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 I

Abstract 
 

Automatic recognition of continuous speech has been acknowledged as one of the most 

challenging problems today. The performance of a continuous speech recognition system highly 

depends on the availability of sufficient speech data and transcripts of good quality. In most cases, 

however, carefully prepared in-domain data is not easy to obtain because collecting a large 

amount of transcribed speech data is normally a time-consuming and expensive process. The 

acoustic model trained without the support of sufficient training data is less capable in handling 

the complexity and variability of human speech, and thus performs poorly in real world 

application. This raises us the questions such as how to effectively exploit the given training data 

to improve the performance of recognition systems, and how to explore error-prone but 

informative data sources and incorporate them into acoustic model training. 

This thesis summarizes our efforts in investigating solutions to address the above issues. The 

work can be divided into two parts. We first investigate Boosting algorithm, an ensemble based 

supervised training approach, which iteratively creates multiple acoustic models with 

complementary error patterns by manipulating the distribution of training data. While a great deal 

of research has been conducted on Boosting style acoustic model training, the techniques 

developed so far have obvious weaknesses that limit their applications in continuous speech 

recognition. Specifically, conventional Boosting training approach mainly targets at optimizing 

an utterance level objective function related to sentence error, with relatively less attention paid to 

reduce word errors. Moreover, the distribution of training data is updated on a sentence basis such 

that each word is given equal weight in subsequent model training, regardless if the questioned 

word is a correct or incorrect decoding result. We approach these problems by presenting a novel 

frame level Boosting algorithm which enables acoustic model training to minimize word or sub-

word error rate. We also present an improved sentence hypothesis combination algorithm that 

uses Neural Nets to incorporate a number of features for generating more desirable combination 

results. Moreover, we describe the contribution of N-best list re-ranking in Boosting training and 

hypothesis combination, which is shown to be an effective approach to improve recognition 

performance. 

The second part of this thesis focuses on unsupervised and lightly supervised training techniques 

that attempt to extend the training set from transcribed speech to closed captioned or even un-

transcribed raw speech. Data selection, the approach to identify a subset of data that can best 

improve recognition performance, appears to be the key issue in this research area. Most 
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conventional approaches prefer to select data predicted with high confidence for model re-

training in order to prevent misrecognized examples from being added to training set. However, 

this strategy often results in only the examples that match well to the current model being selected 

and re-training with such examples can become a process that reinforces, rather than eliminates, 

the estimation bias inherited from the initial transcribed set. To address this problem, we present a 

novel clustering based data selection strategy that aims to increase the diversity of selected data 

and makes the selection comply with underlying distribution. Experiments show that the new 

proposed strategy consistently outperforms conventional approaches in a variety of speech 

recognition tasks. In addition, we investigate the generalization of Boosting algorithm from 

supervised training to unsupervised training by using Minimum Bayes Risk decoding, as well as 

its integration with clustering based data selection for better handling both transcribed and un-

transcribed speech data. Experimental results show that the cooperation of data selection and 

unsupervised Boosting can significantly improve recognition performance. 
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1 Introduction 
 

Continuous speech recognition has been acknowledged as one of the most challenging problems 

today. There are many issues that contribute to the difficulty of automatically recognizing human 

speech, such as corruption of noise, variability of speaker and speaking mode, change of 

environment conditions, transmission of channel, inaccuracy of model assumption, complexity of 

language, etc.. In addition, as a statistical model based system, a speech recognizer demands 

sufficient well transcribed speech data for the model training in order to achieve satisfactory 

performance. However, it is often intractable to fulfill this requirement since the time and expense 

spent on speech data collection and transcription are not always affordable for many real word 

applications. 

A great deal of work has been conducted to address this problem. One effort is the investigation 

of ensemble based recognition method which is shown to be less sensitive to the amount of 

training data. Simply speaking, an ensemble approach is a learning algorithm that constructs a set 

of individual speech engines and then combines their predictions together to produce a more 

accurate hypothesis. The underlying idea is that the combination of diversified recognizers that 

have uncorrelated, and ideally complementary, error patterns can offer a more robust 

generalization capability. The research of ensemble based methods mainly focuses on two issues: 

ensemble construction and information combination. Among a variety of ensemble construction 

methods, Boosting appears to be the most successful one in eliminating the correlation between 

ensemble members and the vulnerability to data sparseness [Freund and Schapire, 1997; Schapire 

et al., 1997, Breiman, 1998; Cook and Robinson, 1996; Cook et al, 1997; Schwenk, 1999; Zweig 

and Padmanabhan, 2000; Meyer, 2002; Dimitrakakis and Bengio, 2005]. For combination, word 

alignment and voting based ROVER demonstrates more advantages than other methods in 

efficiently combining recognition hypotheses which are in the format of word sequences [Fiscus, 

1997; Schwenk and Gauvain, 2000; Goel et al, 2004]. 

Another effort to overcome the curse of deficiency of training data is to explore and exploit low 

cost data sources such as closed captioned speech and un-transcribed raw speech, which are much 

easier to obtain [Jang and Hauptmann, 1999a; Kemp and Waibel, 1999; Lamel et al, 2000; Kamm 

and Meyer, 2001; Wessel and Ney, 2001; Lamel et al, 2002; Cozman et al, 2003; Chen et al, 2004; 

Nguyen and Xiang, 2004; Visweswariah et al, 2004; Ma and Matsoukas, 2007]. It is known that 

these types of data can not be used directly because their transcripts are either unavailable or 

contain a high percentage of transcription errors. Normally, a data selection approach based on 
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confidence annotation is employed to filter the error-prone data. The examples evaluated with 

high confidence are added to acoustic model training while the remains are rejected. This is based 

on the assumption that if the adopted confidence annotator performs well, the examples marked 

with high confidence scores are more likely to have correct transcripts, and adding them to 

training set doesn’t deteriorate the quality of training data. Therefore, for some researchers, the 

question of how to utilize closed captioned or un-transcribed speech is equivalent to how to 

improve the performance of confidence annotation.  

Despite their successes, these previous attempts all have some drawbacks and further 

investigations are highly desirable. This thesis summarizes our research on these issues. 

Specifically, we will discuss Boosting training, hypothesis combination, unsupervised training as 

well as lightly supervised training in order to utilize the characteristics of different type of 

training data to improve the performance of speech recognition. 

 

1.1  What this Thesis is about 
 

The first part of the thesis considers the problem of building speech recognition systems with 

transcribed speech dataset of limit size. We address this problem from two perspectives: acoustic 

model training and hypotheses combination. The thesis first investigates ensemble based acoustic 

model training approaches, especially Boosting algorithms, which iteratively exploit the training 

data to create multiple acoustic models with complementary error patterns. We propose a frame 

level Boosting algorithm. Compared to conventional approach based on a sentence level objective 

function, our approach aims at the minimization of word or sub-word recognition errors, and is 

more effective to improve recognition performance. Moreover, our approach enables acoustic 

model training to focus on the misrecognized part of an utterance rather than, as adopted by 

conventional approach, giving the whole utterance an equal weight without discriminating 

recognition error from correct result. For hypotheses combination, we propose a new combination 

approach that improves hypothesis combination from two aspects. First, N-best list re-ranking 

technique is employed to identify more reliable hypotheses as the input of combination. Secondly, 

the desired word is determined by a two-stage scheme in which insertion detection and word 

scoring are performed separately by incorporating a number of informative features into the 

decision process. In contrast, conventional ROVER only uses a simple voting strategy that 

linearly combines two features: frequency of occurrence and confidence score. 
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The second part of this thesis investigates the use of low-cost error-prone data such as closed 

captioned speech and un-transcribed speech to improve acoustic model training. Conventional 

unsupervised or lightly-supervised training approaches normally utilize confidence annotation 

techniques to select data predicted with high confidence for acoustic model training. In this thesis, 

we first present a thorough analysis of conventional approaches, showing that only relying on 

confidence score for data selection can lead to an erroneous estimate to the true distribution when 

the confidence annotator is highly correlated with the recognizer in the information they use. We 

then propose a clustering based data section strategy which attempts to make the selection 

procedure comply with the underlying data distribution and increase the diversity of selected data 

to better cover acoustic space and phonetic classes. The strategy described is further applied to 

develop proper approaches for unsupervised and lightly supervised acoustic model training. 

Finally, as an effort to unifying both supervised and unsupervised approaches, we investigate the 

generalization of Boosting algorithm to utilize un-transcribed speech data, as well as the 

combination of ensemble approach and clustering based data selection approach in unsupervised 

acoustic model training. 

 

1.2  Thesis Outline 
 

The thesis is organized as follows. 

Chapter 2 provides the background information relevant to this thesis. We begin with a discussion 

of the important technologies used in current statistical speech recognition systems, including 

feature extraction, Hidden Markov Model, language model, and Viterbi search. We also describe 

several extensively used training criteria for building acoustic models, such as Maximum 

Likelihood Estimation, Maximum Mutual Information, Minimum Classification Error and 

Maximum a posteriori Estimation. We then discuss confidence annotation technique, as well as 

unsupervised and lightly-supervised acoustic model training techniques. 

Chapter 3 reviews the experimental environment of this thesis. We first describe the Sphinx III 

system, especially its acoustic model training toolkit which is uaed as the experiment platform 

throughout this thesis. We also introduce the five speech datasets on which our algorithms are 

evaluated: CMU Communicator dataset, ICSI meeting dataset, 1997 Mandarin broadcast news, 

TDT-4 Mandarin broadcast news, and GALE BN-03 Mandarin dataset. 
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Chapter 4 presents an overview of ensemble based recognition and combination approaches. We 

first review ensemble learning algorithms, including Bagging, Boosting, Random Space, Random 

Forests, etc. We then describe speech specific approaches such as Multi-band and Multi-stream 

model. Lastly, we discuss combination approaches and focus on hypotheses combination 

techniques such as ROVER, consensus network and lattice combination. 

Chapter 5 presents our efforts to improve Boosting based acoustic model training techniques. The 

conventional utterance level Boosting algorithm is described at the beginning. We then present a 

novel frame level Boosting training algorithm to overcome the weakness of conventional 

approach. Next, we present an improved hypothesis combination scheme that uses Neural Nets to 

incorporate a number of features for generating more desirable recognition results. In addition, 

investigations of post-processing techniques e.g. N-best list re-ranking which help to improve 

recognition performance are also reported. 

Chapter 6 reviews unsupervised and lightly supervised acoustic model training technologies using 

low cost data such as un-transcribed speech or closed captioned speech. We describe in detail the 

confidence scoring based selective training method and its applications in identifying correctly 

transcribed speech data. Lastly, we present a discussion that shows only relying on confidence 

metric for data selection can lead to an erroneous estimate to the underlying distribution and 

cause degradation of recognition accuracy. 

Chapter 7 presents our solution to the problem discussed in Chapter 6. We begin with the 

description of a novel clustering based data selection strategy which works on two aspects 

together: maintaining the correctness of transcripts and increasing the diversity of selected data. 

We also describe a normalization scheme that converts an arbitrarily long utterance into a fixed 

size vector in order to perform clustering in utterance space. We then report the experimental 

results of the proposed approach in unsupervised and lightly supervised acoustic model training. 

Chapter 8 investigates the extending of Boosting algorithm to unsupervised acoustic modeling. 

We first describe frame level unsupervised Boosting algorithm based on Minimum Bayes Risk 

decoding. We then discuss the combination of the unsupervised Boosting algorithm and 

clustering based data selection algorithm in utilizing both transcribed and un-transcribed speech 

data. Encouraging experiment results on ICSI meeting recognition are also reported   

Finally we conclude in Chapter 9 by summarizing the major contributions of this thesis and 

highlighting some directions for future research. 
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2 A Review of Automatic Speech Recognition Technologies 
 

This chapter presents the background information relevant to the thesis. We begin with a brief 

introduction of continuous speech recognition process, including discussions from feature 

extraction to hypothesis generation. Specially, we describe important modules and techniques 

employed by contemporary speech recognition systems, such as of Hidden Markov Model 

(HMM), language model and Viterbi search. Next is an overview of training criteria for building 

acoustic models. We will cover Maximum Likelihood Estimation (MLE), Maximum a posteriori 

Estimation (MAP), as well as approaches of Discriminative training. We then discuss confidence 

annotation technique which is extensively used in speech recognition to evaluate the correctness 

of decoding results. We also describe unsupervised and semi-supervised learning approaches 

which are attempts to address the persistent problem of lacking well-transcribed speech data for 

acoustic model training. This chapter is concluded by a discussion of the characteristics of speech 

that distinguishes continuous speech recognition from other classification problems. 

 

2.1 Statistical Speech Recognition 
 

The goal of automatic speech recognition is to translate acoustic spoken utterances into other 

representations, such as sequence of words, which are easier for further computer or human 

processing. Figure 2.1 illustrates the general architecture of an automatic speech recognition 

system [Ney, 1990]. 

As Figure 2.1 shows, a speech recognition system mainly consists of five major building blocks: 

Feature Extraction, Hypothesis Search, Lexical Model, Acoustic Model and Language Model. 

• Feature Extraction. The task of this module is to detect the analog speech signal, and 

parameterize it into a sequence of acoustic feature vectors ),...,,( 21 Txxx=x . 

• Hypothesis Search. The task of this module is to find the best word string 

),...,,( 21 Kwwwh =∗  with the highest a posteriori probability, that  

 )|()(maxarg),(maxarg)|(maxarg hPhPhPhPh
hhh

xxx ===∗  (2-1)

for a given speech input ),...,,( 21 Txxx=x . 
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• Lexical Model. A dictionary that defines the pronunciations and their variants for the words to 

be recognized, in terms of phonemes or other sub-word units, e.g. triphones. 

• Acoustic Model. A statistical model that estimates )|( hP x , the probability of observing a 

sequence of acoustic feature vectors x  conditioned on a hypothesized word string h . Gaussian 

Mixtures based Hidden Markov Model (HMM) is the most widely adopted acoustic modeling 

technology in contemporary speech recognition systems. 

• Language Model. A statistical model that provides measurement of )(hP , the prior 

probability of a particular word string h  being spoken. N-gram model has been established as the 

de facto standard for large vocabulary continuous speech recognition. 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feature Vectors 
)x,...,x,(x T21=x

Speech Input 

Feature  
Extraction 

Hypothesis Search: 
 

Find word string )w,...,w,(wh* K21=

that h)|P(h)P(xargmaxh*
h

= over all 

possible hypotheses. 

Recognized Hypothesis 
)w,...,w,(wh* K21=  

Language Model
)ww|P(w 2i1ii −−  

Lexical Model
“AIRWAY”: EH R W EY

Acoustic Model 
 

P(h)

h)|P(x

Def. of w 

Figure 2.1 Block diagram of a continuous speech recognition system  
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2.1.1 Feature Extraction 
 

A speech recognition system can not recognize the speech waveform directly. The raw speech 

signal contains too much redundant and unwanted information related to speakers and recording 

channels, as well as a variety of background and random noise. Normally, speech signal is 

converted into a parameterized sequence of feature vectors by front-end processing to emphasize 

the characteristics of spoken words and suppress other irrelevant information.  

The first step of feature extraction is to divide the continuous speech signal into short overlapped 

time slices, which are called frames. The duration of a frame is typically about 20~30 ms based 

on the observation that speech signal is quasi-stationary within such a short interval in the sense 

that its statistical properties do not change too much. After that, each frame is then windowed and 

transformed into frequency domain via spectral analysis to obtain an acoustic feature vector as the 

representation of that time piece. 

Typical features used in continuous speech recognition include Linear Predictive Coefficients 

(LPC), Cepstral Coefficients, Mel-frequency Cepstral Coefficients (MFCC) and Perceptual 

Linear Predictive Coefficients (PLP) [Davis and Mermelstein, 1980; Hermansky, 1990]. Some of 

them are motivated by the nature of human hearing. For the experiments described in this thesis, 

the inputs to speech recognizers are sequences of vectors composed of MFCC features and their 

first and second order temporal derivatives, named as delta-MFCC and delta-delta-MFCC, 

respectively. The features are calculated using CMU Sphinx III toolkit [Ravishankar, 1996] 

(http://www.cs.cmu.edu/~rsingh/sphinxman/s3manual.html). 

 

2.1.2 Acoustic Model 

 

Model Unit 

The first question that acoustic modeling need to answer is to decide the best model unit for 

speech recognition. The objective of speech recognition is to transcribe speech signal into text, i.e. 

word string. However, this doesn’t mean it’s a good choice to build acoustic model on word level. 

In the case of large vocabulary speech recognition, there are so many words to be trained that 

make it intractable to collect sufficient training data. Moreover, the training process has to be 

restarted in order to add new word to the vocabulary. 
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A better option is to use Sub-word unit, such as syllable or phoneme which can be modeled and 

shared across words. Phoneme is widely accepted as model unit for English speech recognition. 

There are about 50 phonemes in spoken English. Such a small number means it’s unnecessary to 

worry about the deficiency of training data. Furthermore, new word can be easily added to 

vocabulary by defining the pronunciation in terms of phonemes. 

The weakness of phoneme model is that it doesn’t consider the influence of left and right context, 

so unable to provide accurate description for speech signal. Triphone, a context dependent model 

unit that consider not only the current phoneme but also its left and right neighbors, is proposed to 

address this weakness, and is potentially capable to capture the coarticulation effect between 

adjacent speech units [Bahl et al, 1980; Hwang, 1993]. 

Unfortunately, the number of triphones can be very large. With 50 phonemes, there can be up to 

503 triphones. Therefore, these triphone models have to be tied together to form a smaller model 

set, in order to maintain a reliable estimation for the parameters. For example, in CMU Sphinx 

system, triphones are finally clustered into equivalence classes called senones [Lee, 1990]. 

 

Hidden Markov Model 

In order to find the most likely word string ),...,,( 21 Kwwwh =∗  given the acoustic observation 

),...,,( 21 Txxx=x  in Equation (2-1), current continuous speech recognition systems evaluate the 

term )|( hP x  through the means of Hidden Markov Models. A HMM is a network consisting of 

a set of connected states, each of which characterizes certain part of model target. For example, 

when using a 3-state HMM to model a phoneme, the three states correspond to the beginning, the 

middle and the ending segment of the phoneme respectively. Mathematically, a HMM, λ , can be 

expressed as a triplet that },,{ BAS=λ , where S  is the state set that },...,,{ 21 NsssS =  which 

means this is a N-state HMM, A  is the matrix of transition probabilities that ][ , jia=A  in which 

jia ,  denotes the probability moving from state is  to state js , and B  is the set of observation 

probability functions that depicts the likelihood of emitting an acoustic feature at a particular state. 

In the case of continuous HMM, the output probability usually takes the form of Gaussian 

Mixtures that  

 ∑ Σ==
k

ksksksii iii
NcsPsb ),;()|(),( ,,, µxxx (2-2)
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Where ),;( ,, ksks ii
N Σµx  is a Gaussian distribution with mean ksi ,µ  and variance matrix ksi ,Σ , 

and ksi
c ,  is the mixture weight associated to ),;( ,, ksks ii

N Σµx . Figure 2.2 illustrates a simple 

example of a 3-state HMM which employs a left-to-right topology. The only allowable transitions 

in this HMM are self-transition that is back to the current state or transition to the state 

immediately on the right. 

 

 

 

 

 

 

 

 

 

 

There are three problems of interest involved in the training of HMM and recognition using 

HMM [Rabiner, 1989; Rabiner and Juang, 1993]. 

The Evaluation Problem: Given a HMM and a sequence of acoustic observations, what is the 

probability of the observations being generated by HMM? This is addressed by forward-

backward algorithm [Baum, 1972]. 

The Decoding Problem: Given a HMM and a sequence of acoustic observations, what is the most 

likely sequence of state transition in the HMM that produces the observation? This corresponds to 

the recognition process that seeks the most likely hypothesis. The is addressed by using the 

Viterbi algorithm [Viterbi, 1967]. 

The Training Problem: Given the topology of HMM and sequences of acoustic observations, 

How to learn the model’s parameters so that it has the maximum probability of generating the 

observations? This is addressed by the Baum-Welch algorithm [Baum, 1972]. 

 

)s|P(x 1

3,3a

2,3a

2,2a

1,2a

1,1a  

3S2S1S

)s|P(x 2 )s|P(x 3

Figure 2.2 An example of a 3-State left-to-right hidden markov model 
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2.1.3 Language Model 
 

For speech recognition, especially for large vocabulary speech recognition, language model (LM) 

contributes significantly to the performance of system [Rosenfeld, 2000]. Generally speaking, 

language model aims to provide a statistical framework to estimate the prior probability of a word 

sequence ),...,,( 21 Kwwwh =  being spoken. Using the chain rule, the probability of the sequence 

can be represented by the products of the conditional probabilities of the questioned words given 

their histories: 

 
),,...|(),...,,()( 1

1
121 −

=
∏== k

K

k
kK wwwPwwwPhP (2-3)

In practice, one can not obtain a reliable estimation for ),...,|( 11 −kk wwwP  since an arbitrarily 

long history would demand enormous amount of training data. N-gram model is proposed to 

address this problem, in which the history is truncated into the most recent n-1 words with the 

assumption that a n-1 order Markov source is sufficient to generate the language. For example, 

for a trigram model, the most widely used language model for speech recognition, only the 

previous two words are concerned. That is, 

 ),|(),...,|( 1211 −−− ≈ kkkkk wwwPwwwP (2-4)

Such simplification benefits language modeling by reducing the number of free parameters into 

an affordable range, and making it possible, in combination with smoothing and back-off 

techniques, to train language model on a limited size corpus. However, this assumption has 

obvious weakness that it doesn’t take into account the contexts wider than n-1 words, and thus 

loses a great deal of useful language information, such as long distance word correlations, 

syntactic constraints and semantic consistence. 

 

2.1.4 Search 
 

The goal of the search module in a speech recognition system is to find the most likely hypothesis 

given a sequence of acoustic feature vectors. Unlike other common multiple-class classification 

problems in which the number of possible classes is limited to small size, continuous speech 

recognition system has to work in a huge hypothesis space for which the regular classification 
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strategy loses efficacy. For example, suppose the system has a vocabulary of M words and the 

maximum length of a sentence hypothesis in terms of number of word is set to K. The number of 

possible hypothesis is at least: 

 

1
1......1

1
32

−
−=+++++

+

M
MMMMM

K
K

(2-5)

Please note the number listed above doesn’t consider the temporal segment information of each 

word. Namely, we don’t know exactly when a word begins and ends. If we take account of such 

boundary information into calculation, the number of possible hypotheses would be much larger. 

