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A B S T R A C T

Probabilistic models are powerful tools in understanding real world data from var-
ious domains, including images, natural language texts, audios and temporal time
series. Often more flexible and expressive probabilistic models are preferred for
accurate modeling, however the difficulty for effective model learning and inference
arises accordingly due to increasingly more complex probabilistic model architec-
tures. Meanwhile, recent advances in deep neural networks for both supervised
and unsupervised learning have shown prominent advantages in learning flexible
deterministic mappings, compared to traditional shallow models. Integrating deep
neural networks into probabilistic modeling thus becomes an important research
direction. Though existing works have opened the door of modeling stochasticity
in data with deep neural networks, they may still suffer from limitations, such as
a) the family of distributions that can be captured for both modeling and inference
is limited, b) probabilistic models for some important discrete structures, such as
permutations, have not yet been extensively studied; and c) applications to discrete
and continuous sequential data modeling, such as natural language and time series,
could still use significant improvements.

In this thesis, we propose simple yet effective methods to address the above
limitations of incorporating stochastic deep neural networks for probabilistic mod-
eling. Specifically, we propose: a) to enrich the family of distributions used for
probabilistic modeling and inference, b) to define probabilistic models over cer-
tain important discrete structures and to demonstrate how learning and inference
could be performed over them; and c) to develop significantly better probabilistic
models in both discrete and continuous sequential data domains, such as natural
languages and continuous time series. Experimental results have demonstrated the
effectiveness of the proposed approaches.
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1
I N T R O D U C T I O N

In this chapter we firstly introduce and explain background materials of prob-
abilistic modeling with deep neural networks, identify limitations of existing

work and raise a set of research questions to explore and answer in this thesis.

1.1 overview

Probabilistic modeling are powerful tools in modeling real world data from various
domains, such as natural languages, images, time series, which embraces rich flexi-
bility, accurate prediction and meaningful interpretations from the probabilistic
models. Probabilistic modeling involves the problems of capturing uncertainty, (or
randomness, stochasticity) in the data with statistical tools, inferring the probabilis-
tic distributions of the quantity of interest, which could be either the data itself or
latent information underlying the data, and making predictions in a probabilis-
tic manner. Often expressive, yet efficient probabilistic models are preferred for
accurately modeling stochasticity in the data, particularly for data domains with
rich structures, such as images, natural languages, time series, etc., however the
difficulties for model learning and inference arise accordingly due to the more
complex architectures of the probabilistic models, high computational and design
cost associated with them.

Meanwhile, recent advances with deep neural networks in supervised learning
tasks have shown prominent advantages in terms empirical performances over
traditional shallow models and has become required components for any successful
methods in various tasks, including but not limited to text classification (Glorot
et al., 2011b; Joulin et al., 2016; Kim, 2014; Lai et al., 2015; Liu et al., 2017; Yang
et al., 2016; Zhang et al., 2015), machine translation (Bahdanau et al., 2014; Cho
et al., 2014a,b; Chung et al., 2014; Sutskever et al., 2014; Wu et al., 2016; Zoph
et al., 2016; Zou et al., 2013), image recognition and segmentation (Badrinarayanan
et al., 2017; Chollet, 2017; Donahue et al., 2014; Donahue et al., 2015; Glorot et al.,
2011a; He et al., 2016; Huang et al., 2017; Ioffe and Szegedy, 2015; Noh et al., 2015;
Simonyan and Zisserman, 2014; Wu et al., 2015) and speech recognition (Amodei
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2 introduction

et al., 2016; Bahdanau et al., 2016; Dahl et al., 2012; Graves et al., 2013a,b; Hannun
et al., 2014; Hinton et al., 2012). They also shed light on improving probabilistic
modelings. Integrating deep neural networks into probabilistic modeling thus
becomes an important research direction.

Due to the complex architectures of deep neural networks and the requirement of
large scale data to train them, modeling, reasoning and inference about uncertainty
with deep neural networks brings new challenges in probabilistic modeling. The
main obstacles for fully empowering probabilistic modeling and inference with
deep neural networks results from two fundamental characteristics of stochastic
modeling with deep neural networks :

a) Deep neural networks are best known for its ability to learn and approximate
arbitrary deterministic functions mapping from their input to their output (Cy-
benko, 1989; Goodfellow et al., 2016; Hornik, 1991), however there is only a
handful ways to inject randomness into the network to model uncertainty
about the quantity of interest and once uncertainty is introduced to the archi-
tecture, it becomes a challenge to do effective reasoning and inference with
them;

b) For the cases where uncertainty can indeed be injected and modeled, the
family of probabilistic distributions that allows feasible, let alone efficient,
learning is still limited, which further hampers its use for general purpose
probabilistic modeling and inference.

For example, variational autoencoders (VAE) (Kingma and Welling, 2013) is one
representative work that tries to incorporate and model uncertainly in data, which
have shown success in probabilistic modeling data from various domains. However,
there are limitations in its ability to represent arbitrarily complex probabilistic
models. VAE injects randomness in its network architecture, and in order to use
stochastic gradient descent (Bottou, 2010) for model training, often over-simplified
distributions about the randomness is assumed, such as Gaussians.

Though existing works have opened the door of modeling stochasticity in data
with deep neural networks (Kingma and Welling, 2013; Larochelle and Murray,
2011; Maaløe et al., 2016; Miao et al., 2016; Sønderby et al., 2016), they may still
suffer from limitations, such as a) the family of distributions that can be captured for
both modeling and inference is limited, b) probabilistic models for some important
discrete structures, such as permutations, have not yet been extensively studied;
and c) applications to discrete and continuous sequential data modeling, such as
natural language and time series, could still use significant improvements.



1.2 thesis statements and contributions 3

1.2 thesis statements and contributions

In this thesis, we aim to address the above challenges of probabilistic modeling
with deep neural networks. Particularly, we emphasize that we are far from fully
harnessing the power of deep neural networks to manipulate stochasticity for
probabilistic modeling and inference, and we propose to make a step forward in
this direction, by asking and answering the following research questions:

Research question 1: (On stochastic neural variational inference) The original
variational autoencoder is a representing work for variational inference with deep
neural networks.It relies on the reparameterization trick to construct inference model
for variational inference, hence the family of variational posterior it can model is
quite limited. Can we make the inference model of VAE more flexible, to accommodate
variational families that might not admit reparameterization tricks?

Proposed solution: We propose to cover a much richer variational family
q for VAE, via two methods. One is to incorporate auxiliary variables
into the VAE framework, and we term the resulting model as Asymmetric
Variational Autoencoders (Chapter 2); the other is to propose a new family of
neural network layer for density transformation to capture complex posterior
families based on efficient 1-d convolutions (Chapter 3).

Research question 2: (On neural probabilistic modeling of discrete structures)
Certain discrete structures, including permutations, which are important to many
machine learning tasks, haven’t been extensively studied in the context of neural
generative modeling. Taking permutations as an example, can we model, capture and
compute them with (stochastic) deep neural networks?

Proposed solution: To this end, we first propose to model and learn per-
mutations with adversarial training for the unpaired setting; then for the
unsupervised setting, we construct probabilistic models over permutations
and propose to learn such latent permutations from the data in a fully
unsupervised manner (Chapter 4).

Research question 3: (On probabilistic modeling of discrete sequences)

Neural probabilistic models have achieved great success on continuous i.i.d data,
such as images. Though there are efforts to model discrete sequences, such as natural
language texts, can we build much more effective probabilistic models to capture the
dynamics of such data?

Proposed solution: We propose a novel neural language model based on
insights of natural language generation. The proposed method is shown to
be more effective compared to existing state-of-the-arts (Chapter 5).
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Research question 4: (On probabilistic modeling of continuous sequences) Con-
tinuous sequential data has been known to to more difficult to model with neural
probabilistic models, due to more complex dynamics and volatility underlying the
data. Existing best generative modeling performances are achieved by recurrent latent
variable models, however model learning and inference turn to be more challenging
and expensive due to the introduced latent variables. Can we build neural proba-
bilistic models retaining the good performance, i.e., better capturing the dynamics in
continuous sequential data, without compromising the efficiency in model learning
and inference?

Proposed solution: To encounter complex uncertainty in temporal data do-
mains and retaining efficient model learning and inference, we propose a new
probabilistic model by constructing expressive data generative distribution
with context aware normalizing flow per step. We identify that the context
awareness is key to successful continuous sequences modeling. As no latent
variables are introduced, no additional inference network is required thus
efficient model learning and inference are retained (Chapter 6).

1.3 thesis related publications

Our two solutions to enrich the variational family to improve stochastic neural
variational inference in Chapter 2 and 3, i.e., via auxiliary variables and convo-
lutional normalizing flows, were published as two workshop papers at ICML
2018 (Zheng et al., 2017a,b) respectively. The new neural probabilistic language
model in Chapter 5 is under submission to ICLR 2019. Lastly, the newly proposed
generative model for continous sequences in Chapter 6 has been submitted to
AAAI 2019.

This thesis also lead to related work not listed as individual chapters, including
a shift-invariant dictionary learning framework for time series data published at
KDD 2016 (Zheng et al., 2016), and a variational variant of WaveNet (Oord et al.,
2016b) for sequeunces modeling published as another workshop paper at ICML
2018 (Lai et al., 2018).



2
A S S Y M E T R I C VA R I AT I O N A L AU T O E N C O D E R S

Variational inference for latent variable models is prevalent in various ma-
chine learning problems, typically solved by maximizing the Evidence Lower

Bound (ELBO) of the true data likelihood with respect to a variational distribution.
However, freely enriching the family of variational distribution is challenging
since the ELBO requires variational likelihood evaluations of the latent variables.
In this paper, we propose a novel framework to enrich the variational family by
incorporating auxiliary variables to the variational family. The resulting inference
network doesn’t require density evaluations for the auxiliary variables and thus
complex implicit densities over the auxiliary variables can be constructed by neural
networks. It can be shown that the actual variational posterior of the proposed
approach is essentially modeling a rich probabilistic mixture of simple variational
posterior indexed by auxiliary variables, thus a flexible inference model can be
built. Empirical evaluations on several density estimation tasks demonstrates the
effectiveness of the proposed method.

2.1 introduction

Estimating posterior distributions is the primary focus of Bayesian inference,
where we are interested in how our belief over the variables in our model would
change after observing a set of data. Predictions can also be benefited from
Bayesian inference as every prediction will be equipped with a confidence interval
representing how sure the prediction is. Compared to the maximum a posteriori
(MAP) estimator of the model parameters, which is a point estimator, the posterior
distribution provides richer information about model parameters and hence more
justified prediction.

Among various inference algorithms for posterior estimation, variational in-
ference (VI) (Blei et al., 2017) and Markov Chain Monte Carlo (MCMC) (Geyer,
1992) are the most wisely used ones. It is well known that MCMC suffers from
slow mixing time though asymptotically the chained samples will approach the
true posterior. Furthermore, for latent variable models (LVMs) (Wainwright and
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6 assymetric variational autoencoders

Jordan, 2008) where each sampled data point is associated with a latent variable,
the number of simulated Markov Chains increases with the number of data points,
making the computation too costly. VI, on the other hand, facilitates faster inference
because it optimizes an explicit objective function and its convergence can be mea-
sured and controlled. Hence, VI has been widely used in many Bayesian models,
such as the mean-field approach for the Latent Dirichlet Allocation (Blei et al.,
2003), etc. To enrich the family of distributions over the latent variables, neural
network based variational inference methods have also been proposed, such as
Variational Autoencoder (VAE) (Kingma and Welling, 2013), Importance Weighted
Autoencoder (IWAE) (Burda et al., 2015) and others (Kingma et al., 2016; Mnih
and Gregor, 2014; Rezende and Mohamed, 2015). These methods outperform the
traditional mean-field based inference algorithms due to their flexible distribution
families and easy-to-scale algorithms, therefore becoming the state of the art for
variational inference.

The aforementioned VI methods are essentially maximizing the evidence lower
bound (ELBO), i.e., the lower bound of the true marginal data likelihood, defined
as

logpθ(x) > Ez∼qφ(z|x) log
p(z, x)
q(z|x)

(1)

where x, z are data point and its latent code, p and q denote the generative
model and the variational model, respectively. The equality holds if and only
if qφ(z|x) = pθ(z|x) and otherwise a gap always exists. The more flexible the
variational family q(z|x) is, the more likely it will match the true posterior p(z|x).
However, arbitrarily enriching the variational model family q is non-trivial, since
optimizing Eq. 1 always requires evaluations of q(z|x). Most of existing methods
either make over simplified assumptions about the variational model, such as
simple Gaussian posterior in VAE (Kingma and Welling, 2013), or resort to implicit
variational models without explicitly modeling q(z|x) (Dumoulin et al., 2016).

In this paper we propose to enrich the variational distribution family, by in-
corporating auxiliary variables to the variational model. Most importantly, density
evaluations are not required for the auxiliary variables and thus complex implicit density
over the auxiliary variables can be easily constructed, which in turn results in a flexible
variational posterior over the latent variables. We argue that the resulting inference
network is essentially modeling a complex probabilistic mixture of different vari-
ational posteriors indexed by the auxiliary variable, and thus a much richer and
flexible family of variational posterior distribution is achieved. We conduct empiri-
cal evaluations on several density estimation tasks, which validate the effectiveness
of the proposed method.

The rest of the paper is organized as follows: We briefly review two existing ap-
proaches for inference network modeling in Section 2.2, and present our proposed
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framework in the Section 2.3. We then point out the connections of the proposed
framework to related methods in Section 2.4. Empirical evaluations and analysis
are carried out in Section 2.5, and lastly we conclude this paper in the Section 2.6.

2.2 preliminaries

In this section, we briefly review several existing methods that aim to address
variational inference with stochastic neural networks.

