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Abstract

With the dramatic increase in online information in recent years, text re-

trieval is becoming increasingly important. It has always been a significant

scientific challenge to develop principled retrieval approaches that also per-

form well empirically, since, so far, those theoretically well-motivated models

have rarely led directly to good performance. It is also a great challenge to

develop models that go beyond the traditional notion of topical relevance and

capture more user factors, such as topical redundancy and sub-topic diversity.

This thesis presents a new text retrieval framework based on Bayesian deci-

sion theory. The framework unifies several existing retrieval models, including

the recently proposed language modeling approach, within one general prob-

abilistic framework. It also facilitates the development of new principled ap-

proaches to text retrieval with the potential of going beyond the traditional

notion of topical relevance. In this framework, queries and documents are

modeled using statistical language models (i.e., probabilistic models of text),

user preferences are modeled through loss functions, and retrieval is cast as a

risk minimization problem.

While traditional retrieval models rely heavily on ad hoc parameter tuning

to achieve satisfactory retrieval performance, the use of language models in

the risk minimization framework makes it possible to exploit statistical esti-

mation methods to improve retrieval performance and set retrieval parameters

automatically. As a special case of the framework, we present a two-stage

language model that, according to extensive evaluation, achieves excellent re-

trieval performance without any ad hoc parameter tuning.

The use of language models in retrieval also provides more guidance on

how to improve retrieval performance (e.g., through using more reasonable

language models and/or more accurate estimation methods). As another spe-

cial case of the risk minimization framework, we derive a Kullback-Leibler

divergence retrieval model that can exploit feedback documents to improve the

estimation of query models. Feedback has so far been dealt with heuristically

in the language modeling approach to retrieval. The KL-divergence model

provides a more principled way of performing feedback by treating it as query

model updating. We propose two specific query model updating algorithms

based on feedback documents. Evaluation indicates that both algorithms are

effective for feedback, and the updated query models outperform the original



query models significantly.

The risk minimization retrieval framework further allows for incorporating

user factors beyond the traditional notion of topical relevance. We present

language models that can capture redundancy and sub-topics in documents,

and study loss functions that can rank documents in terms of both relevance

and sub-topic diversity. Evaluation shows that the proposed language models

can effectively capture redundancy and can outperform the relevance-based

ranking method for the aspect retrieval task.

The risk minimization framework opens up many new possibilities for de-

veloping principled approaches to text retrieval, and makes it possible to ex-

plore different retrieval models more systematically, through considering dif-

ferent loss functions and using different language models in the framework.
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Chapter 1

Introduction

Recent years have seen explosive growth in the volume of information. For example, from

December 1997 to February 1999, the Web more than doubled in size, from 320 million

pages to 800 million, encompassing about 15 terabytes of information (Lawrence and Giles,

1999). And, as of the year 2001, the Google index has more than 3 billion documents, of

which 2 billion are web pages (Sherman, 2001). Other types of textual information, such

as books, newspapers, and periodicals are also growing rapidly. According to a recent

study at Berkeley (Lyman and Varian, 2000), the worldwide production of original content,

stored digitally using standard compression methods, is at least 1 terabyte/year for books,

2 terabytes/year for newspapers, 1 terabyte/year for periodicals, and 19 terabytes/year for

office documents.

The high volume of information makes effectively and efficiently managing the online

information a significant challenge, and causes information overload, i.e., the inability to

extract needed knowledge from an immense quantity of information (Wurman, 1989). In-

formation retrieval is by far the most useful technique to address the problem of information

overload. The retrieval of textual information (i.e., text retrieval) is especially important,

because the most frequently wanted information is often textual, and techniques for retriev-

ing textual information can be useful for retrieving other media information, when there is

companion text.

Given a document collection (i.e., a set of unordered text documents), the task of Text

Retrieval (TR) can be defined as using a user query (i.e., a description of the user’s in-

formation need) to identify a subset of documents that can satisfy the user’s information

1



need. 1 A major difficulty in TR is to accurately judge whether a particular set of docu-

ments would satisfy a user’s information need. The criterion is inherently impossible to

formalize, because it is generally very hard for a user to prescribe the exact information

need completely and precisely through a query, and even more difficult for a computer to

understand the meaning of a query precisely. Thus, TR is really not a well-defined task, in

the sense that the correctness of the solution to the retrieval problem can only be evaluated

by a user empirically.

Traditionally, the documents that can satisfy a user’s information need are called rel-

evant documents, and thus, the retrieval task is to find all relevant documents for a given

query. The notion of “relevance” is very complicated. Like a user’s information need,

relevance is generally imprecise and depends on the situation or context of the retrieval

task. Two assumptions are often made to simplify the retrieval task. First, the relevance

of one document is assumed to be independent of other documents, including those al-

ready retrieved (independent relevance assumption). Second, the relevance of a document

is assumed to mean the level of topical relevance of the document with respect to the query

(topical relevance assumption). Under these two constraints, the retrieval task is essentially

to evaluate the topical relevance value of each document independently with respect to a

query, which makes the retrieval task more tractable. In reality, however, neither of these

two assumptions can be expected to hold. For example, a user is unlikely to be interested

in seeing duplicates of the same document, even if the duplicates are all topically relevant

to the query. This means that the utility of retrieving a document at least depends on the

previously retrieved documents that the user has already seen. Also, topical relevance is

only one of the many attributes of a document that a user may care about. For example, if

the user is a child, the readability of the documents would matter. All of this suggests that it

is highly desirable to develop retrieval models that can go beyond the notion of independent

topical relevance. Indeed, the need to go beyond topical relevance has already been well-

recognized in the literature (Saracevic, 1970; Froehlich, 1994). There is also some work on

ranking documents by considering redundancy (Carbonell and Goldstein, 1998), but such

“non-topical” factors have only been considered on top of an existing retrieval model. It is

still fair to say that most existing retrieval models have focused on only topical relevance.

From now on, unless explicitly mentioned, we will use relevance to mean topical relevance.

1A larger scope of IR or TR is often taken to include not only the narrow sense of retrieval, but also

routing, categorization, and clustering (Lewis, 1992). In this thesis, we define IR as retrieving documents

from a collection that satisfy a user’s information need, which is also referred to as the ad hoc retrieval task

in TREC (Voorhees and Harman, 2001)

2



Due to the inherent vagueness and uncertainty of relevance, it has been argued that,

instead of having a retrieval system to make a clear distinction between relevant and non-

relevant documents, a TR system should rank the selected documents in the order of de-

creasing relevance, with the user deciding when to stop (Robertson, 1977). Thus modern

retrieval systems generally assign a relevance value to each document and rank documents

accordingly. The ranked list of documents is then presented to a user. Sometimes, af-

ter viewing the documents, the user may be able to tell the system which documents are

relevant and which are not. Such feedback information can then be used by a system to im-

prove the retrieval process, resulting in presumably better ranking results. This procedure

is called relevance feedback.

To compute the relevance value of a document with respect to a query, a retrieval sys-

tem must assume some retrieval model, which formally defines a relevance measure based

on certain representation of a query and documents. Over the decades, many different

types of retrieval models have been proposed and tested (Sparck Jones and Willett, 1997).

A great diversity of approaches and methodology has developed, but no single unified re-

trieval model has proven to be most effective. The field has progressed in two different

ways. On the one hand, theoretical studies of an underlying model have been developed;

this direction is, for example, represented by the various kinds of logic models, e.g., (van

Rijsbergen, 1986). On the other hand, there have been many empirical studies of models,

including many variants of the vector space model, e.g., (Salton and Buckley, 1988). It has

always been a significant scientific challenge to develop theoretically motivated models

that also perform well empirically. A very interesting work in this direction is the develop-

ment of the BM25 retrieval function, which was motivated by the 2-poisson probabilistic

retrieval model and has proven to be quite effective in practice (Robertson and Walker,

1994; Robertson et al., 1995).

Recently, a new approach based on language modeling has been successfully applied

to the problem of ad hoc retrieval (Ponte and Croft, 1998). This new approach is very

promising, because of its foundations in statistical theory, the great deal of complementary

work on language modeling in speech recognition and natural language processing, and

the fact that very simple language modeling retrieval methods have performed quite well

empirically. There is great potential of using statistical language models to develop new

principled retrieval models.

In this thesis, we present a new text retrieval framework based on Bayesian decision

theory that facilitates the development of new principled approaches to text retrieval using

3



statistical language models. In this framework, queries and documents are modeled using

statistical language models (i.e., probabilistic models of text), user preferences are modeled

through loss functions, and retrieval is cast as a risk minimization problem (a decision

problem). The framework thus incorporates language models as natural components for

retrieval, and provides a general connection between the problem of retrieval and that of

statistical language modeling.

Through this framework, we address several limitations of traditional retrieval mod-

els. By choosing different loss functions and different query/document language models,

we obtain different special cases of the risk minimization framework. We show how the

risk minimization framework can unify several existing retrieval models, including the lan-

guage modeling approach proposed recently, within one general probabilistic framework.

By viewing the traditional models in this general framework we can see clearly what as-

sumptions have been made in them, and thus understand better their limitations, enabling

us to improve these models.

While traditional retrieval models rely heavily on ad hoc parameter tuning to achieve

satisfactory retrieval performance, the use of language models makes it possible to exploit

statistical estimation methods to improve retrieval performance and set retrieval parameters

automatically. As a special case in the risk minimization framework, we present a two-

stage language model that, according to extensive evaluation, achieves excellent retrieval

performance without any ad hoc parameter tuning.

The use of language models in retrieval also provides more guidance on how to improve

retrieval performance (e.g., through using more reasonable language models and/or more

accurate estimation methods). As another special case of the risk minimization framework,

we derive a Kullback-Leibler divergence retrieval model that can exploit feedback docu-

ments to improve the estimation of query models. Feedback has so far been dealt with

heuristically in the language modeling approach to retrieval. The KL-divergence model

provides a more natural way of performing feedback by treating it as query model updating.

We propose two specific query model updating algorithms based on feedback documents.

Evaluation indicates that both algorithms are effective for feedback, and outperform the

baseline methods significantly.

The risk minimization retrieval framework further allows for incorporating user fac-

tors beyond the traditional notion of topical relevance. We present language models that

can capture redundancy and sub-topics in documents, and study loss functions that can

rank documents in terms of both relevance and sub-topic diversity. Evaluation shows that
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the proposed language models can effectively capture redundancy and can outperform the

relevance-based ranking method for the aspect retrieval task.

The thesis gives a new perspective on TR models. The risk minimization framework

provides a general probabilistic retrieval framework that unifies several different existing

TR models, including the recently proposed language modeling approach. The framework

also provides a general connection between text retrieval and statistical language models,

making it possible to apply statistical estimation methods to text retrieval. Furthermore, it

can go beyond the traditional notion of topical relevance and potentially incorporate more

user factors as retrieval criteria. The risk minimization framework opens up many new

possibilities for developing principled approaches to text retrieval. It allows for exploring

different retrieval models systematically through considering different loss functions and

using different language models in the framework, as demonstrated by several special cases

explored in this thesis.
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Chapter 2

Review of Existing Retrieval Models

To identify relevant documents, a TR system must assume some specific measure of rele-

vance between a document and a query. That is, an operational definition of a “relevant

document” with respect to a query is needed. Thus, a fundamental problem in TR is to

formalize the concept of relevance. A different formalization of relevance generally leads

to a different TR model.

Over the decades, many different retrieval models have been proposed, studied, and

tested. Their mathematical basis spans a large spectrum, including algebra, logic, probabil-

ity and statistics. The existing models can be roughly grouped into three major categories,

depending on how they define/measure relevance. In the first category, relevance is as-

sumed to be correlated with the similarity between a query and a document. In the second

category, a binary random variable is used to model relevance and probabilistic models are

used to estimate the value of this relevance variable. In the third category, the relevance un-

certainty is modeled by the uncertainty of inferring queries from documents or vice versa.

We now discuss the three categories in details.

2.1 Similarity-based Models

In a similarity-based retrieval model, it is assumed that the relevance status of a document

with respect to a query is correlated with the similarity between the query and the docu-

ment at some level of representation; the more similar to a query a document is, the more

relevant the document is assumed to be. In practice, we can use any similarity measure that

preserves such a correlation to generate a relevance status value (RSV) for each document
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and rank documents accordingly.

The vector space model is the most well-known model of this type (Salton et al., 1975a;

Salton and McGill, 1983; Salton, 1989). In the vector space model, a document and a

query are represented as two term vectors in a high-dimensional term space. Each term

is assigned a weight that reflects its “importance” to the document or the query. Given a

query, the relevance status value of a document is given by the similarity between the query

vector and document vector as measured by some vector similarity measure, such as the

cosine of the angle formed by the two vectors.

Formally, a document d may be represented by a document vector ~d = (x1, x2, ..., xn),

where n is the total number of terms and xi is the weight assigned to term i. Similarly,

a query q can be represented by a query vector ~q = (y1, y2, ..., yn). The weight is usually

computed based on the so-called TF-IDF weighting, which is a combination of three factors

(Singhal, 2001): (1) the local frequency of the term (in a document or query); (2) the

global frequency of the term in the whole collection; (3) document length. With the cosine

measure, we have the following similarity function of the document and query:

sim(d, q) =
~d · ~q√
‖~d‖‖~q‖

The vector space model naturally decomposes a retrieval model into three components:

(1) a term vector representation of query; (2) a term vector representation of document; (3)

a similarity/distance measure of the document vector and the query vector. However, the

“synchronization” among the three components is generally unspecified; in particular, the

similarity measure does not dictate the representation of a document or query. Thus, the

vector space model is actually a general retrieval framework, in which the representation of

query and documents as well as the similarity measure can all be arbitrary in principle.

Related to its generality, the vector space model can also be regarded as a procedu-

ral model of retrieval, in which the task of retrieval is naturally divided into two separate

stages: indexing and search. The indexing stage explicitly has to do with representing

the document and the query by the “indexing terms” extracted from the document and the

query. The indexing terms are often assigned different weights to indicate their impor-

tance in describing a document or a query. The search stage has to do with evaluating the

relevance value (i.e., the similarity) between a document vector and a query vector. The

flexibility of the vector space model makes it easy to incorporate different indexing mod-

els. For example, the 2-Poisson probabilistic indexing model can be used to select indexing
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terms and/or assign term weights (Harter, 1975; Bookstein and Swanson, 1975). Latent

semantic indexing can be applied to reduce the dimension of the term space and to cap-

ture the semantic “closeness” among terms, and thus to improve the representation of the

documents and query (Deerwester et al., 1990). A document can also be represented by a

multinomial distribution over the terms, as in the distribution model of indexing proposed

in (Wong and Yao, 1989).

In the vector space model, feedback is typically treated as query vector updating. A

well-known approach is the Rocchio method, which simply adds the centroid vector of

the relevant documents to the query vector and subtracts from it the centroid vector of the

non-relevant documents with appropriate coefficients (Rocchio, 1971). In effect, this leads

to an expansion of the original query vector, i.e., additional terms are extracted from the

known relevant (and non-relevant) documents, and are added to the original query vector

with appropriate weights (Salton and Buckley, 1990).

The extended Boolean (p-norm) model is a heuristic extension of the traditional Boolean

model to perform document ranking, but it can also be regarded as a special case of the sim-

ilarity model (Fox, 1983; Salton et al., 1983). The similarity function has a parameter p that

controls the “strictness” of satisfying the constraint of a Boolean query, in such a way that it

approaches a strict (conjunctive or disjunctive) Boolean model when p approaches infinity,

but softens the conjunctive or disjunctive constraint and behaves more like a regular vector

space similarity measure as p becomes smaller. However, the model must rely on some as-

sumptions about the Boolean structure of a query, and has some undesirable mathematical

properties (Rousseau, 1990). There has also been little, if any, large-scale evaluation of the

model.

The vector space model is by far the most popular retrieval model due to its simplicity

and effectiveness. The following is a typical effective weighting formula with pivoted

document length normalization taken from (Singhal, 2001):

∑

t∈Q,D

1 + ln(1 + ln(tf))

(1 − s) + s dl
avdl

× qtf × ln
N + 1

df

where s is an empirical parameter (usually 0.20), and
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tf is the term’s frequency in document

qtf is the term’s frequency in query

N is the total number of documents in the collection

df is the number of documents that contain the term

dl is the document length, and

avdl is the average document length.

The main criticism for the vector space model is that it provides no formal framework

for the representation, making the study of representation inherently separate from the rele-

vance estimation. The separation of the relevance function from the weighting of terms has

the advantage of being flexible, but makes it very difficult to study the interaction of rep-

resentation and relevance measurement. The semantics of a similarity/relevance function

is highly dependent on the actual representation (i.e., term weights) of the query and the

document. As a result, the study of representation in the vector space model has been so far

largely heuristic. The two central problems in document and query representation are the

extraction of indexing terms/units and the weighting of the indexing terms. The choice of

different indexing units has been extensively studied, but no significant improvement has

been achieved over the simplest word-based indexing (Lewis, 1992), though some more

recent evaluation has shown more promising improvement on average through using lin-

guistic phrases (Evans and Zhai, 1996; Strzalkowski, 1997; Zhai, 1997). Many heuristics

have also been proposed to improve term weighting, but again, no weighting method has

been found to be significantly better than the heuristic TF-IDF term weighting (Salton and

Buckley, 1988). To address the variances in the length of documents, an effective weight-

ing formula also needs to incorporate document length heuristically (Singhal et al., 1996).

Salton et al. introduced the idea of the discrimination value of an indexing term (Salton

et al., 1975b). The discrimination value of an indexing term is the increase or the decrease

in the mean inter-document distance caused by adding the indexing term to the term space

for text representation. They found that the middle frequency terms have a higher discrim-

ination value. Given a similarity measure, the discrimination value provides a principled

way of selecting terms for indexing. However, there are still two deficiencies. First, the

discrimination value is not modeling relevance, but rather, relies on a given similarity mea-

sure. Second, it is only helpful for selecting indexing terms, but not for the weighting of

terms.

The risk minimization framework we propose suggests a new formal similarity-based

retrieval model in which the representation of query and documents are associated with

statistical language models. The use of statistical language models makes it possible to
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replace the traditional ad hoc tuning of parameters with the more principled estimation of

parameters. The traditional vector space models can be regarded as special cases of this

more general similarity model where the parameters are set heuristically. For example, we

can represent a query and a document by a unigram language model, and thus easily derive

a similarity model similar to the distribution model proposed in (Wong and Yao, 1989).

2.2 Probabilistic Relevance Models

In a probabilistic relevance model, we are interested in the question “What is the probability

that this document is relevant to this query?” (Sparck Jones et al., 2000). Given a query, a

document is assumed to be either relevant or non-relevant, but a system can never be sure

about the true relevance status of a document, so it has to rely on a probabilistic relevance

model to estimate it.

Formally, let random variables D and Q denote a document and query, respectively. Let

R be a binary random variable that indicates whether D is relevant to Q or not. It takes

two values which we denote as r (“relevant”) and r (“not relevant”). The task is to estimate

the probability of relevance, i.e., p(R = r |D, Q). Depending on how this probability is

estimated, there are several special cases of this general probabilistic relevance model.

First, p(R = r |D, Q) can be estimated directly using a discriminative (regression)

model. Essentially, the relevance variable R is assumed to be dependent on “features” that

characterize the matching of D and Q. Such a regression model was probably first intro-

duced with some success by Fox (Fox, 1983), where features such as term frequency, au-

thorship, and co-citation were combined using linear regression. Fuhr and Buckley (Fuhr

and Buckley, 1991) used polynomial regression to approximate relevance. Gey used lo-

gistic regression involving information such as query term frequency, document term fre-

quency, IDF, and relative term frequency in the whole collection, and this model shows

promising performance in three small testing collections (Gey, 1994). Regression models

provide a principled way of exploring heuristic features and ideas. One important advan-

tage of regression models is their ability to learn from all the past relevance judgments,

in the sense that the parameters of a model can be estimated based on all the relevance

judgments, including the judgments for different queries or documents. However, because

regression models are based on heuristic features in the first place, lots of empirical experi-

mentation would be needed in order to find a set of good features. A regression model thus

provides only limited guidance for extending a retrieval model.
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Alternatively, p(R = r |D, Q) can be estimated indirectly using a generative model in

the following way (Lafferty and Zhai, 2003):

p(R = r |D, Q) =
p(D, Q |R = r) p(R = r)

p(D, Q)
.

Equivalently, we may use the following log-odds ratio to rank documents:

log
p(r |D, Q)

p(r |D, Q)
= log

p(D, Q | r) p(r)

p(D, Q | r) p(r)
.

There are two different ways to factor the conditional probability p(D, Q |R), correspond-

ing to “document generation” and “query generation.”

With document generation, p(D, Q |R) = p(D |Q, R)p(Q |R), so we end up with the

following ranking formula:

log
p(r |D, Q)

p(r |D, Q)
= log

p(D |Q, r)

p(D |Q, r)
+ log

p(r |Q)

p(r |Q)

Essentially, the retrieval problem is formulated as a two-category document classifica-

tion problem, though we are only interested in ranking the classification likelihood, rather

than actually assigning class labels. Operationally, two models are estimated for each query,

one modeling relevant documents, the other modeling non-relevant documents. Documents

are then ranked according to the posterior probability of relevance.

Most classic probabilistic retrieval models (Robertson and Sparck Jones, 1976; van Ri-

jsbergen, 1979; Fuhr, 1992) are based on document generation. The Binary Independence

Retrieval (BIR) model (Robertson and Sparck Jones, 1976; Fuhr, 1992) is perhaps the most

well known classical probabilistic model. The BIR model assumes that terms are inde-

pendently distributed in each of the two relevance models, so it essentially uses the Naı̈ve

Bayes classifier for document ranking (Lewis, 1998). 1 The BIR retrieval formula is the

following (Robertson and Sparck Jones, 1976; Lafferty and Zhai, 2003):

log
p(r |D, Q)

p(r |D, Q)
rank
=

∑

t∈D∩t∈Q

log
p(t |Q, r)(1− p(t |Q, r))

(1 − p(t |Q, r))p(t |Q, r)

where
rank
= means equivalent in terms of being used for ranking documents.

There have been several efforts to improve the binary representation. van Rijsbergen

extended the binary independence model by capturing some term dependency as defined by

1The required underlying independence assumption for the final retrieval formula is actually weaker

(Cooper, 1991).
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a minimum-spanning tree weighted by average mutual information (van Rijbergen, 1977).

The dependency model achieved significant increases in retrieval performance over the

independence model. However, the evaluation was only done on very small collections,

and the estimation of many more parameters is a problem in practice (Harper and van

Rijsbergen, 1978). Croft investigated how the heuristic term significance weight can be

incorporated into probabilistic models in a principled way (Croft, 1981). Another effort

to improve document representation involves introducing the term frequency directly into

the model by using a multiple 2-Poisson mixture representation of documents (Robertson

et al., 1981). This model has not shown empirical improvement in retrieval performance

directly, but an approximation of the model using a simple TF formula turns out to be

quite effective (Robertson and Walker, 1994). The heuristic retrieval formula BM25 has

been successfully used in City University’s Okapi system and several other TREC systems

(Voorhees and Harman, 2001). A different way of introducing the term frequency into the

model, not directly proposed but implied by a lot of work in text categorization, is to regard

a document as being generated from a unigram language model (Kalt, 1996; McCallum

and Nigam, 1998).

With query generation, p(D, Q |R) = p(Q |D, R)p(D |R), so we end up with the

following ranking formula:

log
p(r |D, Q)

p(r |D, Q)
= log

p(Q |D, r)

p(Q |D, r)
+ log

p(r |D)

p(r |D)

Under the assumption that conditioned on the event R = r, the document D is inde-

pendent of the query Q, i.e., p(D, Q |R = r) = p(D |R = r) p(Q |R = r), the formula

becomes

log
p(r |D, Q)

p(r |D, Q)

rank
= log p(Q |D, r) + log

p(r |D)

p(r |D)

There are two components in this model. The major component p(Q |D, r) can be

interpreted as a “relevant query model” conditioned on a document. That is, p(Q |D, r)

is the probability that a user who likes document D would use Q as a query. The second

component p(r |D) is a prior that can be used to encode a user’s bias on documents.

Models based on query generation have been explored in (Maron and Kuhns, 1960),

(Fuhr, 1992) and (Lafferty and Zhai, 2001b). The probabilistic indexing model proposed

in (Maron and Kuhns, 1960) is the first probabilistic retrieval model, in which the indexing

terms assigned to a document are weighted by the probability that a user who likes the
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document would use the term in the query. That is, the weight of term t for document

D is p(t |D, r). However, the estimation of the model is based on the user’s feedback,

not the content of D. The Binary Independence Indexing (BII) model proposed in (Fuhr,

1992) is another special case of the query generation model. It allows the description of a

document (with weighted terms) to be estimated based on arbitrary queries, but the specific

parameterization makes it hard to estimate all the parameters in practice. In (Lafferty and

Zhai, 2001b), it has been shown that the recently proposed language modeling approach

to retrieval is also a special probabilistic relevance model when query generation is used

to decompose the generative model. This work provides a relevance-based justification for

this new family of probabilistic models based on statistical language modeling.

The language modeling approach was first introduced in (Ponte and Croft, 1998) and

later explored in (Hiemstra and Kraaij, 1998; Miller et al., 1999; Berger and Lafferty, 1999;

Song and Croft, 1999), among others. The estimation of a language model based on a doc-

ument (i.e., the estimation of p(. |D, r)) is the key component in the language modeling

approach. Indeed, most work in this direction differs mainly in the language model used

and the method of language model estimation. Smoothing document language models with

some kind of collection language model has been very popular in the existing work. For

example, geometric smoothing was used in (Ponte and Croft, 1998); linear interpolation

smoothing was used in (Hiemstra and Kraaij, 1998; Berger and Lafferty, 1999), and was

viewed as a 2-state hidden Markov model in (Miller et al., 1999). Berger and Lafferty ex-

plored “semantic smoothing” by estimating a “translation model” for mapping a document

term to a query term, and reported significant improvements over the baseline language

modeling approach through the use of translation models (Berger and Lafferty, 1999).

The language modeling approach has two important contributions. First, it introduces

a new effective probabilistic ranking function based on query generation. While the earlier

query generation models have all found estimating the parameters difficult, the model pro-

posed in (Ponte and Croft, 1998) explicitly addresses the estimation problem through the

use of statistical language models. Second, it reveals the connection between the difficult

problem of text representation in IR and the language modeling techniques that have been

well-studied in other application areas such as statistical machine translation and speech

recognition, making it possible to exploit various kinds of language modeling techniques

to address the representation problem.2

2The use of a multinomial model for documents was actually first introduced in (Wong and Yao, 1989),

but was not exploited as a language model.
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While based on the same notion of relevance and probabilistically equivalent, the clas-

sic document generation probabilistic models and the language modeling approach have

several important differences from an estimation perspective, as they involve different pa-

rameters for estimation. When no relevance judgments are available, it is easier to estimate

p(Q |D, r) in the language modeling approach than to estimate p(D |Q, r) in the clas-

sic probabilistic models. Intuitively, it is easier to estimate a model for “relevant queries”

based on a document than to estimate a model for relevant documents based on a query.

Indeed, the BIR model has encountered difficulties in estimating p(t |Q, r) and p(t |Q, r)

when no explicit relevance information is available. Typically, p(t |Q, r) is set to a constant

and p(t |Q, r) is estimated under the assumption that the whole collection of documents is

non-relevant (Croft and Harper, 1979; Robertson and Walker, 1997). Recently, Lavrenko

and Croft made progress in estimating the relevance model without relevance judgments by

exploiting language modeling techniques (Lavrenko and Croft, 2001). When explicit rel-

evance judgments are available, the classic models, being based on document generation,

have the advantage of being able to improve the estimation of the component probabilistic

models naturally by exploiting such explicit relevance information. This is because the

relevance judgments from a user provide direct training data for estimating p(t |Q, r) and

p(t |Q, r), which can then be applied to new documents. The same relevance judgments

can also provide direct training data for improving the estimate of p(t |D, r) in the lan-

guage modeling approach, but only for those judged relevant documents. Thus, the directly

improved models can not be expected to improve our ranking of other un-judged docu-

ments. Interestingly, such improved models can potentially be beneficial for new queries –

a feature unavailable in document generation models.

Instead of imposing a strict document generation or query generation decomposition of

p(D, Q |R), one can also “generate” a document-query pair simultaneously. Mittendorf

& Schauble explored a passage-based generative model using the Hidden Markov Model

(HMM), which can be regarded as such a case (Mittendorf and Schauble, 1994). In this

work, a document query pair is represented as a sequence of symbols, each corresponding

to a term in a particular position of the document. All term tokens are clustered in terms

of the similarity between the token and the query. In this way, a term token in a particular

position of a document can be mapped to a symbol that represents the cluster the token

belongs to. Such symbol sequences are modeled as the output from an HMM with two

states, one corresponding to relevant passage and the other the background noise. The

relevance value is then computed based on the likelihood ratio of the sequence given the

passage HMM model and the background model.
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Empirically, probabilistic relevance models have shown good performance. Indeed, a

simple approximation of the 2-Poisson probabilistic model, which has led to the BM25

retrieval formula used in the Okapi system, has been very effective (Robertson and Walker,

1994; Robertson et al., 1995). The language modeling approaches have also been shown to

perform very well (Ponte and Croft, 1998; Hiemstra and Kraaij, 1998; Miller et al., 1999).

The BM25 formula is shown below, following the notations used in (Singhal, 2001):

∑

t∈Q,D

ln
N − df + 0.5

df + 0.5
×

(k1 + 1)tf

(k1(1 − b) + b dl
avdl

) + tf
×

(k3 + 1)qtf

k3 + qtf

where, k1 ∈ [1.0, 2.0], b (usually 0.75), and k3 ∈ [0, 1000] are parameters, and other vari-

ables have the same meaning as in the vector space retrieval formula described in the pre-

vious section.

Probabilistic relevance models can be shown to be a special case of the risk minimiza-

tion framework when a “constant-cost” loss function is used. In the risk minimization

framework, we also maintain a separate generative model for queries and documents re-

spectively. With a slightly different loss function, we derive a two-stage language modeling

approach to text retrieval and propose methods for automatically estimating the parame-

ters for a two-stage smoothing strategy. According to extensive evaluation, the two-stage

smoothing method gives excellent retrieval performance through completely automatic pa-

rameter settings.

2.3 Probabilistic Inference Models

In a probabilistic inference model, the relevance uncertainty of a document with respect

to a query is modeled by the uncertainty associated with inferring/proving the query from

the document. Depending on how one defines what it means by “proving a query from a

document,” different inference models are possible.

van Rijsbergen introduced a logic-based probabilistic inference model for text retrieval

(van Rijsbergen, 1986), in which, a document is relevant to a query if and only if the query

can be proved from the document. The Boolean retrieval model can be regarded as a simple

case of this model. To cope with the inherent uncertainty in relevance, van Rijsbergen

introduced a logic for probabilistic inference, in which the probability of a conditional,

such as p → q, can be estimated based on the notion of possible worlds. In (Wong and Yao,

1995), Wong and Yao extended the probabilistic inference model and developed a general
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probabilistic inference model which subsumes several other TR models such as Boolean,

vector space, and the classic probabilistic models. Fuhr shows that some particular form

of the language modeling approach can also be derived as a special case of the general

probabilistic inference model (Fuhr, 2001).

While theoretically interesting, the probabilistic inference models all must rely on fur-

ther assumptions about the representation of documents and queries in order to obtain an

operational retrieval formula. The choice of such representations is in a way outside the

model, so there is little guidance on how to choose or how to improve a representation.

The inference network model is also based on probabilistic inference (Turtle and Croft,

1991). It is essentially a Bayesian belief network that models the dependency between the

satisfaction of a query and the observation of documents. The estimation of relevance is

based on the computation of the conditional probability that the query is satisfied given

that the document is observed. Other similar uses of the Bayesian belief network in re-

trieval are presented in (Fung and Favero, 1995; Ribeiro and Muntz, 1996; Ribeiro-Neto

et al., 2000). The inference network model is a much more general formalism than most of

the models that we have discussed above. With different ways to realize the probabilistic

relationship between the observation of documents and the satisfaction of the user’s infor-

mation need, one can obtain many different existing specific TR models, such as Boolean,

extended Boolean, vector space, and conventional probabilistic models. More importantly,

the inference network model can potentially go beyond the traditional notion of topical

relevance; indeed, the goal of inference is a very general one, and at its highest level, the

framework is so general that it can accommodate almost any probabilistic model. The gen-

erality makes it possible to combine multiple evidence, including different formulations of

the same query. The query language based directly on the model has been an important and

practical contribution to IR technology.

However, despite its generality, the inference network framework says little about how

one can further decompose the general probabilistic model. As a result, operationally, one

usually has to set probabilities based on heuristics, as was done in the Inquery system

(Callan et al., 1992).

Kowk’s network model may also be considered as performing a probabilistic inference

(Kwok, 1995), though it is based on spread activation.

In general, the probabilistic inference models address the issue of relevance in a very

general way. In some sense, the lack of a commitment to specific assumptions in these

general models has helped to maintain their generality as retrieval models. But this also
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deprives them of “predictive power” as a theory. As a result, they generally provide little

guidance on how to refine the general notion of relevance.

The risk minimization framework is also quite general. Indeed, we will be able to

show that many existing models are special cases of risk minimization. Furthermore, the

framework goes beyond the traditional notion of topical relevance, just like the inference

network framework, and it allows for incorporating multiple user factors as retrieval crite-

ria. However, the risk minimization framework is different from the probabilistic inference

models and other Bayesian belief network models in that it provides an explicit and direct

connection to (query and document) language models. Techniques of language modeling

can thus be brought into an operational retrieval model easily. In this sense, it is a much

more refined and operational framework than probabilistic inference models. The thesis

will explore several such possibilities.

2.4 Summary

A large number of different retrieval approaches have been proposed and studied, and a

tremendous amount of effort has been devoted to the evaluation of various kinds of ap-

proaches, especially in the context of TREC evaluation (Voorhees and Harman, 2001).

There has been a lot of progress in both developing a retrieval theory and improving em-

pirical performance. However, the existing research has several limitations.

First, the integration of theory and practice in text retrieval has so far been quite weak.

Theoretical guidance and formal principles have rarely led to good performance directly;

a lot of heuristic parameter tuning must be used in order to achieve good performance.

Parameter tuning is generally difficult due to the fact that the optimal setting of parameters

is often collection/query dependent and the parameters may interact with each other in a

complicated way. This can be seen from the following excerpt about parameter tuning in the

well-known Okapi system – one of the best performing TR systems today (The weighting

formula is described in Section 2.2):

“k1,b and k3 are parameters which depend on the nature of the queries and

possibly on the database; k1 and b default to 1.2 and 0.75 respectively, but

smaller values of b are sometimes advantageous; in long queries k3 is often set

to 7 or 1000 (effectively infinite)” (Robertson and Walker, 1999).

It is thus a significant scientific challenge to develop principled retrieval approaches that
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also perform well empirically.

In this thesis, we present a new text retrieval framework that facilitates the development

of new principled approaches to text retrieval through the use of statistical language models.

Statistical language models provide a principled way to model text documents and queries,

making it possible to set retrieval parameters through statistical estimation methods. In par-

ticular, as a special case of the risk minimization framework, a two-stage language model

is shown to achieve excellent retrieval performance without any ad hoc parameter tuning.

The existing work on the language modeling approach, while promising, has encoun-

tered some difficulty in incorporating a feedback mechanism, which is an important com-

ponent in a retrieval system. Specifically, feedback has generally been dealt with in an ad

hoc way. Typically, a set of terms are selected from the relevant documents (or documents

assumed to be relevant in the situation of blind/pseudo feedback), and the query is aug-

mented by the set of terms with some weight (Ponte, 1998; Miller et al., 1999; Ng, 2000).