Apparently, such a huge number makes it impossible for the recognizer to traverse every 

hypothesis and compute probability for them. 

The complexity of this search problem could be reduced by using dynamic programming, which 

breaks the global search down to successive local searches. Viterbi decoding is a dynamic 

programming algorithm that searches the state space for the most likely state sequence that 

accounts for the input speech. Viterbi decoding is performed in a time-synchronous fashion that 

the input speech is processed one frame at a time, and all the states are updated for that frame 

before moving on to the next frame. In addition, a beam pruning technique is usually applied to 

limit the search by pruning out the less likely partial hypothesis. 

 

2.1.5 Measuring Performance 

 

The performance of a speech recognition system is measured in two aspects: speed and accuracy. 

Speed is very important for real time systems e.g. dialog system, for which a quick response to 

user’s inquiry is one of the basic requirements. In this thesis, however, we focus only on the 

recognition accuracy since our goal is to investigate the effectiveness of proposed algorithms 

rather than to improve their efficiency. 

In recognition, a recognizer can generate extra errors by inserting words by mistake. So the 

accuracy of a recognizer can not be measured by simply counting the number of correctly 

recognized words. For most applications, instead, the recognition performance is measured by 

Word Error Rate (WER), a metric relevant to how many mistakes the recognizer made. The 

definition Word Error Rate is given as follows, 
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WordsSpokenofNumber

InsertionsDeletionsonsSubstitutiRateErrorWord
   

        ++=  
(2-6)

Word Error Rate is calculated by performing alignment between hypothesis and reference. So it is 

difficult to express this metric in a form of differentiable function and integrate it into acoustic 

and language model training. Please note that the definition in Eq. (2-6) doesn’t consider word 

segmentation information. This means, two hypotheses would have the same score even if one is 

better than another in providing more accurate word boundary.  

 

2.2 Training Criteria for Acoustic Modeling 
 

This section presents a brief review of the training criteria used in acoustic modeling, including 

Maximum Likelihood Estimation (MLE), Discriminative Training and Maximum a posteriori 

Estimation (MAP). These criteria have been investigated by speech community for decades and 

successfully applied to many real systems. However, they unavoidably have certain weaknesses 

which become the motivation of new approaches, e.g. ensemble based methods investigated in 

this thesis, which aim to achieve better performance than these classic criteria. 

 

2.2.1 Maximum Likelihood Estimation 
 

MLE is the dominant principle that most speech recognition systems are trained with [Rabiner 

and Juang, 1993; Jelinek, 1998]. The performance of MLE training usually works as the baseline 

for evaluating new training methods. Given the training instances and their class labels, MLE 

criterion optimizes model parameters by maximizing the class conditional probability of the 

training data. For speech recognition, this criterion could be expressed as follows. Supposing we 

have a training set }1|),{( Niyii ≤≤=Ψ x  where ix  is the sequence of acoustic features 

extracted from the i-th utterance in training corpus, and iy  is its transcript, MLE aims to find a 

model *λ  that 

∑∏
==

==Ψ=
N

i
ii

N

i
ii yPyPP

11

* )|,(logmaxarg)|,(maxarg)|(maxarg λλλλ
λλλ

xx  (2-7)

Using chain rule, the probability )|,( λii yP x  can be further expressed as 
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 ),|(*)|()|,( λλλ iiiii yPyPyP xx = (2-8)

)|( λiyP  denotes the prior probability of the word string iy  being spoken. Its value is provided 

by language model. ),|( λii yP x  denotes the conditional probability of observing acoustic 

features ix  given iy . Its value is provided by acoustic model. 

For most speech recognition systems, the training of language models is a separate process 

independent of the training of acoustic models. We thus exclude it from the following discussion. 

Eliminating the influence of language model, the MLE criterion for acoustic modeling can be 

described as to find an acoustic model *λ  that 

 
∑

=
=

N

i
ii yP

1

* ),|(logmaxarg λλ
λ

x (2-9)

It has been shown that, if the assumption of the adopted statistical model is correct and sufficient 

training data is available, MLE training can result in a perfect estimation of class conditional 

probability ),|( λyP x . However, it’s difficult to fulfill these requirements in practice where the 

amount of training data is limited and the model assumption is usually empirically determined. 

Moreover, MLE training only considers the correct classes of training instances without taking 

into account the competing classes. In speech recognition, this may cause unfavorable result. As 

we know, the transcripts y  of an utterance x  and other competing hypotheses h  that yh ≠  

often share same words or phonemes. MLE training aiming at maximizing ),|( λyP x  could also 

boost the value of ),|( λhP x . As a consequence, the decoding with acoustic model obtained 

from MLE may not be able to output the hypothesis with lowest word error rate. 

 

2.2.2 Discriminative Training 

 

As discussed above, the result of MLE is a set of model parameters which maximize the 

likelihood of observing the training data given their labeled class. The estimation of the model 

parameters of a class only depends on the training data belonging to this class. In contrast to MLE, 

Discriminative Training attempts to incorporate additional knowledge by also using the data 

associated with competing classes. Namely, discriminative criteria not only try to maximize 

),|( λyP x , the conditional probability of the training data given the correct class, but also try to 



 14

minimize ),|( λhP x , the conditional probability given alternative classes, and therefore to 

increase the separability among classes. 

The research of discriminative training by speech community started from 1980s, the 

revolutionary era of speech recognition when HMM and MLE training obtained widespread 

applications. Nevertheless, speech community was soon distressed by the observation that the 

high likelihood doesn’t always lead to the low recognition error. Discriminative criteria were then 

proposed to tackle the shortcomings of MLE training, and evolved to be a family of training 

approaches with a number of variants. Two of them, Maximum Mutual Information (MMI) and 

Minimum Classification Error (MCE), are discussed here [Juang and Katagiri, 1992; Schluter, 

2000; Schluter et al, 2001]. 

 

Maximum Mutual Information (MMI) 

The MMI criterion was proposed as an alternative to MLE in order to overcome the weakness of 

MLE, in particular the problem of using MLE with an inaccurate model assumption. The idea of 

the MMI criterion is to minimize the conditional model-based entropy )|( xhEλ  over random 

hypothesis variable h  given the input acoustic feature variable x . This corresponds to find 

parameters for model λ  that provide as much information as possible about the desired 

hypothesis given the input pattern x . 

The model based entropy for hypothesis variable h  is defined as 

 ∑−=
h

true hPhPhE )|(log)()( λλ (2-10)

where (.)trueP  denotes the true distribution for data generation while )|(. λP  denotes the 

empirical model based on estimated distribution. This entropy of hypothesis measures the 

uncertainty of what hypothesis is spoken without knowing any acoustic information. 

The conditional entropy of hypothesis given input acoustic feature is defined as 

 ∑−=
x

xxx
,

),|(log),()|(
h

true hPhPhE λλ (2-11)

This entropy measures the uncertainty to predict what hypothesis is spoken given the input 

feature sequence x . The amount of information provided by x  about h  is then represented as 

the mutual information, the difference between these two entropies. 
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The goal of MMI estimation is to maximize the mutual information );( xhIλ  by optimizing 

model λ . As the training data is assumed to be representative, this is equivalent to choose value 

for model λ  that maximizes 
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Comparison between MMI criterion and MLE criterion shows that the latter is only concerned to 

maximize ),|( λyP x , the class dependent conditional probability for the correct label, while the 

former maximizes the difference between ),|( λyP x  and background probability )|( λxP . 

Thus the MMI criterion is more discriminative than MLE criterion. The advantage of MMI 

training is that, maximizing )(λMMIf  is more reasonable than maximizing the likelihood of 

training data when the model assumption is not accurate. However, the computation cost of MMI 

training is more expensive than that of MLE training due to the need to consider all of the 

possible classes instead of the correct one only. 

 

Minimum Classification Error (MCE) 

As the name suggests, the MCE criterion is designed to minimize the classification error on the 

training set. A simple zero-one cost function would measure the error rate perfectly, but it 

violates the constraint that the function should be continuously differentiable in the model 

parameter space. In order to allow for parameter optimization using gradient descent based 

methods, MCE criterion uses a smoothed version of zero-one cost function by sigmoid 

transformation. 

To measure the difference between the observation probabilities given the correct class y  and 

other competing hypotheses yh ≠ , a misclassification function is defined as  

 
ηλλλ η 1

]);,(
1||

1[);,();,( ∑
≠−

+−=
yh

hg
h

ygyd xxx (2-14)

where )|,(log);,( λλ hPhg xx = , || h  denotes the number of the possible hypotheses including 

y , and η  is a positive parameter that controls how the competing hypotheses are weighted. In 
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the limit as ∞→η , only the most likely competing class is taken into account while the others 

are ignored. In this case, the misclassification function is degraded into 

 );,();,();,( 1 λλλ hgygyd xxx +−≈ (2-15)

where 1h  represents the best competitor, i.e. the top-1 hypothesis in the N-best list. The 

simplified misclassification leads to a variant of MCE criterion allowing for fast computation. 

The interpretation of the misclassification function is that a positive value implies an utterance 

level recognition error, while a negative value implies the decoding result is likely to be correct 

(when choose a large value for η ). 

The misclassification measure is then embedded into sigmoid function 

 
)*exp(1

1)(
θρ +−+

=
d

dsigmoid (2-16)

where ρ  is the parameter which defines how sharply the sigmoid function changes at the 

transition point, and θ  defines the location of the transition point. Apparently, the sigmoid 

function is a continuously differentiable function with the capability to approximate the zero-one 

cost function as showed in (2-17). 
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The complete objective function of MCE for the entire training set is then formulated as 

 

∑
∑

∑

=

≠

=

−
+−−+

=

=

N

i

yh
iii

N

i
ii

MCE

i

hg
h

ygN

ydsigmoid
N

f

1

1

)]}));,((
1||

1();,([*exp{1

11

));,((1
)(

1

)(

ηλλρ

λ

λ

η xx

x  
(2-18)

Similar to MMI criterion, MCE is also a discriminative criterion which aims to increase the 

separability between desired hypothesis and alternative hypotheses. MCE provides a framework 

that directly links the classification error with a continuous and differentiable loss function. 

Minimizing the MCE loss function is a way of minimizing the actual number of 
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misclassifications in training set. It has been demonstrated that given enough training data MCE 

could yield a classifier that is close to the Bayes decision rule, and thus minimizes the expected 

classification error rate. 

 

2.2.3 Maximum A Posteriori Estimation (MAP) 
 

In the discussion of MLE and Discriminative Training, the model λ  itself is not treated as a 

random variable. This is somehow against the Bayesian learning theory in which everything 

could be random. MAP provides a framework that considers the uncertainty of the model 

parameter λ  and incorporates it into the model optimization [Therrien 1992; Chien et al, 1997]. 

Suppose we have a training set }1|),{( Niyii ≤≤=Ψ x  where ix  is the sequence of acoustic 

features of the i-th utterance, and iy  is its transcript. MAP criterion is to find a value for the 

model parameters λ  that maximizes the posterior probability of λ  given training data.  
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The normalizing factor )(ΨP  is discarded from the MAP estimation, since 

∫∫ Ψ=Ψ=Ψ
λλ

λλλλλ dPPdPP )|()(),()( , which has no effect on looking for the optimum 

of λ . Please note that in (2-19) the training instances are assumed i.i.d., so 

∏
=

=Ψ
N

i
ii yPP

1

)|,()|( λλ x . 

In (2-19), )(λP  represents the prior probability of model parameter λ , which statistically 

describes our knowledge about λ  before we observe the training data. Contrasting to MLE 

methods, MAP maximizes )|()( λλ ΨPP  instead of )|( λΨP  only. In this context, MLE could 

be viewed as a special case of MAP, which assumes that all values of λ  are equally likely. 

The Use of the prior information in parameter estimation is particularly important for dealing 

with the difficulties arising from sparse training data, for which the classical MLE approach 
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usually gives poor estimates of model parameters. MAP has been shown to be reasonably 

effective for speaker adaptation, in which it is difficult to collect sufficient training data for a new 

speaker. On the other hand, the performance of MAP estimation highly depends on the prior 

probability )(λP . If our prior knowledge about λ  is not accurate, MAP may lead to an 

erroneous estimate of λ . 

 

2.3 Confidence Annotation 
 

Confidence annotation, which task is to evaluate the correctness or reliability of recognition result, 

is a highly desirable capability for continuous speech recognition systems, since acting upon a 

misrecognized hypothesis can incur a high cost to the user either though an undesired side-effect 

or through time wasted on correction. 

Chase [Chase, 1997] proposed the following framework for incorporating a confidence metric 

into a recognition system: (1) At what level should the confidence annotation be made; (2) What 

is the right way to define what is an error and what isn’t; (3) What features are useful and how 

useful; (4) How to build a model combining the various features to create a confidence annotation; 

(5) How to measure the goodness of the feature and model. The answers to these questions 

depend on the particular application that incorporates the confidence annotator. For example, in 

the CMU Communicator system [Rudnicky et al, 1999], a telephone based dialog system that 

supports planning in travel domain, both the utterance level and word level confidence annotation 

are used. The former measures the confidence of the whole utterance, and the latter supplies the 

reliability description of each single word. 

The key problem in confidence annotation is the selection of effective features [Wessel et al, 

1998; Zhang and Rudnicky, 2001] and a variety of features have been proposed. These features 

are extracted from a variety of information source, e.g. acoustic, language model, N-best list or 

word lattice. Most are based on information from the decoder and moreover have the 

disadvantage that they unavoidably overlap in the information that they use, as is apparent in the 

common observation that the performance achieved by all the features together isn’t much better 

than that with only the best feature. These features are for the most part redundant with the 

information used to generate hypotheses in the first place and so contribute little new information, 

particularly at the acoustic level.  
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The construction of a confidence annotator can be treated as a problem in pattern classification 

and a large variety of classification approaches can be considered for use, such as Neural 

Network, Decision Tree, Bayes Network, Support Vector Machine, AdaBoost, etc [Carpenter et 

al, 2001].  

 

2.4 Unsupervised and Lightly Supervised Acoustic Model Training 
 

For acoustic model training, collecting a large number of well-transcribed speech data is a time-

consuming and expensive process. One the other hand, massive amount of un-transcribed raw 

data or closed captioned data are relatively easy to obtain. Thus there exists the need for an 

automatic learning procedure that can use both transcribed and un-transcribed data for model 

training. This family of approaches is usually referred to as unsupervised training, which uses un-

transcribed data, or lightly supervised training, which uses closed captioned data [Jang and 

Hauptmann, 1999a; Kemp and Waibel, 1999; Lamel et al, 2000]. 

The following scenario is usually considered in unsupervised and lightly supervised acoustic 

model training. An initial seed model 0λ  is learned from the transcribed set and then applied to 

recognize the un-transcribed utterance. A confidence metric );( xhfc , which has been learned 

from available data, is used to provide each sentence hypothesis with a score measuring the 

likelihood of correctness for the recognition result given by 0λ . A certain number of recognized 

utterances, which hypotheses are marker with high confidence by );( xhfc , are then added to the 

transcribed set for training a new model 1λ . This process repeats until all of the un-transcribed 

data are exhausted or some early halting criterion is met. 

Semi-supervised learning has elicited growing interests in various research fields and many novel 

approaches have been proposed with promising improvement of performance. However, 

researchers are divergent on the effectiveness of using data with high confidence score. For 

example, [Kemp and Waibel, 1999] suggests that this kind of data can’t add substantial new 

information to the existing recognizer, while [Wessel and Ney, 2001] shows that the good 

performance is mainly due to the contribution of this portion. 
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2.5 Challenges of Continuous Speech Recognition 
 

The performance of an ASR system is negatively impacted by a number of issues, such as 

corruption of noise, variability of speaker and speaking mode, change of environment conditions, 

transmission of channel, inaccuracy of model assumption, complexity of language, etc.. Similar 

problems also exist in other classification tasks, but are particularly serious in continuous speech 

recognition. In addition, some distinct properties of continuous speech recognition add further 

challenges to the task. Some of them are listed as follows. 

• Both the input instance ),...,,( 21 Txxx=x  and output hypothesis ),...,,( 21 Kwwwh =  of a 

continuous ASR system are sequences that can be arbitrarily long. In contrast, for many common 

classification problems, the length of the input feature vector is fixed, and the output is only a 

simple class label. 

• As we have discussed, the space of sentence hypothesis for a consecutive utterance can be 

very large. As a practical matter, it is impossible for a speech recognizer to enumerate all the 

hypotheses to estimate their probabilities. Some special techniques have to be used to reduce the 

search space, e.g. dynamic programming and pruning. However, these can cause the correct 

hypothesis to be early deleted from the search process. 

• In LVCSR systems, sub-words, e.g.. triphones or senones, are chosen as the speech unit for 

acoustic model training. On the other hand, the speech corpora are organized as a set of utterances 

that are transcribed into string of words. The segment information necessary for sub-word model 

training is not available in the speech dataset due to the expense of transcription. One has to use 

Viterbi based forced-alignment or other methods to guess a likely boundary for each sub-word 

appearing in an utterance. 

• There is also a considerable mismatch between the training criteria of acoustic modeling and 

the measurement of recognition performance. The speech community often uses Word Error Rate 

(WER), a word level metric to evaluate system performance by computing recognition errors in 

terms of substitution, deletion and insertion. However, as we have shown, current acoustic 

modeling criteria, e.g. MLE, MCE and MMI, focus on how to reduce sentence level training 

errors rather than word level errors. This mismatch leads to an often observed phenomenon where 

the hypothesis with the highest likelihood is not the one with the lowest word error rate. 
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Continuous Speech Recognition has been acknowledged as one of the most challenging 

classification tasks. The primary goal of this thesis is to investigate suitable acoustic model 

training strategies that can fulfill the special requirements of continuous speech recognition. Next 

several chapters will cover our research results on Boosting training, ROVER combination, 

unsupervised training as well as lightly supervised training. 
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3 Experimental Environments 
 

This chapter presents a brief overview of the speech recognition system, CMU Sphinx III system, 

and speech corpora used in our experiments discussed by this thesis. Even though we report 

results only using Sphinx III system and the corpora described later in this chapter, the algorithms 

we will propose are independent of specific speech recognizer and corpora, and are applicable to 

any other continuous speech recognition systems and different domains. The reason of selecting 

Sphinx III system as the platform of our experiments is that, as a well known and open-source 

system (http://cmusphinx.sourceforge.net/html/cmusphinx.php), it can provide reader a trustable 

and easily obtainable basis to understand and repeat our results. 

 

3.1 CMU Sphinx III System 
 

The Sphinx III system is used as the baseline speech recognition system to evaluate the 

algorithms to be proposed in this thesis. Sphinx III is a large vocabulary, speaker independent, 

HMM based continuous speech recognition system developed at Carnegie Mellon University 

[Lee, 1988; Huang et al, 1993; Ravishankar, 1996]. It differs from earlier systems, i.e. Sphinx I 

and Sphinx II systems, in the form and topology of probability density functions adopted to 

describe acoustic observations. Sphinx III is the first version of CMU-developed fully continuous 

HMM system in which the Gaussian distributions are state-specific and thus support a more 

detailed modeling of acoustic variability of speech. In contrast, Sphinx I is a discrete HMM 

recognizer based on Vector Quantization, and Sphinx II is a semi-continuous HMM recognizer 

that all the phonetic units share a small set of global Gaussian distributions,  

Sphinx III is based on contextual phoneme or triphone models which are capable of handling 

coarticulation effects of spoken language by considering the influence of neighboring context. 

However, because the number of parameters to be estimated for triphone models is large, and 

because the amount of training data required for a reliable estimation is enormous, Sphinx III uses 

a sub-phonetic clustering approach to share parameters among similar triphones. The output of 

clustering is a set of shared distributions, called as tied states or senones. Compared to triphones, 

the total number of free parameters to be estimated for senone models is reduced significantly. 

Next we introduce how acoustic model training is performed using Sphinx III system. 
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Sphinx III provides user a complete toolkit including all the necessary functions for acoustic 

model training. As illustrated in Figure 3.1, the acoustic model training procedure using Sphinx 

III can be roughly divided into five steps from the point of feature extraction to the point of 

senone model training (http://www.cs.cmu.edu/~rsingh/sphinxman/s3manual.html). 

Training 
Data 

Training of CI Models 
• Make CI model definition 
• Flat initialize CI models 
• Baum-Welch optimization

Training of Untied CD Models 
• Make untied CD model definition
• Initialize untied CD models 
• Baum-Welch optimization

Decision Tree Building 
and State Tying 

• Build and prune trees
• Tie states

Training of Tied CD Models 
• Make tied CD model definition 
• Initialize tied CD models 
• Baum-Welch optimization 
• Gaussian splitting

Feature 
Extraction 

Figure 3.1 The chart of Sphinx III acoustic model training 
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• Feature Extraction. The first step is to convert input speech into feature vectors. In this thesis, 

12 dimension MFCC plus 1 dimension power are extracted as the base feature for each frame. 

This feature is then extended to 39 dimensions by augmenting first order and second order time 

derivatives, in order to capture the transition trend of spectrum. In addition, Cepstral mean 

normalization (CMN) is optional to be applied at the utterance level to remove statistical biases of 

the mean which might have been introduced by linear channel distortion. 

• Training of context independent (CI) models. This step is to train HMM model for each 

context independent phonemes. The model parameters include state transition probability, 

component weight of Gaussian Mixture, mean and variance of Gaussian distribution. To initialize 

the means and variances, global values of these parameters are first calculated and then copied 

into appropriate positions in the parameter files. An iterative EM learning procedure, based on 

Baum-Welch algorithm [Rabiner and Juang, 1993] is employed to optimize model parameters 

with respect to maximizing the probability of generating input acoustic observations. Each 

iteration results in slightly better HMMs for the CI phones. However, too much iteration can lead 

to models which overfit to the training data. 

• Training of untied context dependent (CD) models. This step is to train HMM model for each 

context dependent phoneme or triphone. Model parameters, including transition probability, 

component weight, mean and variance, are initialized by copying values from corresponding CI 

models. As in CI training, the Baum-Welch algorithm is iteratively used and the iteration is 

followed by a normalization operation to compute final model parameters. 