2.2.1 Variational Autoencoder (VAE)

Given a generative model pθ(x, z) = pθ(z)pθ(x|z) defined over data x and latent
variable z, indexed by parameter θ, variational inference aims to approximate the
intractable posterior p(z|x) with qφ(z|x), indexed by parameter φ, such that the
ELBO is maximized

LVAE(x) ≡ Eq logp(x, z) − Eq logq(z|x) 6 logp(x) (2)

Parameters of both generative distribution p and variational distribution q are
learned by maximizing the ELBO with stochastic gradient methods.1 Specifically,
VAE (Kingma and Welling, 2013) assumes both the conditional distribution of data
given the latent codes of the generative model and the variational posterior distri-
bution are Gaussians, whose means and diagonal covariances are parameterized
by two neural networks, termed as generative network and inference network, re-
spectively. Model learning is possible due to the re-parameterization trick (Kingma
and Welling, 2013) which makes back propagation through the stochastic variables
possible.

2.2.2 Importance Weighted Autoencoder (IWAE)

The above ELBO is a lower bound of the true data log-likelihood logp(x), hence
(Burda et al., 2015) proposed IWAE to directly estimate the true data log-likelihood
with the presence of the variational model2, namely

logp(x) = log Eq
p(x, z)
q(z|x)

> log
1

m

m∑
i=1

p(x, zi)
q(zi|x)

≡ LIWAE(x) (3)

where m is the number of importance weighted samples. The above bound is
tighter than the ELBO used in VAE. When trained on the same network structure

1 We drop the dependencies of p and q on parameters θ and φ to prevent clutter.
2 The variational model is also referred to as the inference model, hence we use them interchangeably.
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as VAE, with the above estimate as training objective, IWAE achieves considerable
improvements over VAE on various density estimation tasks (Burda et al., 2015)
and similar idea is also considered in (Mnih and Rezende, 2016).

2.3 the proposed method

2.3.1 Variational Posterior with Auxiliary Variables

Consider the case of modeling binary data with classic VAE and IWAE, which
typically assumes that a data point is generated from a multivariate Bernoulli,
conditioned on a latent code which is assumed to be from a Gaussian prior, it’s
easy to verify that the Gaussian variational posterior inferred by VAE and IWAE
will not match the non-Gaussian true posterior.

To this end, we propose to introduce an auxiliary random variable τ to the
inference model of VAE and IWAE. Conditioned on the input x, the inference
model equipped with auxiliary variable τ now defines a joint density over (τ, z) as

q(z, τ|x) = q(τ|x)q(z|τ, x) (4)

where we assume τ has proper support and both q(τ|x) and q(z|τ, x) can be
parameterized. Accordingly the marginal variational posterior of z given x turns to
be

q(z|x) =

∫
τ

q(z, τ|x)dτ =
∫
τ

q(z|τ, x)q(τ|x)dτ

= Eq(τ|x)q(z|τ, x) (5)

which essentially models the posterior q(z|x) as a probabilistic mixture of differ-
ent densities q(z|τ, x) indexed by τ, together with q(τ|x) as the mixture weights.
This allows complex and flexible posterior q(z|x) to be constructed, even when
both q(τ|x) and q(z|τ, x) are from simple density families. Due to the presence
of auxiliary variables τ, the inference model is trying to capture more sources of
stochasticity than the generative model, hence we term our approach as Asymmet-
ric Variational Autoencoder (AVAE). Figure 1a and 1b present a comparison of the
inference models between classic VAE and the proposed AVAE.

In the context of of VAE and IWAE, the proposed approach includes two instan-
tiations, AVAE and IW-AVAE, with loss functions

LAVAE(x) ≡ Eq(z|x)[logp(x, z) − logq(z|x)]

=Eq(z|x)

(
logp(x, z) − log Eq(τ|x)q(z|τ, x)

)
(6)
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z

x

x

z

(a) Generative model (left) and
inference model (right) for
VAE

x τ

z

(b) Inference model for AVAE
(Generative model is the
same as in VAE)

x τ1 τ2 · · · τk

z

(c) Inference model for AVAE
with k auxiliary variables

Figure 1: Inference models for VAE, AVAE and AVAE with k auxiliary random variables
(The generative model is fixed as shown in Figure 1a). Note that multiple
arrows pointing to a node indicate one stochastic layer, with the source nodes
concatenated as input to the stochastic layer and the target node as stochastic
output. One stochastic layer could consist of multiple deterministic layers. (For
detailed architecture used in experiments, refer to Section 2.5.)

and

LIW-AVAE(x) ≡ log Eq(z|x)
p(x, z)
q(z|x)

= log Eq(z|x)
p(x, z)

Eq(τ|x)q(z|τ, x)
(7)

respectively.
AVAE enjoys the following properties:

• VAEs are special cases of AVAE. Conventional variational autoencoders can
be seen as special cases of AVAE with no auxiliary variables τ assumed;

• No density evaluations for τ are required. One key advantage brought by
the auxiliary variable τ is that both terms inside the inner expectations of
LAVAE and LIW-AVAE do not involve q(τ|x), hence no density evaluations are
required when Monte Carlo samples of τ are used to optimize the above
bounds.

• Flexible variational posterior. To fully enrich variational model flexibility,
we use a neural network f to implicitly model q(τ|x) by sampling τ given x
and a random Gaussian noise vector ε as

τ = f(x, ε) with ε ∼ N(0, I) (8)

Due to the flexible representative power of f, the implicit density q(τ|x) can
be arbitrarily complex. Further we assume q(z|τ, x) to be Gaussian with
its mean and variance parameterized by neural networks. Since the actual
variational posterior q(z|x) = Eτq(z|x, τ), complex posterior can be achieved
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even a simple density family is assumed for q(z|x, τ), due to the possibly
flexible family of implicit density of q(τ|x) defined by f(x, ε). (Illustration can
be found in Section 2.5.1)

For completeness, we briefly include that

Proposition 1 Both LAVAE(x) and LIW-AVAE(x) are lower bounds of the true data log-
likelihood, satisfying logp(x) = LIW-AVAE(x) > LAVAE(x).

Proof is trivial from Jensen’s inequality, hence it’s omitted.
Remark 1 Though the first equality holds for any choice of distribution q(τ|x)

(whether τ depends on x or not), for practical estimation with Monte Carlo methods,
it becomes an inequality (logp(x) > L̂IW-AVAE(x)) and the bound tightens as the
number of importance samples is increased (Burda et al., 2015). The second
inequality always holds when estimated with Monte Carlo samples.

Remark 2 The above bounds are only concerned with one auxiliary variable τ, in
fact τ can also be a set of auxiliary variables. Moreover, with the same motivation,
we can make the variational family of AVAE even more flexible by defining a series
of k auxiliary variables, such that

q(z, τ1, ..., τk|x) = q(τ1|x)q(τ2|τ1, x)...q(τk|τk−1, x)q(z|τ1, ..., τk, x) (9)

with sample generation process for all τs defined as

τ1 = f1(x, ε1)

τi = fi(τi−1, εk) for i = 2, 3, ...,k (10)

where all εi are random noise vectors and all fi are neural networks to be learned.
Accordingly, we have

Proposition 2 The AVAE with k auxiliary random variables {τ1, τ2, ..., τk} is also a lower
bound to the true log-likelihood, satisfying logp(x) = LIW-AVAE-k > LAVAE-k, where

LAVAE-k(x) ≡ Eq(z|x)[logp(x, z) − logq(z|x)]

=Eq(z|x)

(
logp(x, z) − log Eq(τ1,τ2,...,τk|x)q(z|τ1, ..., τk, x)

)
(11)

and

LIW-AVAE-k(x) ≡ log Eq(z|x)
p(x, z)
q(z|x)

= log Eq(z|x)
p(x, z)

Eq(τ1,τ2,...,τk|x)q(z|τ1, ..., τk, x)
(12)

Figure 1c illustrates the inference model of an AVAE with k auxiliary variables.
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2.3.2 Learning with Importance Weighted Auxiliary Samples

For both AVAE and IW-AVAE, we can estimate the corresponding bounds and
its gradients of LAVAE and LIW-AVAE with ancestral sampling from the model. For
example, for AVAE with one auxiliary variable τ, we estimate

L̂AVAE(x) =
1

m

m∑
i=1

logp(x, zi) − log
1

n

n∑
j=1

q(zi|τj, x)

 (13)

and

L̂IW-AVAE(x) = log
1

m

m∑
i=1

p(x, zi)
1
n

∑n
j=1 q(zi|τj, x)

(14)

where n is the number of τs sampled from the current q(τ|x) and m is the number
of zs sampled from the implicit conditional q(z|x), which is by definition achieved
by first sampling from q(τ|x) and subsequently sampling from q(z|τ, x). The
parameters of both the inference model and generative model are jointly learned
by maximizing the above bounds. Besides back propagation through the stochastic
variable z (typically assumed to be a Gaussian for continuous latent variables) is
possible through the re-parameterization trick, and it is naturally also true for all
the auxiliary variables τ since they are constructed in a generative manner.

The term 1
n

∑n
j=1 q(zi|τj, x) essentially is an n-sample importance weighted

estimate of q(z|x) = Eτq(z|τ, x), hence it is reasonable to believe that more samples
of τ will lead to less noisy estimate of q(τ|x) and thus a more accurate inference
model q. It’s worth pointing out for AVAE that additional samples of τ comes
almost at no cost when multiple samples of z are generated (m > 1) to optimize
LAVAE and LIW-AVAE, since sampling a z from the inference model will also generate
intermediate samples of τ, thus we can always reuse those samples of τ to estimate
q(z|x) = Eτq(z|τ, x). For this purpose, in our experiments we always assume
n = m so that no separate process of sampling τ is needed in estimating the
lower bounds. This also ensures that the forward pass and backward pass time
complexity of the inference model are the same as conventional VAE and IWAE. In
fact, as we will show in all our empirical evaluations that if n = 1 AVAE performs
similarly to VAE and while n > 1 IW-AVAE always outperforms IWAE, i.e., its
counterpart with no auxiliary variables.

2.4 connection to related methods

Before we proceed to the experimental evaluations of the proposed methods, we
highlight the relations of AVAE to other similar methods.
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2.4.1 Other methods with auxiliary variables

Relation to Hierarchical Variational Models (HVM) (Ranganath et al., 2016) and
Auxiliary Deep Generative Models (ADGM) (Maaløe et al., 2016) are two closely
related variational methods with auxiliary variables. HVM also considers enriching
the variational model family by placing a prior over the latent variable for the
variational distribution q(z|x). While ADGM takes another way to this goal, by
placing a prior over the auxiliary variable on the generative model, which in some
cases will keep the marginal generative distribution of the data invariant. It has
been shown that HVM and ADGM are mathematically equivalent by (Brümmer,
2016).

However, our proposed method doesn’t add any prior on the generative model
and thus doesn’t change the structure of the generative model. We emphasize that
our proposed method makes the least assumption about the generative model and
that the proposal in our method is orthogonal to related methods, thus it can can
be integrated with previous methods with auxiliary variables to further boost the
performance on accurate posterior approximation and generative modeling.

2.4.2 Adversarial learning based inference models

Adversarial learning based inference models, such as Adversarial Autoencoders (Makhzani
et al., 2015), Adversarial Variational Bayes (Mescheder et al., 2017), and Adver-
sarially Learned Inference (Dumoulin et al., 2016), aim to maximize the ELBO
without any variational likelihood evaluations at all. It can be shown that for the
above adversarial learning based models, when the discriminator is trained to its
optimum, the model is equivalent to optimizing the ELBO. However, due to the
minimax game involved in the adversarial setting, practically at any moment it is
not guaranteed that they are optimizing a lower bound of the true data likelihood,
thus no maximum likelihood learning interpretation can be provided. Instead
in our proposed framework, we don’t require variational density evaluations for
the flexible auxiliary variables, while still maintaining the maximum likelihood
interpretation.
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2.5 experiments

2.5.1 Flexible Variational Family of AVAE

To test the effect of adding auxiliary variables to the inference model, we parame-
terize two unnormalized 2D target densities p(z) ∝ exp(U(z))3 with

U1(z) =
1

2

(
‖z‖− 2
4

)2
− log

(
e
− 1
2

[
z1−2
0.6

]2
+ e

− 1
2

[
z1+2
0.6

]2)

and U2(z) =
1

2

[
z2 −w1(z)

0.4

]2
where w1(z) = sin

(πz1
2

)
We construct inference model4 to approximate the target density by minimizing
the KL divergence

KL(q(z)‖p(z)) = Ez∼q(z)
(

logq(z) − logp(z)
)

= Ez∼q(z)
(

log Eτq(z|τ) − logp(z)
)

(15)

Figure 2 illustrates the target densities as well as the ones learned by VAE and
AVAE, respectively. It’s unsurprising to see that standard VAE with Gaussian
stochastic layer as its inference model will only be able to produce Gaussian
density estimates (Figure 2(b)). While with the help of introduced auxiliary random
variables, AVAE is able to match the non-Gaussian target densities (Figure 2(c)),
even the last stochastic layer of the inference model, i.e., q(z|τ), is also Gaussian.

2.5.2 Handwritten Digits and Characters

To test AVAE for variational inference we use standard benchmark datasets MNIST5

and OMNIGLOT6 (Lake et al., 2013). Our method is general and can be applied to
any formulation of the generative model pθ(x, z). For simplicity and fair compari-
son, in this paper we focus on pθ(x, z) defined by stochastic neural networks, i.e.,
a family of generative models with their parameters defined by neural networks.
Specifically, we consider the following two types of generative models:

3 Sample densities originate from (Rezende and Mohamed, 2015)
4 Inference model of VAE defines a conditional variational posterior q(z|x), to match the target density
p(z) which is independent of x, we set x to be fixed. In this synthetic example, x is set to be an all
one vector of dimension 10.

5 http://www.cs.toronto.edu/~larocheh/public/datasets/binarized_mnist/

6 https://github.com/yburda/iwae/raw/master/datasets/OMNIGLOT/chardata.mat

http://www.cs.toronto.edu/~larocheh/public/datasets/binarized_mnist/
https://github.com/yburda/iwae/raw/master/datasets/OMNIGLOT/chardata.mat
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(a) (b) (c)

Figure 2: (a) True density; (b) Density learned by VAE; (c) Density learned by AVAE.

