in a particular dataset. In other words,

∆AP measures the improvement of rank quality as the result of using a classifier. Since

the baseline of ∆AP is zero, it overcomes all the problems mentioned above. Most

importantly, we can use the difference (either absolute or relative) between within-

domain and cross-domain performance measured by ∆AP to represent a classifier’s

generalizability. Therefore, we will mainly use ∆AP to measure generalizability in

the rest of the chapter. Note that ∆AP can occasionally be negative if the classifier

performs worse than random. We also define ∆MAP as the mean of multiple ∆APs.
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3.1.4 Classification algorithm

Most existing methods on semantic concept detection chose support vector machines

(SVMs) with radius-basis kernel function (RBF) for training concept classifiers due to

its good performance in practice. The sophisticated methods for concept detection are

often built on top of SVM-based concept classifiers as their basic building blocks. For

examples, some methods combine SVM classifiers trained on different features as an

ensemble, while some combine SVM classifiers trained for correlated concepts [77, 112,

19, 72, 90, 117]. Therefore, SVM-based concept classifiers represent the mainstream of

semantic concept detection, and their generalizability represent the generalizability of

the more sophisticated methods. To make the results of our study representative, we

choose to train all concept classifiers by SVMs with RBF kernel, using the widely-used

LIBSVM package [22].

The model parameters of SVM, especially the cost factor and gamma parameter in

the RBF kernel [17], have shown to have a large impact on the performance and were

heavily tuned in practice. In our study, we choose the model parameters to values that

lead to respectable performance in TRECVID 2005 evaluation [49], which used the

same data and semantic concepts as in this experiment. They are not necessarily the

parameters that achieve the highest AP or MAP. This is not a problem since our focus

is on the generalizability of performance across different domains. In other words, we

care about the change of performance across different domains instead of the absolute

performance in one domain.

3.1.5 Experiment settings

Our study consists of two settings: the cross-channel setting and cross-genre setting. In

the cross-channel setting, we build concept classifiers from one channel (of news video)

in the TV05DEV collection, and evaluate their performance on the other channels in

TV05DEV. In the cross-genre setting, we build concept classifiers trained from the

entire TV05DEV (or TV07DEV) collection, and apply them to the TV07DEV (or

TV05DEV) collection. In the former setting each news video channel is a domain,

while in the latter all the 6 news channels together are treated as one domain. This

is reasonable because each news channel has its own characteristics to justify being
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Training channel
CCTV CNN LBC MSNBC NBC NTDTV

Test
channel

CCTV .332 .167 .172 .166 .172 .138
CNN .145 .319 .151 .193 .168 .132
LBC .161 .152 .306 .159 .180 .159
MSNBC .123 .176 .129 .312 .179 .122
NBC .140 .147 .152 .180 .329 .138
NTDTV .127 .129 .165 .141 .150 .313

(a) MAP

Training channel
CCTV CNN LBC MSNBC NBC NTDTV

Test
channel

CCTV .256 .088 .093 .089 .095 .061
CNN .075 .250 .080 .124 .100 .062
LBC .080 .070 .226 .079 .101 .077
MSNBC .058 .111 .064 .249 .116 .057
NBC .074 .081 .086 .116 .265 .072
NTDTV .058 .059 .094 .072 .081 .242

(b) ∆MAP

Table 3.1: Average performance as (a) MAP and (b) ∆MAP of detecting 39 concepts
with training and test data from 6 different news channels in the TV05DEV collection.

a domain, and at the meantime all news channels share the common properties of

broadcast news video. The two settings contrast well in terms of the domain definition,

data size, and the difference between domains. The hope is that by experimenting with

two contrasting settings the results of this study are more general and convincing.

3.2 Generalizability of Concept Detectors

3.2.1 Cross-channel performance

We first examine how well concept classifiers trained from one channel of news video in

TV05DEV perform on another channel. For each of the 6 channels, we build concept

classifiers for the 39 LSCOM-Lite concepts using all the video data in that channel.

This results in a total of 6 × 39 classifiers. Then we apply these classifiers to the data

in each of the 6 channels. The channel used for training a classifier is the training

channel, while the channel to which the classifier is applied is the test channel.

Table 3.1 shows the average performance of concept classifiers under different train-

ing and test channels in terms of MAP and ∆MAP over 39 concepts. The numbers
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off the diagonal denote the average cross-channel performance, which is the perfor-

mance of concept classifiers trained from one channel applied on a different channel.

The numbers on the diagonal denote the average within-channel performance, namely

the performance when the training and test data are from the same channel. The

within-channel performance are obtained using 5-fold cross validation in order to avoid

overfitting caused by using the same data for both training and testing. In cross vali-

dation, we evenly divide the data in a channel into 5 subsets, where 4 subsets are used

for training and the remaining one for testing. The training-testing process is repeated

5 times so that each subset has been used for testing once, and we compute the MAP

as the average performance of the 5 iterations.

It is clear from Table 3.1 that the cross-channel performance of concept classifiers

is consistently and substantially lower than the within-channel performance. While

all within-channel MAPs are above 0.3, none of the cross-channel MAPs are above

0.2. For most training-test configurations, the relative decline of MAP is around 50%.

Note that because of its non-zero baseline, the decline measured in terms of MAP is

smaller than the actual decline of a classifier’s performance. The decline in ∆MAP

gives a more realistic measure of how poorly concept classifiers generalize. As shown in

Table 3.1(b), the average decline in ∆MAP is more significant at about 60-70%. While

performance decline is expected, the amount of average decline is surprisingly large

given that all the video data are broadcast news video. Overall, the result shows that

the concept classifiers generalize poorly to channels other than its training channel,

and because this happens to all training-test configurations, it is a general problem

than an individual case.

The amount of performance decline varies between concepts. Figure 3.1 shows the

average within- and cross-channel ∆AP of each concept, where the concepts are ordered

from left to right in descending frequency. The gap between the two performance

numbers on each concept, which indicates its generalizability, is much larger for some

concepts than the others. For example, this gap for concepts like Person and Crowd is

much smaller than the gap for Animal and Charts. A closer examination reveals that

more frequent concepts tend to have smaller decline, and thus are more generalizable

than rare concepts. In terms of the relative decline from within-channel to cross-

channel performance, the 5 concepts with the highest frequency are also the ones with
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Figure 3.1: Within-channel ∆AP and cross-channel ∆AP on 39 concepts, from left to
right in descending order of frequency.

the smallest decline. Among the 24 concepts with over 70% relative decline, 19 of

them have frequency below 0.02. One reason for the better generalizability of frequent

concepts is that they are generic concepts and generic concepts are relatively insensitive

to domain changes (e.g., Outdoor). Another possible reason is that frequent concepts

have a large number of positive data, which are critical for building reliable classifiers.

The cross-channel performance is affected by, and indicates, the similarity between

the training and test channel in terms of data distribution. As supervised classifiers

assume identical distribution between the training and test data, the decline of per-

formance is determined by how much this assumption is violated. In Table 3.1, for

example, when MSNBC is the training channel, the average performance of concept

classifiers is 0.124 ∆MAP on CNN, but only 0.072 ∆MAP on NTDTV. This shows

that CNN is more similar to MSNBC than to NTDTV.

By treating cross-channel performance as an indicator of the pairwise similarity

between channels, we visualize such similarities in Figure 3.2 using a visualization

technique named multidimensional scaling (MDS) [30]. As expected, the three English

news channels (all produced in the United States), namely CNN, MSNBC, and NBC,
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Figure 3.2: The relationships of 6 news channels illustrated using multidimensional
scaling (MDS), based on the cross-channel performance between any two of them as
an indicator of their similarity.

are close to each other. Meanwhile, the other 3 channels, which are the Chinese channel

CCTV and NTDTV and the Arabic channel LBC, are far away from each other and

the English channels. This is intuitive because language and country influences the

editing styles and consequently the data characteristics of each news channel. The two

Chinese news channels are far apart perhaps because one is produced in China while

the other is produced in the US.

3.2.2 Cross-genre performance

The cross-genre experiment evaluates the performance of concept classifiers when they

are applied to data of a different genre from their training data. To obtain cross-

genre performance, we build concept classifiers for the 36 common concepts from the

entire TV05DEV collection (news video) and evaluate them on the entire TV07DEV

(documentary video) collection. Then we repeat the experiment with training and test

collection reversed. We compare that to within-genre performance, which is obtained

by 5-fold cross validation in either collection.

As shown in Table 3.2, the cross-genre performance is significantly lower than the

within-genre performance in terms of either MAP or ∆MAP. The relative decline in

terms of ∆MAP is 61% when applying TV05DEV classifiers on TV07DEV data, and
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MAP / ∆ MAP
Training collection

TV05DEV TV07DEV
Test
collection

TV05DEV 0.294 / 0.223 0.143 / 0.073
TV07DEV 0.166 / 0.086 0.201 / 0.122

Table 3.2: Average performance as MAP and ∆MAP of detecting 36 concepts with
training and test data from either TV05DEV (news video) or TV07DEV (documen-
tary).
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Figure 3.3: Within-genre ∆AP and cross-genre ∆AP on 36 concepts, from left to right
in descending order of frequency.

about 40% the other way around. Surprisingly, while the training and test data are

perhaps more dissimilar here than in the cross-channel setting, the performance decline

is not larger. A possible explanation is that the concept classifiers are built on a larger

amount of training data (the entire TV05DEV data are used for training, instead of a

single channel in it) and therefore provide more reliable performance.

Figure 3.3 shows the within- and cross-genre ∆AP on a per-concept basis. Similar

to the cross-channel experiment, we see a large variation between concepts in terms of

generalizability, indicated by the gap between the two performance numbers of each

concept. The trend that frequent concepts are more generalizable is even more pro-

nounced here.

Given the results on both cross-channel and cross-genre experiments, we conclude

that the change of data domains has a large impact on the performance of concept
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detection, and concept classifiers in general do not generalize well beyond their own

training data. Meanwhile, frequent concepts tend to generalize better than the rare

concepts.

3.3 Explaining Classifier Generalizability

We have learned that most semantic concept classifiers over-fit their training data and

do not generalize well. In order to provide insights into their poor generalizability, we

examine the model structure of these classifiers and compare them to memory-based

learning methods. We will see that, despite training using state-of-the-art algorithms

and features, concept classifiers learn little beyond memorizing the training data and

perform nearest-neighbor type of prediction, which helps explain their poor generaliz-

ability.

3.3.1 Model (SVM) structure

Similar to many existing methods to concept detection, in our experiment the concept

classifiers are trained with SVM. The decision function of a SVM classifier is expressed

as:

f(x) =
∑

xi∈DSV

αiyiK(x, xi) (3.2)

where DSV is a subset of training data called support vectors (SVs), xi and yi ∈ {−1, 1}
denotes the feature vector of a SV and its label which indicates its relevance to a

given concept, and K(x, xi) is the kernel function determining the similarity between

the query instance x and xi. Thus, the decision boundary of a classifier is completely

determined by the set of SVs, which are chosen by the SVM algorithm as representative

instances to define the separation between positive and negative data. For example,

training instances close to the decision boundary are typically chosen as SVs.

The number of SVs in a SVM classifier indicates the complexity of the decision

boundary, especially when a non-linear kernel function such as RBF is used. Think

SVM training as a data compression process. If the SVM algorithm finds a simple

and smooth boundary to separate the data in two classes, it would need only a small

number of SVs to represent the boundary. In other words, it compresses the data into
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Percentage of SVs in
Dataset # of shots positive data negative data all data
CCTV 10896 92.1% 10.5% 13.2%
CNN 11025 93.8% 9.3% 12.0%
LBC 15272 94.0% 10.4% 12.8%
MSNBC 8905 96.2% 9.7% 12.2%
NBC 9322 95.6% 11.4% 14.5%
NTDTV 6481 94.1% 10.9% 13.6%
TV05DEV 61901 94.7% 9.8% 12.4%
TV07DEV 21532 94.3% 12.6% 15.5%

Table 3.3: For the SVM classifiers of 39 concepts, the average ratio of support vectors
(SVs) in the positive data, in the negative data, and in all the data.

a small set of SVs while retaining the information about classification. If a smooth

boundary cannot be found, the SVM algorithm would produce a convoluted boundary

that zigzags through the feature space in order to separate the positive and negative

instances as much as possible. Such a complex boundary needs to be “supported” by

a large number of SVs. In this case, it fails to compress the training data, and it

has to “memorize” most of them in the form of SVs. As we will see, this also means

this classifier does nearest-neighbor type of classification, i.e., judging the label of an

instance based on whether most of its neighboring instances are positive or negative.

In Table 3.3, we show the average ratio of SVs among the entire training data

and among the positive and negative data in concept classifiers trained from different

domains. All the ratios are averaged across the 39 concepts (36 for TV07DEV). We

see that while the SVM classifiers use only 12% to 15% of the training data as SVs,

they retain most of the positive instances as SVs. The ratio of SVs in positive data

is over 90% for all the domains, implying that these SVM classifiers are unable to

summarize the positive data into general and concise representations. As a result, they

retain most of the positive training data as SVs. In fact, for about 25-30 concepts out

of the 39 concepts (depending on domains), all the positive data are used as SVs by

their classifiers. For only 2-3 concepts this ratio is below 50%. On the other hand,

the classifiers are able to aggressively compress the negative data, which are abundant.

Since positive data are far more valuable to classification than negative data due to

their relative scarcity, it is legitimate to say that SVM concept classifiers fail to learn

the essential patterns in the data.
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Why do SVM classifiers retain most positive data as SVs? One explanation is that

positive data are insufficient. However, as shown in Table 3.3, the ratio of SVs in

positive data stays within the small range of 92% to 96% when the data size increases

almost 10 times from the smallest dataset (NTDTV) to the largest one (TV05DEV).

We do not see a clear connection between the absolute size of positive data and the ratio

of positive SVs, although one may argue that even the largest collection is not large

enough and the ratio of positive SVs will finally drop if the data size grows further.

A better explanation is that the relative percentage of positive data in all the data

is very small. Nevertheless, we find that more frequent concepts do not necessarily

have smaller ratio of SVs in positive data. For example, the frequency of Sky (11%)

is slightly higher than that of Studio (10%), but the ratio of SVs in positive data for

Sky classifiers (97.3%) is much higher than that for Studio classifiers (40.6%). This is

because Studio shots are visually similar and can be well represented by a small set of

SVs, while Sky shots are more diversified.

Therefore, how many positive SVs are needed is more related to the intrinsic prop-

erty of each concept, such as the irregularity of data distribution. When positive and

negative data are intermingled in the feature space and a clear separation is impossi-

ble, using most positive data to form a convoluted boundary is unavoidable. So this

is mainly due to the limitation of our visual features rather than the incompetence of

classification algorithms.

3.3.2 Comparison with memory-based models

In SVM’s decision function Eq.(3.2), each term yiK(x, xi) in the summation can be

seen as an atomic classifier which predicts the label of x to be the same as the label

of SV xi with confidence weighted by their similarity measured by kernel function K.

Thus, we can treat a SVM classifier as an ensemble of such atomic classifiers, and

its prediction as a weighted sum of the labels of all its SVs. This reveals an analogy

between SVM and memory-based learning models such as k-nearest neighbor (kNN).

A kNN model predicts the label of query instance x as the normalized weighted sum

of the labels yi ∈ {0, 1} of its K nearest neighbor x1, ..., xK :

f(x) =

∑K
i=1 wiyi∑K
i=1 wi

(3.3)
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where the weight is set to the inverse of the Euclidean distance between x and each of

its neighbors, i.e., wi = 1/D(xi, x). Except for the denominator, Eq.(3.3) has a similar

form to SVMs’ decision function in Eq.(3.2), because the kernel function K(x, xi) is

essentially a similarity (distance) measure between x and xi and plays a similar role as

wi. The key difference is that kNN makes predictions based on nearest neighbors while

SVMs make predictions based on SVs. However, since most positive data are used as

SVs in the concept classifiers as shown earlier, a SVM classifier is structurally similar

a kNN classifier with a large K.

Given the structural similarity between SVM and kNN, it is interesting to compare

their performance in concept detection. Note that a memory-based model like kNN

needs no training at all; it simply memorizes all the training data. If SVM performs no

better than the learning-less kNN, it means SVM classifiers indeed “degenerates” to a

memory-based model and fails to learn from the data despite its complicated training.

Table 3.4 compares the performance of SVM and kNN, where K is set to 100 based

on our preliminary experiments, in concept detection on 39 concepts evaluated in both

within-domain and cross-domain settings. In the two within-domain settings, we show

the 5-fold cross-validation performance of classifiers trained on NBC and on TV05DEV.

In two cross-domain settings, we show the performance of NBC classifiers applied to

CNN, and TV05DEV classifiers applied to TV07DEV. We see that SVM and kNN

performs comparably in the two within-domain settings, with very close AP on most

concepts and almost identical average performance. One may argue that with careful

parameter tuning SVMs may outperform kNN. While this is possible, we can also fine-

tune kNN by varying K and ways of computing weight wi. This shows that when the

training and test data are from the same domain, SVM behaves close to kNN which

does no training.

In the two cross-domain settings, SVM on average performs slightly better than

kNN, although the difference is marginal. A close examination reveals that the dif-

ference mainly comes from a few concepts, such as Crowd, Face, and Vegetation, on

which SVM outperforms kNN by a large margin. Note that these concepts are mainly

frequent concepts. This echoes with our earlier finding that SVM classifiers for frequent

concepts tend to be more generalizable, as shown in Figure 3.1 and 3.3. So SVM is no

more generalizable than kNN except on a few frequent concepts.
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within-domain cross-domain
NBC TV05 NBC/CNN TV05/TV07

SVM kNN SVM kNN SVM kNN SVM kNN

airplane 0.077 0.145 0.028 0.109 0.016 0.012 0.005 0.018
animal 0.036 0.061 0.337 0.427 0.033 0.042 0.070 0.065
boat ship 0.147 0.195 0.155 0.190 0.006 0.006 0.033 0.046
building 0.288 0.325 0.279 0.278 0.187 0.173 0.245 0.268
bus 0.144 0.200 0.018 0.056 0.004 0.004 0.005 0.006
car 0.542 0.552 0.356 0.378 0.292 0.218 0.093 0.076
charts 0.528 0.509 0.156 0.144 0.038 0.030 0.026 0.021
computer tv-screen 0.429 0.427 0.400 0.491 0.143 0.113 0.102 0.061
corporate-leader 0.133 0.052 n/a n/a 0.016 0.024 n/a n/a
court 0.341 0.231 0.181 0.147 0.006 0.003 0.004 0.005
crowd 0.424 0.338 0.516 0.421 0.393 0.267 0.407 0.302
desert 0.231 0.304 0.067 0.116 0.050 0.030 0.010 0.012
entertainment 0.015 0.018 n/a n/a 0.010 0.012 n/a n/a
explosion fire 0.091 0.133 0.144 0.140 0.020 0.053 0.012 0.008
face 0.692 0.658 0.762 0.768 0.781 0.663 0.788 0.678
flag-us 0.068 0.053 0.238 0.145 0.050 0.081 0.002 0.001
government-leader 0.211 0.147 n/a n/a 0.180 0.150 n/a n/a
maps 0.794 0.826 0.417 0.408 0.084 0.077 0.064 0.041
meeting 0.136 0.116 0.280 0.248 0.055 0.058 0.085 0.075
military 0.259 0.297 0.196 0.227 0.122 0.137 0.056 0.039
mountain 0.298 0.286 0.219 0.192 0.078 0.089 0.036 0.017
natural-disaster 0.084 0.265 0.034 0.038 0.012 0.007 0.010 0.009
office 0.128 0.123 0.088 0.098 0.036 0.064 0.172 0.116
outdoor 0.722 0.720 0.682 0.704 0.605 0.573 0.700 0.642
people-marching 0.134 0.132 0.131 0.159 0.098 0.097 0.084 0.076
person 0.835 0.808 0.896 0.903 0.898 0.839 0.873 0.822
police security 0.043 0.029 0.022 0.046 0.026 0.012 0.023 0.023
prisoner 0.171 0.195 0.019 0.094 0.019 0.006 0.006 0.005
road 0.421 0.392 0.287 0.275 0.166 0.133 0.198 0.239
sky 0.580 0.484 0.564 0.498 0.496 0.409 0.654 0.571
snow 0.582 0.681 0.221 0.311 0.021 0.011 0.041 0.041
sports 0.393 0.277 0.499 0.413 0.014 0.014 0.086 0.033
studio 0.826 0.794 0.767 0.815 0.713 0.567 0.081 0.067
truck 0.089 0.127 0.043 0.069 0.009 0.015 0.021 0.028
urban 0.269 0.273 0.162 0.210 0.083 0.131 0.203 0.264
vegetation 0.326 0.259 0.351 0.278 0.299 0.193 0.462 0.395
walking running 0.302 0.283 0.226 0.222 0.164 0.143 0.173 0.175
waterscape waterfront 0.165 0.193 0.319 0.405 0.165 0.050 0.132 0.142
weather 0.878 0.850 0.540 0.626 n/a n/a 0.023 0.011
average 0.329 0.327 0.294 0.307 0.168 0.145 0.166 0.150

Table 3.4: Per-concept performance of SVM and kNN (k = 100) in two within-domain
settings (NBC and TV05DEV) and two cross-domain settings (NBC/CNN, TV05/TV07).

3.3.3 Discussion

The structural and performance similarity between SVM concept classifiers and kNN

ones may explain their poor generalizability. Despite the learning process, SVM clas-

sifiers perform nearest-neighbor type of prediction, i.e., classifying data close to the

positive SVs as positive and so on. The nearest-neighbor approach is fragile when the

test data are distributed differently from the training data. For example, there are

some gray-scale shots in TV07DEV which distribute far away from the color shots in
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TV05DEV in the color feature space, and as a result, concept classifiers trained on

TV05DEV perform poorly on TV07DEV. So the real reason is the limitation of the

features used for classification rather than the (SVM) classification algorithm. How-

ever, until better features become available that make the data more separable, we

need to work on algorithms to make classifiers generalize better.