However, this creates a conceptual inconsistency for the query, since the original query

is normally a piece of text, while the expanded query would be text plus some weighted

terms. The difficulty is largely due to the lack of a query model in the existing work.

As another instance of the risk minimization framework, we derive a KL-divergence

retrieval model, which covers the language modeling approach as a special case. The KL-

divergence model explicitly deals with the query model and can perform feedback more

naturally by treating it as query model updating.

Another fundamental limitation of most traditional retrieval models is the strong as-

sumptions made about relevance (e.g., the independent relevance assumption and topical

relevance assumption); these assumptions do not usually hold in reality. In real appli-

cations, the retrieval criteria may involve other factors such as redundancy. Thus most

traditional models are inadequate for modeling more realistic retrieval criteria.

In the risk minimization framework, the retrieval problem is formalized as a statistical

decision problem in a very general way. The generality not only allows it to unify many

different traditional retrieval models within one single general probabilistic framework, but

also makes it possible to go beyond the traditional notion of independent topical relevance

and capture more realistic retrieval criteria. We explore language models that can capture

the redundancy and sub-topics in documents, and study the loss functions that can rank

documents based on both relevance and sub-topic diversity.

The risk minimization framework opens up many new possibilities for developing prin-

cipled approaches to text retrieval, and makes it possible to explore different retrieval mod-
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els more systematically, through considering different loss functions and using different

language models in the framework. The thesis explores several such special cases.

20



Chapter 3

A Risk Minimization Framework for

Text Retrieval

In this chapter, we present the risk minimization framework. Since the risk minimization

formulation is based on Bayesian decision theory and statistical language modeling, we

first give a brief introduction to both.

3.1 Bayesian Decision Theory

Bayesian decision theory provides a solid theoretical foundation for thinking about prob-

lems of action and inference under uncertainty (Berger, 1985). The basic idea can be ex-

plained by considering the following formulation of a decision problem.

We assume that an observation x is made on a random variable X whose distribution

depends on the parameter θ, which can be interpreted as representing the true state of the

nature. Let A = {a1, a2, ..., an} be all the possible actions about θ. We further assume that

a loss function L(ai, θ) is associated with each action and each value of θ which specifies

our decision preferences. The task is to make a decision on which action to take.

In order to evaluate each action, we consider the Bayesian expected loss (or risk) asso-

ciated with taking action ai given that x is observed:

R(ai |x) =

∫

θ

L(ai, θ)p(θ |x)dθ

Bayesian decision theory states that given x, the optimal decision is to choose a Bayes

action, i.e., an action a∗ that minimizes the conditional expected risk (Berger, 1985):
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a∗ = arg min
a

R(a |x)

3.2 Statistical Language Models

A statistical language model is a probabilistic mechanism for “generating” a sequence of

words or text (Jelinek, 1997; Rosenfeld, 2000). It thus defines a distribution over all the

possible word sequences. The simplest language model is the unigram language model,

which is essentially a word distribution. With a unigram language model, the text is gen-

erated through generating each word independently. Thus, for example, the probability of

generating a piece of text w1w2...wn according to a unigram language model p(. | θ) would

be

p(w1w2...wn | θ) =

n∏

i=1

p(wi | θ)

More complex language models may capture word orders or even the structure of the

text (Jelinek, 1997; Rosenfeld, 2000). For example, trigram language models would gener-

ate a word based on the two previously generated words, thus capturing the local ordering of

words. Maximum entropy language models can capture long-distance dependency among

words. Probabilistic context-free grammars are structure-based generative models of text,

allowing for the incorporation of structural constraints. In general, statistical language

models provide a principled way to capture quantitatively the uncertainty associated with

the use of natural language, and they have found many applications in a variety of language

technology tasks, especially speech recognition. Just recently have they been applied to

text retrieval.

Although we ultimately need to explore more sophisticated models, in this thesis, we

only study the simplest unigram language model for the following reasons: (1) Text re-

trieval generally involves a large amount of text information, which puts constraints on the

efficiency of any algorithm to be evaluated. More sophisticated language models would

significantly increase the computational complexity for retrieval, making large-scale evalu-

ation practically infeasible. (2) In many cases, e.g., when estimating a document language

model or a query language model, we are working on an extremely limited amount of data,

so the estimation of complex models may not be reliable. In other words, the sparseness of

data puts a constraint on the complexity of the model that we can estimate accurately. (3)

Even with the simplest language models, existing work has been able to demonstrate very
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promising retrieval performance. (4) Once we have a good understanding of the simple

models, we will understand better what kind of sophisticated models may be expected to

further improve the performance.

3.3 Retrieval as a Decision Problem

In general, a retrieval system can be regarded as an interactive information service system

that answers a user’s query by presenting a list of documents. After seeing the presented

documents, the user may reformulate a query, which is then executed by the system to

produce another list of documents to present. The cycle continues like this.

At each cycle, the retrieval system needs to choose a subset of documents and present

them to the user in some way, based on the information available to the system, which in-

cludes the current user, the user’s query, the sources of documents, and a specific document

collection. In terms of Bayesian decision theory, our observations are the user U , the query

q, the document sources ~S = (S1, ...,SN), and the collection of documents C. Some of

these will be regarded as observations on some random variables. Specifically, we view

a query as being the output of some probabilistic process associated with the user U , and

similarly, we view a document as being the output of some probabilistic process associ-

ated with an author or document source Si. A query (document) is the result of choosing

a model, and then generating the query (document) using that model. A set of documents

is the result of generating each document independently, possibly from a different model.

(The independence assumption is not essential, and is made here only to simplify the pre-

sentation.) The query model could, in principle, encode detailed knowledge about a user’s

information need and the context in which they make their query. Similarly, the document

model could encode complex information about a document and its source or author.

More formally, let θQ denote the parameters of a query model, and let θD denote the pa-

rameters of a document model. A user U generates a query by first selecting θQ, according

to a distribution p(θQ | U). Using this model, a query q is then generated with probability

p(q | θQ). Note that since a user can potentially use the same text query to mean different

information needs, strictly speaking, the variable U should be regarded as corresponding

to a user with the current context. Since this does not affect the presentation of the frame-

work, we will simply refer to U as a user. Similarly, the source selects a document model

θD according to a distribution p(θD | S), and then uses this model to generate a document

d according to p(d | θD). Thus, we have Markov chains U → θQ → q and S → θD → d.
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Figure 3.1: Generative model of query q and document d.

This is illustrated in Figure 3.1

Let C = {d1,d2, . . . ,dN} be a collection of documents obtained from sources ~S =

(S1, ...,SN). We denote by θi the model that generates document di. Our observations are

thus U , q, ~S , and C.

Now, what about the actions? An action corresponds to a possible response of the

system to a query. For example, one can imagine that the system would return an unordered

subset of documents to the user. Alternatively, a system may decide a ranking of documents

and present a ranked list of documents. Yet another possibility is to cluster the (relevant)

documents and present a structured view of documents.

Generally, we can think of a retrieval action as a compound decision involving selecting

a subset of documents D from C and presenting them to the user who has issued query q

according to some presentation strategy π. Let Π be the set of all possible presentation

strategies. We can represent all actions by A = {(Di, πi)}, where Di ⊆ C is a subset of C

(results) and πi ∈ Π is some presentation strategy.

In the general framework of Bayesian decision theory, to each such action ai = (Di, πi) ∈

A there is associated a loss L(ai, θ, F (U), F ( ~S)), which in general depends upon all of the

parameters of our model θ ≡ (θQ, {θi}
N
i=1) as well as any relevant user factors F (U) and

document source factors F ( ~S).

In this framework, the expected risk of action ai is given by

R(Di, πi | U ,q, ~S, C) =

∫

Θ

L(Di, πi, θ, F (U), F ( ~S)) p(θ | U ,q, ~S, C) dθ

where the posterior distribution is given by

p(θ | U ,q, ~S, C) ∝ p(θQ |q,U)

N∏

i=1

p(θi |di, ~S)
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The Bayes decision rule is then to choose the action a∗ with the least expected risk:

a∗ = (D∗, π∗) = arg min
D,π

R(D, π | U ,q, ~S, C)

That is, to select D∗ and present D∗ with strategy π∗.

Note that this gives us a very general formulation of retrieval as a decision problem,

which involves searching for D∗ and π∗ simultaneously. The presentation strategy can

be fairly arbitrary in principle, e.g., presenting documents in a certain order, presenting a

summary of the documents, or presenting a clustering view of the documents. Practically,

however, we need to be able to quantify the loss associated with a presentation strategy.

In the following sections, we consider several special cases.

3.4 Set-based Retrieval

Let us consider the case when the loss function does not depend on the presentation strat-

egy, which means that all we care about is to select an optimal subset of documents for

presentation. In this case, the risk minimization framework leads to the following general

set-based retrieval method.

D∗ = arg min
D

R(D | U ,q, ~S, C)

= arg min
D

∫

Θ

L(D, θ, F (U), F ( ~S)) p(θ | U ,q, ~S, C) dθ

The loss function can encode the user’s preferences on the selected subset. Generally,

the loss function will have to do with the relevance status of the documents selected so

that the optimal subset should contain the documents that are most likely relevant. But

other preferences, such as the desired diversity and the desired size of a subset, can also be

captured by an appropriate loss function.

The traditional Boolean retrieval model can be viewed as a special case of this general

set-based retrieval framework, where we have no uncertainty about the query models and

document models (e.g., θQ = q and θi = di), and the following loss function is used:

L(D, θ, F (U), F ( ~S)) =
∑

d∈D

−δ(d,q)
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where δ(d,q) = 1 if and only if document d satisfies the Boolean query q; otherwise

δ(d,q) = −1. This loss function is actually quite general, in the sense that if we allow

δ(d,q) to be any deterministic retrieval rule applied to query q and document d, such that

δ(d,q) > 0 if d is relevant to q, otherwise δ(d,q) < 0, then the loss function would

always result in a retrieval strategy that involves making an independent binary retrieval

decision for each document according to δ. In particular, the function δ can be defined on

a structured query. There are many other ways to specialize the set-based retrieval method,

but exploring them is not the main focus of this thesis.

A major disadvantage of set-based retrieval is that it may be hard for the user to control

the number of results. Often there is either a zero-return (when the query is too constrained)

or an overwhelming number of results (when the query is under-constrained). It is also

hard for the user to locate the most relevant ones without reading through many likely non-

relevant documents. Thus, it may be more useful to rank documents, instead of making a

“hard” retrieval decision on each document.

3.5 Rank-based Retrieval

Let us now consider a different special case of the risk minimization framework, where the

selected documents are presented to the user as a ranked list of documents, so a possible

presentation strategy corresponds to a possible ranking of documents.

Such a ranking strategy has been assumed in most modern retrieval systems and models.

Formally, we may denote an action by ai = (Di, πi), where πi is a complete ordering on

Di. 1 Taking action ai would then mean to present the selected documents in D one by

one in the order given by πi. This means that we can denote an action by a sequence of

documents. So, we will write ai = (dπ1
i
, dπ2

i
, ..., dπk

i
), where πj

i is the index of the document

ranked at the j-th rank according to the permutation mapping πi.

Let us further assume that our actions essentially involve different rankings of docu-

ments in the whole collection C. That is, A = {(C, πi)}, where πi is a permutation over

[1..N ], i.e., a complete ordering of the N documents in C. To simplify our notations, we

will use πi to denote action ai = (C, πi).

1We could allow partial ordering in principle, but here we only consider complete ordering.
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In this case, the optimal Bayes decision is given by the following general ranking rule:

π∗ = arg min
π

R(π|q, C,U , ~S)

= arg min
π

∫

Θ

L(π, θ, F (U), F ( ~S))p(θ|q, C,U , ~S)dθ

where θ = (θQ, {θi}
N
i=1).

We see that the loss function is now discriminating different possible rankings of docu-

ments.

How do we characterize the loss associated with a ranking of documents? Presenting

documents by ranking implies that the user would apply some stopping criterion – the user

would read the documents in order and stop wherever is appropriate. Thus, the actual loss

(or equivalently utility) of a ranking would depend on where the user actually stops. That

is, the utility is affected by the user’s browsing behavior, which we could model through

a probability distribution over all the ranks at which a user might stop. Given this setup,

we can now define the loss for a ranking as the expected loss under the assumed “stopping

distribution.”

Formally, let si denote the probability that the user would stop reading after seeing the

top i documents. We have
∑N

i=1 si = 1. We can treat s1, ..., sN as user factors given by

F (U).

L(π, θ, F (U), F ( ~S)) =

N∑

i=1

sil(π(1 : i), θ, F (U), F ( ~S))

where, l(π(1 : i), θ, F (U), F ( ~S)) is the actual loss that would be incurred if the user

actually views the first i documents according to π. Note that L(π, θ, F (U), F ( ~S)) and

l(π, θ, F (U), F ( ~S)) are different: the former is the expected loss of the ranking under the

user’s “stopping probability distribution,” while the latter is the exact loss of the ranking

when the user actually views the whole list.

Assuming that the user would view the documents in the order of presented, and the

total loss of viewing i documents is the sum of the loss associated with viewing each indi-

vidual document, we have the following reasonable decomposition of the loss:

l(π(1 : i), θ, F (U), F ( ~S)) =
i∑

j=1

l(dπj |dπ1, ..., dπj−1 , θ, F (U), F ( ~S))
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where l(dπj |dπ1, ..., dπj−1, θ, F (U), F ( ~S)) is the conditional loss of viewing dπj given

that the user has already viewed (dπ1, ..., dπj−1).

Putting all these together, we have

π∗ = arg min
π

R(π|q, C,U , ~S)

= arg min
π

N∑

i=1

si

i∑

j=1

∫

Θ

l(dπj |dπ1, ..., dπj−1 , θ, F (U), F ( ~S))p(θ|q, C,U , ~S)dθ

Define the following conditional risk

r(dk|d1, ...,dk−1,q, C,U , ~S)
def
=

∫

Θ

l(dk|d1, ...,dk−1, θ, F (U), F ( ~S))p(θ|q, C,U , ~S)dθ

which can be interpreted as the expected risk of the user’s viewing document dk given

that d1, ...,dk−1 have already been previously viewed. We can write

R(π|q, C,U , ~S) =
N∑

i=1

si

i∑

j=1

r(dπj |dπ1, ..., dπj−1,q, C,U , ~S)

=
N∑

j=1

(
N∑

i=j

si)r(dπj |dπ1, ..., dπj−1,q, C,U , ~S)

This is the general framework for ranking documents within the risk minimization

framework. It basically says that the optimal ranking minimizes the expected conditional

loss (under the stopping distribution) associated with sequentially viewing each document.

We see that the optimal ranking depends on the stopping distribution si. If a user tends

to stop early, the optimal decision would be more affected by the loss associated with the

top ranked documents; otherwise, it would be somehow “equally” affected by the loss as-

sociated with all the documents. Thus, the stopping probability distribution provides a

way to model a “high-precision” (early stopping) preference or a “high-recall” (late stop-

ping) preference. The sequential decomposition of the loss is reasonable when presenting

a ranked list to the user. Clearly, when using other presentation strategies (e.g., clustering),

such decomposition would not be appropriate.

We now consider two different cases of the loss function.
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3.5.1 Independent Loss

Let us first consider the case where the loss of viewing each document is independent of

that of viewing others. That is,

l(dπj |dπ1, ..., dπj−1 , θ, F (U), F ( ~S)) = l(dπj , θ, F (U), F ( ~S))

which means

l(π(1 : i), θ, F (U), F ( ~S)) =
i∑

j=1

l(dπj , θ, F (U), F ( ~S))

In this case, the expected risk for ranking π is

R(π|q, C,U , ~S) =

N∑

i=1

si

i∑

j=1

r(dπj |q, C,U , ~S)

=
N∑

j=1

(
N∑

i=j

si)r(dπj |q, C,U , ~S)

We see that the risk of π is a weighted sum of the risk of viewing each individual

document. As the rank increases, the weight decreases, with the weight on the first rank

being the largest (i.e.,
∑N

i=1 si). Thus, the optimal ranking π∗, independent of {si}, is in

ascending order of the individual risk:

r(d|q, C,U , ~S) =

∫

Θ

l(d, θ, F (U), F ( ~S))p(θ|q, C,U , ~S)dθ (3.1)

This is equivalent to the situation when we assume each possible action is to present

a single document. The loss function l(d, θ, F (U), F ( ~S)) can be interpreted as the loss

associated with presenting/viewing document d. A complete specification of the loss func-

tion will generally force us to make explicit the assumed ranking criterion and notion of

relevance. We now show that this risk function covers several existing retrieval models as

special cases (Lafferty and Zhai, 2001a).

Relevance-based (independent) loss functions

To show that the traditional relevance based probabilistic models are special cases of risk

minimization, we consider the special case where the loss function L is defined through
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Figure 3.2: Generative model of query q, document d, and relevance R.

some binary relevance variable R. Specifically, we assume that for each document di,

there is a hidden binary relevance variable Ri that depends on θQ and θi according to

p(Ri | θQ, θi), which is interpreted as representing the true relevance status of di with re-

spect to q (1 for relevant and 0 for non-relevant) (See Figure 3.2). The random variable Ri

is observed when we have the user’s relevance judgment on di, and is unobserved other-

wise. Let us assume that Ri is not observed for now. Note that because the query model θQ

can encode detailed knowledge about the user U , the distribution of this relevance variable

can be user-specific.

Introducing the variable R into our parameter space, Equation 3.1 becomes:

r(d|q, C,U , ~S) =
∑

R∈{0,1}

∫

Θ

l(d, R, θ, F (U), F ( ~S))p(R | θ)p(θ|q, C,U , ~S)dθ (3.2)

Now let us assume that the loss function l depends on θ only through the relevance

variable R. That is, let l be defined

l(d, R, θ, F (U), F ( ~S)) = l(R) =





c0 if R = 0

c1 if R = 1

where c0 and c1 are two cost constants, and c0 > c1 for any reasonable loss function.

From Equation 3.2, we have

r(d|q, C,U , ~S) = c0 p(R = 0 |q,d) + c1 p(R = 1 |q,d)

= c0 + (c1 − c0) p(R = 1 |q,d)

This means that the risk minimization ranking criterion is now equivalent to ranking

based on p(R = 1 |q,d), i.e., the probability of relevance given q and d. 2 This is

2Since c0 > c1, a decreasing order of r is equivalent to an increasing order or p(R = 1 |q,d).
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the basis of all probabilistic relevance retrieval models. Thus, we have shown that all the

variants of the probabilistic relevance models reviewed in Chapter 2, Section 2.2, are all

special cases of the risk minimization framework. In particular, this would cover both

the classic document generation probabilistic retrieval models and the language modeling

approach, which is based on query generation. See (Lafferty and Zhai, 2001a) for details

of the derivation.

Distance-based (independent) loss functions

We now consider another special case, where the loss function l is proportional to a distance

or similarity measure ∆ between θQ and θD, i.e.,

l(d, θ, F (U), F ( ~S)) = c∆(θQ, θD)

where c is a cost constant. Intuitively, if the models θ, θ′ are close/similar, then ∆(θ, θ′)

should be small.

With this loss function, from Equation 3.1, we have

r(d|q, C,U , ~S) ∝

∫

θQ

∫

θD

∆(θQ, θD) p(θQ |q,U) p(θD |d, ~S)dθD dθQ

This means that the risk minimization ranking criterion is now equivalent to ranking

based on the expected model distance. To make this distance easier to compute, we can

approximate it by its value at the posterior mode of the parameters. That is

r(d|q, C,U , ~S) ∝ ∆(θ̂Q, θ̂D) p(θD = θ̂D |d, ~S) p(θQ = θ̂Q |q,U)

∝ ∆(θ̂D, θ̂Q) p(θD = θ̂D |d, ~S)

where

θ̂Q = arg max
θQ

p(θQ |q,U)

θ̂D = arg max
θD

p(θD |d, ~S)

Note that the factor p(θD = θ̂D |d, ~S) includes prior information about the document,

and in general must be included when comparing the risk for different documents. This is

critical when incorporating query-independent link analysis, or other extrinsic knowledge

about a document. But if we further assume that p(θD = θ̂D |d, ~S) is the same for all d,
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so it does not affect ranking, we will have the following very general distance-based (or

equivalently, similarity-based) probabilistic model:

r(d|q, C,U , ~S) ∝ ∆(θ̂D, θ̂Q)

We can view the vector space model as a special case of this general similarity model, in

which θ̂Q and θ̂D are simply term vector parameters estimated heuristically and the distance

function is the cosine or inner product measure.

3.5.2 Dependent Loss

Independent loss is not really a realistic assumption; the loss of viewing one document

generally depends on the documents already viewed. For example, if the user has already

seen the same document or a similar document, then the document should incur a much

greater loss than if it is completely new to the user. When the independence assumption

does not hold, the complexity of finding the optimal ranking makes the computation in-

tractable. One practical solution is to use a greedy algorithm to construct a sub-optimal

ranking. Specifically, we will “grow” the target ranking by choosing the document at each

rank, starting from the very first rank. Suppose we already have a partially constructed

ranking π(1 : i), and we are now choosing the document at rank i + 1. Let k be a possible

document index to be considered for rank i + 1, and let π(1 : i, k) represent the ordering

(dπ(1:i)1 , ..., dπ(1:i)i , dk). Then, the increase of risk for picking dk at rank i + 1 is

δ(k|π(1 : i)) = R(π(1 : i, k)|q, C,U , ~S) − R(π(1 : i)|q, C,U , ~S)

= si+1(r(dk|dπ(1:i)1 , ..., dπ(1:i)i,q, C,U , ~S) +
i∑

j=1

r(dj|dπ(1:i)1 , ..., dπ(1:i)j−1 ,q, C,U , ~S))

To extend π(1 : i), we should choose

k∗ = arg min
k

δ(k|π(1 : i))

= arg min
k

r(dk|dπ(1:i)1 , ..., dπ(1:i)i ,q, C,U , ~S)
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Thus, at each step, we just need to evaluate

δ
′

(k|π(1 : i)) = r(dk|dπ(1:i)1 , ..., dπ(1:i)i ,q, C,U , ~S) (3.3)

and choose the k that minimizes δ
′

(k|π(1 : i)).

This gives us a general greedy and context-dependent ranking algorithm. With this

algorithm, again, we see that the “optimal” ranking does not depend on the stopping prob-

abilities si. In Chapter 7, we will discuss several special cases of this algorithm, including

the Maximal Marginal Relevance method (MMR) (Carbonell and Goldstein, 1998).

3.6 Discussion

3.6.1 A Decision-Theoretic View of Retrieval

Treating retrieval from a decision-theoretic view is not new. In 1970’s, people were already

studying how to choose and weight indexing terms from a decision-theoretic perspective

(Bookstein and Swanson, 1975; Harter, 1975; Cooper and Maron, 1978). The probability

ranking principle had also been justified based on optimizing the statistical decision about

whether to retrieve a document (Robertson, 1977). However, the action/decision space

considered in all this early work was limited to a binary decision regarding whether to

retrieve a document or regarding whether to assign an index term to a document, and none

of the work gave a complete decision-theoretic formal model for retrieval.

In the risk minimization framework, we have explicitly and formally treated the retrieval

problem as a decision-making problem. The decision problem is a more general one where

the action space, in principle, consists of all the possible actions that the system can take

in response to a query. The scope of the decision space is a significant departure from any

existing decision-theoretic treatment of retrieval. Such a general decision-theoretic view

explicitly suggests that retrieval is modeled as an interactive process that involves cycles

of a user reformulating the query and the system presenting information. We believe that

this is the first time when a user variable (U ) and a document source variable (S) have

been explicitly and formally introduced in a retrieval model. Strictly speaking, U actually

represents a user with a certain information need, thus when the same user enters another

query, it should be treated as a different U (Robertson, 2002). However, it is not hard to

imagine that we could factor out the real user and the retrieval context by using two separate
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variables. Also, we have introduced a separate source variable S for each document, as if

they are all independent. This is, again, to simplify the presentation of the framework;

we can easily put constraints on these source variables, e.g., requiring all of them to be

identical. The explicit introduction of U and S makes it possible for us to consider any

interesting user factors and document source factors when specifying the loss function. For

example, the high-precision versus high-recall preferences can be encoded by assuming a

different stopping probability distribution. Interestingly, as shown formally in this chapter,

when we assume an independent loss function or use a greedy algorithm to approximate the

optimal ranking based on a sequentially additive loss function, the optimal solution does

not depend on the stopping probability distribution! The redundancy among documents can

be captured using a dependent loss function. Other factors such as readability of documents

could also be incorporated as long as we have a model for readability.

Another major difference between the risk minimization framework and the early decision-

theoretic treatment of indexing is that the early work, such as (Cooper and Maron, 1978),

takes the utility in a frequency sense, i.e., the expected utility over all possible future uses,

whereas we take a Bayesian view and consider the utility with respect to the current user.

The decision-theoretic view of retrieval makes it possible to model an interactive re-

trieval process as a sequential decision process, where the user variable U changes over

time. Actually, if we allow the system to accept any user response, rather than just a text

query, as input, then we are really going beyond retrieval toward a more general (interac-

tive) information access system.

3.6.2 Risk Minimization and the Probability Ranking Principle

The Probability Ranking Principle (PRP) has often been taken as the foundation for prob-

abilistic retrieval models. As stated in (Robertson, 1977), the principle is based on the

following two assumptions:

“(a) The relevance of a document to a request is independent of the other doc-

uments in the collection;

(b) The usefulness of a relevant document to a requester may depend on the

number of relevant documents the requester has already seen (the more he has

seen, the less useful a subsequent one may be).”
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Under these assumptions, the PRP provides a justification for ranking documents in

descending order of probability of relevance, which can be evaluated separately for each

document.

From the risk minimization framework, we have derived a general ranking formula

for ranking documents based on an ascending order of the expected risk of a document,

which can also be computed separately for each document. And we have also made two

assumptions:

• Independent loss function: We assume that the loss associated with a user’s viewing

one document does not depend on any other documents that the user may have seen.

• Sequential browsing: We assume that, when presented with a ranked list of docu-

ments, a user would browse through the list sequentially according to the ranking.

It is interesting to note the difference and relationship between these two assumptions

and the two assumptions made in (Robertson, 1977). The sequential browsing assumption

is also made in (Robertson, 1977), though it is not explicitly stated (Robertson, 2002), but

our independent loss assumption is stronger than the independent relevance assumption,

since it is possible to define a dependent loss function based on independent relevance.

Indeed, the second assumption in (Robertson, 1977) implies that the utility (or equivalently,

the loss) of retrieving one document depends on the number of relevant documents that are

ranked above this document, though it does not directly depend on the relevance status of

any specific document. The price for this weaker assumption, however, is that the PRP is no

longer guaranteed to give a ranking that is globally optimal, but only one that is optimal as a

greedy algorithm. This assumption that a greedy algorithm is used to construct the optimal

ranking is implicit in (Robertson, 1977), since the decision problem involves whether to

retrieve one single document rather than choosing a ranking of all documents. In contrast,

under our assumptions, ranking based on the expected risk can be shown to be globally

optimal.

The PRP has several limitations as discussed in, e.g., (Cooper, 1994).

First, the PRP assumes that document usefulness is a binary property, but in reality it

should really be a matter of degree. The independent loss ranking function that we derived

does not have this limitation. Indeed, it is possible to derive the PRP in the risk mini-

mization framework by assuming that the loss function depends only on a binary relevance

variable.
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Second, a ranking of documents by probability of usefulness is not always optimal.

Cooper gave such an example, which essentially shows that the independent relevance

assumption may not be true. Robertson discussed informally two ways to extend the PRP

to address the possible dependency among documents (Robertson, 1977). Both have been

captured in the risk minimization framework. The first is to go from ranking based on

probability of relevance to ranking based on expected utility, which we achieve by using

a loss function in the risk minimization framework. The second is essentially the greedy

algorithm for ranking based on the conditional loss function. Thus, in the risk minimization

framework, we provide a more formalized way to go beyond the PRP.

Indeed, as stated in (Robertson, 1977), “the estimation of probability of relevance for

each document may not be the most appropriate form of prediction. The two main questions

are:

• On the basis of what kinds of information can the system make the prediction?

• How should the system utilize and combine these various kinds of information?

These questions represent, indeed, the central problem of retrieval theory.”

The risk minimization framework provides a formal answer to both of the questions.

The information available to the system includes the user (U ), the document source ( ~S),

the query (q), and the documents (C). A “prediction” consists of selecting a subset of doc-

uments and presenting them in some way. However, one can easily imagine other possible

“predictions.” These factors are combined in a Bayesian decision-theoretic framework to

compute an optimal prediction.

3.6.3 The Notion of Relevance

The risk minimization framework was originally motivated by the need for a general rank-

ing function that allows us to view several different ranking criteria, including the query

likelihood criterion used in the language modeling approach, within the same unified frame-

work. As discussed in the existing literature, the retrieval problem may be decomposed

into three basic components: representation of a query, representation of a document, and

matching the two representations. With an emphasis on the operationality of the framework

and probabilistic modeling, we make three corresponding assumptions: (1) A query can be

viewed as an observation from a probabilistic query model; (2) A document can be viewed

as an observation from a probabilistic document model; (3) The utility of a document with
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respect to a query (i.e., the ranking criterion) is a function of the query model and document

model. The flexibility in choosing different query models and document models is neces-

sary to allow different representations of query and document. The flexibility in choosing

the loss function is necessary in order to cover different notions of relevance and different

ranking strategies.

As a result of these assumptions, the representation problem is essentially equivalent to

that of model estimation, while the matching problem is equivalent to the estimation of the

value of a utility function based on the observed query and document. In Bayesian decision

theory, utility is modeled by a loss function; a loss value can be regarded as a negative

utility value. Thus, we can say that the notion of relevance taken in the risk minimization

framework is essentially expected utility value, which reflects both the user’s preferences

and the uncertainty of the query and document models. Such a notion of relevance is

clearly more general than the traditional notion of independent topical relevance, since

the utility can depend on all the factors that might affect a user’s satisfaction with the

system’s action. For example, such factors may include a user’s perception of redundancy

or special characteristics of documents or the collection. This can be seen formally from

the dependency of the loss function on variables such as U , ~S , and C.

The traditional notion of independent relevance can be obtained as a special case of this

general utility notion by making an independent assumption on the loss function. Under this

assumption, the optimal ranking is to rank documents based on their respective expected

loss/risk. This expected risk essentially gives us an independent measure of relevance of

a document with respect to a query. It is interesting to note that such a measure explicitly

captures two different types of uncertainties. First, it is assumed that the “content” or

“topic” (represented by a model) underlying a document or query is uncertain; given a

document or a query, we can only estimate the model. This uncertainty reflects the system’s

inability to completely understand the underlying content/topic of a query or document, so

it can be called “topic uncertainty.” Second, even if we know the true model for the query

and the document, the relevance value of the document model with respect to the query

model is still uncertain and vague. This uncertainty reflects our incomplete knowledge of

the user’s true relevance criterion, and can be called “relevance uncertainty.” The topic

uncertainty is handled through computing an expectation over all possible models, while

the relevance uncertainty is resolved through the specification of a concrete loss function.

As we make different approximation assumptions to simplify the computation of the

risk minimization formula, we end up resolving these uncertainties in different ways. In
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the general similarity-based model, for example, we resolve the topic uncertainty by pick-

ing the most likely model and rely on a similarity/distance function to measure the rel-

evance uncertainty. The probabilistic relevance model (including the language modeling

approach), however, assumes a binary relevance relationship between a query and a docu-

ment, and addresses the relevance uncertainty and the topic uncertainty within one single

probabilistic model. With a binary relevance relationship, a document is either relevant or

non-relevant to a query, nothing in between, i.e., the different degree of relevance is not

modeled; this is different from the similarity-based model.

3.6.4 Statistical Language Models for Text Retrieval

The use of language models in the risk minimization framework makes the framework

quite different from other general retrieval frameworks such as the inference network; in

particular, it makes the framework more operational. Indeed, an operational document

ranking formula can always be derived by specifying three components: (1) The query

model p(q | θQ) and p(θQ | U); (2) The document model p(d | θD) and p(θD | S); (3) The

loss function. A different specification of these components leads to a different operational

model.

It is thus clear that if there is any parameter involved in the retrieval formula derived

from the risk minimization framework, then it would be from either the loss function or the

language models for documents and queries. Parameters associated with the loss function

generally represent a user’s retrieval preferences, and thus should be set by the user in some

meaningful way. For example, the level of redundancy tolerance could be such a parameter,

and it must be set by a user, since different users may have different preferences; a high-

recall preference may imply more tolerance of redundancy. On the other hand, parameters

associated with the language models, in principle, can be estimated automatically. For

example, in the following chapters, we will see parameters that control the smoothing of

language models. Because such parameters are involved in statistical language models, it is

possible to exploit statistical estimation methods to estimate the values of these parameters,

thus providing a principled way for setting retrieval parameters.

Being able to estimate retrieval parameters is a major advantage of using language

models for information retrieval. In Chapter 5, we will show that a new retrieval formula

based on a two-stage language model smoothing method can achieve excellent retrieval

performance through the completely automatic setting of retrieval/smoothing parameters.
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Another advantage of using language models is that we can expect to achieve better

retrieval performance through the more accurate estimation of a language model or through

the use of a more reasonable language model. Thus, we will have more guidance on how to

improve a retrieval model than in a traditional model. This will be demonstrated by another

new retrieval model, in which feedback documents are exploited to improve the estimation

of the query language model. We will show that the improved query model does indeed

lead to improved retrieval performance in general.

Finally, language models are also useful for modeling the sub-topic structure of a doc-

ument and the redundancy between documents. These will also be explored in the thesis as

a way to achieve a non-traditional ranking of documents, e.g., to minimize redundancy or

maximize sub-topic coverage.
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Chapter 4

Smoothing in the Language Modeling

Approach

Document language models and query language models are the building blocks of the risk

minimization framework. In this chapter, we study the important problem of language

model smoothing, focusing on the smoothing of document language models.

4.1 Introduction

The term smoothing refers to the adjustment of the maximum likelihood estimator of a

language model so that it will be more accurate. At the very least, it is required to not

assign a zero probability to unseen words. When estimating a language model based on a

limited amount of text, such as a single document, smoothing of the maximum likelihood

model is extremely important. Indeed, many language modeling techniques are centered

around the issue of smoothing. In the language modeling approach to retrieval, smoothing

accuracy is directly related to retrieval performance. Yet most existing research work has

assumed one method or another for smoothing, and the smoothing effect tends to be mixed

with that of other heuristic techniques. There has been no direct evaluation of different

smoothing methods, and it is unclear how retrieval performance is affected by the choice of

a smoothing method and its parameters. Thus our research questions are (1) how sensitive

is retrieval performance to the smoothing of a document language model? (2) how should

a smoothing method be selected, and how should its parameters be chosen?

We compare several of the most popular smoothing methods that have been developed
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in speech and language processing, and study the behavior of each method.

Our study leads to several interesting and unanticipated conclusions. We find that the

retrieval performance is highly sensitive to the setting of smoothing parameters. In some

sense, smoothing is as important to this new family of retrieval models as term weighting

is to the traditional models. Interestingly, the sensitivity pattern and query verbosity are

found to be highly correlated. The performance is more sensitive to smoothing for verbose

queries than for keyword queries. Verbose queries also generally require more aggressive

smoothing to achieve optimal performance. This suggests that smoothing plays two differ-

ent roles in the query likelihood ranking method. One role is to improve the accuracy of

the estimated document language model, while the other is to accommodate the generation

of common and non-informative words in a query, i.e., to explain the possible noise in a

query.

The rest of the chapter is organized as follows. In Section 4.2 we discuss the language

modeling approach and the connection between smoothing and some heuristics used in

traditional retrieval models. In Section 4.3, we describe the three smoothing methods we

evaluated. The major experiments and results are presented in Sections 4.4 through 4.7. In

Section 4.8, we then present more clarification experiment results to support the dual role

of smoothing and a two-stage smoothing method. Section 4.9 presents conclusions and

further work.