G1 : pθ(x, z) = pθ(z)pθ(x|z) with single Gaussian stochastic layer for z with 50

units. In between the latent variable z and observation x there are two
deterministic layers, each with 200 units;

G2 : pθ(x, z1, z2) = pθ(z1)pθ(z2|z1)pθ(x|z2) with two Gaussian stochastic layers
for z1 and z2 with 50 and 100 units, respectively. Two deterministic layers
with 200 units connect the observation x and latent variable z2, and two
deterministic layers with 100 units connect z2 and z1.

A Gaussian stochastic layer consists of two fully connected linear layers, with one
outputting the mean and the other outputting the logarithm of diagonal covariance.
All other deterministic layers are fully connected with tanh nonlinearity. The same
network architectures for both G1 and G2 are also used in (Burda et al., 2015)

For G1, an inference network with the following architecture is used by AVAE
with k auxiliary variables

τi = fi(τi−1‖εi) where εi ∼ N(0, I) for i = 1, 2, ...,k

q(z|x, τ1, ..., τk) = N
(
µ(x‖τ1‖...‖τk), diag

(
σ(x‖τ1‖...‖τk)

)
where τ0 is defined as input x, all fi are implemented as fully connected layers
with tanh nonlinearity and ‖ denotes the concatenation operator. All noise vectors
εs are set to be of 50 dimensions, and all other variables have the corresponding
dimensions in the generative model. Inference network used for G2 is the same,
except that the Gaussian stochastic layer is defined for z2. An additional Gaussian
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stochastic layer for z1 is defined with z2 as input, where the dimensions of vari-
ables aligned to those in the generative model G2. Further, Bernoulli observation
models are assumed for both MNIST and OMNIGLOT. For MNIST, we employ
the static binarization strategy as in (Larochelle and Murray, 2011) while dynamic
binarization is employed for OMNIGLOT.

Our baseline models include VAE and IWAE. Since our proposed method in-
volves adding more layers to the inference network, we also include another
enhanced version of VAE with more deterministic layers added to its inference
network, which we term as VAE+7 and its importance sample weighted variant
IWAE+. To eliminate discrepancies in implementation details of the models re-
ported in the literature, we implement all models and carry out the experiments
under the same setting: All models are implemented in PyTorch8 and parameters of
all models are optimized with Adam (Kingma and Ba, 2014) for 2000 epochs, with
an initial learning rate of 0.001, cosine annealing for learning rate decay (Loshchilov
and Hutter, 2016), exponential decay rates for the 1st and 2nd moments at 0.9 and
0.999, respectively. Batch normalization (Ioffe and Szegedy, 2015) is applied to all
fully connected layers, except for the final output layer for the generative model,
as it has been shown to improve learning for neural stochastic models (Sønderby
et al., 2016). Linear annealing of the KL divergence term between the variational
posterior and the prior in all the loss functions from 0 to 1 is adopted for the first
200 epochs, as it has been shown to help training stochastic neural networks with
multiple layers of latent variables (Sønderby et al., 2016). Code to reproduce all
reported results will be made publicly available.

2.5.2.1 Generative Density Estimation

For both MNIST and OMNIGLOT, all models are trained and tuned on the training
and validation sets, and estimated log-likelihood on the test set with 128 importance
weighted samples are reported. Table 1 presents the performance of all models
with for both G1 and G2.

Firstly, VAE+ achieves slightly higher log-likelihood estimates than vanilla VAE
due to the additional layers added in the inference network, implying that a better
Gaussian posterior approximation is learned. Second, AVAE achieves lower NLL
estimates than VAE+, more so with increasingly more samples from auxiliary
variables (i.e., larger m), which confirms our expectation that: a) adding auxiliary
variables to the inference network leads to a richer family of variational distribu-
tions; b) more samples of auxiliary variables yield a more accurate estimate of
variational posterior q(z|x). We also point out that there’s a trade-off between the

7 VAE+ is a restricted version of AVAE with all the noise vectors εs set to be constantly 0, but with the
additional layers for fs retained.

8 http://pytorch.org/

http://pytorch.org/
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Table 1: MNIST and OMNIGLOT test set NLL with generative models G1 and G2 (Lower is
better; for VAE+, k is the number of additional layers added and for AVAE it is the number
of auxiliary variables added. For each column, the best result for each k of both type of
models (VAE based and IWAE based) are printed in bold. )

MNIST OMNIGLOT

Models − logp(x) on G1 − logp(x) on G2 − logp(x) on G1 − logp(x) on G2

VAE (Burda et al., 2015) 88.37 85.66 108.22 106.09

VAE+ (k = 1) 88.20 85.41 108.30 106.30

VAE+ (k = 4) 88.08 85.26 108.31 106.48

VAE+ (k = 8) 87.98 85.16 108.31 106.05

AVAE (k = 1) 88.20 85.52 108.27 106.59

AVAE (k = 4) 88.18 85.36 108.21 106.43

AVAE (k = 8) 88.23 85.33 108.20 106.49

AVAE (k = 1,m = 50) 87.21 84.57 106.89 104.59

AVAE (k = 4,m = 50) 86.98 84.39 106.50 104.76

AVAE (k = 8,m = 50) 86.89 84.36 106.51 104.67

Models (Importance weighted)

IWAE (m = 50) (Burda et al., 2015) 86.90 84.26 106.08 104.14

IW-AVAE (k = 1,m = 5) 86.86 84.47 106.80 104.67

IW-AVAE (k = 4,m = 5) 86.57 84.55 106.93 104.87

IW-AVAE (k = 8,m = 5) 86.67 84.44 106.57 105.06

IWAE+ (k = 1,m = 50) 86.70 84.28 105.83 103.79

IWAE+ (k = 4,m = 50) 86.31 83.92 105.81 103.71

IWAE+ (k = 8,m = 50) 86.40 84.06 105.73 103.77

IW-AVAE (k = 1,m = 50) 86.08 84.19 105.49 103.84

IW-AVAE (k = 4,m = 50) 86.02 84.05 105.53 103.89

IW-AVAE (k = 8,m = 50) 85.89 83.77 105.39 103.97
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model expressiveness and complexity, as we found that increasing the number of
auxiliary variables to 16, 32, the performances saturate and also model training
is slowed down. In practice, we found that use 4 to 8 auxiliary variables works
fairly well balancing the two. Lastly, with more importance weighted samples from
both τ and z, i.e., IW-AVAE variants, the best data density estimates are achieved.
Overall, on MNIST AVAE outperforms VAE by 1.5 nats on G1 and 1.3 nats on G2;
IW-AVAE outperforms IWAE by about 1.0 nat on G1 and 0.5 nats on G2. Similar
trends can be observed on OMNIGLOT, with AVAE and IW-AVAE outperforming
conventional VAE and IWAE in all cases, except for G2 IWAE+ slightly outperforms
IW-AVAE.

Compared with previous methods with similar settings, IW-AVAE achieves
a best NLL of 83.77, significantly better than 85.10 achieved by Normalizing
Flow (Rezende and Mohamed, 2015). Best density modeling with generative
modeling on statically binarized MNIST is achieved by Pixel RNN (Oord et al.,
2016a; Salimans et al., 2017) with autoregressive models and Inverse Autoregressive
Flows (Kingma et al., 2016) with latent variable models, however it’s worth noting
that much more sophisticated generative models are adopted in those methods and
that AVAE enhances standard VAE by focusing on enriching inference model flexi-
bility, which pursues an orthogonal direction for improvements. Therefore, AVAE
can be integrated with above-mentioned methods to further improve performance
on latent generative modeling.

2.5.2.2 Latent Code Visualization

We visualize the inferred latent codes z of digits in the MNIST test set with respect
to their true class labels in Figure 3 from different models with tSNE (Maaten and
Hinton, 2008). We observe that on generative model G2, all three models are able

0
1
2
3
4
5
6
7
8
9

Figure 3: Left: VAE, Middle: VAE+, Right:AVAE. Visualization of inferred latent codes for
5000 MNIST digits in the test set (best viewed in color)

to infer latent codes of the digits consistent with their true classes. However, VAE
and VAE+ still shows disconnected cluster of latent codes from the same class
(both class 0 and 1) and latent code overlapping from different classes (class 3 and
5), while AVAE outputs clear separable latent codes for different classes (notably
for class 0,1,5,6,7).
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2.5.2.3 Reconstruction and Generated Samples

Generative samples can be obtained from trained model by feeding z ∼ N(0, I) to
the learned generative model G1 (or z2 ∼ N(0, I) to G2). Since higher log-likelihood
estimates are obtained on G2, Figure 4 shows real samples from the dataset, their
reconstruction, and random data points sampled from AVAE trained on G2 for
both MNIST and OMNIGLOT. We observe that the reconstructions align well with
the input data and that random samples generated by the models are visually
consistent with the training data.

(a) Data (b) Reconstruction (c) Random samples

Figure 4: Training data, its reconstruction and random samples. (Upper: MNIST, Lower:
OMNIGLOT)

2.6 conclusions

This paper presents AVAE, a new framework to enrich variational family for vari-
ational inference, by incorporating auxiliary variables to the inference model. It
can be shown that the resulting inference model is essentially learning a richer
probabilistic mixture of simple variational posteriors indexed by the auxiliary vari-
ables. We emphasize that no density evaluations are required for the auxiliary variables,
hence neural networks can be used to construct complex implicit distribution for
the auxiliary variables. Empirical evaluations of two variants of AVAE demonstrate
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the effectiveness of incorporating auxiliary variables in variational inference for
generative modeling.





3
C O N V O L U T I O N A L N O R M A L I Z I N G F L O W S

Bayesian posterior inference is prevalent in various machine learning problems.
Variational inference provides one way to approximate the posterior distribu-

tion, however its expressive power is limited and so is the accuracy of resulting
approximation. Recently, there has a trend of using neural networks to approxi-
mate the variational posterior distribution due to the flexibility of neural network
architecture. One way to construct flexible variational distribution is to warp a
simple density into a complex by normalizing flows, where the resulting density
can be analytically evaluated. However, there is a trade-off between the flexibility of
normalizing flow and computation cost for efficient transformation. In this chapter,
we propose a simple yet effective architecture of normalizing flows, ConvFlow,
based on convolution over the dimensions of random input vector. Experiments on
synthetic and real world posterior inference problems demonstrate the effectiveness
and efficiency of the proposed method.

3.1 introduction

Posterior inference is the key to Bayesian modeling, where we are interested to see
how our belief over the variables of interest change after observing a set of data
points. Predictions can also benefit from Bayesian modeling as every prediction
will be equipped with confidence intervals representing how sure the prediction is.
Compared to the maximum a posterior estimator of the model parameters, which
is a point estimator, the posterior distribution provide richer information about the
model parameter hence enabling more justified prediction.

Among the various inference algorithms for posterior estimation, variational
inference (VI) and Monte Carlo Markov chain (MCMC) are the most two widely
used ones. It is well known that MCMC suffers from slow mixing time though
asymptotically the samples from the chain will be distributed from the true pos-
terior. VI, on the other hand, facilitates faster inference, since it is optimizing
an explicit objective function and convergence can be measured and controlled,
and it’s been widely used in many Bayesian models, such as Latent Dirichlet

21
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Allocation (Blei et al., 2003), etc. However, one drawback of VI is that it makes
strong assumption about the shape of the posterior such as the posterior can be
decomposed into multiple independent factors. Though faster convergence can be
achieved by parameter learning, the approximating accuracy is largely limited.

The above drawbacks stimulates the interest for richer function families to
approximate posteriors while maintaining acceptable learning speed. Specifically,
neural network is one among such models which has large modeling capacity and
endows efficient learning. (Rezende and Mohamed, 2015) proposed normalization
flow, where the neural network is set up to learn an invertible transformation
from one known distribution, which is easy to sample from, to the true posterior.
Model learning is achieved by minimizing the KL divergence between the empirical
distribution of the generated samples and the true posterior. After properly trained,
the model will generate samples which are close to the true posterior, so that
Bayesian predictions are made possible. Other methods based on modeling random
variable transformation, but based on different formulations are also explored,
including NICE (Dinh et al., 2014), the Inverse Autoregressive Flow (Kingma et al.,
2016), and Real NVP (Dinh et al., 2016).

One key component for normalizing flow to work is to compute the determinant
of the Jacobian of the transformation, and in order to maintain fast Jacobian
computation, either very simple function is used as the transformation, such
as the planar flow in (Rezende and Mohamed, 2015), or complex tweaking of
the transformation layer is required. Alternatively, in this paper we propose a
simple and yet effective architecture of normalizing flows, based on convolution
on the random input vector. Due to the nature of convolution, bi-jective mapping
between the input and output vectors can be easily established; meanwhile, efficient
computation of the determinant of the convolution Jacobian is achieved linearly.
We further propose to incorporate dilated convolution (Oord et al., 2016b; Yu
and Koltun, 2015) to model long range interactions among the input dimensions.
The resulting convolutional normalizing flow, which we term as Convolutional
Flow (ConvFlow), is simple and yet effective in warping simple densities to match
complex ones.

The remainder of this paper is organized as follows: We briefly review the
principles for normalizing flows in Section 3.2, and then present our proposed
normalizing flow architecture based on convolution in Section 3.3. Empirical
evaluations and analysis on both synthetic and real world data sets are carried out
in Section 3.4, and we conclude this paper in Section 3.5.
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3.2 preliminaries

3.2.1 Transformation of random variables

Given a random variable z ∈ Rd with density p(z), consider a smooth and
invertible function f : Rd → Rd operated on z. Let z ′ = f(z) be the resulting
random variable, the density of z ′ can be evaluated as

p(z ′) = p(z)

∣∣∣∣det
∂f−1

∂z ′

∣∣∣∣ = p(z) ∣∣∣∣det
∂f

∂z

∣∣∣∣−1 (16)

thus

logp(z ′) = logp(z) − log
∣∣∣∣det

∂f

∂z

∣∣∣∣ (17)

3.2.2 Normalizing flows

Normalizing flows considers successively transforming z0 with a series of trans-
formations {f1, f2, ..., fK} to construct arbitrarily complex densities for zK = fK ◦
fK−1 ◦ ... ◦ f1(z0) as

logp(zK) = logp(z0) −
K∑
k=1

log
∣∣∣∣det

∂fk
∂zk−1

∣∣∣∣ (18)

Hence the complexity lies in computing the determinant of the Jacobian matrix.
Without further assumption about f, the general complexity for that is O(d3) where
d is the dimension of z. In order to accelerate this, (Rezende and Mohamed, 2015)
proposed the following family of transformations that they termed as planar flow:

f(z) = z+uh(w>z+ b) (19)

where w ∈ Rd,u ∈ Rd,b ∈ R are parameters and h(·) is a univariate non-linear
function with derivative h ′(·). For this family of transformations, the determinant
of the Jacobian matrix can be computed as

det
∂f

∂z
= det(I+uψ(z)>) = 1+u>ψ(z) (20)

where ψ(z) = h ′(w>z+ b)w. The computation cost of the determinant is hence
reduced from O(d3) to O(d).