We attempt to explain why classifiers for frequent concepts generalize better than

classifiers for rare ones. One reason is that the frequent concepts are mostly generic

concepts, such as Outdoor and Crowd, whose definition and visual appearance are

relatively less sensitive to the change of domains. Moreover, frequent concepts have

more positive training data, which are valuable to the classification performance due

to their relative scarcity. The classifiers of rare concepts may suffer from high model

variance due to the deficiency of positive data. This is especially true for models like

kNN, including the SVM concept classifiers which are structurally similar to kNN.

While a classifier with low variance may not generalize well, a classifier with high

variance almost certainly generalize poorly.

3.4 Summary

Our study has shown that concept classifiers do not generalize well beyond their training

domains. Meanwhile, building new classifiers for every new domain can be prohibitively

expensive in terms of the effort of labeling training data. As an example, for TRECVID

evaluation, every year a news video collection of moderate size, varying from 67 to 176

hours, was manually labeled w.r.t a small set of no more than 39 semantic concepts as

the training data for concept detection. Based on the “rule of thumb” that a person on

average needs one second to label one video shot for one concept, the manual effort is

measured at 190.7 man-hours in 2003, 260 man-hours in 2006, 807 man-hours in 2005,

and 1652 man-hours in 2006. Despite such a high labor cost, the classifiers trained in

each year work well only on data very similar to the training data (i.e., news video form

the same sources produced in approximately the same time) and do not generalize to

other data. In comparison, the footage in many video archives (e.g., YouTube.com) can

easily exceeds tens of thousands of hours, and a reasonably comprehensive semantic

ontology contains hundreds of semantic concepts [2]. The practice of building new
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models for each and every domain in TRECVID certainly does not scale to any real-

world video archives.

Since existing classifiers generalize poorly to new domains, and building new clas-

sifiers require expensive labeling effort, adapting existing classifiers to new domains

provides a good trade-off between performance and human cost. We call the task of

detecting semantic concepts in one domain using classifiers adapted from other do-

mains cross-domain semantic concept detection. We use this task as a benchmark task

to evaluate the adaptation approach to be proposed in this thesis, because this task rep-

resents a set of common challenges faced by many adaptation problems in multimedia

and other areas: Classifiers are vulnerable to the change of underlying data distribu-

tions across domains; The distribution change is arbitrary and hard to model; Labeling

training data is tedious and time-consuming. If our approach is able to address the

challenges in cross-domain semantic concept detection, it is reasonable to believe that

it will work well on many other adaptation problems. Chapter 4 and 5 will focus on

the technical details and evaluation of our adaptation approach.

The study in this chapter also encourages further investigation of the generalizabil-

ity of concept classifiers. We have shown in Figure 3.1 and 3.3 that certain concept

classifiers, especially those for frequent concepts, tend to generalize better than the

others. It is an interesting and challenging research topic to find whether generalizabil-

ity can be predicted from the properties of a concept and/or its classifier. Chapter 6 is

dedicated to this question, where we will show predicting a concept classifier’s gener-

alizability is feasible, and the predicted generalizability can improve the cost-efficiency

of adaptation through adapting classifiers selectively.



Chapter 4

Function-level Classifier Adaptation

In Chapter 3, we have shown the importance of adapting classifiers due to their inferior

ability to generalize across domains. In this chapter, we describe a generic and prin-

cipled framework for function-level classifier adaptation, which adapts a classifier by

directly modifying its decision function based on regularized loss minimization. This

framework enjoys great efficiency and broad applicability due to its freedom from using

the “old data”. We also introduce two concrete adaptation algorithms derived from the

framework, namely adaptive support vector machines (a-SVM) and adaptive kernel

logistic regression (a-KLR), and evaluate their performance on cross-domain semantic

concept detection.

4.1 Problem Settings and Notations

We begin by defining a general problem setting and introducing the terminologies and

notations used in this thesis. We consider a binary classification task in a target do-

main, where only a limited set of data are labeled while most data are unlabeled. We

denote the labeled data as Dt = {(xi, yi)}N
i=1, where N is the number of instances, xi is

the feature vector of the ith instance, and yi ∈ {+1,−1} 1 is a binary label indicating

whether xi is relevant (or irrelevant) to a concept or a category. For notational sim-

plicity, we let each data vector x always include a constant 1 as its first element such

that xi ∈ Rd+1, where d is the number of features.

1The binary label takes value of {+1,-1} instead of {0,1} only for the sake of notational convenience,
i.e., it makes the representation of the loss functions discussed later much simpler.

44
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In addition to the target domain, there is a source domain which contains a large

set of data Ds labeled w.r.t the same concept or category. Similarly, we have Ds =

{(xs
i , y

s
i )}Ns

i=1, where N s is the number of instances, xs
i ∈ Rd+1 and ys

i ∈ {−1, +1}.
The distribution of source data Ds may be relevant but different from the distribution

of target data Dt in an unknown way. A binary classifier has been trained from the

source data Ds and is denoted as source classifier f s(x). This classifier can be trained

using any classification algorithms (e.g., SVM, decision tree), but it is subject to a

uniform representation as a decision function that predicts the data label as its sign,

i.e., ŷ = sgn(f s(x)). For simplicity, we do not distinguish classifier and the decision

function of classifier.

The goal of our research is to propose a general framework for adapting a source

classifier f s(x) into a target classifier f(x) that works well on the target domain, based

on the limited number of labeled examples Dt in the target domain. As a fundamental

difference from many existing methods, our adaptation approach directly updates the

decision function of the classifier. It does not use any data in the source domain or

even require them to be available.

4.2 A Framework for Classifier Adaptation

The framework for function-level classifier adaptation is proposed based on regularized

loss minimization principle. In this framework, the target classifier f(x) has an additive

form: it is the sum of the source classifier f s(x) and a delta function ∆f(x):

f(x) = f s(x) + ∆f(x) (4.1)

This means that the transition from f s(x) to f(x) is realized by adding a small

function ∆f(x) on top of f s(x). While it is hard to prove that the additive form is

theoretically better than other forms (e.g., multiplicative form f = f s · ∆f), we will

show that this form leads to clear interpretation, great flexibility, and efficient learning

algorithms. In Section ??, we will further show the analogy between this additive

adaptation and a Bayesian approach which treats the source classifier f s(x) as a “prior

model”.
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The delta function ∆f(x) is learned from the labeled examples Dt = {(xi, yi)}N
i=1

in the target domain under the influence of source classifier f s(x). We propose to learn

∆f(x) in a framework that aims to minimize the regularized empirical risk [48]:

min
∆f

N∑
i=1

L(yi, f(xi)) + λΩ(‖∆f‖H) (4.2)

where L is the empirical loss function, Ω(·) is some monotonically increasing regular-

ization function on the domain [0, +∞], ‖·‖H is the norm of a function in a reproducing

kernel Hilbert space (called RKHS) H which is a space of functions with certain prop-

erties 2, and λ is a scalar.

In Eq.(4.2), the first term measures the classification error (loss) of the target

classifier f(x) on the training examples; The second term is a regularizer that controls

the complexity of the hypothesis space. Because ‖∆f‖H = ‖f − f s‖H, this regularizer

measures the distance between the source and target classifier in the function space.

Hence, the target classifier f(x) learned under this framework must satisfy two goals:

1. minimal classification error on the training examples;

2. minimal distance from the source classifier f s(·).

While the second goal does not seem to be as intuitive as the first one, it is as

important. If minimal classification error is the only goal, one may find a large number

of classifiers achieving the same classification error (even zero classification error when

the training size is small), although many of them do not generalize well beyond the

training examples. The regularizer in Eq.(4.2) uses the distance to the source classifier

as a second criterion for ranking candidate classifiers. This can be justified by our

assumption that the source classifier has better-than-random performance on the target

domain. The two goals is balanced by constant λ, and in practice its value needs to be

determined based on the utility of the source classifier.

We can understand this adaptation approach as making minimum changes to the

source classifier that are necessary to correctly classify the labeled examples. This

“minimum necessary changes” principle is what underlies our adaptation framework.

2A RKHS is a Hilbert space of functions in which pointwise evaluation is a continuous linear
functional. If X is an arbitrary set and H a Hilbert space of functions on X, then H is a RKHS if if
every linear map of the form f 7→ f(x) is continuous on any x in X.
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Figure 4.1: An illustration of classifier adaptation, where red ’+’ denotes positive
instances, blue ’-’ denotes negatives, and red and blue ’?’ denotes unlabeled positive
and negative instances. The decision boundary A is trained from the labeled data in
the source domain, B is trained from the labeled data in the target domain, and C is
adapted from A.

This is illustrated in Figure 4.1. The classification boundary A is trained from the

source domain, and its performance on the target domain is suboptimal due to the

distribution change. Our adaptation approach tries to find a new decision boundary B

which is slightly modified from A but can classify the target data well.

In terms of bias-variance tradeoff, this framework attempts to reduce the high

variance caused by limited training examples using the source classifier trained from

sufficient out-of-domain data. It represents a middle way between two extremes, namely

using a unbiased, high-variance classifier trained exclusively from limited examples, and

using the low-variance but probably-biased source classifier. We expect the adapted

classifier achieves better bias-variance tradeoff.

Taking a function-level adaptation approach results in great flexibility and efficiency.

This is because our framework directly exploits the source classifier as a summary of

the knowledge of the source domain, instead of using the raw data in the source domain.

By using this compact representation of knowledge, our approach is more efficient than

existing adaptation methods that train models over typically a large number of source

data [32, 65, 105]. On the other hand, this framework is applicable even when the

source data are not available or accessible, which is usually the case in applications

involving copyright-protected or privacy-related data such as surveillance video.
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From this generic framework, one can derive concrete algorithms for classifier adap-

tation by choosing certain loss functions L(·), regularization functions Ω(·), and the

form of the delta function ∆f(·). While the choices are virtually infinite, we will focus

on two specific algorithms coming out of this framework, which adopt the loss function

of support vector machines (SVM) and of kernel logistic regression (KLR) respectively.

The first takes the advantage of the discriminative power of SVM, while the second

gives a probabilistic interpretation of our framework.

4.3 Adaptive Support Vector Machines (a-SVM)

The empirical success of support vector machines (SVM) in various classification prob-

lems has demonstrated the effectiveness of its hinge loss function. By plugging SVM’s

loss function into the adaptation framework, we reach a specific adaptation algorithm

named Adaptive Support Vector Machines or a-SVM.

4.3.1 Model formulation

In a-SVM, the delta function takes a linear form either in the original feature space as

∆f(x) = wTx, where w ∈ Rd+1 are the parameters, or in a transformed feature space

as ∆f(x) = wT φ(x), where φ(·) is the feature map projecting the original feature x

into the transformed space. In the latter case, f s(x) is in fact a non-linear function in

the original feature space.

We adopt the hinge loss function of SVM which is expressed as L(y, f(x)) = (1 −
yf(x))+ = max(1−yf(x), 0). Moreover, we use a trivial regularization function Ω(x) =

x, and as we will show later, the regularizer Ω(‖∆f‖H) can be rewritten as ‖w‖2. The

objective function of a-SVM is given by plugging this loss function and regularizer into

the adaptation framework in Eq.(4.2):

min
w

1

2
‖w‖2 + C

N∑
i=1

(1− yif(xi))+ (4.3)

where the first term is the regularizer and the second term is the classification error. C

is a constant that plays the same role as λ in Eq.(4.2). We use C instead of λ in order

to be consistent with the notation of cost factor in standard SVM. By introducing the
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slack variable ξi to represent the loss on each instance xi, we can rewrite Eq.(4.3) as:

min
w

1

2
‖w‖2 + C

N∑
i=1

ξi (4.4)

s.t. ξi ≥ 0, yif
s(xi) + yiw

T φ(xi) ≥ 1− ξi, ∀(xi, yi) ∈ Dt

While this objective function is very similar to the objective function of standard

SVM (Eq.(12.8) in [48]), there is a fundamental difference: here w denotes the param-

eters of ∆f(x) instead of f(x). In fact, we will show that ‖w‖2 = ‖∆f‖2
H = ‖f−f s‖2

H,

which shows the regularizer is the distance between the source and target classifier in

the function space, instead of “margin” in the case of SVM. Since
∑

i ξi measures the

classification error of the target classifier f(x), the objective function in Eq.(4.5) seeks

a classification boundary (hyperplane) that is close to the boundary of the source clas-

sifier, and is meanwhile able to correctly classify the labeled examples in Dt. The cost

factor C in a-SVM balances the contribution between the source classifier (through

the regularizer) and the training examples. Larger C indicates smaller influence of the

source classifier, and vice versa. In practice, C should be decided based on the utility

of source classifiers.

By integrating the constraints in Eq.(4.5) using Lagrange multipliers, we can rewrite

the objective function as the following (primal) Lagrangian function:

LP =
1

2
‖w‖2 + C

N∑
i=1

ξi −
N∑

i=1

µiξi −
N∑

i=1

αi(yif
s(xi) + yiw

T φ(xi)− (1− ξi)) (4.5)

where αi ≥ 0, µi ≥ 0 are Lagrange multipliers. We minimize LP by setting its derivative

with respect to w and ξ to zero, which results in:

w =
N∑

i=1

αiyiφ(xi), αi = C − µi, ∀i (4.6)

From the above, it is easy to show that ∆f(·) =
∑N

i=1 αiyiK(·,xi), which is a function in

the RKHS. Given the definition of inner product in RKHS, we can prove the regularizer

‖w‖2 indeed is equal to the distance between the target classifier f(x) and the source

classifier f s(x) in RKHS.

‖f − f s‖2 = ‖∆f‖2 = 〈∆f, ∆f〉 =
N∑

i=1

N∑
j=1

αiαjyiyjK(xi,xj) = ‖w‖2 (4.7)
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In addition to Eq.(4.6), the Karush-Kuhn-Tucker (KKT) conditions, which the

optimal solution of Eq.(4.5) must satisfy, also include:

αi{yif
s(xi) + yiw

Txi − (1− ξi)} = 0

αi ≥ 0

yif
s(xi) + yiw

Txi − (1− ξi) ≥ 0

µiξi = 0

µi ≥ 0

ξi ≥ 0 (4.8)

Substituting Eq.(4.6) into Eq.(4.5), we get the Lagrange dual objective function:

LD =
N∑

i=1

(1− λi)αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi,xj) (4.9)

where λi = yif
s(xi). The model parameters α = {αi}N

i=1 can be estimated by maxi-

mizing LD under the constraint 0 ≤ αi ≤ C, ∀i. This would give a solution equivalent

to that obtained by minimizing the primal function LP . Maximizing LD over α is

a quadratic programming (QP) problem solved using the algorithm in Section 4.3.3.

Given the solutions α̂, the target classifier is written as:

f(x) = f s(x) +
N∑

i=1

α̂iyiK(x,xi) (4.10)

where (xi, yi) ∈ Dt. The target classifier f(x) can be seen as the source classifier f s(x)

augmented with support vectors from the labeled examples of the target data.

4.3.2 Discussion

In this section, we discuss several key issues of a-SVM in order to gain deeper insights

of its properties and its connections/differences with other methods.

On support vectors. Support vectors of SVM are training examples that are

on the classification boundary or on the wrong side of the boundary. Support vectors

of a-SVM have a different interpretation. We start by comparing the dual objective

function of SVM (Eq.(12.13) in [48]) and a-SVM in Eq.(4.9). The only difference is

that the latter has {λi}N
i=1 in the first term, where λi = yif

s(xi). It is interesting to
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see how λ affect the estimation of α. In Eq.(4.9), if λi = yif
s(xi) < 0, which means the

source classifier f s misclassifies xi, a larger αi is desired in order to maximize LD, and

vice versa. This is intuitive because the target classifier f is adapted from f s with the

support vectors xi ∈ Dt, and αi can be seen as the weight of each support vector. If the

source classifier f s misclassifies xi, which means the boundary of f s around xi is wrong,

then the boundary of the target classifier f around xi needs to be changed from f s in

order to correctly classify xi. This is realized by adding xi as a support vector with

a large weight αi. On the contrary, if the source classifier correctly classifies xi, f(xi)

does not need to be different from f s(xi), so the weight αi can be small or even zero.

This shows that the support vectors in a-SVM are used to correct the misclassifications

of the source classifier.

On training cost. A key benefit of function-level adaptation is high efficiency as

the result of avoiding training over source data. We show why it is the case in a-SVM.

It is clear form from Eq.(4.9) that the number of parameters {αi}N
i=1 in a-SVM is equal

to the number of target examples N , and not related to the number of source data

N s. It has the same number of parameters as a standard SVM model trained from

Dt. Thus, adapting f s(x) to f(x) using a-SVM is no more expensive than training a

SVM model entirely from Dt, except the cost associated with computing {λi}N
i=1. Since

λi = yif
s(xi) remains as a constant throughout the optimization process (see Section

4.3.3), this is an one-time cost of evaluating f s(x) for N data instances in Dt.

While the cost of computing {f s(xi)}N
i=1 depends on the complexity of the source

classifier f s, it is linear with N . It is also linear with feature dimension d, because the

cost for evaluating a kernel function is linear with d no matter it is linear, polynomial,

and RBF kernel. So the extra cost of a-SVM exceeding the cost of SVM is O(dN).

Meanwhile, even the most efficient training methods for SVM, such as SVM-Light [56],

SMO [76], LIBSVM [22], all have superlinear scaling factor with N . In [56], it has been

shown that the time complexity of SVM is linear with Nk where k ≈ 1.7 for real-valued

feature vectors. So the time complexity of training an adapted classifier using a-SVM

from Dt is O(dNk + dN) = O(dNk), which in terms of the big-O notation is the same

as the complexity of training a SVM model from Dt. It is considerably smaller than

the complexity of training a SVM model over all training examples Ds
⋃Dt, which is

O((N + N s)k), because the size of source data is typically much larger than that of
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labeled target data, i.e., N s >> N . The experiments to be presented support this

analysis.

On the cost factor C. In a-SVM, C balances the classification error and the

deviation from the source classifier f s, with large C emphasizing small classification

error and small C emphasizing closeness to f s. Intuitively, one should use smaller

C for a “better” source classifier that works well on the target data, and vice versa.

That being said, in practice the absolute value of C is also influenced by the range

of f s(·). Since 0 ≤ αi ≤ C, the range of delta function ∆f(x) =
∑N

i=1 α̂iyiK(x,xi)

is constrained by C. If the range of f s(·) is large, say, [−100, +100], C needs to be

large enough so that ∆f(x) is not overwhelmed by f s(x) when they add up to form the

target classifier f(x) (see Eq.(4.10)). Another possibility is to normalize f s(·) to a fixed

range such as [0, 1]. We will explore such engineering issues in the later experiments.

Comparison with existing methods. We now discuss the connections and

differences between a-SVM and several related methods. First, a-SVM is fundamentally

different from methods that re-train a classifier from the examples from source and

target domain combined. a-SVM directly modifies the decision function f s(·), and

does not use raw data from the source domain Ds. For this reason, it is also different

from cross-domain SVM (CDSVM) proposed in by Jiang et al. [55], which includes

part of the source data (support vectors of the source classifier) as additional training

data for the new classifier. Second, the decision function of a-SVM as defined in

Eq.(4.10) has an additive form, which is similar to an ensemble classifier that combines

the source classifier f s(x) and the delta function ∆f(x). However, it is different from

a genuine ensemble classifier where the component classifiers are trained independently

from different datasets (Ds and Dt in our case). It is clear from Eq.(4.9) that α as

parameters of ∆f(·) is estimated under the influence of f s(·), so its value would be

different if it is estimated exclusively from Dt. Finally, a-SVM should not be mixed

up with some incremental learning algorithms for SVM, such as those proposed by

Syed et al. [94] and by Cauwenberghs and Poggio [21]. Although these methods add

support vectors from new data into the existing SVM model, they also modify the

original support vectors in the existing model. In comparison, a-SVM does not change

the original support vectors in the source classifier.
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4.3.3 Learning algorithm for a-SVM

The parameters α of a-SVM are estimated by maximizing the dual objective function

defined in Eq.(4.9). This is a quadratic programming (QP) problem, where the number

of variables {αi}N
i=1 is equal to the number of labeled examples in Dt. The sequential

minimal optimization (SMO) algorithm proposed by Platt [76] can efficiently solve a

large QP problem by decomposing it into a series of QP subproblems and optimizing

them iteratively. We modify the original SMO algorithm to solve a-SVM efficiently.

Before the technical details, it is worthwhile to note an important difference between

the SMO algorithm for a-SVM and that for standard SVM. For SVM, the minimum

sub-problem tackled in each iteration of SMO optimizes two variables. One cannot

optimize a single variable at a time because of the linear constraint
∑

i αiyi = 0 derived

from ∂LP

∂b
= 0, where b is the intercept in a decision function f(x) = wT φ(x) + b. In

contrast, such constraint does not exist in a-SVM and therefore its SMO algorithm

optimizes only one variable in each iteration. On the surface, as the constraint is

derived from ∂LP

∂b
= 0, its absence is because our decision function f(x) = wT φ(x)

does not explicitly represent the intercept b but implicitly includes it as a component

of w. This notational difference is not critical. The real reason is that in a-SVM, the

intercept is implicitly involved in the regularizer ‖w‖2, while in SVM the intercept

is not part of the regularizer (since it does not affect margin). Even if we explicitly

include b in f(x), one cannot derive this linear constraint as long as b is included as

part of regularizer, say, in the form of ‖b‖2.