4.2 The Language Modeling Approach

The basic idea of the language modeling approach to information retrieval can be described

as follows. We assume that a query q is “generated” by a probabilistic model based on a

document d. Given a query q = q1q2...qn and a document d = d1d2...dm, we are inter-

ested in estimating the conditional probability p(d | q), i.e., the probability that d generates

the observed q. After applying the Bayes’ formula and dropping a document-independent

constant (since we are only interested in ranking documents), we have

p(d | q) ∝ p(q | d)p(d)

As discussed in (Berger and Lafferty, 1999), the righthand side of the above equation has an

interesting interpretation, where, p(d) is our prior belief that d is relevant to any query and

p(q | d) is the query likelihood given the document, which captures how well the document

“fits” the particular query q.
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In the simplest case, p(d) is assumed to be uniform, and so does not affect document

ranking. This assumption has been taken in most existing work (Berger and Lafferty, 1999;

Ponte and Croft, 1998; Ponte, 1998; Hiemstra and Kraaij, 1998; Song and Croft, 1999).

In other cases, p(d) can be used to capture non-textual information, e.g., the length of a

document or links in a web page, as well as other format/style features of a document. In

our study, we assume a uniform p(d) in order to focus on the effect of smoothing. See

(Miller et al., 1999) for an empirical study that exploits simple alternative priors.

With a uniform prior, the retrieval model reduces to the calculation of p(q | d), where

language modeling comes in. The language model used in most previous work is the uni-

gram model.1 This is the multinomial model which assigns the probability

p(q | d) =
∏

i

p(qi | d)

Clearly, the retrieval problem is now essentially reduced to a unigram language model

estimation problem. In this paper we focus on unigram models only; see (Miller et al.,

1999; Song and Croft, 1999) for some explorations of bigram and trigram models.

On the surface, the use of language models appears fundamentally different from vec-

tor space models with TF-IDF weighting schemes, because the unigram language model

only explicitly encodes term frequency—there appears to be no use of inverse document

frequency weighting in the model. However, there is an interesting connection between the

language model approach and the heuristics used in the traditional models. This connection

has much to do with smoothing, and an appreciation of it gives insight into the language

modeling approach.

Most smoothing methods make use of two distributions, a model ps(w |d) used for

“seen” words that occur in the document, and a model pu(w |d) for “unseen” words that do

not. The probability of a query q can be written in terms of these models as follows, where

c(w;d) denotes the count of word w in d.

log p(q |d) =
∑

i

log p(qi |d)

=
∑

i:c(qi;d)>0

log ps(qi |d) +
∑

i:c(qi;d)=0

log pu(qi |d)

=
∑

i:c(qi;d)>0

log
ps(qi |d)

pu(qi |d)
+
∑

i

log pu(qi |d)

1The work (Ponte and Croft, 1998) adopts something similar to, but slightly different from the

standard unigram model.
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The probability of an unseen word is typically taken as being proportional to the general

frequency of the word, e.g., as computed using the document collection. So let us assume

that pu(qi | d) = αd p(qi | C), where αd is a document-dependent constant and p(qi | C) is

the collection language model. Now we have

log p(q |d) =
∑

i:c(qi;d)>0

log
ps(qi |d)

αd p(qi | C)
+ n log αd +

∑

i

log p(qi | C)

where n is the length of the query. Note that the last term on the righthand side is indepen-

dent of the document d, and thus can be ignored in ranking.

Now we can see that the retrieval function can actually be decomposed into two parts.

The first part involves a weight for each term common to the query and document (i.e.,

matched terms) and the second part only involves a document-dependent constant that is

related to how much probability mass will be allocated to unseen words, according to the

particular smoothing method used. The weight of a matched term qi can be identified as the

logarithm of ps(qi |d)
αd p(qi | C)

, which is directly proportional to the document term frequency, but

inversely proportional to the collection frequency. The computation of this general retrieval

formula can be carried out very efficiently, since it only involves a sum over the matched

terms.

Thus, the use of p(qi | C) as a reference smoothing distribution has turned out to play

a role very similar to the well-known IDF. The other component in the formula is just the

product of a document-dependent constant and the query length. We can think of it as

playing the role of document length normalization, which is another important technique

to improve performance in traditional models. Indeed, αd should be closely related to the

document length, since one would expect that a longer document needs less smoothing and

thus a smaller αd; thus a long document incurs a greater penalty than a short one because

of this term.

The connection just derived shows that the use of the collection language model as

a reference model for smoothing document language models implies a retrieval formula

that implements TF-IDF weighting heuristics and document length normalization. This

suggests that smoothing plays a key role in the language modeling approaches to retrieval.

A more restrictive derivation of the connection was given in (Hiemstra and Kraaij, 1998).
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Method ps(w | d) αd Parameter

Jelinek-Mercer (1 − λ) pml(w | d) + λ p(w | C) λ λ

Dirichlet
c(w; d) + µ p(w | C)∑

w c(w; d) + µ

µ∑
w c(w; d) + µ

µ

Absolute discount
max(c(w; d)− δ, 0)∑

w c(w; d)
+

δ |d |u
|d |

p(w | C)
δ|d|u
|d|

δ

Table 4.1: Summary of the three primary smoothing methods compared in this paper.

4.3 Smoothing Methods

As described above, our goal is to estimate p(w |d), a unigram language model based on a

given document d. The simplest method is the maximum likelihood estimate, simply given

by relative counts

pml(w |d) =
c(w; d)∑
w c(w; d)

However, the maximum likelihood estimator will generally underestimate the probability

of any word unseen in the document, and so the main purpose of smoothing is to assign

a non-zero probability to the unseen words and improve the accuracy of word probability

estimation in general.

Many smoothing methods have been proposed, mostly in the context of speech recog-

nition tasks (Chen and Goodman, 1998). In general, all smoothing methods try to discount

the probabilities of the words seen in the text, and to then assign the extra probability

mass to the unseen words according to some “fallback” model. For information retrieval, it

makes sense, and is very common, to exploit the collection language model as the fallback

model. Following (Chen and Goodman, 1998), we assume the general form of a smoothed

model to be the following:

p(w |d) =

{
ps(w |d) if word w is seen

αd p(w | C) otherwise

where ps(w |d) is the smoothed probability of a word seen in the document, p(w | C) is the

collection language model, and αd is a coefficient controlling the probability mass assigned

to unseen words, so that all probabilities sum to one. In general, αd may depend on d.
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Indeed, if ps(w |d) is given, we must have

αd =
1 −

∑
w:c(w;d)>0 ps(w | d)

1 −
∑

w:c(w;d)>0 p(w | C)

Thus, individual smoothing methods essentially differ in their choice of ps(w |d).

A smoothing method may be as simple as adding an extra count to every word (called

additive, or Laplace smoothing), or more sophisticated as in Katz smoothing, where words

with different counts are treated differently. However, because a retrieval task typically re-

quires efficient computations over a large collection of documents, our study is constrained

by the efficiency of the smoothing method. We selected three representative methods that

are popular and relatively efficient to implement. We excluded some well-known methods,

such as Katz smoothing (Katz, 1987) and Good-Turing estimation (Good, 1953), because

of the efficiency constraint. 2 Although the methods we evaluated are simple, the issues that

they bring to light are relevant to more advanced methods. The three methods are described

below.

The Jelinek-Mercer method. This method involves a linear interpolation of the maxi-

mum likelihood model with the collection model, using a coefficient λ to control the influ-

ence of each model.

pλ(w |d) = (1 − λ) pml(w |d) + λ p(w | C)

Thus, this is a simple mixture model (but we preserve the name of the more general Jelinek-

Mercer method which involves deleted interpolation estimation of linearly interpolated n-

gram models).

Bayesian smoothing using Dirichlet priors. A language model is a multinomial distri-

bution, for which the conjugate prior for Bayesian analysis is the Dirichlet distribution with

parameters

(µp(w1 | C), µp(w2 | C), . . . , µp(wn | C))

Thus, the model is given by

pµ(w |d) =
c(w; d) + µ p(w | C)∑

w c(w; d) + µ

The Laplace method is a special case of this technique.

2They involve the count of words with the same frequency in a document, which is expensive to

compute.
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Absolute discounting. The idea of the absolute discounting method is to lower the prob-

ability of seen words by subtracting a constant from their counts (Ney et al., 1994). It is

similar to the Jelinek-Mercer method, but differs in that it discounts the seen word prob-

ability by subtracting a constant instead of multiplying it by (1-λ). The model is given

by

pδ(w |d) =
max(c(w; d) − δ, 0)∑

w c(w; d)
+ σp(w | C)

where δ ∈ [0, 1] is a discount constant and σ = δ |d |u/|d |, so that all probabilities sum to

one. Here |d |u is the number of unique terms in document d, and |d | is the total count of

words in the document, so that |d | =
∑

w c(w; d).

The three methods are summarized in Table 4.1 in terms of ps(w |d) and αd in the

general form. It is easy to see that a larger parameter value means more smoothing in all

cases.

Retrieval using any of the three methods can be implemented very efficiently when the

smoothing parameter is given in advance. The α’s can be pre-computed for all documents at

index time. The weight of a matched term w can be computed easily based on the collection

language model p(w | C), the query term frequency c(w; q), the document term frequency

c(w; d), and the smoothing parameters. The scoring complexity for a query q is O(k |q |),

where |q | is the query length, and k is the average number of documents in which a query

term occurs. It is as efficient as scoring using a TF-IDF model.

4.4 Experimental Setup

Our goal is to study the behavior of individual smoothing methods as well as to compare

different methods. As is well-known, the performance of a retrieval algorithm may vary

significantly according to the testing collection used. It is generally desirable to have larger

collections and more queries. We use the following five databases from TREC, including

three of the largest testing collections for ad hoc retrieval, i.e., the official TREC7 ad hoc,

TREC8 ad hoc, and TREC8 web track testing collections: (1) The Financial Times on disk

4, (2) FBIS on disk 5, (3) The Los Angeles Times on disk 5, (4) Disk 4 and disk 5 minus

CR, used for the TREC7 and TREC8 ad hoc tasks, and (5) the TREC8 Web data. The

characteristics of the databases are summarized in in Table 4.2.

The queries we use are topics 351–400 (used for the TREC7 ad hoc task), and topics

401–450 (used for the TREC8 ad hoc and web tasks). In order to study the possible in-
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Collection size #term #doc avgDocLen maxDocLen

FBIS 370MB 318,025 130,471 516 139,709

FT 446MB 259,685 209,097 394 16,021

LA 357MB 272,880 131,896 505 24,653

TREC7&8 1.36GB 747,991 527,094 474 154,322

WEB 1.26GB 1,761,265 227,724 980 332,383

Query set min#term avg#term max#term

Trec7-Title 1 2.5 4

Trec7-Long 31 57.5 106

Trec8-Title 1 2.44 4

Trec8-Long 23 51.66 98

Table 4.2: Statistics of the five text collections used in our study (top), together with the queries used for

testing (bottom).

teraction of smoothing and query length/type, we use two different versions of each set of

queries: (1) title only, and (2) the long version (title + description + narrative). The lengths

of different kinds of queries are summarized in Table 4.2. The title queries are mostly two

or three key words, whereas the long queries have whole sentences and are much more

verbose.

In all our experiments, the only tokenization applied is stemming with a Porter stemmer.

We indexed all the words in the language, since we do not want to be biased by any artificial

choice of stop words and we believe that the effects of stop word removal should be better

achieved by exploiting language modeling techniques.

In Table 4.3 we give the labels used for all possible retrieval testing collections, based

on the databases and queries described above.

For each smoothing method and on each testing collection, we experiment with a wide

range of parameter values. In each run, the smoothing parameter is set to the same value

across all queries and documents. Throughout this chapter, we follow the standard TREC

evaluation procedure for ad hoc retrieval, i.e., for each topic, the performance figures are

computed based on the top 1,000 documents in the retrieval results (Voorhees and Har-
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Document Queries

collection 351-400 (Trec7) 401-450 (Trec8)

Title Long Title Long

FBIS fbis7T fbis7L fbis8T fbis8L

FT ft7T ft7L ft8T ft8L

LA la7T la7L la8T la8L

TREC7&8 trec7T trec7L trec8T trec8L

WEB N/A web8T web8L

Table 4.3: Labels used for test collections.

man, 2001). To study the behavior of an individual smoothing method, we select a set

of representative parameter values and examine the sensitivity of non-interpolated average

precision and recall to the variation in these values. To compare smoothing methods, we

first optimize the performance of each method using the non-interpolated average preci-

sion as the optimization criterion, and then compare the best runs from each method. The

optimal parameter is determined by searching over the entire parameter space.3

4.5 Behavior of Individual Methods

In this section, we study the behavior of each smoothing method. We first derive the ex-

pected influence of the smoothing parameter on the term weighting and document length

normalization implied by the corresponding retrieval function. Then we examine the sensi-

tivity of retrieval performance by plotting the non-interpolated precision and recall at 1,000

documents against the different values of the smoothing parameter.

Jelinek-Mercer smoothing. When using the Jelinek-Mercer smoothing method with a

fixed λ, we see that the parameter αd in our ranking function (see Section 4.2) is the same

for all documents, so the length normalization term is a constant. This means that the

score can be interpreted as a sum of weights over each matched term. The term weight is

log(1 + (1 − λ)pml(qi|d)/(λp(qi | C))). Thus, a small λ means less smoothing and more

emphasis on relative term weighting. When λ approaches zero, the weight of each term will

be dominated by the term log(1/λ), which is term-independent, so the scoring formula will

be dominated by the coordination level matching, which is simply the count of matched

3The search is performed in an iterative way, such that each iteration is more focused than the

previous one. We stop searching when the improvement in average precision is less than 1%.
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Figure 4.1: Performance of Jelinek-Mercer smoothing.

terms. This means that documents that match more query terms will all be ranked higher

than those that match fewer terms, implying a conjunctive interpretation of the query terms.

On the other hand, when λ approaches one, the weight of a term will be approximately

1 + (1 − λ)pml(qi|d)/(λp(qi | C)), since log(1 + x) ≈ x when x is very small. Thus, the

scoring is essentially based on
∑

i pml(qi|d)/p(qi | C). This means that the score will be

dominated by the term with the highest weight, implying a disjunctive interpretation of the

query terms.

The plots in Figure 4.1 show the average precision and recall for different settings of λ,

for both large and small collections. It is evident that both precision and recall are much

more sensitive to λ for long queries than for title queries. The web collection, however, is

an exception, where performance is very sensitive to smoothing even for title queries. For

title queries, the retrieval performance tends to be optimized when λ is small (around 0.1),
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Figure 4.2: Optimal λ range for Trec8T (left) and Trec8L (right) in Jelinek-Mercer smoothing. The line

shows the optimal value of λ and the bars are the optimal ranges.

whereas for long queries, the optimal point is generally higher, usually around 0.7. The

difference in the optimal λ value suggests that long queries need more smoothing, and less

emphasis is placed on the relative weighting of terms. The left end of the curve, where λ is

very close to zero, should be close to the performance achieved by treating the query as a

conjunctive Boolean query, while the right end should be close to the performance achieved

by treating the query as a disjunctive query. Thus the shape of the curves in Figure 4.1

suggests that it is appropriate to interpret a title query as a conjunctive Boolean query,

while a long query is more close to a disjunctive query, which makes sense intuitively.

The performance sensitivity can be seen more clearly from the per-topic plot of the

optimal range of λ shown in Figure 4.2. The optimal range is defined as the maximum

range of λ values that deviate from the optimal average precision by no more than 0.01.

Dirichlet priors. When using the Dirichlet prior for smoothing, we see that the αd in

the retrieval formula is document-dependent. It is smaller for long documents, so it can

be interpreted as a length normalization component that penalizes long documents. The

weight for a matched term is now log(1 + c(qi; d)/(µp(qi | C))). Note that in the Jelinek-

Mercer method, the term weight has a document length normalization implicit in ps(qi | d),

but here the term weight is affected by only the raw counts of a term, not the length of

the document. After rewriting the weight as log(1 + |d|pml(qi | d)/(µp(qi | C))) we see that

|d|/µ is playing the same role as (1 − λ)/λ, but it differs in that it is document-dependent.

The relative weighting of terms is emphasized when we use a smaller µ. Just as in Jelinek-

Mercer, it can also be shown that when µ approaches zero, the scoring formula is dominated
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by the count of matched terms. As µ gets very large, however, it is more complicated than

Jelinek-Mercer due to the length normalization term, and it is not obvious what terms would

dominate the scoring formula.
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Figure 4.3: Performance of Dirichlet smoothing.

The plots in Figure 4.3 show the average precision and recall for different settings of the

prior sample size µ. It is again clear that both precision and recall are much more sensitive

to µ for long queries than for title queries, especially when µ is small. However, the optimal

value of µ does not seem to be much different for title queries and long queries. It still tends

to be slightly larger for long queries, but the difference is not as large as in Jelinek-Mercer.

The optimal prior µ seems to vary from collection to collection, though in most cases, it is

around 2,000. The tail of the curves is generally flat.

Absolute discounting. The term weighting behavior of the absolute discounting method

is a little more complicated. Obviously, here αd is also document sensitive. It is larger
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for a document with a flatter distribution of words, i.e., when the count of unique terms

is relatively large. Thus, it penalizes documents with a word distribution highly concen-

trated on a small number of words. The weight of a matched term is log(1 + (c(qi; d) −

δ)/(δ|d|up(qi | C))). The influence of δ on relative term weighting depends on |d|u and

p(· | C), in the following way. If |d|u p(w | C) > 1, a larger δ will make term weights flat-

ter, but otherwise, it will actually make the term weight more skewed according to the

count of the term in the document. Thus, a larger δ will amplify the weight difference for

rare words, but flatten the difference for common words, where the “rarity” threshold is

p(w | C) < 1/|d|u.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

p
re

c
is

io
n

delta

Precision of Absolute Discounting (Small Collections)

fbis7T
fbis8T

ft7T
ft8T
la7T
la8T

fbis7L
fbis8L

ft7L
ft8L
la7L
la8L

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

re
c
a
ll

delta

Recall of Absolute Discounting (Small Collections)

fbis7T
fbis8T

ft7T
ft8T
la7T
la8T

fbis7L
fbis8L

ft7L
ft8L
la7L
la8L

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0 0.2 0.4 0.6 0.8 1

p
re

c
is

io
n

delta

Precision of Absolute Discounting (Large Collections)

trec7T
trec8T
web8T
trec7L
trec8L
web8L

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

re
c
a
ll

delta

Recall of Absolute Discounting (Large Collections)

trec7T
trec8T
web8T
trec7L
trec8L
web8L

Figure 4.4: Performance of absolute discounting.

The plots in Figure 4.4 show the average precision and recall for different settings of

the discount constant δ. Once again it is clear that both precision and recall are much more

sensitive to δ for long queries than for title queries. Similar to Bayesian smoothing, but

different from Jelinek-Mercer smoothing, the optimal value of δ does not seem to be much
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different for title queries and long queries. Indeed, the optimal value of δ tends to be around

0.7. This is true not only for both title queries and long queries, but also across all testing

collections.

The behavior of each smoothing method indicates that, in general, the performance of

long verbose queries is much more sensitive to the choice of smoothing parameters than

that of concise title queries. Inadequate smoothing hurts the performance more severely in

the case of long and verbose queries. This suggests that smoothing plays a more important

role for long verbose queries than for concise title queries. One interesting observation is

that the web collection behaves quite differently than other databases for Jelinek-Mercer

and Dirichlet smoothing, but not for absolute discounting. In particular, the title queries

performed much better than the long queries on the web collection when using Dirichlet

prior. Further analysis and evaluation are needed to understand this observation.

4.6 Interpolation vs. Backoff

The three methods that we have described and tested so far belong to the category of

interpolation-based methods, in which we discount the counts of the seen words and the

extra counts are shared by both the seen words and unseen words. One problem with this

approach is that a high count word may actually end up with more than its actual count in

the document, if the fallback model gives the word a very high probability. An alternative

smoothing strategy is “backoff.” Here the main idea is to trust the maximum likelihood

estimate for high count words, and to discount and redistribute mass only for the less com-

mon terms. As a result, it differs from the interpolation strategy in that the extra counts

are primarily used for unseen words. The Katz smoothing method is a well-known backoff

method (Katz, 1987). The backoff strategy is very popular in speech recognition tasks.

Following (Chen and Goodman, 1998), we implemented a backoff version of all three

interpolation-based methods, which is derived as follows. Recall that in all three methods,

ps(w) is written as the sum of two parts: (1) a discounted maximum likelihood estimate,

which we denote by pdml(w); and (2) a collection language model term, i.e., αd p(w | C).

If we use only the first term for ps(w) and renormalize the probabilities, we will have

a smoothing method that follows the backoff strategy. It is not hard to show that if an

interpolation-based smoothing method is characterized by ps(w) = pdml(w) + αd p(w | C)

and pu(w) = αd p(w | C), then the backoff version is given by p
′

s(w) = pdml(w) and

p
′

u(w) = αd p(w | C)
1−

�
i:c(wi;d)>0 p(wi | C)

. The form of the ranking formula and the smoothing parame-
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Figure 4.5: Interpolation versus backoff for Jelinek-Mercer (top), Dirichlet smoothing (middle), and absolute

discounting (bottom).

ters remain the same. It is easy to see that the αd in the backoff version differs from that in

the interpolation version by a document-dependent term which further penalizes long doc-

uments. The weight of a matched term due to backoff smoothing has a much wider range of

values ((−∞, +∞)) than that for interpolation ((0, +∞)). Thus, analytically, the backoff

version tends to do term weighting and document length normalization more aggressively

than the corresponding interpolated version.
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The backoff strategy and the interpolation strategy are compared for all three methods

using the FBIS database and topics 401-450 (i.e., fbis8T and fbis8L). The results are shown

in Figure 4.5. We find that compared with interpolation, the backoff performance is more

sensitive to the smoothing parameter, especially for Jelinek-Mercer and the Dirichlet prior.

The difference is clearly less significant in the absolute discounting method, and this may be

due to its lower upper bound ( |d|u
|d|

) for the original αd, which restricts the aggressiveness in

penalizing long documents. In general, the backoff strategy yields worse performance than

the interpolation strategy, and only comes close to it when αd approaches zero, which is

expected, since analytically, we know that when αd approaches zero, the difference between

the two strategies will diminish.

4.7 Comparison of Methods

To compare the three smoothing methods, we select a best run (in terms of non-interpolated

average precision ) for each interpolation-based method on each testing collection and com-

pare the non-interpolated average precision, precision at 10 documents, and precision at 20

documents of the selected runs. The results are shown in Table 4.4 and Table 4.5 for titles

and long queries respectively.

For title queries, there seems to be a clear order among the three methods in terms of

all three precision measures: the Dirichlet prior is better than absolute discounting, which

is better than Jelinek-Mercer. Indeed, the Dirichlet prior has the best average precision

in all cases but one, and its overall average performance is significantly better than that

of the other two methods according to the Wilcoxin test. It performed extremely well

on the Web collection, significantly better than the other two. This good performance is

relatively insensitive to the choice of µ. Indeed, many non-optimal Dirichlet runs are also

significantly better than the optimal runs for Jelinek-Mercer and absolute discounting.

For long queries, there is also a partial order. On average, Jelinek-Mercer is better than

the Dirichlet prior and absolute discounting by all three precision measures, but its average

precision is almost identical to that of Dirichlet and only the precision at 20 documents

is significantly better than the other two methods according to the Wilcoxin test. Both

Jelinek-Mercer and the Dirichlet prior clearly have a better average precision than absolute

discounting.

When comparing each method’s performance on different types of queries in Table 4.6,

we see that the three methods all perform better on long queries than on title queries (except
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Collection Method Parameter Avg. Prec. Prec@10 Prec@20

JM λ = 0.05 0.172 0.284 0.220

fbis7T Dir µ = 2, 000 0.197 0.282 0.238
Dis δ = 0.8 0.177 0.284 0.233

JM λ = 0.5 0.199 0.263 0.195

ft7T Dir µ = 4, 000 0.236 0.283 0.213
Dis δ = 0.8 0.215 0.271 0.196

JM λ = 0.4 0.179 0.238 0.205

la7T Dir µ = 2, 000 0.220* 0.294* 0.233
Dis δ = 0.8 0.194 0.268 0.216

JM λ = 0.01 0.306 0.344 0.282

fbis8T Dir µ = 500 0.334 0.367 0.292
Dis δ = 0.5 0.319 0.363 0.288

JM λ = 0.3 0.310 0.359 0.283

ft8T Dir µ = 800 0.324 0.367 0.297
Dis δ = 0.7 0.326 0.367 0.296

JM λ = 0.2 0.231 0.264 0.211

la8T Dir µ = 500 0.258 0.271 0.216

Dis δ = 0.8 0.238 0.282 0.224

JM λ = 0.3 0.167 0.366 0.315

trec7T Dir µ = 2, 000 0.186* 0.412 0.342
Dis δ = 0.7 0.172 0.382 0.333

JM λ = 0.2 0.239 0.438 0.378

trec8T Dir µ = 800 0.256 0.448 0.398

Dis δ = 0.6 0.245 0.466 0.406

JM λ = 0.01 0.243 0.348 0.293

web8T Dir µ = 3, 000 0.294* 0.448* 0.374*
Dis δ = 0.7 0.242 0.370 0.323

JM — 0.227 0.323 0.265

Average Dir — 0.256* 0.352* 0.289*
Dis — 0.236 0.339 0.279

Table 4.4: Comparison of smoothing methods on title queries. The best performance is shown in bold. The

cases where the best performance is significantly better than the next best according to the Wilcoxin signed

rank test at the level of 0.05 are marked with a star (*). JM denotes Jelinek-Mercer, Dir denotes the Dirichlet

prior, and Dis denotes smoothing using absolute discounting.

that Dirichlet prior performs worse on long queries than title queries on the web collection).

The improvement in average precision is statistically significant for all three methods ac-

cording to the Wilcoxin test. But the performance increase is most significant for Jelinek-

Mercer. Indeed, Jelinek-Mercer is the worst for title queries, but the best for long queries.

It appears that Jelinek-Mercer is much more effective when queries are long and more

verbose.

Since the Trec7&8 database differs from the combined set of FT, FBIS, LA by only

the Federal Register database, we can also compare the performance of a method on the
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Collection Method Parameter Avg. Prec. Prec@10 Prec@20

JM λ = 0.7 0.224 0.339 0.279
fbis7L Dir µ = 5, 000 0.232 0.313 0.249

Dis δ = 0.6 0.185 0.321 0.259

JM λ = 0.7 0.279 0.331 0.244

ft7L Dir µ = 2, 000 0.281 0.329 0.248
Dis δ = 0.8 0.249 0.317 0.236

JM λ = 0.7 0.264 0.350 0.286
la7L Dir µ = 2, 000 0.265 0.354 0.285

Dis δ = 0.7 0.251 0.340 0.279

JM λ = 0.5 0.341 0.349 0.283

fbis8L Dir µ = 2, 000 0.347 0.349 0.290
Dis δ = 0.7 0.343 0.356 0.274

JM λ = 0.8 0.375 0.427 0.320
ft8L Dir µ = 2, 000 0.347 0.380 0.297

Dis δ = 0.8 0.351 0.398 0.309

JM λ = 0.7 0.290* 0.296 0.238
la8L Dir µ = 500 0.277 0.282 0.231

Dis δ = 0.6 0.267 0.287 0.222

JM λ = 0.8 0.222 0.476 0.401
trec7L Dir µ = 3, 000 0.224 0.456 0.383

Dis δ = 0.7 0.204 0.460 0.396

JM λ = 0.8 0.265 0.504 0.434
trec8L Dir µ = 2, 000 0.260 0.484 0.4

Dis δ = 0.8 0.248 0.518 0.428

JM λ = 0.5 0.259 0.422 0.348
web8L Dir µ = 10, 000 0.275 0.410 0.343

Dis δ = 0.6 0.253 0.414 0.333

JM — 0.280 0.388 0.315*
Average Dir — 0.279 0.373 0.303

Dis — 0.261 0.379 0.304

Table 4.5: Comparison of smoothing methods on long queries. The best performance is shown in bold. The

cases where the best performance is significantly better than the next best according to the Wilcoxin signed

rank test at the level of 0.05 are marked with a star (*). JM denotes Jelinek-Mercer, Dir denotes the Dirichlet

prior, and Dis denotes smoothing using absolute discounting.

three smaller databases with that on the large one. We find that the non-interpolated average

precision on the large database is generally much worse than that on the smaller ones, and is

often similar to the worst one among all three small databases. However, the precision at 10

(or 20) documents on large collections is significantly better than that on small collections.

For both title queries and long queries, the relative performance of each method tends to

remain the same when we merge the databases. Interestingly, the optimal setting for the

smoothing parameters seems to stay within a similar range when databases are merged.

The strong correlation between the effect of smoothing and the type of queries is some-
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Smoothing Query avg. pr pr@10doc pr@20doc

Title 0.227 0.323 0.265

Jelinek-Mercer Long 0.280 0.388 0.315

improve *23.3% *20.1% *18.9%

Title 0.256 0.352 0.289

Dirichlet Long 0.279 0.373 0.303

improve *9.0% 6.0% 4.8%

Title 0.236 0.339 0.279

Absolute Disc. Long 0.261 0.379 0.304

Improve *10.6% 11.8% 9.0%

Table 4.6: Comparing long queries with short queries. Star (*) indicates the improvement is statistically

significant according to the Wilcoxin signed rank test at the level of 0.05.

how unexpected. If the purpose of smoothing is only to improve the accuracy in estimating

a unigram language model based on a document, then the effect of smoothing should be

more affected by the characteristics of documents and the collection, and should be rela-

tively insensitive to the type of queries. But the results above suggest that this is not the

case. Indeed, the effect of smoothing clearly interacts with some of the query factors. To

understand whether it is the length or the verbosity of the long queries that is responsible

for such interactions, we design experiments to further examine these two query factors

(i.e., the length and verbosity). The details are reported in the next section.

4.8 The Dual Role of Smoothing

In this section, we report the results of further experiments with four different types of

queries – short keyword, long keyword, short verbose, and long verbose. We compare how

they each behave with respect to smoothing to clarify which query factor has caused the

strong interaction with smoothing. We will show that the high sensitivity of retrieval perfor-

mance to smoothing is caused by the presence of common words in the query, independent

of the query length. This suggests that smoothing plays two different roles – to make the

estimated document language model more accurate and to “explain” the non-informative

words in the query. Accordingly, we propose a two-stage smoothing strategy that decouples

these two roles of smoothing, and thus facilitates the setting of smoothing parameters.

The four types of queries used in our experiments are generated from TREC topics 1-

150. These 150 topics are special because they all have a “concept” field, which contains

a list of keywords related to the topic. These keywords serve well as the “long keyword”

version of our queries. Figure 4.6 shows an example of such a topic (topic 52).
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Title: South African Sanctions

Description: Document discusses sanctions against South Africa.

Narrative:

A relevant document will discuss any aspect of South African sanctions,

such as: sanctions declared/proposed by a country against the South

African government in response to its apartheid policy, or in response to

pressure by an individual, organization or another country; international

sanctions against Pretoria imposed by the United Nations; the effects of

sanctions against S. Africa; opposition to sanctions; or, compliance with

sanctions by a company. The document will identify the sanctions instituted

or being considered, e.g., corporate disinvestment, trade ban, academic

boycott, arms embargo.

Concepts:

1. sanctions, international sanctions, economic sanctions

2. corporate exodus, corporate disinvestment, stock divestiture, ban on

new investment, trade ban, import ban on South African diamonds,

U.N. arms embargo, curtailment of defense contracts, cutoff of

nonmilitary goods, academic boycott, reduction of cultural ties

3. apartheid, white domination, racism

4. antiapartheid, black majority rule

5. Pretoria

Figure 4.6: Example topic, number 52. The keywords are used as the “long keyword” version of our queries.
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Figure 4.7: Sensitivity of average precision for Jelinek-Mercer smoothing (left) and Dirichlet prior smoothing

(right) on AP88-89.

We used all of the 150 topics and generated the four versions of queries in the following

way:

1. short keyword: Using only the title of the topic description (usually a noun phrase)4

4Occasionally, a few function words were manually excluded, in order to make the queries purely

keyword-based.
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Figure 4.8: Sensitivity of average precision for Jelinek-Mercer smoothing (left) and Dirichlet prior smoothing

(right) on WSJ87-92.
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Figure 4.9: Sensitivity of average precision for Jelinek-Mercer smoothing (left) and Dirichlet prior smoothing

(right) on ZF1-2.

2. short verbose: Using only the description field (usually one sentence).

3. long keyword: Using the concept field (about 28 keywords on average).

4. long verbose: Using the title, description and the narrative field (more than 50 words

on average).

Thus, the verbose queries consist of one or more natural language sentences, whereas

the keyword queries consist of one of more content-carrying noun phrases.

The relevance judgments available for these 150 topics are mostly on the documents in

TREC disk 1 and disk 2. In order to observe any possible difference in smoothing caused

by the types of documents, we partition the documents in disks 1 and 2 and use the three

largest subsets of documents, accounting for a majority of the relevant documents for our

queries. The three databases are AP88-89, WSJ87-92, and ZIFF1-2, each about 400MB–
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500MB in size. The queries without relevance judgments for a particular database were

ignored for all of the experiments on that database. Four queries do not have judgments

on AP88-89, and 49 queries do not have judgments on ZIFF1-2. Preprocessing of the

documents is minimized; only a Porter stemmer is used, and no stop words are removed.

Combining the four types of queries with the three databases gives us a total of 12 different

testing collections.

To better understand the interaction between different query factors and smoothing, we

studied the sensitivity of retrieval performance to smoothing on each of the four different

types of queries. For both Jelinek-Mercer and Dirichlet smoothing, on each of our 12

testing collections we vary the value of the smoothing parameter and record the retrieval

performance at each parameter value. The results are plotted in Figures 4.7, 4.8, and 4.9.

In each case, we plotted how the average precision varies according to different values of

the smoothing parameter.

From these figures, we easily see that the two types of keyword queries behave similarly,

as do the two types of verbose queries. The retrieval performance is generally much less

sensitive to smoothing in the case of the keyword queries than for the verbose queries,

whether long or short. Therefore, the sensitivity is much more correlated with the verbosity

of the query than with the length of the query. Indeed, the short verbose queries are clearly

more sensitive than the long keyword queries for Jelinek-Mercer smoothing. In general,

insufficient smoothing is more harmful for verbose queries than for keyword queries. This

suggests that smoothing is responsible for “explaining” the common words in a query.

We also see a consistent order of performance among the four types of queries. As

expected, long keyword queries are the best and short verbose queries are the worst. Long

verbose queries are worse than long keyword queries, but better than short keyword queries,

which are better than the short verbose queries. This appears to suggest that queries with

only (presumably good) keywords tend to perform better than more verbose queries. Also,

longer queries are generally better than short queries.

The interaction patterns between query verbosity and smoothing that we observed in

all these experiments suggest that smoothing actually plays two different roles in the query

likelihood retrieval method. One role is to improve the accuracy of the estimated documents

language model, and can be referred to as the estimation role. The other is to “explain” the

common and non-informative words in a query, and can be referred to as the role of query

modeling. Indeed, this second role is explicitly implemented with a two-state HMM in

(Miller et al., 1999). This role is also well-supported by the connection of smoothing and
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IDF weighting derived in Section 4.2. Intuitively, more smoothing would decrease the

“discrimination power” of common words in the query, because all documents will rely

more on the collection language model to generate the common words. The need for query

modeling may also explain why the backoff smoothing methods have not worked as well as

the corresponding interpolation-based methods – it is because they do not allow for query

modeling.