• Decision Tree building. This step is to build phonetic decision trees and use them to decide 

which of the triphone HMM states are similar to each other, so that they can be tied together to 

train one jointly shared state, called senone, using the data from all these similar states. The 

optimal number of senones varies from application to application. It depends on the amount of 

available training data and the number of triphones present in the task. 

• Training of tied context dependent (CD) models. This step is to train tied context dependent 

phoneme or senone models. Rather than use single Gaussian distribution per state to model output 

probability as in CI and CD (untied triphone) training, we use a mixture of Gaussian distributions 

for each senone in order to increase its modeling capability. The number of Gaussians in the 

mixture is pre-determined with respect to the amount of available training data. Moreover, the 

number should be set to the power of 2 (i.e. N2 ) for the convenience of Gaussian splitting. The 

training starts from the training of 1 Gaussian per state model, which is initialized by copying 
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parameters from corresponding triphone models. Baum-Welch algorithm is employed to perform 

an EM style iterative optimization. Once the training of single Gaussian model is done, the 

Gaussian distribution is split into two by perturbing its mean slightly, thus starting the iteration of 

2-Gaussian model training. The procedure of iteration and splitting repeats until the training of 

pre-determined number of Gaussians is completed. 

 

3.2 Speech Datasets 
 

In this section, we briefly describe the speech databases used in this thesis. All of these datasets, 

even though some of them were collected by certain research group, are either open to the public 

for research use or can be obtained from Linguistic Data Consortium (LDC) at 

http://www.ldc.upenn.edu. 

• CMU Communicator dataset. The corpus was collected using the CMU Communicator 

system, a telephone based dialog system that supports planning in a travel domain [Rudnicky et al, 

1999]. The input speech signal was automatically detected and segmented by the speech 

recognition module of the dialog system. The segmented speech is stored to disk and then 

transcribed by human experts. The sampling rate is 8 KHz due to the constraint of telephone 

channel. The training set has 31,248 utterances, accounting for 30 hours speech, which were 

collected from the year of 1998 to 2000. The test set consists of 1,689 utterances, accounting for 

0.5 hour speech, which were collected during a NIST evaluation conducted in July 2000. The 

average duration of these utterances is about 3 seconds. There are 9,769 words in the vocabulary. 

39 dimension feature vector (12 MFCC, 12 delta-MFCC, 12 delta-delta-MFCC, 3 power) is 

extracted on frame basis for recognition. 

• ICSI meeting dataset. The ICSI meeting dataset is a corpus of 75 meetings collected at ICSI, 

Berkeley during the years from 2000 to 2002 [Janin et al, 2003]. All the meetings are generally 

regular weekly meetings of different ICSI groups with different topics. The normal duration of 

each meeting is less than an hour, and in a total there is approximately 70 hour speech. The 

meetings were simultaneously recorded using close-talking microphones for each speaker, as well 

as a few of table microphones. All meetings were recorded at the same instrumented conference 

room. In the experiments of this thesis, the speech data is down-sampled to 11025 Hz and 

encoded as 16 bits per example. Frame rate is set to 105 per second. 39 dimension (12+12+12+3) 

MFCC feature vector is calculated for each frame. In our unsupervised acoustic model training 
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experiments, we use 10 meetings as the transcribed set for initial acoustic training, 61 meetings as 

the un-transcribed set for unsupervised training, 3 meetings as the hold-out set for recognizer 

tuning, and 1 meeting as the test set. 

• 1997 Mandarin Broadcast News. This set consists of 30 hours of recorded Mandarin 

broadcast news data. The data were collected from three sources: Voice of America (VOA), 

China Central Television (CCTV), and a commercial radio based in Los Angeles (KAZN-AM). 

The transcripts were created by native speakers of Mandarin and word segmentation (white-space 

between words) is included. The speech data is sampled as 16 KHz. 39 dimension MFCC feature 

is calculated for each frame. 

• TDT-4 Mandarin Broadcast News. This corpus contains Chinese news data used in 2002 and 

2003 TDT (Topic Detection and Tracking) technology evaluations. Data sources include Xinhua 

News (XIN), Zaobao News (ZBN), China Broadcasting System (CBS), China Television System 

(CTS), Voice of America (VOA), China National Radio (CNR) and China Central Television 

(CTV). The speech data is sampled as 16 KHz. The transcripts are mostly closed captions which 

contain a large number of transcription errors and thus can not be used directly for acoustic model 

training. In this thesis, a novel lightly supervised learning algorithm is proposed to address this 

problem and evaluated on this corpus. As before, our experiments also use 39 dimension MFCC 

feature as the representation of speech. 

• GALE BN03 Mandarin Dataset. This is an un-transcribed speech corpus used in GALE 

(Global Autonomous Language Exploitation) project. The corpus includes the raw broadcast 

speech data collected in the year 2001 and 2003 from sources of China Central Television 

(CCTV), Voice of America (VOA) and New Tang Dynasty Television (NTDTV). The sampling 

rate is 16 KHz. Our unsupervised acoustic model training algorithm is evaluated on this corpus. 

39 dimension MFCC feature is used in our experiments. 

 

3.3 Summary 
 

In this chapter, we reviewed the structure of CMU Sphinx III system. In particular, we described 

the 5-step acoustic model training procedure that Sphinx III supports. It consists of feature 

extraction, training of CI models, training of untied CD models, decision tree build & state tying, 

and training of tied CD models. In addition, we described the five speech corpora that we employ 

to evaluate the performance of our algorithms in the following chapters. The corpora include 
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CMU Communicator dataset, ICSI meeting dataset, 1997 Mandarin Broadcast News, TDT-4 

Mandarin Broadcast News, and GALE BN03 Mandarin Dataset. 
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4 Ensemble Based Speech Recognition 
 

This chapter presents a brief overview of ensemble based pattern classification and speech 

recognition approaches. We begin with a discussion of why ensembles of classifiers can 

outperform single classifier in addressing complicated classification problem. We then describe 

several extensively used learning algorithms for constructing ensembles. Next, we discuss the 

applications of ensemble based approaches in continuous speech recognition. We will cover some 

well known approaches including multi-band and multi-stream model, Boosting. ROVER, 

consensus network, and lattice combination. 

 

4.1 Introduction 
 

Ensemble methods are learning algorithms that construct a set of classifiers then combine their 

individual decisions in some fashion, in order to classify new examples. It has been shown that 

such a combination of “weak” classifiers can result in a “strong” composite classifier whose 

classification performance is much better than that of any single classifier. As one of the most 

active topics in many research areas, the ensemble approach is also known as the Fusion of 

Models, Mixture of Experts, Committee of Learners, Multiple Classifier System, Consensus 

Theory, as well as by other names. 

The observation that ensembles perform better than any of its individual members is not an 

accidental phenomenon. To see why, imagine we have an ensemble of 2n+1 classifiers, which 

have uncorrelated error patterns. Supposing e is the error rate of the worst classifier, the 

performance of ensemble after combination with majority voting would be no worse than 

∑
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n eeC . For example, in the case of combination of three independent classifiers 

which error rates are equal to 20%, the overall error rate of the ensemble will be dramatically 

reduced to 10.4%. 

Beyond this intuitive explanation, [Dietterich, 1998] gives a deeper analysis for why ensembles 

can improve performance, or why it is not possible to find a single classifier that works as well as 

an ensemble. [Dietterich, 1998] shows that the strength of ensemble lies on its competence and 

flexibility in dealing with the following three situations: the training data may not provide 
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sufficient information to choose a single best classifier; the learning algorithm we adopted may 

not be able to solve the difficult search problem we pose; and the hypothesis space may not 

contain the true function. 

The example above also indicates the key issues to be considered in constructing a successful 

ensemble: the individual classifiers need be accurate and diverse [Kuncheva et al., 2002; Shipp & 

Kuncheva, 2002; Kuncheva & Whitaker, 2003]. A basic requirement for an individual classifier 

of ensemble is that its error rate should be at least better than random guessing. For binary 

classification, this means the error rate of any component of ensemble should be lower than 50%. 

However, this condition alone can not guarantee that the performance of ensemble is superior to 

its components. The overall performance of ensemble depends not only on the accuracy of each 

component, but also on how well different classifiers complement to each other. For example, a 

combination of identical classifiers will not provide any help to the classification even though 

they have high accuracy each alone. Research has shown that the error pattern of an individual 

classifier plays a critical role in ensemble based classification. For an ideal ensemble, we expect 

that individual classifiers are diverse so that the errors made by them can be uncorrelated and 

complementary. Obviously, this is not an easily-fulfilled requirement in the case of real-world 

applications such as continuous speech recognition. Investigations on measures of diversity and 

on the realization of diverse classifiers have been the focus of ensemble research. 

 

4.2 Ensemble Learning 
 

Many approaches for constructing ensemble have been developed. These approaches can be 

roughly categorized into three classes in accordance with the different objects being exploited in 

training procedure. In addition, there are some ad hoc methods specific to particular algorithms or 

applications. This section presents a brief review of some representative ensemble learning 

methods. 

 

4.2.1 Manipulating the Training Data 
 

This class of methods employs a strategy that generates multiple hypotheses by running the 

learning algorithm several times, each time with a different subset or distribution of training data. 
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The training data can be either randomly selected or selected according to an objective function. 

Well-known examples include Bagging and Boosting. 

 

Bagging 

Bagging is a straightforward way of manipulating training set for ensemble construction 

[Breiman 1996]. In each round of Bagging learning, a new training set is created using the 

technique called Bootstrap Sampling, which randomly draws a sample of N examples with 

replacement from the original training set. Note that some examples in the original set may not 

appear in a Bootstrap sample while others may appear more than once. A new single classifier is 

then learned from the sampled training set. Ensemble is constructed by running this procedure 

repeatedly, and the final hypothesis of the ensemble is determined by selecting the one best 

agreed on by individual classifiers. The algorithm is illustrated in Table 4.1, in which 

function ),( yf x  can be interpreted as a classifier or recognition model that maps a feature/label 

pair to some confidence or probabilistic metrics such that 1),(0 ≤≤ yf x . 

Input: 

• Training set of N labeled examples }1|),{( Niyii ≤≤=Ψ x , where feature vector 

D
iDiii xxx Rx ∈= ),...,,( 21 , a D-dimension space, and class label },...,,{ 21 Mi cccYy =∈ . 

• A learning algorithm. 

• An integer K specifying the number of individual classifiers in ensemble. 

Training: For k=1 to K, 

• Create a Bootstrap replicate kΨ  with replacement from the original training set Ψ . 

• Learn a new classifier ),( yfk x  on kΨ . 

Generalization: 

• The class label for a new example x  is determined by majority voting: 

∑
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Table 4.1 Bagging algorithm 

Bagging is shown to be effective when used with “unstable” learning algorithms such as Decision 

Tree and Support Vector Machine, for which a small change of training data may lead to a large 
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change of learned concept. However, it may cause degradation when applied to “stable” learning 

algorithm such as K-Nearest Neighbor. 

Input: 

• Training set of N labeled examples }1|),{( Niyii ≤≤=Ψ x , where feature vector 

D
iDiii xxx Rx ∈= ),...,,( 21 , a D-dimension space, and class label },...,,{ 21 Mi cccYy =∈ . 

• A learning algorithm. 

• An integer K specifying the number of individual classifiers in ensemble. 

Initialization: 

• Let } and ,1|),{( iyyYyNiyiB ≠∈≤≤= . 

• Initialize distribution of training data: ByiD /1),(1 =  for all Byi ∈),( . 

Training: For k=1 to K, 

• Train a new classifier ),( yfk x  with respect to distribution ),( yiDk . 

• Compute pseudo loss for classifier ),( yfk x : 

∑
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• Set )1/( kkk εεβ −= . 

• Compute importance factor kα  for ),( yfk x : kk βα log−= . 

• Update distribution ),( yiDk  by: 
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+ = β  

where kZ  is a normalization factor chosen to make ),(1 yiDk+  a distribution function. 

Generalization: 

• The class label for a new example x  is determined by weighted voting: 

∑
=∈

=
K

k
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Yy
yfy

1

* ),(maxarg xα  

Table 4.2 AdaBoost algorithm for multi-class classification. 
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Boosting 

Boosting has been, so far,  the most successful approach developed for constructing ensembles 

[Freund and Schapire, 1996; Freund and Schapire, 1997; Schapire et al., 1997, Breiman, 1998; 

Mason et al., 1999; Schapire, 1999; Schapire and Singer, 1999; Collins et al., 2000]. In Boosting, 

single classifiers are iteratively trained in a fashion such that hard-to-classify examples are given 

increasing emphasis. In particular, the algorithm maintains a probability distribution for the 

training data, and initially every example is assigned equal weight. In each round, a new single 

classifier is learned from the current distribution. Meantime, a parameter that measures the 

classifier’s importance is determined in respect of its classification accuracy. The single classifier 

is then used to classify every training example. The probability distribution is updated in such a 

way that the weight of an example will be enhanced if it is misclassified, or reduced otherwise. 

As a result those examples which are difficult to classify will be given more weights in the 

training of subsequent classifiers. The AdaBoost algorithm for multi-class classification is 

illustrated in Table 4.2 [Freund and Schapire, 1996; Schapire and Singer, 1999]. 

Boosting has shown advantages, both theoretically and practically, in handing complicated 

classification problems. It has been demonstrated that the training error of the Boosting algorithm 

drops exponentially fast to zero as the number of combined classifiers increases. More important, 

bounds of generalization error of Boosting algorithm have been formulated in terms of VC-

dimension and margin, which suggests that Boosting is not sensitive to the problem of overfitting. 

 

4.2.2 Manipulating the Input Features 
 

In this class of methods, the ensemble is constructed by manipulating the input features. A 

representative example is Random Space in which the individual classifiers are constructed from 

subspaces formed by randomly selecting a number of dimensions from the original feature space 

[Ho, 1995; Ho, 1998; Skurichina and Duin, 2002]. For a given feature space of D dimensions, 

there are possible D2  such subspaces available for selection. In each round of training, a 

selection is made to learn a new classifier e.g. Decision Tree. In the generalization stage, the final 

decision on a questioned instance is reached through majority voting of individual classifiers. 

Table 4.3 shows the algorithm. 

When the number of training instances is relatively small, Random Space can have the capability 

of solving the data scarcity problem by constructing classifiers through random selection among 
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D2  subspaces. On the other hand, in a high dimensional feature space, the possibility that all 

dimensions being selected is very low. Moreover, the vast number of subspaces provides more 

choices than is needed in practice, which to some extent makes the use of all dimensionality 

unnecessary. Therefore, while other classification methods suffer from the curse of 

dimensionality, Random Space may be able to take advantage of high dimensionality. 

Input: 

• Training set of N labeled examples }1|),{( Niyii ≤≤=Ψ x , where feature vector 

D
iDiii xxx Rx ∈= ),...,,( 21 , a D-dimension space, and class label },...,,{ 21 Mi cccYy =∈ . 

• A learning algorithm. 

• An integer K specifying the number of individual classifiers in ensemble. 

Training: For k=1 to K, 

• Randomly select a kd -dimension subspace from original D-dimension feature space 

( kd ≤D), and construct a new training set }1|),~{( Niyi
d
i

d
k

kk ≤≤=Ψ x  where kd
ix~  is the 

projected vector of ix  in the kd -dimension subspace. 

• Learn a new classifier ),( yf kd
k x  on kd

kΨ . 

Generalization: 

• The class label for a new example x  is determined by majority voting: 

∑
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=
K

k

d
k

Yy
yfy k

1

* ),~(maxarg x  

where kdx~  is the projected vector of x  in subspaces. 

Table 4.3 Algorithm of random space 

 

4.2.3 Manipulating the Output Targets 
 

The third class of methods for constructing ensemble is to manipulate the output target values of 

the classifier. Error-Correcting Output Coding is an example of this class of methods [Dietterich 

and Bakiri, 1995]. Suppose that the number of classes, M, is large. The new learning problem can 

be constructed by randomly partitioning the M classes into two subsets, A and B. The training 

data is then re-labeled so that the examples with the original classes in set A are given new label 0 
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while the other examples are given new label 1. Thus, a multi-class problem is converted into a 

binary class problem. The re-labeled data is feed to the learning algorithm for generating a new 

binary classifier, and consequently the ensemble is obtained by repeating the process many times. 

In generation stage, the outputs of each binary classifier give votes to the original classes. The 

class with the most number of votes is selected as the final prediction for the entire ensemble. 

 

4.2.4 Other Approaches 

 

Methods for generating ensembles of classifiers can be viewed as means of injecting randomness 

into different level of learning. For example, in Bagging, the randomization is performed in 

Bootstrap sampling, and in Random Space, the randomization is performed in the selection of 

subspace. Random Forests, investigated by [Dietterich, 2000; Breiman, 2001], shows that the 

randomness can also be injected into the learning procedure itself. Random Forests is a 

combination of tree-structured classifiers e.g. Decision Tree, each of which is grown by randomly 

selecting a feature-value test from the top-n best feature-value tests for node splitting. In contrast, 

classic tree-growing method always uses the best feature, measured by information gain, to split 

node. It has been shown that Random Forests can yield performance comparable to Boosting 

algorithm, and demonstrated, to some extent, robustness to noise. 

In addition to the ensemble methods listed above, there are also algorithm-specific and 

application-specific methods. In the next section, we will discuss methods developed for speech 

recognition. 

 

4.3 Ensemble Approaches in Speech Recognition 
 

Research in ensemble and combination methods for speech recognition has a long history that can 

be traced back to 1980s [Stolfo et al, 1989]. A large number of innovative and effective 

approaches that utilize the characteristic of continuous speech have been developed since then. 

Recently, the ensemble methods advocated by machine learning research, such as Boosting and 

Bagging, have also aroused extensive research interests in speech recognition community. This 

section presents a brief review of some widely used methods for constructing and combining 

multiple recognition engines. 
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4.3.1 Construction of Ensemble based Speech Engines 
 

Multi-Band and Multi-Stream Models 

Narrow band noise, noise that occurs in a certain frequency range, is a common reason for 

performance degradation of ASR systems. This is because, in conventional “full-band” 

recognition, feature extraction is carried out over the whole frequency domain. Thus corruption of 

the speech signal caused by noise in any sub-band is spread to all the components of acoustic 

feature vector. In contrast, experiments on articulation index [Fletcher, 1953] have shown that 

human auditory perception is based on decisions within narrow frequency bands that are 

processed independently of each other. Humans are able to extract sufficient residual information 

from the clean frequency sub-bands, even with a considerable part of frequency domain being 

corrupted by noise. 

Motivated by these observations, researchers have proposed and investigated Multi-Band models 

to enhance the robustness of ASR system in noise environment [Bourlard et al., 1996; Bourlard 

and Dupont, 1997; Tibrewala and Hermansky, 1997; Hagen et al, 1998; Dupont and Ris, 2001; 

Hagen et al., 2001; Hagen and Bourlard, 2001]. In Multi-Band recognition, the speech spectral 

domain is split into several frequency sub-bands, each of which is then processed separately to 

extract acoustic features. This is followed by estimation of frame level phoneme probabilities for 

each sub-band using corresponding sub-band features. These probabilities are then combined by 

some suitable rules, such as weighted sum or product, to yield a new vector representing the 

merged probability estimates which is further used in decoding. Figure 4.1 illustrates the 

architecture of Multi-Band systems [Sharma, 1999]. The advantage of Multi-Band recognition is 

that the noise from one sub-band can be isolated from other bands in feature extraction and 

phoneme probability estimation. In addition, the impact of narrow band noise on overall 

recognition performance can be further offset by deemphasizing its weight in combination. 

Multi-Stream models are ensemble approaches which slightly differ from Multi-Band model in 

the features used in recognition. As compared to Multi-Band models in which each stream 

comprises features extracted from certain sub-band of speech spectrum, the streams of Multi-

Stream model capture features from the entire frequency domain using different processing 

algorithms [Janin et al, 1999; Sharma, 1999; Christensen et al, 2000; Hagen et al, 2000; Neto and 

Meinedo, 2000; Shire, 2000]. More important, the Multi-Stream model provides a generalized 
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framework that allows for the use of various kinds of combination strategies for continuous 

speech recognition, such as the combination of different type of features, different information 

sources, and different probability estimator or even acoustic models [Dimitrakakis and Bengio, 

2004]. 

 

 

Figure 4.1 Multi-band model [Sharma, 1999] 

 

Boosting for Acoustic Modeling 

Boosting algorithm has been used to address a number of speech recognition problems and has 

been shown to be successful in improving system performance. Applications include speaker 

verification [Foo and Lim, 2002; Li et al, 2003; Asami etal, 2005], confidence annotation 

[Moreno et al, 2001], call routing [Rochery et al, 2002; Zitouni et al, 2002; Tur et al, 2004], 

speech detection [Xiong and Huang, 2002; Kwon and Lee, 2003], speech segmentation [Wang et 

al, 2003], emotion detection [Liscombe et al, 2005], intent classification [Tur, 2005], spoke 

language generation [Walker et al, 2003; Mairesse and Walker, 2005], etc.. However, the 

complexity of these applications does not exceed the level of standard multi-class classification. 

The Boosting algorithm was also applied to LVCSR with respect to the characteristics of 

continuous speech. [Cook and Robinson, 1996; Cook et al, 1997; Schwenk, 1999] used Boosting 

algorithm to improve the performance of Hybrid HMM/Neural Network based speech 

recognizers. [Zweig and Padmanabhan, 2000; Meyer, 2002] developed practical utterance level 

Boosting training schemes that enable the technique to be used in large scale speech recognition 

task. [Zhang and Rudnicky, 2004a] extended Boosting training to the frame level, as an attempt to 

reduce word error rate instead of sentence error rate. [Dimitrakakis and Bengio, 2004; 

Dimitrakakis and Bengio, 2005] investigated Multi-Stream model as the platform to combine 
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acoustic models trained using Boosting algorithm. Substantial reductions of recognition error 

were achieved in these experiments. 

It is instructive to compare Boosting with discriminative training methods, in order to better 

understand the effectiveness of Boosting in speech recognition. [Macherey et al, 2005] provides a 

unified framework for existing discriminative methods such as MMI, MCE, MPE and MWE. 