The parameter α is the optimal solution to the QP problem in Eq.(4.9) if and only

if the KKT conditions in Eq.(4.8) are fulfilled. We decompose the optimality condition

in Eq.(4.8) according to the value of αi:

αi = 0 ⇒ µi = C, ξi = 0 ⇒ yif(xi) ≥ 1

0 < αi < C ⇒ µi > 0, ξi = 0 ⇒ yif(xi) = 1

αi = C ⇒ µi = 0, ξi ≥ 0 ⇒ yif(xi) ≤ 1 (4.11)

If the above optimal conditions are satisfied for every i, the QP problem is solved,

otherwise it is not. Eq.(4.11) provides a method to check the optimality condition

of the problem, and also to find variables αi that violate such condition and need to

be optimized. Our SMO algorithm chooses one variable to optimize in each iteration.
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While there are many ways to select working variables, we use an intuitive heuristic of

selecting the variable αi∗ that violates the optimality condition the most:

i∗ = argmax
i∈{iup,ilow}

|yif(xi)− 1| (4.12)

where iup = argmin
i∈{t|αt<C}

yif(xi), ilow = argmax
i∈{t|αt>0}

yif(xi)

Without loss of generality, suppose α1 is the working variable to optimize. We

update it by setting the derivative of the dual objective function LD against α1 to zero:

∂LD

∂α1

= 1− y1f
old(x1)− y1(α

new
1 − αold

1 )K(x1, x1) = 0

where f old(x) is the target classifier Eq.(4.10) evaluated using the existing value of α.

This leads to an analytical solution of α1:

αnew
1 = αold

1 +
1− y1f

old(x1)

K(x1, x1)

Due to 0 ≤ αi ≤ C, the constrained optimal of α1 is given by clipping the uncon-

strained optimal using the following bounds:

αnew,clipped
1 =





C, if αnew
1 ≥ C;

αnew
1 , if 0 < αnew

1 < C;

0, if αnew
1 ≤ 0

(4.13)

To summarize the SMO learning algorithm, we start with certain initializations of

α, and iteratively choose working variables using Eq.(4.12) and optimize them one at a

time using Eq.(4.13). This process continues until the optimality condition in Eq.(4.11)

is satisfied up to a certain accuracy.

4.4 Adaptive Kernel Logistic Regression (a-KLR)

In this section, we derive Adaptive Kernel Logistic Regression or a-KLR from our adap-

tation framework by adopting the logistic loss function. We will present an alternative,

probabilistic interpretation of a-KLR, where it is derived from the maximum-a-posterior

(MAP) estimation of a kernel logistic regression (KLR) model with a Gaussian Process

prior.
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4.4.1 Model formulation

To derive a-KLR from the adaptation framework in Eq.(4.2), we adopt the logistic loss

function L(y, f(x) = log(1 + exp(−yf(x))) used by (kernel) logistic regression, and set

the delta function as ∆f(x) = wT φ(x) and the regularizer as ‖w‖2. This leads to the

following objective function:

min
w

1

2
‖w‖2 + C

N∑
i=1

log(1 + exp(−yif(xi))) (4.14)

By defining ξi = −yif(xi), we can rewrite it as the (primal) Lagrangian form:

LP =
1

2
‖w‖2 + C

N∑
i=1

log(1 + eξi)−
N∑

i=1

αi(ξi + yif
s(xi) + yiw

Txi) (4.15)

where {αi}N
i=1 are Lagrange multipliers. To minimize LP , we set its derivative against

w and ξi to zero, which gives w =
∑N

i=1 αiyiφ(xi) and ξi = log αi

C−αi
. Plugging them

into the primal form in Eq.(4.15), we have the dual Lagrangian function:

LD = −
N∑

i=1

αiyif
s(xi)− 1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi,xj)

−
N∑

i=1

(C − αi) log(C − αi)−
N∑

i=1

αi log αi (4.16)

The parameters {αi}N
i=1 are estimated by maximizing the above dual form using the

learning algorithm to be described in Section 4.4.3. The target classifier has exactly

the same form as that of a-SVM, i.e., f(x) = f s(x) +
∑N

i=1 αiyiK(x,xi).

4.4.2 Probabilistic interpretation

We show that a-KLR can be also derived from a probabilistic perspective where the

source classifier is treated as “prior model” of the target classifier. This alternative

derivation is based on maximum-a-posterior (MAP) estimation. Following the repre-

sentation of (kernel) logistic regression [48], we define the conditional probability as

p(y|x) = 1/(1 + exp(−yf(x))). Thus, the log-likelihood of the training examples is

represented as:

l(Dt; f) =
N∑

i=1

log p(yi|xi) = −
N∑

i=1

log(1 + eξi) (4.17)
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where ξi = −yif(xi). This log-likelihood corresponds to the second term of a-KLR’s

objective function in Eq.(4.14), which represents empirical loss.

From a Bayesian point of view, the regularizer ‖w‖2 is the outcome of a Gaussian

prior distribution on parameters, i.e., w ∼ N (0, CI), where I is an identity matrix.

The distribution p(w) specifies the properties of the considered function space of f(x)

in terms of the mean function:

E(f(x)) = f s(x) + E(wT )φ(x) = f s(x)

and covariance function:

Cov(f(x), f(x′)) = E(wT φ(x) ·wT φ(x′)) = V ar(w)K(x,x′) = CK(x,x′)

This means the target classifier f(x) follows a prior Gaussian process (GP) [81]

with mean function f s(x) and its covariance function CK(x,x′):

f(x) ∼ GP(f s(x), CK(x,x′))

GP is a distribution in the function space. This GP prior in particular favors target

classifiers f(x) that are close to the source classifier f s(x) in the function space. Accord-

ing to the definition of GP [81], a finite sample of f(x) as f = {f(x1), .., f(xN)}, where

xi ∈ Dt, follow a joint Gaussian distribution with mean as f s = {f s(x1), .., f
s(xN)} and

covariance matrix as CK where K = [K(xi,xj)]N×N , i.e., f ∼ N (f s, CK).

To learn the target classifier f(x), we resort to the maximum-a-posterior (MAP)

estimation instead of a fully Bayesian approach. If we treat f as the model parameters,

the logarithm of the posterior distribution is specified by the log-likelihood of data and

the prior p(f):

log p(f |D) ∝ l(D; f) + log p(f)

= −
N∑

i=1

log(1 + eξi)− 1

2C
(f − f s)TK−1(f − f s) + const

= −
N∑

i=1

log(1 + eξi)− 1

2C
‖w‖2 + const (4.18)

which is to be maximized subject to ξi = −yif(xi). This maximization problem is

identical to the minimization problem of a-KLR in Eq.(4.14). This shows that the

a-KLR model can be equivalently derived from a fully probabilistic perspective.
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This probabilistic interpretation does not extend to other methods under our adap-

tation framework, such as a-SVM, because their loss functions cannot be interpreted

as conditional probabilities. Nevertheless, it sheds light on the role of source classifier

in this framework, which is a prior in the hypothesis (function) space for the target

classifier f(x). The regularizer ‖∆f‖H penalizes any hypothesis f(x) that deviates

from this prior.

4.4.3 Learning algorithm for a-KLR

Similar to a-SVM, the parameters of a-KLR are also estimated by minimizing its dual

Lagrangian form LD in Eq.(4.16). This is a quadratic programming (QP) problem

solved using another variation of SMO algorithm we proposed. It is inspired by the

SMO algorithm for kernel logistic regression proposed by Keerthi et al. [59].

For simplicity, we define Fi = −yif(xi) + log(C − αi) − log αi. To maximize LD

defined in Eq.(4.16), we can set its derivative against every αi to zero:

∂LD

∂αi

= −yif(xi) + log(C − αi)− log αi = Fi , 0 (4.19)

This provides a method for checking the optimality condition (i.e., Fi = 0,∀i ) and

for finding variables that violate the condition. Following the same reason discussed

in Section 4.3.3, only one working variable is optimized in each iteration of this SMO

algorithm. We select the one that violates the optimality condition the most as our

working variable, i.e., i∗ = argmaxi |Fi|.
Without loss of generality, let α1 be the current working variable. Unlike in a-SVM,

here we cannot derive an analytical solution of α1 from Eq.(4.19), so we resort to the

Newton-Raphson (NR) method to optimize α1 iteratively. Suppose αnew
1 = αold

1 + t. In

the NR method, t is iteratively updated using the following equation:

tl+1 = tl − ∂LD

∂t

(
∂2LD

∂t2

)−1

(4.20)

where

∂LD

∂t
=

∂LD

∂α1

∂α1

∂t
= −y1f

old(x1)− tK(x1,x1) + log(C − αold
1 − t)− log(αold

1 + t)

∂2LD

∂t2
= −K(x1,x1)− 1

C − αold
1 − t

− 1

αold
1 + t
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Starting from t0 = 0, we repeatedly invoke Eq.(4.20) to update t until a certain accuracy

is reached or the constraint 0 < α1 < C becomes tight. The resulting t is used to update

α1. We iteratively optimize selected working variables until the optimality condition is

satisfied, i.e., Fi = 0,∀i.

4.5 Experimental Results

We experiment with adaptive SVMs (a-SVM) as the representative of the proposed

adaptation methods on both synthetic data and the application of cross-domain video

concept detection.

4.5.1 Alternative approaches

Given a fully-labeled source domain with a classifier trained from it and a sparsely-

labeled target domain, there are many approaches to classifying the unlabeled data in

the target domain. Adapting the source classifier is one approach, but there are other

alternative approaches, which are discussed below. The first three approaches exploit

the knowledge in one of the two domains, while the last three approaches exploit both

the source and target domain.

• Keeping source classifiers: This approach directly applies the classifier f s(x)

trained from the source domain directly to the target domain, without any adap-

tation. It does not use any labeled data from the target domain either.

• Building new classifiers: Contrary to the first approach, this approach ignores

the source domain completely and builds a new classifier classifier f t(x) entirely

from the labeled examples Dt in the target domain.

• Semi-supervised learning (SSL): The limited number of labeled data and

the large number of unlabeled data in the target domain makes semi-supervised

learning [26] an appealing approach, which aims to improve the classification

performance by learning from both the labeled and unlabeled data. Transductive

SVMs (TSVM) [58] is a widely used SSL method adapted from SVMs. We build

classifiers using TSVM from both the labeled and unlabeled data in the target
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domain. The labels for the unlabeled data are predicted in the training process

of TSVM.

• Aggregation (data-fusion): This computationally expensive approach learns

a single classifier using all the labeled instances combined from the source and

target domain, i.e., Ds
⋃Dt. The instances from the two domains are weighted

according to their relative importance. In the case of SVM, the weights are

implemented through the different cost factors of the instances. The decision

function is expressed as faggr(x) = wT φ(x) with w estimated from the following

objective function:

min
w

1

2
‖w‖2 + C

N∑
i=1

ξi + Cs

Ns∑
i=1

ξs
i (4.21)

s.t. ξi ≥ 0, yiw
T φ(xi) ≥ 1− ξi, ∀(xi, yi) ∈ Dt

ξs
i ≥ 0, ys

i w
T φ(xs

i ) ≥ 1− ξs
i , ∀(xs

i , y
s
i ) ∈ Ds

where C and Cs are the cost factors for instances in the target domain and in

the source domain, respectively. This approach represents the data-level transfer

learning techniques used in many existing works [34, 61, 65, 105]. It is funda-

mentally different from our adaptation approach in that it involves the source

data in the training process while our approach directly manipulates the source

classifiers.

• Ensemble (result-fusion): While the aggregation approach combines the train-

ing data, the ensemble approach combines the output of two independently

trained classifiers, namely the source classifier f s(x) and the new classifier f t(x)

trained from the labeled examples Dt in the target domain. Its result is equal to

a weighted sum of output of these two classifiers:

f ens(x) = Cf t(x) + Csf s(x) (4.22)

where C and Cs are used as the weights of the two classifiers. This has been

the approach used in [62, 102]. Note that although in our approach an adapted

classifier also has an additive form f(x) = f s(x) + ∆f(x), it is different from
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Figure 4.2: The data distribution of (a) source domain Dsrc and (b) target domain
Dtgt. Small red circles denote positive instances and small blue dots denote negative
instances. The larger blue dots in Dtgt indicate 20 labeled instances.

this ensemble approach in that ∆f(x) is learned under the influence of f s(x). In

contrast, in this ensemble approach the two base classifiers f s(x) and f t(x) are

learned independently.

• Adaptation approach: We use the proposed a-SVM algorithm to adapt the

classifier f s(x) trained from the source domain to a new classifier f(x) based on

the labeled target examples Dt. The cost factor in a-SVM is set to C.

In the experiments, care is taken to ensure that these approaches are comparable.

All the approaches use SVM as the classification algorithm and the empirically suc-

cessful RBF kernel function, i.e., K(xi, xj) = e−γ‖xi−xj‖2 . Moreover, we ensure that the

cost factor Cs for the source domain as well as Cs for the target domain are the same

across different approaches. We set Cs = 1 in all the experiments, but vary the value

of C to study its impact on the classification performance.

4.5.2 Synthetic data

To illustrate how a-SVM works, we generate two synthetic data sets Dsrc and Dtgt from

two different distributions in a 2-d feature space, which represent the data in the source

and target domain, respectively. Each data set has 100 positive and 500 negative data.

The positive data in each set are generated from a Gaussian mixture model with 3

Gaussian components, and the negative data are sampled uniformly outside the area
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(a) SVMsrc (20.5% error) (b) SVMtgt (16.7% error) (c) a-SVM (15.0% error)

Figure 4.3: Plotted on the target domain Dtgt, the decision boundary of (a) SVMsrc, the
source classifier trained from all the 600 instances in Dsrc, (b) SVMtgt, a new classifier
trained from the 20 labeled instances in Dtgt, and (c) a-SVM, the classifier adapted
from SVMsrc using 20 instances in Dtgt.

of the positive data. In source domain Dsrc, the 3 Gaussian components are centered at

(−0.4, 0.5), (0.5, 0.7), and (−0.1,−0.6), while in target domain Dtgt their means shift

to (−0.4, 0.3), (0.5, 0.3), and (0,−0.65). Figure 4.2 (a) and (b) shows the distribution

of Dsrc and Dtgt.

We assume all the instances in Dsrc are labeled, while only 20 instances are labeled

in Dtgt, including 3 positive instances and 17 negative instances. Suppose SVMsrc is

the (source) classifier trained from all the 600 instances in Dsrc using SVM, and SVMtgt

is a new classifier trained from the 20 labeled instances in Dtgt. As shown in Figure

4.3(a), the decision boundary of SVMsrc centers around the positive data in Dsrc and

does not align well with the positive data in Dtgt, whose centers have sifted from Dsrc.

Therefore, SVMsrc is biased with respect to data in Dtgt and has a relatively high error

rate. On the other hand, the unbiased new classifier SVMtgt suffers a large variance

due to the limited training data, and its boundary in Figure 4.3(b) does not correspond

well to the distribution of Dtgt either. This shows that relying on knowledge of a single

domain is insufficient.

The a-SVM classifier is adapted from SVMsrc based on the 20 labeled instances in

Dtgt. As shown by Figure 4.3(c), its decision boundary captures the locations of positive

data more precisely than SVMsrc and SVMtgt, and its error rate is also the smallest

among the three. We can conceive the adaptation process visually as “dragging” the

boundary of SVMsrc towards the shifted centers of positive data in Dtgt. We attribute
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the effectiveness of a-SVM to a good bias-variance tradeoff: the adapted classifier has

a low bias by training from only the instances in Dtgt, and meanwhile achieves a low

variance through a regularizer penalizing its difference from SVMsrc as a prior model.

4.5.3 Cross-domain semantic concept detection

In cross-domain concept detection, we adapt classifiers of semantic concepts trained

from one video domain to the other domains. The experiment is conducted on the

TRECVID 2005 development set (TV05DEV), which contains news video from 6

channels, and the TRECVID 2007 development (TV07DEV) containing documentary

videos. The details of the two collections can be found in Section 3. The labels of

39 semantic concepts are available on both collections. Two types of experiments are

performed: cross-channel experiment and cross-genre experiment.

In the cross-channel experiment, we treat NBC data as the source domain, and CNN

data as the target domain, which are two new channels in TV05DEV. We assume all

the video shots in NBC are labeled w.r.t the 39 concepts, and a classifier is trained for

each concept from the data. The video shots in CNN are partitioned into a development

set and an evaluation set. Along the temporal axis, the first 40% of the shots in CNN

belong to the development set, and the remaining 60% belong to the evaluation set.

We label a certain number of shots randomly selected from the development set, and

treat them as the training examples. Our goal is to adapt a concept classifier trained

from NBC to a classifier for CNN based on its limited training examples. The adapted

classifier is evaluated on the evaluation set in terms of average precision (AP). In the

experiment, we iterative over all the 39 concepts, and for each concept repeat the

experiment using 4 sets of random samples in order to reduce the variance caused by

random sampling. The performance is measured by mean average precision (MAP)

averaged over all 39 concepts and 4 random iterations for each concept.

In the cross-genre experiments, we treat the entire TV05DEV collection as the

source domain and entire TV07DEV as the target domain. Similarly, TV07DEV is

partitioned to a development set and a evaluation set in 40/60 ratio. Classifiers trained

from the entire TV05DEV set are adapted to TV07DEV based on the randomly se-

lected examples in its development set, and the adapted classifiers are evaluated on its

evaluation set.
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Figure 4.4: Comparison of a-SVM and non-adaptation methods in (a) cross-channel
(NBC/CNN) setting and (b) cross-genre (TV05/TV07) setting.

Figure 4.4 (a) compares the average performance of 4 methods in cross-channel

experiment, including SVMNBC as source classifiers trained from NBC data, SVMCNN

as new classifiers trained exclusively from the labeled data in CNN, a-SVM as classifiers

adapted from SVMNBC using a-SVM, and TSVMCNN as transductive SVM classifiers

trained using both the labeled and unlabeled data in CNN. All the classifiers are trained

using cost factor C = 1 and Cs = 1, and RBF kernel function K(xi, xj) = e−ρ‖xi−xj‖2

with ρ = 0.1. We increase the number of training examples in CNN from 50 to 4410,

which is the size of the entire development set, each time doubling the number of

examples. Because the average percentage of positive shots for the 39 concepts is only

7%, the number of positive data available for training is actually very small despite the

seemingly large number of total training examples.

From Figure 4.4 (a) we see that on average, the adapted classifiers trained by

a-SVM outperform both SVMNBC and SVMCNN by substantial margins. The gap

between a-SVM and SVMCNN is significant when the labeled examples are scarce, be-

cause SVMCNN relies exclusively on the labeled examples while a − SV M also relies

on the source classifier. The performance of both methods improves as more labeled

data become available, and the gap between them diminishes. Nevertheless, a-SVM

is still better than SVMCNN even when all the data in the development set are used

for training. This shows for difficult tasks such as semantic concept detection, adap-

tation is beneficial even when there is a large amount of training data. From another
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perspective, compared with building new classifiers, adaptation requires much fewer

training data to reach the same performance. For example, a − SV M needs only 50

instances to reach the same MAP that SVMCNN achieves using 400 examples. This

shows the benefit of leveraging the knowledge of source domain (classifiers) in terms

of improving performance or reducing labeling effort. Compared with source classifier

SVMNBC , a-SVM performs close to it when the training data are scarce, and then out-

performs it with an increasing margin as more training data arrives. The performance

of SVMNBC , on the other hand, remains the same due to no adaptation. TSVMCNN

has the worst performance, suggesting that using unlabeled data hurts the performance

in this particular case.

This result shows that a-SVM is able to take advantages of “the best of two worlds”.

When there is little or no labeled data, a-SVM exploits the knowledge in source clas-

sifiers SVMNBC and avoid a “cold start” which happens to the new classifiers. When

more labeled data become available, it takes advantages of the labeled data and quickly

improves its performance. While SVMNBC suffers bias due to distribution shift, and

SVMCNN suffers large variance due to limited training data, a-SVM hits a good bias-

variance tradeoff and outperforms the two.

We compare the performance of the same set of methods in cross-genre experiment

in Figure 4.4 (b). The relationship between these methods stay the same, with a-

SVM outperforming both SVMTV 05, the source classifiers trained from TV05DEV, and

SVMTV 07, the new classifiers trained from TV07DEV. The only difference is that a-

SVM and SVMTV 07 improves more slowly as the training examples increase, suggesting

a greater difficulty of concept detection in TV07DEV.