Applying f to z can be viewed as feeding the input variable z to a neural network
with only one single hidden unit followed by a linear output layer which has the
same dimension with the input layer. Obviously, because of the bottleneck caused
by the single hidden unit, the capacity of the family of transformed density is
hence limited.



24 convolutional normalizing flows

3.3 a new transformation unit

In this section, we first propose a general extension to the above mentioned planar
normalizing flow, and then propose a restricted version of that, which actually
turns out to be convolution over the dimensions of the input random vector.

3.3.1 Normalizing flow with d hidden units

Instead of having a single hidden unit as suggested in planar flow, consider d
hidden units in the process. We denote the weights associated with the edges
from the input layer to the output layer as W ∈ Rd×d and the vector to adjust
the magnitude of each dimension of the hidden layer activation as u, and the
transformation is defined as

f(z) = u� h(Wz+b) (21)

where � denotes the point-wise multiplication. The Jacobian matrix of this trans-
formation is

∂f

∂z
= diag(u� h ′(Wz+ b))W (22)

det
∂f

∂z
= det[diag(u� h ′(Wz+ b))]det(W) (23)

As det(diag(u� h ′(Wz+b))) is linear, the complexity of computing the above
transformation lies in computing det(W). Essentially the planar flow is restricting
W to be a vector of length d instead of matrices, however we can relax that as-
sumption while still maintaining linear complexity of the determinant computation
based on a very simple fact that the determinant of a triangle matrix is also just
the product of the elements on the diagonal.

3.3.2 Convolutional Flow

Since normalizing flow with a fully connected layer may not be bijective and
generally requires O(d3) computations for the determinant of the Jacobian even it
is, we propose to use 1-d convolution to transform random vectors.

Figure 5(a) illustrates how 1-d convolution is performed over an input vector
and outputs another vector. We propose to perform a 1-d convolution on an input
random vector z, followed by a non-linearity and necessary post operation after
activation to generate an output vector. Specifically,

f(z) = z+u� h(conv(z,w)) (24)
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Figure 5: (a) Illustration of 1-D convolution, where the dimensions of the input/output
variable are both 8 (the input vector is padded with 0), the width of the convo-
lution filter is 3 and dilation is 1; (b) A block of ConvFlow layers stacked with
different dilations.

where w ∈ Rk is the parameter of the 1-d convolution filter (k is the convolution
kernel width), conv(z,w) is the 1d convolution operation as shown in Figure
5(a), h(·) is a monotonic non-linear activation function1, � denotes point-wise
multiplication, and u ∈ Rd is a vector adjusting the magnitude of each dimension
of the activation from h(·). We term this normalizing flow as Convolutional Flow
(ConvFlow).

ConvFlow enjoys the following properties

• Bi-jectivity can be easily achieved with standard and fast 1d convolution
operator if proper padding and a monotonic activation function with bounded
gradients are adopted (Minor care is needed to guarantee strict invertibility,
see Appendix 3.6 for details);

• Due to local connectivity, the Jacobian determinant of ConvFlow only takes
O(d) computation independent from convolution kernel width k since

∂f

∂z
= I+ diag(w1u� h ′(conv(z,w))) (25)

1 Examples of valid h(x) include all conventional activations, including sigmoid, tanh, softplus, rectifier
(ReLU), leaky rectifier (Leaky ReLU) and exponential linear unit (ELU).
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where w1 denotes the first element of w.
For example for the illustration in Figure 5(a), the Jacobian matrix of the 1d
convolution conv(z,w) is

∂ conv(z,w)

∂z

=



w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2

w1


(26)

which is a triangular matrix whose determinant can be easily computed;

• ConvFlow is much simpler than previously proposed variants of normalizing
flows. The total number of parameters of one ConvFlow layer is only d+ k
where generally k < d, particularly efficient for high dimensional cases.
Notice that the number of parameters in the planar flow in (Rezende and
Mohamed, 2015) is 2d and one layer of Inverse Autoregressive Flow (IAF)
(Kingma et al., 2016) and Real NVP (Dinh et al., 2016) require even more
parameters. In Section 3.3.3, we discuss the key differences of ConvFlow
from IAF in detail.

A series of K ConvFlows can be stacked to generate complex output densities.
Further, since convolutions are only visible to inputs from adjacent dimensions, we
propose to incorporate dilated convolution (Oord et al., 2016b; Yu and Koltun, 2015)
to the flow to accommodate interactions among dimensions with long distance
apart. Figure 5(b) presents a block of 3 ConvFlows stacked, with different dilations
for each layer. Larger receptive field is achieved without increasing the number of
parameters. We term this as a ConvBlock.

From the block of ConvFlow layers presented in Figure 5(b), it is easy to verify
that dimension i (1 6 i 6 d) of the output vector only depends on succeeding
dimensions, but not preceding ones. In other words, dimensions with larger indices
tend to end up getting little warping compared to the ones with smaller indices.
Fortunately, this can be easily resolved by a Revert Layer, which simply outputs a
reversed version of its input vector. Specifically, a Revert Layer g operates as

g(z) := g([z1, z2, ..., zd]>) = [zd, zd−1, ..., z1]> (27)
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It’s easy to verify a Revert Layer is bijective and that the Jacobian of g is a d× d
matrix with 1s on its anti-diagonal and 0 otherwise, thus log

∣∣∣det ∂g∂z
∣∣∣ is 0. Therefore,

we can append a Revert Layer after each ConvBlock to accommodate warping
for dimensions with larger indices without additional computation cost for the
Jacobian as follows

z→ ConvBlock→ Revert→ ConvBlock→ Revert→ ...→︸ ︷︷ ︸
Repetitions of ConvBlock+Revert for K times

f(z) (28)

3.3.3 Connection to Inverse Autoregressive Flow

Inspired by the idea of constructing complex tractable densities from simpler ones
with bijective transformations, different variants of the original normalizing flow
(NF) (Rezende and Mohamed, 2015) have been proposed. Perhaps the one most
related to ConvFlow is Inverse Autoregressive Flow (Kingma et al., 2016), which
employs autoregressive transformations over the input dimensions to construct
output densities. Specifically, one layer of IAF works as follows

f(z) = µ(z) +σ(z)� z (29)

where

[µ(z),σ(z)]← AutoregressiveNN(z) (30)

are outputs from an autoregressive neural network over the dimensions of z. There
are two drawbacks of IAF compared to the proposed ConvFlow:

• The autoregressive neural network over input dimensions in IAF is repre-
sented by a Masked Autoencoder (Germain et al., 2015), which generally
requires O(d2) parameters per layer, where d is the input dimension, while
each layer of ConvFlow is much more parameter efficient, only needing k+ d
parameters (k is the kernel size of 1d convolution and k < d).

• More importantly, due to the coupling of σ(z) and z in the IAF transforma-
tion, in order to make the computation of the overall Jacobian determinant
det ∂f∂z linear in d, the Jacobian of the autoregressive NN transformation is
assumed to be strictly triangular (Equivalently, the Jacobian determinants of µ
and σ w.r.t z are both always 0. This is achieved by letting the ith dimension
of µ and σ depend only on dimensions 1, 2, ..., i− 1 of z). In other words, the
mappings from z onto µ(z) and σ(z) via the autoregressive NN are always singular,
no matter how their parameters are updated, and because of this, µ and σ will only
be able to cover a subspace of the input space z belongs to, which is obviously less
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desirable for a normalizing flow.2 Though these singularity transforms in
the autoregressive NN are somewhat mitigated by their final coupling with
the input z, IAF still performs slightly worse in empirical evaluations than
ConvFlow as no singular transform is involved in ConvFlow.

• Lastly, despite the similar nature of modeling variable dimension with an
autoregressive manner, ConvFlow is much more efficient since the computa-
tion of the flow weights w and the input z is carried out by fast native 1-d
convolutions, where IAF in its simplest form needs to maintain a masked
feed forward network (if not maintaining an RNN). Similar idea of using con-
volution operators for efficient modeling of data dimensions is also adopted
by PixelCNN (Oord et al., 2016a).

3.4 experiments

We test performance the proposed ConvFlow on two settings, one on synthetic
data to infer unnormalized target density and the other on density estimation for
hand written digits and characters.

3.4.1 Synthetic data

We conduct experiments on using the proposed ConvFlow to approximate an
unnormalized target density of z with dimension 2 such that p(z) ∝ exp(−U(z)).
We adopt the same set of energy functions U(z) in (Rezende and Mohamed, 2015)
for a fair comparison, which is reproduced below

U1(z) =
1

2

(
‖z‖− 2
4

)2
− log

(
e
− 1
2

[
z1−2
0.6

]2
+ e

− 1
2

[
z1+2
0.6

]2)

U2(z) =
1

2

[
z2 −w1(z)

0.4

]2
where w1(z) = sin

(
πz1
2

)
r. The target density of z are plotted as the left most

column in Figure 6, and we test to see if the proposed ConvFlow can transform a

2 Since the singular transformations will only lead to subspace coverage of the resulting variable µ
and σ, one could try to alleviate the subspace issue by modifying IAF to set both µ and σ as free
parameters to be learned, the resulting normalizing flow of which is exactly a version of planar flow
as proposed in (Rezende and Mohamed, 2015).
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two dimensional standard Gaussian to the target density by minimizing the KL
divergence

KL(qK(zk)||p(z)) = Ezk logqK(zk)) − Ezk logp(zk)

=Ez0 logq0(z0)) − Ez0 log
∣∣∣∣det

∂f

∂z0

∣∣∣∣+ Ez0U(f(z0)) + const (31)

where all expectations are evaluated with samples taken from q0(z0). We use a 2-d
standard Gaussian as q0(z0) and we test different number of ConvBlocks stacked
together in this task. Each ConvBlock in this case consists a ConvFlow layer with
kernel size 2, dilation 1 and followed by another ConvFlow layer with kernel size
2, dilation 2. Revert Layer is appended after each ConvBlock, and tanh activation
function is adopted by ConvFlow. The Autoregressive NN in IAF is implemented
as a two layer masked fully connected neural network (Germain et al., 2015).

Figure 6: (a) True density; (b) Density learned by IAF (16 layers); (c) Density learned by
ConvFlow. (8 blocks with each block consisting of 2 layers)

Experimental results are shown in Figure 6 for IAF (middle column) and Con-
vFlow (right column) to approximate the target density (left column). Even with
16 layers, IAF puts most of the density to one mode, confirming our analysis
about the singular transform problem in IAF: As the data dimension is only two,
the subspace modeled by µ(z) and σ(z) in Eq. (29) will be lying on a 1-d space,
i.e., a straight line, which is shown in the middle column. The effect of singular
transform on IAF will be less severe for higher dimensions. While with 8 layers of
ConvBlocks (each block consists of 2 1d convolution layers), ConvFlow is already
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approximating the target density quite well despite the minor underestimate about
the density around the boundaries.

3.4.2 Handwritten digits and characters

3.4.2.1 Setups

To test the proposed ConvFlow for variational inference we use standard benchmark
datasets MNIST3 and OMNIGLOT4 (Lake et al., 2013). Our method is general and
can be applied to any formulation of the generative model pθ(x, z); For simplicity
and fair comparison, in this paper, we focus on densities defined by stochastic
neural networks, i.e., a broad family of flexible probabilistic generative models with
its parameters defined by neural networks. Specifically, we consider the following
two family of generative models

G1 : pθ(x, z) = pθ(z)pθ(x|z) (32)

G2 : pθ(x, z1, z2) = pθ(z1)pθ(z2|z1)pθ(x|z2) (33)

where p(z) and p(z1) are the priors defined over z and z1 for G1 and G2, respec-
tively. All other conditional densities are specified with their parameters θ defined
by neural networks, therefore ending up with two stochastic neural networks. This
network could have any number of layers, however in this paper, we focus on the
ones which only have one and two stochastic layers, i.e., G1 and G2, to conduct a
fair comparison with previous methods on similar network architectures, such as
VAE, IWAE and Normalizing Flows.

We use the same network architectures for both G1 and G2 as in (Burda et al.,
2015), specifically shown as follows

G1 : A single Gaussian stochastic layer z with 50 units. In between the latent
variable z and observation x there are two deterministic layers, each with 200

units;

G2 : Two Gaussian stochastic layers z1 and z2 with 50 and 100 units, respectively.
Two deterministic layers with 200 units connect the observation x and latent
variable z2, and two deterministic layers with 100 units are in between z2
and z1.

where a Gaussian stochastic layer consists of two fully connected linear layers,
with one outputting the mean and the other outputting the logarithm of diagonal

3 Data downloaded from http://www.cs.toronto.edu/~larocheh/public/datasets/binarized_

mnist/

4 Data downloaded from https://github.com/yburda/iwae/raw/master/datasets/OMNIGLOT/

chardata.mat

http://www.cs.toronto.edu/~larocheh/public/datasets/binarized_mnist/
http://www.cs.toronto.edu/~larocheh/public/datasets/binarized_mnist/
https://github.com/yburda/iwae/raw/master/datasets/OMNIGLOT/chardata.mat
https://github.com/yburda/iwae/raw/master/datasets/OMNIGLOT/chardata.mat
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covariance. All other deterministic layers are fully connected with tanh nonlinearity.
Bernoulli observation models are assumed for both MNIST and OMNIGLOT. For
MNIST, we employ the static binarization strategy as in (Larochelle and Murray,
2011) while dynamic binarization is employed for OMNIGLOT.