Given a training set of N labeled examples }1|),{( Niyii ≤≤=Ψ x , where feature vector 

D
i Rx ∈  and class label },...,,{ 21 Mi cccYy =∈  (in continuous speech recognition, Y  denotes 

the hypothesis set), the unified objective function is defined as follows. 
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The choices of different form of smoothing function )(zg , concept function );( yf x , gain 

function ),( iyyθ  and hypothesis set iY~  formulate particular discriminative training criteria 

[Macherey et al, 2005]. Table 4.4 lists some of the criteria commonly used in acoustic model 

training. 

Criterion )(zg  );( yf x  ),( iyyθ  iY~  

MMI )log(z  ),( yP x  ),( iyyδ  Y  

MCE βz+
−

1
1

 ),( yP x  ),( iyyδ  }{ iyY −  

MPE/MWE z  ),( yP x  ),( iyya  Y  

Table 4.4 Discriminative training criteria formulated within a unified framework 

Gain function ),( iyyθ  defines the similarity between two hypotheses. In the case of MMI and 

MCE training, ),( iyyθ  is expressed as the 0/1 function ),( iyyδ  that 
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For MPE/MWE training, ),( iyyθ  is expressed as the accuracy function ),( iyya  which 

measures the phoneme or word accuracy of hypothesis y given transcripts iy . 



 38

The objective function that Boosting algorithm aims to maximize is defined as follows [Schapire 

and Singer, 1999; Collins et al, 2000] (other variants exist). 

 
∑ ∑

= ≠∈

−−=
N

i yyYy
iiiBoosting

i

yPyP
N

F
1  and 

)}|()|(exp[1 xx  (4-3)

(4-3) can also be formulated into the discriminative training framework given by (4-1) by setting 

z
zg 1)( −= , ))|(exp();( xx yPyf = , ),(),( ii yyyy δθ = , and }{~

ii yYY −= . Namely, 

Boosting is also a discriminative training method that the maximization of BoostingF  via certain 

optimization procedures can increase the probability of the desired class iy  being predicted, and 

meantime decrease the probability of alternative classes iyy ≠  being predicted. Therefore, 

Boosting owns the advantages of discriminative methods, such as having the capability to 

increase the separability between competing classes, and outperforming MLE (Maximum 

Likelihood Estimation) in the situation that model assumption isn’t accurate. 

On the other hand, Boosting differs from conventional discriminative training methods in the way 

that ),( yf x  is generated. In discriminative training, ),( yf x  is realized by learning and 

optimizing a single classification model. In contrast, Boosting training generates a set of models 

and combine their hypotheses together to make a better prediction of ),( yf x . By utilizing 

appropriate combination techniques e.g. ROVER and consensus network, Boosting is shown to 

be more robust and flexible in handling complicated classification problems such as continuous 

speech recognition. 

A preliminary experiment was conducted to compare Boosting with discriminative training. The 

speech corpus used in the experiment is the CMU Communicator corpus, an 8K-16bits telephone 

based speech dataset collected by CMU speech group. Please refer to Chapter 3 for the detail. 

Cambridge HTK-3.4 toolkit is used for discriminative training (http://htk.eng.cam.ac.uk). First, a 

baseline cross-word acoustic model is trained using MLE, and then optimized using MMI, MWE 

and MPE criterion respectively. The recommended “approximate-error” option is adopted for 

MPE. For Boosting, we trained a total of 5 acoustic models using the algorithm presented by 

[Zweig and Padmanabhan, 2000; Meyer, 2002]. The top-1 hypothesis output by each model was 

combined by using ROVER [Fiscus, 1997] to generate final hypothesis. For all the training 

criteria, the architecture of each acoustic model is set the same which is 2000/32 tied-

state/Gaussians. Table 4.5 shows the recognition performance of MLE and discriminative training. 
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Training Criterion Word Error Rate 

MLE 15.84% 

MMI 15.11% 

MPE 14.88% 

MWE 15.40% 

Table 4.5 Performances of MLE training and discriminative training. 

The word error rates of Boosting are illustrated in Table 4.6. The result for N=n means that the 

error rate is calculated from the hypotheses generated by ROVER combination of n models. 

# of Models N=1 N=2 N=3 N=4 N=5 

W. E. R. 15.84% 15.01% 14.48% 14.08% 13.87% 

Table 4.6 Performances of Boosting training. 

The experimental results demonstrate the effectiveness of Boosting algorithm in acoustic model 

training and continuous speech recognition. Boosting can be viewed as a discriminative training 

method but realized in the form of ensemble, so that it has the advantages of both. More detailed 

discussions and experiments of Boosting training are presented in Chapter 5.  

 

Miscellaneous Methods 

Other ensemble methods were also developed for improving recognition performance. [Cook and 

Robinson, 1995] built multiple speaker dependent acoustic models via utterance clustering, and 

combined them for speaker independent recognition. [Vergyri et al, 2000] investigated the 

feasibility of combining multilingual acoustic models to address the problem that sufficient 

training data is not available for a target language. [Wu et al, 1998; Hagen and Bourlard, 2000; 

Weber, 2000] incorporated multiple time scale information, e.g. phone-scale and syllable-scale 

information, into recognition by combining decoders with different time windows. More recently, 

[Siohan et al, 2005] used the technique of Random Forest to build multiple systems by injecting 

randomness into Decision Tree based state-tying procedure.  

In practice, researchers have also proposed some simple but effective solutions. One well-known 

approach is to build acoustic models based on the separation of gender (male or female), age 

(children or adult), channel (telephone or cell phone), or dialect. For example, the CMU 

Communicator system adopted a parallel decoding architecture such that the speech recognition 
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module incorporates two independent decoders, one for male speakers and another for female 

speakers. Each decoder has its own acoustic model, but shares the same lexicon and language 

model. The two acoustic models are trained separately using speech data collected from male 

speakers or female speakers. In recognition, the “better” hypothesis that is predicted with the 

higher log likelihood score is selected as the final hypothesis. 

 

4.3.2 Combination Approaches 

 

The combination methods used in continuous speech recognition can be placed into three classes: 

feature combination, likelihood (or posterior) combination and hypothesis combination, in 

accordance with the recognition stage at which these methods are performed. 

 

Feature Combination 

Feature combination is a pre-processing method performed before the start of recognition. In 

feature combination, various acoustic features extracted from different information sources or 

calculated using different front-end algorithms are concatenated into a larger single vector as the 

feature for training and decoding. The mechanism of this method is illustrated in Figure 4.2. 

Strictly speaking, feature combination is not an ensemble based method since it essentially works 

on the platform of single recognition model. 
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As shown in Figure 4.3, likelihood / posterior combination is performed within the recognition 

stage. In this class of methods, the probability observing a particular acoustic event, denoted by 

);( xcf , is estimated by combining the output of individual classifiers. In implementation, 

);( xcf  can be either a likelihood estimation )|( cP x  or a posterior probability estimation 

)|( xcP . There are two issues to be considered in order to apply this kind of methods to 

continuous speech recognition. The first one is at what level the combination should be 

performed. Common choices include state and phoneme. For example, in Multi-Band acoustic 

modeling, spectral features extracted from frequency sub-bands are processed by multi-layer 

perceptron (MLP) based classifiers to generate phonetic probabilities. These phonetic 

probabilities are then combined frame by frame for subsequent classification [Sharma, 1999; 

Hagen et al, 2000]. The choice of a combination rule is another important issue which shows how 

to calculate );( xcf  from );( ii cf x , the output of individual classifiers. Some commonly used 

rules are listed as follows [Kirchhoff and Bilmes, 2000; Kirchhoff et al, 2000; Zolnay et al, 2005]. 

In addition, more complicated combination techniques such as Neural Network can also be used 

for yielding better probabilistic estimate. 

• Product 

 

Z

cf
cf

N

i
i

w
i

i∏
== 1

);(
);(

x
x  

(4-4)

Where iw  denotes the weight associated with );( ii cf x , and Z  is a normalization factor making 

);( xcf  a probability density if necessary. 

Figure 4.3 Likelihood/posterior combination 
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• Sum 

 
∑
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Hypothesis Combination 

The mechanism of hypothesis combination is illustrated in Figure 4.4. There are conflicting 

opinions with regard to the hypothesis combination performed when recognition has completed. 

On one hand, hypotheses at later stage of recognition are believed to be more robust because they 

carry wider temporal context. Thus, hypothesis combination can be more effective than early 

stage combination i.e. likelihood/posterior combination. However, this advantage is weakened 

from the observation that the correct hypothesis may have been pruned out before they reach the 

final state. Despite the debates, hypothesis combination is extensively used in speech recognition 

and demonstrates solid performance in many applications. Representative methods, ROVER, 

consensus network and word lattice combination, are discussed as follows. 

 

 

 

 

 

 

 

 

• ROVER.  

ROVER (Recognizer Output Voting Error Reduction) is a word-level combination approach 

developed at NIST. The goal of ROVER is to yield reduced word error rate by exploiting 

differences in the nature of the errors made by multiple speech recognition system [Fiscus, 1997; 

Figure 4.4 Hypothesis combination

Input 
Speech 

Hypothesis Nh

Hypothesis
· 
· 
· 

Hypothesis 
Combination

HMM Based 
Decoder 1 

HMM Based 
Decoder N

Feature 
Extraction 1

Feature 
Extraction N

Feature Nx

Feature 1x Hypothesis 1h



 43

Schwenk and Gauvain, 2000]. Rover proceeds in two stages. First, the hypotheses from different 

recognizers are progressively aligned together to build a single composite word transition 

network (WTN) by using dynamic programming. Once the network is generated, a voting scheme 

respecting frequency, word confidence and time information is adopted to select the words with 

highest number of votes as the new hypothesis. 

• Consensus Network  

The consensus network aligns links in a word lattice and transforms them into linear graph in 

which all paths pass through all nodes. The transformation is performed by a clustering procedure 

that groups time overlapped links into clusters based on their phonetic similarity, word 

probabilities and the precedence order of the links encoded in the original lattice. Given the 

alignment and the link posterior probabilities of a consensus network, the word sequence 

hypothesis with the lowest word error is obtained by selecting the word with the highest posterior 

probability at each node in the alignment [Mangu et al, 2000]. 

A theoretic analysis of the effectiveness of ROVER and consensus network was presented in 

[Goel and Byrne, 2000; Goel et al, 2000; Goel et al, 2004] with a unified framework of MBR 

(Minimum Bayes Risk) classification. ROVER and consensus network are viewed as efforts to 

generate hypothesis that minimizes expected word error rate rather than sentence error rate, where 

the word error criterion has a better match with the Levenshtein-distance based performance 

metric in speech recognition. 

• Word Lattice Based Combination.  

[Singh et al, 2001] investigated a different methodology for hypothesis combination. The idea is 

to merge the word hypotheses obtained from various recognition systems into a new word graph, 

and then search the best path from it as the final decoding output. Initially, each word in each of 

the hypotheses is represented by a node in the graph. The acoustic score of the node is set to that 

associated with the original word. In the next step, all nodes representing identical words 

hypothesized between the same time instants are collapsed into a single node. Finally, links are 

formed between all node pairs where the word-end time of one node and the word-begin time of 

the next node are within 30 ms of each other. After the word graph is constructed in this manner, 

a standard language model is used to score the paths through the graph and the best path is 

obtained as the final hypothesis. 

Both ROVER and the Singh’s technique are restricted to the use of a single best hypothesis of 

different recognizer. In many situations, the correct words do not appear in that single hypothesis. 
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Consequently, they are unable to be selected for combination. Motivated by the fact that word 

lattice can preserve more information than single hypothesis, [Li et al, 2002] extended the idea of 

[Singh et al, 2001] to the direct combination of word lattices. This scheme is also carried out in 

two stages. The word lattices generated from different ASR systems are first merged into a larger 

mixed lattice through operations of merging edges, creating new edges and renormalizing scores. 

Once this is done, searching algorithm, e.g. Viterbi or A*, is performed to seek the path with 

maximum cumulative score in the new mixed lattice as the combination result. 

 

4.4 Summary 
 

In this chapter, we briefly reviewed some well known ensemble based classification and 

combination approaches and their applications in continuous speech recognition. The approaches 

we have discussed include Boosting, Bagging, Random Space, Random Forests, Multi-Band and 

Multi-Stream Model, ROVER, consensus network, and Lattice combination. In next chapter, we 

will describe our efforts towards the improvement of Boosting training algorithm for acoustic 

modeling. In particular, we will present a novel frame level Boosting training algorithm and an 

improved hypotheses combination scheme, both of which demonstrate substantially better 

performance than conventional utterance level algorithms. 
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5 Frame Level Boosting Algorithms in Acoustic Model 

Training 

 

As noted in the previous chapter, ensemble based classification and combination approaches have 

demonstrated promising performance on continuous speech recognition. This chapter presents our 

research results of Boosting based acoustic model training technologies. Specifically, we propose 

a novel frame level Boosting algorithm that enables acoustic model training more focus on 

misrecognized words within an utterance rather than, as adopted by conventional approaches, 

give the whole utterance an equal weight without discriminating recognition error from correct 

prediction. 

Hypothesis combination technique is also investigated in this chapter for generating final system 

output with lower word error rate than the hypothesis of any individual speech engine. As 

mentioned in previous chapter, the object to be combined can be sentence hypothesis, consensus 

network, or even word lattice. On one hand, consensus network and word lattice appear to contain 

more information than single hypothesis. However, it is also shown the combination of consensus 

network or word lattice involves a vast amount of computationally expensive operations, e.g. 

compressing lattice to linear network and merging edges. The high cost lessens their 

attractiveness in handling ensembles of large sizes. Therefore, sentence hypothesis is selected in 

our experiment as the input of combination in order to achieve a computationally efficient 

combination. We propose an improved hypothesis combination scheme that uses Neural Nets to 

incorporate a number of features for generating more desirable combination results. In addition, 

the use of N-best list re-ranking as a means to identify better hypothesis is also investigated in 

this chapter. 

This chapter is organized as follows. We begin with the discussion of utterance level Boosting 

training in Section 5.1 and show that the strength of Boosting algorithm is not simply due to the 

increase of the number of Gaussian distribution in acoustic model. The frame level Boosting 

training scheme aiming to reduce word/sub-word error rate rather than sentence error rate is 

described in Section 5.2. Section 5.3 discusses the experiments using N-best list re-ranking and 

Neural Nets to improve the performance of hypothesis Combination. 

All the experiments make use of the CMU Sphinx III system for acoustic model training and 

testing. The speech corpus used in these experiments is the CMU Communicator corpus, an 8K-

16bits telephone based speech dataset collected by CMU speech group. Please refer to Chapter 3 
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for the detail. Word error rate is adopted as the primary metric to evaluate recognition 

performance. In addition, we also report sentence error rate as the secondary metric in order to 

better understand experimental results. 

 

5.1 Utterance Level Boosting Training of Acoustic Models 
 

This section describes our investigation on the effectiveness of Boosting algorithm in acoustic 

model training. 

Initialize: 

• Let Ψ=Ψ0  where Ψ  is the original training set. 

For k = 1 to K: 

• Train a new acoustic model kΛ  from data set 1−Ψk . 

• Generate hypothesis set }{hH =x  for each utterance 1−Ψ∈ kx  using kΛ , and compute 

posterior probability )|( xhP
kΛ  for each hypothesis xHh ∈  . 

• Compute pseudo loss kε  that 
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Where y  denotes the correct transcripts for utterance x . 

• Set )1/( kkkc εε −= . 

• Calculate new weight for each utterance 1−Ψ∈ kx  that 
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• Resample training data according to normalized )(xw , forming a new training set kΨ . 

In generalization: 

• The hypothesis to a new utterance x  is determined by  
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Table 5.1 Utterance level Boosting algorithm for acoustic modeling 
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5.1.1 Utterance Level Boosting Algorithm 

 

The standard Boosting algorithm, as illustrated in Table 4.2, was initially designed for binary or 

multi-class classification. It does not consider the special requirements of continuous speech 

recognition. An utterance level training approach has been investigated by [Zweig and 

Padmanabhan, 2000; Meyer, 2002; Zhang and Rudnicky, 2003b] to address this problem. 

Suppose we have a training set }1|),{( Niyii ≤≤=Ψ x  for continuous speech recognition, 

where, ix  is the sequence of feature vectors for the i-th training utterance in speech corpus, while 

iy  is the corresponding transcript. The essence of Boosting style acoustic model training is to 

minimize the value of the following loss function which is strongly related to sentence level 

recognition error. 
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ΛΛ −=

N

i yh
iii

i

yPhPL
1

)]|()|(exp[ xx (5-1)

where h  denotes possible sentence hypothesis for input speech, Λ  denotes the recognition 

model or ensembles to be learned, and )|( xhPΛ  denotes the posterior probability for hypothesis 

h . Table 5.1 illustrates the utterance level Boosting algorithm, which can be interpreted as a 

process to minimize the value of (5-1) by iteratively constructing an ensemble of K acoustic 

models. 

A couple of obstacles need be tackled before we can apply this algorithm to acoustic modeling. 

First, for continuous speech recognition, the number of possible hypotheses for an utterance could 

be infinite. Assume that the recognizer has 5,000 words in its vocabulary, and that the maximum 

length for an utterance is restricted to 20 words. Theoretically, without taking into account the 

segmentation information associated with each word, the recognizer could output up to about 
205000  different hypotheses. Clearly, such a huge number makes it intractable for the recognizer 

to traverse all of the classes. To solve this problem, we compress the hypothesis space into a 

subset of limited size. In our experiments, the hypothesis set xH  contains only the hypotheses in 

the N-best list. 

Second, the Boosting algorithm requires a probabilistic estimate of )|( xhPΛ  for each class, 

while most speech recognizers only output the log-likelihood scores provided by the acoustic and 
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language models, whose value range is too large to be qualified as a good option for 

implementation. We therefore use the following scheme for converting the likelihood scores into 

posterior probability. 
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Where )|(log hP xΛ  and )(log hP ′Λ  are acoustic model scores and language model scores, 

respectively. α  is language model weight, and β  is a smoothing parameter whose value is 

empirically set to control how the hypotheses in N-best list are weighted. In the case that the 

correct transcripts does not exist in the N-best list, one can run forced alignment to get the log-

likelihood score, or simply choose a small default value for it. 

 

5.1.2 Experiments of Utterance Level Boosting on CMU Communicator Dataset 
 

The utterance level Boosting algorithm is evaluated using the CMU Communicator corpus. In our 

experiments, the language model was pre-trained and fixed during the iteration of Boosting 

training. Conventionally, Boosting based ensemble uses majority voting as the method to 

generate the final hypothesis for questioned utterances (please see Table 5.1 for the detail). 

Majority voting is essentially a sentence level selection scheme which only considers existing 

hypotheses for determining the most probable one. In comparison, ROVER is a word level 

combination scheme which can create a new hypothesis by using the information of word 

segmentation, frequency and confidence. We have shown that ROVER is much better than 

majority voting in handling sequence combination [Zhang and Rudnicky, 2004b]. Therefore, 

ROVER is adopted as the standard combination method in our experiments. 

The goal of our first experiment is to determine the appropriate number of Gaussian distributions 

for acoustic modeling. The number of senones in our acoustic models is fixed at 2000. The 

number of Gaussian per senone being tested includes 8, 16, 32 and 64, which in turn correspond 
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to a total of 16K Gaussians, 32K Gaussians, 64K Gaussians and 128K Gaussians, respectively. 

Table 5.2 presents the recognition performance, measured by word error rate and sentence error 

rate, with different number of Gaussians. Experimental results show that the acoustic model with 

64K Gaussians achieves the best performance. Therefore, we will use it as the standard decoding 

configuration, and its 14.90% word error rate will be viewed as the baseline for the following 

experiments. 

# of Gaussian 16K 32K 64K 128K 

W.E.R 17.31% 15.66% 14.90% 16.87% 

S.E.R. 25.78% 22.41% 20.99% 22.18% 

Table 5.2 Performance with different number of Gaussians. 

The second experiment is to investigate the performance of utterance level Boosting algorithm in 

acoustic model training. The architecture of each acoustic model is set to 2000/32 

senone/Gaussians as determined in the previous experiment. Table 5.3 presents the word error 

rate and sentence error rate as a function of N, the number of acoustic models in the ensemble, 

which value is up to 8. Please note that the result for N=n means that the error rate is calculated 

from the hypotheses generated by ROVER combination of n models. 

Size N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 

W.E.R 14.90% 13.62% 12.88% 12.68% 12.39% 12.37% 12.43% 12.38% 

S.E.R. 20.99% 19.99% 19.70% 19.51% 19.69% 19.69% 19.16% 19.10% 

Table 5.3 Performance of utterance level Boosting algorithm on CMU Communicator dataset 

Table 5.3 shows that Boosting algorithm demonstrates significant improvements over the baseline. 

Word error rate is down to 12.37% from 14.90% when 6 acoustic models are generated and 

combined, which represents a 17.0% relative reduction on the recognition errors. 

The comparison between Table 5.2 and Table 5.3 suggests that the improvement of recognition 

performance of Boosting training isn’t caused by simply increasing the number of Gaussians. In 

the single model recognition system, use of too many parameters will deteriorate the performance. 

For example, when the total number of Gaussians used in acoustic model increases to 128K from 

64K, word error rate is up to 16.87% from 14.90%, which represents a 13.2% relative degradation. 

In contrast, such problem isn’t observed in Boosting training. The lowest word error rate is 
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achieved by using 6 sets of acoustic model, which in a total account for 384K Gaussians. In 

addition, adding more models to the ensemble only results in a slight degradation of word error 

rate, e.g. 12.38% when N=8 vs. 12.37% when N=6. 

Table 5.3 shows that the two metrics, word error rate and sentence error rate, can have 

considerably different results in measuring recognition performance. For example, when the 

number of acoustic models used in ensemble increases from 4 to 5, the word error rate is reduced 

by 0.29% while sentence error rate is up by 0.18%. Another example is that, when the number of 

acoustic models increases from 6 to 7, the sentence error rate is improved by 0.53% while the 

word error rate is deteriorated by 0.06%. This phenomenon is partly due to that ROVER is 

essentially a word level combination approach aiming to identify most probable word rather than 

select whole sentence. In addition, this also indicates that training methods based on loss function 

describing sentence errors may not necessarily lead to models with improved word error rate. 