While a-SVM has the highest average performance, it is also important to know

whether it consistently excels on each single concept. Table 4.1 compares the per-

formance of different classifiers on the 39 concepts in the NBC/CNN setting and

TV05/TV07 setting. In either setting, a-SVM is the top performer on majority of

the concepts, beating the source classifiers (SVMNBC or SVMTV 05) and new classifiers

(SVMCNN or SVMTV 07) in all but 9 concepts. Sometimes, the source classifiers gen-

eralize so well to the new domains that their performance cannot be further improved

through adaptation, especially in the TV05/TV07 setting. In other cases, the source

classifier is unless and it actually hurts a-SVM such that it performs worse than the
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Performance on CNN Performance on TV05DEV
SVMNBC SVMCNN a-SVM SVMTV 05 SVMTV 07 a-SVM

Airplane 0.021 0.030 0.032 0.007 0.010 0.011
Animal 0.012 0.639 0.635 0.041 0.044 0.043
Boat Ship n/a n/a n/a 0.021 0.030 0.032
Building 0.152 0.187 0.199 0.252 0.302 0.336
Bus n/a n/a n/a 0.006 0.006 0.007
Car 0.306 0.220 0.340 0.104 0.095 0.100
Charts 0.021 0.049 0.050 0.030 0.022 0.021
Computer TV-screen 0.102 0.129 0.145 0.093 0.128 0.148
Corporate-Leader 0.010 0.017 0.021 n/a n/a n/a
Crowd 0.372 0.238 0.295 0.412 0.367 0.413
Desert 0.050 0.063 0.071 0.012 0.013 0.013
Entertainment 0.004 0.013 0.014 n/a n/a n/a
Explosion fire 0.031 0.106 0.100 0.006 0.004 0.005
Face 0.808 0.799 0.829 0.812 0.775 0.812
Flag-US 0.077 0.065 0.083 n/a n/a n/a
Government-Leader 0.151 0.105 0.110 n/a n/a n/a
Maps 0.106 0.470 0.429 0.020 0.026 0.032
Meeting 0.024 0.033 0.035 0.088 0.114 0.120
Military 0.159 0.285 0.299 0.073 0.030 0.033
Mountain 0.051 0.177 0.181 0.030 0.017 0.023
Natural-Disaster n/a n/a n/a 0.013 0.004 0.005
Office 0.039 0.046 0.052 0.171 0.280 0.282
Outdoor 0.671 0.739 0.766 0.670 0.715 0.742
People-Marching 0.140 0.087 0.151 0.065 0.094 0.105
Person 0.879 0.882 0.900 0.890 0.866 0.891
Police Security n/a n/a n/a 0.034 0.023 0.023
Prisoner n/a n/a n/a 0.008 0.007 0.007
Road 0.210 0.127 0.203 0.207 0.260 0.285
Sky 0.559 0.347 0.481 0.657 0.637 0.686
Snow 0.030 0.149 0.074 0.031 0.039 0.049
Sports 0.026 0.137 0.161 0.108 0.055 0.108
Studio 0.685 0.758 0.778 0.030 0.034 0.043
Truck 0.013 0.021 0.021 0.025 0.024 0.027
Urban 0.116 0.165 0.183 0.213 0.293 0.304
Vegetation 0.264 0.304 0.332 0.509 0.564 0.588
Walking Running 0.199 0.183 0.187 0.174 0.208 0.217
Waterscape Waterfront 0.187 0.403 0.439 0.094 0.199 0.219
Weather n/a n/a n/a 0.024 0.030 0.032

average 0.202 0.249 0.269 0.174 0.186 0.199

Table 4.1: Per-concept performance of several methods in NBC/CNN setting (with
1,600 training examples in CNN) and in TV05/TV07 setting (with 6,400 training ex-
amples in TV07DEV). “n/a” denotes skipped concepts due to insufficient positive data
(below 10).

new classifier trained from scratch.

While a-SVM performs well on the majority of the concepts, its robustness can be

further improved. One possibility is to make more educated decisions on whether to

adapt each classifier, rather than blindly adapting every classifier. Ideally, one should

be able to predict how well a classifier generalize to the new data in order to decide

whether to keep the original classifier, improve it by adaptation, or replace it with a

new classifier built from scratch. We will investigate this problem in Section 6.
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Figure 4.5: Comparison of alternative adaptation methods (a) performance on CNN,
and (b) average training time per concept.

We have shown the advantages of a-SVM over methods that relies on knowledge

from only a single domain. It is important to compare it with methods that exploit the

knowledge in both the source and target domain, namely the aggregation and ensemble

method. The former trains a classifier SVMaggr from labeled data combined from both

domains, while the latter employs an ensemble SVMens that combines the outputs of

two classifiers trained separately from the labeled data in the two domains. These two

methods can be seen as alternative adaptation methods as well.

Figure 4.5(a) shows the performance of a-SVM, SVMaggr, and SVMens in the cross-

channel (NBC/CNN) setting described above. We find a-SVM performs comparably

with SVMaggr, and better than SVMens by a moderate margin. All the three methods

perform better than SVMCNN and SVMNBC , showing the benefit of exploiting knowl-

edge from both domains rather than from a single domain. Moreover, to find out the

training cost of these methods, we compare their average (per-concept) training time in

Figure 4.5(b). Here, we assume source classifiers already exist, and their training cost

are not taken into account. We see that the training time of a-SVM is considerably

lower than that of SVMaggr, especially when the size of training examples is small. This

is due to the fact that while a-SVM is trained over only the limited examples in the

target domain, the training of SVMaggr involves a large amount of data in the source

domain. Because these two methods have comparable performance, we prefer a-SVM

over SVMaggr based on its higher efficiency.
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Figure 4.6: Sensitivity of a-SVM’s performance on CNN data w.r.t (a) the choice of
source domain (while C is fixed to 1), and (b) cost factors C (while the source domain
is NBC).

We proceed to investigate the sensitivity of a-SVM. We first examine the choice

of source domain (classifier) and its impact on the performance of adaptation. While

previously we use NBC as the only source channel, we now use each of the 6 news

channels in TV05DEV besides CNN as the source domain, which include CCTV, LBC,

MSNBC, NBC, and NTDTV. For each source channel, we build a source classifier from

all of its data, and apply a-SVM to adapt it to CNN based on the setting described

above. Figure 4.6 (a) plots the average performance of 5 a-SVM runs, each using

a different source channel (classifier), against the number of labeled examples. We

also include the performance with zero examples, which is the performance of the

original source classifiers on CNN before adaptation. It is clear that the choice of

source channels has a substantial impact on the performance of the adapted classifiers,

since the gap between different runs is non-trivial. So if more than one source domain

exist, choosing the best one is another important research problem.

It worths noting that the performance of an adapted classifier is closely tied to

the performance of the original source classifier on CNN. As shown in Figure 4.6 (a),

MSNBC’s classifiers have the highest average performance before adaptation (i.e., when

the number of examples is zero), and the classifiers adapted from them also have the

highest performance. This is intuitive because a better source classifier provides a

higher starting point for adaptation, and this advantage is “inherited” by the classifier
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adapted from it. However, it is infeasible to choose source classifiers based on their

cross-domain performance, because such performance is unknown unless the target

CNN data are completely labeled (which, however, would make adaptation unneces-

sary). In Section 6, we will discuss an empirical approach to predict such performance

without labeling the target data.

Another performance-sensitive factor is the trade-off between the dependence on the

source classifier and on the labeled examples. This is essentially the trade-off between

the two objectives of our adaptation framework. The trade-off is controlled by the

cost factor C in the objective function of a-SVM given by Eq.(4.5). As discussed in

Section 4.3, a larger C emphasizes more on minimizing the classification error on the

labeled examples, while smaller C emphasizes on the similarity between the source and

adapted classifier. Figure 4.6 (b) compares several a-SVM runs with difference values

of C, all trained with NBC as the source domain and CNN as the target domain. The

choice of C indeed has an impact on the performance of a-SVM, but the impact is not

as great as that of the choice of source classifier. In this particular setting, C = 1 has

the best average performance, but it is unlikely the optimal choice for every concept.

The optimal C depends on the source and target domain as well as the concept in

question.

The choice of cost factor should be based on the same factor as in the choice of

source domain: the utility of a source classifier with respect to the target domain. One

should use a smaller C for a source classifier that is useful to the target domain, and

a larger C for a useless source classifier. We will explore this problem in Section 6. So

far C is chosen through cross-validation which is computationally expensive.

4.6 Summary

We have proposed a general framework for function-level classifier adaptation, which en-

joys high efficiency and broad applicability due to its direct manipulation of classifiers’

decision function and the freedom from training on “old data”. We have also described

adaptive support vector machine (a-SVM) and adaptive kernel logistic regression (a-

KLR) as two concrete algorithms derived from this framework. The experiments on

cross-domain concept detection have demonstrated the effectiveness of our approach in
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comparison with alternative methods.

The proposed method is for adapting one classifier into another. In practice, there

is often a need and benefit in adapting multiple classifiers into one classifier. For

example, instead of adapting a NBC’s classifier to CNN, we can leverage the comple-

mentary knowledge in various news channels (NBC, CCTV, LBC, etc) by incorporating

the classifiers trained from all these channels in the adaptation process. As implied

by Figure 4.6(a), different source classifiers are not equally useful in adaptation, so

weighting these classifiers according to their utility is an important question. This

kind of many-to-one adaptation paradigm will be addressed in Chapter 5.



Chapter 5

Multi-Classifier Adaptation

In Chapter 4, we have described a framework and two algorithms for adapting one

classifier into another, namely single-classifier adaptation. In practice, there are usually

multiple existing classifiers (and domains) that are helpful to the classification task in

the target domain. To take the advantage of them, we extend our previous framework

to perform multi-classifier adaptation, namely adapting multiple source classifiers into

one target classifier. From this extended framework, we derive multi-adaptive SVM as

a specific algorithm for multi-classifier adaptation.

The following notations are used in this chapter. Suppose there are M the source

domains denoted as Ds
1, ...,Ds

M . In each domain Ds
k, there are N s

k labeled instances as

Ds
k = {(xk

i , y
k
i )}Ns

k
i=1, where xk

i ∈ Rd+1 denotes features and yk
i ∈ {−1, +1} denotes the

label. The data distribution in these source domains may differ from that in the target

data in different ways. We have trained a source classifier f s
k(x) from the data in each

source domain Ds
k.

5.1 An Extended Framework for Multi-Classifier

Adaptation

As the first step of adaptation, we combine multiple source classifiers as a weighted

sum, or an ensemble, in the form of
∑

k tkf
s
k(x), where t = {tk}M

k=1 are their weights.

We treat this ensemble as a single classifier to be adapted to the target classifier f(x).

Similar to the framework for single-classifier adaptation, this target function is the sum

70
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of the ensemble of source classifiers and a delta function, expressed as:

f(x) =
M∑

k=1

tkf
s
k(x) + ∆f(x) (5.1)

The key to multi-classifier adaptation is determining the weights {tk}M
k=1 of source

classifiers. The weights can be set manually based on their utility to the target do-

main. In this case, the ensemble
∑

k tkf
s
k(x) is fixed before the adaptation process,

and this becomes a single-classifier adaptation problem which can be solved using our

approaches in Chapter 4. However, manually defining the weights is rarely practi-

cal or desirable given the difficulty of knowing a classifier’s utility to the (unlabeled)

target domain. Therefore, we extend our adaptation framework to allow the weights

{tk}M
k=1 learned automatically and simultaneously with the target classifier f(x) in one

process. This is realized by adding another regularizer Ψ(‖t‖) to the regularized loss

minimization framework:

min
∆f,t

N∑
i=1

L(yi, f(xi)) + λΩ(‖∆f‖H) + βΨ(‖t‖2) (5.2)

where Ψ(·) is a monotonically increasing regularization function, ‖t‖2 is the L-2 norm

of the weights, and β is a scalar.

This new regularizer Ψ(‖t‖2) penalizes large weights on source classifiers, which

means this framework seeks to minimize the overall contribution of source classifiers as

measured by ‖t‖2. While this appears to be counter-intuitive given that this framework

is for adaptation, it can be understood from the structure of the target classifier f(x).

Since f(x) is the sum of the delta function ∆f(·) and the source classifiers {f s
k(·)}k,

there is a competition between the two terms. The two regularizers balance the two

terms by penalizing their cost, with the old regularizer Ω(‖∆f‖H) preventing over-

complex ∆f(·), and the new regularizer Ψ(‖t‖2) preventing too much reliance on the

source classifiers, both of which tend to be over-fitting.

5.2 Multi-Adaptive Support Vector Machine

(ma-SVM)

From the above framework, we derive multi-adaptive SVM as the counterpart of adap-

tive SVM for multi-classifier adaptation. We first describe the formulation of this model
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and its alternative interpretation, and then presents its learning algorithm.

5.2.1 Model formulation

Multi-adaptive SVM (ma-SVM) is derived by plugging in SVM’s hinge loss function

L(y, f(x) = max(0, 1−yf(x)) and trivial regularization functions Ω(x) = x and Ψ(x) =

x. It is easy to show the objective function is equivalent to:

min
w,t

1

2
‖w‖2 +

1

2
B‖t‖2 + C

N∑
i=1

ξi

s.t. ξi ≥ 0, yi

M∑

k=1

tkf
s
t (xi) + yiw

T φ(xi) ≥ 1− ξi

By integrating the constraints as Lagrange multipliers, we can rewrite this objective

function as a minimization problem of the following Lagrange (primal) function:

LP =
1

2
‖w‖2 +

1

2
B‖t‖2 + C

N∑
i=1

ξi −
N∑

i=1

uiξi (5.3)

−
N∑

i=1

αi(yi

∑

k

tkf
s
k(xi) + yiw

T φ(xi)− (1− ξi))

where αi > 0 and ui > 0 are Lagrange multipliers. We minimize LP by setting its

derivative against w, t, and ξ to zero, which gives:

w =
N∑

i=1

αiyiφ(xi), tk =
1

B

N∑
i=1

αiyif
s
k(xi), αi = C − µi (5.4)

The equation of tk shows a connection between the weight of a source classifier

f s
k and its performance on the target domain. tk is a weighted sum of terms yif

s
k(xi),

which is a “margin” indicating how well f s
k classifies training example xi. The margin is

larger if f s
k correctly predicts the label of xi, and vice versa. Thus, source classifiers that

classify the labeled examples better are assigned a larger weight, and vice versa. This

intuitive weighting comes naturally from the regularized loss minimization framework.

It also justifies the introduction of regularizer ‖t‖2 in the objective function in Eq.(5.2)

and in Eq.(5.3).

By plugging Eq.(5.4) into the primal Lagrangian Eq.(5.3), we obtain the dual La-

grange function as:

LD =
N∑

i=1

αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyj

(
K(xi,xj) +

1

B

∑

k

f s
k(xi)f

s
k(xj)

)
(5.5)
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The parameters α = {αi}N
i=1 are estimated by maximizing LD using a variation of the

standard SMO algorithm. The target classifier can be expressed using the estimated α̂

as:

f(x) =
N∑

i=1

α̂iyi

(
K(xi,x) +

1

B

M∑

k=1

f s
k(xi)f

s
k(x)

)
(5.6)

5.2.2 Discussion

From the form of the resulting target classifier in Eq.(5.6), we can interpret ma-SVM

as a standard SVM that treats the outputs of source classifiers as additional features.

For each instance x, we treat the output of auxiliary classifiers f = [fa
1 (x), ..., fa

M(x)]

on it as an extra feature vector besides its original feature vector x. Similarly, fi =

[fa
1 (xi), ..., f

a
M(xi)] is an additional feature vector of xi. Thus, we can rewrite the

target classifier in Eq.(5.6) as f(x) =
∑

i αiyi(K(xi,x) + 1
B
fi · f). While K(xi,x) is

the similarity between xi and x in the (transformed) feature space, and fi · f can be

treated as their similarity in terms of the output of source classifiers on them. If the

classifiers’ outputs on xi and x are close, fi · f is large and thus their similarity is

high, and vice versa. Compared with a standard SVM model f(x) =
∑

i αiyiK(xi,x),

ma-SVM extends similarity measure between x and xi by including the similarity in

the classifier-output space. In other words, it treats the output of source classifiers as

additional features.

In a trivial linear kernel function K(xi,x) = xi · x is used, we can concatenate

the original feature x with the output of source classifiers f to form a “hybrid” feature

vector as z = [
x

f
], and similarly, zi = [

xi

fi
]. Assuming B = 1 without loss of

generality, the target classifier of ma-SVM can be written as f(x) =
∑

i αiyizi · z,
which is identical to a linear SVM model based on the concatenated feature vector z.

This “feature concatenation” view does not apply when the kernel function is not the

linear one. This is because while feature similarity is computed in any kernel space, the

classifier-output similarity is computed in linear space. Therefore, we cannot implement

ma-SVM as SVM over concatenated feature vectors. Neither can we use the training

algorithm for SVM to train ma-SVM by replacing K(xi,xj) with K(xi,xj) + 1
B
fi · fj.

We will explore this issue in Section 5.2.3.
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The idea of treating model (classifier) outputs as additional features is not new.

For example, Natsev et al. [70] adopted the so called “model-vector” approach which

constructed semantic feature of a video shot from the scores of video concept classi-

fiers and used it in retrieval. Wu et al. [106] used the outputs of concept classifiers

built on different modalities as meta-features for concept detection. Here, we offer a

more principled interpretation of this seemingly ad-hoc technique: using classifier out-

puts as features is equivalent to adapting these classifiers under the regularized loss

minimization framework.

The above discussion also provides insight on the scalar B. We can see the role of

B as to balance the contribution between feature similarity and the similarity based

on source classifier outputs. The scale of these two similarity terms is affected by the

feature dimension d and the number of source classifiers M . Typically, we have d À M

since features for multimedia data is of very high dimensionality. We need to set 1
B

> 1

to avoid the classifier-output similarity being overwhelmed by the feature similarity. A

good starting point is to set B = M
d

such that that the two similarity terms have equal

contribution.

The training cost of ma-SVM can be analyzed similarly to the analysis of a-SVM in

Section 4.3.2. From the dual form in Eq.(5.5) it is clear that ma-SVM has exactly the

same set of parameters {αi}N
i=1 as a standard SVM model trained from the same data

Dt. Due to the similarity of their learning algorithm, ma-SVM has the about same

training cost as SVM, except the cost of computing f s
k(xi) for each of the M source

classifiers {f s
1 , .., f s

M} and on every training example in Dt. So this extra cost of ma-

SVM is O(dMN), where d is the feature dimension, N is the data size ofDt. Meanwhile,

the training cost of SVM is O(dNk), where k has been empirically determined to be

1.7 in [56]. Therefore, the total time complexity of ma-SVM is O(dNk +dMN). Given

that the number of source classifiers cannot be very large compared with the number

of training examples (i.e., M << N), the complexity of ma-SVM is only slightly higher

than that of a-SVM in terms of big-O notation.

5.2.3 Learning algorithm for ma-SVM

We propose another modified version of the standard sequential minimal optimization

(SMO) algorithm for solving the optimization problem in dual form of ma-SVM.
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The dual form of ma-SVM as shown in Eq.(5.5) can be derived from SVM’s dual

form by replacing K(xi,xj) with K(xi,xj)+ 1
B

∑
k fa

k (xi)f
a
k (x). This observation gives

the impression that ma-SVM can be implemented using SVM’s learning algorithm by

simply replacing the kernel term. This impression is not true. Despite the correspon-

dence on their dual form, the intercept term of a classifier is (implicitly) involved in

the objective function of ma-SVM through the regularizer ‖w‖2, but it is not involved

in the objective function of SVM. Based on our discussion in Section 4.3.3, this allows

the SMO algorithm for ma-SVM to optimize only one working variable in each itera-

tion, instead of two variables as in the case of SVM. This changes the structure of the

learning algorithm.

The SMO algorithm for ma-SVM is modified from the SMO algorithm for a-SVM

described in Section 4.3.3. In fact, the optimality condition and selection criterion of

working variable remain exactly the same as in the case of a-SVM, which are given by

Eq.(4.11) and Eq.(4.12). The only difference is the analytical solution of each working

variable, because ma-SVM has a different optimization function. Suppose α1 is the

working variable. We set the derivative of the dual form in Eq.(5.5) against it to zero:

∂LD

∂α1

= 1− y1f
old(x1)− (αnew

1 − αold
1 )

(
K(x1,x1) +

1

B

M∑

k=1

fa
k (x1)

2

)
, 0 (5.7)

which leads to the analytical solution of α1:

αnew
1 = αold

1 +
1− y1f

old(x1)

K(x1,x1) + 1
B

∑M
k=1 fa

k (x1)2
(5.8)

This optimal solution may need to be clipped to satisfy the constraint 0 < α1 < C.

Thus, the learning algorithm of ma-SVM is the same as that for a-SVM except that

the variable update equation in Eq.(4.13) needs to be replaced by Eq.(5.8).

5.3 Experimental Results

We evaluate our multi-classifier adaptation method ma-SVM in cross-domain semantic

concept detection. As in our previous experiment in Section 4.5, we treat CNN data

in TV05DEV as the target domain. But instead of using another channel as the only

source domain, we use all the other 5 channels in TV05DEV (besides CNN) as source
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a-SVM ma-SVM
source domain CCTV LBC MSNBC NBC NTDTV all 5 channels

airplane 0.036 0.040 0.035 0.037 0.031 0.027
animal 0.618 0.598 0.523 0.571 0.626 0.551
building 0.187 0.191 0.204 0.190 0.180 0.208
car 0.161 0.179 0.249 0.332 0.185 0.332
charts 0.046 0.046 0.055 0.031 0.031 0.056
computer tv-screen 0.176 0.128 0.117 0.134 0.106 0.193
corporate-leader 0.014 0.026 0.030 0.019 0.010 0.022
crowd 0.335 0.344 0.318 0.317 0.323 0.351
desert 0.056 0.090 0.145 0.065 0.057 0.125
entertainment 0.012 0.012 0.013 0.013 0.008 0.011
explosion fire 0.105 0.115 0.193 0.082 0.086 0.123
face 0.815 0.807 0.824 0.824 0.794 0.827
flag-us 0.041 0.063 0.085 0.060 0.038 0.069
government-leader 0.121 0.109 0.108 0.106 0.107 0.121
maps 0.476 0.418 0.543 0.317 0.147 0.413
meeting 0.031 0.050 0.040 0.035 0.035 0.050
military 0.354 0.290 0.349 0.305 0.292 0.354
mountain 0.143 0.156 0.151 0.152 0.144 0.156
office 0.057 0.047 0.095 0.059 0.048 0.067
outdoor 0.750 0.722 0.765 0.752 0.735 0.772
people-marching 0.083 0.110 0.113 0.168 0.125 0.126
person 0.891 0.891 0.894 0.896 0.881 0.898
road 0.108 0.129 0.144 0.196 0.124 0.208
sky 0.518 0.527 0.546 0.521 0.483 0.549
snow 0.171 0.194 0.132 0.066 0.187 0.106
sports 0.132 0.069 0.050 0.068 0.034 0.144
studio 0.764 0.755 0.742 0.773 0.752 0.770
truck 0.021 0.020 0.029 0.016 0.023 0.025
urban 0.142 0.158 0.172 0.166 0.146 0.185
vegetation 0.287 0.280 0.304 0.276 0.259 0.321
walking running 0.178 0.178 0.194 0.178 0.178 0.179
waterscape waterfront 0.212 0.375 0.363 0.359 0.346 0.400
average (MAP) 0.251 0.254 0.266 0.253 0.235 0.273

Table 5.1: Per-concept performance on CNN (with 800 training examples) of 5 a-SVM
runs and a ma-SVM run. The 5 a-SVM runs use each of the 5 news channels in
TV05DEV besides CNN as the source domain, while the ma-SVM run uses all the 5
news channels as source domains.

domains. We assume for each semantic concept, a source classifier has been trained

independently from each of the 5 source domains, whose data are are fully labeled. As

before, 40% of the CNN data are used for development and 60% are used for evaluation.