The inference networks q(z|x) for G1 and G2 have similar architectures to the
generative models, with details in (Burda et al., 2015). ConvFlow is hence used
to warp the output of the inference network q(z|x), assumed be to Gaussian
conditioned on the input x, to match complex true posteriors. Our baseline
models include VAE (Kingma and Welling, 2013), IWAE (Burda et al., 2015) and
Normalizing Flows (Rezende and Mohamed, 2015). Since our propose method
involves adding more layers to the inference network, we also include another
enhanced version of VAE with more deterministic layers added to its inference
network, which we term as VAE+.5 With the same VAE architectures, we also test
the abilities of constructing complex variational posteriors with IAF and ConvFlow,
respectively. All models are implemented in PyTorch. Parameters of both the
variational distribution and the generative distribution of all models are optimized
with Adam (Kingma and Ba, 2014) for 2000 epochs, with a fixed learning rate
of 0.0005, exponential decay rates for the 1st and 2nd moments at 0.9 and 0.999,
respectively. Batch normalization (Ioffe and Szegedy, 2015) and linear annealing of
the KL divergence term between the variational posterior and the prior is employed
for the first 200 epochs, as it has been shown to help training multi-layer stochastic
neural networks (Sønderby et al., 2016). Code to reproduce all reported results will
be made publicly available.

For inference models with latent variable z of 50 dimensions, a ConvBlock
consists of following ConvFlow layers

[ConvFlow(kernel size = 5, dilation = 1),

ConvFlow(kernel size = 5, dilation = 2),

ConvFlow(kernel size = 5, dilation = 4),

ConvFlow(kernel size = 5, dilation = 8),

ConvFlow(kernel size = 5, dilation = 16),

ConvFlow(kernel size = 5, dilation = 32)] (34)

5 VAE+ adds more layers before the stochastic layer of the inference network while the proposed
method is add convolutional flow layers after the stochastic layer.
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and for inference models with latent variable z of 100 dimensions, a ConvBlock
consists of following ConvFlow layers

[ConvFlow(kernel size = 5, dilation = 1),

ConvFlow(kernel size = 5, dilation = 2),

ConvFlow(kernel size = 5, dilation = 4),

ConvFlow(kernel size = 5, dilation = 8),

ConvFlow(kernel size = 5, dilation = 16),

ConvFlow(kernel size = 5, dilation = 32),

ConvFlow(kernel size = 5, dilation = 64)] (35)

A Revert layer is appended after each ConvBlock and leaky ReLU with a negative
slope of 0.01 is used as the activation function in ConvFlow. For IAF, the autore-
gressive neural network is implemented as a two layer masked fully connected
neural network.

3.4.2.2 Generative Density Estimation

For MNIST, models are trained and tuned on the 60,000 training and validation
images, and estimated log-likelihood on the test set with 128 importance weighted
samples are reported. Table 2 presents the performance of all models, when the
generative model is assumed to be from both G1 and G2.

Firstly, VAE+ achieves higher log-likelihood estimates than vanilla VAE due to
the added more layers in the inference network, implying that a better posterior
approximation is learned (which is still assumed to be a Gaussian). Second, we
observe that VAE with ConvFlow achieves much better density estimates than
VAE+, which confirms our expectation that warping the variational distribution
with convolutional flows enforces the resulting variational posterior to match the
true non-Gaussian posterior. Also, adding more blocks of convolutional flows to
the network makes the variational posterior further close to the true posterior. We
also observe that VAE with Inverse Autoregressive Flows (VAE+IAF) improves
over VAE and VAE+, due to its modeling of complex densities, however the
improvements are not as significant as ConvFlow. The limited improvement might
be explained by our analysis on the singular transformation and subspace issue in
IAF. Lastly, combining convolutional normalizing flows with multiple importance
weighted samples, as shown in last row of Table 2, further improvement on the
test set log-likelihood is achieved. Overall, the method combining ConvFlow and
importance weighted samples achieves best NLL on both settings, outperforming
IWAE significantly by 7.1 nats on G1 and 5.7 nats on G2. Notice that, ConvFlow
combined with IWAE achieves an NLL of 79.11, comparable to the best published
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result of 79.10, achieved by PixelRNN (Oord et al., 2016a) with a much more
sophisticated architecture. Also it’s about 0.8 nat better than the best IAF result
of 79.88 reported in (Kingma et al., 2016), which demonstrates the representative
power of ConvFlow compared to IAF6.

Table 2: MNIST test set NLL with generative models G1 and G2 (lower is better K is
number of ConvBlocks)

MNIST (static binarization) − logp(x) on G1 − logp(x) on G2

VAE (Burda et al., 2015) 88.37 85.66

IWAE (IW = 50) (Burda et al., 2015) 86.90 84.26

VAE+NF (Rezende and Mohamed, 2015) - 6 85.10

VAE+ (K = 1) 88.20 85.41

VAE+ (K = 4) 88.08 85.26

VAE+ (K = 8) 87.98 85.16

VAE+IAF (K = 1) 87.70 85.03

VAE+IAF (K = 2) 87.30 84.74

VAE+IAF (K = 4) 87.02 84.55

VAE+IAF (K = 8) 86.62 84.26

VAE+ConvFlow (K = 1) 86.91 85.45

VAE+ConvFlow (K = 2) 86.40 85.37

VAE+ConvFlow (K = 4) 84.78 81.64

VAE+ConvFlow (K = 8) 83.89 81.21

IWAE+ConvFlow (K = 8, IW = 50) 79.78 79.11

Results on OMNIGLOT are presented in Table 3 where similar trends can be
observed as on MNIST. One observation different from MNIST is that, the gain
from IWAE+ConvFlow over IWAE is not as large as it is on MNIST, which could be
explained by the fact that OMNIGLOT is a more difficult set compared to MNIST,

6 The result in (Kingma et al., 2016) are not directly comparable, as their results are achieved with a
much more sophisticated VAE architecture and a much higher dimension of latent code (d = 1920 for
the best NLL of 79.88). However, in this paper, we only assume a relatively simple VAE architecture
compose of fully connected layers and the dimension of latent codes to be relatively low, 50 or 100,
depending on the generative model in VAE. One could expect the performance of ConvFlow to
improve even further if similar complex VAE architecture and higher dimension of latent codes are
used.
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Table 3: OMNIGLOT test set NLL with generative models G1 and G2 (lower is better, K is
number of ConvBlocks)

OMNIGLOT − logp(x) on G1 − logp(x) on G2

VAE (Burda et al., 2015) 108.22 106.09

IWAE (IW = 50) (Burda et al., 2015) 106.08 104.14

VAE+ (K = 1) 108.30 106.30

VAE+ (K = 4) 108.31 106.48

VAE+ (K = 8) 108.31 106.05

VAE+IAF (K = 1) 107.31 105.78

VAE+IAF (K = 2) 106.93 105.34

VAE+IAF (K = 4) 106.69 105.56

VAE+IAF (K = 8) 106.33 105.00

VAE+ConvFlow (K = 1) 106.42 105.33

VAE+ConvFlow (K = 2) 106.08 104.85

VAE+ConvFlow (K = 4) 105.21 104.30

VAE+ConvFlow (K = 8) 104.86 103.49

IWAE+ConvFlow (K = 8, IW = 50) 104.21 103.02

as there are 1600 different types of symbols in the dataset with roughly 20 samples
per type. Again on OMNIGLOT we observe IAF with VAE improves over VAE and
VAE+, while doesn’t perform as well as ConvFlow.

3.4.2.3 Latent Code Visualization

We visualize the inferred latent codes z of 5000 digits in the MNIST test set
with respect to their true class labels in Figure 7 from different models with
tSNE (Maaten and Hinton, 2008). We observe that on generative model G2, all
three models are able to infer latent codes of the digits consistent with their true
classes. However, VAE and VAE+IAF both show disconnected cluster of latent
codes from the same class (e.g., digits 0 and digits 1). Latent codes inferred by
VAE for digit 3 and 5 tend to mix with each other. Overall, VAE equipped with
ConvFlow produces clear separable latent codes for different classes while also
maintaining high in-class density (notably for digit classes 0, 1, 2, 7, 8, 9 as shown
in the rightmost figure).
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Figure 7: Left: VAE, Middle: VAE+IAF, Right:VAE+ConvFlow. (best viewed in color)

3.4.2.4 Generation

After the models are trained, generative samples can be obtained by feeding
z ∼ N(0, I) to the learned generative model G1 (or z2 ∼ N(0, I) to G2). Since higher
log-likelihood estimates are obtained on G2, Figure 8 shows three sets of random
generative samples from our proposed method trained with G2 on both MNIST
and OMNIGLOT, compared to real samples from the training sets. We observe the
generated samples are visually consistent with the training data.

(a) MNIST Training data (b) Random samples
1 from IWAE-
ConvFlow (K = 8)

(c) Random samples
2 from IWAE-
ConvFlow (K = 8)

(d) Random samples
3 from IWAE-
ConvFlow (K = 8)

(e) OMNIGLOT Train-
ing data

(f) Random sam-
ples from IWAE-
ConvFlow (K = 8)

(g) Random samples
from IWAE-
ConvFlow (K = 8)

(h) Random samples
from IWAE-
ConvFlow (K = 8)

Figure 8: Training data and generated samples
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3.5 conclusions

This paper presents a simple and yet effective architecture to compose normalizing
flows based on 1d convolution on the input vectors. ConvFlow takes advantage of
the effective computation of convolution to warp a simple density to the possibly
complex target density, as well as maintaining as few parameters as possible. To
further accommodate long range interactions among the dimensions, dilated con-
volution is incorporated to the framework without increasing model computational
complexity. A Revert Layer is used to maximize the opportunity that all dimensions
get as much warping as possible. Experimental results on inferring target complex
density and density estimation on generative modeling on real world handwritten
digits data demonstrates the strong performance of ConvFlow. Particularly, density
estimates on MNIST show significant improvements over state-of-the-art methods,
validating the power of ConvFlow in warping multivariate densities. It remains an
interesting question to see how ConvFlows can be directly combined with powerful
observation models such as PixelRNN to further advance generative modeling
with tractable density evaluation. We hope to address these challenges in future
work.

3.6 conditions for invertibility

The ConvFlow proposed in Section 3.3 is invertible, as long as every term in
the main diagonal of the Jacobian specified in Eq. (25) is non-zero, i.e., for all
i = 1, 2, ...,d,

w1uih
′(conv(z,w)) + 1 6= 0 (36)

where ui is the i-th entry of the scaling vector u. When using h(x) = tanh(x), since
h ′(x) = 1− tanh2(x) ∈ [0, 1], a sufficient condition for invertibility is to ensure
w1ui > −1. Thus a new scaling vector u ′ can be created from free parameter u to
satisfy the condition as

u ′ =


u if w1 = 0

− 1
w1

+ softplus(u) if w1 > 0

− 1
w1

− softplus(u) if w1 < 0

(37)

where softplus(x) = log(1+ exp(x)). The above sufficient condition works readily
for other non-linearity functions h , including sigmoid, softplus, rectifier(ReLU),
leaky rectifier (Leaky ReLU) and exponential linear unit (ELU), as all their gradients
are bounded in [0, 1].



4
N E U R A L G E N E R AT I V E P E R M U TAT I O N L E A R N I N G

Permutations and matchings are fundamental building blocks for many ma-
chine learning applications, as they can be used to align, organize, match, and

sort data. A permutation shuffles the indices of a data point to form another data
point and permutation learning aims to recover this unknown mapping. Super-
vised permutation learning, where the pairs of (original object, permuted object)
are available , has been extensively studied in the literature and effective end-
to-end approaches based on deep neural networks have been proposed to tackle
the problem. Prior work for supervised permutation learning includes (Caetano
et al., 2009; Petterson et al., 2009; Tang et al., 2015). Meanwhile, there’s little to
no exploration for the unpaired permutation learning setting and unsupervised
permutation setting for permutation learning.

In this chapter, we first study the problem of unpaired permutation learning, i.e.,
only samples of original objects and that of permuted objects are observed while no
paired link between the two is given. We propose to tackle the unpaired permuta-
tion learning under the adversarial training framework; specifically, a permutation
generative network is trained to generate aproximated permutations conditioned
on the permuted object, by which the permuted object can be transformed back
to the original space, and a discriminative network is trained to disdinguish real
objects from the original space and the recovered ones. Empirical experiments on
sorting numbers and recovering scrambled images demonstrates the effectiveness
of the proposed method.

Next we address the problem of unsupervised generative permutation learning,
where we only observe the data samples and the permutation information is
hidden. We treat the permutations as latent variables which govern the generation
process of the data samples. We propose an efficient way to construct approximate
permutation matrices and also tractable density functions over them. With the
permutation variable treated as latent variables, a framework to maximize the data
log-likelihood is proposed. We conduct experiments on image generation, where
both the permutation and the image generators are learned. Comparable results

37
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in terms of data likelihood are obtained compared to state-of-the-art probabalistic
gerative models for images.

4.1 permutation learning preliminaries

4.1.1 What is a permutation

A permutation matrix is a square integer matrix P ∈ {0, 1}N×N, satisfying all rows
summed up to 1 and all columns summed upto 1. In other words, each row (or
column) of P is one of the N basis vectors for RN. By applying this permutation
matrix to a N-dimensional vector is equivalent to shuffling the indices of that vector.
For example, consider the following 3× 3 permutation matrix and a 3-d data vector
x, applying the permutation to the vector yields0 1 0

0 0 1

1 0 0


x1x2
x3

 =

x2x3
x1

 (38)

A closely related concept to permutation matrix is the so called doubly-stochastic
matrix or bistochastic matrix (BSM) B ∈ [0, 1]N×N, also satisfying row summed
to 1 and column summed to 1. The difference between a BSM and a permutation
matrix is that the entires in the BSM can be values in the range [0, 1]. For example,
consider the following BSM applying to the same example data vector above,0.2 0.8 0

0 0.1 0.9

0.8 0.1 0.1


x1x2
x3

 =

 0.2x1 + 0.8x2
0.1x2 + 0.9x3

0.8x1 + 0.1x2 + 0.1x3

 (39)

The output vector is no longer a shuffled version of the input; instead, each entry
in the output vector is a weighted average of all the entries from the input. In fact,
the Birkhoff–von Neumann theorem states that family of BSMs, denoted by BN, is
a convex polytope called Birkhoff polytope, with all the permutation matrices as
its vertices, i.e.