 

5.2 Frame Level Boosting Training 
 

The experimental results reported in the previous section demonstrate the effectiveness of the 

Boosting algorithm in acoustic modeling. However, analysis shows that utterance level Boosting 

algorithm has two weaknesses that hurt its capability for handling continuous speech recognition. 

First, as illustrated in (5-1), the loss function of the utterance level Boosting algorithm is designed 

to describe sentence error, which is a sentence is judged as correct only when all the words within 

it are correct. It pays less attention to model word error, the most widely accepted metric to 

evaluate the performance of a speech recognizer. Specifically, the posterior probability )|( xhPΛ  

used in the loss function is defined to measure how likely that the sentence hypothesis h as a 

whole is correct given input speech x . From )|( xhPΛ  only, we are unable to tell how many 

words in the hypothesis are misrecognized. Moreover, due to the inaccuracy of model assumption, 

in many cases the hypothesis with higher posterior probability can contain more word level 

recognition errors than the one with lower posterior probability. Even though there is a strong 

correlation between sentence-level and word-level recognition errors, training with a criterion 

aiming to boost posterior probability for sentence may not necessarily result in optimal acoustic 

models with lower word error rate. Second, in the utterance level Boosting algorithm, re-sampling 

is performed on the whole utterance. This means all the words within the same utterance always 

have equal weights. However, intuitively, the misclassified words should be distinguished from 
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correctly recognized words and given more attention in the training of subsequent model. To 

address these two problems, we propose a frame level Boosting training scheme for acoustic 

modeling in which the loss function is constructed to measure frame based recognition errors, and 

re-sampling is applied to focus on the more confusable parts within an utterance, where the errors 

actually occur [Zhang and Rudnicky, 2004a]. 

 

5.2.1 Frame Level Posterior Probability 

 

We define a metric, frame level posterior probability, to quantitatively measure how likely the 

hypothesis given to a particular frame by the existing acoustic model is correct. This metric 

enables us to focus on the hard-to-learn regions within the utterance and increase their weights in 

the model training. 

Let x  be the sequence of feature vectors for an utterance with T frames that ),...,,( 21 Txxx=x . 

For a particular frame tx , we use )(tuθ  to denote the possible hypothesis on it, and )(tru  to 

denote the desired one, where the sub-index u denotes the unit chosen for the hypothesis. In 

continuous speech recognition, there are at least four choices for u: sentence, word, phoneme and 

state. For example, )(twθ  and )(trw  represent the hypothesized and desired word at frame t, 

respectively. It bears noting that most speech corpora don’t provide segmentation information at 

the word, phoneme and state levels. This means that, except for the )(trs  whose value could be 

obtained directly from transcripts, for all the other three units we need to perform an forced-

alignment to determine the )(tru , and in these cases the )(tru  is only an approximation to the 

correct one. 

The definition of frame level posterior probability of )(tuθ  being the hypothesis at frame t is 

given as follows. 
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where β  is a empirically determined smoothing factor, xH  denotes the search space of 

hypotheses for utterance x , and h  denotes a sentence hypothesis in xH . xH  is constrained to 

N-best lists in our experiments. 

 

5.2.2 Loss Function of Frame Level Boosting 

 

On the basis of frame level posterior probability, the loss function for the frame level Boosting 

training algorithm is defined as follows. 
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where iT  is the number of frames of utterance ix . ),( tiuθ  and ),( tiru  denote the hypothesized 

result and desired output for frame t of ix  respectively. In Eq. (5-4), 
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is called pseudo-loss which describes the degree of confusion at frame t for recognition. A high 

value of tiL ,  indicates that the questioned frame is possibly misrecognized and its weight needs 

be increased in the subsequent model training. Thus minimizing the value of this loss function 

will help to realize that )|),(()|),(( iuiu tiPtirP xx θΛΛ >>  for ),(),( tirti uu ≠θ , and increase 

the accuracy of recognition. 

Please note that the loss function (5-4) provides a generalized framework to measure different 

types of recognition errors by using different unit u. For example, the loss function used by 

utterance level Boosting algorithm for modeling sentence error, as shown in Eq. (5-1), can be 

viewed as a special case of (5-4) by setting the unit u to sentence hypothesis. According to the 

definition, ),( tisθ  is one of the sentence hypotheses in xH  of utterance ix , while the ),( tirs  is 

actually the correct transcripts iy . Thus we have, 
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Comparing (5-6) to the loss function of utterance level Boosting algorithm as shown in (5-1), the 

only difference is that (5-6) considers the utterance length in terms of frames. Similarly, we can 

also set the unit u to word or phoneme, to construct loss functions as well as training schemes that 

aim to reduce word errors or phone errors for continuous speech recognition. 

 

5.2.3 Frame level Boosting training scheme 

 

Initialize: 

• Let Ψ=Ψ0  where Ψ  is the original training set. 

For k = 1 to K: 

• Train a new acoustic model kΛ  from data set 1−Ψk . 

• Determine the value of ),( tiru  for each frame of each utterance 1−Ψ∈ kix . Run forced-

alignment if necessary. 

• Generate hypothesis set }{hH
i

=x  for each utterance 1−Ψ∈ kix  using kΛ , and compute 

posterior probability )|),(( iu tiP xθΛ  for every possible ),( tiuθ  at frame t. 

• Compute pseudo loss 
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• Resample training data according to normalized tiw , , forming new training set kΨ . 

In generalization: 

• The hypothesis to a new utterance x  is determined by using ROVER to combine the 

sentence hypotheses generated by the K acoustic models.  

Table 5.4 Frame level Boosting algorithm for acoustic modeling 
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The frame level Boosting training scheme is presented in Table 5.4. Please note that in this 

algorithm the weight tiw ,  is associated with the frame t of utterance ix , rather than with the 

whole utterance. This leaves us with the question of how to resample the training data for 

acoustic model training. We use a simple but effective strategy to solve this problem, in the way 

that a new feature sequence is created for utterance ix  by duplicating frame tix ,  for  tiw ,  times. 

It should be pointed out that this method is rather ad hoc and that further investigation is 

necessary to improve this re-sampling method. 

 

5.2.4 Experiment of Frame Level Boosting on CMU Communicator Dataset 

 

To have fair comparison with conventional utterance level Boosting approach, the experiment of 

frame level Boosting algorithm is also conducted on CMU Communicator speech corpus. We use 

the same architecture for acoustic modeling. Each model has 2000 senones and the number of 

Gaussian per senone is set to 32. As in utterance level Boosting training, the number of acoustic 

models in ensemble is set to 8. We also use ROVER, the word level hypothesis combination 

method, to generate the final hypothesis for ensemble.  

As discussed above, the loss function illustrated in Eq. (5-4) can be modified to measure different 

type of recognition errors by selecting different unit u. For example, when u = sentence, the 

frame level Boosting algorithm is back-off to the conventional utterance level Boosting which has 

been investigated in previous section. Among the choices of u = word, u = phoneme and u = state, 

we use context independent phoneme (u = phoneme) in our experiment. This is because the 

number of context independent phonemes is much less than that of words or states (senones), e.g. 

there are totally 55 phonemes in our English recognition system including 45 phonemes for 

modeling speech signal and 10 filler phonemes for modeling non-speech signal such as breath 

and noise. In comparison, the number of words and states are 9.5K and 2K, respectively. So the 

estimate of )|)(( xtP uθΛ  is more reliable when u = phoneme than use of other sub-word units. In 

the training, forced alignment is performed to obtain the most likely )(tru  (u = phoneme) for 

each frame. 

Table 5.5 presents the word error rate and sentence error rate of frame level Boosting algorithm 

varying with the ensemble size from 1 to 8. The baseline word error rate is 14.90%, realized by 

recognition with single acoustic model. Word error rate is reduced to 11.60% from the baseline, 
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when 6 acoustic models are generated and used. This represents a 22.1% relative reduction of the 

recognition errors and beats the 17.0% relative reduction achieved by conventional utterance 

level Boosting. Similar to utterance level Boosting, performance degradation is also observed for 

frame level Boosting. The word error rate increase slightly to 11.69% when using 8 acoustic 

models from 11.60% when using 6 acoustic models. However, compared to the result shown in 

Table 5.2, frame Boosting that utilizes multiple acoustic models is less sensitive to data 

sparseness problem than single model recognizer. 

Size N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 

W.E.R 14.90% 13.65% 12.68% 12.06% 11.62% 11.60% 11.65% 11.69% 

S.E.R. 20.99% 20.11% 19.04% 18.51% 17.80% 17.80% 18.03% 17.80% 

Table 5.5 Performance of frame level Boosting algorithm on CMU Communicator dataset 
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Figure 5.1 Comparisons of frame level Boosting algorithm and utterance level Boosting 

algorithm on CMU Communicator dataset 

More detailed performance comparison between frame level and utterance level Boosting 

algorithms is given in Figure 5.1. The results show that except for N=1 and N=2, frame level 

Boosting consistently outperforms utterance level Boosting on the CMU Communicator dataset. 
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We also conducted a significance test, paired t-test, on performance differences between frame 

level and utterance level Boosting algorithms. The test is performed to the word error rates given 

in Table 5.5 and Table 5.3. The word error rate at N=1 isn’t considered in calculation since it is 

the baseline result shared by both algorithms. We obtained that t= 4.42 and P-value=0.004. 

Therefore, we conclude that the proposed frame level Boosting algorithm improves the 

recognition performance significantly over utterance level Boosting algorithm. 

 

5.3 An Improved Hypothesis Combination Scheme 
 

The conventional utterance level Boosting training focuses on reducing sentence level error rate 

rather than reducing word level error rate, where the word level metric is most widely adopted in 

speech recognition. This weakness is partially addressed by the frame level Boosting algorithm. 

As described in the previous section, the loss function is modified to model word or sub-word e.g. 

phoneme level recognition errors. In this section, we approach this problem from a different 

perspective, by investigating post-processing techniques i.e. hypothesis combination to improve 

the performance of ensembles. 

As discussed at the beginning of this chapter, we choose sentence hypothesis rather than 

consensus network or word lattice as the object of combination. In the research area of sentence 

combination, ROVER has been the de facto standard well studied for years. However, it still has 

ample room for improvement. We present a new combination scheme which improves standard 

hypothesis combination in two aspects: 1. we investigate N-best list re-ranking technique in order 

to select more likely hypothesis as the input of combination; 2. we propose a Neural Network 

based two-level scoring scheme for identifying correct hypothesized word. [Zhang and Rudnicky, 

2004b; Zhang and Rudnicky, 2006b] 

 

5.3.1 Applying N-Best List Re-Ranking to Hypothesis Combination 
 

In our previous experiments, ROVER is performed to combine the top-1 hypothesis generated by 

each acoustic model. Examination of N-best list reveals that the best hypothesis, the one with the 

lowest word error rate, is not always in top-1 position. This phenomenon is caused by many 

reasons, such as inaccurate acoustic and language models, unavailability of sufficient training 

data, and lack of good features. N-best list re-ranking is a post-processing technique that attempts 
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to locate the hypothesis with lowest word errors rather than to accept the top-1 result blindly, and 

its effectiveness has been proved by many independent experiments. In the following experiment, 

the original top-1 hypothesis is replaced by the one generated by N-best list re-ranking as the 

object for combination. 

The application of N-best re-ranking involves two aspects: the identification of useful features 

and the selection of an effective re-ranking technique. According to our experience in many 

classification tasks, good features usually play a more important role in creating a successful 

system. Five features, including information from different sources, are investigated in our 

experiments to measure the reliability of a questioned sentence hypothesis h : 

• LM-Backoff-Mode. This is a language model related feature. For each word, the value of 

backoff mode is determined according to whether the 1, 2, or 3-gram is used to compute 

language model score. For a sentence hypothesis, the feature value is set to the average 

value of every word. 

• Utterance level posterior probability )|( xhPλ . This is a feature measuring the correctness 

of the whole sentence hypothesis. One implementation scheme has been discussed in 

Section 5.1.1. 

• Word level posterior probability )|( xwPλ . w  denotes a word in hypothesis. This feature 

measures how likely a particular hypothesized word is a correct recognition result. The 

value is computed from the word lattice or the N-best list by summing and normalizing the 

scores of paths passing through the word in question [Wessel et al, 1998]. The feature value 

for a hypothesis is set to the average value of words. 

• Frame level posterior probability )|)(( xtP uθλ . This feature is to measure how likely the 

hypothesis given to a particular frame by the existing acoustic model is correct. Section 

5.2.1 provides an implementation scheme for this feature. For a sentence hypothesis in the 

N-best list, its feature value is computed by summing and normalizing )|)(( xtP uθλ  over 

frames. The calculation is as follows. 
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where T  denotes the number of frames in the utterance, and )(tuθ  and )(tru  denote the 

predicted hypothesis and desired hypothesis at frame t , respectively. (5-7) can be 
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interpreted as an approximation to the frame based word or sub-word accuracy. In our 

experiment, the unit u  is set to isolated phoneme, and forced alignment is used to estimate 

)(tru . 

• WTN based word vote. The entire N-best list is first converted into a Word Transition 

Network (WTN) through word-to-word alignment. For each word, we then calculate the 

number of occurrences (votes) in the WTN. The feature value for a sentence hypothesis is 

obtained by averaging the vote over every word appearing in that hypothesis. 

In our experiment, we use Neural Network as the re-ranking method. The inputs are the five 

features, and the output is trained to approximate the word accuracy of each sentence hypothesis. 

The hidden layer of the Neural Network is set to contain 20 nodes. After re-ranking, the 

hypothesis with the highest estimated word accuracy will be chosen as the best hypothesis for 

ROVER combination. 

Size N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 

W.E.R 14.39% 13.45% 12.28% 11.99% 11.47% 11.34% 11.40% 11.51% 

S.E.R. 20.46% 19.87% 18.81% 18.21% 17.56% 17.56% 17.50% 17.45% 

Table 5.6 Performance of frame level Boosting training + N-best list re-ranking on CMU 

Communicator dataset 

The experiments are conducted on CMU Communicator dataset using Sphinx III system. Frame 

level Boosting algorithm, described in previous section, is employed to train a total of 8 acoustic 

models. Each testing utterance is decoded using these 8 models separately to generate N-best lists. 

We then perform N-best list re-ranking to select more likely hypothesis for ROVER combination 

instead of accepting top-1 list directly. The experimental results of using top-1 hypotheses have 

been reported in Table 5.5 of Section 5.2.4. Table 5.6 presents the combination results on the 

basis of N-best list re-ranking. N=n means that the hypotheses of n acoustic models are used in 

ROVER combination. 

Comparison between Table 5.6 and 5.5 shows that the Neural Nets based re-ranking achieves 

consistent improvement of recognition performance. For example, at the baseline of using single 

acoustic model (N = 1) for decoding, the word error rate realized by N-best list re-ranking is 

14.39%, 0.5% better than that without re-ranking. Moreover, the word error rate further decreases 

to 11.34% when combining 6 models, compared to the 11.60% without re-ranking. We conducted 

significance test, paired t-test, on performance differences between using and not using N-best list 
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re-ranking. The test is performed to the word error rates given in Table 5.6 and Table 5.5. We 

obtained that t=5.05 and P-value=0.001, which indicates the probability that the better 

performance of N-best list re-ranking is obtained by chance is very small. The results manifest the 

effectiveness of the Neural Nets based re-ranking method, as well as that of the features we 

adopted in this experiment. A graphical performance comparison of ROVER combination using 

and not using N-best list re-ranking is presented in Figure 5.2. 
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Figure 5.2 Performances of ROVER combination with and without N-best List re-ranking 

 

5.3.2 Neural Network Based Scoring Scheme 
 

ROVER is a word-level combination approach developed at NIST that aims to yield reduced 

word error rate by exploiting differences in the nature of the errors made by multiple speech 

recognition system [Fiscus, 1997]. ROVER proceeds in two stages. In the first stage, the best 

word hypotheses produced by different recognizers are progressively aligned together to build a 

single composite Word Transition Network (WTN) by using dynamic programming. Once the 

WTN is generated, each node in the network is then evaluated by a voting scheme to select the 

best word as the final recognition result. 
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Figure 5.3 Neural Networks based two-stage scoring scheme 

The original version of ROVER uses a simple voting strategy that linearly combines two types of 

information in word selection: frequency of occurrence and confidence score. The general scoring 

scheme is formulated as follows. 

 )(*)1()(*)( wordCwordNwordScore ββ −+=  (5-8)

where N(word) denotes the normalized frequency of occurrence, C(word) denotes the average or 

maximum confidence score, and β  is a parameter tuned to balance N(.) and C(.). 

Our preliminary research showed that in many cases, the correct hypothesized words cannot be 

found due to the simplicity of this strategy. To address this issue, we propose a two-stage scoring 

scheme in which the detection of insertion error is separated from word scoring [Zhang and 

Output NULL 

No

Best Word Hypothesis 

Is the WTN node 
an insertion error?

Word Transition Network 

Multiple Hypotheses 

Hypotheses 
Alignment

Node i

i,1w

i,2w
… 

Ki,w

i+1 

,1iw 1+

1,2iw +
… 

K1,iw +

i-1 

,1iw 1−

1,2iw −
… 

K1,iw −

Yes

NN based Binary Classifier 

Features 

NN based Word Scorer 

Features 

Word 
Scoring 



 61

Rudnicky, 2006b]. Specifically, once the WTN is constructed, we first use a binary classifier to 

determine if the WTN node in question is an insertion error. If not, each word in the node will be 

scored on the basis of a variety of features extracted from multiple information sources. The two-

stage scheme is plotted in Figure 5.3. As shown in Figure 5.3, both the insertion detection and 

word scoring are implemented by using Neural Network. 

The first task is to train a Neural Network based binary classifier to determine if a WTN node is 

an insertion error. For each node, there are five features designed to fulfill this task. Please refer 

to previous sections for the features which implementations are not given here . 

• Average frequency of occurrence for real words. 

• Average frequency of occurrence for filler words and null arcs. 

• Average word level posterior probability for real words. 

• Average word level posterior probability for filler words and null arcs. A default value is set 

to null transition arcs since they do not have word probabilities. 

• Entropy. This feature is designed to measure the degree of confusion within a WTN node. 

The feature value is computed from the normalized frequency of occurrence of each word in the 

node. 

To train the Neural Network, the class label of each WTN node is set to either 1 or 0, representing 

whether it is an insertion error or not. The value can be manually transcribed or obtained by 

performing an alignment with references as in our experiments. The Back-propagation algorithm 

is used in our experiments as the training method. The hidden layer of the Neural Network 

contains 20 nodes. 

The next task is to train another Neural Network to determine the most likely word for each WTN 

node not classified as insertion error. For each word to be evaluated, its input to this Neural 

Network consists of seven features. 

• Frequency of occurrence. 

• LM Back-off Mode.  

• Contextual LM Back-off Mode. The average LM Back-off Mode over the left and right 

neighbors of the questioned word. 

• Utterance level posterior probability.  
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• Word level posterior probability. 

• Frame level posterior probability. This feature originally measures the probability of a word 

occurring at a given frame [Zhang and Rudnicky, 2004a]. For a word in the WTN node, the 

feature value is computed by averaging frame probability, across all the frames that the word 

spans. 

• Recognizer’s word accuracy. The word accuracy of the recognizer that generates the 

questioned word. The value is computed on the training set. 

The neural network is trained in a discriminative way to minimize the following objective 

function. 
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where (.)s  denotes the scoring function defined by the Neural Network, di,x  denotes the input 

feature vector of the desired word d  in WTN node i, wi,x  denotes the feature vector of 

competing word w  in the same node, and I is the number of WTN nodes participating the 

training. The desired word of each WTN node is determined by aligning WTN with references. 

Neural Network scorer has one hidden layer containing 30 nodes, and we use gradient descent as 

the learning approach to optimize its parameters. 

The experiment evaluating the new scoring scheme is carried out on the basis of frame level 

Boosting and N-best list re-ranking. As before, a total of 8 acoustic models are trained using 

frame level Boosting algorithm described in Section 5.2. For a testing utterance, the 8 models are 

used respectively to decode the utterance and generate N-best lists as the recognition results. N-

best list re-ranking, the post-processing technique described in Section 5.3.1, is performed to 

select more likely hypothesis for combination. The selected hypotheses are aligned together to 

build a Word Transition Network (WTN). The proposed scoring scheme is then applied to each 

WTN node to determine the most desirable hypothesized word. Table 5.7 presents the 

experimental results of using this new two-stage scoring scheme. 

Size N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 

W.E.R 14.39% 13.22% 12.17% 11.78% 11.31% 11.12% 11.23% 11.36% 

S.E.R. 20.46% 19.57% 18.81% 18.21% 17.56% 17.45% 17.28% 17.41% 

Table 5.7 Performance of Neural Network based scoring scheme on CMU Communicator dataset 
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Figure 5.4 compares the performance of new scoring scheme with that of standard ROVER. 

Please see Section 5.3.1 for more detailed result of standard ROVER combination based on N-

best list re-ranking. As shown in Figure 5.4, the new scoring scheme achieves a consistent gain 

over standard ROVER. Paired t-test test is conducted to further measure the performance 

difference between the new scoring scheme and standard ROVER. The test is performed to the 

word error rates given in Table 5.7 and Table 5.6. The word error rate at N=1 isn’t considered in 

calculation since it is shared by both methods. We obtained that t=10.9 and P-value=0.001. 