For each concept, we use ma-SVM to adapt the 5 source classifiers trained from the

5 channels into a new classifier for CNN based on labeled instances randomly selected

from its development set. The adapted classifier is evaluated against the evaluation set

of CNN. To compare single-classifier adaptation to multi-classifier adaptation, we also

use a-SVM to adapt each source classifier into a classifier for CNN.

Table 5.1 compares the performance of a ma-SVM run, which uses all the 5 source

channels in adaptation, to 5 a-SVM runs, each using a different channel as the source
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domain. The average performance of ma-SVM is 0.273 MAP, higher than any of a-

SVM runs, which confirms the benefit of using multiple source domains (classifiers).

On a per-concept basis, ma-SVM is the best performer on majority of the concepts,

although it is occasionally outperformed by the best a-SVM run. This is because for

detecting a concept on CNN, not every source domain (classifier) is equally useful and

some can be useless. Combining “bad” source classifiers in adaptation brings in noises,

and even if ma-SVM tries to weight them by utility, the result is not as good as that

of using the single best source classifier. However, note that which the source classifier

is the best for a given concept is unknown and difficult to find out automatically.

We notice from Table 5.1 that the gap between different a-SVM runs is quite large.

This suggests a large variation on the utility of different source channels. So it is

especially important that the weights of source classifiers learned automatically by

ma-SVM indeed reflect their utility. In order to see whether the learned weights are

effective, we compare the standard ma-SVM to two modified ma-SVM runs with alter-

native weighting strategies. The uniform weighting strategy assigns equal weights to all

source classifiers and ensures the weights sum up to 1. The oracle weighting approach

assigns weights proportional to the actual performance (as AP) of each source classifier

on CNN, and also ensures the weights sum up to 1. This performance-based weighting

does not guarantee optimal performance in adaptation, but it provides a quasi-optimal

reference performance of multi-classifier adaptation. It is called “oracle” because the

actual performance on CNN is unknown unless all the data in CNN are labeled. In

this experiment, we intentionally label all the CNN data for evaluation purpose. In

practice, the target domain is unlabeled and therefore it is infeasible to obtain oracle

weights. In both strategies, since the weights are fixed before adaptation rather than

learned on the fly, we can combine the source classifiers using these weights into a

“ensemble” classifier and adapt it as a single classifier.

Figure 5.1 compares the performance of three ma-SVM runs under different weight-

ing strategies, all using CNN as the target domain and the other 5 channels as source

domains. As a reference, it also includes an “average a-SVM” run whose performance

is set to the average performance of the 5 a-SVM runs shown in Table 5.1, which use

different source domains. We see that when training examples are abundant, the pro-

posed automatic weighting strategy in ma-SVM outperforms uniform weighting by a
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Figure 5.1: Comparison of different weighting strategies in ma-SVM.

non-trivial gap, and even slightly outperforms oracle weighting at 3,200 examples (as

we discussed, the oracle weighting does not guarantee the highest performance). When

training data are scarce, its performance is close to that of uniform weighting and below

oracle weighting. This is because, as discussed in Section 5.2, the weights learned by

ma-SVM are based on the performance of source classifiers on the labeled examples.

The size of the training data there has a direct impact on the quality of the weights.

The weights learned from little training data are unreliable, and the performance is no

better than that of uniform weights. When training data are abundant, the learned

weights lead to performance as good as that of oracle weights, which are set according

to the (unknown) performance on the entire target data. It worths nothing that, de-

spite the weighting strategies, the performance of ma-SVM is significantly higher than

that of average a-SVM, confirming the benefit of using multiple source domains.

5.4 Summary

We have addressed the problem of adapting multiple source classifiers into a classifier

for the target domain by proposing an extended framework for multi-classifier adap-

tation. Based on the loss minimization principle, the extended framework allows the

weights of source classifiers learned automatically to reflect their utility in adaptation.

We have derived multi-adaptive SVM (ma-SVM) from this framework and proposed

another modified SMO algorithm for the learning of ma-SVM. We have shown that
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in cross-domain semantic concept detection, adaptation based on multiple source do-

mains achieves better performance than adaptation using a single source domain. The

weights of source classifiers learned automatically by ma-SVM have also shown to be

effective.

The weights of source classifiers are expected to reflect their utility in the target

domain, while in ma-SVM they are determined based on the performance on the labeled

data. When there are no or very little labeled data, it is impossible to learn the weights

reliably, as reflected in the performance in Figure 5.1. It is natural to ask whether we

can predict a source classifier’s performance on the target domain without any labels.

If that is possible, we can set the weights of the source classifiers according to their

predicted performance, which would further improve the performance of ma-SVM. This

would also help identify the single best source classifier for each concept, and therefore

improve the performance of single-classifier adaptation based on a-SVM. Given all the

benefits of predicting a classifier’s generalization performance, we will explore this topic

through an in-depth study of classifier’s generalizability in Chapter 6.



Chapter 6

Generalizability Analysis and

Selective Adaptation

In Chapter 4 and 5, we have presented several approaches to adapting classifiers in

different scenarios and demonstrated their effectiveness in semantic concept detection.

These approaches treat the classifiers to be adapted equally, i.e., each and every classi-

fier is adapted with the same number of labeled examples. There is little discussion on

the cost-efficiency of adaptation, or return-to-cost ratio, where return here is the im-

provement from pre-adaptation performance to post-adaptation performance, and the

cost is the human effort on labeling training examples used in adaptation. As we have

shown in Table 4.1, given the same number of training examples, the improvement

from adaptation is much larger for some concepts (e.g., Waterscape) than for other

concepts (e.g., Face). This shows a large variation in the cost-efficiency of adapting

different concept classifiers. Therefore, when there are multiple classifiers, adapting

every classifier equally is suboptimal in terms of overall cost-efficiency, namely the

total performance improvement on all classifiers for a fixed number of total training

examples. To maximize the overall cost-efficiency, we should select and prioritize these

classifiers such that concepts like Waterscape are adapted with higher priority (e.g.,

with more training examples) than concepts like Face.

A critical factor related to the cost-efficiency of adapting a classifier is its generaliza-

tion ability. Given the same number of training examples, adapting a less-generalizable

classifier is likely to produce larger improvement than adapting a more-generalizable

80
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one, because the former has a lower pre-adaptation performance and thus potentially a

larger room for improvement. Meanwhile, we have learned in Chapter 3 that general-

izability indeed varies significantly between concept classifiers. Therefore, prioritizing

classifiers to be adapted based on their generalizability may enhance the overall cost-

efficiency of adaptation. However, measuring a classifier’s generalizability to a new

domain is not as straightforward as in the study of Chapter 3, because in practice the

data in new domains are usually unlabeled (if they are, one can build new classifiers

from them instead of having to adapt existing ones). The challenge is to predict a

classifier’s generalizability a priori, namely to predict its performance on a new do-

main without labeling its data. This is a new research problem not yet studied in the

literature.

In order to predict classifiers’ generalizability and finally improve the cost-efficiency

of adaptation, we first present an empirical analysis of the generalizability of semantic

concept classifiers. We identify various meta-features of a classifier that are related

to its generalizability, including the model structure and parameters, the properties of

the concept intended, and the distribution of its output. Based on these meta-features,

we build generalizability models to predict how well an existing classifier generalizes to

new data. Based on this generalizability model, we propose several selective adaptation

strategies for the selection and prioritization of adaptation tasks, which achieve better

cost-efficiency than adapting every classifier equally. The generalizability model can be

also used for choosing, for each concept, the parameter setting that leads to the best

generalized performance.

It is worth nothing that, while our adaptation approaches are generic and princi-

pled, the analysis in this chapter is empirical and specific to semantic concept detection.

Some of the meta-features investigated are specific to SVM classifiers, and generaliz-

ability is measured using the performance metric unique to concept detection. This

allows us to leverage the domain knowledge of concept detection in order to accurately

predict classifier generalizability. Nevertheless, such an empirical study is justified by

the critical importance of semantic concept detection. We believe it is also possible to

conduct similar analysis of generalizability in other areas.
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6.1 Meta-features for Generalizability

The generalizability of a concept classifier is influenced by several factors. The first

impacting factor is the semantic concept the classifier is intended. We have observed

in Section 3.2 that classifiers of frequent concepts tend to be more generalizable, so we

will further study their relationship in this section. The second factor is the feature

used as the input to classifiers. While only one type of feature was used in our previous

experiments, we will study whether other features make classifiers generalize better

or worse. The third factor is model configuration, which includes the classification

algorithm, kernel function, and various model parameters used for training classifiers.

The impacting factors are by themselves meta-features that can be used for predicting

generalizability.

Generalizability can be also determined by examining the classifier after it is trained.

In the case of SVM classifiers, we can examine how the number and ratio of support

vectors (SVs) in a classifier is related to its generalizability. We can also apply a

classifier on (unlabeled) target data and examine the distribution of its output to find

clues of its generalizability. These meta-features are unlikely the result of any single

factor mentioned above, but the join effect of multiple factors. For example, the ratio of

SVs in a classifier is influenced by the concept, the feature, and the model parameters.

6.1.1 Experiment set-up

To study the connections between various meta-features of a classifier and its gen-

eralizability, we expand our experiments on the generalizability of semantic concept

detection presented in Chapter 3.1. The new experiments include two settings. In the

NBC/CNN (cross-channel) setting, we train concept classifiers from NBC data and

apply them to CNN data, where NBC and CNN are two news channels in TV05DEV.

In the TV05/TV07 (cross-genre) setting, we build classifiers from the entire TV05DEV

collection and apply them to TV07DEV. We still use the 39 semantic concepts pro-

vided by the LSCOM-lite project [2], and SVM with RBF kernel as the classification

method. However, instead of using a single feature and fixed model parameters, here

we evaluate a variety of features and model parameters in order to study their impact

on generalizability. We use 6 different features that describe the color, texture or edge
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characteristics of an image:

• gcm: 225-dimensional color moment feature which contains the mean, standard

deviation, skewness of LUV color feature in each image region of 5×5 grids.

• gbr: 48-d Gabor texture feature which includes the mean and standard deviation

of the output of Gabor filters in 4 scales and 6 orientations.

• gcm-gbr: the concatenated feature of gcm and gbr. This is the feature used in

all previous experiments.

• edh: 73-d edge direction histogram, where 72 bins denote edge direction quan-

tized at 5 degrees each and the remaining one bin is for non-edge points.

• 3hvc: 375-d color histogram in HVC color space, computed from 3×3 image

grids.

• 3hvc.stats: 150-d feature as the compact representation of 3hvc feature.

Moreover, we experiment with different choices of two critical parameters of SVM,

which have been shown to have a significant impact on performance. The cost fac-

tor C in the objective function of SVM [17] controls the tradeoff between minimizing

classification error and maximizing margin. In the RBF kernel function K(xi, xj) =

e−γ‖xi−xj‖2 used in SVM, gamma γ controls the size of the region influenced by a sup-

port vector and consequently, the smoothness of the decision boundary (hyperplane).

Smaller γ leads to a smoother boundary, and vice versa. We vary C between 3 values

as 1, 3, and 10, and γ between 6 values as 0.01, 0.05, 0.1, 0.2, 0.4, and 1.

In the experiments, the performance of a classifier on its training domain, or within-

domain performance, is typically higher than that on a new domain, or cross-domain

performance. Naturally, the relative difference between the two performance is a good

indicator of how well the classifier generalizes from its training domain to the new

domain. In this chapter, we use the relative decline (in percentage) from a classifier’s

within-domain performance ∆AP to its cross-domain performance ∆AP as a quanti-

tative measure of its generalizability:

d =
∆APsrc −∆APtgt

∆APsrc

(6.1)
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We call this cross-domain relative performance decline or simply decline. Obviously,

smaller decline indicates better generalizability, and vice versa. Because ∆AP is not

influenced by the ratio of positive data (a.k.a. concept frequency) and has a zero

baseline, the decline computed based on ∆AP is also unrelated to the ratio of positive

data. The specific meaning of ∆APwithin and ∆APcross depends on the experiment

setting. For example, in the NBC/CNN setting, ∆APwithin represents the performance

of 5-fold cross-validation within NBC data, while ∆APcross represents the performance

of NBC’s classifier on CNN data.

Now we can study the connection between a meta-feature and generalizability by

examining whether and how it is related to the decline in all the classifiers we built. We

will use correlation coefficient, a metric of the linear relationship between two random

variables, for this purpose.

6.1.2 Overall analysis

The generalizability of a concept classifier is affected by the concept, feature, and model

parameters. We want to first gain an impression on which factor has the largest overall

impact on generalizability. To compare the impact of concept and model parameters,

we build classifiers for each of the 39 concepts using the gcm-gbr feature and using

6 values of gamma γ and 3 values of cost factor C. This results in 18 classifiers for

each concept. Figure 6.1 shows for each concept, the mean and standard deviation

of the relative performance declines of the 18 classifiers in the NBC/CNN setting and

TV05/TV07 setting. The mean decline is mainly determined by concept, while the

standard deviation is caused by the variation of model parameters. We see that the

mean decline differs significantly from one concept to another, but the variance of

decline within each concept is relatively small. This suggests that a classifier’s gener-

alizability is influenced more by the concept it is intended than by the choice of model

parameters in training.

Features may also have a large impact on the generalizability of classifiers built on

them. If the data distribution under a certain feature space is consistent and insensitive

to domain changes, the classifiers built on top of this feature is likely to generalize well,

and vice versa. Considering applying a classifier for Building trained from color images
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(b) TV05/TV07 setting
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Figure 6.1: For each concept, the mean and standard deviation of relative performance
decline of classifiers trained with different parameter settings.

to gray-scale images. In this case, a classifier built on Gabor texture feature is expected

to generalize better than one built on color histogram feature, because texture features

are more insensitive to the transition from color to gray-scale images.

Table 6.1 compares six features in terms of their within-domain and cross-domain

performance and the decline between the two. We find that features indeed have a

strong influence on generalizability (decline), but it is difficult to conclude on the most

generalizable feature. In the NBC/CNN setting, most features have about the same

level of decline, while edh and hvc.comp has much higher decline. In the TV05/TV07
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∆MAP of SVMNBC ∆MAP of SVMTV 05

Feature NBC CNN decline TV05Dev TV07Dev decline
gcm 0.257 0.093 63.8% 0.211 0.067 68.3%
gbr 0.160 0.053 67.2% 0.120 0.053 55.9%
gcm+gbr 0.280 0.105 62.5% 0.287 0.089 69.1%
edh 0.034 0.003 92.2% 0.028 0.027 2.7%
hvc 0.205 0.066 67.8% 0.163 0.044 73.2%
hvc.comp 0.202 0.011 94.3% 0.162 0.044 73.1%

Table 6.1: Comparison of the generalizability of 6 features. SVMNBC denotes classi-
fiers trained from NBC, and SVMTV 05 denotes classifiers trained from TV05Dev. The
performance is the average over 39 concepts.

setting, however, edh has extremely low decline, and gbr has the second smallest

decline, while all color features have higher decline. This is perhaps because TV05DEV

has only color footage while TV07DEV has both color and gray-scale footage, making

color-independent features like edh and gbr more robust than color features. This is

not the case in NBC/CNN setting because both NBC and CNN only has color footage.

So the generalizability of a feature depends on the relationship between the source and

target domain, and no feature appears to have the smallest decline across two settings.

Meanwhile, what really matters in practice is to find features that lead to good

performance on the target domain. Therefore, the most “generalizable” feature defined

by the smallest decline may not be the most desirable feature. For example, the edge

feature edh has the smallest performance decline (only 2%) in TV05/TV07 setting,

yet its performance on either the source or target domain is the lowest among all

the features. So it is in fact the least desirable feature in terms of its cross-domain

performance. When cross-domain performance is the criterion, we find that in both

settings, the gcm-gbr feature has the highest cross-domain performance among all the

features, beating other features including gcm and gbr by large margins. This shows

that combining complementary features on texture and color improves the performance

and robustness of the resulting feature. Since gcm-gbr is the clear winner, we focus

on this feature in our subsequent experiments.

We conclude that concept and feature are the major impacting factors of a clas-

sifier’s generalizability. Our explanation is that these two factors together completely
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Figure 6.2: Relative performance decline vs. the ratio of positive data in 39 concept
classifiers.

defines how the data points are distributed in the feature space, and how that distri-

bution changes across domains. This in turns determines how well the positive and

negative data can be separated by a decision boundary and how this boundary general-

izes to a different domain. In comparison, model parameters have only a small influence

the precise placement of the decision boundary, and therefore the generalizability.

6.1.3 Positive ratio (concept frequency)

We have found that classifiers of frequent concepts, namely concepts with a higher

ratio of positive data, tend to generalize better. In Figure 3.1 and 3.3, the gap between

within-domain and cross-domain ∆AP is smaller for frequent concepts than for rare

concepts. In Figure 6.2, we plot the relative performance decline of the classifiers of

the 39 concepts against the ratio of positive data for each concept, in both NBC/CNN

and TV05/TV07 setting. To avoid the influence of other factors, all the classifiers are

trained with gcm-gbr feature and fixed model parameter (γ = 1 and C = 1).

We find that in both settings, larger ratio of positive data corresponds to smaller

performance decline, and vice versa. The correlation coefficient between this ratio and

decline is -0.56 in the NBC/CNN setting and -0.60 in the TV05/TV07 setting, indicat-

ing a pronounced correlation between them (it is negative because the decline is higher

than the ratio is lower). This suggests that in general, classifiers of frequent concepts

generalize better than those of rare concepts. Note that this is not because frequent

concepts have higher baseline performance, because the decline is computed using ∆AP

which always has zero baseline despite the ratio of positive data. Our explanation is
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that frequent concepts are usually generic concepts and the visual appearance of generic

concepts is relatively insensitive to domain changes. For example, we expect shots of

frequent concepts like Outdoor andPerson are visually similar across different domains,

while shots of rare concepts such as Studio may appear differently across domains. As a

result, for frequent concepts the data distribution change between domains is relatively

small and thus their classifiers are more robust. Another reason is that rare concepts

do not have sufficient positive training data necessary for building reliable classifiers,

leading to inferior performance.

6.1.4 Score distribution

When a concept classifier is applied to predict the label of a data instance, it produces

a numeric score indicating the degree of relevance between this instance and the given

concept. In the case of SVM, the score is in the range of (−∞, +∞), with positive

scores indicating positive (predicted) labels and negative scores indicating negative

labels. The absolute value of the score indicates the confidence of the prediction. If we

apply a classifier on a data set, the distribution of all the scores provides clues as to how

well this classifier performs on the data, even without knowing the true labels of the

data. As exemplified in Figure 6.3, one can easily find connections between the score

distribution and the performance of a classifier. For a classifier with good performance,

the scores of positive data are much higher than the scores of negative data, with a

large separation between them. In contrast, for a classifier with poor performance,

the separation between the scores of positive data and scores of negative data is not

obvious. Thus, to find out how well a classifier generalizes to a target domain, we can

apply it to the (unlabeled) target data and examine the distribution of the scores for

clues related to its performance.

We start with meta-features of score distribution that are easy to compute. One

of such features is the maximum score, namely the largest score the classifier produces

on the target data. If the maximum score is low, which means the classifier is not sure

about any positive instance, then its performance is likely to be poor (with a small

risk that no positive data exist in the target domain). Another feature is score range,

which is the distance between the largest and the smallest score on the target data.

This range indicates how well a classifier separates the positive data and the negative
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(a) Output of a “good” classifier (b) Output of a “bad” classifier

Figure 6.3: The score distribution of (a) a SVM classifier with high performance, and
(b) a SVM classifier with low performance. The histograms denote the distribution of
the actual scores, while the red/blue curves show the estimated Gaussian distributions.

data.

Note that because target data are unlabeled, it is impossible to know precisely how

the scores of the positive and negative data are distributed. The features mentioned

above provides hits about the separation between the scores of the two classes, but

they do not directly capture such separation. Here we take a model-based approach

to recover the score distribution of the positive data and of the negative data in the

target domain without the true data labels. Assuming that the scores of positive

data and scores of negative data follow distributions of a certain family, we estimate

their respective distribution from the scores of all the data using the Expectation

Maximization (EM) algorithm [48]. Modeling score distribution have been discussed in

the context of information retrieval [66] and rank aggregation [35]. Similar to [35], we

use Gaussian distributions to model the scores of positive data and scores of negative

data.

Suppose z = f(x) is the score of instance x produced by a concept classifier f .

The scores of positive instances follow the distribution p(z|y = 1) = N (up, σ
2
p), where

up and σ2
p are the mean and variance. Similarly, p(z|y = −1) = N (un, σn) is the

distribution of the scores of negative instances. We also assume the prior of labels to

be P (y = 1) = π and P (y = −1) = 1− π. The overall score distribution is therefore a

Gaussian mixture model with two components:

p(z) = πN (up, σp) + (1− π)N (un, σn) (6.2)
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Figure 6.4: Relative performance decline vs. meta-features of classifiers’ score distribu-
tion on the target data, including the maximum score, the score range, and the distance
between the estimated mean score of the positive and negative data.