For any particular query, the observed effect of smoothing is likely a combination of

both roles of smoothing. However, for a concise keyword query, the effect can be ex-

pected to be much more dominated by the estimation role, since such a query has few or

no non-informative common words. On the other hand, for a verbose query, the role of

query modeling will have more influence, for such a query generally has a high ratio of

non-informative common words. Thus, the results reported in Section 4.7 show that the

Dirichlet prior method performs the best on concise title queries, suggesting that it is good

for the estimation role, and that Jelinek-Mercer performs the worst for title queries, but the

best for long verbose queries, suggesting that Jelinek-Mercer is good for the role of query

modeling. Intuitively this also makes sense, as the Dirichlet prior adapts to the length of

documents naturally, which is desirable for the estimation role, while in Jelinek-Mercer,

we set a fixed smoothing parameter across all documents, which is necessary for query

modeling.

These observations on the dual role of smoothing empirically suggest a two-stage smooth-

ing method, which decouples the two different roles. In the first stage, a document language

model is smoothed using the Dirichlet prior (to implement the estimation role). In the sec-

ond stage, it is further smoothed using Jelinek-Mercer (to implement the query modeling

role). Since Jelinek-Mercer smoothing can be regarded as a simple mixture model, the sec-

ond stage is essentially to introduce a generative mixture model for queries, which involves

mixing the document language model with a “query background” language model that can

“generate” the common words in a query. In Chapter 5, we formally derive this two-stage

smoothing method from the risk minimization framework, and study it in more detail.

4.9 Conclusions and Further Work

We have studied the problem of language model smoothing in the context of the query

likelihood retrieval method. By rewriting the query likelihood retrieval formula using a

smoothed document language model, we derived a general retrieval formula where the
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smoothing of the document language model can be interpreted in terms of several heuristics

used in traditional models, including TF-IDF weighting and document length normaliza-

tion. We then examined three popular interpolation-based smoothing methods (the Jelinek-

Mercer method, Dirichlet priors, and absolute discounting), as well as their backoff ver-

sions, and evaluated them using several large and small TREC retrieval testing collections.

We found that the retrieval performance was generally sensitive to the smoothing parame-

ters, suggesting that an understanding and appropriate setting of smoothing parameters is

very important in the language modeling approach.

While our results are not completely conclusive as to which smoothing method is the

best, we have made several interesting observations that help us understand each of the

methods better. On all the test collections, the Jelinek-Mercer method generally performs

well, but tends to perform much better for long queries than for title queries. The optimal

value of λ has a strong correlation with the query type. For concise title queries, the optimal

value is generally very small (around 0.1), while for long verbose queries, the optimal

value is much larger (around 0.7). The Dirichlet prior method generally performs well, but

tends to perform much better for concise title queries than for long verbose queries. The

optimal value of µ appears to have a wide range (500-10000) and usually is around 2,000.

A large value is “safer,” especially for long verbose queries. The absolute discounting

method performs well on concise title queries, but not very well on long verbose queries.

Interestingly, there is little variation in the optimal value for δ (generally around 0.7 in all

cases).

While used successfully in speech recognition, the backoff strategy did not work well

for retrieval in our evaluation. All interpolated versions perform significantly better than

their backoff versions.

A very interesting observation is that the effect of smoothing is strongly correlated

with the type of queries. The performance is generally more sensitive to smoothing for

verbose queries than for keyword queries. Verbose queries also generally require more

aggressive smoothing to achieve optimal performance. This suggests that smoothing plays

two different roles in the query likelihood retrieval method. One role is to improve the

accuracy of the estimated document language model (estimation role), while the other is to

accommodate generation of non-informative common words in the query (query modeling

role). The results further suggest that the Dirichlet prior may be good for the estimation

role, while Jelinek-Mercer may be good for the query modeling role. This then motivates us

to propose a two-stage smoothing strategy that combines the Dirichlet prior with Jelinek-
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Mercer and explicitly decouples the two roles of smoothing (the Dirichlet prior for the

estimation role and Jelinek-Mercer for the second). This two-stage smoothing method is

further studied in more detail in the next chapter.

There are several interesting future research directions. First, we could evaluate other

more sophisticated smoothing algorithms, such as Good-Turing smoothing (Good, 1953),

Katz smoothing (Katz, 1987), Kneser-Ney smoothing (Kneser and Ney, 1995)). Given the

success of the Dirichlet prior smoothing method, it would also be interesting to explore

smoothing with a hierarchical Bayesian model, e.g., as explored in (MacKay and Peto,

1995). Second, it is very important to study how to set the smoothing parameters automat-

ically. In all the reported experiments, we exhaustively search the space of the parameter

values in order to study sensitivity. In practice, this would be impossible, and we need to

have guidance on how to set them. In general, it would be very interesting to explore the

possibility of training/estimating these parameters using the query, the collection, and the

past relevance judgments that are available to us. In the next chapter, we present method for

estimating parameters in a two-stage smoothing method, which is one step in this important

direction.
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Chapter 5

Two-stage Language Models

The query likelihood retrieval method discussed in the previous chapter is based on the

original language modeling approach proposed in (Ponte and Croft, 1998). It involves a

two-step scoring procedure. First, estimate a document language model for each document,

and, second, compute the query likelihood using the estimated document language model

directly. In this chapter, we derive a family of two-stage language models using the risk

minimization framework. These models generalize this two-step procedure by introducing

a query generative model (Zhai and Lafferty, 2002). As a result, in the second step, instead

of using the estimated document model directly, we use the query generative model, which

is based on the estimated document model, to compute the query likelihood.

From the viewpoint of smoothing, we can regard such a two-stage language model-

ing approach as involving a two-stage smoothing of the original document model. The

first-stage smoothing happens when we estimate the document language model, and the

second stage is implemented through the query generative model. The two-stage smooth-

ing method suggested in the previous chapter can be easily obtained as a special case of the

two-stage language models where we use a Bayesian approach to estimate the document

language model and a mixture model for query generation.

An important advantage of the two-stage language models is that they explicitly capture

the different influences of the query and document collection on smoothing. It is known

that the optimal setting of retrieval parameters generally depends on both the document col-

lection and the query; decoupling the influence of the query from that of documents makes

it easier to estimate smoothing parameters independently according to different documents

and different queries. We present methods for estimating the two parameters involved in the
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two-stage smoothing method automatically. Extensive evaluation shows that the two-stage

smoothing method, with automatically estimated parameter settings, can achieve excellent

retrieval performance that is either very close to, or better than, the ideal retrieval perfor-

mance using single-stage smoothing methods.

5.1 Introduction

It is well known that the optimal settings of retrieval parameters generally depend on both

the document collection and the query. For example, specialized term weighting for short

queries was studied in (Kwok and Chan, 98). Salton and Buckley studied many differ-

ent term weighting methods used in the vector space retrieval model; their recommended

methods strongly depend on the type of the query and the characteristics of the document

collection (Salton and Buckley, 1988). It has been a great challenge to find the optimal

settings of retrieval parameters automatically and adaptively accordingly to the character-

istics of the collection and queries, and empirical parameter tuning seems to be inevitable

in order to achieve good retrieval performance. This is evident in the large number of

parameter tuning experiments reported in virtually every paper published in the TREC pro-

ceedings (Voorhees and Harman, 2001).

The need for empirical parameter tuning is due in part from the fact that, in traditional

retrieval models, such as the vector space model (Salton et al., 1975a) and the BM25 re-

trieval model (Robertson et al., 1995), the retrieval parameters have almost always been

introduced heuristically. The lack of a direct modeling of queries and documents makes

it hard for these models to incorporate, in a principled way, parameters that adequately

address special characteristics of queries and documents. For example, the vector space

model assumes that a query and a document are both represented by a term vector. How-

ever, the mapping from a query or a document to such a vector can be somehow arbitrary.

Thus, because the model “sees” a document through its vector representation, there is no

principled way to model the length of a document. As a result, heuristic parameters must

be used (see, e.g., the pivot length normalization method (Singhal et al., 1996)). Similarly,

in the BM25 retrieval formula, there is no direct modeling of queries, making it necessary

to introduce heuristic parameters to incorporate query term frequencies (Robertson et al.,

1995).

In order to be able to set parameters automatically, it is necessary to model queries

and documents directly, and this is where the risk minimization retrieval framework has a
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significant advantage over these traditional models, since it has the capability of modeling

both queries and documents directly through statistical language models. Although a query

and a document are similar in the sense that they are both text, they do have important

differences. For example, queries are much shorter and often contain just a few keywords.

Thus, from the viewpoint of language modeling, a query and a document require different

language models. Practically, separating a query model from a document model has the

important advantage of allowing different retrieval parameters for queries and documents

when appropriate. In general, using statistical language models allows us to introduce all

parameters through probabilistic models, and thus makes it possible to set the parameters

automatically through statistical estimation methods.

In this chapter, we explore two-stage language models as a special case of the risk

minimization framework, and show that we can achieve excellent retrieval performance

through completely automatic parameter setting. In the rest of the chapter, we first derive a

family of two-stage language models for retrieval using the risk minimization framework,

and show that the specific two-stage smoothing method suggested in the previous chapter

can be easily obtained as a special case. We then present methods for estimating the two

parameters involved. Specifically, we propose a leave-one-out method for estimating the

first-stage Dirichlet parameter and make use of a mixture model for estimating the second-

stage interpolation parameter. Finally, we present experimental results on five different

databases and four types of queries, and show that the two-stage smoothing method with

the proposed parameter estimation method consistently gives retrieval performance that is

close to, or better than, the best results of using a single smoothing method, achievable

through an exhaustive parameter search.

The proposed two-stage smoothing method represents a step toward the goal of setting

database-specific and query-specific retrieval parameters automatically, without the need

for tedious experimentation. The effectiveness and robustness of the approach, along with

the fact that there is no ad hoc parameter tuning involved, make it very useful as a solid

baseline approach for the evaluation of retrieval models.

5.2 Derivation

In this section, we derive a general two-stage language model retrieval formula using the

risk minimization retrieval framework presented in Chapter 3.

We start with the following risk ranking function with an independent loss function:
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r(d|q, C,U , ~S) =

∫

Θ

l(d, θ, F (U), F ( ~S))p(θ|q, C,U , ~S)dθ

=

∫

ΘQ

∫

ΘD

l(d, θQ, θD, F (U), F ( ~S))p(θQ |q,U)p(θD |d, ~S) dθD dθQ

Let us now consider the following special loss function, indexed by a small constant ε,

lε(d, θQ, θD, F (U), F ( ~S)) =

{
0 if ∆(θQ, θD) ≤ ε

c otherwise

where ∆ : ΘQ × ΘD → � is a model distance function, and c is a constant positive cost.

Thus, the loss is zero when the query model and the document model are close to each

other, and is c otherwise. Using this loss function, we obtain the following risk:

r(d|q, C,U , ~S) = c −

∫

ΘD

∫

θQ∈Sε(θD)

p(θQ |q,U) p(θD |d, ~S) dθQ dθD

where Sε(θD) is the sphere of radius ε centered at θD in the parameter space.

Now, assuming that p(θD |d, ~S) is concentrated on an estimated value θ̂D, we can ap-

proximate the value of the integral over ΘD by the integrand’s value at θ̂D. Note that the

constant c can be ignored for the purpose of ranking. Thus, using A ∼ B to mean that A

and B have the same effect for ranking, we have that

r(d|q, C,U , ~S)
rank
≈ −

∫

θQ∈Sε(θ̂D)

p(θQ |q,U) dθQ

When θQ and θD belong to the same parameter space (i.e., ΘQ = ΘD) and ε is very small,

the value of the integral can be approximated by the value of the function at θ̂D times a

constant (the volume of Sε(θ̂D)), and the constant can again be ignored for the purpose of

ranking. That is,

r(d|q, C,U , ~S)
rank
≈ −p(θ̂D |q,U)

Therefore, using this risk we will be actually ranking documents according to p(θ̂D |q,U),

i.e., the posterior probability that the user used the estimated document model as the query

model. Applying Bayes’ formula, we can rewrite this as

p(θ̂D |q,U) ∝ p(q | θ̂D,U)p(θ̂D | U) (5.1)
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Equation 5.1 is our basic two-stage language model retrieval formula. Similar to the

model discussed in (Berger and Lafferty, 1999), this formula has the following interpreta-

tion: p(q | θ̂D,U) captures how well the estimated document model θ̂D explains the query,

whereas p(θ̂D | U) encodes our prior belief that the user would use θ̂D as the query model.

While this prior could be exploited to model different document sources or other document

characteristics, in this chapter we assume a uniform prior.

The generic two-stage language model can be refined by specifying a concrete model

p(d | θD, ~S) for generating documents and a concrete model p(q | θQ,U) for generating

queries; different specifications lead to different retrieval formulas. If the query gener-

ation model is the simplest unigram language model, we have the scoring procedure of

the original language modeling approach proposed in (Ponte and Croft, 1998); that is, we

first estimate a document language model and then compute the query likelihood using the

estimated model. In the next section, we present the generative models that lead to the

two-stage smoothing method suggested in the previous chapter.

5.3 The Two-Stage Smoothing Method

Let d = d1d2...dn denote a document, q = q1q2...qm denote a query, and V = {w1, ..., w|V |}

denote the words in the vocabulary. We consider the case where both θQ and θD are param-

eters of unigram language models, i.e., multinomial distributions over words in V .

The simplest generative model of a document is just the unigram language model θD,

a multinomial. That is, a document would be generated by sampling words independently

according to p(· | θD), or

p(d | θD, ~S) =
n∏

i=1

p(di | θD)

Each document is assumed to be generated from a potentially different model as assumed

in the general risk minimization framework. Given a particular document d, we want to

estimate θD. We use a Dirichlet prior on θD with parameters α = (α1, α2, . . . , α|V |), given

by

Dir (θ |α) =
Γ(
∑|V |

i=1 αi)∏|V |
i=1 Γ(αi)

|V |∏

i=1

θαi−1
i

The parameters αi are chosen to be αi = µ p(wi | ~S) where µ is a parameter and p(· | ~S) is

the “collection language model,” which can be estimated based on a set of documents from
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a source ~S . The posterior distribution of θD is given by

p(θD |d, ~S) ∝
∏

w∈V

p(w | θD)c(w,d)+µp (w | ~S)−1

and so is also Dirichlet, with parameters αi = c(wi,d) + µp(wi | ~S). Using the fact that

the Dirichlet mean is αj/
∑

k αk, we have that

pµ(w | θ̂D) =

∫

θD

p(w | θD)p(θD |d, ~S)dθD

=
c(w, d) + µ p(w | ~S)

|d| + µ

where |d| =
∑

w∈V c(w,d) is the length of d. This is the Dirichlet prior smoothing method

described in (Zhai and Lafferty, 2001b).

We now consider the query generation model. The simplest model is again the unigram

language model θQ, which will result in a retrieval model with the Dirichlet prior as the sin-

gle smoothing method. However, as observed in (Zhai and Lafferty, 2001b), such a model

will not be able to explain the interactions between smoothing and the type of queries. In

order to capture the common and non-discriminative words in a query, we assume that a

query is actually composed of two types of words – “topic words” and “general English

words” with possible overlaps. That is, a query is assumed to be generated by sampling

words from a two-component mixture of multinomials, with one component being θQ and

the other some query background language model p(· | U). That is,

p(q | θQ, λ,U) =

m∏

i=1

((1 − λ)p(qi | θQ) + λp(qi | U))

where λ is a parameter, roughly indicating the amount of “noise” in q.

Combining our estimate of θD with this query model, we have the following retrieval

scoring formula for document d and query q.

p(q | θ̂D, λ,U) =

=

m∏

i=1

(
(1 − λ)p(qi | θ̂D) + λ p(qi | U)

)

=
m∏

i=1

(
(1 − λ)

c(qi, d) + µ p(qi | ~S)

|d| + µ
+ λ p(qi | U)

)

In this formula, the document language model is effectively smoothed in two steps. First, it

is smoothed with a Dirichlet prior, and second, it is interpolated with a query background
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model. This is precisely the two-stage smoothing method suggested in the previous chapter,

where the goal is to decouple the dual role of smoothing.

The query background model p(· | U) is in general different from the collection lan-

guage model p(· | ~S), and can be estimated using query logs of the current user U or similar

users. With insufficient data to estimate p(· | U), however, we can assume that p(· | ~S)

would be a reasonable approximation of p(· | U). In this form, the two-stage smooth-

ing method is essentially a combination of Dirichlet prior smoothing with Jelinek-Mercer

smoothing (Zhai and Lafferty, 2001b). Indeed, it is very easy to verify that when λ = 0,

we end up with just the Dirichlet prior smoothing, whereas when µ = 0, we will have

Jelinek-Mercer smoothing. Since the combined smoothing formula still follows the gen-

eral smoothing scheme discussed in (Zhai and Lafferty, 2001b), it can be implemented very

efficiently.

In the next section, we empirically explore the parameter space of the two-stage smooth-

ing method, and examine whether the method is effective in decoupling the estimation role

and the query modeling role of smoothing.

5.4 Empirical Exploration of Two-Stage Smoothing

In the experiments reported in the previous chapter, we observed strong interactions be-

tween the type of queries and the sensitivity of performance to smoothing. The idea of

the two-stage smoothing method is to factor out the influence of the query on smoothing

through a second-stage interpolation smoothing. To see whether we can expect to achieve

this goal empirically, we explore the parameter space of the two-stage smoothing method,

and examine the sensitivity of retrieval performance to the two smoothing parameters. As

we will see, the two-stage smoothing method does help reveal more consistent sensitivity

patterns through decoupling the two roles.

The experimental setup is the same as in the previous chapter, Section 4.4, but we only

used the three largest collections.

Figure 5.1 shows how two-stage smoothing reveals a more regular sensitivity pattern

than the single-stage smoothing methods studied earlier in this paper. The three figures

show how the precision varies when we change the prior value in Dirichlet smoothing on

three different testing collections respectively (Trec7 ad hoc task, Trec8 ad hoc task, and
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Figure 5.1: Two-stage smoothing reveals a more consistent sensitivity pattern of Dirichlet prior for both title

queries and long queries. Each figure is for a different collection: Trec7 (top), Trec8 (middle), and web

testing collection (bottom).

Trec8 web task). 1 The three lines in each figure correspond to (1) Dirichlet smoothing

with title queries; (2) Dirichlet smoothing with long queries; and (3) Two-stage smoothing

1These are exactly the same as trec7T, trec7L, trec8T, trec8L, web8T, and web8L described in Section 4.4,

but are labeled differently here in order to clarify the effect of two-stage smoothing.
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(Dirichlet + Jelinek-Mercer, λ = 0.7) with long queries. 2 The first two are thus based on a

single smoothing method (Dirichlet prior), while the third uses two-stage smoothing with

a near optimal λ.

In each of the figure, we see that

1. If Dirichlet smoothing is used alone, the sensitivity pattern for long queries is very

different from that for title queries; the optimal setting of the prior is clearly different

for title queries than for long queries.

2. In two-stage smoothing, with the help of Jelinek-Mercer smoothing in the second

role, the sensitivity pattern of Dirichlet smoothing is much more similar for title

queries and long queries, i.e., it becomes much less sensitive to the type/length of

queries. By factoring out the second role of smoothing, we see a more consistent and

stable behavior for Dirichlet smoothing, which is filling the first role. Indeed, when

comparing the Trec7 figure (top) and the Trec8 (middle), which involve different

topic sets but the same document collection, we can see that the optimal value for

the prior parameter on both figures is generally between 500 and 2000, despite the

difference in queries.

3. Given a topic set, the same λ value can stabilize the sensitivity pattern of Dirichlet

smoothing on different collections. The Trec8 figure (middle) and web figure (bot-

tom) involve the same topic set but different collections. In comparing them, note

that the same λ value (0.7) can cause the Dirichlet prior to behave similarly for both

title queries and long queries on each of the two collections.

4. The optimal value of the prior parameter in the Dirichlet prior method is generally

sensitive to the collection. This can be seen by comparing the Trec8 figure (middle)

with the web figure (bottom) and noticing that the position of the optimal prior is

different.

It should also be noted in these figures that with the help from the Jelinek-Mercer method

in two-stage smoothing, Dirichlet smoothing can achieve a higher precision on long queries

than is attainable with single-stage smoothing alone. Of course, this may be because

Jelinek-Mercer is just a better method for long queries, but the two-stage results are of-

ten also better than the best result of using Jelinek-Mercer alone (see Table 5.4).

20.7 is a near optimal value of λ when the Jelinek-Mercer method is applied alone.
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It is worth mentioning that on the web data (Figure 5.1, bottom), the title queries per-

form much better than the long queries with Dirichlet prior smoothing alone. But with two-

stage smoothing, the long queries perform similarly to the title queries, though still slightly

worse. This is in contrast to the clear improvement of long queries over title queries in the

Trec8 collection (Figure 5.1, middle). The topic set is exactly the same for both figures, so

this can only be explained by the difference in the collections. One possibility is that the ex-

tra words introduced in the long queries are not so useful for retrieval on the web database

as on the Trec8 database. For example, it may be that the extra words are more ambiguous

on the web database, but are used with only the “right” sense on the Trec8 database. More

analysis is needed to fully understand this.

Collection Best Jelinek-Mercer Best Dirichlet (near optimal) Two-Stage

TREC7L 0.222(λ=0.8) 0.224 (µ=3,000) 0.229(λ=0.7, µ=800)

TREC8L 0.265(λ=0.8) 0.260(µ=2,000) 0.268(λ=0.7, µ=800)

WEB8L 0.259(λ=0.5) 0.275(µ=10,000) 0.292(λ=0.7, µ=3,000)

TREC7T 0.167(λ=0.3) 0.186 (µ=2,000) 0.184(λ=0, µ=800)

TREC8T 0.239(λ=0.2) 0.256(µ=800) 0.256(λ=0, µ=800)

WEB8T 0.243(λ=0.01) 0.294(µ=3,000) 0.294(λ=0, µ=3,000)

Table 5.1: Comparison of the average precision between near optimal two-stage smoothing and the best one-

stage smoothing. Setting λ = 0.7 for long queries, and λ = 0 for title queries, and setting µ = 800 for

Trec7/Trec8 database, and µ = 3, 000 for the web database, the two-stage smoothing performs as well as the

best single-stage smoothing method, often better.

On the surface, we now have two parameters, rather than one, to worry about. However,

as these results show, the two parameters λ and µ can be interpreted in a meaningful way.

λ is intended to be a query-related parameter, and should be smaller if the query is more

verbose and long. It can be roughly interpreted as modeling the expected “noise” in the

query. µ is a document-related parameter, which controls the amount of probability mass

assigned to unseen words. The optimal value of µ can be expected to be relatively stable for

a fixed document collection, while the optimal setting of Jelinek-Mercer λ can be expected

to be more correlated with the query. This makes it possible to optimize µ based on only

the document collection without depending on queries and similarly optimize λ primarily

based on queries. In the next section, we present methods for estimating µ and λ from data.
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5.5 Parameter Estimation for Two-Stage Smoothing

5.5.1 Estimating µ

The purpose of Dirichlet prior smoothing in the first stage is to address the estimation

bias due to the fact that a document is an extremely small amount of data with which

to estimate a unigram language model. More specifically, it is to discount the maximum

likelihood estimate appropriately and assign non-zero probabilities to words not observed

in a document; this is the usual role of language model smoothing. A useful objective

function for estimating smoothing parameters is the “leave-one-out” likelihood, that is, the

sum of the log-likelihoods of each word in the observed data computed in terms of a model

constructed based on the data with the target word excluded (“left out”). This criterion

is essentially based on cross-validation, and has been used to derive several well-known

smoothing methods including the Good-Turing method (Ney et al., 1995).

Formally, let C = {d1, d2, ..., dN} be the collection of documents. Using our Dirichlet

smoothing formula, the leave-one-out log-likelihood can be written as

`
−1(µ | C) =

N∑

i=1

∑

w∈V

c(w, di) log

(
c(w, di) − 1 + µp(w|C)

|di| − 1 + µ

)

Thus, our estimate of µ is

µ̂ = arg max
µ

`
−1(µ|C)

which can be easily computed using Newton’s method. The update formula is

µ(k+1) = µ(k) − g(µ(k))/g′(µ(k))

where the first and second derivatives of `
−1 are given by

g(µ) = ` ′
−1(µ) =

N∑

i=1

∑

w∈V

c(w, di)((|di| − 1)p(w | C) − c(w, di) + 1)

(|di| − 1 + µ)(c(w, di) − 1 + µp(w | C))

and

g′(µ) = ` ′′
−1(µ) =

−
N∑

i=1

∑

w∈V

c(w, di)((|di| − 1)p(w | C) − c(w, di) + 1)2

(|di| − 1 + µ)2(c(w, di) − 1 + µp(w | C))2
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Collection avg. doc length max. doc length vocab. size µ̂

AP88-89 446 2678 254872 640.643

WSJ87-92 435 8980 260259 792.001

ZF1-2 455 53753 447066 719.637

Table 5.2: Estimated values of µ along with database characteristics.

Since g′ ≤ 0, as long as g′ 6= 0, the solution will be a global maximum. In our experiments,

starting from value 1.0 the algorithm always converges. Each iteration goes through all

the terms in all the documents, so the complexity for each iteration is O(NL), where N

is the total number of documents in the collection and L is the average number of distinct

terms in a document. This is not a big concern, since the estimation of µ can be done at the

indexing time, independent of queries.

The estimated values of µ for three databases are shown in Table 5.2. There is no clear

correlation between the database characteristics shown in the table and the estimated value

of µ.

5.5.2 Estimating λ

With the query model hidden, the query likelihood is

p(q |λ,U) =
∫

ΘQ

m∏

i=1

((1 − λ)p(qi | θQ) + λp(qi | U)) p(θQ | U) dθQ

In order to estimate λ, we approximate the query model space by the set of all N estimated

document language models in our collection. That is, we will approximate the integral with

a sum over all the possible document language models estimated on the collection, or

p(q |λ,U) =

N∑

i=1

πi

m∏

j=1

((1 − λ)p(qj | θ̂di
) + λp(qj | U))

where πi = p(θ̂di
| U), and p(· | θ̂di

) is the smoothed unigram language model estimated

based on document di using the Dirichlet prior approach.

Thus, we assume that the query is generated from a mixture of N document models

with unknown mixing weights {πi}
N
i=1. With this setup, the parameters λ and {πi}

N
i=1 can
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be estimated using the EM algorithm. The update formulas are

π
(k+1)
i =

π
(k)
i

∏m
j=1((1 − λ(k)) p(qj | θ̂di

) + λ(k)p(qj | U))
∑N

i′=1 π
(k)
i′

∏m

j=1((1 − λ(k))p(qj | θ̂di′
) + λ(k)p(qj | U))

and

λ(k+1) =

1

m

N∑

i=1

π
(k+1)
i

m∑

j=1

λ(k)
p(qj | U)

(1 − λ(k))p(qj | θ̂di
) + λ(k)p(qj | U)

Note that leaving {πi}
N
i=1 free is important, because what we really want is not to maxi-

mize the likelihood of generating the query from every document in the collection. Instead,

we want to find a λ that can maximize the likelihood of the query given relevant documents.

With {πi}
N
i=1 free to estimate, we would indeed allocate higher weights to documents that

predict the query well in our likelihood function; presumably, these documents are also

more likely to be relevant. Unfortunately, if we intend to find the exact maximum likeli-

hood estimate of all {πi}
N
i=1, we will end up assigning the entire probability mass to one

single document. This is because, for any given λ, there always exists a smoothed doc-

ument model that gives the highest likelihood for the query, thus setting πi = 1 for this

document always gives a higher overall likelihood than otherwise. Clearly this is not de-

sirable and empirically it leads to non-optimal performance. To solve this problem, we

initialize {πi}
N
i=1 with a uniform distribution and λ with 0.5, and allow early stop in the

EM algorithm (after 10 iterations in our experiments). This strategy allows us to obtain

a relatively smooth estimate of {πi}
N
i=1 and works well empirically. While the number of

EM iterations to carry out becomes another parameter that needs to be set, the performance

is not very sensitive to the exact number of iterations, as long as it is not too large (e.g.,

smaller than 20); actually, it is often “safer” to use a smaller number of iterations, in the

sense that the performance would not be too much different from the optimal performance.

Each EM iteration involves the computation of the query likelihood for each document,

so the complexity is about the same as scoring all the documents. With the inverted index,

the complexity for each iteration is O(M + N), where M is the total number of inverted

index entries under all query terms, and N is the total number of documents in the collec-

tion. Since we have to estimate a different λ for each query, the computational complexity

is a concern in practice. One possible way to improve the efficiency is to use only a small

number of documents of the highest πi’s, since the estimated λ value is mainly determined
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by these documents. How to develop more efficient methods for estimating λ would be a

topic for further research.

5.6 Effectiveness of the Parameter Estimation Methods

To evaluate the two parameter estimation methods for the two-stage smoothing method,

we tested it on the same 12 testing collections as we used for studying the query factors

(see Section 4.8). These collections represent a good diversity in the types of queries and

documents. However, they are all homogeneous databases and are relatively small. In order

to further test the robustness of the two-stage smoothing method, we also tested it on three

other much bigger and more heterogeneous TREC collections. These are the official ad hoc

retrieval collections from TREC-7, TREC-8, and the TREC-8 small web track, and are the

same as what we use in the experiments described in Section 4.4. 3 Since these topics do

not have a concept field, we have only three types of queries: short-keyword, short-verbose,

and long-verbose. Again, we perform minimum pre-processing – only a Porter stemmer is

used, and no stop words are removed.

For each testing collection, we compare the retrieval performance of the estimated

two-stage smoothing parameters with the best results achievable using a single smoothing

method. The best results of a single smoothing method are obtained through an exhaustive

search on its parameter space, so they are the ideal performance of the smoothing method.

In all our experiments, we used the collection language model to approximate the query

background model.

The results are shown in Table 5.3 and Table 5.4 for the small collections and large col-

lections, respectively. The four types of queries are abbreviated with the two initial letters

(e.g., SK for Short-Keyword). The standard TREC evaluation procedure for ad hoc re-

trieval is followed, and we have considered four performance measures – non-interpolated

average precision, initial precision (i.e., precision at 0.0 recall), and precision at 10 and 20

documents. In all the results, we see that the performance of two-stage smoothing with the

estimated parameter values is consistently very close to or better than the best performance

of a single method by all three measures. Only in a few cases, is the difference statistically

significant (indicated with an asterisk).

To quantify the sensitivity of the retrieval performance to the smoothing parameter for

3We label these collections differently here to make the labeling consistent with that in Table 5.3.
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Collection Query Method Avg. Prec. (Median) Init. Prec. Prec@10 Prec@20

Best JM 0.203 (0.194) 0.573 0.310 0.283

SK Best Dir 0.230 (0.224) 0.623 0.356 0.332
Two-Stage 0.222* 0.611 0.358 0.317

Best JM 0.368 (0.362) 0.767 0.509 0.469

LK Best Dir 0.376 (0.368) 0.755 0.506 0.475

AP88-89 Two-Stage 0.374 0.754 0.505 0.480
Best JM 0.188 (0.158) 0.569 0.309 0.272

SV Best Dir 0.209 (0.195) 0.609 0.338 0.304

Two-Stage 0.204 0.598 0.339 0.305
Best JM 0.288 (0.263) 0.711 0.430 0.391

LV Best Dir 0.298 (0.285) 0.704 0.453 0.403
Two-Stage 0.292 0.689 0.444 0.400

Best JM 0.194 (0.188) 0.629 0.364 0.330

SK Best Dir 0.223 (0.218) 0.660 0.412 0.376
Two-Stage 0.218* 0.662 0.409 0.366

Best JM 0.348 (0.341) 0.814 0.575 o.524
LK Best Dir 0.353 (0.343) 0.834 0.562 0.507

WSJ87-92 Two-Stage 0.358 0.850* 0.572 0.523

Best JM 0.172 (0.158) 0.615 0.346 0.314

SV Best Dir 0.196 (0.188) 0.638 0.389 0.333

Two-Stage 0.199 0.660 0.391 0.344
Best JM 0.277 (0.252) 0.768 0.481 0.452

LV Best Dir 0.282 (0.270) 0.750 0.480 0.442

Two-Stage 0.288* 0.762 0.497 0.449

Best JM 0.179 (0.170) 0.455 0.220 0.193

SK Best Dir 0.215 (0.210) 0.514 0.265 0.226

Two-Stage 0.200 0.490 0.256 0.227
Best JM 0.306 (0.290) 0.675 0.345 0.300

LK Best Dir 0.326 (0.316) 0.681 0.376 0.322
ZF1-2 Two-Stage 0.322 0.696 0.368 0.322

Best JM 0.156 (0.139) 0.450 0.208 0.174

SV Best Dir 0.185 (0.170) 0.456 0.225 0.185

Two-Stage 0.181 0.487 0.246* 0.203

Best JM 0.267 (0.242) 0.593 0.300 0.258

LV Best Dir 0.279 (0.273) 0.606 0.329 0.272

Two-Stage 0.279* 0.618 0.334 0.278

Table 5.3: Comparison of the estimated two-stage smoothing with the best single stage smoothing methods

on small collections. The best number for each measure is shown in boldface. An asterisk (*) indicates that

the difference between the two-stage smoothing performance and the best one-stage smoothing performance

is statistically significant according to the Wilcoxin signed rank test at the level of 0.05.

single smoothing methods, we also show (in parentheses) the median average precision for

all the parameter values that are tried. 4 We see that for Jelinek-Mercer the sensitivity is

clearly higher on verbose queries than on keyword queries; the median is usually much

4For Jelinek-Mercer, we tried 13 values {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,0.7,0.8,0.9,0.95, 0.99}; for

Dirichlet prior, we tried 10 values {100, 500, 800, 1000, 2000, 3000, 4000, 5000, 8000, 10000}.
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Collection Query Method Avg. Prec. (Median) Init. Prec. Prec@10 Prec@20

Best JM 0.167 (0.165) 0.632 0.366 0.315

Trec7-SK Best Dir 0.186 (0.182) 0.688 0.412 0.342

Two-Stage 0.182 0.673 0.420 0.357
Best JM 0.173 (0.138) 0.646 0.392 0.342

Trec7-SV Best Dir 0.182 (0.168) 0.656 0.416 0.340

Two-Stage 0.181 0.655 0.416 0.348
Best JM 0.222 (0.195) 0.723 0.476 0.401

Trec7-LV Best Dir 0.224 (0.212) 0.763 0.456 0.383

Disk4&5-CR Two-Stage 0.230 0.760 0.466 0.412
Best JM 0.239 (0.237) 0.621 0.438 0.378

Trec8-SK Best Dir 0.256 (0.244) 0.717 0.448 0.398

Two-Stage 0.257 0.719 0.448 0.405
Best JM 0.231 (0.192) 0.687 0.416 0.357

Trec8-SV Best Dir 0.228 (0.222) 0.670 0.400 0.337

Two-Stage 0.231 0.719 0.440 0.354

Best JM 0.265 (0.234) 0.789 0.504 0.434
Trec8-LV Best Dir 0.260 (0.252) 0.753 0.484 0.400

Two-Stage 0.268 0.787 0.478 0.400

Best JM 0.243 (0.212) 0.607 0.348 0.293

Trec8-SK Best Dir 0.294 (0.281) 0.756 0.448 0.374
Two-Stage 0.278* 0.730 0.426 0.358

Best JM 0.203 (0.191) 0.611 0.340 0.284

Web Trec8-SV Best Dir 0.267 (0.249) 0.699 0.408 0.325
Two-Stage 0.253 0.680 0.398 0.330

Best JM 0.259 (0.243) 0.790 0.422 0.348

Trec8-LV Best Dir 0.275 (0.248) 0.752 0.410 0.343

Two-Stage 0.284 0.781 0.442 0.362

Table 5.4: Comparison of the estimated two-stage smoothing with the best single stage smoothing methods

on large collections. The best number for each measure is shown in boldface. An asterisk (*) indicates that

the difference between the two-stage smoothing performance and the best one-stage smoothing performance

is statistically significant according to the Wilcoxin signed rank test at the level of 0.05.

lower than the best performance for verbose queries. This means that it is much harder to

tune the λ in Jelinek-Mercer for verbose queries than for keyword queries. Interestingly, for

Dirichlet prior, the median is often just slightly below the best, even when the queries are

verbose. (The worst cases are significantly lower though.) From the sensitivity curves in the

three figures (Figure 4.7, Figure 4.8, and Figure 4.9) presented in the previous chapter, we

see that as long as we set a relatively large value for µ in the Dirichlet prior, the performance

will not be much worse than the best performance, and the median is most likely at a large

value for µ. This immediately suggests that we can expect to perform reasonably well if we

simply set µ to some “safe” large value. However, it is clear from the results in Table 5.3

and Table 5.4, that such a simple approach would not perform so well as our parameter

estimation methods. Indeed, the two-stage performance is always better than the median,
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except for three cases of short-keyword queries when it is slightly worse. Since the Dirichlet

prior smoothing dominates the two-stage smoothing effect for these short-keyword queries

(due to “little noise”), this somehow suggests that the leave-one-out method might have

underestimated µ.