Therefore, we conclude that the new scheme significantly outperforms ROVER in improving 

recognition accuracy. 
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Figure 5.4 Performances of Neural Network based scoring scheme and standard ROVER 

combination 

 

5.4 Improving Estimation of Word/Sub-word Boundary 
 

In the frame level Boosting training algorithm presented in Table 5.4, the sub-word hypothesis for 

each frame, )(tru ,  is estimated by forced alignment on the basis of current acoustic model. We 

noticed that the performance of Boosting training is highly related to the result of forced 
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alignment. Therefore, investigation on a robust forced alignment method is desirable. In the 

following experiment, we use an ensemble based voting scheme to determine the boundary of 

word or sub-word. Suppose a total of K acoustic models, },...,,{ 21 KΛΛΛ=Λ , have been 

trained. Each acoustic model is called to perform forced alignment separately for each training 

utterance. Specifically, for a word or sub-word e.g. phoneme q in the transcripts, each model 

)1( Kkk ≤≤Λ  generates its own estimate of the starting frame ks  and ending frame ke . The 

boundary predicted by entire ensemble is set to the mean of ks  and ke : 
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The ensemble based boundary estimation is implemented into frame level Boosting training 

algorithm and tested with CMU Communicator dataset. We use the same architecture for acoustic 

modeling. Each model has 2000 senones and each senone has 32 Gaussians. The maximum 

number of acoustic models in ensemble is also set to 8. Context independent phoneme is adopted 

as hypothesis unit u. We also use ROVER to combine individual hypotheses generated by each 

acoustic model. Table 5.8 presents the recognition error rates. Comparison between Table 5.8 and 

Table 5.5 shows that ensemble based boundary estimation performs modestly better than single 

model based forced alignment (except N=6). The result is encouraging since the ensemble based 

estimation is only a simple voting strategy. We believe further improvement can be obtained by 

investigating and utilizing effective segmentation methods. 

Size N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 

W.E.R 14.90% 13.65% 12.41% 11.95% 11.60% 11.67% 11.43% 11.62% 

S.E.R. 20.99% 20.11% 19.16% 18.57% 18.27% 18.09% 17.74% 17.92% 

Table 5.8 Performance of frame level Boosting algorithm using ensemble based sub-word 
boundary estimation. 
 

5.5 Summary 
 

This chapter summaries our research results on ensemble based acoustic model training and 

speech recognition. 
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We presented a novel frame level Boosting training algorithm which demonstrates more 

advantages than conventional utterance level algorithm. We also presented a new combination 

scheme that improves hypothesis combination from two perspectives: N-best re-ranking 

technique is used to provide better candidates for combination, and Neural Network is used to 

incorporate a number of features for generating more desirable recognition results. Our proposed 

approaches were evaluated on CMU Communicator dataset. Figure 5.5 plots the word error rates 

of utterance level Boosting algorithm, frame level Boosting algorithm, and improved hypothesis 

combination scheme. Some important observations obtained in our experiments are given as 

follows. 
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Figure 5.5 Experimental results of utterance level Boosting training, frame level Boosting training, 

and improved hypothesis combination using N-best list re-ranking and Neural Nets based scoring. 

• Significant improvements of recognition performance are achieved by using Boosting 

based acoustic model training. For CMU Communicator dataset, the word error rate is 

reduced to 12.37%, by using utterance level Boosting training, from the baseline of 14.90%, 

the error rate of traditional recognition system using single acoustic model. Relatively, 

utterance level Boosting reduce recognition errors by 17.0%. 

• Boosting based acoustic model training is shown to be more robust to data sparseness 

problem. When using single acoustic model, the increase of model size, i.e. number of 
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Gaussians, can deteriorate recognition performance drastically. In comparison, adding more 

models to Boosting based recognition only results in a slight performance degradation. 

• Frame level Boosting algorithm has more advantages than utterance level Boosting 

algorithm in generating discriminative acoustic models, and consequently, outperforms the 

latter with a big margin. On the basis of frame level Boosting training, word error rate is 

reduced to 11.60% which beats the performance of utterance level Boosting training by 

relatively 6%. 

• In addition, frame level Boosting algorithm provides a generalized framework which 

supports acoustic model training to minimize different types of recognition errors, e.g. 

word or sub-word error. Conventional utterance level Boosting can be viewed as a special 

case of frame level Boosting. 

• Improving combination techniques is manifested to be an effective way to reduce 

recognition errors. In our experiments, the integration of N-best list re-ranking and Neural 

Network based word scoring further reduce recognition errors to 11.12%, from 11.60% 

which is the word error rate achieved by standard ROVER combination. 

• Overall, by using all the techniques described in this chapter together, word error rate is 

reduced to 11.12% from 14.90%, representing a relative 25.4% improvement of recognition 

performance. 
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6 Acoustic Model Training Using Un-transcribed and Closed 

Captioned Speech Data 
 

The lack of carefully prepared speech data has been a persistent problem for statistical acoustic 

model training for which the sufficiency of training data is a basic requirement for pursuing good 

performance. To address this problem, researchers started to explore and exploit easily-obtained 

data sources such as un-transcribed and closed-captioned speech, and investigate methods 

combining all the available data for acoustic model training [Blum et al, 1998; Jang and 

Hauptmann, 1999a; Kemp and Waibel, 1999; Lamel et al, 2000; Nigam et al, 2000; Kamm and 

Meyer, 2001; Wessel and Ney, 2001; Lamel et al, 2002; Cozman et al, 2003; Moreno et al, 2003; 

Chen et al, 2004; Nguyen and Xiang, 2004; Visweswariah et al, 2004; Zhang et al, 2005; Ma and 

Matsoukas, 2007]. This chapter presents a review to the related research carried out so far. 

We begin this chapter with the discussion of the advantages to use un-transcribed and closed 

captioned speech data for acoustic model training, followed by the discussion of the difficulty to 

use them. We then describe confidence scoring based data selection approach and its applications 

in unsupervised and lightly supervised training. Finally, we discuss the drawbacks of the 

confidence scoring based data selection approach, showing that this approach can deteriorate 

classification performance rather than improve it. 

 

6.1 Necessity to Use Un-Transcribed and Closed-Captioned Speech Data 
 

HMM and Gaussian Mixture based statistical learning approaches are the mainstream acoustic 

modeling technologies for state-of-the-art speech recognition systems. To have an accurate 

estimate of model parameters, sufficient well transcribed training data is highly desired. (Here we 

only concentrate on the effect of the training data, while other issues that also have impacts on 

acoustic model training, e.g. the environment noise and speaker variation, are beyond the research 

scope of this thesis.) However, as often experienced, collecting high-quality transcribed data is a 

time-consuming task. For example, in our meeting recognition research, it needs more than one 

week for a skilled transcriber to produce the transcripts of a two-hour meeting. Obviously, only 

relying on manual transcription makes the development of a recognition system too long to be 
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acceptable for customers. In addition, the cost to cultivate qualified transcribers and maintain a 

routine transcription is also intolerable for projects with tight budget. 

On the other hand, there are other types of speech data which can benefit acoustic model training, 

e.g. raw speech without any transcripts and closed captioned speech with error-prone transcripts. 

In most cases, un-transcribed speech data is significantly easier to collect than transcribed one. 

For example, we can build a program to electronically record the broadcast news in TV and radio 

programs. Large corpus with thousands hour raw speech can then be built up very quickly with 

almost no cost. The easiness and low cost of data collection have made un-transcribed speech 

very attractive. The most challenging and demanding research topic is the investigation of an 

automatic learning procedure that can exploit both transcribed and un-transcribed speech data for 

acoustic model training. This kind of approaches is usually referred to as unsupervised training. 

(Some machine learning literatures use a slightly different term semi-supervised training to name 

the approach since it still uses a small fraction of transcribed data to train an initial acoustic 

model. However, this thesis follows the tradition of speech community.) Active learning is 

another approach exploiting un-transcribed speech. It requires human interaction to determine the 

most informative data for model re-training. 

Some TV broadcast programs provide speech recordings along with roughly transcribed closed-

captions. Both the speech and captions can be automatically captured and thus to form a usable 

alternate of transcribed training data. Compared to un-transcribed raw speech, closed captioned 

speech is more welcomed for its availability of manual transcripts. Recently, research of using 

closed captioned speech data for acoustic model training has elicited growing interests. This 

research is referred to as lightly-supervised learning by some literatures since the transcription 

errors in closed captions need efforts to identify and correct. 

 

6.2  Difficulty to Use Un-Transcribed and Closed-Captioned Speech 

Data 
 

Raw speech and closed-captioned speech have the potential to substantially reduce the 

development cost of building up a speech recognition system. However, they can not be used 

directly in acoustic model training. In order to use un-transcribed raw speech, we have to first 

produce transcripts for it. The commonly adopted method is to use an initial “seed” acoustic 

model trained from available transcribed data or borrowed from similar application domain, to 



 69

decode the raw speech, and accept the decoding hypotheses as transcripts. Apparently, the quality 

of the automatically generated transcripts highly depends on the performance of initial model. In 

the case that the initial model is far from perfect or old domain mismatches to the new domain, 

the decoding hypotheses will unavoidably contain a large amount of recognition errors. If we add 

the erroneous transcripts to acoustic model training, as seen in many experiments, it is very likely 

that the recognition performance of new trained model gets degraded rather than improved. 

Similar situation also exists in closed captions. Even though completed by human transcriber, 

closed captions are known to contain a high percentage of transcription errors compared with 

carefully prepared transcripts of same shows. For example, omissions of words and phrases are 

often observed in closed captions. As we know, acoustic model training relies on an alignment 

between speech signal and phoneme sequence which is derived from transcripts. If the erroneous 

closed caption with word omissions is used for training, it can lead to the corruption of phoneme 

model learning. 

In addition to the defects of transcripts, raw speech and closed captioned speech also suffer the 

problem of being short of some important information necessary for acoustic model training, such 

as audio segmentation, speaker and gender identity, label of non-speech events e.g. noise and 

music, etc.. Some segmenting and clustering software e.g. CMUseg [Siegler et al, 1997] can be 

used to automatically generate some of the missing information. However, just like speech 

recognizer, segmenter can incur extra errors in data processing, and then further increase the 

difficulty of un-transcribed and closed-captioned speech being used for acoustic model training. 

  

6.3  Data Selection 
 

Given the characteristics of un-transcribed and closed-captioned speech, blindly accepting all the 

available data is not a good choice because of the existence of transcription errors. Instead, most 

researchers prefer to adopt a selective training strategy to handle these two types of data. This 

strategy, referred to as data selection or data filtering, is the key issue of unsupervised and lightly-

supervised acoustic model training [Kemp and Waibel, 1999; Kamm and Meyer, 2001; Wessel 

and Ney, 2001; Lamel et al, 2000; 2004; Visweswariah et al, 2004; Zhang et al, 2005]. Simply 

speaking, given a large collection of un-transcribed or close captioned speech data, the goal of 

data selection strategy is to identify and exploit a subset of data that can best improve recognition 

performance. 



 70

The identification of usable un-transcribed raw data is realized by performing confidence scoring 

to the decoding hypotheses. Confidence scoring is a technique extensively adopted in speech 

recognition research. Its task is to quantitatively measure how likely a questioned hypothesis is 

correct. The hypothesis can be a sentence, word, phoneme, or even a state. In implementation, a 

variety of features extracted from multiple information sources are integrated together by using 

some machine learning techniques, such as Neural Network, Decision Tree, Bayes Network, 

Support Vector Machine, etc.., to output a continuous or binary score as the estimate of  the 

correctness of hypotheses. In the case of unsupervised training with un-transcribed data, the 

hypotheses along with speech data is accepted if its confidence score is greater than an 

empirically set threshold, otherwise they will be rejected. 

The identification of usable closed captioned speech is performed in a similar way [Jang and 

Hauptmann, 1999a; Jang and Hauptmann, 1999b; Lamel et al, 2000; Chen et al, 2004; Nguyen 

and Xiang, 2004]. The audio data is first decoded with a biased language model which is over-

weighted on the n-grams occurring in closed captions. The recognition hypotheses are then 

aligned to the corresponding closed-captions with respect to the similarity of word and time-

stamp. The fragments which content are agreed by both decoding hypotheses and closed-captions 

are collected as the new training data. The alignment and voting based selection approach is 

essentially a confidence scoring technique which implicitly assumes that closed-caption and 

hypothesis have different error pattern so that the chance that both of them make the same error is 

very small. 

Generally, most data selection approaches aim to identify and exploit correctly transcribed data. 

In unsupervised training with raw speech, they select data which hypotheses are predicted with 

high confidence score. In lightly-supervised training with closed captioned speech, they select 

data endorsed by both closed caption and recognition result. A first glance gives us the 

impression that this kind of methods is reasonable, because a high confidence score or unanimous 

voting usually implies that the corresponding transcripts are correct. Expanding the training set 

with correctly transcribed data should therefore be able to improve recognition accuracy. 

However, this concept is challenged by our research on English and Mandarin recognition. A 

detailed analysis will be presented later in this chapter. 

 

6.4  Confidence Scoring Based Data Selection for Unsupervised Acoustic 

Model Training 
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The procedure of using un-transcribed audio data for acoustic model training is illustrated in 

Figure 6.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Unsupervised acoustic model training with un-transcribed audio. Confidence model is 

used to measure the correctness of decoding hypotheses. Only the data which confidence scores 
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are greater than an empirically set threshold have chance of being selected because its hypotheses 

are more likely to be correctly transcribed. 

In Figure 6.1, a “seed” speech recognition system, including the initial acoustic model and 

language model as well as other necessary modules such as audio segmenter, is used to transcribe 

the raw data. The initial acoustic model is trained from the transcribed speech corpus or fetched 

from similar application domain. By performing segmentation and decoding, the continuous 

audio data is broken down into a sequence of segments, called as utterance in this thesis, and 

hypothesis is produced for each segment. A confidence model is then applied to measure the 

correctness of the hypotheses. We assume an utterance level confidence scoring which is to 

provide a metric indicating how likely the sentence hypothesis as a whole is a reliable recognition 

result. Correspondingly, the data selection is also carried out on utterance level so that the entire 

utterance is either accepted or discarded depending on its confidence score. A confidence 

threshold θ, which value is empirically set or determined by experiments on hold-out set, is used 

to filter the audio data: only the utterances which confidence scores are greater than θ are selected, 

otherwise rejected. A new larger speech corpus is then formed by combining the selected 

utterances, including both audio signal and hypothesis, with the existing transcribed data. 

 

6.5  Alignment and Voting Based Data Selection for Lightly-Supervised 

Acoustic Model Training 
 

Figure 6.2 illustrates the lightly-supervised acoustic model training process that uses alignment 

and voting to identify correctly transcribed closed-captioned audio data. A biased language model 

is trained by over-weighting on the n-grams occurring in closed captions. The continuous audio 

data is then segmented into isolated utterances and decoded using the biased language model and 

initial acoustic model. The hypotheses are aligned to closed captions. The fragments which 

contents are agreed by both hypotheses and captions are assumed to be correct and exacted to 

form a new training set. In many cases this can result in that only a portion of an utterance rather 

than the entire utterance is selected, so that some important information may lose. To address this, 

practically we often require that the length of a selected fragment, in terms of contiguous words 

or phonemes, must be grater than a minimum value in order to increase the robustness of training. 
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Figure 6.2 Lightly-supervised acoustic model training with closed captioned audio. Word 

alignment and voting is used to identify the correctly transcribed captions. The fragments agreed 

by both decoding hypotheses and closed captions are assumed correct and then collected for new 

acoustic model training. 
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6.6  Related Work 
 

The potential of un-transcribed and closed captioned audio to provide almost unlimited training 

resource and substantially reduce manual effort have elicited extensive research interests in 

speech community. A number of approaches have been studied to improve the performance of 

unsupervised and lightly-supervised acoustic model training. In [Kemp and Waibel, 1999] un-

transcribed data is exploited in a bootstrap fashion with the help of confidence measures. 

[Riccardi and Hakkani-Tur, 2003] investigated methods combing unsupervised and active 

learning in order to minimize human supervision as well as maximize system performance. [Jang 

and Hauptmann, 1999a; Jang and Hauptmann, 1999b] started the research of lightly supervision 

of using closed captioned broadcast news for their multi-media projects. [Nguyen and Xiang, 

2004] proposed an approach that uses a biased language model, instead of general language 

model, to carry out a fast and constrained recognition. Noticing that mismatched regions between 

hypotheses and captions may be more desirable in training, [Chen et al, 2004] investigated 

approaches e.g. consensus network to recover data with recognition errors. Other representative 

works include [Lamel et al, 2000; Kamm and Meyer, 2001; Wessel and Ney, 2001; Lamel et al, 

2002; Cozman et al, 2003; Moreno et al, 2003; Visweswariah et al, 2004; Ma and Matsoukas, 

2007] etc.. 

As we have mentioned, there is a notable characteristic shared by unsupervised and lightly-

supervised training approaches: they concentrate on how to find out correctly transcribed data. To 

achieve this, confidence scoring or word alignment techniques are investigated. We will show 

next that the confidence scoring based data selection is not always suitable for acoustic model 

training, and there exist other important issues which must be considered in order to make an 

effective use of un-transcribed and roughly transcribed audio data [Zhang and Rudnicky, 2006a]. 

 

6.7  Problems with Confidence Scoring Based Data Selection 
 

This section discusses the problem of using conventional confidence scoring based data selection 

strategy in unsupervised acoustic model training. Similar problem also exists in lightly supervised 

training. 
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We consider the following scenario of selecting un-transcribed or roughly transcribed audio data 

for acoustic model training. An initial acoustic model 0λ  is learned from available transcribed set 

and then applied to recognize the audio data which has been segmented into a set of utterances. A 

confidence metric );( xhf  is called to provide each utterance a score measuring the likelihood of 

correctness for the recognition hypothesis. Here, x  denotes the feature sequence for an utterance, 

and h  denotes the hypothesis given by model 0λ . We assume );( xhf  is an utterance level 

metric which is to quantify the correctness of whole sentence hypothesis h . Utterances, 

segmented audio along with hypothesis, scored with high confidence are selected and then 

combined with well-transcribed data to train a new acoustic model 1λ  which is expected to have 

better performance than 0λ . Please see Figure 6-1 and 6-2 for a graphical illustration. 

First, let’s consider a question: is the confidence scoring model independent of the recognition 

model? There exists an extreme example often referred by machine learning research: co-training 

for webpage classification [Blum et al, 1998], in which the feature sets can be split into two 

unrelated and redundant subsets, each of which is sufficient for classification. We can use one of 

them to construct a classifier, and the other to construct a confidence annotator for measuring the 

correctness of classification result made by the former.  To some extent, this can result us an 

unbiased confidence metric independent to classifier. However, most speech recognition 

applications cannot offer such a feature division. Instead, the confidence metric in speech 

recognition is primarily constructed on the basis of information supplied by the recognition model. 

For example, Posterior word probability is one of the most effective confidence measures for 

continuous speech recognition [Wessel et al, 1998]. Its implementation is shown in (6-1), in 

which the hypothesis space is restricted to word lattice: 
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where x  denotes the feature sequence for input speech, w  is the questioned word with starting 

time st  and end time et , and h  denotes a path (sentence hypothesis) in the word lattice. Please 

note that Posterior word probability is calculated from the acoustic score )]|(log[ hxPλ  and 

language model score )](log[ hPλ , both of which are output by the recognizer. 
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Because of the high correlation between confidence metric and recognizer in the features 

exploited, the selection of un-transcribed and roughly transcribed data with high confidence score 

often leads to only those examples that match well to the current recognition model being picked. 

The high scored examples, even though more likely to be correctly recognized, can’t add 

substantial new information to the acoustic mode training. Training with such examples will 

consequently be a process that reinforces what the current model already encodes [Kemp and 

Waibel, 1999], yet it is unable to reduce the estimation bias in initial acoustic model caused by 

scarcity of well-transcribed data or an inaccurate model assumption. 

The discussion above shows that imperfect confidence scoring model, especially those correlated 

with recognizer, is unable to identify the most usable data for unsupervised acoustic model 

training. To address this problem, researchers work on various methods to improve the 

performance of confidence scoring, e.g. investigating new features less correlated to recognizer 

[Zhang and Rudnicky, 2001]. Theoretically, the true posterior probability )|( xhP  is the best 

confidence metric if it can be learned from training data. In speech recognition, the construction 

of a confidence scoring model can be viewed as an effort to approach )|( xhP  with some 

empirical assumptions. A widely accepted concept is that confidence scoring model is capable to 

discover good data for acoustic model training, if it is a perfect approximation to )|( xhP . 

However, this isn’t always true for continuous speech recognition. 

The construction of a speech recognition system is essentially a process to learn a probabilistic 

representation ),( yP x  for the joint distribution of x  and y . Here, x  is the acoustic feature 

vector, and y  is the corresponding class e.g. word, phoneme, contextual phoneme or tied state. 

Using chain rule, ),( yP x  is further broken down into the product of )(yP  and )|( yP x . )(yP  

and )|( yP x  are learned by language model training and acoustic model training respectively. In 

order to have an unbiased estimate of ),( yP x , the selection of un-transcribed examples should 

also follow ),( yP x . However, this requirement can not be fulfilled by confidence scoring based 

data selection which follows )|( xyP  instead. No matter how good the confidence metric is, the 

utilization of un-transcribed examples chosen with )|( xyP  may result in an erroneous estimate 

to ),( yP x , sometimes even worse than the initial model learned from the small transcribed set.  

Please note the underlying distribution ),( yP x  is unknown to us, so it is impossible for us to use 

it directly in data selection. A reasonable and practical back-off is to perform a diversified 

selection that the selected examples can cover occurring acoustic phenomena and phonetic classes. 
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However, confidence metric based selection can not realize this either. In our preliminary 

experiments with a variety of confidence metrics, we observed that the selected un-transcribed 

examples often locate in some special regions, e.g. the region far from the class boundary, rather 

than distribute globally across the entire input space. In addition, we also observed that in some 

applications there is no un-transcribed example being selected for certain classes, because most of 

the examples of the classes are located in a region classified with low confidence. Obviously, this 

will result in a biased estimate of the underlying distribution. 

 

6.8  Summary 
 

This chapter presents an overview of unsupervised and lightly-supervised training approaches 

that utilize roughly transcribed or un-transcribed data to improve the performance of speech 

recognition system. We described the confidence scoring based selective training method and its 

applications in identifying correctly transcribed speech data. In the last section, we present a 

discussion that shows only relying on confidence metric for data selection can lead to an 

erroneous estimate of underlying distribution and cause degradation of recognition accuracy. 

Next chapter will present our solution, a clustering based data selection strategy, to address this 

problem. 