PN ⊂ BN (40)

Because of the discrete nature of the permutation matrices, directly solving for
permutations is a complex combinatorial optimization problem where gradient
based methods cannot be applied, thus the BSMs comes in handy to approximate
permutation matrices.
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4.1.2 Biostochastic Matrix Construction: Sinkhorn Operator

It has been shown that the Sinkhorn perator (Sinkhorn and Knopp, 1967) can be
used to construct a BSM from any positive square matrix. Given a positive matrix
A ∈ RN×N+ , iterate

• Normalize each row to sum 1

• Normalize each column to sum 1

The Sinkhorn operator is ensured to converge to a bistochastic matrix, guaranteed
by the following theorem:

Lemma 3 (Sinkhorn and Knopp, 1967) If A is an n× n matrix with strictly positive
elements, then there exist diagonal matrices D1 and D2 with strictly positive diagonal
elements such that D1AD2 is doubly stochastic. The matrices D1 and D2 are unique
modulo multiplying the first matrix by a positive number and dividing the second one by
the same number.

It’s worth noting that the Sinkhorn operator is a continuous operation and thus
gradient can be propagated back if the Sinkhorn operator is plugged in as a part of
a computation graph. In practice, often k, e.g., k = 10, 20, iterations of the Sinkhorn
operator is performed, which in the language of deep neraul networks is equivalent
to stacking k layers of row-sum normalization and column-sum normalization.

4.1.3 Gumbel-Sinkhorn Networks

The Sinkhorn operator is guaranteed to output a bistochastic matrix, hence it’s
natural to wonder if there is a procedure to construct an exact permutation matrix.
A recent research by (Mena et al., 2018) proposes the Gumbel-Sinkhorn Networks:
For a square matrix A, a (hard) permutation matrix can be obtained asymptotically
by solving

M(A) = arg max
P∈PN

〈P,A〉F = arg max
P∈PN

trace(PTA) (41)

Gumbel-Sinkhorn operator with temperature parameter τ > 0

S0(A/τ) = exp(A/τ) (42)

Sl(A/τ) = Tc(Tr(S
l−1(A/τ))) (43)

S(A/τ) = lim
l→∞Sl(A/τ) (44)
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Figure 9: Example of Gumbel-Sinkhorn operator used to learn to recover shuffled image
patches. (reproduced from (Mena et al., 2018))

Lemma 4 (Mena et al., 2018) For a bistochastic matrix B, define its entropy as h(B) =
−
∑
i,j Bi,j logBi,j. Then one has

S(A/τ) = arg max
B∈BN

〈B,A〉F + τh(B)

And under mild conditions,
M(A) = lim

τ→0+
S(A/τ)

The Gumbel-Sinkhorn operator ensures convergence to permutation matrices
when τ→ 0+. It is essentially solving a relaxed, and entropy regularized version
of Eq. 41, where the solution becomes a hard permutation matrix when the
termperature hyper-parameter τ→ 0, because any biostochastic matrix has to be a
permutation matrix if its entropy is 0. To let the solution approximate closer to a
permutation matrix, one might attempp to set τ to a very small value. However,
note that there is a tradeoff between a higher temperature and lower one, as a larger
τ will ensure the feasible space more smooth thus gradient based optimization
techniques can be used but the solution will be less closer to a permutation matrix
and a smaller τ will make the problem almost indifferentiable at every B.

4.1.4 Supervised permutation laerning

The problem of supervised (visual) permutation learning can be defined in two
differnt manners:
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Figure 10: Example of supervised visual permutation learning (reproduced from (Cruz
et al., 2017))

• Supervision on permuted images: Given pairs of original image X and
permuted image X̃, we can formulate to solve for the permutation such
that the residuar error in recovering the original image after applying the
permutation is minimized

min
θ

M∑
i=1

‖Xi − Pθ,X̃iX̃i‖
2 (45)

Since P is difficult to parameterize and optimize directly, we relax it to the
family of BSMs

min
θ

M∑
i=1

‖Xi −Bθ,X̃iX̃i‖
2 (46)

• Supervision on permutaion matrix itself: If we have knowledge of how
each data point are permuted, i.e., the groundtruth of the permutation matrix,
we can formulate the supervised permutation learning problem as

min
θ

M∑
i=1

‖Pi −Bθ,X̃i‖ (47)

4.2 unpaired permutation learning with adversarial nets

We are now ready to investigate the problem of unpaired permutation learning,
where only samples of original objects and that of permuted objects are observed
while no paired link betwen the two is present. This is intrinsically a harder task
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Figure 11: The DeepPermNet (Cruz et al., 2017)

compared to supervised permutation learning and existing methods on paired per-
mutation learning cannot be direclty applied. We propose to address this problem
under the adversarial training framework. Specifically, a permutation generative
network and a discriminative network are jointly trained. The permutation genera-
tive newtork is trained to generate approximated permutations conditioned on the
permuted object, such that after the generated permutation, the permuted object
can be transformed back to the original space; while the discriminative newtork is
trained to tell apart the real objects from the original space and the recovered ones.
The two networks are adversarially trained.

4.2.1 Unpaired Permutation Learning with Adversarial Net

Due to the nature of unpaired info between permuted input and original input,
it’s infeasible to construct a permutation and measure the reconstruction loss per
indivisual sample. Instead, we address this problem with the idae of adversarial
training. Specifically, two networks are trained to achieve this goal: a permutation
generative network is trained by taking a permuted objbect as input and emiting an
approximated permutation, hence a reconstruction of the permuted object can be
obatined and a discriminative network is trained to distinguish the reconstructed
sample and original sample (note that they might not necessarily be about the same
object as they are unpaired). The two networks are trained adversarially to achieve
an equillibrium. We term the proposed architecture UPLAN and an illustration of
the architecture can be referred to at Figure 12.

UPLAN consists of two network, a BSM generator and a discriminator . The
BSM generator is designed to extract features from a shuffled image, to construct
a input dependent BSM via the Sinkhorn operator and to re-permute the input
image. Specifically, the BSM generator Gθ consists of two components:
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x̃ Gθ B

Bx̃

y

Dφ

Figure 12: Unpaired permutation learning with adversarial nets (x̃ is one shuffled image,
y is another original image)

• Feature extractor, outputs a d× d nonegative matrix A

• Sinkhorn Network, normalize A onto a BSM B

The discriminator Dφ is designed to tell apart real images from reconstructed
images, which is essentially a binary image classifier with the real images labeled
as 1 and the reconstructed images labeled as −1.

The optimization objective of UPLAN is the following minimax problem

min
θ

max
φ

Ex̃ log(1−Dφ(Gθ(x̃)x̃)) + Ey logDφ(y) (48)

Analogous to standard GAN reasoning, given infinite model capacities for both
Gθ and Dφ, UPLAN is able to recover the BSM used to shuffle the original real
images.

4.2.2 Experiments

We evaluate UPLAN for its ability to recover permutations on two settings: sorting
numbers and solving jagsaw problems. Quantitative comparison against supervised
permutation learning methods is provided.

4.2.2.1 Sorting numbers

Similar to the supervised settings in (Mena et al., 2018), we sample two sets of
random vectors with dimension N, where each entry is uniformly sampled from
the [0, 1] interval, x and y. we only sort the entries of y and keep x as it is. This
ensures x is the shuffled version of some sorted vector x0 which the model doesn’t
have access to. We train our network with these two sets of vectors and evaluate
if the model is able to learn to sort x to x0 based on another sorted vector y.
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Following the setting in (Mena et al., 2018), the BSM generator in UPLAN network
has two fully connected layers with 32 hidden units and the discriminator is also
implemented as a two-layer fully connected layers with 32 hidden units with a
sigmoid output non-linearity for binary classification. We report the proportion
of sequences where there was at least one error entry in the sorted sequence as
the evaluation measure. Table 4 presents the performance of sorting N numbers
compared to existing work. We observe that with the more difficult unpaired

N = 5 N = 10 N = 15 N = 80 N = 100 N = 120

(Mena et al., 2018) - Gumbel-Sinkhorn .0 .0 .0 .0 .0 .01

(Ours) - UPLAN .0 .002 .005 .012 .015 .02

Table 4: Error rates on sorting different size of numbers (lower is better)

setting, there is little to no different in terms of sorting number compared to the
supervised permutation learning method.

4.2.2.2 Jigsaw puzzles

Figure 13: (a) Scrambled images; (b) Real images; (c) Recovered images

Next we evaluate UPLAN on solving jigsaw puzzles of real words images, a
more complex scenario for learning permutations to reconstruct an image from
a collection of scrambled jigsaw pieces from it. We use the CelebA human face
dataset (Liu et al., 2015) and chop each image to 4× 4 patches. Both the BSM gen-
erator and the discriminator uses the same CNN architecture as DCGAN (Radford
et al., 2015).

We use Kendall’s tau to measure the correlation of recovered sequence of image
patches to the true sequence of patches from un-scrambled image. UPLAN achieves
a Kendall’s tau of 0.73, while the supervised permutation state-of-the-art (Mena
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et al., 2018) scored 0.88, which demonstrates that without the paired information of
true images and scrambled images, UPLAN is still capable of doing a reasonable
good job in recovering the correct ordering of image patches.

Figure 13 presents qualitative results, showing a batch of scrambled images, real
images and recovered images. Note that images in Figure 13(a) are not scrambled
from images in Figure 13(b), hence they are unpaired.

4.3 generative variational permutation learning

Compared to the unpaired setting, which we still have access to a set of permuted
objects and a set of original objects. It’s reasonble to ask the question of whether
permutation underlying only one set of observed objects is still possible. Consider
the problem of density estimation for data x ∈ Rd, where the joint data distribution
can be decomposed in an autoregressive manner on its dimensions as

p(x) = p(x1)

d∏
i=2

p(xi|x<i) (49)

Specifically, PixelRNN (Oord et al., 2016a) is one of these models to learn the
conditional density of pixel generation with a Recurrent Neural Network and
achieves the strongest likelihood estimates so far. One implicit assumption made
by PixelRNN is that image pixels are generated in a raster manner, i.e., pixels in the
upper left corner of an image should be generated before pixels in the lower right.
This essentially makes a strong assmption about the conditoinal dependencies
among the pixels based their order. However, for any probabalistic model with
finite model capacity, this parcitular order might not be optimal for every images.
In this section, we try to address this aspect by treating the order of conditional
dependencies of an image as a latent variable and models the density of an image
based on it. Exact inference on this discrete variable turns out intractable, therefore
we propose a continuous relaxation to it.

4.3.1 Probablistic modeling with latent permutations

As stated in previous sections, applying a permutation matrix P to a data vector x
will permutate the dimensions accordingly

logp(x) = log
∑

P

p(x, P) (50)

Computing the summation over all possbile P is infeasible as the support size of P

is d!. We resort to a continuous relaxation of the set of all permutation matrices, the
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set of all doubly stochastic matrices B, which is also known as Birkhoff polytope
whose limit points are eactly the permutation matrices. Formally

logp(x) = log EB
p(x,B)
q(B|x)

(51)

> EB logp(B) + EB logp(x|B) − EB logq(B|x) (52)

where p(x|B) models the density with a given (soft) permutation B of the data x,
i.e., p(x|B) ≡ p(Bx). Existing density estimates methods including PixelRNN can
be plugged into p(x|B), estimating the density of a softly permutated version of
Bx, instead of x itself.

To facilitate the stochastic optimization over the expectations of B, we need to
define a propoer probabalistic measure over the Birkhoff polytope, which also
allows for efficient sampling and density evaluations.

4.3.2 Construction of doubly stochastic matrices

For any given square Amatrix with non-negative entries, a doubly stochastic matrix
B can be obtained from the following procecedure of alternatively normalizing its
rows to of sum 1 and its columns to be of sum 1.

This procedure will take A as input and ultimately output a doubley stochastic
matrix B. However this process is not invertible, as any multiples of A will lead to
the same B. To devise an invertible construction of doubly stochastic matrix, we
assume the colomn sum of A is of 1. Hence one iteration of the procedure can be
written as

A(i+1) = D1A
(i)D2 (53)

wherr D1 = diag(rowsum(A)) and D2 = diag(colsum(D1A)).
Assume A is column-normalized and B is the output of applying row normaliza-

tion to A, i.e.,

B = [diag(λ)]−1A⇔ A = diag(λ)B (54)

where λ is the row sum vector of A. Since A is column-normalized, we also have
B>λ = 1, which gives λ = (B>)−11, meaning that λ is uniquely determined by the
rows sum of (B>)−1, hence column sums of B−1. This suggests one step of row
normalizing a column-normalized matrix is a bijective operation, with its Jacobian
specified as det(J) =

∏d
i=1 det(Ji) where Ji is the Jacobian of normalizing row i

of A, each of which takes O(d3) computation, resulting in an overall computation
complexity of Jacobian determinant computation to O(d4). However, we will show
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that the determinant computation is not required in defining and learning the
distributions over the bistochastic matrices.

Readers could refer to (Linderman et al., 2017) for constructing a doubly stochas-
tic matrices with the stick breaking process, however in this chapter, the proposed
construction is a lot simpler and more efficient. Most importantly, reparametering
the Birkhoff polytope is not required.