Note that, in general, Jelinek-Mercer has not performed as well as Dirichlet prior in

all our experiments. But in two cases of verbose queries (Trec8-SV and Trec8-LV on the

Trec7/8 database), it does outperform Dirichlet prior. In these two cases, the two-stage

smoothing method performs either as well as or better than the Jelinek-Mercer. Thus,

the two-stage smoothing performance appears to always track the best performing single

method at its optimal parameter setting.

The performance of two-stage smoothing does not reflect the performance of a “full-

fledged” language modeling approach, which would involve more sophisticated feedback

models (Lafferty and Zhai, 2001a; Lavrenko and Croft, 2001; Zhai and Lafferty, 2001a).

Thus, it is really not comparable with the performance of other TREC systems. Yet some

of the performance figures shown here are actually competitive when compared with the

performance of the official TREC submissions (e.g., the performance on the TREC-8 ad

hoc task and the TREC-8 web track).

These results of the two-stage smoothing method are very encouraging, especially be-

cause the approach involves no ad hoc parameter tuning in the retrieval process. Both µ

and λ are automatically estimated based on a specific database and query; µ is completely

determined by the given database, and λ is determined by the database and the query to-

gether. The method appears to be quite robust according to our experiments with all the

different types of queries and different databases.

5.7 Conclusions and Further Work

In this chapter we derive a family of two-stage language models using the risk minimiza-

tion retrieval framework, and present a two-stage smoothing method as a special case. The

two-stage language modeling approach generalizes the original query likelihood method

proposed in (Ponte and Croft, 1998) by incorporating a query generative model, making it

possible to explicitly capture the different influences of the query and document collection

on the optimal setting of smoothing parameters. An important advantage of the two-stage

language models is that they explicitly capture the different influences of the query and

document collection on smoothing, making it easier to estimate smoothing parameters in-
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dependently according to different documents and different queries.

As a special case of the two-stage language modeling approach, we formally derive the

two-stage smoothing method suggested in the previous chapter, where the method is empir-

ically motivated by the observation of the dual role of smoothing. In the first stage of this

two-stage smoothing method, the document language model is smoothed using a Dirich-

let prior with the collection language model as the reference model; in the second stage,

the smoothed document language model is further interpolated with a query background

language model. The two-stage smoothing method is shown to reveal a more regular sen-

sitivity pattern of smoothing empirically.

We propose a leave-one-out method for estimating the first-stage Dirichlet prior param-

eter and a mixture model for estimating the second-stage interpolation parameter. These

methods allow us to set the retrieval parameters automatically, yet adaptively, according

to different databases and queries. Evaluation on five different databases and four types

of queries indicates that the two-stage smoothing method with the proposed parameter es-

timation scheme consistently gives retrieval performance that is close to, or better than,

the best results attainable using a one-stage smoothing method, achievable only through an

exhaustive parameter search. The effectiveness and robustness of the two-stage smoothing

approach, along with the fact that no ad hoc parameter tuning is involved, make it a solid

baseline approach for evaluating retrieval models.

Ideally, one should tie the setting of parameters directly to the optimization of perfor-

mance. Unfortunately, this is difficult, if not impossible, for ad hoc text retrieval due to the

fact that the performance can only be measured subjectively by a user. Of course, when

relevance feedback is available, machine learning techniques can be exploited to set param-

eters by optimizing the performance on documents with known judgments. Since we are

mainly considering the ad hoc retrieval scenario, the parameter setting problem is, in some

sense, inherently empirical. In this sense, the maximum likelihood parameter estimation

may not necessarily guarantee to optimize the retrieval performance, even though it has

certain guarantees on the optimality of the estimated language model. However, our meth-

ods still have a significant advantage over traditional parameter tuning methods, since it is

possible to see how we should improve the language models and the estimation methods

through the analysis of such non-optimality when it happens, whereas in traditional param-

eter tuning, one rarely has any guidance on how to further improve the model. In any case,

the consistent near-optimal performance demonstrated by the parameter estimation meth-

ods in our extensive evaluation suggests that our methods for automatic parameter setting
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are robust and effective.

There are several interesting further research directions. First, while we have shown

that automatic two-stage smoothing gives retrieval performance close to the best results

attainable using a one-stage smoothing method, we have not yet analyzed the optimality of

the estimated parameter values in the two-stage parameter space. For example, it would be

important to see the relative optimality of the estimated µ and λ when fixing one of them.

Second, it would also be interesting to explore other estimation methods. For example,

µ might be regarded as a hyperparameter in a hierarchical Bayesian approach. For the

estimation of the query model parameter λ, it would be interesting to explore more efficient

methods than the mixture model that we have used. It would also be interesting to try

different query background models. One possibility is to estimate the background model

based on resources such as past queries, in addition to the collection of documents. Finally,

it is possible to exploit the query background model to address the issue of redundancy

in the retrieval results. Specifically, a biased query background model may be used to

represent/explain the sub-topics that a user has already encountered (e.g., through reading

previously retrieved results), in order to focus ranking on the new sub-topics in a relevant

set of documents. This direction will be further explored in Chapter 7.
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Chapter 6

KL-divergence Retrieval Models

In this chapter, we study another special case of the risk minimization retrieval framework,

which not only generalizes the existing language modeling approach, but also allows us to

deal with feedback in a more natural way.

We derive a family of unigram retrieval models using a KL-divergence loss function in

the risk minimization framework. In effect, these models all score documents by computing

the KL-divergence of the query model and document model. The KL-divergence retrieval

approach extends the the query likelihood approach by incorporating a query language

model. The lack of a query model in previous work on the language modeling approach

has made it unnatural to incorporate feedback. The KL-divergence approach involves es-

timating a query language model, in addition to the document language model, making

it possible to treat feedback naturally as query model updating. We propose two specific

query model updating algorithms based on feedback documents. Evaluation indicates that

both algorithms are effective for feedback. Thus we show that we can exploit feedback

documents to improve our estimation of the query model, and the improved query model

results in better retrieval performance.

6.1 Derivation

In this section, we derive the KL-divergence retrieval models formally using the risk min-

imization framework. We start with the general probabilistic similarity model derived in

Chapter 3, which we repeat here
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r(d|q, C,U , ~S) ∝ ∆(θ̂D, θ̂Q)

As a special case of this model, we assume that θQ and θD are the parameters of unigram

language models (called the query topic language model and the document topic language

model respectively), and choose as the distance function the Kullback-Leibler divergence.

Given two probability mass functions p(x) and q(x), D(p||q), the Kullback-Leibler

divergence (or relative entropy) between p and q is defined as

D(p||q) =
∑

x

p(x) log
p(x)

q(x)

It is easy to show that D(p||q) is always non-negative and is zero if and only if p = q.

Even though it is not a true distance between distributions (because it is not symmetric and

does not satisfy the triangle inequality), it is still often useful to think of the KL-divergence

as a “distance” between distributions (Cover and Thomas, 1991).

Apply the KL-divergence function to θQ and θD, we see that

∆(θQ, θD) = D(θQ||θD) =
∑

w

p(w | θQ) log
p(w | θQ)

p(w | θD)

And,

r(d|q, C,U , ~S) ∝ −
∑

w

p(w | θ̂q) log p(w | θ̂d) + cons(q)

∝ −
∑

w

p(w | θ̂q) log p(w | θ̂d)

Thus the ranking function is essentially the cross entropy of the query language model

with respect to the document language model. The dropped constant is the query model

entropy (with a different sign). The value of the cross entropy is always larger than or equal

to the query model entropy. The minimum value (i.e., query model entropy) is achieved

when θ̂d is identical to θ̂q, which makes sense for retrieval.

The KL-divergence model covers the popular query likelihood ranking function as

a special case. Indeed, suppose θ̂q is just the empirical distribution of the query q =

(q1, q2, . . . , qm), That is, θ̂q is the language model given by

p(w | θ̂q) =
1

m

m∑

i=1

δ(w, qi)
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where δ(w, qi) is the indicator function. We obtain

r(d|q, C,U , ~S) ∝ −
1

m

m∑

i=1

log p(qi | θ̂d)

This is precisely the log-likelihood criterion used by Ponte and Croft (1998) in introducing

the language modeling approach, and that has been used in all work on the language mod-

eling approach to date. Later in this chapter, we will develop new methods to estimate a

model θ̂Q, and demonstrate that the new models perform significantly better than using the

empirical distribution as θ̂Q.

6.2 Interpretation of the Model

The KL-divergence retrieval model is a special case of the general probabilistic distance

model. Interestingly, the general probabilistic distance model (thus also the KL-divergence

model) has an intuitive interpretation that is very similar to the vector space model. Recall

that the vector space model has three basic components: (1) a query term vector; (2) a doc-

ument term vector; and (3) a vector similarity measure (e.g., cosine). The probabilistic dis-

tance model also has three similar components: (1) a query language model; (2) a document

language model; and (3) a model-similarity measure (e.g., the KL-divergence). However,

there is also one very important difference – the representation. In the vector space model,

a document (or a query) is represented by a heuristically weighted term vector, while in the

probabilistic distance model, it is represented by a unigram language model. The heuristic

term weighting used in the vector space model makes the whole model mostly empirical,

whereas the use of a unigram language model as representation makes it possible to exploit

the principles of statistical parameter estimation to improve a representation for the purpose

of retrieval.

The KL-divergence model also appears to be similar to a probability distribution model

proposed in (Wong and Yao, 1989) that uses the information-theoretic retrieval strategy.

However, the KL-divergence model is actually much more general and flexible because of

its explicit modeling of the query and documents. In (Wong and Yao, 1989), the multi-

nomial term distribution was primarily proposed as an alternative representation of docu-

ments and query (in the vector space model sense), not a generative model for documents or

query. Thus, it is not surprising that the issue of model estimation has not been considered

at all and the term distribution representation is naturally assumed to be best approximated
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by the relative frequency of terms. The limitation in modeling can be seen more clearly

from the claimed difficulty with using the KL-divergence function directly as the similarity

measure, since model smoothing has not been considered as a possibility (Wong and Yao,

1989).

Note that the KL-divergence distance function is only one of the many possibilities of

measuring model similarity. 1 However, in this thesis, we will not explore other distance

functions, but will focus on the derived unigram KL-divergence model. The model suggests

that documents can be ranked by the KL-divergence function value between the estimated

query unigram language model and the estimated document unigram language model. In

the following sections, we will discuss the estimation of both the query model and the

document model.

6.3 Estimation of Document Language Model (θD) and

Query Language Model (θQ)

In the KL-divergence retrieval model, the retrieval problem boils down to the problem of

estimating a document language model θD and a query language model θQ. Depending on

the actual language models assumed, there are many possibilities here. For example, for

document model estimation, different smoothing methods lead to different estimated mod-

els. This has already been discussed in Chapter 4. Since ranking based on KL-divergence

is equivalent to ranking based on cross entropy, it can be shown that, for a given query

model, the computation of the KL-divergence retrieval formula is as efficient as that of the

query likelihood formula, which is as efficient as the traditional TF-IDF retrieval formula

for most simple smoothing methods, as we have shown in Chapter 4. Of course, there

are many other ways to estimate document models. In particular, mixture models can be

used to reduce the noise in documents, resulting in a document distillation method, which

achieves an effect like TF-IDF weighting of document terms, and is similar to the query

distillation approach to be discussed below.

However, here we focus our study on the estimation of the query model, which is very

much related to the issue of feedback. The lack of a query language model in the existing

work on the language modeling approach has created difficulties in both understanding and

extending the approach. In particular, it makes it hard or unnatural to incorporate feedback,

1Even the KL-divergence function has another form, since it is not symmetric.
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a very important retrieval technique. Our introduction of a query language model is an

important step toward more powerful retrieval models based on language modeling.

The simplest generative model for a query is one that generates a query directly from

the query topic language model. Let q = q1q2...qn be a query and let θq be the query topic

language model. We have

p(q) =
∏

i

p(qi | θq)

To estimate θq based on an observed query q, we can use the following maximum

likelihood estimator

θ̂q = arg max
θq

∏

i

p(qi | θq)

We have seen in Section 6.1 that when using this model, we essentially have the popular

query likelihood model.

In the next sections, we will describe several different ways of estimating a query topic

language model. We will show that a better query language model can be estimated by ex-

ploiting a mixture model to model queries of different amounts of noise. We will propose

two different methods for estimating a query model based on feedback documents. Exper-

iment results show that both are effective for pseudo feedback; the updated query model

can perform significantly better than the original model.

6.4 Query Model Distillation

It has been observed that the length and type of query may affect the retrieval performance

significantly. For example, long verbose queries tend to perform better than short keyword-

like queries, and special heuristics have been proposed to improve retrieval performance on

short queries (Kwok and Chan, 98).

The maximum likelihood estimate of the query language model discussed above may

not be able to effectively handle queries with different amounts of noise, as we have dis-

cussed in Chapter 4. To see the problem, recall that the query likelihood ranking formula

is essentially a sum of weight for each query term matched by a document. The weight is

higher if a query term is more frequent in the query text, which means that if a document

matches only a common term in the query, its score will be higher than if it matched a rare

term in the query, but a very common word is unlikely to be important for a query. On the

other hand, if a document does not match a common term, the score will be significantly
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penalized. We know that a long verbose query will likely have many more common words

than a short query, so the query likelihood model is likely to over-emphasize a common

word in the case of a long verbose query.

In Chapter 5, we have addressed this problem with a two-stage language model, in

which one is explicitly modeling the query noise. In the KL-divergence model, a natural

way to address this problem is to allow a verbose query to be generated by a mixture model

where the query topic model is mixed with some general English model such as a collection

language model. That is, we will assume that a query is generated by picking either a topic

word or a word from general English.

Formally, let p(w | θq) be the query topic model and pc be a collection unigram model.

The mixture model is given by p(w) = (1 − λ)p(w | θq) + λpc(w)

The mixture weight parameter λ is related to the verbosity of the query. For verbose

queries, we expect that λ will be larger than for short queries. Intuitively, λ can be inter-

preted as indicating the amount of “noise” when generating a query.

In order to exploit this simple mixture model in retrieval, we first estimate θ̂q for any

given query, and then compute the KL-divergence between p(w | θ̂q) and p(w|θ̂d), where

θ̂d is the estimated document language model.

The estimation of p(w | θ̂q) can be done by applying the EM algorithm, which results

in the following updating formulas:

t(n)(w) =
(1 − λ)p

(n)
λ (w | θ̂q)

(1 − λ)p
(n)
λ (w | θ̂q) + λpc(w)

p
(n+1)
λ (w | θ̂q) =

c(w)t(n)(w)∑
i c(wi)t(n)(wi)

Since we only need to go through all the query terms at each iteration, the EM algorithm

is quite efficient. We now present some experiment results. They show that the mixture

model generally performs better than the simple model for long verbose queries.

Intuitively, assuming a generative mixture model for queries is expected to help deal

with queries of different amounts of noise. Our hypothesis is that with such a mixture model

we can estimate a “distilled” query topic model that has excluded any possible “background

noise” (i.e., common words in the query) from the model and thus reflects the true topic

better than the maximum likelihood estimate. Since the distillation affects long verbose

queries more than short keyword ones, we may expect it to improve the performance on
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long TREC queries more significantly. To test this hypothesis, we compare the performance

of the “distilled” query topic model with the maximum likelihood model estimated using

the original query on two testing collections. One collection is AP89 with topics 1-50 and

the other is the same web collection as used in the evaluation of smoothing methods. (See

Section 4). These long queries are constructed based on all the text available in the original

TREC description of the topics, with about 50 terms each on average.

A natural candidate for the background model is the collection unigram model. How-

ever, if we believe that the background model is supposed to model the common words in a

query, then a model estimated using past queries might be a better background model. We

have tried both on AP89 and found that a mixture of the past query model and the collec-

tion model performs the best. It appears that the model built using only the past queries is

quite biased, since we have extremely sparse data, so smoothing with a collection model

is reasonable. Such smoothing may become less important as we have more sample query

data available. In our experiments on AP89, the linear interpolation smoothing coefficient

is 0.2 for the collection model. For the WEB experiments, we have not tried the past query

model yet, but we expect it to help as well. We only tried long verbose queries, so all the

results reported here are only applicable for such queries. We expect the improvement to

be less significant for short queries.
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Figure 6.1: Average precision (left) and recall (right) for distilled query model and original query model on

AP89.

Figure 6.1 shows that the distilled query indeed improves both recall and precision at all

values of the smoothing prior parameter in the Dirichlet prior smoothing method for AP89.

The distilled query model was estimated by setting the background noise coefficient λ to 0.5

(a relatively good setting for topics 1-50). Figure 6.2 shows a similar comparison for WEB.

Again, we see that the distilled query model improves both recall and precision consistently.
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Figure 6.2: Average precision (left) and recall (right) for distilled query model and original query model on

WEB.

However, this time, the optimal λ was 0.99 (for topics 401-450). More experiments are

needed to understand how to set the noise coefficient λ. Presumably, the optimal value of

λ is related to the query length and distribution properties of the query terms.

Figure 6.3 compares the average precision-recall curve of distilled query models with

that of the original queries on both AP89 and WEB. We see that the distilled query is better

than the original query at almost all recall points, though the effect is most clearly seen at

high recall points.
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Figure 6.3: Precision-recall curves for distilled query model and original query model on AP89 (left) and

WEB (right).

A similar distillation mixture model can also be applied to documents to extract a more

focused document language model for each document. Since common words tend to have

higher probabilities according to the background model, their probabilities in the focused

model would be significantly discounted. As a result, the high probability words in the
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focused model would be those content words that occur frequently in a document. Thus,

such a distillation would achieve a similar effect as TF-IDF weighting of terms. Since the

distillation does not depend on any query, it can be done at indexing time.

6.5 Model-based Feedback

Feedback can be regarded as a learning component in a TR system, in which the system

learns from example relevant documents to improve the ranking function. 2

There are two different scenarios for feedback: relevance feedback and pseudo feed-

back, but the underlying technique is generally similar. The difference between relevance

feedback and pseudo feedback is where the example documents come from. In relevance

feedback, they are the documents that a user actually judged as relevant, while in pseudo

feedback they are usually some top ranked documents from a previously retrieved result

(Evans and Lefferts, 1994; Buckley, 1995; Xu and Croft, 1996). Feedback, especially

relevance feedback, often improves the performance quite significantly. Indeed, pseudo

feedback is one of the most successful heuristics used in the traditional retrieval models to

improve the performance of automatic ad hoc retrieval. The typical feedback procedure in

a traditional model involves extracting terms from the example documents and adding the

terms to the query, i.e., expanding the query with terms from the example documents. Not

surprisingly, the same procedure has also been used for feedback in the language modeling

approach.

For example, a ratio approach was proposed in (Ponte, 1998), which selects terms with

a high distribution in the feedback documents, but low distribution according to the collec-

tion language model. The approach performs similarly to the Rocchio method (Rocchio,

1971) when very few relevant documents are used, but is significantly better than Roc-

chio when more relevant documents are used. The pseudo relevance feedback results are

also very promising, and significantly better than the results of using the baseline language

modeling approach (Ponte, 1998). However, the ratio approach is conceptually restricted

to the view of query as a set of terms, so cannot be applied to the more general case when

the query is considered as a sequence of terms and the frequency information of a query

term is considered. Also, the number of terms needs to be determined heuristically. Miller

and others treat feedback as essentially expanding the original query with all terms in the

feedback documents (Miller et al., 1999). Terms are pooled into bins by the number of

2A more general discussion of learning in TR can be found in (Fuhr, 1993).
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feedback documents in which they occur, and for each bin, a different transition probabil-

ity in the HMM is heuristically estimated. 3 The performance of such a feedback technique

is reported to be quite promising and robust. However, the interpretation of a query both as

a text (generated by an HMM) and as a set of terms is conceptually inconsistent. It also in-

volves heuristic adjustment of transition probabilities by incorporating document frequency

to “filter” out the high frequency words. In (Ng, 2000), the query likelihood ranking cri-

terion was motivated based on the ratio of document likelihood, though it is not very clear

what the underlying generative model is. In terms of ranking, it is essentially similar to the

simple HMM used in (Miller et al., 1999). There are, however, two interesting ideas about

feedback in (Ng, 2000). First, a feedback criterion based on the optimization of the scores

of feedback documents is used, though the criterion turns out to be actually very similar to

the ratio approach used in (Ponte and Croft, 1998). Second, a threshold for the number of

selected terms is heuristically derived from the score optimization criterion. This approach

is also reported to be effective (Ng, 2000). But it shares the same problem of inconsistency

in interpreting the query as in (Miller et al., 1999).

Thus, although the previous work on feedback has been successful empirically, it is all

essentially based on query expansion. But such an expansion-based feedback strategy is

generally not very compatible with the essence of the language modeling approach – model

estimation. As a result, the expanded query usually has to be interpreted in a different way

than the original query is. This is in contrast to the natural way of performing feedback in

the classical relevance-based probabilistic model, such as the binary independence model

(Robertson and Sparck Jones, 1976).

We propose a model-based approach to feedback that can be incorporated into the KL-

divergence retrieval model. The model-based approach to feedback is actually not new;

indeed, it is the essence of the classical probabilistic model (Robertson and Sparck Jones,

1976). However, it has been unclear how we can do it with the query likelihood rank-

ing function used in most existing work on the language modeling approach. The KL-

divergence retrieval model is a more general way to exploit language modeling for infor-

mation retrieval. It covers the query likelihood approach as a special case, so it can be

regarded as a natural extension. Since it involves the estimation of both a query language

model and a document language model, language modeling techniques can be incorpo-

rated into a retrieval model more flexibly. In particular, the query language model can

be compared to the relevance model in the classical probabilistic retrieval model, and thus

3As a result, the smoothing is no longer equivalent to the simple linear interpolation as it is in their basic

HMM.
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feedback can be performed as re-estimating the query model based on feedback documents.

We propose two different criteria for re-estimating the query model:

1. Generative model of feedback documents: Assume a generative model for feedback

documents and estimate the query topic model (parameters of the generative model)

based on the observed feedback documents (using the maximum likelihood method

or any other method). We consider a mixture model with the collection language

model as one component and the query topic model the other.

2. Divergence/risk minimization over feedback documents: The estimate of the query

model is one that has a minimum average KL-divergence to all feedback documents.

It is worth mentioning that the Markov chain query expansion method, when applied

to a set of feedback documents, can be regarded as a model-based approach to feedback,

though it is meant to be a translation model (Lafferty and Zhai, 2001a). The relevance

model estimation method proposed in (Lavrenko and Croft, 2001) can also be used to

estimate a richer query model based on feedback documents. Both approaches rely on

the query words to focus the model, and this is different from the approaches proposed

here. We estimate a feedback model solely based on the feedback documents, and then

interpolate the model with an existing query model. Another related work is (Hiemstra,

2001), in which feedback documents are used to re-estimate the smoothing parameters in

the query likelihood retrieval function. In effect, it is similar to query term reweighting

in a traditional retrieval model, so it really has not fully taken advantage of the feedback

documents (e.g., no new terms are introduced to enhance a query).

The KL-divergence model supports model-based feedback very naturally. Specifically,

when feedback documents are available, we basically face the problem of re-estimating the

query model based on the feedback information plus the original query text. A simple (but

general) way to achieve this is to assume that the feedback documents are the extra data

that help smooth the original query language model. In this thesis, we explore the sim-

plest smoothing method based on linear interpolation. Specifically, let θ̂q be the estimated

original query model and θ̂F be an estimated feedback query model based on feedback doc-

uments F = (d1, d2, ..., dn), which can be the documents judged to be relevant by a user

(as in the case of relevance feedback) or the top documents from an initial retrieval (as in

the case of pseudo relevance feedback). Then, our new query model θ̂′q would be

θ̂′q = (1 − α)θ̂q + αθ̂F
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where, α controls the influence of the feedback model. We now describe two very different

strategies for estimating θ̂F based on feedback documents.

6.5.1 Generative Model of Feedback Documents

A natural way to estimate a feedback query model (θ̂F ) is to assume that the feedback

documents are generated by a probabilistic model p(F | θ), where θ is the parameter of our

query model. Then the problem of estimating a query model becomes a standard problem

of parameter estimation given the observed F . For example, using the maximum likelihood

estimator, we have

θ̂F = arg max
θ

p(F | θ)

A Bayesian estimator can also be used if we can specify a meaningful prior, but we

will only consider the maximum likelihood estimator in this paper. The simplest genera-

tive model is a unigram language model, which generates each word in F independently

according to θ. That is,

p(F | θ) =
∏

i

∏

w

p(w | θ)c(w;di)

where c(w; di) is the count of word w in document di. This simple model would be rea-

sonable if our feedback documents only contain relevant information. However, most doc-

uments probably also contain background information or even non-relevant topics. A more

reasonable model would be a mixture model that “generates” a feedback document by

mixing the query topic model with a collection language model. That is, a document is

generated by picking a word using either the query topic model p(w | θ) or the collection

language model p(w | C). Without other knowledge, the collection language model is a

reasonable approximation of the model for generating the irrelevant content in a feedback

document.

Under this simple mixture model, the log-likelihood of feedback documents is

log p(F | θ) =
∑

i

∑

w

c(w; di) log((1 − λ)p(w | θ) + λp(w | C))

Note that if both λ and θ are to be estimated, then the maximum likelihood estimate of

λ will be zero and our mixture model will be degenerated to the simple unigram model.

Intuitively, however, we would like to have a non-zero λ, and it can be interpreted as in-

dicating the amount of background “noise” when generating a document. Thus, we will
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set λ to some constant and estimate only θ, which can be done by using the EM algorithm

(Dempster et al., 1977). The EM algorithm leads to the following updating formulas for

pλ(w | θ̂F):

t(n)(w) =
(1 − λ)p

(n)
λ (w | θF)

(1 − λ)p
(n)
λ (w | θF) + λp(w | C)

p
(n+1)
λ (w | θF) =

∑n

j=1 c(w;dj)t
(n)(w)∑

i

∑n

j=1 c(wi;dj)t(n)(wi)

Intuitively, when estimating the query model, we are trying to “purify” the document

by eliminating some “background noise.” Thus, the estimated query model will generally

be concentrated on words that are common in the feedback document set, but not very

common according to the collection language model p(. | C). This is exactly what most

traditional feedback methods, such as the Rocchio method (Rocchio, 1971), try to capture.

Each iteration of the EM algorithm involves iterating over all the distinct terms in all the

feedback documents, thus the complexity is O(|F |L), where |F | is the number of feedback

documents and L is the average number of distinct terms in a feedback document. This is

about the same as other traditional algorithms such as Rocchio. Since we generally need

at least several iterations, the actual overall complexity would still be higher than Rocchio,

but in practice, the difference will probably not matter that much, since |F | is typically

small.

To score a document d using the estimated query model θ̂F , we first interpolate it with

the original query model θ̂q to obtain an updated query model θ̂q′ , and then compute the KL-

divergence between p(w | θ̂q′) and p(w | θ̂d), where θ̂d is an estimated smoothed document

language model.

6.5.2 Divergence Minimization over Feedback Documents

A different strategy for estimating a query model based on feedback documents is to min-

imize the empirical KL-divergence of the model over the feedback documents. This strat-

egy for feedback is consistent with the risk minimization framework, from which the KL-

divergence model is derived.

Let F = (d1,d2, ...,dn) be a set of feedback documents. We define the empirical

KL-divergence of a query model θ over F as

99



De(θ;F) =
1

|F|

n∑

i=1

D(θ||θ̂di
)

i.e., the average of the KL-divergence with respect to the empirical word distribution of

each document (θ̂di
).

Intuitively, if we estimate the query model by minimizing this average divergence, we

will have a query model that, if used to score documents, will give us the best average

score (or equivalently, minimum average divergence) over the feedback documents. The

estimated query model will be as close to each feedback document model as possible.

However, since feedback documents share many common words (due to the language and

domain characteristics), such a query model may be quite general, especially if we truncate

the model for the sake of efficiency. One solution to this problem is to add a regulation

condition to the divergence function. We can postulate that a query model is preferred if it

incurs a greater divergence with respect to the collection model, which is an approximation

of the language model for distracting or background contents.

Incorporating this condition, we end up with the following empirical divergence func-
tion of a feedback query model:

De(θ;F , C) =
1

|F|

n∑

i=1

D(θ||θ̂di
) − λD(θ||p(. | C))

=
∑

w

p(w | θ) log p(w | θ) −

(
1

|F|

n∑

i=1

log p(w |di) − λ log p(w | C))p(w | θ)

where λ ∈ [0, 1) is a weighting parameter, and p(w | C) is the collection language model.

We easily recognize that the first term is essentially the entropy of θ (with a different

sign) and the second term reflects our desire to have θ similar to our feedback document

models, but dissimilar to the collection model. Thus minimizing this divergence is equiva-

lent to maximizing the entropy of the model under our preference constraint encoded in the

second term. This is very similar to the maximum entropy approach to parameter estima-

tion.

Using the divergence minimization criterion, our estimate of the query model based on

F is

θ̂F = arg min
θ

De(θ;F , C)
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And θ̂F can be easily found analytically using the Lagrange multiplier approach. The

solution is

p(w|θ̂F) ∝ e
1

1−λ
( 1

n

� n
i=1 log p (w | �θdi

)−λ log p (w | C))

subject to a normalization constant. The computation of this solution is very efficient, as it

only involves one iteration over the feedback documents; indeed, this is at the same level

of complexity as Rocchio.

θ̂di
is a smoothed unigram language model estimated based on document di. We see

that a query model estimated according to divergence minimization tends to assign a high

probability to words that are common in the feedback documents, but not common accord-

ing to the collection language model. The parameter λ controls our weight on the collection

language model. Similar to the λ in the collection mixture model, when λ is set to zero, the

effect of collection language model is completely ignored, thus we have a query model that

strictly minimizes the divergence over the feedback documents.

Again, to exploit θ̂F in our KL-divergence retrieval model, we first interpolate it with

the original query model θ̂q to obtain an updated model θ̂q′ , and then score a document d

by D(θ̂q′ ||θ̂d).

We evaluate these two model-based feedback methods for performing pseudo feedback

on three different testing collections. Preliminary evaluation results show that both methods

are effective for pseudo feedback and the updated query model may perform significantly

better than the simple non-feedback model.

6.5.3 Evaluation of Model-based Pseudo Feedback

In this section, we report the preliminary results of using the proposed two model-based

feedback methods for pseudo feedback on the following three testing collections:

1. AP88+89 with topics 101-150. This is the same collection as used in (Lavrenko and

Croft, 2001), and will be labeled as AP88-89.

2. Trec Disk4&5-CR with topics 401-450. This is the official TREC8 ad hoc task col-

lection, and will be labeled as TREC8.

3. Trec8 small web collection with topics 401-450. This is the official TREC8 small

web task collection, and will be labeled as WEB.
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We fixed the document language model in order to focus on exploring different ways of

estimating query models based on feedback documents. Specifically, we used the Dirich-

let prior method (with a prior of 1,000) for estimating a document language model in all

the experiments. An appropriate way of evaluating a feedback method would be to con-

sider both relevance feedback and pseudo (or blind) feedback, but as a first step, we only

consider pseudo feedback. In all experiments, we take the top 10 documents from a set

of previously retrieved results obtained using the basic query likelihood ranking function

and the Dirichlet smoothing method with a prior of 1, 000. We compare the query mod-

els estimated using the collection mixture model method and the divergence minimization

method, and vary both the interpolation parameter (α) and the feedback model estimation

parameters (the λ′s).

In all cases, we use only the titles of the topic description, since they are closer to the

actual queries used in real applications, and also, feedback is expected to be most useful

for short queries. We have done minimum preprocessing of documents and queries; the

only tokenization performed is stemming (using a porter-stemmer). No stopword list is

applied. We believe that with appropriate probabilistic modeling, stop words can be effec-

tively down-weighted.

Effect of feedback

In order to see the effect of feedback, we compare the feedback results with the baseline

non-feedback results. In general, we find that, with appropriate parameter settings, both

feedback techniques that we proposed can be very effective. For example, the best feedback

results from each method (with λ fixed to 0.5) are compared with the baseline performance

in Figure 6.4 and Table 6.1. We notice that the average precision and recall are consistently

improved by performing feedback. The increase in average precision is larger than 10%

in most cases. We can also notice that the initial precision of feedback results is slightly

decreased in almost all cases. Given that all the top ten documents may not be relevant,

this is not very surprising, as the initial precision is very sensitive to the ranking of one

particular document on the top, while our goal is to improve the overall ranking of docu-

ments. Note that despite the decrease in initial precision, the precision at 10 documents and

20 documents is consistently improved. It is interesting that the improvement on AP88-89

is much greater than that on TREC8 and WEB. This seems to be true for both approaches

and also true for the Rocchio approach to be discussed below, thus it may suggest that

feedback on AP88-89 is somehow “easier” than that on TREC8 or WEB (perhaps, because
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Figure 6.4: Effect of feedback on AP88-89 (top), TREC8 (middle), and WEB (bottom). In each picture, the

two feedback methods are compared with the baseline simple language modeling approach (no feedback).

of the homogeneity of documents and/or a higher density of relevant documents). Further

experiments and analysis are needed to understand this better.

In Table 6.2, we compare our feedback results with that of a tuned Rocchio approach

with TF-IDF weighting, both using the top 10 documents for feedback. The TF formula
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Collection Simple LM Mixture FB (λ = 0.5) Improv. DM FB ( λ = 0.5) Improv.

AP88-89 AvgPr 0.210 0.296 (α = 0.9) +41% 0.295 (α = 1.0) +40%

InitPr 0.617 0.591 (α = 0.9) −4% 0.617 (α = 1.0) +0%

Prec@10 0.372 0.398 (α = 0.9) +7% 0.406 (α = 1.0) +2%

Prec@20 0.340 0.389 (α = 0.9) +14% 0.408 (α = 1.0) +20%

Recall 3067/4805 3888/4805 (α = 0.9) +27% 3665/4805 (α = 1.0) +19%

TREC8 AvgPr 0.256 0.282 (α = 0.7) +10% 0.269 (α = 0.9) +5%

InitPr 0.729 0.707 (α = 0.7) −3% 0.705 (α = 0.9) −3%

Prec@10 0.448 0.452 (α = 0.7) +1% 0.446 (α = 0.9) −0%

Prec@20 0.397 0.420 (α = 0.7) +6% 0.410 (α = 0.9) +3%

Recall 2853/4728 3160/4728 (α = 0.7) +11% 3129/4728 (α = 0.9) +10%

WEB AvgPr 0.281 0.306 (α = 0.5) +9% 0.312 (α = 0.7) +11%

InitPr 0.742 0.732(α = 0.5) −1% 0.728(α = 0.7) −2%

Prec@10 0.426 0.462 (α = 0.5) +8% 0.464 (α = 0.7) +9%

Prec@20 0.358 0.387 (α = 0.5) +8% 0.390 (α = 0.7) +9%

Recall 1755/2279 1758/2279 (α = 0.5) +0% 1798/2279 (α = 0.7) +2%

Table 6.1: Comparison of the basic language modeling method with model-based feedback methods.