 78

7 Clustering Based Data Selection Approach for Unsupervised 

and Lightly Supervised Training 
 

In previous chapter, we discussed the importance of using un-transcribed and roughly transcribed 

speech data (e.g. closed captioned speech) in improving recognition performance, and described 

the conventional selective training approach that relies on confidence metric to select correctly 

transcribed data for acoustic model training. We have shown that, due to its correlation to speech 

recognizer, as well as its conflict to the training criterion of generative model (e.g. Gaussian 

Mixture), confidence metric alone isn’t sufficient in identifying the best usable data. We observed 

in preliminary experiments that the conventional approaches can result in only the examples 

matching well to the existing model are selected. Even though they are more likely to be correctly 

transcribed, these examples can not contribute much new information to model training. As a 

consequence, this can lead to a suboptimal model which performance may be even worse than the 

one without using any new data. 

To address this problem, we present a novel clustering based selection strategy that aims to 

increase the diversity of selected utterances while maintain the correctness of the transcripts 

[Zhang and Rudnicky, 2006a]. This chapter is organized as follows. Our new strategy is 

described in Section 1. We then evaluate it using four speech corpora: ICSI meeting dataset, 1997 

Mandarin Broadcast News, TDT-4 Mandarin Broadcast News, and GALE BN03 Mandarin 

Dataset. These datasets include three different types of training data: transcribed speech, un-

transcribed speech and closed captioned speech. They also cover recognitions of two totally 

different languages: phoneme based English and syllable based Mandarin. This chapter is 

concluded in Section 4 with a brief summary. 

 

7.1 Clustering Based Data Selection Strategy 
 

A question that need be answered first is that at what level the data selection should be performed. 

Options include utterance, word, phoneme or even state. In our experiments, we use utterance as 

the basic unit and data selection is thus conducted in the fashion that an utterance is accepted or 

rejected as a whole. Compared to word or sub-word units, utterance is a more natural way to 

organize speech data. It’s much easier for audio segmenters to detect the boundary of an utterance 
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than that of word or sub-word. In addition, the co-articulation effect, which is important for 

acoustic modeling, can be preserved when using utterance. Correspondingly, confidence scoring 

is also performed on utterance level that the object to be evaluated is the entire hypothesized 

sentence rather than each single word or sub-word. 

 

7.1.1 Increase Diversity in Data Selection 

 

As we discussed in previous chapter, conventional data selection approaches only focus on how 

to ensure if the selected examples have correct transcripts, while ignore other issues. In contrast, 

our strategy considers two aspects together in data selection: the correctness of transcripts and the 

diversity of selected data. 

1. Identifying examples with correct transcripts is still the primary goal of our data selection 

strategy. The transcripts are either manually labeled as in closed captioned speech, or 

obtained by automatic decoding as in unsupervised training with raw speech. Even though it 

is commonly observed that acoustic modeling is robust, to some extent, to the transcription 

errors, too many such errors are still a serious problem for learning a good model. Therefore, 

our approach also utilizes confidence scoring technique as a means to measure the correctness 

of questioned transcripts. 

2. In addition, we consider the distribution of selected data. Ideally, we want the examples being 

selected comply with the true distribution. Since the true distribution is unknown to us, in 

implementation, we seek a diversified selection that aims to increase the diversity of selected 

data i.e. its coverage to acoustic and phonetic phenomenon. Namely, we hope every occurring 

acoustic and phonetic class can have sufficient representatives being selected into new 

training set. 

The key issue to achieve a diversified selection is how to model and capture variability of speech 

via an automatic learning procedure. In our research, this is realized by an unsupervised 

clustering scheme. In the case of training with un-transcribed speech, the input audio is first 

broken down into segments, referred as utterances in this thesis, with the help of an audio 

segmenter e.g. CMUseg [Siegler et al, 1997] or ISL-segmenter [Jin and Schultz, 2004]. 

Utterances are converted into feature sequences x , and decoded by an existing acoustic model to 

generate hypotheses y . The duple >< y,x  can be viewed as a point and all the >< y,x  

together form a high dimensional input space. Clustering algorithm e.g. K-Means is called in to 
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partition the space into a number of clusters. Each cluster is a collection of utterances which share 

some behaviors in common. Specifically, they have similar acoustic patterns or belong to certain 

phonetic classes. Thus the varieties of speech implicitly carried by utterance >< y,x  are 

categorized into clusters. By sampling these clusters respectively, we are able to collect 

utterances representing different acoustic and phonetic phenomena. Confidence scoring is 

performed with sampling in order to give utterances with correct hypotheses higher chance of 

being selected. The sampling is carried out as follows: for each cluster, all the utterances are 

sorted according to their confidence score from high to low, and the top n% utterances with the 

highest scores are then identified as the desirable data. 

Please note that if the number of clusters is set to 1 that the entire input space is treated as a single 

cluster, the above strategy is back to conventional confidence scoring based data selection which 

only considers the correctness of hypothesis y . On the other hand, if the number of clusters is set 

to the number of utterances, namely, each >< y,x  is a cluster by itself, the above strategy is 

equivalent to perform a random selection that every utterance >< y,x  has equal chance, n%, of 

being selected. In this case, the requirement of diversity is satisfied while the requirement of 

correctness is not. By changing the number of clusters, the proposed strategy allows us to find an 

appropriate point to balance the two requirements, correctness and diversity, in data selection. 

Clustering in input space enables us to model and capture the variability of speech phenomena, 

and thus to perform a diversified selection. Please note an utterance can carry multiple 

information, e.g. acoustic info, phonetic info, semantic info, speaker info, etc.. Currently, we only 

exploit acoustic and phonetic information. The investigation of how to use other information is an 

important issue in our future research. Currently, we adopt K-Means as the clustering method, 

which is equal to assume the distribution of utterances >< y,x  follows Gaussian Mixtures. 

Apparently, this is a strong assumption. However, as an extensively adopted method to depict 

acoustic observations, the effectiveness of Gaussian Mixtures has been manifested by many 

recognition experiments. So in this thesis we just keep using this assumption on a practical basis. 

The clustering based data selection strategy for unsupervised acoustic model training is 

formulated in Table 7.1. The strategy can be extended to lightly supervised training in a similar 

way except the confidence scoring model );( xhf  is replaced by word alignment and voting. 
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Input: 

TΨ : Transcribed set 

UΨ : Un-transcribed set. 

M : Number of clusters. 

%n : Percentage of data to be selected. 

Initialization: 

1. Learn an initial recognition model λ  from transcribed set TΨ . 

2. Learn a confidence model );( xhf  from transcribed set TΨ  as well as other available 

information sources. 

3. Decode all the un-transcribed utterances UΨ>∈< ?,x  using initial model λ , so that 

>>⇒<< y,?, xx  where y  is the decoding hypothesis. 

4. Compute confidence score for each utterance Uy Ψ>∈< ,x  using confidence scoring model 

);( xhf . 

5. Convert the utterances Uy Ψ>∈< ,x  to utterance super vectors z . 

6. Partition the utterance vectors into M  clusters MDDD ,...,, 21  using K-means. 

Unlabeled Data Selection: 

For each cluster ),1( Mmm ≤≤D                       : 

7. Sort unlabeled utterances my Dx >∈< ,  according to the confidence score from high to low. 

8. Add the top %n  utterances my Dx >∈< ,  to the transcribed set TΨ . 

Re-training: 

9. Train a new model λ′  using the new TΨ  which is the combination of original transcribed set 

and selected utterances. 

Table 7.1 Clustering based date selection strategy used in unsupervised acoustic model training. 

The values for parameters M  and %n  are either determined empirically or determined by 

experimenting on hold-out set. Please see Section 7.1.2 for how to convert an utterance >< y,x  

to a fixed length vector z . 
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7.1.2 Converting Utterance into Fixed Size Vector 
 

To perform clustering algorithm e.g. K-Means to input space consisting of utterance, an obstacle 

has to be addressed. The length of utterances varies considerably in terms of the number of words, 

phonemes and frames. Specifically, a training utterance is expressed as >< y,x   where x  is the 

sequence of feature vectors representing acoustic info, and y  is the transcripts from which 

phonetic info can be derived. Both the number of frames of x  and the number of phonemes of y  

change a lot from utterance to utterance. Obviously, K-Means algorithm is unable to handle the 

utterance directly. 

To address this problem, we present normalization scheme that converts an arbitrarily long 

utterance into a fixed size vector [Zhang and Rudnicky, 2006a]. The acoustic and phonetic 

information carried by x  and y  are then conveyed into the vector. Simply speaking, x  is 

converted into a high dimensional vector u  which represents the distribution of the questioned 

utterance over possible acoustic classes. On the other hand, y  is converted into another high 

dimensional vector v  which represents the distribution of the questioned utterance over possible 

phonetic classes. The reasons that we choose phoneme instead of other units, such as word or 

triphone as the basis of normalization are due to following concerns: (1) phoneme is a natural 

speech unit related to acoustic model training, especially to the context-independent model 

training; (2) the number of phonemes is proper for vector operation. For example, an English 

speech recognition system commonly exploits 40~50 phonemes. In comparison, the number of 

words or triphones can be in thousands. Once the conversion is done, we concatenate u and v  to 

form the utterance vector. The detail of normalization is given as follows. 

Suppose a training set }1|,{ Niyii ≤≤><=Ψ x  Where ix  denotes the acoustic feature 

sequence of utterance i  with iT  frames that ],......,,[ ,2,1, iTiiii xxx=x , and iy  denotes the 

corresponding transcripts containing iK  words that ],......,,[ ,2,1, iKiiii yyyy = . Please note for an 

un-transcribed dataset, iy  is the decoding hypothesis generated by an existing acoustic model. 

Here tix ,  denotes the feature vector at frame t , and kiy ,  denotes a hypothesized word.  
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The conversion of x to u : 

1. Build acoustic feature space X  by collecting all the frame vectors tix , together, that 

}1,1|{ , iti TtNix ≤≤≤≤=X . Each frame feature vector tix ,  can be viewed as a point in 

space X . 

2. Partition X -space into L  clusters using unsupervised clustering algorithm e.g. K-Means. 

Each cluster can be interpreted as a special “class” representing certain speech 

phenomenon. The value of L  is empirically set. We thus obtain a “codebook” 

},...,,{ 21 Lccc=C  in which “codewords” lc  is the centroid of the l -th cluster. 

3. For ],......,,[ ,2,1, iTiiii xxx=x , calculate the closest cluster for each frame vector tix ,  that 

),( minarg ,
1

, lti
Ll

ti cxdistc
≤≤

=  where (.)dist  is the distance function, and then convert ix  from 

a sequence of feature vectors to a sequence of “codeword”, so that 

],......,,[],......,,[ ,2,1,,2,1, ii TiiiiTiiii cccxxx =′⇒= xx  

4. Further convert ix′  to a L  dimensionality vector ],......,,[ ,2,1, Liiii uuu=u  where 

i

il
li T

incofu x′
=     #

, . The value of liu ,  is the normalized number of times that frame vectors 

are mapped to cluster lc . 

Therefore, an utterance with iT  frames is normalized into a L  dimensional vector. Each 

dimension of the vector describes how often a particular acoustic pattern, represented by the 

corresponding cluster, occurs in the questioned utterance. The vector as a whole describes how 

the utterance is distributed over these clusters. 

 

The conversion of y  to v : 

The conversion of transcripts in terms of word to a fixed length vector is conducted in a similar 

way except phonemes are adopted as naturally formed clusters. 

1. Convert transcripts from word string to phoneme string. This can be done by simply looking-

up system dictionary, so that ],......,,[],......,,[ ,2,1,,2,1, ii MiiiiKiiii qqqyyyyy =′⇒=  where 

miq ,  denotes a phoneme. 
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2. Suppose system phoneme set has R  phonemes: },......,,{ 21 Rqqq=Q . We then convert 

],......,,[ ,2,1, iMiiii qqqy =′  into a R  dimensional vector iv , that ],......,,[ ,2,1, Riiii vvv=v  

where 
i

ir
ri M

yinqofv
′

=
    #

, . 

The r -th dimension of iv  corresponds to the r -th phoneme in system phoneme set. Its value is 

the normalized number of times that the r-th phoneme is observed in the utterance. So the vector 

iv  essentially depicts how the utterance transcripts distribute over phonemes. 

 

Concatenation of u  and v : 

The final utterance vector is the concatenation of acoustic vector u  and phoneme vector v : 

],......,,,,......,,[ ,2,1,,2,1, RiiiLiii vvvuuu=+= vuz . Thus the similarity between utterances can be 

measured by the distance between their normalized vectors. The dimensionality of utterance 

vector z  is RL + . In our English recognition system, L , the number of clusters in acoustic 

space, is set to 256 and R , the number of phonemes, is 49, which results in each utterance vector 

has as high as 305 dimensions. Such a high dimensionality can cause problem for utterance level 

clustering. Thus investigation on dimension reduction method is necessary and is scheduled in 

our future research plan. 

Please note that in our approach, the clustering technique is applied twice at different level. The 

first one is the clustering performed in frame vector space in order to normalize acoustic 

observation into fixed length vector. The second one is used to partition utterance space into a 

number of classes, each of which reflects certain acoustic and phonetic patterns, so that the 

diversity of selected data can be increased by sampling these classes respectively. 

 

7.2 Experiment I: Unsupervised Acoustic Model Training 
 

This section presents the experimental results of the clustering based data selection approach in 

unsupervised acoustic model training. The approach is evaluated on two speech recognition tasks: 

English meeting domain recognition and Mandarin broadcast speech recognition. 
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7.2.1 Unsupervised Acoustic Model Training on ICSI Meeting Dataset 
 

Dataset and Configurations 

Our first experiment is conducted on ICSI meeting dataset [Janin et al, 2003; Banerjee et al, 

2004]. The dataset has a total of 75 meetings, accounting for 70 hours of speech data. We use 10 

meetings as the transcribed set for initial acoustic training, 61 meetings as the un-transcribed set 

for unsupervised training, 3 meetings as the hold-out set for recognizer tuning, and 1 meeting 

(containing 7500 words) as the test set. A 13-dimension MFCC feature vector is computed for 

each frame and then expanded to 39-dimension by adding delta and delta-delta coefficients. The 

phone set contains 49 basic phonemes. A 3-state left-to-right HMM is adopted to model each 

speech unit. In context dependent training stage, these phonemes are transformed to triphones and 

then tied together to make 2000 senones. Each senone is modeled using a mixture of 32 

Gaussians, giving a total of 64K Gaussians for acoustic modeling. 

The language model was trained from the transcripts of 10-meeting transcribed set, without any 

access to the un-transcribed set. The language model is fixed in our experiments, since our main 

goal is to investigate suitable approaches for acoustic model training. We believe that 

unsupervised learning technique could be applied to language model training as well, and this 

issue has been listed in our research plan. The dictionary adopted in the experiments was based 

on the CMU Dictionary (containing more than 125k words). The actual vocabulary used in 

decoding was the intersection between dictionary and language model lexicon (unigram), which 

consists of 4200 words. 

 

Confidence Measures 

Our experiments employ a Neural Network based confidence annotator to measure the 

correctness of hypothesis. Data selection is performed on utterance level so that an utterance is 

either kept or rejected as a whole depending on its confidence score. The inputs to the Neural 

Network consist of four features representing both language model and acoustic model 

information: LM-backoff-mode, Utterance-level-posterior-probability, Word-level-posterior-

probability and Frame-level-posterior-probability [Zhang et al, 2005], while the output is trained 

to approximate the word accuracy of sentence hypothesis. The Neural Network based confidence 

annotator is trained and tested on the 10 meetings transcribed data. Figure 7.1 plots its 

performance and shows the relationship between confidence score and word accuracy of 
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hypotheses (and also shows standard deviations). Figure 7.1 shows that the confidence score is 

generally proportional to word accuracy; that is, high confidence score indicates high accuracy 

and vise versa. 
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Figure 7.1 Performance of Neural Network based confidence annotator. X-axis denotes the 

confidence score that Neural Network predicts for a sentence hypothesis. Y-axis denotes the word 

accuracy of the hypothesis. 

Acoustic Model Trained from Word Error Rate 

Transcribed Data 47.31% 

Transcribed + Un-transcribed Data 44.41% 

Table 7.2 Performances of two baseline systems. The first one is trained using transcribed data 

only. The second one is trained from the combination of transcribed and un-transcribed data, in 

which the hypothesis of un-transcribed data is decoded by the first model. 

 

Baseline 

The initial acoustic model was trained using the 10 transcribed meetings and realized a word error 

rate of 47.31% . All the un-transcribed speech data are decoded by using the initial model, and 

then appended to the transcribed set, along with their hypotheses, to train a new acoustic model. 



 87

Table 7.2 compares the word error rates of these two models. When using all the available un-

transcribed data in acoustic model training without any data selection, the word error rate is down 

to 44.41%, which represents a 6.1% relative reduction from the word error rate of initial model. 

 

Investigation of Utterance Vectorization in Data Selection 

In the proposed clustering based data selection approach, each training utterance is first converted 

into a high dimensional vector z  which is the concatenation of sub-vector u  and sub-vector v , 

representing acoustic and phonetic information respectively. The following experiment will show 

that the two types of information are both desirable, and complementary to each other, in 

achieving a diversified selection of un-transcribed data. To do this, three utterance vectorization 

methods are compared in the experiment: (1) only using u  to represent an utterance; (2) only 

using v  to represent an utterance; and (3) using vu +  to represent an utterance. 11 hours or 20% 

of un-transcribed speech data are selected by using the clustering based approach, and then added 

to the existing transcribed set to train new acoustic models. The cluster numbers in frame level 

and utterance level clustering are 256 and 64 respectively. Table 7.3 shows the performances of 

the acoustic models trained using the three different utterance vectorization methods. The 

experimental result demonstrates the importance of combining acoustic and phonetic information 

in utterance representation. It also suggests that recognition performance can be potentially 

further improved by incorporating more information e.g. speaker and gender info into 

vectorization. All the experiments reported in this chapter will adopt vu +  as the representation 

of utterance vector. 

Utterance Vectorization Word Error Rate 

Using u  46.15% 

Using v  45.33% 

Using vu +  44.36% 

Table 7.3 Comparison of three different utterance vectorization methods used in clustering based 

data selection. 

 

Comparison of Clustering Based Data Selection with Confidence Based Data Selection 
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We further compare our clustering based data selection approach with traditional approaches that 

use only high confidence scores as the standard to select utterances. As in the previous 

experiment, the cluster number set to frame level and utterance level clustering are 256 and 64 

respectively. The amount of un-transcribed speech data selected for model re-training is increased 

by 11 hours (or 20% of total un-transcribed speech) every time. Figure 7.2 plots the word error 

rates of the two approaches. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Comparison of conventional confidence based and the proposed clustering based data 

selection approaches in unsupervised acoustic model training. The performances are measured by 

Word Error Rate (WER). The amount of un-transcribed speech data selected for model re-training 

is increased by 11 hours (or 20% of the total un-transcribed speech) every time. 256 clusters are 

used in frame level clustering, and 64 clusters are used in utterance level clustering as required by 

the proposed data selection approach. 

Figure 7.2 shows that our new approach is consistently superior to traditional method. When the 

first 20% un-transcribed data are added to the training set, our approach reduced the word error 

rate to 44.36% from the baseline of 47.31%, and began to outperform the model trained using all 

the un-transcribed data. In contrast, traditional method only reduced the error rate to 46.89% with 

the same amount of data. This indicates that the most suitable un-transcribed data for model 

training cannot be identified if we ignore its distribution in feature space. We further conducted 
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significance test, paired t-test, on performance differences between the two selection methods. 

We obtained that t= 3.20 and P-value=0.049. Therefore, at 0.05 level, the clustering based data 

selection method significantly outperforms traditional method. 

Both approaches reach their best performance, 43.18% and 44.02% respectively, when using 33 

hours or 60% of the un-transcribed data. After that, adding more un-transcribed data to acoustic 

model training starts to deteriorate recognition performance rather than to improve it. This 

phenomenon demonstrates the importance of data selection in unsupervised acoustic model 

training. 

 

7.2.2 Unsupervised Acoustic Model Training for Mandarin Speech Recognition 
 

Dataset and Configurations 

The second experiment is part of our research for GALE Mandarin speech recognition project. 

The transcribed set is 1997 Mandarin Broadcast News which has about 30 hours speech data. The 

un-transcribed set for unsupervised training is GALE BN03 Mandarin Dataset which has 1800 

hours raw speech. For the test set, we use RT-04 Eval set which is one of the standard test sets in 

GALE project. 39 dimension MFCC feature vector (12 MFCC + 12 delta-MFCC + 12 delta-delta-

MFCC + 3 power) is calculated for each frame. No any other frond-end processing technique is 

used. CMU-ISL audio segmenter [Jin and Schultz, 2004] is adopted to segment raw audio that 

results in 980K utterances. 

The phone set contains 179 phonemes, created by converting Mandarin tonal syllable into 

initial/final combinations. Please note that the tone information is explicitly modeled into final 

phonemes. For example, an3 denotes a phoneme with the third tone. A 3-state left-to-right HMM 

is adopted to model each speech unit. In context dependent training stage, these phonemes are 

transformed to triphones and then tied together to make 2000 senones. Each senone is modeled 

using a mixture of 64 Gaussians, giving a total of 128K Gaussians for acoustic modeling. 

The language model was trained from the collection of a variety of available Chinese text datasets, 

including Giga-word II, TDT-2, TDT-3 and TDT-4, most of which can be obtained from LDC 

(http://www.ldc.upenn.edu/). Language model training is performed using CMU SLM toolkit 

(http://www.speech.cs.cmu.edu/SLM_info.html) [Clarkson and Rosenfeld, 1997]. There are 

64000 unigrams, 16.6M Bigrams and 20.7M trigrams in the final language model. The dictionary 

for testing uses the same lexicon of language model. 
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Please note that in our experiments, the performance of Mandarin recognizer is measured by 

character error rate as required by GALE project instead of Word Error Rate. We keep using 

Neural Network based confidence annotator to measure the correctness of decoding hypothesis. 

Please refer to Section 7.2.1 for detail.  

 

Baseline 

The baseline acoustic model is built by only using the 30 hours 1997 Mandarin Broadcast News 

for training, Character error rate for this model is 29.90% 

 

Comparison of Clustering Based Data Selection with Confidence Based Data Selection 

In this experiment, we use 512 clusters in frame level clustering. Since the amount of un-

transcribed speech is too large, it is impossible to perform clustering with all the frame vectors in 

memory. So we sample the frame vectors by a ratio of 20:1, that is for every 20 frame vectors, 

only one is picked up for frame level clustering. Apparently this can cause degradation of 

clustering performance. The number of clusters in utterance level clustering is set to 128. 