The parameters (π, up, σp, un, σn) of this score model can be easily estimated if both the

scores {zi} and labels {yi} are known. Because the true labels {yi} of the target data

are unknown, we can still use the EM algorithm to estimate these parameters from

only the scores {zi}. The EM algorithm iteratively optimizes the model parameters

starting from their initial values until it finds two Gaussian components that best

fit the scores. In Figure 6.3, the red (solid) and blue (dashed) curve respectively

represents the estimated Gaussian distribution for the positive data and for the negative

data, which actually fit the actual score distributions denoted as histograms. Suppose

(π̂, ûp, σ̂p, ûn, σ̂n) are the parameters estimated by the EM algorithm. We can measure

the score separation between the two classes in terms of the distance between the

estimated mean of the two Gaussian components, which is ûp − ûn.

Figure 6.4 shows in two settings, the relationship between relative performance de-

cline of 39 concept classifiers and meta-features extracted from their score distribution

on the target domain, including the maximum score, the distance between the largest
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and smallest score, and the distance between the estimated mean score of the positive

and negative data. For all the three meta-features, which indicate the separation be-

tween the scores of two classes, larger feature values correspond to smaller performance

decline. So it is true that the between-class separation is a strong clue of generalizabil-

ity. Among the three meta-features, the difficult-to-compute feature of the distance

between the estimated mean score of two classes is slightly better than the other two

feature, as indicated by their correlation coefficients with performance decline.

6.1.5 Model structure

The structure of a SVM classifier also reveals its generalizability. As we discussed

in Section 3.3, the decision boundary of a SVM classifier is completely determined

by support vectors (SVs), so the number of SVs is related to the model complexity.

Figure 6.5 shows for the classifiers of 39 concepts, the relative performance decline

against the ratio of SVs in the entire training data, in the NBC/CNN and TV05/TV07

setting. To eliminate the distractions from other factors, all the classifiers are trained

with gcm-gbr feature and fixed parameters (C = 1, γ = 1). Because the number of

training data is the same for all the concepts, the ratio of SVs is proportional to the

number of SVs. The trend is that classifiers with more SVs have the smaller decline, or

better generalizability, than classifiers with fewer SVs. This means more complex and

“bloated” classifiers generalize better than simpler ones. Our observation in Section 3.3

has shown that SVM concept classifiers are analogous to memory-based models such

as kNN, if we treat SVs as the training data in kNN. For memory-based models, more

training data lead to smaller model variance and more reliable performance. The same

is true between the performance of SVM and the number of SVs.

More interesting is the ratio of SVs in positive data, which are scarcer and more

valuable to the performance of classifiers compared with the usually abundant negative

data. Figure 6.5 also shows the relationship between performance decline and the ratio

of SVs in positive training data, i.e., the percentage of the positive data chosen as SVs.

In the NBC/CNN setting, although many concept classifiers use nearly all the positive

data as SVs, five classifiers use less than 90% of positive data as SVs. For all but one

of the five classifiers, the performance decline is around or below 30%, indicating very

good generalizability. Similar observations can be made in the TV05/TV07 setting.
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Figure 6.5: Relative performance decline vs. the ratio of SVs in training data or the
ratio of SVs in positive training data.

So the observation is that classifiers that are able to “compress” the positive data tend

to generalize better. Our explanation is that, if the distribution of the positive data

of a specific concept displays certain general patterns, it is possible for a classifier to

represent such pattern using only part of positive data, leading to a small ratio of SVs

in positive data. Otherwise, if the distribution of positive data is close to random,

then the classifier has to memorize most of them and resort to a nearest-neighbor type

of prediction. Intuitively, a classifier capturing the data pattern is likely to generalize

better than a nearest-neighbor type of classifier, because while the general pattern may

still hold true in new domains, randomly distributed positive data shift their locations

from domain to domain.

Classifiers using more data as SVs generalize better; Meanwhile, classifiers using

fewer positive data as SVs generalize better. There are no contradictions between the

two seemingly conflicting observations, though. If a classifier is able to represent the



93

general pattern in the positive data by a small subset of them, it is likely to generalize

well thanks to a general and smooth decision boundary. However, this is the case only

with a handful of concepts, and the other concepts do not display general pattern to

be captured by their classifiers. For these concepts, the classifiers have to memorize

most positive data and resort to a memory-based approach for classification. In this

case, more SVs help reduce model variance and yield better performance.

6.1.6 Model parameters

We explore the influence of two model parameters on a classifier’s generalizability,

namely the cost factor C and the gamma γ parameter in the RBF kernel function.

We have shown in Figure 6.1 that the influence of model parameters is relatively small

compared with that of the concept. Here, we are interested in two questions: 1) how

does C and γ affect the cross-domain performance ∆APcross? and 2) does ∆APcross

and the within-domain performance ∆APwithin change in the same way as parameters

change? The second question is important because a common practice in training con-

cept classifiers is to choose model parameter that leads to the highest cross-validation

performance, or the highest ∆APwithin. It is interesting to know whether this prac-

tice will also find the classifier with the best performance on the new domains, or the

highest ∆APcross. This will be addressed by the second question.

To answer these questions, we examine several concepts in each of the two settings.

For each concept, we train classifiers using 3 values of C and 6 values of γ, which

results in a total of 18 classifiers. In Figure 6.6, each figure shows the ∆APwithin

and ∆APcross of the 18 classifiers of a specific concept. We find that the answer to

both questions above depends on concept. Let us first look at the NBC/CNN setting.

For concept People-Marching and Face, ∆APcross does change with parameters, but

not always in accordance with ∆APwithin: for People-Marching the two performance

changes basically in synchronization, while for Face they sometimes change in opposite

directions. For concept Mountain, however, ∆APcross basically remains the same (and

very low) despite the change of model parameters. Moreover, there is no single optimal

parameter setting that leads to the highest ∆APcross in all the concepts. Similar

observations can be made in the TV05/TV07 setting, where ∆APcross changes with

parameters for Urban and Office but not for Desert. Therefore, the influence of model
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Figure 6.6: For several concepts, the within-domain ∆AP and cross-domain ∆AP of
classifiers trained with different C and γ.

parameters on ∆APcross is not consistent across concepts, and the relation between

∆APwithin and ∆APcross also varies from concept to concept. This also means that

classifiers (model parameters) with the highest cross-validation performance do not

always generalize the best to new domains.

What is the relationship between a model parameter and the generalizability of a

classifier? For example, does a larger cost factor C lead to better (or worse) general-

izability? Figure 6.7 shows the relationship between the relative performance decline

as an indicator of generalizability and parameter γ and C on several concepts in the

NBC/CNN setting. We find that the relationship changes from concept to concept.

For example, on some concepts such as Flag-US and Office larger C leads to smaller

decline, while on other concepts such as Building and Studio larger C leads to larger

decline. The average decline of all concepts, shown by the bars on the right of Fig-

ure 6.7(a), is about the same for different C. The same observations can be made on

gamma γ. So there is no consistent relationship between generalizability and parameter

C or γ.
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Figure 6.7: Relative performance decline vs. cost factor C and gamma γ in NBC/CNN
setting.

6.2 Generalizability Model

We have examined the correlations between a concept classifier’s generalizability and

various model meta-features. The findings show that the concept is the major impact-

ing factor of generalizability, while the influence of model parameters is relatively small

and inconsistent across different concepts. Therefore, building a universal model that

predicts the generalizability of classifiers for any concept and trained with any model

parameters is not a good idea. Instead, we divide the problem into estimating two

types of generalizability: (1) between-concept generalizability, or the generalizability of

classifiers for different concepts trained with fixed model parameters, and (2) within-

concept generalizability, or the the generalizability of classifiers of a specific concept

trained with different model parameters. In this section, we focus on predicting the

generalizability between different concepts. Later in the chapter, we will discuss finding

the most generalizable classifier for each concept.

Table 6.2 lists the meta-features and their correlation coefficient with the relative

performance decline as an indicator of generalizability. These correlation coefficients

are computed based on classifiers of the 39 concepts trained with fixed feature and

parameter (gcm-gbr feature, C = 1, and γ = 1), so the concept is the only important

factor of generalizability. We see that most correlation coefficients have a high absolute

value (the maximum is 1), which suggests that the listed meta-features are useful in
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Correl(f , decline)
Feature f NBC/CNN TV05/TV07
ratio of positive data -0.56 -0.60
SV ratio of in training data -0.61 -0.70
SV ratio of in positive training data 0.29 0.21
maximum output of classifier on test data -0.60 -0.66
range of classifier’s output on test data -0.54 -0.62
distance b/w estimated mean score of positive and negative data -0.45 -0.57

Table 6.2: Meta-features and their correlation coefficients with relative performance
decline, computed across 39 concepts.

distinguishing the generalizability between different concepts.

We build a generalizability model based on linear regression to predict the general-

izability of concept classifiers. The input to the model includes all the meta-features of

a classifier listed in Table 6.2, and the output is the prediction of the relative decline

d̂) from its performance in the source domain to the performance in the target domain.

The linear regression model is trained using support vector regression (SVR) algorithm

[36], a variant of standard SVM algorithm for regression, with linear kernel function.

Since it is easy to compute a classifier’s performance in its training domain ∆APwithin

by cross-validation, we can compute its (normalized) performance on the target do-

main as ∆̂AP cross = ∆APwithin(1− d̂). The un-normalized performance ÂP cross can be

obtained by adding the concept frequency to ∆̂AP cross. Therefore, the generalizabil-

ity model allows us to predict a classifier’s performance on an unlabeled new domain

different from its training domain.

6.2.1 Prediction of cross-domain performance

We evaluate the generalizability model by examining the accuracy of the cross-domain

performance ÂP cross predicted based on this model. The experiment is conducted in

a leave-one-out fashion. In the NBC/CNN setting, from the classifiers of 39 concepts

trained from NBC, we use the meta-features extracted from 38 classifiers to train the

generalizability model, and apply the model to predict the decline on the remaining

classifier, based on which we can compute ÂP cross as its predicted performance on

target domain CNN. We repeat this experiment 39 times such that every concept has

been held-out once for evaluation. We then compare the predicted performance ÂP cross

of each classifier on CNN with its true performance APcross, which is calculated with
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(b) TV05DEV/TV07DEV setting

Figure 6.8: Comparison between the true and predicted cross-domain performance
(APcross and ÂP cross) based on the generalizability model.

the entire CNN data labeled. The accuracy of the prediction can be measured by

correlation coefficient or by mean square error (MSE) between ÂP cross and APcross

across all the concepts. This experiment is valid because the model used to predict

the performance on each concept is not trained using the meta-features related to that

concept. The same leave-one-out experiment is conducted on the 36 concepts in the

TV05DEV/TV07DEV setting.

In Figure 6.8, we compare the predicted performance ÂP cross and true performance

APcross in both settings. It is clear that the predicted performance is very close to
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Correlation Coeff. Target domain
(ÂP cross, APcross) CCTV CNN LBC MSNBC NBC NTDTV TV05 TV07

Source
domain

CCTV N/A .931 .949 .946 .923 .963
CNN .877 N/A .959 .930 .965 .956
LBC .888 .899 N/A .909 .890 .895
MSNBC .940 .951 .960 N/A .842 .954
NBC .934 .968 .914 .925 N/A .960
NTDTV .970 .965 .966 .964 .898 N/A
TV05 N/A 0.941
TV07 0.918 N/A

Table 6.3: Correlation coefficient between ÂP cross and APcross over 39 concepts un-
der different source and target domains. The generalizability model is trained in
NBC/CNN setting.

Target domain
MSE(ÂP cross, APcross) CCTV CNN LBC MSNBC NBC NTDTV TV05 TV07

Source
domain

CCTV N/A .0064 .0046 .0042 .0056 .0026
CNN .0136 N/A .0046 .0076 .0031 .0034
LBC .0102 .0083 N/A .0083 .0081 .0088
MSNBC .0055 .0058 .0035 N/A .0154 .0035
NBC .0063 .0029 .0080 .0076 N/A .0030
NTDTV .0022 .0027 .0028 .0027 .0074 N/A
TV05 N/A .0059
TV07 .0072 N/A

Table 6.4: Mean square error (MSE) between ÂP cross and APcross over 39 concepts
under different source and target domains.

the true one for most of the concepts. The correlation coefficient between them is

as high as 0.97 in NBC/CNN setting and 0.93 in TV05DEV/TV07DEV setting. This

demonstrates our generalizability model is capable of accurately predicting a classifier’s

performance on unlabeled out-of-domain data.

While the generalizability model trained from NBC/CNN setting is able to ac-

curately predict the performance of NBC classifiers on CNN, it is interesting to see

whether this generalizability model itself is “generalizable” to settings with other source

and target domains. Is it able to accurately predict, for example, the performance of

concept classifiers trained from CCTV on LBC data? To answer this question, we

iterate over all 6 channels in TREC05DEV and each time pick two different channels

as the source and target domain. This results in 30 unique pairs of source and target
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domain. For each unique pairs of source and target domain, we apply the generaliz-

ability model trained from NBC/CNN setting to predict the performance of concept

classifiers trained from that source domain and applied on that target domain. We

also apply this model to predict the performance of concept classifiers trained from

TV05DEV on TV07DEV, and performance of classifiers trained from TV05DEV on

TV07DEV. Since the documentary video in TV07DEV is very different from the news

video in NBC or CNN, this test poses a greater challenge than settings with two news

channels as the source and target domain. For each source-target pair, the accuracy

of prediction is evaluated in terms of the correlation coefficient and MSE between the

predicted and true cross-domain performance.

Table 6.3 shows the correlation coefficients of our prediction for each unique pair

of source and target domain. We find most correlation coefficients are higher or close

to 0.9, and some are even higher than the coefficient for the NBC/CNN setting from

which the generalizability model is trained. Even the correlation coefficients in the

TV05DEV/TV07DEV and TV07DEV/TV05DEV setting are very high, showing that

the generalizability model can be generalized to other types of video data. In addi-

tion, Table 6.4 shows that the mean square error of our prediction is very small for

most source-target pairs. This confirms that our generalizability model is general and

domain-independent, which implies generalizable (and un-generalizable) concept clas-

sifiers share common properties that are not related to the data domains from which

they are trained.

6.3 Selective Adaptation

The generalizability model can be used to enhance the cost-efficiency of adaptation

through selection and prioritization of multiple adaptation tasks. In our previous ex-

periments, all concept classifiers are adapted with the same number of labeled examples,

which is suboptimal because the improvement from adaptation is different across these

concepts. In Table 4.1, we have compared the pre-adaptation and post-adaptation

performance of 39 concept classifiers trained from NBC and evaluated on CNN. For

concepts like Crowd and Person, the original classifier generalizes so well to CNN

that adaptation generates little or no improvement. This contrasts to concepts like
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Military and Sports, where the original classifier performs poorly on CNN and the im-

provement from adaptation is significant. The same observation can be made on the

pre-adaptation and post-adaptation performance in TV05/TV07 setting. There is a

large difference between different concepts in terms of “return to cost ratio”, where the

return is the performance improvement and the cost is the manual effort on labeling

training data.

A reasonable goal for adaptation is to maximize the overall performance on multiple

concept classifiers for a fixed budget of training examples. Adapting every classifier

with an equal number of examples is certainly not the best approach to achieve this

goal. A better idea is to first identify the potential performance improvement of adapt-

ing each concept classifier, and prioritize these classifiers such that those with larger

improvement-to-example ratio are the only ones being adapted or are adapted with

more examples. In this section, we propose several selective adaptation approaches,

which prioritize adaptation tasks to maximize the overall post-adaptation performance

for a fixed number of examples. These methods differ in the predictions they use for

potential improvement of adapting a classifier.

6.3.1 Generalizability-based methods

The generalizability of a classifier is an important clue for selective adaptation because

classifiers with low generalizability have a greater potential of improvement as a result

of adaptation. If the generalizability model predicts the relative performance decline

of a classifier to be d̂, then the absolute decline of its performance is ∆APwithin × d̂.

The larger this decline is, the lower the classifier’s performance on the target domain,

implying a larger room for potential improvement. It is reasonable to use the predicted

absolute performance decline of a classifier as an estimate of improvement resulted

from adaptation. The underlying assumption is that after adaptation with sufficient

training data, the classifier will reclaim all the lost performance. There are exceptions,

for example, when detecting the same concept is much harder in the target domain

than in the source domain.

The most straightforward method is to adapt only the classifiers with poor general-

izability. We first calculate the predicted absolute performance decline ∆APwithin × d̂

of each concept classifier, and then adapt only half of the classifiers whose decline is
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above the average decline, and leave the other half of the classifiers unchanged. Mean-

while, we assume the average number of training examples for each concept is fixed

at n, although different concepts do not have to have the same number of examples.

This is important because we cannot compare different selective adaptation methods if

they consume different number of training examples. In this simple method, because

only half of the classifiers are adapted, each of them receives 2n examples so that the

per-concept number of examples is still n.

This simple method can be generalized as follows. Instead of making a hard decision

on whether to adapt a classifier, we can make a soft decision as to the number of

training examples each classifier receives for adaptation. Suppose we divide all the

concept classifiers into k buckets according to their decline ∆APwithin × d̂, with each

bucket having (approximately) the same number of concepts in it. These buckets

are numbered 1, 2, .., k, starting from the one containing concepts with the smallest

declines. The declines of the concepts falling into bucket i are above the (i−1)/k×100

percentile of all declines and below the i/k×100 percentile. We distribute the training

examples among the concepts such that the concepts in bucket ireceive more examples

than those in bucket i− 1. Each concept in bucket k receives 2n examples, while each

concept in bucket 1 receives no examples (therefore no adaptation is performed on

it). As a result, concepts with larger decline, or worse generalizability, receive more

examples for adaptation than those with smaller decline. Specifically, the number of

examples S(i) a concept in the ith bucket receives is given by the following equation:

S(i) =





2n× i/k, if i > k/2

2n× (i− 1)/k, if i <= k/2
(6.3)

It is easy to prove that the average number of examples of a concept is still n. We call

this method k-way selective adaptation. The simple method discussed at the beginning

is a special case of this approach at k = 2.

We further extend this k-way selection strategy into a weighted sampling strategy.

When k exceeds the number of concepts, each bucket has only one concept in it, and

each concept receives a different number of examples according to the predicted per-

formance decline. This is similar (but not equivalent) to a weighted sampling strategy,

where each example is assigned to a concept with the probability proportional to the
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Average Sample Size (per concept)
Performance (MAP) 200 400 600 800 1000 1200 1400 1600
Non-Selective adaptation 0.219 0.232 0.240 0.253 0.259 0.263 0.265 0.267

Generalizability-
based
selection

2-way 0.231 0.246 0.257 0.259 0.261 0.263 0.264 0.268
4-way 0.227 0.241 0.256 0.257 0.261 0.265 0.266 0.269
8-way 0.227 0.238 0.253 0.257 0.258 0.267 0.267 0.268
sampling 0.225 0.236 0.247 0.255 0.261 0.264 0.266 0.266

Table 6.5: Comparison of non-selective adaptation and several methods of
generalizability-based selective adaptation in NBC/CNN setting in terms of MAP over
39 concepts.

predicted decline. We implement such a weighted sampling method which assigns train-

ing examples to concepts in this way until all the available examples are assigned. As

a result, the number of examples each concept receives is approximately proportional

to its predicted decline.

We apply the generalizability-based selective adaptation methods to adapt the clas-

sifiers of 39 concepts from NBC to CNN. Table 6.5 compares the performance of these

methods to the performance of non-selective adaptation as the average number of ex-

amples per concept increases. For a certain average number of examples, say, 200,

the non-selective method adapts each classifier using a-SVM based on exactly 200 ex-

amples. In contrast, the selective methods adapt different classifiers using different

number of training examples (some with zero examples), while keeping the per-concept

number of examples at 200. The performance is averaged over the classifiers (adapted

or unadapted) of all the concepts. We see that the selective adaptation methods have

a clear advantage over the non-selective method, especially when the training exam-

ples are scarce. The advantage shrinks as the number of examples increases. This is

because for any concept, when the number of training examples increases, the per-

formance improvement per example typically decreases and the performance levels off

after reaching a certain number of examples. Therefore, when training examples are

plentiful, the improvement-per-example is small for any concept, and different methods

for allocating training examples do not cause as great a difference as when the train-

ing examples are scarce. Moreover, among different selective adaptation methods, the

simple 2-way selection method, which adapts only half of the concept classifiers, has

the best overall performance than more sophisticated methods.
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6.3.2 Learnability-based methods

The generalizability of a concept classifier is related to the potential room of improve-

ment of adaptation. It may not reflect the actual improvement, and it certainly does

not reflect the rate of improvement. For example, a concept classifiers with 0.6 AP in

its source domain is predicted to achieve 0.2 AP in the target domain. Even if the pre-

diction is accurate, it does not mean the improvement from adaptation will be 0.4 AP,

because detecting the same concept in the target domain may not as easy (or difficult)

and the highest performance is not necessarily 0.6 AP. More importantly, it does not

tell how fast this improvement can be achieved, namely how many training examples

are needed for such improvement. This leads us to examine the learnability of a con-

cept, which is measured by the amount of improvement achieved through adaptation

based on a certain amount of examples. In order to maximize the overall performance

for a fixed training data size, more training examples should be assigned to concepts

that are more learnable as they bring larger improvement per example than the other

concepts.