Columns three and five give the performance using the mixture model and divergence minimization respec-

tively.

used is the one based on the BM25 retrieval formula with the same parameter settings as

presented in (Robertson and Walker, 1999). We tuned the Rocchio method by varying the

two main parameters in Rocchio (i.e., the coefficient and the number of terms); the reported

results are the best results we obtained. Note that these Rocchio baseline results are actually

very strong when compared with the published official TREC8 and WEB results (Voorhees

and Harman, 2001), especially when considering that we used only title queries. We see

that the two model-based feedback methods both perform better than Rocchio in terms of

precision, though their recall is often slightly worse than Rocchio. The clear improvement

in precision at 10 and 20 documents suggests that the language model feedback methods

tend to do a better job at improving the ranking of top documents, while Rocchio seems to

be better at low-level recalls. Another possibility is that we tuned the number of terms to

use in the Rocchio method, but have not tuned the probability cutoff used in our methods,

which affects the amount of terms to introduce for feedback. Indeed, in all the experiments,

we truncated the estimated query model by ignoring all terms with a probability less than

0.001. It is reasonable to expect the recall to be improved when using a lower probability

cutoff. Note that the precision can be expected to stay the same or increase as well when

more terms are selected, because the extra terms generally have a very small probability,
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Collection Rocchio FB Mixture FB (λ = 0.5) Improv. DM FB (λ = 0.5) Improv.

AP88-89 AvgPr 0.291 0.296 (α = 0.9) +2% 0.295 (α = 1.0) +1%

InitPr 0.566 0.591 (α = 0.9) +4% 0.617 (α = 1.0) +9%

Prec@10 0.362 0.398 (α = 0.9) +10% 0.406 (α = 1.0) +12%

Prec@20 0.363 0.389(α = 0.9) +7% 0.408 (α = 1.0) +12%

Recall 3729/4805 3888/4805 (α = 0.9) +4% 3665/4805 (α = 1.0) −3%

TREC8 AvgPr 0.260 0.282 (α = 0.7) +8% 0.269 (α = 0.9) +3%

InitPr 0.657 0.707 (α = 0.7) +8% 0.705 (α = 0.9) +7%

Prec@10 0.434 0.452 (α = 0.7) +4% 0.446 (α = 0.9) +3%

Prec@20 0.403 0.420 (α = 0.7) +4% 0.410 (α = 0.9) +2%

Recall 3204/4728 3160/4728 (α = 0.7) −1% 3129/4728 (α = 0.9) −2%

WEB AvgPr 0.271 0.306 (α = 0.5) +13% 0.312 (α = 0.7) +15%

InitPr 0.600 0.732(α = 0.5) +22% 0.728 (α = 0.7) +21%

Prec@10 0.394 0.462(α = 0.5) +17% 0.464 (α = 0.7) +15%

Prec@20 0.341 0.387(α = 0.5) +13% 0.390 (α = 0.7) +14%

Recall 1826/2279 1758/2279 (α = 0.5) −4% 1798/2279 (α = 0.7) −2%

Table 6.2: Comparison of the Rocchio feedback method with model-based feedback methods. Columns three

and five give the performance of using the mixture model and divergence minimization respectively.

so they will unlikely have a great impact on the ranking of documents with high scores. It

would be interesting to test this hypothesis with experiments.

The comparison here is all based on some of the best feedback results. It is important

that we also study how the feedback performance may be affected by the parameters in our

model. We will first look at the interpolation coefficient α.

Influence of the interpolation coefficient α

Recall that we interpolate the estimated feedback query model with the original maximum

likelihood model estimated based on the query text. The interpolation is controlled by a

coefficient α. When α = 0, we essentially end up using only the original model (i.e.,

no feedback), while if α = 1, we completely ignore the original model and use only the

estimated feedback model. In the actual experiments, we truncated the estimated feedback

model by ignoring all terms with a probability lower than 0.001 and renormalized it before

the interpolation.

Figure 6.5 shows how the feedback average precision varies according to the value of α.

Each line represents a specific feedback model (estimated using either the mixture model
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Figure 6.5: Influence of α value on precision. Lines represent different feedback models on different testing

collections.

or the divergence minimization method) on a particular testing collection. Note that the

precision at α = 0 is actually the baseline non-feedback performance and the precision at

α = 1 is the performance given by using only the feedback model.

We see that the setting of α can affect the performance significantly. For example, on

AP88-89, the feedback model alone is much better than the original query model, thus the

optimal setting of α tends to be close to 1. On the other hand, on both TREC8 and WEB, the

feedback model alone is much worse than that of the original query model, but when it is

interpolated with the original query model appropriately, it can be much more effective than

either model alone. This means that the two models complement each other very well. The

original query model helps to focus on the topic, while the feedback model supplements

it by suggesting related words. This is consistent with what people have observed with a

traditional method like Rocchio, where the setting of the coefficient parameters also affects

the performance significantly (Salton and Buckley, 1990). The optimal setting of α is

somewhere between 0 and 1. It appears that it is usually safe to set α to a value close to,

but smaller than, 0.5.
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Figure 6.6: Sensitivity of precision to feedback model parameters on AP88-89 (top), TREC8 (middle), and

WEB (bottom). In each picture, the horizontal line is the non-feedback performance, and the other two lines

correspond to the two feedback methods respectively. Note that the x-axis means different λ for different

methods.

Sensitivity of performance to feedback model parameter

We now look at the parameter in each feedback method. In the mixture model method, the

parameter is the λ that controls the amount of “background noise” in the feedback docu-
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ments, while in the divergence minimization method, the parameter is the λ that controls

the influence of the collection language model. In both cases, λ indicates the extent to

which the estimated query model should deviate from the collection language model. Al-

though the two λ play a similar role conceptually, they affect the feedback performance in

very different ways.

This difference can be seen from Figure 6.6, in which we show how the average preci-

sion changes according to different values of λ, when a fixed α (0.5) is used. Specifically,

we can see that the performance is relatively insensitive to the setting of λ in the mixture

model method, but can be quite sensitive to the setting of λ in the divergence minimization

method. Indeed, with α = 0.5, the mixture model performance is generally above the base-

line, no matter what value we set λ to. However, the divergence minimization performance

is only above the baseline when λ is small. When λ is big, the performance is extremely

bad, significantly worse than the baseline performance. How to set these parameters auto-

matically is an important topic for further research.

6.6 Conclusions and Further Work

In this chapter, we have explored a family of KL-divergence based retrieval models as

special cases of the risk minimization framework. The KL-divergence models extend the

query likelihood retrieval method through the incorporation of a query language model,

which makes it possible to treat feedback naturally as query model updating.

We proposed two model-based methods for performing feedback in the language mod-

eling approach to information retrieval. This is in contrast to the popular expansion-based

feedback method used in most existing work. One advantage of the model-based approach

is that it does not cause a conceptual inconsistency when interpreting the query in the re-

trieval model, and it explicitly treats the feedback process as a learning process.

In both methods proposed, the feedback documents are used to estimate a query model,

which is then used to update the original query model with linear interpolation. The two

methods differ in how they estimate the query model based on the feedback documents. The

first method assumes the feedback documents are generated by a mixture model in which

one component is the query topic model and the other is the collection language model.

Given the observed feedback documents, the maximum likelihood method can be used to

estimate a query topic model. The second method uses a completely different estimation

criterion. It assumes that the estimated query model is the one that has the least average
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KL-divergence from the empirical word distribution of each of the feedback documents.

Both methods are relatively efficient to compute, though the second is more efficient than

the first one; indeed, the second method is as efficient as the traditional Rocchio method.

The two methods were evaluated with three representative large retrieval collections.

Results show that both methods are effective for feedback and perform better than the Roc-

chio method in terms of non-interpolated average precision. These results also show that

better retrieval performance can be achieved through the use of more reasonable language

models and better estimation methods. In particular, we have shown that the feedback

documents can be exploited to improve our estimation of the query language model.

Analysis of results indicates that the performance can be sensitive to the settings of the

interpolation coefficient α as well as the λ in each feedback method. It is relatively insen-

sitive to the λ in the mixture model method, but very sensitive to the λ in the divergence

minimization method. It appears that setting α to a value close to, but smaller than, 0.5 is

good in most cases. A smaller λ (e.g., λ = 0.3 ) is probably appropriate for divergence

minimization; while the λ in the mixture model method can be set to 0.5. Overall, the

mixture model approach appears to be more robust.

Although these patterns are observed on feedback with only 10 documents, in some

other experiments that have not been reported here, we found that with more feedback doc-

uments (e.g., 50), the sensitivity pattern appears to be basically similar to what we reported

here, and the performance gain from feedback is usually even greater. Obviously, as we use

more and more documents, the performance will eventually decrease. Indeed, that we have

very little control over the true relevant examples is a serious drawback in experimenting

with pseudo feedback only; it is often hard to tell if a bad feedback performance is due to

a bad feedback technique or just bad luck with the feedback examples. An extreme case

would be that the top 10 documents are all non-relevant, e.g., because of a bad initial rank-

ing. Obviously, we cannot expect any feedback technique to gain much in this case. Thus, a

very important direction for future work is to further test the proposed feedback techniques

for relevance feedback, in which we will be able to examine the effectiveness of learning

more closely.

Another interesting future research direction is to consider our confidence in assuming

all the top 10 documents to be relevant. Intuitively, we would like to associate a rele-

vance probability with each feedback document, so that the estimated query model will be

affected more by those documents with a relatively high relevance probability. This rele-

vance probability may come from the initial retrieval scores or may be estimated somehow
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with the help of the original query text.

Finally, it would be very interesting to derive feedback language models directly using

the risk minimization framework. One possibility is to assume that the relevance variable R

(introduced in the relevance-based loss functions) is observed for the feedback documents,

and to augment the observed variables to include these observed relevance values.
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Chapter 7

Beyond Independent Topical Relevance

In this chapter, we present some preliminary research results in modeling the aspect re-

trieval problem within the risk minimization framework, which demonstrates how the risk

minimization framework can go beyond the traditional notion of independent topical rele-

vance. We study two different types of dependent loss functions. One is based on reducing

the redundancy, or equivalently, emphasizing the novelty of new documents, which is an in-

direct way of increasing aspect coverage. The other is based on a direct modeling of aspects

with language models. We present experimental results for both types of loss functions.

7.1 Introduction

While topical relevance is one of the most important factors in text retrieval, in real appli-

cations, a user often cares about other factors as well. For example, users generally would

like to avoid seeing the same documents again or seeing similar when viewing the retrieval

results. So, removing redundancy in documents would be desirable. Another example is

when two or more documents together can satisfy a user’s information need, but when

judged individually, none of them is sufficiently relevant. An interesting discussion of the

need for non-traditional ranking from the perspective of “optimal search behavior”can be

found in (Varian, 1999).

To address factors like redundancy, it is necessary to break the independent relevance

assumption (see Chapter 1). Most traditional retrieval models are based on such an inde-

pendent relevance assumption, so are inadequate to address factors such as redundancy.

Indeed, in these models, relevance is treated as a relationship between one single document
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and one query. The risk minimization framework allows us to “encode” user factors that

we would like to consider with the loss functions defined over a set of documents, so is

general enough to model factors that may depend on more than one document.

We explore two different types of loss functions in the risk minimization framework,

resulting in two different types of dependent retrieval models. The first type is Maximal

Marginal Relevance (MMR) models (Carbonell and Goldstein, 1998), in which we model

both topical relevance and redundancy of documents. Essentially, we want to retrieve rel-

evant documents, and at the same time, minimize the chance that a user will see redundant

documents as the user goes through the ranked list of documents. The second type of

model is the Maximal Diverse Relevance (MDR) model, in which we model both topical

relevance and diversity of documents. Here we assume that a user’s goal is to retrieve

documents that cover as many different relevant sub-topics or aspects as possible. Note

that these two types of models are actually related. As we reduce the redundancy among

documents, we can expect the coverage of the same aspect to be minimized and thus the

coverage of potentially different aspects may be indirectly maximized. Similarly, as we

maximize the aspect coverage, we are implicitly penalizing over-coverage of any single

aspect, which should also help reduce the redundancy among documents. However, one

could easily imagine cases where the goal of the MMR models and the goal of the MDR

models are not consistent. We will discuss this more later.

For both types of loss functions, we explore different language models for capturing rel-

evance, novelty, redundancy, and aspects. In general, relevance is usually captured through

the KL-divergence of a query model and a document model. Novelty and redundancy are

captured with either the KL-divergences between documents or mixture models. Aspects

are modeled by generative aspect models.

Evaluation of such non-traditional models poses a challenge. First, most existing re-

trieval testing collections have been designed to evaluate traditional retrieval tasks; the

relevance judgments are made independently for each document. Second, both redundancy

and diversity in documents are extremely vague properties that are hard to quantify, and

they tend to interact with relevance in the sense that over-emphasizing diversity may cause

a decrease in relevance. Indeed, the optimal trade-off is a user factor, so is highly subjec-

tive and hard to quantify. In our research, we exploit the TREC interactive track data to set

up an evaluation context for both types of models. The interactive track run under TREC

studies the aspect retrieval problem, i.e., how to retrieve many different relevant aspects for

a relatively general topic. Although the interactive track focuses on studying the interactive
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retrieval problem, the generated test collection, including the aspect judgments, can be used

to test our automatic ranking methods.

In the rest of this chapter, we first introduce the aspect retrieval task and then present

each type of models along with its experimental results using the TREC interactive aspect

retrieval data.

7.2 The Aspect Retrieval Task

7.2.1 Description

A regular retrieval task is often framed as retrieving relevant documents based on the as-

sumption that the document is the information unit under consideration. However, a topic

usually has some sub-topic structure, and involves different aspects. For example, a user

who is looking for documents about tropical storms may be interested in identifying many

different types or instances of tropical storms. Indeed, in real applications, users are often

looking for particular aspects or as many relevant aspects as possible. The TREC interac-

tive track has been designed to study such an aspect retrieval task in an interactive retrieval

system. The following is an example query from TREC7 (number 392i), and the human

assessors have found 35 different applications of robotics mentioned in the relevant docu-

ments to this query.

Number: 392i

Title: robotics

Description:

What are the applications of robotics in the world today?

Instances:

In the time alloted, please find as many DIFFERENT applications of

the sort described above as you can. Please save at least one

document for EACH such DIFFERENT application.

If one document discusses several such applications, then you

need not save other documents that repeat those, since your goal

is to identify as many DIFFERENT applications of the sort described

above as possible.

Sample (relevant) aspects:

1 ’clean room’ applications in healthcare & precision engineering

2 spot-welding robotics

3 controlling inventory - storage devices

4 pipe-laying robots

5 talking robot
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6 robots for loading & unloading memory tapes

7 make & test materials with 15k different chemical compositions

8 robot [telephone] operators

9 robot cranes

... ...

Our goal is to address this problem with automatic approaches. Clearly, this would require

a non-traditional ranking of documents, since ranking solely based on relevance would

not be optimal. Both types of models that we propose can be expected to perform better

than the standard relevance-based ranking. The MMR models may indirectly increase the

aspect coverage as the redundancy is minimized, and the MDR models are directly aiming

at improving the aspect coverage. Since the relevance/aspect judgments are available from

the TREC interactive tracks, the aspect retrieval task provides an interesting and realistic

setting in which to evaluate non-traditional ranking of documents.

7.2.2 Data Set

For three years (TREC-6, TREC-7, and TREC-8), the interactive track has used the same

document collection – The Financial Times of London 1991-1994 collection (part of the

TREC-7 adhoc collection). This collection is about 500MB and has 210,158 documents.

The average document length is about 400 words (Voorhees and Harman, 2001). In each

year, the interactive track task introduces six to eight new topics. We collected all 20 topics

used in these three years. These topics are all formed by modifying the original ad hoc

TREC topics. The modification is generally minimum – often just involving removing the

“Narrative” section and adding an “Instance” section to explain what an aspect means for

the topic.

The TREC (NIST) assessors would read a pool of documents submitted by TREC par-

ticipants and identify a list of instances (i.e., aspects) and determine which documents

contain or cover which instances. For example, for the sample topic 392i shown above,

they identified 35 different aspects. The judgment for each document can be represented as

a bit-vector with 35 bits, each indicating whether the document covers the corresponding

aspect. Clearly, the length of such vectors varies according to different topics, ranging from

7 to 56 aspects, with an average of 20 aspects, in our data set. The number of judged rel-

evant documents available also differs for different topics, with a range of 5 to 100 and an

average of about 40 documents per topic. There are also some judgments of non-relevant

documents. 1 We did not use that information, as we assume that any unjudged document is
1The total number of judgments, including both relevant and non-relevant documents, has a range of 22
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non-relevant (i.e., covering no relevant aspect). This is a very strong assumption, which is

unlikely to be true, since only the submitted (i.e., human-saved) results are judged, and the

time that a user could spend working on those topics was limited. Thus, some documents

down on the list are almost certainly relevant, but would be treated as non-relevant in our

evaluation. We do not know how many documents are like this; our hope is that this biased

evaluation will still be informative when comparing different rankings.

7.2.3 Evaluation

While the traditional relevance-based precision and recall measures can still be applied to

the aspect retrieval task, they would not be sufficient, since what the user is actually inter-

ested in is not seeing as many relevant documents as possible, but seeing as many relevant

aspects or instances as possible. Thus, we would need additional and more informative

measures to evaluate the effectiveness of covering different aspects and avoiding redundant

aspects.

Intuitively, three user factors are involved in the aspect retrieval task. The first is topical

relevance. A good document should be topically relevant to the query topic. The second is

coverage of new aspects. A good document should cover many different new aspects, i.e.,

many aspects that the documents ranked above it have not yet covered. And the third is

redundancy. A good document should not be redundant with respect to the documents that

are ranked above it, which presumably the user would have already seen before getting to

this document. Ideally, a measure should cover all three factors. However, it is unclear how

we can do that, as the optimal trade-off among the factors is not well-defined. Nevertheless,

there are several interesting measures that we may consider using.

First, we can look at the aspect coverage at different ranks. That is, we count the

number of different aspects at each of the ranks. Intuitively, this would tell us how well

we cover the different aspects as the user goes down the ranked list of documents. A good

ranking, by this measure, would allow a user to see all the aspects as early as possible. We

can plot a curve to show how the aspect coverage changes as we consider different ranks.

However, it is hard to come up with one single summary measure. A more serious problem

with this measure is that it would not make much sense to average over different topics,

since they may have different number of relevant aspects.

A modified, but similar measure is to examine the aspect coverage at different recall

to 243 documents and an average of 106 documents.
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levels. That is, we look at the coverage at each different recall point. We can also plot

a coverage-recall curve, just like the regular precision-recall curve. Also, similar to the

relevance-based average precision, an aspect-based average coverage can also be computed

by averaging the coverage at each point where a new aspect is retrieved/covered. Intuitively,

it measures how fast we bring the new aspects to the user. We call this measure Aspect

Coverage (AC).

The aspect coverage measure is actually a combined measure of relevance and aspects,

since a good ranking must rank relevant documents above non-relevant documents, while at

the same time ranking relevant documents that cover more aspects as early as possible. The

underlying optimization problem is equivalent to the set-cover problem, which is known to

be NP-hard. This means, even if we know the true number of aspects and know which doc-

ument covers which aspects, it is still computationally complex to find an optimal ranking

of documents under these measures.

One deficiency of the aspect coverage measure is that it does not consider redundancy

– it does not penalize repeated covering of the same aspects. Presumably, we want to avoid

covering the same aspects again while trying to cover as many new aspects as possible.

Thus, we would also like to measure the redundancy, in addition to the aspect coverage.

Unfortunately, the measurement of redundancy is tricky, because it is unclear whether a

redundant relevant aspect should be treated as being better or worse than a non-relevant

aspect. Actually, we do not even have the information about non-relevant aspects; we only

know which document is a non-relevant document. So, let us first assume that we only

work on relevant documents. Then, one reasonable measure of redundancy is to look at the

percentage of all the relevant aspects that are distinct, i.e., the ratio of the number of distinct

relevant aspects covered in a set of documents to the total number of relevant aspects.

Intuitively, if all the aspects are unique, then there is no redundancy, so the ratio would be

1; otherwise, the ratio would be less than 1. To make this measure work on both relevant

and non-relevant documents, we must decide what to do with the non-relevant documents.

One possibility is to count each non-relevant document as one redundant aspect. Basically,

we can assume a user can quickly judge a document as being non-relevant, making about

the same effort as identifying a redundant relevant aspect. Essentially, we are measuring the

number of aspects that a user needs to read before he/she sees a certain number of distinct

aspects. In other words, the measure captures the uniqueness of the aspects that a user

needs to read, so we call this measure Aspect Uniqueness (AU). To average over topics, we

again look at the aspect uniqueness at different levels of aspect recall, similar to what we

do with the aspect coverage.
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The underlying optimization problem of aspect uniqueness is equivalent to the volume-

cover problem, which is also known to be NP-hard. Thus, again, even if we know the true

status of aspect coverage, it is still computationally complex to find an optimal ranking of

documents. The complexity in finding an optimal ranking according to either aspect cover-

age or aspect uniqueness suggests that some kind of approximation would be inevitable in

practice.

7.3 Maximal Marginal Relevance (MMR) Models

The idea of Maximal Marginal Relevance (MMR) ranking was first proposed and formal-

ized in (Carbonell and Goldstein, 1998). It is based on the assumption that we need to

consider not only the relevance value, but also the novelty (or equivalently, redundancy)

in the presented documents when ranking a set of documents. Informally, given a set of

previously selected documents, the next best document is one that is both relevant to the

query topic and different from the already selected documents.

In the risk minimization framework, we can encode such preferences with a conditional

loss function l(dk|d1, ..., dk−1, θ, F (U), F ( ~S)) that “balances” the relevance value and the

redundancy value of a document. Let lMMR(dk|d1, ..., dk−1, θQ, θ1, ..., θ
k) be such a loss

function. The conditional risk is

r(dk|d1, ..., dk−1,q, C,U , ~S) =

∫

Θ

lMMR(dk|d1, ..., dk−1, θQ, θ1, ..., θk)p(θ|q, C,U , ~S)dθ

If we assume that the parameters θ are concentrated at the mode θ̂ ≡ (θ̂Q, {θ̂i}
k
i=1) ,

then the posterior distribution is close to a delta function. In this simplified case, ranking

based on the conditional risk is approximately equivalent to ranking based on the value of

the loss function at the mode, i.e.,

r(dk|d1, ..., dk−1,q, C,U , ~S)
rank
≈ lMMR(dk|d1, ..., dk−1, θ̂Q, θ̂1, ..., θ̂k)

Technically, there could be many different ways to specify such a loss function. Indeed,

deriving a well-motivated one is still an open research question.

In (Carbonell and Goldstein, 1998), the following MMR measure is given for re-ranking

a pre-retrieved set of documents R. Given that the documents in S are already selected, the
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next document D∗ is given by

D∗ = arg max
Di∈R\S

[λSim1(Di, Q) − (1 − λ) max
Dj∈S

Sim2(Di, Dj)]

where λ is a parameter controlling the balance of relevance and redundancy, Sim1 is a

regular retrieval similarity function, and Sim2 is a document similarity function that is

supposed to capture redundancy.

A key component in a MMR model is the measure of the novelty of a candidate docu-

ment, i.e., how much information contained in a candidate document is new. The challenge,

however, is to come up with an appropriate combination of such a novelty measure with the

regular relevance measure. In the formula given above, the novelty is measured indirectly

by redundancy, i.e., the maximum similarity between the document and any of the old doc-

uments, and the novelty measure is combined with the relevance measure through linear

interpolation. In the following section, we study both issues in the language modeling

framework. First, we present two ways to measure the novelty of a document based on the

KL-divergence measure and a mixture model. Then we discuss three possible approaches

to combining novelty and relevance, corresponding to three different loss functions. The

first approach assumes that there exist two independent measures, one for relevance and

one for redundancy, and that the loss function is a combination of the two measures. The

second approach assumes a dynamic query model that may depend on the documents that

we have already picked. As we pick more and more documents, the query model would

be more focused on the under-covered aspects. The third approach intends to estimate

a “marginal” document model that is focused on representing the novel information con-

tained in a candidate document, and then measure the relevance of the marginal document

model with respect to the query model. We evaluate all the models using the aspect retrieval

data.

7.3.1 Novelty/Redundancy Measures

Given a set of reference language models {θ1, ..., θk−1} and a model θk for a candidate

document Dk, our goal is to define a novelty score SN , such that SN(θk; θ1, ..., θk−1) will

indicate how much novel information document Dk contains. Intuitively, the novelty is

correlated with how much information in Dk is redundant with respect to the reference

models, which is further correlated with the similarity between documents. So, a redun-

dancy measure can be converted to a novelty measure, though it may not reflect the novelty

precisely, as a document could be redundant and cover new information.
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Single Reference Topic Model

Let us start with the simplest case, where we have just one single reference model. Let θO

and θN be the old (reference) model and the new document model respectively. How can

we define SN(θN ; θO)? Intuitively, SN should be related to the distance between θN and θO;

the novelty in θN would be high if θN is different from θO. On the surface, it appears that,

as a distance function, SN should be symmetric. However, what we are really interested in

here is actually an asymmetric distance. Specifically, we are more interested in how much

of the information represented by θN is similar to that represented by θO, than vice versa.

In other words, we are interested in whether all the information in the new document is

new, but not in whether all the information in the old document has been duplicated in the

new document. Now, let us discuss two different possibilities for SN .

First, since we are working with unigram language models, the most natural distance

measure would be the KL-divergence. It is asymmetric, but as discussed above, this is not

necessarily a problem. Indeed, we should use D(θN ||θO) rather than D(θO||θN) in order

to measure the amount of new information represented by θN . Intuitively, SN (θN ; θO) =

D(θN ||θO) tells us how inefficient it would be (e.g., in compression or encoding), if the

true distribution is θN , but we approximate it with θO.

The KL-divergence measure would allow us to compare the redundancy of different

documents, but it does not tell us what percentage of the new document is redundant/novel.

We now introduce another novelty measure based on a simple mixture model. The basic

idea is to assume a two-component mixture generative model for the new document, in

which one component is the old reference topic model and the other is a background lan-

guage model. Given the observed new document, we estimate the mixing weight for the

background model (or the reference topic model), which can then serve as a measure of

novelty (or redundancy). Intuitively, this weight indicates to what extent the new document

can be explained by the background model as opposed to the reference topic model. A

similar idea, but with three-component mixture models, has also been explored in (Zhang

et al., 2002) to measure redundancy in information filtering.

Formally, let θB be a background language model, and λ be the mixing weight for the

background model. The log-likelihood of a new document Dk = w1...wn is

l(λ) =

n∑

i=1

log((1 − λ)p(wi | θO) + λp(wi | θB))
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and the estimated novelty score λ∗ is given by

λ∗ = arg max
λ

l(λ)

= arg max
λ

n∑

i=1

log((1 − λ)p(wi | θO) + λp(wi | θB))

= arg max
λ

∑

w

c(w, Dk) log((1 − λ)p(w | θO) + λp(w | θB))

= arg max
λ

∑

w

p(w | θN) log((1 − λ)p(w | θO) + λp(w | θB))

= arg min
λ

D(θN ||θO,B(λ))

where θN is the empirical word distribution of document Dk, and θO,B(λ) is the following

mixture model:

p(w | θO,B(λ)) = (1 − λ)p(w | θO) + λp(w | θB)

From the last equation, we see that our estimation of λ is essentially based on min-

imizing the KL-divergence of the empirical word distribution θN and the mixture model

parameterized with λ. This is a standard estimation problem for a simple mixture model,

so the maximum likelihood estimate can be easily computed using the EM algorithm.

In summary, the two basic novelty measures are:

1. KL-divergence: SN(θN ; θO) = D(θN ||θO)

2. Mixture coefficient: SN (θN ; θO) = arg minλ D(θN ||θO,B(λ))

Multiple Reference Topic Models

When there is more than one reference topic model, there are two possibilities. One pos-

sibility is to compute an average model of all the reference topic models, and then use any

of these two basic measures directly. The other possibility is to compute a novelty score

with respect to each individual reference topic model, and then compute a single combined

or summarized novelty score. The first method is straightforward, so we will discuss the

second in some detail.
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There are three obvious possibilities for combining the individual novelty scores:

1. Minimum distance: SN(θk; θ1, ..., θk−1) = min1≤i≤k−1 SN(θk; θi)

2. Maximum distance: SN (θk; θ1, ..., θk−1) = max1≤i≤k−1 SN(θk; θi)

3. Average distance: SN(θk; θ1, ..., θk−1) = 1
k−1

∑k−1
i=1 SN(θk; θi)

The minimum distance essentially relies on the closest reference document to measure

the redundancy, which implies a logical “OR” semantics. That is, as long as the new

document is redundant with respect to one old document, it is judged as being redundant.

It has the property of ensuring that the distance would be zero (most redundant) if the new

document is identical to an old one.

The maximum distance does not appear to make much sense, since a document would

be judged as not being redundant as long as it is very different from one old document,

even though it is similar to all the others.

The average distance implies a logical “AND” semantics. That is, a new document

would be judged as being redundant only when it is similar to all old documents. However,

an identical duplicate document is not regarded as a most redundant document according

to this measure. Instead, a document covering the whole set of old documents well will be

judged as being most redundant. This is thus similar to the first strategy of computing an

average model.

Therefore, we have six different novelty measures as shown in Table 7.1. Both min-

imum distance and average distance make sense, but considering our desire to avoid du-

plicated aspects, it appears that the minimum distance would be more appropriate, since it

would ensure an exact duplicated aspect to be eliminated.

Aggregation

Basic Novelty Measure Model aggregation Novelty aggregation

(Model average) novelty minimum novelty average

KL AvgKL KLMin KLAvg

Mixture AvgMix MixMin MixAvg

Table 7.1: Novelty measures based on language models.
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Comparison of Novelty Measures

We compare all six novelty measures using the aspect retrieval task. In order to focus on

the effectiveness of novelty detection and factor out the relevance, we consider the special

task of re-ranking relevant documents. A novelty measure is expected to help bring novel

aspects earlier in the ranked list by avoiding duplication of old aspects.

We rank a set of relevant documents using the following ranking procedure:

1. The first document is picked based on the regular relevance measure. Thus it is the

same across all the methods.

2. Given that we have already picked k documents, the next document to be picked is

the one that has the highest novelty value as determined by each of the six methods.

3. The process is repeated until we finish ranking all the documents.

We measure the ranking using both the Aspect-Coverage (AC) measure and the Aspect

Uniqueness (AU) measure. The results are shown in Figure 7.1 and Figure 7.2 for AC and

AU respectively.

From these curves, we can make several observations.

Ranking Aspect Coverage Aspect Uniqueness

Method Average Recall=0.1 Recall=0.5 Average Recall=0.1 Recall=0.5

Relevance 1.941 3.060 2.132 0.651 0.943 0.662

AvgKL 1.789 2.904 1.919 0.604 0.961 0.568

AvgMix 1.745 2.653 1.849 0.773 0.99 0.783

KLMin 1.861 2.939 2.032 0.641 0.971 0.630

KLAvg 1.832 2.919 1.998 0.625 0.964 0.604

MixMin 1.835 2.813 1.986 0.717 0.973 0.700

MixAvg 1.804 2.788 1.953 0.701 0.973 0.693

Table 7.2: Comparison of novelty measures and relevance ranking.

1. We see that the two measures have shown different orderings. While for the AU

measure, the mixture model novelty measure performs significantly better than the

KL-divergence measure, it is actually slightly worse than the KL-divergence mea-

sure by the AC measure. Indeed, the AvgMix measure performs significantly better

than the relevance ranking baseline by the AU measure, but significantly worse than
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Figure 7.1: Comparison of the AC curves for the six novelty measures and the baseline relevance ranking

(the solid line). All novelty measures are worse than the baseline.

the baseline by the AC measure. Since the AU measures the capability of removing

redundancy, these observations suggest that removing redundancy does not necessar-

ily result in improving the aspect coverage per document. It is possible that those

documents that cover many new aspects also tend to overlap more with existing doc-

uments, so get down-weighted due to the high redundancy value.

2. The mixture model method is a better novelty (or equivalently redundancy) measure

than the KL-divergence method. This can be seen clearly from Figure 7.2.

3. The two different methods to summarize the novelty as compared to a group of doc-

uments (i.e., the minimum method and the average method) do not appear to make

much difference, but the minimum summary consistently performs slightly better

than the average method. This can be seen more clearly from the results from Ta-

ble 7.2, where we show the concrete figures at different points of the curves. Inter-

estingly, by the AU measure, the model average approach works much better than

the novelty average approach for the mixture model, though it is the opposite for

the KL-divergence measure. This is somehow a surprise, since presumably, averag-

ing the novelty score would achieve a similar effect to measuring the novelty based
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Figure 7.2: Comparison of the AU curves for the six novelty measures and the baseline relevance ranking

(the solid line). All mixture model measures are better than the baseline, but all KL-divergence measures are

worse.

on an average language model – both are trying to emphasize the “vote” from each

document. One possible explanation is that when averaging the model, we obtain a

model that is more smoothed and accurate, so the estimated mixture model coeffi-

cient can be expected to be accurate, whereas when each individual language model

is used, the estimation of the coefficient may have higher variances, since we have

more uncertainty on the individual models.2

4. From Table 7.2, note that the KL-divergence measure performs worse than the base-

line ranking by all measures, except for the AU value at a low recall level (0.1),

where it is always slightly better than the baseline. This initial improvement can be

seen more clearly in Figure 7.2. This means, as a redundancy measure, it is only

effective when measuring the redundancy of a document with respect to another or a

few other documents. When the reference set is large, it appears to be ineffective.

5. Overall, AvgMix is the best by the AU measure, suggesting that it may be a rea-

sonable redundancy measure. Unfortunately, by the AC measure, it is much worse

2Each individual model is smoothed using the Dirichlet prior method.
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than all other measures. In general, we see that the two measures seem to compro-

mise each other. One possible explanation is that when emphasizing on removing

redundancy too much, we favor documents covering fewer aspects in general, which

hurts the AC performance. It seems that even when we consider only relevant docu-

ments, the regular relevance measure is still helping us achieve a better aspect cov-

erage. Thus, some combination of relevance and redundancy is necessary, even for

re-ranking all relevant documents.

7.3.2 Combining Relevance and Novelty

An MMR loss function should be a combination of relevance measure and novelty mea-

sure to reflect our desire to retrieve a document that is both relevant and novel. Since the

trade-off between relevance and novelty depends on the user model, in general, we should

introduce a parameter to control this trade-off. We now discuss three possible ways of

combining relevance and novelty, resulting in three types of MMR loss functions.

Direct Combination of relevance score and novelty score

Suppose we make the assumption that a relevance score and a novelty score can be com-

puted independently. Then we can define our loss function as a direct combination of the

two scores. Formally, let SR(θk; θQ) be any relevance scoring function and SN(θk; θ1, ..., θk−1)

any novelty scoring function. An MMR loss function can be defined as a combination of

the two scoring functions as follows.

lMMR(dk|d1, ..., dk−1, θQ, {θi}
k−1
1 ) = f(SR(θk; θQ), SN(θk; θ1, ..., θk−1), µ)

where µ ∈ [0, 1] is a relevance-novelty trade-off parameter, such that

lMMR(dk|d1, ..., dk−1, θQ, θ1, ..., θk−1)
rank
=

{
SR(θk; θQ) if µ = 0

SN(θk; θ1, ..., θk−1) if µ = 1

One possible such combination is a linear interpolation of SR and SN (Carbonell and

Goldstein, 1998), given by

lMMR(dk|d1, ..., dk−1, θQ, {θi}
k−1
1 ) = (1 − µ)SR(θk; θQ) + µSN(θk; θ1, ..., θk−1)
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In general, this loss function makes sense only when the range of the function SR and

that of SN are comparable (e.g., when both SR and SN are KL-divergence). Thus, we can

imagine a combination of a KL-divergence SR with “AvgKL,” “MinKL,” or “KLAvg” for

SN . However, since the experiment results in the previous section have shown that the KL-

divergence does not capture redundancy very well, such combinations cannot be expected

to perform well.