4.3.3 Efficient Computation for Determinant, Inverse of bistochastic matrices

Given two bistochastic matrix A and B with size n×n, a larger bistochastic matrix
with size 2n× 2n can be constructed via

S =

[
aA (1− a)A

(1− a)B aB

]
(55)

and det(S) = det
(
(2a − 1)AB

)
, or equivalently log |det(S)| = n log |2a − 1| +

log |det(A)|+ log |det(B)|. Futher, the inverse of S can be efficiently computed in a
recursive way as

S−1 =
1

1− 2a

[
−aA−1 (1− a)B−1

(1− a)A−1 −aB−1

]
(56)

with the inverse of a 2 × 2 stochastic matrix computed as

[
a 1− a

1− a a

]−1
=

1
1−2a

[
−a 1− a

1− a −a

]
.

Suppose biostochastic matrices S1 and S2 are of size m×m and n×n, respec-
tively, and without loss of generality, m 6 n. we can construct a new bistochastic
matrix S with size (m+n)× (m+n) as follows

S = a

[
S1

S2

]
+ (1− a)

[
S1

S2

]
(57)
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and its determinant is

det(S) = det(A+B) = det(A)det(Im+n +A−1B) (58)

=det(A)det

(
Im+n +

1− a

a

[
S−11

S−12

][
S1

S2

])
(59)

=det(A)det

(
Im+n +

1− a

a

[
Im

In

])
(60)

=det(S1)det(S2)
m+n−1∏
j=0

(
a+ (1− a) exp

{
2jmπi

m+n

})
(61)

=det(S1)det(S2)
m+n−1∏
j=0

√
a2 + (1− a)2 + 2a(1− a) cos

(
2jmπ

m+n

)
(62)

where we used the determinant of a circulant matrix. This gives O((m+n) log(m+

n)) complexity if m 6= n and O(m+n) if m = n.
The inverse of S can also be computed efficiently as

S−1S = Im+n (63)

⇒

(
a

[
S1

S2

]
+ (1− a)

[
S1

S2

])[
A11 A12 A13

A21 A22 A23

]
= Im+n (64)

⇒a

[
S1A1 S1A2

S2A3 S2A4

]
+ (1− a)

[
S1B3 S1B4

S2B1 S2B2

]
= Im+n (65)

⇒a

[
S1A1 S1A2

S2A3 S2A4

]
+ (1− a)

[
S1B3 S1B4

S2B1 S2B2

]
= Im+n (66)

4.3.4 Learning global permutation for a dataset

For a data set X, we aim to find a fixed permutation approximation B by generative
modeling, such that

logp(x) = logp(Bx) + log |detB| (67)

is maximized. In generation, a sample image can be constructed as B−1x̃, where x̃
is a sample output from the autoregressive generator p.

4.3.5 Distribution on doubly stochastic matrices

Given a random matrix with row sums of 1, we can construct follow the alterna-
tively normalizing procedure, which in the limit will return a doubly stochastic



4.3 generative variational permutation learning 49

matrix. It turns out that running the procedure for K steps will suffice to give a suf-
ficiently accurate approximated doubly stochastic matrix. Thus we readily obtain a
way to construct doubly stochastic matrices as well as evaluate density likelihoods
of the resulting doubly stochastic matrix, since the above procedure is bijective
given that the initial random matrix is of row 1. To this end, one way to construct
such matrix is to sample a set of d random vectors from a logistic Gaussian (also
for the ease for reparameterization). For both the prior and variational posterior of
B, we set

p(αi) = LogisticGaussian(0, I) for i = 1, ..,d

q(αi|x) = LogisticGaussian(µ(x),Σ(x)) for i = 1, ...,d (68)

where the parameter of the variational posterior for A conditioned on x denotes
the inference dependency on x, which can be implemented by a neural network.

Then the data likelihood equipped with dimension ordering turns to be

logp(x) > EB logp(B) + EB logp(x|B) − EB logq(B|x)

=Eα logp(α) + Eα logp(x|f(α)) − Eα logq(α|x)

=Eα logp(α) − Eα logq(α|x)

+ Eα logp(f(α)x|α) + Eα log |det f(α)|

=Eα logp(f(α)x|α) + Eα log |det f(α)|

−KL(q(α|x)‖p(α)) (69)

where f is the operator mapping vector α to a bistochastic matrix B as defined
above, and p(·|·) is a conditional generator, such as conditional PixelCNN where α
can be treated as the permutation embeddings for data x.

4.3.6 Experiments

We conduct experiments on generative modeling for CIFAR-10 images. Specif-
ically, we incorporate the permutation learning framework with the PixelCNN
image generator to evaluate the effects of adding the components for permutation
learning.

It can be seen that incorporating pixel-level permutation learning into PixelCNN
is a diffcult task, in thes sense that in a fully unsupervised setting without any
knowledge about the annotations of the images, any individual pixel doesn’t carry
much information about the content of the image. Modeling permutation on blocks
of pixels, such as image regions would be a meaningful direction to purse, however
that may require access to information about the regions in an image.
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Model Test set

(Oord et al., 2016a) - PixelCNN 2.996

PixelCNN with reversed ordering 2.992

PixelCNN (deterministic perm. learning) 3.656

PixelCNN (variational perm. learning) 5.628

Table 5: Negative log-likelihood on CIFAR-10 in bits/dim (lower is better)

4.4 conclusions

In this chapter, we explore neural generative and probabilistic modeling of per-
mutations, one of the key discrete structures for various machine learning tasks.
To this end, we first propose to model and learn permutations with adversarial
training for the unpaired setting; then for the unsupervised setting, we construct
probabilistic models over permutations and propose to learn such latent permuta-
tions from the data in a fully unsupervised manner. Experiments for the unpaired
setting demonstrate that learning permutations without supervision is possbile,
however for the fully unsupervised settings, pixel-level permutation learning still
encounters technical challenges.
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N E U R A L P R O B A B L I S T I C L A N G UA G E M O D E L I N G

The task of language modeling aims to address the question of how tokens in
language sequences can be modeled in a principled way. It aims to learn the

probability of language sequences, by modeling and how language tokens, such
as words, can be generated based on its context . Specifically, given a piece of
language text consisting T words, w1,w2, ...,wT , a language model tries to model
and maximize the joint density p(w1,w2, ...,wT ). The way to approach the joint
likelihood is to decompose the joint modeling problem into a series of sub-problems
of estimating the conditional generative distribution of a single word given its
context as

p(w1,w2, ...,wT ) =
T∏
i=1

p(wi|w<i) (70)

where w<i represents the words preceding wi. Classical language models, such
as N-grams, applies the above strategy to estimate the conditionals p(wi|w<i) by
counting the frequencies and computing the ratios of all sub-sequences of length n.
N-grams are simple and easy to implement, however they are prone to overfit as
it’s simply memorizing the frequency ratios.

Recently, deep neural network based language models have attracted much
attention, due to their ability to represent and learn complex conditional densities
embedded in human languages. Significant improvement over perplexity has
been achieved with state-of-the-art language models based on recurrent neural
networks, by directly modeling the next word generative distribution p(wi|w<i)
with RNN. For example, on the PTB benchmark data set, the AWD-LSTM achieves
an impressively low perplexity of 68.6 on the validation set and 65.8 on the test set,
respectively. Despite the great success of language modeling with complex RNN
architectures, the underlying principle of language modeling, i.e. using multiple
conditional densities of a single next token as a surrogate for joint density of the
entire sequence, hasn’t changed. We argue that with any finite model capacity,
this is sub-optimal as the resulting model is only trying to predict the best next
word given a context, rather than the best sequence. As greedily picking the most

51
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probable words at each step with a language model does not necessarily grantee
the most likely sequence. In fact, beam search is widely used in the sampling
process from a trained language model, however the training process is not aware
of such guidance to maximize the likelihood of completing the sequence.

In this chapter, we propose to address this problem from a fundamental per-
spective for language modeling , i.e., trying to model how the language sequence
can be completed based on the context. In contrast to only modeling the next
word generative distribution p(wk+1|w1,ww, ...,wk) by previous approaches, this
corresponds to learning and maximizing the conditional generative density of the
remaining of the sequence

p(wk+1,wk+2, ...,wT |w1,w2, ...,wk) (71)

where k ranges through [0, T − 1]. The above formulation is explicitly emphasizing
the predictive distribution of completing a whole sequence of words based on the
context. By doing so, the model is guided to generate words such that it’s more
likely for them to compose a natural language sequence in the long run.

Specifically, we propose to model the conditional sequence generative distri-
bution with two recurrent neural networks, with one to encode and digest the
context w1,w2, ...,wk and the other to decode the context and generate the target
sequence wk+1,wk+2, ...,wT . We conduct empirical evaluations against strong
state-of-the-art RNN language models on several benchmark datasets and our
model significantly outperforms most of the baseline language models, achieving a
test set perplexity of 57.0 on PTB and 64.8 on WikiText2, respectively.

The remaining of the chapter is organized as follows: we briefly highlight the
essence of neural language modeling and indentify the connection of the proposed
approach to neural machine translation in Section 5.1. We describe the proposed
model and learning algorithm in Section 5.2. Experiments and analysis against
state-of-the-art language models are presented in 5.3 and we conclude the chapter
in 5.4.

5.1 preliminaries

5.1.1 Neural language modeling

A neural language model aims to model the next word generative distribution
p(wk+1|w<k) by a neural network and the model is trained to maximize the
average log-likelihood of all possible context and word pairs. Namely, the data
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sequence w1,w2, ...,wT is decomposed to a set of pairs {(w<i,wi)} with i = 1, ..., T
and the learning objective is to

max
1

T

T∑
i=1

logpθ(wk|w<i) (72)

where θ indexes the parameters of the neural network. For example, an RNN
language model takes all previous words as input, and produces a hidden vector
as digest for the context. The output from the RNN is fed into a softmax layer to
produce probabilities over the entire vocabulary.

5.1.2 Neural machine translation

Meanwhile, the huge success of neural machine translation (NMT) methods is
witnessed by the great performance of fitting parallel corpus to translate a sentence
from one language to that from another. Figure 14 depicts a classic encoder-decoder
architecture for machine translation

Figure 14: A simple NMT system with attention (reproduced from http://opennmt.net/)

Essentially, the neural MT system aims to maximize the conditional generative
log-likelihood of a sentence y in the target language from the parallel sentence in
the source language x, i.e.

max logp(y|x) ≡ logp(y1,y2, ...,ym|x1, x2, ..., xn) (73)

=

m∑
i=1

logp(yi|x1, x2, ..., xn,y<i) (74)

http://opennmt.net/
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wherem, n are the number of tokens in the target and source sentences, respectively.
When multiple pairs of source and target sentences are present, the conditional
generative log-likelihood is normalized by target sentence length and set as the
training objective.

5.1.3 Beam search for language generation

Beam search is a greedy strategy in language generation to generate a sequence
of tokens such that the likelihood of the generated sentence could be maximized.
It is greedy in the sense that in each step of the generation, a set of K (a user
specified parameter) most probable words is kept and generation for the next step
is conditioned on this seed set and again a set of K most probable words are kept
to the generated sequences. Beam search is essentially trying to maximize the long
term probability of the full generated sequence in an ad-hoc manner. The greedy
strategy does alleviate the problem of only focusing maximizing the per-step
likelihood of a single word, however this is still a compromise to accurately model
the joint generative likelihood of the entire sequence. Meanwhile, the proposed
method explicitly models the desired objective, i.e., the probability of completing
the full sequence, hence a better language model can be obtained.

5.2 proposed method

We propose to direcly model the conditional generative distribution of completing a
language sequence given a context, i.e, p(wk+1,wk+2, ...,wT |w1,w2, ...,wk). Specif-
ically, two recurrent neural networks are used. The encoder RNN takes the context
w1,w2, ...,wk as input and produces a digest as the context; the decoder RNN
takes the context vector and tries to correctly decode it to the target sub-sequence
wk+1,wk+2, ...,wT .

Compared with existing language models, which are all based on modeling
the per-step predictive distribution of the best next word, the proposed method
essentially enlarges the prediction horizon such that the predicted sequence is
more probable in the long run. The success of RNN based language models
to capture a longer context history demonstrates the need to model long term
dependencies over the history; the same idea should also help language modeling
on the prediction horizon. A longer prediction horizon is more likely to capture
the dynamics in natural languages, as the meaning of a sentence is reflected by the
sequence, not any individual word.

Basic sequence unit. There are various ways to define a list of word tokens as
a complete sequence for language modeling, e.g., a complete sequence can be a
sentence, a paragraph or even an entire document. In this chapter, we choose to
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treat a sentence as the basic unit for language sequence, for both its semantic to
express some meaning and also its relatively short length compared to a paragraph
or even a document for ease of model training.

Stochastic sentence slicing. With a bit of notation abuse, consider a sentence
with T words, w1,w2, ...,wT . There are T different ways to slice the sentence into
the input and the target sub-sequences. Hence to process a sentence, a total of T
training pairs can be extracted and fed sequentially to the encoder and decoder
respectively, i.e.

max
θ,φ

1

T

T−1∑
k=0

1

T − k
logpθ,φ(wk+1,wk+2, ...,wT |w1,w2, ...,wk) (75)

where θ and φ denote the parameters for the encoder RNN and decoder RNN,
respectively.

In analogy to stochastic gradient descent, we propose to sample an integer k
uniformly from 0, 1, ..., T − 1 for each sentence, and optimize

max
θ,φ

1

T − k
logpθ,φ(wk+1,wk+2, ...,wT |w1,w2, ...,wk)

k ∼ Uniform{0, 1, ..., T − 1} (76)

For a context sub-sequencew1,w2, ...,wk and the target sub-sequencewk+1,wk+2, ...,wT ,
the encoder RNN encodes the context sequence and feeds it to the decoder; the
decoder RNN takes the most recent word as input, together with the context vector
and tries to maximize the likelihood of generating the next word. The process
continues until all target words are evaluated by the decoder. In other words, the
conditional generative distribution is computed as

logpθ,φ(wk+1,wk+2, ...,wT |w1,w2, ...,wk) (77)

=

T∑
j=k+1

logp(wj|gφ(c,wk+1,wk+2, ...,wj−1)) (78)

where c = fθ(w1, ...,wk) is the digest of the input produced by the encoder RNN.
Regularization. We apply similar regularization techniques to both the en-

coder and decoder as commonly used by state-of-the-art RNN based language
models (Merity et al., 2017).