It is extremely difficult to predict the improvement-per-example of adapting a clas-

sifier, unless we actually perform the adaptation and evaluate the adapted classifier on

the entire target domain. In practice, however, we want to measure learnability before

adaptation, and the target domain is unlabeled besides a small set of training data. To

overcome these problems, instead of the batch-mode adaptation where each classifier

is adapted once using all its examples, we adapt a classifier iteratively based on a set

of examples that increase by a certain number in each step. This allows us to compute

the average performance improvement of a concept in the previous one or more steps

based on the labeled examples. The average historical improvement can be used as a

measure of the learnability of a concept. We propose a selective adaptation approach

which iteratively chooses the most learnable concept classifier to adapt based on grad-

ually increasing training examples. In each iteration, we compare the average historical

improvement across all concepts and choose the one with the largest. Then we increase

the training examples of the chosen concept by a certain amount, and re-adapt the

classifier based on the expanded training data. Then we start a new iteration where

the most learnable concept is identified and its classifier is re-adapted based on more

labeled data. As a result, the classifiers with a history of fast improvement receive more
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examples for adaptation, while classifiers with slow improvement receive less examples.

There are two design issues regarding this learnability-based selection strategy.

First, how many steps shall we look back into the adaptation history of a concept

to calculate its average historical improvement? This is defined by window size w,

which can be any value from 1 to infinity (infinity means we look back all the way to

the first step). Small window sizes may not accurately capture the learnability of a

concept due to the variance caused by randomly selected examples used in each step.

Large window sizes may not be appropriate too, because future improvement can be

better approximated by improvement in more recent steps than in earlier steps. This

leads to the second issue, namely whether and how to weight the improvement in differ-

ent steps according to recency. A solution is to use a decay factor α ≤ 1 to discount the

historical improvement at a certain step as many time as the number of steps between

it and the current step. The smaller α is, the larger the discount. When α = 1, the

improvement from each step in the window is treated with equal importance. There-

fore, the average historical improvement as a measure of the learnability of a classifier

after it has been adapted t times is defined as

L(t) =

∑t
i=max(1,t−w+1) αt−i(APi − APi−1)∑t

i=max(1,t−w+1) αt−i
(6.4)

where APi is the average precision of the adapted classifier after it is adapted i times,

and AP0 is the performance of the classifier before adaptation, all evaluated on the

current set of labeled examples. For the classifier with the highest L(t), we increases

its training examples by labeling a certain number of new examples (100 in our case)

and re-adapt the its classifier. A remaining problem is that before any adaptation is

performed (t = 0), there is no history of improvement and L(0) = 0 for every concept

classifier, so it is unable to distinguish the most learnable classifier. To overcome this

problem, we adapt each classifier once using an initial set of 100 examples for each

concept, after which we can use Eq.(6.3.2) to compute the learnability. As a side

effect, this method has a “cold start” problem, since the performance after the first 100

examples per concept is equal to that of non-selective adaptation despite the window

size and decay factor.

In Table 6.6, we compare several learnability-based selective adaptation methods

to non-selective adaptation in terms of their performance in NBC/CNN setting. These
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Average Sample Size (per concept)
Performance (MAP) 200 400 600 800 1000 1200 1400 1600
Non-Selective adaptation 0.219 0.232 0.240 0.253 0.259 0.263 0.265 0.267

Learnability-
based
selection

w = 1, α = 1 0.227 0.231 0.232 0.238 0.240 0.240 0.242 0.253
w = 2, α = 1 0.229 0.240 0.243 0.244 0.259 0.263 0.265 0.268
w = 2, α = 0.8 0.229 0.240 0.241 0.247 0.257 0.263 0.262 0.268
w = 5, α = 1 0.229 0.248 0.253 0.254 0.264 0.266 0.266 0.268
w = 5, α = 0.8 0.230 0.247 0.252 0.254 0.263 0.264 0.264 0.268
w = ∞, α = 1 0.227 0.248 0.256 0.258 0.261 0.266 0.267 0.267
w = ∞, α = 0.8 0.229 0.248 0.256 0.258 0.265 0.267 0.267 0.269

Table 6.6: Comparison of non-selective adaptation and several methods of learnability-
based selective adaptation in NBC/CNN setting in terms of MAP over 39 concepts. w
denotes the window size, and α denotes the decay factor.

methods differ in terms of window size, which is set to 1, 2, 5, and ∞ (infinity), and

decay factor, which is set to 1 or 0.8. The results show that this learnability-based

method consistently outperforms non-selective adaptation when the window size is

equal or larger than 5. The run with window size ∞ and decay factor 0.8 has the best

performance, suggesting that all the historical improvements are useful in measuring

learnability. When the window size is small (1 or 2), the selective adaptation method

sometimes performs worse than the non-selective method.

6.3.3 Hybrid methods

We have shown that both generalizability and learnability are useful clues in the selec-

tion and prioritization of adaptation tasks. These two clues are complementary: gen-

eralizability defines the starting performance of a classifier before adaptation, which

is related to the potential room of improvement from adaptation, while learnability

defines how fast the performance improves during adaptation. It is natural to as-

sume that a selective adaptation method combining both clues will perform better. By

comparing Table 6.5 and Table 6.6, we see that the best learnability-based method

outperforms than the best generalizability-based method except when the training ex-

amples are very rare, which can be explained by the former’s “cold start” problem.

Therefore, we design a hybrid method which adopts the same iterative structure as

the learnability-based method, but circumvents its cold start problem by using gen-

eralizability as the initial estimate of learnability. Specifically, we add an imaginary
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step (t = 0) before the first step and set the improvement of this initial step to the

predicted absolute performance decline, namely APwithin × d̂. The intuition is that

before we have a chance to observe the improvement from actual adaptation, we can

prioritize the classifiers based on their generalizability such that classifiers with larger

decline are adapted first. Therefore, this hybrid method does not have to assign an

initial set of training examples to every concept like in the learnability-based method.

Instead, it makes educated decisions on allocating examples from the very beginning,

so we expect it to perform better especially when the training examples are limited.

Until reaching a certain number of adaptation steps, this generalizability factor will

still affect the calculation of historical improvement, but its influence is discounted.

After we have seen a long history of improvement from actual adaptation, it is safe to

ignore the generalizability in deciding the priority of adaptation tasks.

In this hybrid method, we modify the calculation of average historical improvement

from Eq.(6.3.2) to the following:

L(t) =





∑t
i=1 αt−i(APi−APi−1)+αtd̂APwithin∑t

i=0 αt−i , if t < w
∑t

i=t−w+1 αt−i(APi−APi−1)∑t
i=t−w+1 αt−i , if t >= w

(6.5)

Therefore, when the initial step is still in the window (t < w), the predicted decline

has an impact on L(t) which is discounted as t increases. When the initial step is out

of the window (t >= w), the decline no longer has any impact on L(t) and Eq.(6.3.3)

is exactly the same as Eq.(6.3.2).

Figure 6.9 compares the performance of the hybrid method with parameter w = ∞
and α = 0.8 to that of the learnability-based method with the same parameter, the

generalizability-based method (2-way), and non-selective method. The first two are

iterative methods where the number of examples is increased by 100 in each step. All

the three selective adaptation methods are consistently better than the non-selective

method, showing the benefit of selective adaptation in improving cost-efficiency. The

hybrid method outperforms both the learnability-based and the generalizability-based

method by allowing them to complement each other. As we have expected, the hy-

brid method overcomes the cold start problem in the learnability method with a high

starting performance. Note that although the hybrid method initially relies on the
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Figure 6.9: Average performance on 39 concepts using selective and non-selective adap-
tation methods in NBC/CNN setting.

predicted generalizability for allocating examples, its starting performance (at 100 av-

erage examples) is different from the starting performance of the generalizability-based

method. This is because the former performs adaptation iteratively while the latter

performs in batch mode, and as a result the number of examples for each concept is

not the same between these two methods.

6.4 Generalizability for Parameter Selection

The common practice in detecting a semantic concept is to build many classifiers for

this concept using different features and model parameters, and to choose the one with

the highest cross-validation performance on the training data. This is because features

and certain model parameters, such as cost factor and gamma parameter in SVM, have

a large impact on performance. The goal is to achieve the best performance on test

data, which cannot be directly measured due to the lack of truth labels. So the hope

is that the classifier with the highest performance on the training data also has the

highest performance on the test data.

In a cross-domain setting, the goal is to identify, among classifiers of a given con-

cept trained with different model parameters, the one generalizing the best to target

domains, namely the one with the highest cross-domain performance APcross. (We

do not consider different features because as Table 6.1 shows the gcm-gbr feature is
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Correl (f , APcross)
Feature f NBC/CNN TV05/TV07
cost factor C 0.013 -0.288
gamma γ in RBF kernel -0.045 -0.031
SV ratio in training data 0.732 0.750
SV ratio in positive training data -0.177 0.731
maximum output of classifier 0.250 0.393
range of classifier’s output 0.056 0.342

Table 6.7: Meta-features and their correlation coefficients with cross-domain perfor-
mance.

significantly better than other features.) However, due to the distribution difference

between domains, the best classifier in the source domain is not necessarily the best

performer of the target domain. This has been shown in Figure 6.6, where for many

concepts the highest APwithin and the highest APcross are achieved using different pa-

rameter settings. This means we cannot choose the most generalizable classifier based

on APwithin. Our solution is to build a model that directly predicts for each concept,

APwithin of a classifier trained with certain parameters. This model is similar to the

generalizability model discussed in Section 6.2, except that it focuses on the generaliz-

ability of classifiers of a specific concept while the latter focuses on the generalizability

between different concepts.

Table 6.7 lists several model meta-features and their correlation coefficients with the

cross-domain performance APcross. To calculate each coefficient in the table, we first

compute the correlation coefficient of each concept from all its classifiers trained with

different model parameters, and then average the coefficients across the 39 concepts.

We build a regression model to predict APcross from these meta-features of a classifier,

using the SVR algorithm with linear kernel function [36]. A key question here is

whether to build such a model for each concept, or to build a universal model for

all concepts. A concept-specific model is obviously very restrictive since it cannot be

used for other concepts. To train a universal model for predicting APcross, however, a

major difficulty is that the APcross of some concepts are at a much higher range than

that of other concepts, and the difference overwhelms the relatively small variation

on APcross caused by model parameters. To overcome this problem, we normalize the

APcross of a concept classifier by dividing it using a reference performance, which is
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Parameter
selection

NBC classifiers on CNN TV05 classifiers on TV07
CrossVal ModelPred Oracle CrossVal ModelPred Oracle

Airplane 0.018 0.020 0.027 0.011 0.011 0.013
Animal 0.129 0.136 0.136 0.058 0.069 0.072
Boat Ship 0.013 0.013 0.013 0.029 0.038 0.039
Building 0.198 0.203 0.211 0.330 0.330 0.331
Bus 0.014 0.012 0.017 0.008 0.006 0.008
Car 0.367 0.367 0.380 0.112 0.108 0.113
Charts 0.038 0.056 0.077 0.039 0.032 0.045
Computer TV-screen 0.160 0.215 0.215 0.104 0.096 0.117
Corporate-Leader 0.018 0.020 0.021 n/a n/a n/a
Court 0.006 0.006 0.008 0.010 0.009 0.011
Crowd 0.400 0.400 0.413 0.407 0.408 0.410
Desert 0.024 0.037 0.053 0.014 0.014 0.014
Entertainment 0.006 0.010 0.010 n/a n/a n/a
Explosion fire 0.016 0.016 0.028 0.009 0.008 0.012
Face 0.714 0.777 0.781 0.785 0.784 0.791
Flag-US 0.116 0.128 0.136 0.002 0.003 0.003
Government-Leader 0.172 0.182 0.191 n/a n/a n/a
Maps 0.067 0.088 0.092 0.055 0.054 0.068
Meeting 0.049 0.060 0.062 0.079 0.090 0.090
Military 0.187 0.181 0.205 0.051 0.055 0.059
Mountain 0.067 0.082 0.082 0.035 0.038 0.044
Natural-Disaster 0.013 0.019 0.020 0.011 0.011 0.012
Office 0.055 0.063 0.063 0.169 0.162 0.186
Outdoor 0.599 0.585 0.613 0.694 0.715 0.724
People-Marching 0.119 0.112 0.120 0.123 0.123 0.123
Person 0.896 0.900 0.904 0.861 0.843 0.880
Police Security 0.033 0.033 0.073 0.026 0.026 0.029
Prisoner 0.011 0.027 0.069 0.005 0.006 0.006
Road 0.190 0.179 0.192 0.241 0.237 0.259
Sky 0.479 0.437 0.496 0.648 0.654 0.654
Snow 0.017 0.021 0.041 0.023 0.038 0.041
Sports 0.014 0.014 0.017 0.076 0.077 0.088
Studio 0.771 0.769 0.777 0.081 0.087 0.100
Truck 0.012 0.011 0.013 0.021 0.021 0.023
Urban 0.088 0.093 0.099 0.291 0.291 0.308
Vegetation 0.302 0.292 0.302 0.435 0.437 0.454
Walking Running 0.165 0.167 0.177 0.230 0.217 0.230
Waterscape Waterfront 0.168 0.197 0.197 0.177 0.167 0.177
Weather n/a n/a n/a 0.009 0.023 0.023
average 0.177 0.183 0.193 0.174 0.175 0.182

Table 6.8: Cross-domain performance of classifiers selected using three methods.
“CrossVal” selects the classifier with highest cross-validation performance in source do-
main; “ModelPred”selects the one with the highest predicted performance on the target
domain using our model; “Oracle” selects the one with the highest actual performance
on the target domain.

set to the APcross of a classifier of the same concept trained with particular parameter

setting (γ = 1, C = 1). The normalized performance, which is equal to the multiple

of APcross to the reference performance, is not affected by concept and only influenced

by model parameters. Therefore, the model can be trained using meta-features from

the classifiers of all the concepts, using the normalized performance as the output

(response), and it can be applied to any classifier.
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We use the above model to predict the normalized performance of each classifier

(i.e., multiple of reference performance), which can be used to distinguish the classifier

with the highest APcross for each concept. This provides an alternative to selecting

classifiers based on cross-validation performance in the source domain. To compare the

two strategies, we use them to select the best-performing classifier on target domain

for each concept, among the candidate classifiers trained with different parameters. In

the NBC/CNN setting, for example, we build 18 classifiers for each concept from NBC

data using the gcm-gbr feature with 6 γ values (0.01, 0.05, 0.1, 0.2, 0.4, 1) and 3 C

values (1, 3, 10), and the goal is to find the one with the best performance on CNN.

The CrossVal method selects the one with the highest cross-validation performance

on NBC, and the ModelPred selects the one with the highest predicted performance

on CNN computed based on our model. For reference purpose, we include the Oracle

method which selects the classifier with the highest true performance on CNN. While

this method is guaranteed to be optimal, it is also impractical because we cannot

compute the true performance since CNN data are assumed to be unlabeled.

Table 6.8 compares the performance of the three selection methods in two settings.

We see that on average, classifiers selected based on our model perform better than

classifiers selected based on cross-validation performance, especially in the NBC/CNN

setting. On 27 out of 38 concepts in the NBC/CNN setting, or 23 out of 36 concepts

in the TV05DEV/TV07DEV setting, the classifier selected based on ÂP cross performs

better or at least equally well on the target domain as the one selected based on

cross-validation. In both settings, the performance of ModelPred is only moderately

better than CrossVal, and well below the performance of the Oracle method. This

shows that our model predicts the cross-domain performance of classifiers trained with

different parameters relatively well, but there is still a large room for improvement.

6.5 Summary

In this chapter we have focused on improving the cost-efficiency of adaptation through

selecting and prioritizing classifiers to be adapted based on their generalizability. We
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have conducted an empirical analysis of the generalizability of semantic concept clas-

sifiers, which reveals strong correlation between generalizability and various meta-

features of a concept classifier, including the ratio of positive training data, its model

structure such as the ratio of support vectors, the distribution of its output. We have

built a regression model based on these meta-features to predict classifiers’ general-

izability, which has been shown capable of accurately predicting a classifier’s perfor-

mance on a new (unlabeled) domain other than its training domain. Based on this

generalizability model, we have then proposed several selective adaptation methods,

which selective and prioritize adaptation tasks involving multiple classifiers such that

the less-generalizable and more-learnable classifiers are adapted with higher priority.

Experiments on cross-domain concept detection have shown that compared with treat-

ing every classifier equally in adaptation, these selective adaptation methods achieve

higher overall performance for the same number of training examples. Another use

of such generalizability model is to identify, among the classifiers of a given concept

trained with different model parameters, the one that generalizes the best to the target

domain.



Chapter 7

Classifier Adaptation in Other

Areas

In previous chapters, we have shown the effectiveness of the proposed approach in

cross-domain semantic concept detection. While motivated by the need for classifier

adaptation in multimedia, our approach is not restricted to this single application or

even the entire multimedia area. In fact, our approach is very general and flexible

because it imposes almost no restrictions on the data distribution, features, or classi-

fiers. For example, data distribution is allowed to change in arbitrary and unknown

ways across domains; classifiers of any type can be adapted; features can be contin-

uous or discrete and of any dimension. To demonstrate its broad applicability, we

apply our approach to adaptation problems in other areas, including the adaptation of

text document classifiers and of a pioneering“mind-reading”model in human-computer

interaction.

7.1 Adaptation in Text Categorization

Text categorization [37, 57, 115] is an extensively studied problem in both research and

industry. In text categorization, classifiers trained from labeled textual documents are

used to determine whether or not a document belongs to certain semantic categories. A

large diversity of text corpora have been used for training these classifiers, such as Wall

Street Journal (WSJ), Web pages, and so on. From the perspective of scalability and

112
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efficiency, it is desirable to re-use text classifiers trained from one corpus on documents

from other corpora. However, similar to our findings in the multimedia area, the

performance of text classifiers may decline when they are applied on documents from

other-than-training corpora due to the difference on data distribution. Our adaptation

approach provides a way to improve such performance by adapting the original text

classifiers towards the target corpus with reasonably small effort on labeling training

documents.

The adaptation in text categorization differs from cross-domain concept detection

in several aspects. Text documents are represented by discrete, high-dimensional term

vectors, instead of continuous, lower-dimensional visual features describing images and

video shots. Moreover, while SVM is also also extensively used for text categorization,

linear kernel function is more popular than non-linear kernel functions such as RBF.

Also, the accuracy of text categorization in general is at a much higher level than that

of semantic concept detection. Overall, text categorization contrasts well to seman-

tic concept detection, making it a good alternative task for evaluating our adaptation

approach. In the following, we show the experiment results of cross-domain text cate-

gorization in 20-newsgroup data and Reuters-21578 data, and a sentiment classification

task on user reviews.

7.1.1 Experiment: Reuters-21578 corpus

Reuters-21578 is one of the most widely used collections for text categorization research.

This collection has 21,578 documents, which appeared on the Reuters newswire in 1978.

Each document was labeled with tags in several categories, including TOPIC, PLACE,

PEOPLE, ORG. Our experiment of cross-domain text categorization is designed by

taking advantage of such multi-dimensional labels. By examining the PLACE tag, we

find that about half of the documents are labeled as“USA”, while the others are labeled

with the names of other countries. We use the set of “non-USA” documents, denoted

as DUSA, to be the source domain, and the set of “USA” documents, denoted as DUSA,

to be the target domain. This split has been used in related works (e.g.,[107]), and it

produces related and yet different source and target domain of comparable size. The

documents in DUSA are further split into a 40% development set and a 60% evaluation

set.
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Task
cross-validation Performance on DUSA

DUSA DUSA SVMUSA

SVMUSA a-SVM
S = 100 S = 800 S = 100 S = 800

acq vs. other 0.888 0.983 0.949 0.820 0.970 0.950 0.972
money-fx vs. other 0.823 0.749 0.560 0.423 0.644 0.576 0.743
grain vs. other 0.873 0.944 0.889 0.429 0.840 0.893 0.931
trade vs. other 0.711 0.841 0.730 0.147 0.666 0.727 0.769
wheat vs. other 0.919 0.774 0.729 0.077 0.498 0.736 0.809
ship vs. other 0.809 0.660 0.679 0.071 0.436 0.696 0.788
corn vs. other 0.863 0.868 0.638 0.165 0.801 0.649 0.801
crude vs. other 0.906 0.896 0.801 0.414 0.844 0.811 0.855
oilseed vs. other 0.730 0.817 0.447 0.177 0.463 0.491 0.624
money-supply vs. other 0.914 0.877 0.459 0.316 0.778 0.592 0.828
average 0.843 0.841 0.688 0.304 0.694 0.712 0.812

Table 7.1: Performance as average precision (AP) on the evaluation set of DUSA for
10 topics. The first two columns show the performance of 10-fold cross validation
on DUSA and DUSA. The classifiers being compared include SVMUSA as the (source)
classifier trained from entire DUSA, SVMUSA as a new classifier trained from the labeled
examples in DUSA, and a-SVM is a classifier adapted from SVMUSA based on the same
set of examples.

We identify the top 10 most frequent topics from the TOPIC tags. For each of

the top 10 topics, all the documents labeled with this topic are treated as positive,

and the other documents are treated as negative. For this topic, we build a classifier

from its positive and negative documents in source domain DUSA, which is the source

classifier. We then adapt this classifier using a-SVM to the target domain DUSA based

on a small number of labeled examples randomly selected from its development set.

The performance of the adapted classifier is evaluated on the evaluation set of DUSA

using average precision (AP) as the metric. This experiment is repeated such that each

of the 10 topics is used once to define positive and negative data.

Table 7.1 compares the performance of several methods on classifying documents in

DUSA w.r.t the top 10 topics. Before adaptation, source classifiers trained from DUSA

on average perform worse on DUSA (0.688 MAP) than on their training data DUSA

(MAP = 0.843). This means the change of corpus compromises the performance of

text classifiers, although the impact is smaller than that in semantic concept detection

and marginal for some topics (e.g., “acq”, “ship”). So there is still a clear need for

adaptation. Meanwhile, the performance of source classifiers on DUSA is also much

lower than the cross-validation performance on DUSA (MAP = 0.841), implying a
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Figure 7.1: Comparison of different classifiers on (a) Reuters-1578 and (b) 20-
Newsgroups data.

large room of improvement for adaptation. The average performance of the adapted

classifiers on DUSA is 0.712 MAP with 100 examples and 0.812 MAP with 800 examples,

both significantly higher than that achieved by training new classifiers exclusively from

the examples in DUSA. With 800 samples, the adapted classifiers perform very close

to the cross-validation performance on DUSA, which is achieved using all the training

examples. This shows the effectiveness of the adaptation approach based on a-SVM.