Nevertheless, the KL-divergence is still a reasonable measure for relevance (SR) as

shown in many other relevance-based retrieval experiments. From the previous section, we

also see that “AvgMin” is a reasonable measure of novelty (SN ). Thus, it would be desirable

to combine them. Unfortunately, a direction interpolation of them would not make much

sense, since they are not on the same scale. We note that the AvgMin estimate of SN can

be interpreted as the expected percent of “novel” information in the document with respect

to the old documents, or the probability that a randomly picked word from the document

represents new information. Thus, we may consider two probabilities associated with a

document d. One is the probability of relevance p(Rel |d); the other is the probability

that any word in the document carries some new information p(New |d). This leads to the

following general form of the loss function:

lMMR(dk|d1, ..., dk−1, θQ, {θi}
k−1
1 ) = c1p(Rel |d)p(New |d)

+c2p(Rel |d)(1 − p(New |d))

+c3(1 − p(Rel |d)p(New |d)

+c4(1 − p(Rel |d))(1 − p(New |d))

where c1, c2, c3, and c4 are cost constants.

Since whether a non-relevant document carries any new information is not interesting

to the user, we could reasonably assume that c3 = c4. Furthermore, we can also reasonably

assume that there is no cost if the document is both relevant and (100%) new, i.e., c1 = 0.

Under these two assumptions, we have

lMMR(dk|d1, ..., dk−1, θQ, {θi}
k−1
1 ) = c2p(Rel |d)(1 − p(New |d)) + c3(1 − p(Rel |d)

For any reasonable loss function, both c2 and c3 should be some positive cost, and usually

c3 > c2. In general, c2 and c3 may change according to k, or even d1, ..., dk−1, but in our

studies, we assume that both are constants. Intuitively, c2 is the cost of seeing a relevant,

but redundant document, whereas c3 is the cost of seeing a non-relevant document. Clearly,
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when c2 = 0, i.e., the user does not care about redundancy, and the loss function would be

essentially based on the probability of relevance, just as what we would expect. Below we

assume that c2 > 0, which allows us to re-write the loss function in the following equivalent

form for the purpose of ranking documents:

lMMR(dk|d1, ..., dk−1, θQ, {θi}
k−1
1 ) = c3 + c2p(Rel |d)(1 −

c3

c2
− p(New |d))

rank
= p(Rel |d)(1 −

c3

c2
− p(New |d))

We can see that, just as we hope, a higher p(New |d) always helps reduce the loss, and

when c3
c2

≥ 1, a higher p(Rel |d) also means a smaller loss. However, the amount of loss

reduction is affected by the cost ratio c3
c2

. This ratio indicates the relative importance of

avoiding a non-relevant document vs. avoiding a relevant but redundant document. When

the ratio is very large, i.e., c3 >> c2, the influence of p(New |d) could be negligible.

This means that when the user would not tolerate any non-relevant document, our optimal

ranking would almost not be affected by the novelty of documents. In general, there would

be a compromise between retrieving documents with new content and avoiding retrieving

non-relevant documents.

One technical problem remains; we do not usually have p(Rel |d) available when we

score documents with the KL-divergence function. One possible solution is to consider

ranking documents based on the query likelihood, i.e., p(q |d), which is equivalent to

ranking based on the KL-divergence. Since SR = p(q |d), we may further assume that

p(Rel |d) is proportional to p(q |d) by some constant. Under this assumption, the loss

function can be rewritten as:

lMMR(dk|d1, ..., dk−1, θQ, {θi}
k−1
1 )

rank
= SR(θk; θQ)(1 − ρ − SN(θk; θ1, ..., θk−1))

where ρ = c3
c2

≥ 1, SR(θk; θQ) = p(q |d) and SN(θk; θ1, ..., θk−1) is the estimated novelty

coefficient using the mixture model method. We refer to this loss function as a cost-based

combination of relevance and novelty.

A common deficiency in combining the relevance score and the novelty score is the

assumption of independent measurement of relevance and novelty. In other words, we do

not have a direct measure of relevance of the new information contained in a new document.

Thus, a document formed by concatenating a seen (thus redundant) relevant document with

a lot of new, but non-relevant, information may be ranked high, even though it is useless

to the user. Next, we present two different types of loss functions that directly measure the

relevance of the new information.
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Dynamic query models

The basic idea of this type of loss function is to assume that the user’s information need

changes as the user browses through the documents according to the ranking order. In par-

ticular, the query model is assumed to depend on the documents that the user has already

seen, and will focus more on the new aspects that have not been covered by the already

picked/viewed documents. One way to implement this idea is to use the old reference lan-

guage model as a query background model, i.e., the query is assumed to be generated by

mixing the known information language model with a document language model. In this

way, the documents would be discriminated primarily based on their capability of explain-

ing the part of the query that cannot be accounted for by the “known model,” rather than the

whole query. Thus the documents will be discriminated mostly based on the relevance of

the new information contained in each of them. This approach has already been mentioned

at the end of Chapter 5.

Let θO be the old reference model which is the average of the models of all the previ-

ously picked documents ( θ1, ..., θk−1). Let θO,k be the following mixture model:

p(w | θO,k) = (1 − µ)p(w | θk) + µp(w | θO)

where µ indicates the weight on the reference model θO.

Then the loss function based on using the dynamic background model θO is given by

lMMR(dk|d1, ..., dk−1, θQ, θ1, ..., θk) = D(θQ||θO,k)

While this method (called the dynamic query background method) can be expected to

discriminate relevant documents based on the new information, it may not be very effective

in ranking relevant documents above non-relevant documents. Indeed, as we allow the

query background model to explain the query, a non-relevant document will be expected to

get a reasonably high score. We now present a more reasonable loss function, where we

explicitly estimate a new query model based on the current reference model θO.

We assume that the (original) query model is a mixture of θO and some new but un-

known model θQk
. This mixture model, denoted by θO,Qk

, is given by

p(w | θO,Qk
) = (1 − µ)p(w | θQk

) + µp(w | θO)

where µ is a parameter that indicates how much known information we want to consider.
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When µ = 0, θQk
= θQ. Now, given θQ, θO, and µ, we will estimate θQk

, the dynamic

query model for selecting the k-th document dk by minimizing the KL-divergence:

θ̂Qk
= arg min

θQk

D(θQ||θO,Qk
)

The loss function based on this dynamic query model is

lMMR(dk|d1, ..., dk−1, θQ, θ1, ..., θk) = D(θ̂Qk
||θk)

We refer to this method as the marginal query model method.

Marginal document language models

The basic idea of this type of loss function is to estimate a language model that best rep-

resents the new information contained in a document. We imagine that a “residue” or

“marginal” document may be generated by removing the redundancy in a given document.

Thus, we would not use the novelty score directly; instead, we rely on some novelty mea-

sure to estimate a language model that corresponds to this imaginary marginal document.

To see how we could achieve such a goal in the language modeling approach, let us

again consider the simplest case where we have only one single reference topic model θO.

Suppose θB is a background language model and θN is the empirical word distribution of

the new document. As discussed in Section 7.3.1, the estimated novelty is given by

SN(θN ; θO) = arg min
λ

D(θN ||θO,B(λ))

Note that SN(θN ; θO) ∈ [0, 1] gives us an estimate of the fraction of novel information in

the document. Now, let us assume that SN(θN ; θO) is the true amount of novel information

and the rest of the information can be explained by the old model θO very well. Our

goal is to estimate a language model for the “identified amount of novel information.” In

order to estimate such a model, we consider a different mixture model that involves θO

and an unknown marginal model θM (to be estimated). The mixing coefficient is fixed to

λ∗ = SN(θN ; θO). Let θO,M(λ∗) be the following mixture model:

p(w | θO,M(λ∗)) = (1 − λ∗)p(w | θO) + λ∗
p(w | θM)

Then our estimate of θM is given by
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θ̂M = arg min
θM

D(θN ||θO,M(λ∗))

Again the EM algorithm could be used here.

Once we have θ̂M , we can simply rank documents based on their corresponding θ̂M .

In summary, our idea is to first figure out how much new information the document

dk has, and then estimate a language model that represents the contained new information,

and finally, score the document based on the KL-divergence of the marginal language model

and the query model. In order to accommodate a flexible trade-off between relevance and

novelty, we define our loss function as an interpolation of the regular relevance measure

and this marginal relevance measure:

lMMR(dk|d1, ..., dk−1, θQ, θ1, ..., θk) = (1 − µ)D(θQ||θk) + µD(θQ||θ̂Mk
)

where θ̂Mk
is an estimated marginal language model for document dk. We see that when

µ = 0, we end up scoring with the regular relevance measure, whereas when µ = 1, we

score solely based on the marginal language model.

The reference model θO can be defined in several different ways, depending on how we

summarize the set of reference topic models. We mention two representative possibilities

here:

1. Using an average reference model

We average all the reference models and treat all the reference models together as

one single model θO, which is defined as:

p(w | θO) =
1

k − 1

k∑

i=1

p(w | θi)

The effect is to consider all the redundant parts in document dk.

2. Using the closest reference model

In this case, we use the reference model that is closest to the document model θk to

represent the whole set of reference models. That is,

θO = arg min
θi:1≤i≤k−1

D(θk||θi)

The effect is to consider only the most redundant part of document dk. In this case,

θO depends on dk.
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7.3.3 Evaluation

To evaluate the effectiveness of the proposed methods for combining novelty and relevance,

we compare them with a well-tuned relevance-based ranking baseline. Since the marginal

query model approach and the marginal document model approach can be expected to

work well only when the query model is rich enough, we consider two relevance-ranking

baselines. One, the simple baseline, is the best relevance-based ranking in terms of the

aspect coverage measure using the original short queries. This simple baseline ranking is

achieved when the Dirichlet prior smoothing parameter is set to 20,000. The other, the

feedback baseline, uses an expanded (richer) query model based on this simple baseline.

The expanded query model is an interpolation of the original maximum likelihood query

model and a pseudo-feedback model with a coefficient of 0.5 on each model. The feedback

model is estimated based on the top 100 documents (from the simple baseline results)

using the mixture model approach described in Section 6.5.1 with the background noise

parameter set to 0.5. The Dirichlet prior smoothing parameter is set to 5,000, which is

optimal for scoring the expanded query.

We search for the best relevance-based ranking by trying many different values for the

Dirichlet prior parameter. These results from using different smoothing parameter values

are compared in Figure 7.3 to show how the relevance-based precision (i.e., average preci-

sion) and the aspect-based performance (i.e., the aspect coverage and uniqueness) respond

to different values of the smoothing parameter.

The three pictures on the left side in Figure 7.3 show the comparison for the average,

at recall=0.1, and at recall=0.5 for the simple query baseline. Overall, we see that when

the Dirichlet prior parameter is set to a relatively large value, the curves are relatively flat,

indicating that the sensitivity is low, especially for the aspect measures. However, in all

cases, if the parameter value is too small, the performance can drop significantly. We also

see that, while there is an overall correlation between the three curves, the optimal setting

of the smoothing parameter is different for different measures. In particular, the optimal

setting for relevance precision tends to be much lower than that for aspect measures. In-

deed, the optimal setting for relevance precision is around 5,000, whereas it is generally

above 10,000 for aspect measures. This seems to be true especially for the average perfor-

mance and at recall of 0.5; for recall of 0.1, the optimal setting is relatively more consistent,

which is also expected, as the performance is highly influenced by the rank of the very first,

or first few relevant documents, thus the real difference between rankings may not be re-

flected. From these results, we use the ranking (at parameter value 20,000) that gives the
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Figure 7.3: Correlation of relevance precision, aspect coverage, and aspect uniqueness as smoothing param-

eter changes when measured as average (top), at recall=0.1 (middle), and recall=0.5 (bottom). Left is simple

queries; right is expanded queries. The performance is seen to be sensitive to the smoothing parameter, and

the optimal setting of the smoothing parameter is different for each measure.

best aspect coverage as our simple relevance baseline.

On the right side of Figure 7.3, we show a similar comparison for the feedback query.

We see that the overall patterns are similar to what we observed on the simple baseline

results. The best average aspect coverage is achieved when the smoothing parameter is set
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to 5,000.

The performance of the simple baseline and the feedback baseline is compared in Ta-

ble 7.3. The feedback baseline improves over the simple baseline by all measures, though

the amount of improvement for relevance-based measures is more significant. Thus, al-

though pseudo feedback primarily aims at improving relevance-based performance, it also

improves the aspect performance. Indeed, when ranking a mixture of relevant and non-

relevant documents, improving the relevance-based precision will bring more relevant doc-

uments to the top of the list, which can be expected to improve the aspect coverage and

aspect uniqueness, since both aspect measures would penalize having non-relevant docu-

ments on the top. Thus, in general, a better relevance-based average precision also means

a better aspect coverage performance, suggesting that we could improve aspect coverage

through improving relevance measurement. However, there is a limit in doing this; the best

performing ranking according to the relevance measures does not also give the best aspect

performance. Later, we will show that a combination of relevance measure and novelty

measure can improve aspect performance even though it may have an inferior relevance-

based performance.

Baseline Rel. Precision Aspect Coverage Aspect Uniqueness

Method Avg. At0.1 At0.5 Avg. At0.1 At0.5 Avg. At0.1 At0.5

Simple 0.414 0.708 0.404 1.737 3.216 2.008 0.449 0.863 0.460

Feedback 0.445 0.723 0.451 1.788 3.227 2.05 0.462 0.881 0.473

Improve 7.5% 2.1% 11.6% 2.9% 0.3% 2.1% 2.9% 2.1% 2.8%

Table 7.3: Comparison of simple baseline and feedback baseline.

With these two baselines, we can test the proposed methods for combining relevance

and novelty. For each method, we examine the influence of the parameters and compare

the method’s performance with the baselines. For the sake of efficiency, the comparison

is generally based on re-ranking some top-ranked documents according to the baseline

ranking.

We first look at the cost-based combination of relevance and novelty. We use it for re-

ranking the top 100 documents (for each topic) returned by the simple baseline relevance

ranking as well as for re-ranking all the relevant documents. We vary the cost parameter ρ

between 1 and 10. It is unreasonable to set ρ to any value below 1, as it would mean that

a larger relevance value corresponds to a larger loss. As ρ becomes large, the combination

relies more on relevance. When ρ = 10, it is almost like ranking based on only relevance.
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The results are shown in Figure 7.4.
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Figure 7.4: Effectiveness of the cost-based combination of relevance and novelty for re-ranking a mixture of

relevant and non-relevant documents (left) and for re-ranking only relevant documents (right).

Ranking Rel. Precision Aspect Coverage Aspect Uniqueness

Method Avg. At0.1 At0.5 Avg. At0.1 At0.5 Avg. At0.1 At0.5

SimpBase 0.378 0.707 0.369 1.721 3.216 2.006 0.434 0.863 0.457

CC (ρ = 5) 0.358 0.656 0.354 1.721 3.210 1.970 0.434 0.868 0.442

Improve -5.3% -7.2% -4.1% 0% -0.2% -1.8% 0% +0.6% -3.3%

FBBase 0.400 0.720 0.396 1.766 3.227 2.046 0.442 0.881 0.471

Improve +5.8% +1.8% +7.3% +2.6% +0.3% +2.0% +1.8% +2.1% +3.1%

Ranking Aspect Coverage Aspect Uniqueness

Method Avg. At0.1 At0.5 Avg. At0.1 At0.5

SimpBase 2.236 3.614 2.550 0.666 0.987 0.679

CC(ρ = 1.5) 2.295 3.567 2.647 0.758 0.957 0.800

Improve +2.6% -1.3% +3.8% +13.8% -3.0% 17.8%

FBBase 2.268 3.708 2.598 0.661 0.995 0.690

Improve +1.4% +2.6% +1.9% -0.8% +0.8% +1.6%

Table 7.4: Effectiveness of the cost-based combination of relevance and novelty for re-ranking a mixture of

relevant and non-relevant documents (top) and for re-ranking relevant documents (bottom). The improvement

of the feedback baseline over the simple baseline is also shown for comparison.

We see that the cost-based combination of relevance and novelty is not effective in

improving either aspect coverage or aspect uniqueness when working on the mixed data

(i.e., with both relevant and non-relevant documents). The feedback baseline results are

obtained by using the expanded query to re-rank the same 100 documents. (The perfor-

mance is thus worse than retrieving 1000 documents from the whole collection. Actually
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it is also worse than retrieving the top 100 documents from the whole collection.) We see

that the feedback baseline could improve over the simple baseline in terms of both rele-

vance precision and aspect measures. It appears that in this testing collection, the novelty

or redundancy is not a dominating factor compared with relevance; any improvement in

measuring relevance can be expected to improve aspect coverage more significantly than

trying to minimize redundancy. Indeed, even when ranking only the relevant documents,

we see that feedback improves aspect coverage, though it hurts aspect uniqueness. This

means that the improvement of relevance helps improve aspect coverage not only through

“pushing down” non-relevant documents, but also through “bringing up” documents that

tend to cover more aspects, and that is probably why feedback has a clear positive effect on

aspect coverage when re-ranking all relevant documents.
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Figure 7.5: Effectiveness of the query background model approach to combining relevance and novelty for re-

ranking mixed relevant and non-relevant documents (left) and for re-ranking only relevant documents (right).

We also see that the cost-based combination clearly and significantly improves the as-

pect uniqueness when re-ranking relevant documents, suggesting that it does help reduce

the redundancy among documents, which, in turn, also helps improve the aspect coverage,

as shown in Table 7.4.

Next, we evaluate the two dynamic query modeling approaches. First, we look at the

query background model approach. The results on ranking both mixed documents (top 100

documents) and re-ranking only relevant documents are shown in Figure 7.5. We see that

although aspect performance improves when re-ranking relevant documents, the perfor-

mance is never improved when ranking mixed documents. A very likely reason is because

the introduction of the query background helps non-relevant documents to “generate” the

query and thus to get a higher score than they should get. Indeed, the relevance-based pre-

cision is clearly decreasing as we use a larger “novelty weight.” What happens is that as
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we use a higher novelty weight, more non-relevant documents are brought up, which hurts

both the precision measure and aspect measures. Similar to the cost-based approach, when

re-ranking relevant documents, the query background model approach is able to improve

both aspect coverage and aspect uniqueness, as shown in Table 7.5.

Ranking Aspect Coverage Aspect Uniqueness

Method Avg. At0.1 At0.5 Avg. At0.1 At0.5

FBBase 2.268 3.708 2.598 0.661 0.995 0.690

QB (µ = 0.6) 2.309 3.775 2.581 0.682 0.995 0.697

Improve +1.8% +1.8% -0.7% +3.2% 0.0% +1.0%

Table 7.5: Effectiveness of the query background model on re-ranking relevant documents. It improves both

aspect coverage and aspect uniqueness.

The results of the marginal query model method are shown in Figure 7.6 and Table 7.6.

The results of the mixed data are based on re-ranking the top 30 documents returned by

the simple query baseline. Overall, this method can slightly improve all the measures, but

rather insignificantly, even when re-ranking relevant documents. It appears that as long as

the novelty weight is not very high, the marginal query model approach does not change

the ranking order significantly, but when the novelty weight is very high, the change of

ordering hurts the performance of all the measures. These results suggest that the simple

mixture model is not effective for estimating an accurate marginal query model.
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Figure 7.6: Effectiveness of the marginal query model approach to combining relevance and novelty for re-

ranking mixed relevant and non-relevant documents (left) and for re-ranking only relevant documents (right).

The results of the marginal document model on re-ranking mixed data (top 30 docu-

ments) and re-ranking relevant documents are shown in Figure 7.7 and Table 7.7. We see

136



that this approach can actually improve all the measures on mixed documents, but quite

insignificantly. It is interesting to note that this approach can hardly improve the perfor-

mance when working on only relevant documents. This suggests that the improvement on

the mixed data may be largely due to an improvement on relevance-ranking; indeed, there

is a relatively significant increase in all the relevance-based measures. Although the mix-

ture novelty measure is shown to be quite effective in improving the aspect uniqueness, the

estimated marginal document model based on this novelty measure turns out not to be so

effective.

Ranking Rel. Precision Aspect Coverage Aspect Uniqueness

Method Avg. At0.1 At0.5 Avg. At0.1 At0.5 Avg. At0.1 At0.5

FBBase 0.320 0.707 0.214 1.723 3.223 1.991 0.406 0.877 0.423

MQM(µ = 0.4) 0.322 0.714 0.216 1.726 3.217 1.981 0.407 0.874 0.421

Improve +0.6% +1.0% +0.9% +0.2% -0.2% -0.5% +0.2% -0.3% -0.5%

Ranking Aspect Coverage Aspect Uniqueness

Method Avg. At0.1 At0.5 Avg. At0.1 At0.5

FBBase 2.268 3.708 2.598 0.661 0.995 0.690

MQM(µ = 0.1) 2.273 3.708 2.590 0.666 0.995 0.691

Improve +0.2% 0% -0.3% +0.8% 0% +0.1%

Table 7.6: Effectiveness of the marginal query model approach to combining relevance and novelty for re-

ranking a mixture of relevant and non-relevant documents (top) and for re-ranking relevant documents (bot-

tom).
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Figure 7.7: Effectiveness of the marginal document model approach to combining relevance and novelty

for re-ranking mixed relevant and non-relevant documents (left) and for re-ranking only relevant documents

(right).

In Table 7.8, we compare all four methods in terms of their best results on both the
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Ranking Rel. Precision Aspect Coverage Aspect Uniqueness

Method Avg. At0.1 At0.5 Avg. At0.1 At0.5 Avg. At0.1 At0.5

FBBase 0.320 0.707 0.214 1.723 3.223 1.991 0.406 0.877 0.423

MDM(µ = 0.5) 0.331 0.722 0.238 1.734 3.283 1.922 0.415 0.898 0.425

Improve +3.4% +2.1% +11.2% +1.5% +1.9% -3.5% +2.2% +2.4% +0.5%

Ranking Aspect Coverage Aspect Uniqueness

Method Avg. At0.1 At0.5 Avg. At0.1 At0.5

FBBase 2.268 3.708 2.598 0.661 0.995 0.690

MDM(µ = 0.1) 2.269 3.708 2.580 0.662 0.995 0.688

Improve 0% 0% -0.7% +0.2% 0% -0.3%

Table 7.7: Effectiveness of marginal document model approach to combining relevance and novelty for re-

ranking a mixture of relevant and non-relevant documents (top) and for re-ranking relevant documents (bot-

tom).

mixed data and the relevant data. On the mixed data, the marginal document model method

and the marginal query model method could manage to improve both aspect coverage

and aspect uniqueness, even though only slightly, but neither the cost-based combination

method, nor the query background model method could improve over the relevance-ranking

baseline. However, on the relevant data set, the results seem to be the opposite. The cost-

based combination method and the query background model method perform better than

the two marginal model approaches. Since we can factor out the relevance factor when re-

ranking relevant documents, the improvement in aspect performance on the relevant data

set is a good indicator of how well a method captures redundancy/novelty and how well the

elimination of redundancy can help retrieve more relevant aspects. Thus, our results show

that the cost-based combination method and the query background model method are both

effective in removing redundancy and covering more aspects. However, neither approach

can improve the aspect performance on the mixed data. This means that neither approach

is very effective in ranking relevant documents above non-relevant ones; indeed, both ap-

proaches tend to decrease the relevance-based precision significantly (see Table 7.4). As a

result, even though the “internal” ranking of relevant documents may have been improved,

the overall performance decreases because too many non-relevant documents are ranked

high. Clearly, to perform well on a mixed data set, a method must be able to model rele-

vance and redundancy effectively. The cost-based method and the query background model

method are examples where the modeling of redundancy is effective, but the modeling of

relevance is relatively weak. On the other hand, the two marginal model approaches appear

to be better at modeling relevance than redundancy. Indeed, their improvement on the rel-
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evant data set is quite small, but both improve the performance slightly on the mixed data

set. From Table 7.6 and Table 7.7, we see that these two approaches both also improve the

precision on the mixed data set. Thus, the improvement in aspect performance is mainly

due to an improvement of relevance ranking. This is an interesting observation, as neither

of them were designed to improve relevance ranking. One possible explanation for the

marginal query model method is that the dynamic query model is effectively a “distilled”

query model with the background noise excluded; this strategy has been shown to be effec-

tive in improving precisions (see Chapter 6, Section 6.4). However, more study is needed

to understand why the marginal document model method improves precision.

Since the mixture model novelty measure has already been shown to be effective in

measuring novelty/redundancy, it is not very surprising that the cost-based combination

method, which uses the mixture model novelty measure, improves the aspect uniqueness

significantly on the relevant data set. However, what is interesting is that using the mixture

model novelty measure has not been able to improve the aspect coverage, but combining it

with relevance makes it possible to improve both aspect uniqueness and aspect coverage.

In summary, on the relevant data set, the cost-based combination method is most ef-

fective and it can improve both aspect coverage and aspect uniqueness, suggesting that

eliminating redundancy does help improve aspect coverage. However, on the mixed data

set, we have not yet seen a case where the relevance-based precision is decreased, but

the aspect performance is improved; instead, the improvement in aspect performance is

often also accompanied by an increase in relevance-based performance. Thus, it appears

that improving aspect coverage through eliminating redundancy is effective only when we

can achieve/ensure a very good relevance ranking; when the relevance ranking is not very

accurate, improving the relevance ranking may be expected to have more impact on the

aspect performance than removing redundancy. Since whether eliminating redundancy can

improve aspect coverage highly depends on how much redundancy is in our data, these

observations suggest that the percentage of redundant documents may be relatively low

when compared with the percentage of non-relevant documents in our data set. Therefore,

it would be very useful to test all these methods with some synthetic data where we can

control the level of redundancy.

In practice, for such an aspect retrieval task, we may consider using either the cost-based

combination method (ρ = 1.5) or the marginal document model (µ = 0.5), depending on

how accurate our relevance measure is. The cost-based combination method would be

appropriate if we can expect to achieve a very high precision; otherwise, the marginal
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Ranking Aspect Coverage Increase Aspect Uniqueness Increase

Method Avg. At0.1 At0.5 Avg. At0.1 At0.5

CC(ρ) 0% (+∞) 0%(+∞) 0%(+∞) 0%(+∞) 0%(+∞) 0%(+∞)

QB (µ) 0% (0) 0%(0) 0%(0) 0%(0) 0% (0) 0%(0)

MQM (µ) +0.2%(0.4) -0.2%(0.4) -0.5%(0.4) +1.0%(0.95) +1.7%(0.95) -1.6% (0.95)

MDM (µ) +1.5%(0.5) +1.9%(0.5) -3.5%(0.5) +2.2%(0.5) +2.4% (0.5) +0.5% (0.5)

Ranking Aspect Coverage Increase Aspect Uniqueness Increase

Method Avg. At0.1 At0.5 Avg. At0.1 At0.5

CC(ρ) +2.6% (1.5) -1.3%(1.5) +3.8%(1.5) +13.8% (1.5) -3.0%(1.5) +17.8% (1.5)

QB (µ) +1.8%(0.6) +1.8%(0.6) -0.7% (0.6) +5.6% (0.99) +0.5%(0.99) +3.0% (0.99)

MQM (µ) +0.2% (0.1) 0%(0.1) -0.3%(0.1) +1.2% (0.9) +0.1% (0.9) +0.3% (0.9)

MDM (µ) 0%(0.1) 0%(0) 0%(0) +1.1%(0.5) +0.1%(0.5) -0.1%(0.5)

Table 7.8: Comparison of all MMR models for re-ranking mixed data (top) and for re-ranking relevant docu-

ments (bottom). The numbers shown are the increase over the baseline relevance ranking.

document model method may be more appropriate.

7.4 Maximal Diverse Relevance (MDR) Models

In this section, we study another completely different type of models for the aspect retrieval

task. Unlike in the previous section, where we hope to increase aspect coverage indirectly

through eliminating the redundancy among documents, here we intend to improve the as-

pect coverage more directly through modeling the possible aspects in the documents with

mixture language models.

7.4.1 A General Aspect Retrieval Model

To model the aspect retrieval problem, we consider the generative model illustrated in Fig-

ure 7.8. We assume that there is a space of A aspects, each characterized by a unigram

language model. Formally, let τ = (τ1, ..., τA) be a vector of aspects. τi is a unigram

language model and p(w | τi) gives the probability of word w according to the aspect τi.

Now, let us assume that a user, with an interest in retrieving documents to cover some of

these A aspects, would first pick a probability distribution θQ over the aspects, and then for-

mulate a query according to a query generation model p(q | τ , θQ). Intuitively, θQ encodes
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Figure 7.8: Aspect generative model of query q and document d.

the user’s preferences on aspect coverage, and in general, would have the probability mass

concentrated on those aspects that are most interesting to the user; other non-interesting

aspects may have a zero probability. Furthermore, among these “interesting aspects,” the

distribution is generally non-uniform, reflecting the fact that some aspects are more em-

phasized than others. Similarly, we also assume that the author or source of a document

d would first pick an aspect coverage distribution θD, and then generate d according to a

document generation model p(d | τ , θD).

For example, a simple case of p(d | τ , θD) would be a mixture model, in which θD is

the mixing weights and τ are the component unigram language models. That is, suppose

d = d1d2...dn, we have

p(d | τ , θD) =

n∏

i=1

A∑

j=1

p(j | θD)p(di | τj)

But the derivation below is not restricted to such a mixture model.

To derive an aspect retrieval model, we start with the following general greedy algo-

rithm ranking formula:

r(dk|d1, ...,dk−1,q, C,U , ~S)
def
=

∫

Θ

l(dk|d1, ...,dk−1, θ, F (U), F ( ~S))p(θ|q, C,U , ~S)dθ

This conditional risk gives us a way to evaluate the rest of the documents and pick the

best dk, given that we have already picked d1, ..., dk−1. With the generative models given

above, θ = (τ , θQ, θD1, ..., θDk
).

141



We now consider the following loss function:

l(dk|d1, ...,dk−1, θ, F (U), F ( ~S)) = l(dk|d1, ...,dk−1, τ , θQ, θD1 , ..., θDk
)

= D(θQ||θ
Dk

D1...Dk−1
)

where θDk

D1...Dk−1
is a weighted average of {θdi

}k
i=1 defined as follows:

p(a | θDk

D1...Dk−1
) =

µ

k − 1

k−1∑

i=1

p(a | θDi
) + (1 − µ)p(a | θDk

)

where µ ∈ (0, 1] is a parameter indicating how much redundancy we would like to

model.

The idea behind this loss function is the following: We expect θQ to give us a “measure”

of which aspect is relevant – a high p(a | θQ) indicates that the aspect a is likely a relevant

one. The loss function encodes our preferences for a similar “aspect coverage distribution”

given by all the documents d1, ..., dk. Thus, if θQ assigns high probabilities to some aspects,

then we would expect to cover these (presumably relevant) aspects more than other aspects.

The best dk is thus the one that can work together with d1, ..., dk−1 to achieve a coverage

distribution that is most similar to the desired aspect coverage based on the query, i.e.,

p(a | θQ). The parameter µ controls how much we rely on the previously picked documents

d1, ..., dk−1 to cover the aspects. If we do not rely on them (i.e., µ = 0), we will be looking

for a dk that best covers all the relevant aspects by itself. On the other hand, if µ > 0, part

of the coverage would have been explained by the previously picked documents, and the

best dk would be one that best covers those “under-covered” relevant aspects. Essentially,

we are searching for the dk that best supplements the coverage provided by the previously

picked documents with respect to the desired coverage θQ.

Putting this loss function and the aspect generative model into the conditional risk for-
mula, we have

r(dk|d1, ...,dk−1,q, C,U , ~S) =

∫

Θ
l(dk|d1, ...,dk−1, θ, F (U), F ( ~S))p(θ|q, C, Ck,U , ~S)dθ

=

∫

Θ
D(θQ||θ

Dk

D1...Dk−1
)p(θQ, θD1 , ..., θDk

|q, C, Ck,U , ~S)dθQdθD1 ...dθDk
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and

p(θQ, θD1 , ..., θDk
|q, C, Ck,U , ~S) =

∫

T
p(θQ, θD1 , ..., θDk

, τ |q, C, Ck,U , ~S)dτ

=

∫

T
p(θQ | τ ,q,U)

k∏

i=1

p(θDi
| τ ,di, ~S)p(τ |q, C,U , ~S)dτ

≈ p(θQ | τ̂ ,q,U)
k∏

i=1

p(θDi
| τ̂ ,di, ~S)p(τ̂ |q, C,U , ~S)

where τ̂ = arg maxτ p(τ |q, C,U , ~S), and Ck = {d1, ...,dk}.

Note that we have assumed that τ can be estimated using all the documents in the
collection, i.e., C, so p(τ |q, C,U , ~S) does not depend on dk and can be ignored for the
purpose of ranking dk. That is,3

r(dk|d1, ...,dk−1,q, C,U , ~S)
rank
≈

∫

Θ
D(θQ||θ

Dk

D1...Dk−1
)p(θQ | τ̂ ,q,U)

k∏

i=1

p(θDi
| τ̂ ,di, ~S)

rank
≈ D(θ̂Q||θ̂

Dk

D1...Dk−1
)p(θ̂Q | τ̂ ,q,U)

k∏

i=1

p(θ̂Di
| τ̂ ,di, ~S)

rank
= D(θ̂Q||θ̂

Dk

D1...Dk−1
)p(θ̂Dk

| τ̂ ,dk, ~S)

rank
≈ D(θ̂Q||θ̂

Dk

D1...Dk−1
)

where

θ̂Q = arg max
θQ

p(θQ | τ̂ ,q,U)

and

θ̂Di
= arg max

θDi

p(θDi
| τ̂ ,di, ~S)

Thus, we have obtained the following ranking procedure:

1. We rank all the documents in a greedy fashion, using the conditional risk

r(dk|d1, ...,dk−1,q, C,U , ~S) when selecting the k-th document.

2. Before selecting any document, we first estimate τ , i.e., τ̂ = arg max
τ

p(τ |q, C,U , ~S).

3. To compute r(dk|d1, ...,dk−1,q, C,U , ~S), we first compute θ̂Q and θ̂Dk
(presumably,

θ̂D1 , ..., θ̂Dk−1
were already computed), and then evaluate D(θ̂Q||θ̂

Dk

D1...Dk−1
). θ̂Q and

θ̂Dk
are computed using the formulas given above.

3In our experiments with re-ranking a pre-selected working set of documents, we estimate τ based on the

working set.
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In order to make this general aspect retrieval model operational, we need to specify:

• Query model: p(q | τ , θQ) and p(θQ | τ ,U)

• Document model: p(d | τ , θD) and p(θD | τ , ~S)

If we have one distinct aspect τw for each word w and τw is entirely concentrated on the

single word w, i.e., p(w | τw) = 1 and for w′ 6= w, p(w′ | τw) = 0, then θQ and θD are just

regular unigram language models. In this case, if we set λ = 1, the conditional risk would

no longer depend on the previously picked documents, and is given by

r(dk|d1, ...,dk−1,q, C,U , ~S) =

∫

Θ

D(θQ||θDk
)p(θQ |q,U)p(θDk

|dk, ~S)dθQdθDk

This is precisely the regular ranking formula with independent KL-divergence loss func-

tion. Thus, the aspect retrieval model is a generalization of the regular KL-divergence

retrieval model.