The baseline model trained from transcribed data is applied to decode the 980K un-transcribed 

utterances for generating sentence hypotheses for them. The two data selection approaches are 

then performed to identify the most usable data based on their separate criteria. We compare the 

performances of these two approaches by varying the amount of un-transcribed speech they 

selected. The two approaches are tested on 50 hours, 100 hours and 200 hours respectively. 

Result is plotted in Figure 7.3. 

Figure 7.3 shows that adding un-transcribed speech to acoustic model training has the potential to 

significantly improve recognition performance. For example, when augmenting transcribed set 

(30 hours) with 100 hours un-transcribed speech, the character error rates are down to 25.61% 

and 25.15%, for confidence based selection and clustering based selection, respectively. Both of 

them achieve more than 14% relative reduction of CER. Figure 7.3 also shows that our clustering 

based approach consistently outperforms traditional method. Paired t-test is conducted to further 

evaluate the performance difference between the two methods. The test is calculated on the 

character error rates of acoustic models trained using 50, 100 and 200 hours selected un-

transcribed data. We obtained that t=4.86 and P-value=0.040, which shows that at 0.05 level, the 

clustering based data selection method significantly outperforms confidence based method. 
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Another considerable phenomenon is that the difference of performance between the two data 

selection approaches becomes smaller when using more un-transcribed data. As we discussed, 

conventional confidence based selection focuses on fulfilling the requirement of correctness 

while ignores the diversity of selected utterances. With more data added for training, this 

weakness is alleviated to some extent. However, this also increases the chance of utterances with 

incorrect transcripts being selected, and thus causes the degradation of recognition performance. 

For example, the CERs of the models trained using 200 hours un-transcribed data are higher than 

those using 100 hours. Therefore, the better strategy, as pursued by our clustering based approach, 

is to consider the two requirements together in data selection: the correctness of transcripts and 

the diversity of selected data. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 Comparison of conventional confidence based and the proposed clustering based data 

selection approaches in unsupervised acoustic model training. The two approaches are applied to 

select 50/100/200 hours un-transcribed speech data respectively based on their separate criteria. 

The selected un-transcribed data are then added to transcribed set for acoustic model training. The 

performances are measured by Character Error Rate (CER). 512 clusters are used in frame level 

clustering, and 128 clusters are used in utterance level clustering. 
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7.3 Experiment II: Lightly Supervised Acoustic Model Training 
 

This section presents the experimental results of the clustering based data selection approach in 

lightly supervised acoustic model training. Different from unsupervised training which handles 

un-transcribed speech, lightly supervised training works on closed captioned speech which 

transcripts is manually generated but contains considerable amount of transcription errors. Instead 

of using a confidence scoring model, conventionally, the correctness of transcripts is measured by 

comparing closed caption with decoding hypothesis via word alignment and voting. The 

fragments agreed by both are assumed to be correct and selected for new model training. 

In conventional approach, the data selection is performed at word level. Specifically, for an 

utterance, the alignment between closed caption and decoding hypothesis may only agree on a 

fragment of the utterance rather than the whole utterance. So conventionally, an utterance, 

generated by audio segmenter, is further broken down into words for data selection. To increase 

the robustness of training, practically it often requires that the length of a selected fragment, in 

terms of contiguous words or phonemes, must be grater than a minimum value. 

In contrast, we use utterance as the unit for our clustering based data selection due to the concern 

that some important information e.g. co-articulation may lose when splitting a naturally spoken 

utterance into words. Figure 7.4 illustrates the selection process adopted in out experiments, in 

which the adopted confidence metric is the character error rate calculated from the alignment of 

closed captioned sentence and hypothesized sentence. 

 

Dataset and Configurations 

The experiment is carried on Mandarin speech corpora. The transcribed set is 1997 Mandarin 

Broadcast News which has about 30 hours speech data. The closed captioned dataset is TDT-4 

Mandarin Broadcast News which contains about 160 hours of broadcast news and broadcast 

conversation speech data. This corpus also provides time stamped recognition results decoded by 

a third-party speech engine. The results are then used in our experiment to extract audio 

segmentation information. RT-04 Eval set is used as the testing set. We adopt 39 dimensional 

MFCC as the acoustic feature. 

The set-up of this experiment is same to that in experiment of unsupervised acoustic model 

training (Section 7.2.2). The phone set contains 179 phonemes. A 3-state left-to-right HMM is 

adopted to model each speech unit. Phonemes are further transformed into 2000 senones, each of 
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which is modeled using a mixture of 64 Gaussians, giving a total of 128K Gaussians for acoustic 

modeling. We use the same language model described in Section 7.2.2, which has 64000 

unigrams, 16.6M bigrams and 20.7M trigrams. The dictionary for testing uses the same lexicon of 

language model. Recognition performance is measured by character error rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4 Clustering based data selection approach used in lightly supervised acoustic model 

training. Input audio is first segmented into utterances and decoded by initial acoustic model. On 

the other hand, paragraph based closed captions are also segmented into utterances by running 

forced alignment. We then perform an utterance to utterance alignment between closed captions 

and hypotheses with respect to their differences on word and time stamp. Character error rate 
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(CER) is calculated for each closed captioned utterance using corresponding hypothesis as the 

reference. Clustering based data selection is then performed, in which CER is adopted as the 

confidence metric to measure the correctness of closed captioned utterance. 

 

Baseline 

The baseline acoustic model is built by only using the 30 hours 1997 Mandarin Broadcast News 

for training, Character error rate for this model is 29.90%. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5 Comparison of conventional confidence based and the proposed clustering based data 

selection approaches in lightly supervised AM training. The performances are measured by 

Character Error Rate (CER). For conventional approach, we change the minimum number of 

words in well-matched fragments from 2 to 6. Correspondingly, the proposed approach selects 

and utilizes same amount of captioned data, measured in number of hours for model training. 256 

clusters are used in frame level clustering, and 64 clusters are used in utterance level clustering. 

 

Comparison of Clustering Based Data Selection with Confidence Based Data Selection 

Our clustering based data selection approach is compared with conventional approach that 

performs selection at word level. For the fragment selected by conventional approach, we require 

that the length in terms of word must be greater than a pre-determined minimum value. The less 
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the value is, the more the number of fragments is selected. We vary the threshold from 2 words to 

6 words which results in the amount of selected speech data changes from 45 hours 

(corresponding to 6 word) to 78 hour (corresponding to 2 word). To make a fair comparison, our 

clustering based data selection approach also identifies and utilizes the same amount of data for 

acoustic model training. The cluster number used in frame and utterance clustering are 256 and 

64 respectively. Please note that our approach is conducted on utterance level and it doesn’t 

demand that every word in the selected utterance has to be consented by both closed caption and 

recognition hypothesis. Figure 7.5 plots the performances of the two selection approaches. 

Figure 7.5 shows that like un-transcribed data, closed captioned speech also has the potential to 

significantly improve the performance of acoustic modeling. When using 60 hour closed 

captioned speech, the character error rate is reduced by a big margin to 25.90% (using clustering 

based data selection) and 26.61% (using confidence based data selection) from the baseline of 

29.90%. In addition, the results demonstrate again the effectiveness of clustering based data 

selection approach which consistently outperforms confidence based approach for all the five 

different training conditions. Paired t test is also conducted and results in that t=7.25 and P-

value=0.002. Therefore, we conclude that our proposed method improves recognition accuracy 

significantly over traditional method on the lightly supervised acoustic model training task. 

 

7.4 Summary 

 

This chapter presented a novel clustering based data selection approach that considers how to 

identify correctly transcribed data as well as how to increase the diversity of data. We applied the 

approach to unsupervised training and lightly supervised training, and evaluated it with a variety 

of datasets. Experimental results demonstrated the effectiveness of this approach, which 

consistently outperforms conventional confidence scoring method in all the three speech 

recognition tasks. 
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8 Unsupervised Acoustic Model Training Based on Frame 

Level Boosting Algorithm 
 

In previous chapters, we have discussed supervised frame level Boosting algorithm for utilizing 

transcribed speech data, and clustering based selective training strategy for identifying usable un-

transcribed raw speech data. This chapter investigates if the Boosting algorithm can be extended 

to unsupervised training, so that the two approaches, data selection and Boosting, can be 

integrated together for better handling different types of training data. 

We first discuss the generalization of Boosting algorithm from a supervised training method to 

unsupervised training method. We then evaluate the unsupervised Boosting with ICSI meeting 

dataset. The experimental result shows that the cooperation of data selection and unsupervised 

Boosting can significantly improve recognition performance. 

 

8.1 Unsupervised Boosting Algorithm 
 

Boosting is a supervised learning algorithm that emphasizes the “hard-to-learn” examples by 

increasing their weights in the training of new model, so the new model has the potential to 

correct the classification errors made by previous models. As shown in Chapter 4 and 5, Boosting 

algorithm has been demonstrated as an effective acoustic model training approach in using 

transcribed speech data. 

The major obstacle to generalize Boosting algorithm to unsupervised training is that, for un-

transcribed raw speech data, the lack of transcripts makes it intractable to determine if a 

recognition result is correct or not. So we are unable to follow the above criterion which pays 

more attention to the misrecognized utterances in new model training. 

To address this problem, [Buc et al, 2001; Bennett et al, 2002] proposed an unsupervised multi-

class Boosting training scheme which uses a different criterion: the unlabeled examples that the 

members of ensemble can’t reach unanimity are given higher weights. This is essentially a 

confidence based approach in which the ensemble unanimity can be interpreted as a confidence 

metric to measure the correctness of classification. We further extend the method to unsupervised 

acoustic model training by using Minimum Bayes Risk (MBR) [Goel and Byrne, 2000; Goel et al, 

2000; Goel et al, 2004] to seek the most agreed hypothesis as the reference [Zhang et al, 2005]. 
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Suppose we have a hypothesis set }1|{ KihH i ≤≤= , where ih  is a sentence hypothesis 

generated as the recognition result of utterance x . In the view of MBR, the best hypothesis is the 

one with the least expected error under a loss function as follows: 

 
∑

=∈
=

K

i
ii
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* )|(),(minarg x (8-1)

where ),( ihhl  describes a task performance oriented loss function, such as edit distance between 

sequences, and )|( xihP  denotes a posterior distribution on sentence hypothesis. The MBR can 

be thought of as selecting a consensus hypothesis: For each hypothesis, Eq. (8-1) selects the one 

that is closest on an average to all the likely hypothesis and alignments. The closeness is 

measured under the loss function of ),( ihhl . 

In the case of ensemble based unsupervised training, the pseudo-transcripts of an un-transcribed 

utterance can be determined by using MBR to select the one with least risk from the hypothesis 

set generated by the ensemble. An alternative way to determine the pseudo-transcripts is to use 

ROVER combination, which differs MBR in that it can create a new hypothesis rather than select 

one from existing hypotheses. However, as a mixture of words from different hypotheses, the 

result created by ROVER can not maintain the acoustic consistency owned by individual 

hypothesis. Moreover, ROVER is often found to increase deletion errors in order to reduce 

substitution and insertion errors. As we know, acoustic model training relies on an alignment 

between speech signal and phoneme sequence which is derived from transcripts. Too many word 

omissions can lead to the corruption of phoneme model learning. 

The frame level unsupervised Boosting algorithm, which performs optimization and resample at 

frame level, is formulated in Table 8.1. Please refer to Chapter 5 for the detail of frame level 

Boosting algorithm and the notations used in the algorithm. 

 

8.2 Experiment of Unsupervised Boosting Algorithm on ICSI Meeting 

Dataset 
 

The unsupervised Boosting algorithm is evaluated on ICSI meeting dataset which has 75 meeting 

or 70 hours speech data. We follow the same set-up of data selection experiment described in 

Chapter 7. We use 10 meetings as the transcribed set for initial acoustic training, 61 meetings as 
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the un-transcribed set for unsupervised training, 3 meetings as the hold-out set for recognizer 

tuning, and 1 meeting as the test set. 

Input: 
• TΨ : Transcribed set that }1|),{( MiyiiT ≤≤=Ψ x  where ),...,,( ,2,1, Tiiii xxx=x  is the 

sequence of acoustic feature vectors for utterance i and iy  is the corresponding transcript. 
• UΨ  : Un-transcribed set that }1|?),{( NjMjU ≤≤+=Ψ x . 

Initialize: 
• Train an initial acoustic model 0λ  from TΨ . 
• Decode un-transcribed utterance Uj Ψ∈?),(x  using 0λ , generating hypothesis jh  so that 

),(?),( jjj hxx ⇒ , and then form a new set }1|),{(* NjMhjjU ≤≤+=Ψ x . 

• Let }1|),{(*
0 NiyiiUT ≤≤=Ψ∪Ψ=Ψ x  where ii hy =  for NiM ≤≤+1 . 

For k = 1 to K: 
• Train a new acoustic model kλ  from data set 1−Ψk . 
• Determine the value of ),( tiru  for each frame tix ,  of each utterance 1−Ψ∈ kix . Run 

forced-alignment if necessary. 
• Generate hypothesis set }{hH

i
=x  for each utterance 1−Ψ∈ kix  using kλ , and compute 

posterior probability )|),(( iu tiP
k

xθλ  for every possible ),( tiuθ  at frame t. 
• Compute pseudo loss 
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• Set )1/( kkkc εε −=  
• Calculate new weight for each frame t of each utterance 1−Ψ∈ kix  that 
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• Resample training data according to normalized tiw , , forming new training set kΨ . For 

un-transcribed utterance Ui Ψ∈x , use MBR (Eq. 8-1) to set the pseudo-transcripts iy  
with the hypothesis most agreed among existing ensemble },...,,{ 21 kλλλ . 

In generalization: 

• The hypothesis to a new utterance x  is determined by using ROVER to combine the 

sentence hypotheses generated by the K acoustic models. 

Table 8.1 Unsupervised frame level Boosting algorithm for using both transcribed and un-
transcribed speech data 
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Baseline 

An initial acoustic model is trained solely from the 10 transcribed meetings (Model 1 in Table 

8.2). All the un-transcribed speech data are decoded by using the initial model. Clustering based 

data selection algorithm described in Chapter 7 is then performed to identify the most usable un-

transcribed data. According to the experiment shown in Section 7.2.1, Chapter 7, the best 

performance is achieved by adding 33 hours speech data to the training (Model 2 in Table 8.2). 

The unsupervised Boosting is then carried out on the combination of transcribed speech and 33 

hours selected un-transcribed speech. In addition, we also trained an “oracle” model using the 

correct transcripts of all speech data. The transcripts are manually generated by human transcriber 

and double checked to maintain quality. In contrast, in the training of model 1 and model 2, the 

correct transcripts are only available to a small portion of the speech data, and decoding 

hypotheses, which unavoidably contain recognition errors, are adopted as the transcripts for un-

transcribed part. Thus it is not surprising to see the oracle model performs significantly better 

than model 1 and model 2. The oracle model is used in our experiment as an indicator to show us 

the best performance that unsupervised acoustic model training can realize. Table 8.2 shows the 

word error rates of these three models. 

Acoustic Model Trained from Word Error Rate 

Model 1: Transcribed Data 47.31% 

Model 2: Transcribed + Selected Un-transcribed 43.18% 

Model 3: oracle 30.69% 

Table 8.2 Performances of baseline systems for unsupervised Boosting training. The first one is 

trained using transcribed data only. Clustering based data selection approach is performed to 

selected 33h un-transcribed speech for augmenting transcribed data. The second model is then 

trained from the combination of transcribed data and selected un-transcribed data. The third 

model is trained using correct transcripts of all speech data. 

 

Performance of Unsupervised Boosting 

The unsupervised Boosting training is carried out on the basis of clustering based data selection. 

The unit u in ),( tiru  and ),( tiuθ  is set to context independent phoneme as in the experiment of 
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supervised Boosting training. A total number of 9 models are trained using the algorithm shown 

in Table 8.1. Table 8.3 presents the word error rates of the algorithm varying with the ensemble 

size from 1 to 9. ROVER is used to combine the sentence hypothesis predicted by each model to 

form the final system output. 

Size N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 

WER 43.18% 41.85% 40.38% 39.91% 39.40% 39.00% 38.67% 38.42% 38.47% 

Table 8.3 Performance of unsupervised Boosting algorithm on ICSI meeting dataset 

Table 8.3 shows that unsupervised Boosting algorithm demonstrates significant improvements 

over the baseline. Word error rate is down to 38.42% from 43.18% when 8 acoustic models are 

generated and combined, which represents an 11.0% relative reduction on the recognition errors. 

If compared to the word error rate of 47.31%, the performance of the model solely trained on 

transcribed data, the relative reduction is 18.8%. The encouraging results manifest the potential of 

the unsupervised Boosting as a useful method for improving the quality of acoustic model 

training by exploiting both transcribed and un-transcribed data. However, comparison to the 

oracle model trained using correct transcripts shows that the performance of unsupervised 

training still lags far behind. This suggests further research on unsupervised learning technique is 

highly desired. 

 

8.3 Summary 
 

This chapter investigated the generalization of supervised Boosting algorithm to unsupervised 

acoustic modeling, as well as its combination with clustering based data selection strategy for 

handling different types of training data. Significant improvement of recognition performance 

was observed in experiments with ICSI meeting dataset. On the basis of data selection, 

unsupervised Boosting reduced the word error rate by relatively 18.8%.  
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9 Summary and Conclusions 
 

This thesis presents our research on investigating approaches that utilize the characteristics of 

various speech data to improve the performance of speech recognition systems. We focus on how 

to effectively exploit available transcribed data and how to explore informative un-transcribed 

data for acoustic model training. In the remainder of this chapter, we summarize the major 

findings of this thesis and discuss open questions and promising directions for further research.  

 

9.1 Major Contributions 
 

Frame Level Boosting Algorithm 

We investigate Boosting algorithm, an ensemble based supervised training approach, to 

iteratively create multiple acoustic models with complementary error patterns by updating the 

distribution of training data. We proposed a frame level Boosting algorithm. In contrast to 

conventional approach based on a sentence level objective function, our approach aims at the 

minimization of word or sub-word recognition errors which is more effective to improve training 

performance. Moreover, our approach enables acoustic model training more focus on the 

misrecognized part of an utterance rather than, as adopted by conventional approach, giving the 

whole utterance an equal weight without discriminating recognition error from correct result. 

Substantial improvement of recognition performance is obtained in our experiments with CMU 

Communicator dataset. Compared to single acoustic model system, our approach reduces the 

word error rate by relatively 22%. Compared to conventional utterance level Boosting, our 

approach reduces the word error rate by relatively 6%. 

 

Improved Hypothesis Combination Scheme 

We proposed a Neural Network based combination scheme which improves standard hypothesis 

combination in two perspectives: 1. N-best list re-ranking is investigated to identify more reliable 

recognition hypothesis as the input of combination; 2. the desired word is determined by a two-

stage scheme considering insertion detection and word scoring separately, and Neural Network is 

employed to incorporate a number of informative features into the decision process. In contrast, 

standard ROVER only uses a simple voting strategy that linearly combines two features: 

frequency of occurrence and confidence score. Considerable improvement is obtained in our 
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experiments with CMU Communicator dataset. Compared to standard ROVER, our approach 

reduces the word error rate by relatively 4%. If performed with frame level Boosting, the overall 

reduction of word error rate is relatively 25%. 

 

Clustering Based Data Selection Strategy 

Conventional data selection approaches only focus on how to ensure if the selected examples 

have correct transcripts, while ignore other issues. These strategies often result in only the 

examples that match well to the current model being selected and thus lead to a suboptimal model. 

To address the problem, we proposed a novel data selection strategy that considers two 

requirements together: 1. the correctness of transcripts; 2. the diversity of selected data i.e. its 

coverage to acoustic and phonetic phenomenon. We applied the strategy to both unsupervised and 

lightly supervised acoustic model training by implementing an utterance space clustering scheme 

which helps to automatically capture the variability and complexity of human speech. Consistent 

improvements are obtained in our experiments on English and Mandarin speech recognitions with 

un-transcribed and closed captioned speech corpora including ICSI meeting dataset, GALE BN03 

un-transcribed dataset and TDT-4 closed captioned dataset. 

 

Unsupervised Boosting Algorithm in Acoustic Model Training 

Traditionally, Boosting is a supervised training approach that requires the class label to be given 

for each example. We investigate the generalization of Boosting algorithm to unsupervised 

acoustic model training. To do this, Minimum Bayes Risk (MBR) decoding procedure is used to 

determine the pseudo-transcripts for each un-transcribed utterance by selecting the hypothesis 

with the least expected error. On the basis of MBR, a frame level unsupervised Boosting training 

algorithm is proposed, and further combined with clustering based data selection approach to 

form a unified framework for better handling different types of training data. Significant 

improvement of recognition performance is observed in our experiments on ICSI meeting dataset. 

 

9.2 Some Further Directions 
 

While the algorithms developed in this thesis have been quite successful at improving speech 

recognition performance, there is still room for additional improvement. 



 103

In our frame level Boosting algorithm, the sub-word hypothesis for each frame is estimated by a 

Viterbi based forced alignment program. We noticed that the performance of Boosting training is 

impacted considerably by the result of forced alignment. Therefore, investigation on a robust 

forced alignment algorithm is highly desirable. 

In addition, the sampling method used in frame level Boosting algorithm is exclusively depends 

on the weight calculated in the training process. As we have known, there is other information 

helpful for sampling, such as the type and duration distribution of a phoneme. For example, to 

increase the importance of consonant, we could lengthen the duration of consonant while shorten 

the duration of vowel. 

The conversion of an utterance to a fixed size vector is the key issue for performing clustering 

based data selection. Please note an utterance can carry multiple information, e.g. acoustic info, 

phonetic info, semantic info, speaker info, etc.. Currently, we only exploit acoustic and phonetic 

information. We believe the proposed data selection approach can further benefit from the 

incorporation of other useful information. 

K-Means is adopted in our experiments as the major clustering algorithm. This is equal to assume 

the distribution of utterance vectors follow the distribution of Gaussian Mixtures. Apparently, this 

is a strong assumption. There exist other options such as bottom-up hierarchical clustering 

techniques which are worthy to be investigated. 
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