In Figure 7.1 (a), we show how the average performance on DUSA under different

methods changes with the number of training examples. Similar to the observation

in cross-domain semantic concept detection in Section 4.5, a-SVM performs close to

the source classifier SVMUSA when labeled data are scarce, but improves when more

labeled data become available. It performs better than the new classifiers SVMUSA

trained exclusively from the labeled data in DUSA, although the advantage shrinks

as training examples increase. The main difference is that the performance numbers

here are at a much higher level than those in concept detection, implying that text

categorization is an “easier” task. This shows a-SVM is able to perform well despite

the difficulty of the task.
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Task
cross-validation Performance on Dtgt

Dsrc Dtgt SVMsrc
SVMtgt a-SVM

S = 20 S = 160 S = 20 S = 160
comp vs. sci 0.965 0.992 0.834 0.782 0.905 0.831 0.891
rec vs. talk 0.984 0.992 0.801 0.672 0.926 0.835 0.924
rec vs. sci 0.981 0.992 0.824 0.631 0.878 0.820 0.886
sci vs. talk 0.968 0.979 0.834 0.667 0.868 0.826 0.882
comp vs. rec 0.996 0.990 0.911 0.630 0.926 0.935 0.958
comp vs. talk 0.994 0.992 0.975 0.801 0.943 0.976 0.980
average 0.981 0.990 0.863 0.697 0.908 0.871 0.920

Table 7.2: Performance as average precision (AP) on the evaluation set of Dtgt. The
two columns on the left show the performance of 10-fold cross validation on Dsrc and
Dtgt. The classifiers being compared include SVMsrc as the (source) classifier trained
from entire Dsrc, SVMtgt as a new classifier trained from the labeled examples in Dtgt;
and a-SVM is a classifier adapted from SVMsrc based on the same set of examples.

7.1.2 Experiment: 20-Newsgroups corpus

20-Newsgroup collection is another widely used corpus for text categorization. It con-

tains 18,774 articles labeled against a two-level category system. That is, each ar-

ticle belongs to a top-level category (e.g., “comp”) as well as a sub-category (e.g.,

“comp.graphics”) under the top-level category. We design the adaptation task based

on such two-level category structure. For each top-level category, we divide its sub-

categories into two non-overlapping groups, and treat one group as part of the source

domain Dsrc and the other group as part of the target domain Dtgt. We build classifiers

to distinguish two top-level categories from the labeled documents in Dsrc, and then

adapt them to the documents in Dtgt. For example, for a classifier that distinguishes

“comp” (computer) documents and “rec” (recreation) documents, the source domain

Dsrc consists of documents in sub-category ‘comp.graphics”, ”comp.os.ms-windows”,

“rec.autos”, and “rec.motocycles”, and the target domain Dtgt consists of documents in

sub-category“comp.sys.ibm”,“comp.sys.mac”,“rec.sport.baseball”, and“rec.sport.hockey”.

Table 7.2 shows the performance on 6 classification tasks. Similar to the results

on Reuters-21578, the source classifiers SVMsrc trained from Dsrc have lower perfor-

mance on Dtgt than on Dsrc, but their performance improves after adaptation using

a-SVM based on limited labeled examples. The adapted classifiers outperform clas-

sifiers SVMtgt trained from scratch, although the gap is smaller than that found on
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Reuters-21578. This is confirmed in Figure 7.1(b), which shows the average perfor-

mance of the 6 tasks against the number of training examples per task. While a-SVM

performs much better than SVMtgt with limited training examples, the two quickly

converge and perform close to each other after the number of labeled data reaches 300

per task. This is different from the findings in Reuters-21578, where a-SVM performs

better even when over 2,000 examples are used. This shows the classification tasks in

20-Newsgroups are more learnable than in Reuters-21578. Nevertheless, using a-SVM

avoids the problem of low initial performance that occurs on the new classifiers built

from scratch.

7.1.3 Experiment: sentiment classification

Sentiment classification aims to determine user opinions from text documents such as

online product reviews. This research becomes very important as the number of online

reviews of products, movies, and other information has increased significantly. Senti-

ment classification is more challenging than conventional text categorization, because

determining user opinion requires deeper understanding of the meanings of documents

than classifying topics. Nevertheless, existing text categorization methods are still

applicable.

Two types of user reviews are used in this experiment. There are 2,000 online movie

reviews, half of which are labeled as positive (like) based on human judgments and the

other half are labeled as negative (dislike). Moreover, there are also 11,727 reviews of

a software for personal finance management called Quicken, of which 5,680 are positive

and the rest are negative. Among them, a small subset of only 30 product reviews is

used as the development data, and all the other reviews besides the 30 are used for

evaluation. Term vectors are used to represent these review documents after removing

stop-words and stemming. In the experiment, we build a SVM classifier with linear

kernel function from the 2,000 labeled movie reviews, and adapt it towards the product

reviews based on the 30 labeled product reviews in the development set. The adapted

classifier is evaluated on the product reviews excluding the development set.

Table 7.3 compares the performance of several methods on classifying the user opin-

ions in the product reviews. SVMmov is a SVM classifier trained from the 2,000 movie

reviews with no adaptation; SVMpod is a SVM classifier trained from the development
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Average precision (AP)
binary tf tf-idf

SVMmov 0.603 0.636 0.658
SVMpod 0.590 0.516 0.557
a-SVM 0.715 0.687 0.712
SVMmov+pod 0.653 0.657 0.685

Table 7.3: Performance (AP) of sentiment classification in product reviews using dif-
ferent methods and term weighting schemes.

set of 30 labeled product reviews; a-SVM is the classifier adapted from SVMmov based

on the 30 labeled product reviews using the proposed a-SVM algorithm; SVMmov+pod

is a SVM classifier trained using the 2,000 movies reviews and 30 product reviews

combined.

Despite the weighting scheme of term vectors (binary, tf, or tf-idf), a-SVM outper-

forms other methods by significant margins. Unlike in concept detection task, a-SVM

is even better than SVMmov+pod, the expensive data-fusion method which builds a clas-

sifier from the combined training data. Overall, adaptation has shown to be effective

in this difficult type of text categorization task.

7.2 Adaptation of EEG-based Relevance Models

Another interesting application of our approach is the adaptation of a pioneering“mind-

reading” model for human-computer interaction, which is used to determine the rele-

vance judgement of humans based on their electroencephalogram (EEG) brain signals.

In various multimedia systems, human subjects are often asked to judge whether im-

ages (or video shots) are relevant to a given semantic concept or query, and convey

such judgments to the system through interactions such as pressing certain keys on the

keyboard or clicking a button using mouse. This scenario occurs in interactive image

or video retrieval as well as in collecting training data for semantic concept detection.

Although this is a simple and intuitive action for human, the time required for judg-

ing whether an image is relevant is much shorter than that for marking that image

through physical interactions. Time can be saved if the system is able to immediately

learn the subject’s judgment without physical interactions, and the saving can be sig-

nificant when the number of images to be judged is large. This would also release the
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human subject from the stress of repeating the same actions (e.g., pressing a key) for

hundreds or even thousands of times. One potential solution is for the system to read

the EEG signals from the subject’s brain to determine whether he/she recognizes an

image as relevant or not.

The EEG signals are electrical impulses within human brain caused by post-synaptic

potentials from firing neurons. We use a portable device called Pocket Neurobics

Pendant EEG, and put its electrodes on two locations on the head close to the parietal

lobe. The parietal lobe is where P300 brain wave, an indicator of cognitive function

in decision making, is mostly readily extracted. To minimize the noise in the signals,

we record signals in windows of 200 milliseconds and average the signals recorded

during each window. The signal of each channel (electrode) is segmented into different

frequency bands (up to 50Hz), and fast Fourier transformation (FFT) is applied on

the signal in each band, which produces a feature vector of 170 components. During

the time a human subject is judging an image, we collect EEG signals from the two

channels in two 200-millisecond window, which results in a 680-d feature vector.

The goal is to build a model that determines the relevance judgment of a human

subject from the EEG signal represented by this 680-d feature vector collected while

he/she is making judgments. The training data are collected using our extreme video

retrieval (XVR) system [50], which allows users to quickly scan through an ordered list

of images returned by keyword-based search and mark them as relevant or irrelevant

by pressing the “U” key on the keyboard. Users wearing the EEG device is asked to

use the system to mark images’ relevance to given queries while their EEG signals

are being collected. The marked relevance label on each image and the corresponding

EEG signal feature constitute one training example. Based on hundreds or thousands of

such training examples, the relevance model can be trained using a (binary) supervised

classification algorithm, such as logistic regression or SVM. The experiments show that

the model trained with sufficient data of a user achieves over 90% accuracy in“guessing”

the user’s relevance judgement. This allows us to use the EEG-based relevance model

to automatically determine users’ judgments in the XVR system, instead of having

them do that through physical interactions.

A potential weakness of this approach is that the relevance model is sensitive to

many factors, varying from the user identity to the placement of the electrodes. Due to
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Figure 7.2: Error rate of EEG-based relevance models on user A and user B. In the left
figure, model A is trained from all the examples for user A, model B is trained from
part of the examples for user B, and the adapted model is adapted from model A
using the examples for user B. In the right figure, the role of user A and B are reversed.

the difference on the brain signals between users, the model trained on the data of one

user is unable to determine the relevance judgment of other users as accurately as on

that particular user. Meanwhile, training a brand-new model for each user is tedious

because it requires every user to do a hours-long training session in order to collect

sufficient training data. A better idea is to adapt the model trained from another

user to the current user who provides only a small number of training examples. The

approaches proposed in this thesis can be used for the adaptation of such relevance

models.

We collected the training data from two users while they were using the XVR

system and having their EEG signals recorded. There are 1538 examples for user A

and 275 examples for user B. In the experiment, we first build a relevance model from

all the data of user A using SVM with linear kernel, and adapt it towards user B using

a-SVM. To evaluate the adapted model, we partition the training examples of user B

into a development set of 40% data and an evaluation set of 60% data. The adaptation

uses training examples randomly selected from the development set, and the adapted

model is evaluated on the evaluation set, using the error of predicted user judgments as

the performance metric. The performance is compared to that of the original model of

user A (without adaptation) and a new model for user B trained exclusively from the

examples of B. Then we repeat the experiment by adapting B’s model towards user A.
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As Figure 7.2 shows, in both experiments the adapted models outperform the orig-

inal (unadapted) models and new models built from scratch. This is true no matter

how well the model from a different user performs on the current user. In the adapta-

tion from A to B, the model of user A has a decent performance on user B, and the

model adapted from it keeps a non-trivial advantage over the new model even when

the number of training examples increases. In the adaptation from B to A, the model

for B does not perform well on A, and it is in fact worse than a new model trained

with only 10 examples from A. This is perhaps due to the insufficient training data

for user B. Nevertheless, the adapted model still performs better than the new model,

although its advantage fades as more training examples become available.

7.3 Summary

We have shown the application of our approach in adapting models of several research

areas besides multimedia. The adaptation tasks evaluated in this chapter, together

with cross-domain concept detection evaluated in previous chapters, contrast well in

terms of the type of feature, the level of difficulty, classification algorithm, etc. Being

able to consistently achieve good results in various tasks has shown that our approach,

while motivated from problems in multimedia, is flexible and applicable to adaptation

in many other areas.



Chapter 8

Conclusion and Future Directions

In this chapter, we summarize the major contributions of this thesis, and discuss the

future directions of model adaptation techniques in multimedia and in other areas.

8.1 Summary of Contributions

Machine learning techniques have been extensively used to build models for the analysis

and retrieval of multimedia data. Because of the diversity of multimedia data and

the limitations of their representations, models trained from one data domain do not

usually generalize well to other domains. To overcome the poor generalizability of

existing models and avoid the cost of building new models, this thesis is dedicated to

the problem of re-using and generalizing learning models across different domains with

relatively little human intervention. Specifically, its focus is mainly on developing a

systematic approach to adapting supervised classifiers trained from some domains to

other domains, a generic problem in multimedia and many other areas. This includes

not only principled methods for adapting classifiers under different circumstances, but

also empirical analysis of classifier generalizability for better selection and prioritization

of adaptation tasks. The proposed approaches have been shown effective in solving

adaptation problems in multimedia as well as in other areas. The major contributions

of this thesis are summarized as follows:

• This thesis has presented a study on the generalizability issue in semantic

concept detection, an important task in multimedia and the foundation of
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many other tasks. Based on experiments on TRECVID video corpora, this study

has shown that in general, concept classifiers fail to generalize well to new domains

other than their training domain, with an average decline of 60% to 70% of its

performance. The poor generalizability is due to the fact that majority of concept

classifiers are unable to “summarize” the data and resort to a nearest-neighbor

approach in classification. This is to our knowledge the first comprehensive study

on the generalizability of semantic concept classifiers, and the results fully justify

the need for classifier adaptation techniques.

• The foundation of our adaptation approaches is a general framework for

function-level classifier adaptation based on regularized loss minimization.

It adapts an existing classifier trained from a source domain to a classifier for a

target domain which has only limited labeled examples. As a fundamental differ-

ence from existing techniques, in this framework the adaptation of a classifier is

done by directly modifying its decision function, rather than re-using its training

data to build a new classifier. This approach makes the framework highly effi-

cient, capable of adapting any type of classifiers, and applicable to tasks where

previous training data are not available. The framework employs a generic objec-

tive function which ensures that only minimal but necessary changes are made to

an existing classifier such that it can correctly classifies the examples in the tar-

get domain. By plugging in different loss and regularization functions into this

objective function, one can derive many concrete adaptation algorithms from

this framework. We elaborate on two of such algorithms, adaptive support

vector machine (a-SVM) and adaptive kernel logistic regression (a-KLR).

The derivation of a-KLR provides a probabilistic interpretation of our frame-

work, which shows that the source classifier plays the role of a “prior model”

in the training of the adapted classifier. Experiments on cross-domain semantic

concept detection based on TRECVID corpora have shown that our approaches

outperform existing (adaptation and non-adaptation) methods in terms of accu-

racy and/or efficiency.

• We have further extended this basic framework into a framework for multi-

classifier adaptation, which adapts multiple source classifiers into one classifier
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for the target domain. This is to our knowledge the first approach for many-to-one

adaptation. The key idea is to combine all the source classifiers into a weighted

ensemble and adapt this ensemble to the target domain. We have introduced

into the framework the weights of source classifiers to reflect their utility w.r.t

the target domain, and modified the objective function to allow the weights to

be learned together with the adapted classifier. From this extended framework,

we have derived multi-adaptive support vector machine (ma-SVM) as a

counterpart of a-SVM for multi-classifier adaptation. Experiments has confirmed

the benefit of multi-classifier adaptation over single-classifier adaptation in cross-

domain semantic concept detection.

• We have proposed several selective adaptation methods to improve the overall

cost-efficiency of adaptation. Based on the knowledge about the generalizability

and/or learnability of each classifier, these methods select and prioritize adap-

tation tasks involving multiple classifiers, such that their overall performance

is maximized after adaptation using a fixed number of training examples. Ex-

periments in semantic concept detection have shown that selective adaptation

achieves higher cost-efficiency than blindly adapting every classifier with the same

number of training data.

• This thesis has investigated an empirical approach to predicting the gen-

eralizability of semantic concept classifiers, in order to better determine

the need for adaptation and prioritize adaptation tasks. Our study has shown

a large variation in concept classifiers’ generalizability, influenced mainly by the

concept they intended and also by the features and model parameters used in

their training. It has revealed strong correlations between generalizability and

various meta-features of a classifier, including the ratio of positive training data,

model structure, and the distribution of its output. A regression model has been

proposed to predict the generalizability of a classifier from these meta-features.

We have shown that using this model we can accurately predict the performance

of a concept classifier on a new, unlabeled domain other than its training domain.

• We have applied the proposed techniques on a diversity of adaptation prob-

lems in different areas. These include adapting semantic concept detectors
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across video collections, adapting of text classifiers across text corpora, and adapt-

ing an EEG-based relevance model across human subjects. The promising results

on these tasks have shown that our approach, designed for a generic setting and

with few restrictions, is capable of solving adaptation problems not only in mul-

timedia but also in other areas.

8.2 Future Directions

While this thesis has addressed different aspects of classifier adaptation, it still leaves

many related problems to be tackled in future work. In the following, we discuss

future directions on sample selection for adaptation, the combination of adaptation

and semi-supervised learning, etc.

In many applications, there is a typically a large amount of unlabeled data in the

target domain in addition to a small set of labeled data. In our approaches, only

the labeled data are used in learning the adapted classifiers. Meanwhile, if we do not

consider the source domain, semi-supervised learning (SSL) techniques [26] can be an

appealing choice for classifying the target data, which make use of both labeled and

unlabeled data for the training of classifiers. In a sense, the source classifier in our

adaptation approaches and the unlabeled data in SSL techniques play a similar role,

which is to reduce the model variance caused by the limited training data. It is an

interesting future direction to combine our adaptation approach with semi-supervised

learning into an unified learning process. Such a combination would allow the adapted

classifier to benefit not only from the source classifier but also from the unlabeled target

data, which may further improve its performance. An easy-to-implement approach

is to combine a-SVM with transductive SVM (TSVM) [58], an extensively used SSL

algorithm, because both of them are based on SVM’s loss function. One can extend the

objective function of a-SVM defined in Eq.(4.5) to include a new term that measures

the loss on the unlabeled data of the target domain.

However, the use of unlabeled data needs to be handled with great care, as there

is no guarantee that it always helps the the performance. In fact, as shown in Section

4.5, TSVM which uses unlabeled data performs worse than SVM in semantic concept
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detection. The possible reasons can be that the positive and negative data are inter-

mingled in the feature space, or that the negative data overwhelms the positive data in

number. Therefore, while combining our adaptation approach with an SSL algorithm

is technically feasible, investigation into the data distribution of the source and target

domain is needed to tell whether the use of unlabeled data is helpful at all.

Another area that deserves investigation is the selection of training examples used

for adaptation. In all the experiments, the training examples are randomly selected

from the target domain. However, not every example is equally useful from the per-

spective of adaptation. If labeling each example requires a constant amount of human

effort, it is more cost-efficient to select examples that help improve the performance

of the adapted classifier the greatest. This is similar to active learning [18, 98], which

selects the most informative examples as the training data for building a new classifier.

In the context of adaptation, the goal should be finding examples that provides comple-

mentary knowledge to the classifier being adapted. As we have shown in Section 4.3.2,

in a-SVM the training examples are used to modify the decision boundary of an exist-

ing classifier, so they are most useful when they fall into the wrong side of the existing

decision boundary (if they are already on the right side, there is little need to adapt the

boundary). Therefore, training examples which the source classifier misclassifies are

more valuable than those it classifies correctly. The key question is that, without first

labeling a data instance, how to estimate its probability of being classified incorrectly.

One choice is to follow the risk minimization framework in several active learning tech-

niques [18], which aims to find examples that achieves the maximum reduction of the

expected risk of the classifier. Moreover, since many classification problems in multime-

dia are imbalanced, which is the case in semantic concept detection, examples from the

rare class are more valuable than those from the frequent class. It would be interesting

to compare the performance of adaptation based on randomly selected examples and

based on examples selected using these clues.

In Section 6.3 we have discussed methods for allocating training examples between

multiple classifiers to maximize the overall performance after adaptation. It is orthogo-

nal to the future work on finding the most effective training examples for each classifier,

and these two techniques can be combined to complement each other. That is, we can

jointly optimize the priority between classifiers to be adapted and the choice of training
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examples for adapting each classifier. The key question to answer is, which training

example for which classifier shall we label in order to maximize the overall performance

after adaptation. We expect a combination of the two techniques will achieve better

performance than using either technique by itself.

In Section 6, the model for predicting concept classifiers’ generalizability from meta-

features is shown to be effective and beneficial to improving the cost-efficiency of

adaptation. This result should be received with an understanding of the empirical,

application-specific nature of this generalizability model. Some of the meta-features,

such as the ratio of support vectors, are unique to the SVM algorithm and have no coun-

terpart in other classification algorithms. The relationship between generalizability and

certain meta-features, e.g., higher ratio of positive data means better generalizability,

is true perhaps only in semantic concept detection. Thus, the findings of our analysis

and the use of our generalizability model are both restricted to the domain of concept

detection. As a future direction, it is of great research interest to conduct a general,

domain-independent analysis of generalizability, and to find out whether generalizabil-

ity can be predicted without domain knowledge. The key question is whether we can

find domain-independent clues that reveals a classifier’s generalizability.

One of these clues must come from comparing the data distribution between the

source and target domain. The similarity (or difference) between two distributions is

more directly related to how well a classifier would generalize than the meta-features

discussed in our analysis, such as the model complexity. However, measuring the

distribution similarity is not easy, especially when feature spaces are of hundreds or

even thousands of dimension. Due to the curse of dimensionality, every data point in a

high-dimensional feature space is far away from probably any other data point, making

the comparison of two sets of data points difficult. One solution is to assume the data in

each domain are generated by a certain model such as Gaussian mixture model (GMM),

whose parameters can be estimated from the data. Then the similarity between two

domains can be measured by the distance between two GMM models, using metrics

like KL divergence. Moreover, if the data in the two classes are very imbalanced, there

is an even greater difficulty. In this case, any change to the distribution of the rare class

has a significant impact on classification performance, but such change is not reflected

in the similarity of the overall distribution because the rare class is overwhelmed by
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the dominant class. Meanwhile, the distribution of the rare class cannot be estimated

because the target domain is unlabeled. Overall, this direction deserves more research

and may be very useful for predicting generalizability.
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