When we choose a λ < 1, we achieve an effect of “aspect-covering” ranking, since

when picking dk, we will be concentrating on the under-covered aspects.

In general, we can plug in any specific aspect-based generative models to the general

aspect retrieval model, leading to potentially different retrieval formulas. We now discuss

some specific aspect-based generative models.

7.4.2 Query Model p(q | τ , θQ) and p(θQ | τ ,U)

Let q = q1...qm be a query. The query generation model can be the following mixture

model:

p(q | τ , θQ) =
m∏

i=1

A∑

a=1

p(a | θQ)p(qi | τa)

The coverage selection model p(θQ | τ ,U) should reflect our prior on user’s prefer-

ences on aspect coverage. The simplest case is to use a non-informative uniform prior,

but it would be more interesting to consider using a Dirichlet distribution with parameters

αQ(τ ), i.e., D(θQ |αQ(τ )). The parameters αQ(τ ) depend on τ , and intuitively reflect the

popularity of the aspects. With the Dirichlet prior, the user would first sample a desired as-

pect coverage distribution θQ using the Dirichlet coverage selection model D(θQ |αQ(τ )),

and then generate the query q according to the mixture model that uses θQ as the mixing

weights. Note that we assume that τ are given in advance.
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7.4.3 Document Model p(d | τ , θD) and p(θD | τ , ~S)

Let d = d1...dn be a document. We first mention the plain mixture model, where we

assume that all the words in a document are generated using an uncertain, but fixed aspect.

That is,

p(d | τ , θD) =
A∑

a=1

p(a | θD)
n∏

i=1

p(di | τa)

However, this model does not reflect our goal of capturing multiple aspects within one

single document, so we do not further explore this model.

In order to model multiple aspects in one document, we use the following aspect-based

generative mixture model:

p(d | τ , θD) =

n∏

i=1

A∑

a=1

p(a | θD)p(di | τa)

We assume that an imaginary author (for some document source S) would first pick a

desired aspect coverage distribution according to p(θD | τ ,S), and then generate the docu-

ment d using this mixture model in which θD is used as mixing weights on the aspects.

Now, the question is how to define the coverage selection probability p(θD | τ ,S). It

turns out that with two different choices of p(θD | τ ,S), we end up with two well-known

aspect-based models – probabilistic Latent Semantic Indexing (Hofmann, 1999) and Latent

Dirichlet Allocation (Blei et al., 2003).

Probabilistic Latent Semantic Indexing (PLSI)

Suppose we let p(θD | τ ,S) be defined only on the set of documents in our collection

C = {d1, ..., dN}. That is, we only allow N different coverage distributions, or

N∑

i=1

p(θDi
| S) = 1

And suppose we do not impose any other constraints.

Under this assumption, the log-likelihood of the whole collection is

l(τ , {θDi
}N

i=1|C) =
N∑

i=1

ni∑

j=1

log(
A∑

a=1

p(a | θDi
)p(dij | τa))
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where ni is the length of document di. The parameters for this model include the sub-

topic language models τ and a potentially different mixing weight distribution θDi
for each

document di. Thus, this is essentially the Probabilistic Latent Semantic Indexing (PLSI)

proposed in (Hofmann, 1999).

To apply this model to the problem of aspect retrieval, we first estimate τ and θDi
, e.g.,

by maximizing the collection likelihood given above. The EM algorithm can be applied.

See (Hofmann, 1999) for more discussion of the estimation methods and how to avoid

over-fitting.

Suppose τ̂ and θ̂Di
are the estimated models. Now, we can compute θ̂Q by maximizing

the posterior probability, p(θQ | τ̂ ,q,U), i.e.,

θ̂Q = arg max
θQ

p(q | τ̂ , θQ)p(θQ | τ ,U)

This is a MAP optimization problem, when we use the Dirichlet distribution D(θQ |αQ(τ̂ ))

for the aspect selection model p(θQ | τ ,U). It can be solved using the EM algorithm. The

updating equations are:

p
(n+1)(a | θQ) =

∑m
j=1 p(a | qi) + αQ,a∑A

a′=1(
∑m

j=1 p(a′ | qi) + αQ,a′)

where

p(a | qi) =
p

(n)(a | θQ)p(qi | τ̂a)∑A
a′=1 p (n)(a′ | θQ)p(qi | τ̂ ′

a)

and αQ,a is the component value of αQ corresponding to aspect a.

Finally, we can use D(θ̂Q||θ̂
Dk

D1...Dk−1
) to score documents.

One problem with the PLSI is the large number of parameters. Indeed, the total num-

ber of parameters is A(|V | + N), where |V | is the vocabulary size, A is the number of

aspects, and N is the number of documents. This is a serious problem, especially for mod-

eling aspects, since the number of parameters grows linearly according to both the number

of aspects and the number of documents. Next, we discuss the Latent Dirichlet Alloca-

tion model, which effectively uses a Dirichlet distribution to “regulate” the θD for all the

documents, reducing the number of parameters significantly.

Latent Dirichlet Allocation (LDA)

Instead of considering only a finite set of coverage distributions, let us consider the con-

tinuous space of all the possible aspect coverage distributions, which is the space of all
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the multinomial distributions over the aspects. And we let p(θD | τ ,S) be Dirichlet with

parameter αD, i.e., D(θD |αD).

Under this assumption, the log-likelihood of the whole collection is

l(τ , αD|C) =
N∑

i=1

log

∫

ΘD

D(θD |αD)

ni∏

j=1

A∑

a=1

p(a | θD)p(dij | τa)dθD

This is precisely the LDA model proposed in (Blei et al., 2003).

The LDA model has significantly fewer parameters, including only the aspect language

models τ and the Dirichlet parameters αD. In order to obtain the aspect coverage distri-

bution θD for each document, we can compute the posterior distribution of θD and use the

mode as an estimate.

In principle, the parameters of the LDA model can also be estimated using a maximum

likelihood estimator by maximizing the collection likelihood given above. In practice, how-

ever, the estimation of parameters for the LDA model is significantly more complicated

than for the PLSI model. A variational approach has been used in (Blei et al., 2003), and an

Expectation-Propagation algorithm is proposed and studied in (Minka and Lafferty, 2002).

A comparison and analysis of both approaches is also given in (Minka and Lafferty, 2002).

Once we have obtained an estimate for the parameters (i.e., τ̂ and α̂D) through either

of these two algorithms, we can then estimate the query aspect coverage distribution θQ in

exactly the same way as we have done for the PLSI model, i.e.,

θ̂Q = arg max
θQ

p(q | τ̂ , θQ)p(θQ | τ̂ ,U)

Similarly, to estimate the aspect coverage distribution of a document d = d1...dn, we

can use

θ̂D = arg max
θD

p(d | τ̂ , θD)D(θD | α̂D)

= arg max
θD

D(θD | α̂D)
n∏

j=1

A∑

a=1

p(a | θD)p(dj | τ̂a)

This is again a MAP estimation problem, for which we can use the EM algorithm.

Once we have θ̂Q and θ̂D for all the candidate documents, we can score documents

based on D(θ̂Q||θ̂
Dk

D1...Dk−1
).
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7.4.4 Evaluation

Probabilistic LSI
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Figure 7.9: Influence of the number of aspects in the PLSI aspect model on mixed data (left) and relevant

data (right).

All the PLSI experiments are based on re-ranking the top 30 documents returned from

a slightly different relevance ranking baseline. 4 This baseline has been obtained by the

same feedback procedure, but with slightly different (and inferior) parameter setting. This

makes the PLSI results not comparable with other results. In the future, we want to conduct

more controlled experiments to compare these different methods.

We first look at the influence of the choice of the number of aspects in the PLSI model.

The number of aspects determines the granularity of the aspects under consideration. As-

suming a small number of aspects would mean relatively general aspects, from the view-

point of discriminating aspects, it is presumably better to consider a larger number of as-

pects. However, parameter estimation would be more reliable if we only consider a small

number of aspects. Thus, empirically, there would be a trade-off involved when determin-

ing the optimal number of aspects.

The performance using a different number of aspects is shown in Figure 7.9. In each

plot, we show both the aspect coverage and the aspect uniqueness values, and in the case of

re-ranking the mixed data, we also show the average precision. We show the performance

for both µ = 0 and µ = 0.1. From these results, we see that the performance is sensitive to

the choice of the number of clusters. However, it is hard to see any pattern. We do see that

using µ = 0.1 improves the aspect uniqueness over using µ = 0. This is expected since

4The PLSI experiments were performed before we established the baselines for all other methods.
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Figure 7.10: Comparison of the average aspect performance and likelihood among 8 different local maximas.
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Figure 7.11: Comparison of aspect performance and likelihood between the best local maxima and the worst

maxima. Top is aspect coverage; bottom is aspect uniqueness. Left has all the data points (i.e., queries); right

has only the data points with a log-likelihood within the range [-0.05,0.05].

µ indicates how much redundancy we want to consider. Working with a relatively large

number of aspects appears to help improve the aspect uniqueness, and sometimes also the

aspect coverage, but it is not consistent.

To avoid being trapped at a local maxima, our experiment program automatically tries

ten different initial values for the EM algorithm, and uses the one that gives the highest
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likelihood. However, since the PLSI model has many local maximas, it is still very likely

that the best local maxima out of the ten trials would not be the global maxima. This means

that the sensitivity to the number of clusters can be caused by the variances in converging to

different local maximas. To clarify this, we repeat our experiments eight times and let the

EM algorithm converge to eight potentially different local maximas. We first determine if a

higher likelihood (i.e., a better local maxima) leads to a better performance. In Figure 7.10,

we compare the average aspect performance and the likelihood among these different local

maximas. It seems that there is some (rather weak) correlation between the average log-

likelihood and the aspect coverage. The correlation between the likelihood and the aspect

uniqueness is completely unclear. Next, for each query, we identify the best-performing

and worst-performing local maximas, and we compute the performance difference and the

likelihood difference between the best-performing local maxima and the worst-performing

local maxima. In Figure 7.11, we plot the performance difference and the likelihood dif-

ference for each query. We see that the performance is extremely sensitive to the local

maxima, and there is no obvious correlation between the increase of aspect performance

and the increase of likelihood. That is, a local maxima with a higher likelihood does not

necessarily lead to a better aspect performance. Of course, it is possible that none of these

local maximas is actually close to the global maxima. All these results suggest that it is

very important to find the global maxima.
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Figure 7.12: Influence of novelty coefficient on performance with the 10 aspects (top) and with the true

number of aspects (bottom) on mixed data (left) and relevant data (right).
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Data Set Novelty 10 aspects True aspect count

Coefficient RelPrec(µ) AspCov(µ) RelPrec(µ) AspCov (µ)

Mixed µ = 0 0.265(0) 0.845(0) 0.266(0) 0.949(0)

Data µ 6= 0 0.249 (0.8) 1.286(0.8) 0.257 (0.5) 1.500 (0.5)

improve -6.0% +52.2% -3.4% +58.1%

Relevant µ = 0 1(0) 1.772(0) 1(0) 1.342(0)

Data µ 6= 0 1(0.1) 2.153(0.1) 1(0.1) 2.016 (0.1)

improve 0% +21.5% 0% +50.2%

Data Set Novelty 10 aspects True aspect count

Coefficient RelPrec(µ) AspUniq (µ) RelPrec(µ) AspUniq(µ)

Mixed µ = 0 0.265(0) 0.355(0) 0.266(0) 0.324(0)

Data µ 6= 0 0.263 (0.6) 0.344(0.6) 0.257(0.5) 0.374(0.5)

improve -0.8% -3.1% -3.4% +15.4%

Relevant µ = 0 1(0) 0.611(0) 1(0) 0.622(0)

Data µ 6= 0 1 (0.9) 0.685(0.9) 1(0.1) 0.678 (0.1)

improve 0% +12.1% 0% +9.0%

Table 7.9: Effectiveness of the aspect loss function. Using a non-zero novelty coefficient is shown to improve

the aspect coverage (top) and aspect uniqueness (bottom) even though it decreases relevance-based precision.

In Table 7.9, we compare the model’s performance at a zero novelty weight and that

at a non-zero novelty weight. Such a comparison provides some idea about how effec-

tive our loss function is in capturing the dependency among documents. In Table 7.9, we

see that using a non-zero novelty coefficient is able to improve both aspect coverage and

aspect uniqueness, even though it decreases precision. Such an improvement in aspect per-

formance when decreasing the precision has not been possible for any of the MMR style

loss functions, suggesting that the aspect modeling loss functions are more promising in

capturing the aspect coverage. Thus, the KL-divergence loss function is effective in cap-

turing the preference for maximizing the aspect coverage. The same table also compares

the performance of using a fixed number of aspects (10) with that of using the true number

of aspects (as obtained from the aspect judgments). We see that using the true number of

aspects (“cheating”) is not always better than using just a fixed number of aspects. For

example, when measured with aspect coverage, it performs better than using the fixed 10

aspects on the mixed data, but it is worse on the relevant data set. It is unclear why this is

so.

A more complete picture of how the performance is influenced by the novelty weight

is given in Figure 7.12, where we see that the performance can be quite sensitive to the
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setting of the novelty weight, and the optimal setting depends on both the data set and the

performance measure.

Ranking Rel. Precision Aspect Coverage Aspect Uniqueness

Method Avg. At0.1 At0.5 Avg. At0.1 At0.5 Avg. At0.1 At0.5

FBBase 0.318 0.718 0.217 1.435 2.753 1.561 0.380 0.861 0.363

Best AC (µ = 0.8) 0.249 0.600 0.157 1.286 2.370 1.477 0.344 0.760 0.325

Improve -21.7% -16.4% -27.6% -10.4% -13.9% -5.4% -9.5% -11.7% -10.5%

Best AU (µ = 0) 0.265 0.637 0.176 0.845 1.911 0.828 0.355 0.804 0.343

Improve -16.7% -11.3% -18.9% -41.1% -30.6% -47.0% -6.6% -6.6% -5.5%

Ranking Aspect Coverage Aspect Uniqueness

Method Avg. At0.1 At0.5 Avg. At0.1 At0.5

FBBase 1.962 3.150 2.139 0.647 0.972 0.650

Best AC (µ = 0.1) 2.154 3.430 2.468 0.669 0.953 0.707

Improve +9.8% +8.9% +15.4% +3.4% -2.0% +8.8%

Best AU (µ = 0.5) 1.875 2.987 2.049 0.676 0.975 0.673

Improve -4.4% -5.2% -4.2% +4.5% +0.3% +3.5%

Table 7.10: Effectiveness of Basic PLSI (10 aspects) on mixed data (top) and relevant data (bottom).

In Table 7.10, we compare the best performance of PLSI using 10 aspects with the

relevance ranking baselines. We see that although PLSI improves both aspect coverage

and aspect uniqueness on the relevant data, it is significantly worse than the baseline on

the mixed data, indicating that the capture of relevance is weak using 10 aspects in this

basic aspect model. However, the PLSI model appears to have great potential for further

improving the performance. For example, when we use a larger number of aspects, we can

achieve better aspect uniqueness. This can be seen from Table 7.11, where we show that it

is possible to achieve the same aspect uniqueness as the baseline if we use 60 aspects with

a non-zero novelty weight (µ = 0.1). Another possibility of improving the basic model

is to fix one aspect to a background model and force a constant weight on this special

Ranking Rel. Precision Aspect Coverage Aspect Uniqueness

Method Avg. At0.1 At0.5 Avg. At0.1 At0.5 Avg. At0.1 At0.5

FBBase 0.318 0.718 0.217 1.435 2.753 1.561 0.380 0.861 0.363

Best AC (BM) 0.274 0.675 0.174 1.456 2.75 1.588 0.347 0.766 0.351

Improve -13.8% -6.0% -19.8% +1.5% -0.1% +1.7% -8.7% -11.0% -3.3%

Best AU (60 asp) 0.278 0.648 0.177 1.363 2.560 1.540 0.380 0.807 0.372

Improve -12.6% -9.7% -18.4% -5.0% -7.0% -1.3% 0% -6.3% +2.5%

Table 7.11: Effectiveness of Improved PLSI. Fixing one aspect to be the background model achieves the best

AC when µ = 0.1 and the background weight is set to 0.2.; using 60 aspects achieves the best AU when

µ = 0.1.
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background aspect. The idea is to force all the other aspects to focus on more specific

content aspect, rather than being distracted by the common words. Indeed, as also shown

in Table 7.11, when we set the background weight to 0.2 and set µ = 0.1 we can actually

improve the aspect coverage over the baseline. Note that the relevance-based precision is

actually significantly decreased. Since low precision means that there are relatively fewer

relevant documents ranked on the top, the improvement in aspect coverage means that

those few relevant documents are probably good relevant documents that can cover many

aspects. Thus, unlike the MMR models, which could only improve the aspect coverage

when the relevance ranking is accurate, the PLSI model is able to directly maximize the

aspect coverage without relying on a good relevance ranking.

Latent Dirichlet Allocation

All the experiments on LDA are based on an implementation using the variational Bayesian

approach (Minka and Lafferty, 2002), and the task on the mixed data is to re-rank the top

30 documents returned by a baseline relevance ranking.

We first look at how the novelty coefficient affects the performance when using 10 as-

pects. This is shown in Figure 7.13. We see that, on both the mixed data and the relevant

data, using a non-zero novelty weight can perform better than using a zero weight in terms

of the aspect performance. Indeed, as we use a larger novelty weight, the aspect uniqueness

tends to improve. However, on the mixed data, we also see that the relevance-based preci-

sion decreases as the novelty weight increases, which means that avoiding redundancy may

allow some non-relevant documents to be ranked high, thus decreasing the precision. We

also see that on the mixed data set, if the novelty weight is too large, the aspect performance

decreases significantly, which is also expected.

The fact that a non-zero novelty weight can perform better than a zero weight suggests

that the novelty parameter in the loss function is useful for improving aspect coverage. In

Table 7.12, we compare the performance of using a zero novelty weight and the best of

using a non-zero weight. We see that using a non-zero novelty weight improves aspect

coverage and aspect uniqueness for both the mixed data and the relevant data. At the same

time, the precision on the mixed data is decreased. Here again, we see that it is possible to

improve the aspect performance without improving the relevance precision, which we have

not seen with any of the MMR models.

Next, we examine the influence of the number of aspects used in the model. The results
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Figure 7.13: Influence of novelty coefficient on performance using LDA with 10 aspects on mixed data (left)

and relevant data (right).

Data Set Novelty Aspect Coverage Aspect Uniqueness

Coefficient RelPrec(µ) AspCov(µ) RelPrec(µ) AspUniq (µ)

Mixed µ = 0 0.277(0) 0.863(0) 0.277(0) 0.318(0)

Data µ 6= 0 0.273 (0.5) 0.897(0.5) 0.259 (0.9) 0.348 (0.9)

improve -1.4% +3.9% -6.5% +9.4%

Relevant µ = 0 1(0) 1.804(0) 1(0) 0.631(0)

Data µ 6= 0 1(0.99) 1.866(0.99) 1(0.99) 0.705(0.99)

improve 0% +3.4% 0% +11.7%

Table 7.12: Effectiveness of the aspect loss function for LDA. Using a non-zero novelty coefficient is shown

to improve the aspect coverage and uniqueness for both the mixed data and the relevant data. On the mixed

data, relevance precision is decreased.

are shown in Figure 7.14. It seems that the precision decreases as we increase the number

of aspects. The optimal number of aspects for the aspect uniqueness measure is probably

around 20, and a larger number of aspects seems to hurt the aspect uniqueness. The optimal

number of aspects for the aspect coverage appears to be around 40.

Among the limited experiments that we have performed, the best results from LDA

are disappointingly much worse than the baseline results, as shown in Table 7.13, but it

does improve the aspect uniqueness on the relevant data set. Our exploration of LDA is

rather preliminary. For example, in order to speed up the experiments, we limited to the

maximum number of EM iterations to 50, which may have affected the accuracy of the

estimated model parameters. Also, the computation of the document and query models are

not exact. It is even possible that there are bugs that are not easy to detect in our program.

Further exploration of LDA is clearly needed to fully develop the potential of this general
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Figure 7.14: Influence of the number of aspects on performance using LDA with µ = 0.3 on mixed data.

aspect language model.

Ranking Rel. Precision Aspect Coverage Aspect Uniqueness

Method Avg. At0.1 At0.5 Avg. At0.1 At0.5 Avg. At0.1 At0.5

FBBase 0.320 0.707 0.214 1.723 3.223 1.991 0.406 0.877 0.423

Best AC (µ = 0.3,40) 0.268 0.627 0.168 1.204 2.152 1.322 0.327 0.657 0.323

Improve -16.3% -11.3% -21.5% -30.1% -33.2% -33.6% -19.5% -25.1% -23.6%

Best AU (µ = 0.3,10) 0.277 0.667 0.185 0.955 1.870 0.957 0.358 0.705 0.365

Improve -13.4% -5.7% -13.6% -44.6% -42.0% -51.9% -11.8% -19.6% -13.7%

Ranking Aspect Coverage Aspect Uniqueness

Method Avg. At0.1 At0.5 Avg. At0.1 At0.5

FBBase 2.268 3.708 2.598 0.661 0.995 0.690

Best AC & AU (µ = 0.99,10) 1.866 2.609 2.130 0.704 0.997 0.719

Improve -17.7% +29.6% -18.0% +6.5% +0.2% +4.2%

Table 7.13: Effectiveness of LDA on mixed data (top) and relevant data (bottom). The number in the paren-

thesis is the number of aspects used.

7.5 Conclusions and Further Work

In this chapter, we have demonstrated how the risk minimization framework can go beyond

the traditional notion of independent topical relevance through the study of a non-traditional

retrieval task, i.e., the aspect retrieval problem, within the risk minimization framework.

The goal of aspect retrieval is not to retrieve as many relevant documents as possible, but

to retrieve as many distinct relevant aspects as possible. For this non-traditional retrieval

task, we consider two measures – aspect coverage and aspect uniqueness.
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The aspect retrieval problem requires non-traditional ranking methods. We derived two

types of aspect retrieval models, both involving a dependent loss function. The first type of

models are to increase aspect coverage indirectly by reducing the redundancy among docu-

ments, and are essentially Maximal Marginal Relevance (MMR) models based on language

models. The second type of models, called Maximal Diverse Relevance (MDR) models,

are to increase aspect coverage more directly by modeling the hidden aspects in documents.

We proposed two ways to exploit language modeling to measure redundancy and nov-

elty; one is based on KL-divergence and the other is based on mixture models. Evaluation

shows that the mixture model measure is more effective in capturing redundancy, and can

achieve significantly better aspect uniqueness than pure relevance ranking when re-ranking

relevant documents. The basic idea of this mixture model measure is to represent the known

information by a known information language model, and to assume that a new document

is generated by a mixture model involving the known information model and a background

component model. Our novelty measure (or equivalently redundancy measure) is then

the estimated mixing weight on the known information model (or the background model).

This novelty measure can be useful for re-ranking any subset of documents to reduce re-

dundancy. Given the success of this simple mixture model, it is worth exploring other more

sophisticated mixture models as presented in (Zhang et al., 2002).

For the MMR type of models, we proposed four different ways to combine relevance

with novelty. According to the experimental results, no single method is consistently better

than the others. Instead, we observed that some of these models are better on the mixed

data set while others are better on the relevant data set. A direct combination of the mixture

model novelty measure with the regular KL-divergence relevance score is shown to be

effective in improving both aspect coverage and aspect uniqueness on the relevant data

set, suggesting that it is indeed helpful for improving aspect coverage through redundancy

elimination. However, this same method does not perform well on the mixed data set, and in

particular, can never perform better than the baseline relevance ranking, suggesting that the

redundancy elimination helps improve aspect coverage only when the relevance ranking is

accurate. Interestingly, the marginal document model approach, where we directly estimate

a language model that represents the novel information contained in a document, performs

relatively better on the mixed data set, improving over the relevance baseline by every

measure, including relevance-based precision. However, this method does not perform

well on the relevant data set. Thus, the improvement on the mixed data set is likely due to

the improvement on relevance ranking. Further study is needed to understand why such an

aspect-oriented model would actually improve the relevance precision. Overall, the MMR
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type of model does not appear to be very effective in improving aspect performance on the

mixed data. This may be because the amount of redundancy among relevant documents is

relatively low compared with the amount of non-relevant documents in our data set. Since

these models are designed to exploit redundancy removal, their effectiveness can be best

demonstrated through a highly redundant data set. Further experiments with synthetic data

would allow us to test their effectiveness more fairly. Another interesting research direction

would be to model redundancy, novelty, and relevance at the passage-level.

For the MDR models, we derived a general aspect retrieval function based on aspect

KL-divergence, and studied two variants of the aspect generative models – the Probabilis-

tic Latent Semantic Indexing (PLSI) and the Latent Dirichlet Allocation (LDA) approach.

Evaluation shows that, for both PLSI and LDA, our loss function is effective in capturing

the dependency among documents, and the optimal performance is obtained through the

use of a non-zero novelty weight, which means that the goal of collectively covering the as-

pects with multiple documents is effectively reflected in our loss function. One interesting

observation is that both PLSI and LDA have shown the capacity of improving the aspect

performance when the relevance precision decreases, which has not been observed in our

experiments with the MMR models. This means that while these aspect models lose some

relevant documents on the top, they could selectively keep on top those good relevant doc-

uments that better cover more aspects. We also see that, using a KL-divergence function on

the aspect space, our relevance precision with these aspect models tends to be worse than

that of applying the KL-divergence function to the word space, and as a result, the absolute

performance is generally not as strong as the baseline relevance ranking. Nevertheless, we

have shown that it is possible for the PLSI model to perform better than the relevance rank-

ing baseline if we further improve the basic model, e.g., by incorporating a background

aspect. This is very encouraging, especially because the aspect performance is increased

even when the relevance precision is decreased, which indicates the model’s effectiveness

in modeling the aspects.

Our study of aspect retrieval is preliminary, but the results have clearly demonstrated

the generality of the risk minimization framework. We have shown how we can derive non-

traditional ranking methods by using loss functions that go beyond the traditional notion

of relevance. Just as in the exploration of models for the standard ad hoc retrieval task, the

framework serves as a map that allows us to explore a variety of non-traditional models

systematically.

As a study of the aspect retrieval problem, however, our results are far from conclusive.
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The improvement over the baseline ranking using only relevance is not always significant,

especially in the case of ranking a mixed set of relevant and non-relevant documents. An

overall observation on this data set is that the relevance ranking appears to have a quite

strong correlation with the aspect coverage measure, which also makes sense intuitively,

since the more relevant aspects a document covers, the more likely that it would get a

higher score according to any reasonable relevance measure. Indeed, some follow up ex-

periments done by William Cohen on the same data set show that there is really not that

much room to improve the aspect retrieval performance over the baseline methods (Cohen,

2002). Thus, an important research direction would be to further examine the behavior of

these non-traditional ranking methods using well-controlled synthetic data. This would al-

low us to observe how the performance is affected by factors such as the average number of

aspects in a document and the level of redundancy in the relevant documents. This should

also help us better understand the problem of aspect retrieval and the appropriateness of

the proposed evaluation measures. Relevance feedback in aspect retrieval is another very

interesting direction worth exploring. For example, if we know some information about

what aspects might be interesting to the user, such information can be exploited to regu-

late the aspect model. In terms of specific aspect retrieval models, we have only touched

on a very basic formulation of the models, especially in the case of LDA, where a lot of

approximation and simplification have been assumed in our experiments. Also, our im-

plementation of PLSI appears to suffer from the problem of multiple local maximas; the

performance is highly sensitive to the local maxima. The LDA model is relatively stable,

but has not performed as well as the PLSI model. Further study of these models is clearly

needed to thoroughly understand the methods and their effectiveness in performing the as-

pect retrieval task. Finally, it would be interesting to study other alternative loss functions

for the aspect retrieval problem; this can be expected to result in completely new aspect

retrieval models.
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Chapter 8

Conclusions

In this chapter, we summarize the key research results presented in this thesis, and discuss

the directions and opportunities for further research.

8.1 Summary

This thesis presents a new general probabilistic framework for text retrieval based on

Bayesian decision theory. In this framework, queries and documents are modeled using

statistical language models, user preferences are modeled through loss functions, and re-

trieval is cast as a risk minimization problem. This risk minimization framework not only

unifies several existing retrieval models within one general probabilistic framework, but

also facilitates the development of new principled approaches to text retrieval through the

use of statistical language models. We have explored several interesting special cases of the

framework, demonstrating various advantages of this new framework over the traditional

retrieval methods.

One fundamental difference between the risk minimization framework and any exist-

ing retrieval framework is that the risk minimization framework treats the entire retrieval

problem as a decision problem, and incorporates statistical language models as major com-

ponents in the framework. While previous work has also treated retrieval from a decision-

theoretic view, no previous work has given a complete decision-theoretic formal model for

retrieval. The risk minimization framework is thus the first complete formal treatment of

retrieval in statistical decision theory. This is also the first time a user variable (U ) and a

document source variable (S) have been explicitly and formally introduced in a retrieval
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model. The decision space in the risk minimization framework, in principle, may consist of

all the possible actions that the system can take in response to a query, which allows us to

treat the retrieval problem in the most general way. Such a general decision-theoretic view

explicitly suggests that retrieval can be modeled as an interactive process that involves cy-

cles of a user’s reformulating the query and the system’s presenting information. Indeed,

with the risk minimization framework, we can condition the current retrieval decision on all

the information about the retrieval context, the user, and the interaction history, to perform

context-sensitive retrieval. In contrast, the traditional retrieval models are quite restricted

due to their reliance on unrealistic simplification assumptions about relevance (e.g., the

independent relevance assumption). They are generally inadequate for handling user fac-

tors such as redundancy tolerance and readability, and cannot model an interactive retrieval

process without relying on heuristics.

The risk minimization framework makes it possible to systematically and formally

study general optimal retrieval strategies. For example, through making different assump-

tions about the loss function for ranking we have derived an optimal ranking principle,

which addresses several limitations of the similar probability ranking principle. Specifi-

cally, when assuming an independent loss function and a sequential browsing model, we

can show that the optimal ranking is to rank documents according to the expected risk of

each document, which can be computed independently for each document. An interest-

ing implication is that such a ranking is optimal whether the user has a high-precision or

high-recall retrieval preference.

The general incorporation of statistical language models in a retrieval framework is an-

other important contribution of this thesis. A major challenge in text retrieval has long been

to develop principled retrieval approaches that also perform well empirically. Theoretically

well-motivated models have rarely led directly to good performance; heuristic retrieval pa-

rameters always need to be introduced to increase the flexibility of a model. Moreover,

because the parameters are empirically motivated, heavy empirical tuning of parameters

is always necessary to achieve good retrieval performance. In contrast, the retrieval pa-

rameters in the risk minimization framework are generally introduced as part of a statistical

language model. This makes it possible to exploit statistical estimation methods to improve

retrieval performance and set retrieval parameters automatically. As a special case of the

risk minimization framework, we presented a two-stage language modeling approach that

can achieve excellent retrieval performance through setting retrieval parameters completely

automatically.
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With the risk minimization framework, this thesis extends the existing work on the

language modeling approach to information retrieval in several ways. First, we studied

the smoothing of language models. We show a general connection between the language

modeling approach and several heuristics used in traditional models, including the TF-IDF

weighting and document length normalization. We extensively evaluated several popular

smoothing methods (Jelinek-Mercer, Dirichlet priors, and absolute discounting), and found

that the retrieval performance is generally sensitive to the smoothing parameters and that

smoothing plays two different roles, with one role being to improve the accuracy of the

estimated document language model (the estimation role), while the other to accommodate

generation of non-informative common words in the query (the query modeling role). This

provides an empirical justification for our two-stage smoothing method, which generalizes

the basic language model proposed in (Ponte and Croft, 1998). Second, we studied how to

perform feedback in the language modeling approach. Feedback has so far been dealt with

heuristically in the language modeling approach with serious conceptual inconsistency. As

another instance of the risk minimization framework, we derive a KL-divergence retrieval

model, which covers the basic language modeling approach as a special case. The KL-

divergence model explicitly deals with the query model and can perform feedback more

naturally by treating it as query model updating. We proposed two specific query model up-

dating algorithms based on feedback documents. Evaluation indicates that both algorithms

are effective for feedback, and that the updated query models outperform the original query

models significantly. This demonstrates the possibility of improving retrieval performance

through using more reasonable language models and better estimation methods. This is

in contrast with the lack of guidance on how to improve a retrieval model in the previous

work.

Due to its generality in formalizing retrieval tasks, the risk minimization retrieval frame-

work further allows for incorporating user factors beyond the traditional notion of topical

relevance. Traditionally, it has been hard to formally model such factors as redundancy

and sub-topics within a retrieval model, though a general linear combination of relevance

measure and novelty measure has been given in (Carbonell and Goldstein, 1998). We pre-

sented language models that can formally capture redundancy and sub-topics in documents,

and study loss functions that can rank documents in terms of both relevance and sub-topic

diversity. Evaluation shows that the proposed language models can effectively capture re-

dundancy and can outperform the relevance-based ranking method for the aspect retrieval

task. While the study of the aspect retrieval is preliminary, it has clearly demonstrated how

the risk minimization framework can be exploited to model such a non-traditional retrieval
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problem.

8.2 Future Research Directions

The risk minimization framework opens up many new possibilities for developing princi-

pled approaches to text retrieval, and serves as a general framework for applying statistical

language models to text retrieval. The special cases explored in this thesis represent only

a small step in exploring the full potential of the risk minimization framework. There are

many interesting future research directions, including:

Automatic parameter setting: It is always a major scientific challenge to set retrieval

parameters automatically without relying on heavy experimentation. One major advantage

of using language models is the possibility of estimating retrieval parameters completely

automatically. The two-stage smoothing method, along with its parameter estimation meth-

ods, is a promising small step toward this goal. However, the two-stage smoothing method

is a relatively simple model, which does not take advantage of feedback. It would be very

interesting to study how to estimate parameters in more powerful models such as those

based on feedback documents.

Document structure analysis: A common assumption in text retrieval is to treat the

document as the information unit. However, the relevant information often only represents

a small part of a long document. Thus, it is desirable to go further than just retrieving

a relevant document, and to locate the real relevant information in a relevant document.

Traditionally, heuristic approaches have been applied to retrieve passages, which can be

regarded as a step toward this goal. But the boundary of relevant information may vary

according to different queries, thus it would be interesting to explore a dynamic approach

where passage segmentation is integrated with the retrieval function. With the risk mini-

mization framework, it is possible to incorporate segmentation into the loss function and

exploit language models such as Hidden Markov Models to model the document structure.

Aspect retrieval models: The aspect retrieval problem provides an interesting setting

for studying redundancy elimination and sub-topic modeling in text retrieval, and is often

also a more accurate formulation of the retrieval problem when high recall is preferred. In

this thesis, we have made some preliminary exploration of language models for the aspect

retrieval problem, but there are still many open issues to further explore. In particular,

the Latent Dirichlet Allocation model has great potential for modeling the hidden aspects

directly, and is certainly worth further exploring. Another interesting research direction is
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to develop aspect retrieval models that can support aspect-based feedback.

Interactive retrieval models: In a real retrieval situation, the goal of satisfying a user’s

information need is often accomplished through a series of interactions between the user

and the retrieval system. Such an interactive retrieval process suggests that, at any moment,

the retrieval decision may depend on the previous actions that the system and the user have

taken. For example, the documents that a user has already seen should be considered in

order to avoid redundancy. Indeed, in general, all the information about the previous actions

should be utilized to provide a context for making the current retrieval decision. With the

risk minimization framework, we can formally incorporate all these variables and derive

personalized and context-sensitive interactive retrieval models. It would be very interesting

to extend the risk minimization framework to formalize an interactive retrieval process so

as to optimize the global and long term utility over a sequence of retrieval interactions.
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