5.3 experiments

We implemented the MT based language models with LSTM and conducted
experiments on two widely used language modeling data sets, Penn Tree Bank
(PTB) (Mikolov and Zweig, 2012) and WikiText-2 (WT2) (Merity et al., 2016).
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5.3.1 Test set perplexity

Generative modeling results compared to state of the art methods are presented in
Table 6 for PTB and in Table 7 for WikiText2. To enable fair comparisons with state-
of-the-art methods, we control the number of parameters to be roughly the same
as theirs. The proposed model is implemented in PyTorch1 and all experiments are
conducted on an Nvidia GeForce GTX 1080Ti graphics card.

Model #Params Validation Test

(Kalchbrenner et al., 2014) – RNN-LDA + KN-5 + cache 9M - 92.0

(Dieng et al., 2016) - TopicRNN - 99.6 97.3

(Zaremba et al., 2014) – LSTM 20M 86.2 82.7

(Gal and Ghahramani, 2016) – Variational LSTM (MC) 20M - 78.6

(Sennrich et al., 2015) – CharCNN 19M - 78.9

(Merity et al., 2016) – Pointer Sentinel-LSTM 21M 72.4 70.9

(Grave et al., 2016) – LSTM + continuous cache pointer - - 72.1

(Inan et al., 2016) – Tied Variational LSTM + augmented loss 24M 75.7 73.2

(Zilly et al., 2016) – Variational RHN 23M 67.9 65.4

(Melis et al., 2017) – 2-layer skip connection LSTM 24M 60.9 58.3

(Merity et al., 2017) - AWD-LSTM 24M 60.7 58.8

(Yang et al., 2017) - AWD-LSTM-MoS 22M 58.1 55.9

(Zoph and Le, 2016) – NAS Cell 25M - 64.0

(Liu et al., 2018) - DARTS 23M 58.3 56.1

(Ours) EncDecLM 22M 58.9 57.0

Table 6: Perplexity on Penn Tree Bank (lower is better). Baseline results obtained from
(Merity et al., 2017), (Yang et al., 2017) and (Liu et al., 2018).

From both sets of results, it’s evidently clear that with the aim to model the re-
maining part of a sentence given a context is significantly better than just modeling
the next word given the same context. Note that the performance of the proposed
methods are not extensively tuned, which again demonstrates the effectiveness of
the motivation for the proposed model. Also, the improvement of the proposed
approach is orthogonal to using mixture of softmaxes (Yang et al., 2017), hence the
performance can be further boosted if combined with MoS.

1 https://pytorch.org/

https://pytorch.org/
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Model #Params Validation Test

(Inan et al., 2016) – Variational LSTM + augmented loss 28M 91.5 87.0

(Grave et al., 2016) – LSTM + continuous cache pointer - - 68.9

(Melis et al., 2017) – 2-layer skip connection LSTM 24M 69.1 65.9

(Merity et al., 2017) - AWD-LSTM 33M 69.1 66.0

(Yang et al., 2017) - AWD-LSTM-MoS 35M 66.0 63.3

(Ours) EncDecLM 32M 67.5 64.8

Table 7: Perplexity on WikiText-2 (lower is better). Baseline results obtained from (Merity
et al., 2017) and (Yang et al., 2017).

5.3.2 Generated language samples

We show case several language samples of length 300 words from the best model
trained on PTB.

Sample 1:

on frankfurt sterling values as oil prices closed <unk> at a lower level as

well as on tuesday ’s market decline <eos>

after the current resignation but wo n’t ranged in today ’s high <eos>

N percentage point <eos>

the dollar ’s N plunge worried about the <unk> of selling <eos>

in light of the past several factors <eos>

the dow jones market plunged N points to N pence friday <eos>

wall street was <unk> by gainers by others <eos>

investors located in sydney southwest <eos>

friday <eos>

late friday <eos>

executing major trading were respected in landmark <eos>

by potentially low ranges from most major currencies <eos>

the board ’s move <eos>

british petroleum co. ’s ford financial report <eos>

friday <eos>

of comparison warned the federal reserve ’s coffee ratio it does n’t

decline <eos>

the most defensive pursuit of current drilling industry is published <eos>

in this article <eos>

stock prices went back friday <eos>

the dollar closed last year <eos>

early trading in london and manila say it is n’t likely to <unk> its

intermediate ceiling <eos>

coming killing the interstate ’s monetary policy <eos>
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after the rule income <eos>

much <eos>

further and economic improvement <eos>

fiscal N <eos>

safe growth of scoring high income <eos>

taxes <eos>

showed reserves ending early september <eos>

the N N increase issued <eos>

the second leading seasonally adjusted for the u.s. economy <eos>

only N growth <eos>

the imf said <eos>

N <eos>

some economists had never been in <eos>

at the past week <eos>

she has focuses on the domestic earnings and down the ceiling <eos>

<unk> the bank <eos>

a N N increase in margin <eos>

proportion <eos>

income from usual period <eos>

in the year-earlier period <eos>

in houston <eos>

he said <eos>

Sample 2:

kravis universal foods corp. announced a $ N million labor-management bid

for the federal bankruptcy code in in an attempt to limit the goal of a

license for expenditures <eos>

the waiting period <eos>

its full terms at which it does n’t fail to pay for the ual deal <eos>

every three years <eos>

he exists on the robins carrier <eos>

with its adrs and <unk> cost customers to focus on debt <eos>

good notes <eos>

when the million redemption amount of six other properties may lead to the

pay stage <eos>

cars <eos>

the company ’s position only <eos>

the government ’s defaulted value would be for sale <eos>

N million <eos>

revenue <eos>

it is in an outsider <eos>

to join prudential-bache <eos>

<unk> power units <eos>

the facility <eos>

insiders owned by the underwriters <eos>

grocery waste co <eos>
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armstrong ’s chief operating partners <eos>

atlanta <eos>

palm <unk> union needs to sell the company ’s assets <eos>

the trust stock in other areas <eos>

but would do n’t have any plans to handle it <eos>

offices <eos>

<eos>

the case <eos>

N <eos>

the person outlawed george <unk> chief executive will take act on a

placement of assets <eos>

at a <unk> price <eos>

advised mccaw based in an interview <eos>

wpp group <eos>

norfolk tests <eos>

the high-yield fund that the transaction were seeking to deal with <eos>

the majority of the company ’s assets <eos>

it <unk> <eos>

filing <eos>

the company took place monday <eos>

john robertson chairman and chief executive officer <eos>

georgia-pacific <eos>

cigna and executive as well as a director of qintex entertainment ’ sale <

eos>

the agreement <eos>

the british company <eos>

it has the debt offering after potential increases and details of its

transactions <eos>

generation study patent

Sample 3:

but many will have less discounting <unk> but able to come at monday before

contemporary party will be at the crucial time <eos>

vicar <unk> president in the financial-services market at lebanon <eos>

the credit institute <eos>

the <unk> for businesses <eos>

the rapid consortium of <unk> east bloc here <eos>

the region <eos>

bankers <unk> <unk> adviser and trying to ease their official <unk> <eos>

the public management contractor we consider credibility <eos>

a cost-of-living tube <eos>

more than people near the country or cambodia <eos>

the provider of only all the <unk> issues <eos>

for some positive <unk> but indeed after the soviet union <eos>

why those <unk> were closed but were learning <eos>

their massive <unk> did n’t open even intense <eos>
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a shipbuilding industry for <unk> <eos>

they halls <eos>

<unk> <eos>

the regular and <unk> <unk> of inspection <eos>

of the almost $ N million code with hispanics to the site of japan <eos>

sailing operations <eos>

which it expects to deliver about $ N million <eos>

to improve these costs <eos>

reached and in the last two years <eos>

efforts to require <unk> efficiency and consumer sales <eos>

the collapse of sudden increases in dual analysis <eos>

and palace <unk> costs <eos>

flew from the steel operations <eos>

recycled savings bank <eos>

the federal local government <eos>

no significant accounts <eos>

putting both real coverage <eos>

<eos>

effective to any <unk> soon <eos>

dividends <eos>

<eos>

the strong growth of the guerrilla process violates how much of the nih

struck or <unk> corp. would continue to be described as a result of

amended a restricting interest since N <eos>

later <eos>

these rates have been short-lived <eos>

<eos>

at least a bad one hands of efficient sales <eos>

and is under

Sample 4:

up the concern <eos>

guests in tokyo entered the first <unk> <unk> and its <unk> business

program <eos>

<unk> as the N <unk> of arkansas <unk> that jointly chosen to register a <

unk> to N chinese <unk> in <unk> cambria county living in new york <eos>

pushing money $ N N on <unk> ’s N winter games in the suburban new england

<eos>

the virgin islands <eos>

between the soviet union and the national institutes of congress <eos>

office <eos>

an <unk> development candidate <eos>

an <unk> bill to staffers support comeback <eos>

after a lobbying estimate <eos>

at least against abc was <unk> and less expensive centers <eos>

leaving into <unk> <unk> <eos>



5.4 conclusions 61

a student <unk> <eos>

the mandatory age of series <eos>

refuge as a <unk> <eos>

such a <unk> <unk> revamped <eos>

the <unk> against the <unk> <eos>

<unk> n.m. <eos>

because this have been <unk> la <unk> mayor dai-ichi rockefeller <eos>

N hours <eos>

break the <unk> <unk> tell questions <eos>

weigh on a major <unk> <eos>

row noting that he was <unk> <eos>

a republic scotland new york legislature on its <unk> center <eos>

fate <eos>

the moore show for just another newspaper <eos>

black troops <eos>

is another respective life <eos>

everything from <unk> <eos>

terry core school and urge it along to the french <unk> <eos>

class of the movie program being <unk> <eos>

the home system in <unk> with a <unk> that disappointment that the <unk>

can make data with the <unk> of the <unk> or the <unk> <unk> of which

the <unk> is <unk> out <eos>

the <unk> or interest james <unk> ’s environmental clearance on inner land

an official in los angeles where a atlantic island investigation the

picture even any <unk> tally by gov. kean cities/abc corp. and the

It can be seen that the generated text samples resemble well to natural sentences
with the same theme as sentences from the data set. Meanwhile, the logic and
story flows are reasonably good. Note that in the absence of any grammatical
intervention and regularizations, grammatical errors occur less than we would
have expected.

5.4 conclusions

In this chapter, we propose to address the language modeling problem from a
fundamental perspective for language modeling , i.e., trying to model how the
language sequence can be completed based on the context. Specifically we propose
to model the conditional sequence generative distribution with two recurrent neural
networks, with one to encode and digest the history and the other to decode the
context and generate the target sequence to complete the sequence. We conduct
empirical evaluations against state-of-the-art RNN language models on several
benchmark data sets and our model improves over several baseline language
models, achieving comparable performances with the best method so far.





6
C O N T I N U O U S S E Q U E N C E S M O D E L I N G W I T H
C O N T E X T- AWA R E N O R M A L I Z I N G F L O W S

Learning probabilistic generative models of sequential data is a long standing
research problem. For discrete sequences, such as natural language and

text, recurrent auto-regressive geneartive models without latent varibles, such
as PixelRNN, WaveNet, have been dominant in terms of performance in data
lilkelihood. However for continuous sequential data, such as speech signals
and time series, the state-of-the-art methods so far are all based on recurrent
latent variable modelds. Due to the high volatility and varying dynamics of high
dimensional time series data, the introduction of latent variables per time step
seems inevitable for successful generative modeling. Though recurrent latent
variable models outperform those without latent variables, it brings up two major
difficulties: a) an inference model is required for model learning and b) exact
data likelihood is infeasible since approximate inference has to be used in model
learning.

In the area of multivariate temporal data analysis, infering the correlations, or
latent structures among the different signal dimensions is another critical problem
to better understand the interactions among the variables, with the potential to
leading to deeper and more accurate data understanding and prediction. Tradi-
tional methods in such direction often relies on parametric assumptions about the
joint distribution of the multivariate temporal signals, a widely used one of which
is Gaussian (Friedman et al., 2010). The parametric assumption often limits the
application scope of such methods. In this chapter, we propse to model multivariate
temporal data with a novel framework which supports not only fast inference for
unseen data series, but also complex or even non-parametric distributions among
the different signal dimensions.

In this chapter, we propose to model continuous sequential data with recurrent
network, equipped with conditional normalizing flow which enables exact likeli-
hood evaluation and effective learning due to the absence of an inference model.
The proposed methods significantly outperforms state-of-the-art recurrent latent
variable models on two major speech audio datasets.

63
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6.1 introduction

Learning generative models of sequences has long been an important research
problem. Because of the temporal dynamics underlying the data, essential care
has be to taken of capturing temporal dependencies among different time stamps.
In prior to the emergence of deep neural networks, dynamic Bayesian networks
(DBN) (Murphy, 2002) has been one of most widely used methods for modeling
sequences, including hidden Markov models (HMM) to model speech signals and
dynamic topic models (DTM) (Blei and Lafferty, 2006) to model natural language
texts. The key component of DBNs is the latent variables associated with each time
stamp, i.e., hidden states in HMM and latent topics in DTM, which is designed
and empirically demonstrated to capture to underlying structure of the data.

Recently, deep neural networks have been recognized for their flexibility and
capability to approximate universal functions, and particulary recurrent neural
networks (RNN) has been proposed to capture and model sequential data. RNN
has been shown to succeed in various probablistic generative modeling tasks on
discrete sequential data, including machine translation (Bahdanau et al., 2014;
Luong et al., 2015; Sutskever et al., 2014), language modeling (Melis et al., 2017;
Yang et al., 2017) and image generation1 (Oord et al., 2016a). It’s worth noting that
all these generative modeling methods don’t assume latent variables associated
with each timestamp and yet they still produce state-of-the-art results in terms of
data likelihood measures, outperforming their counterparts with latent variables,
i.e., those based on DBN. Though no latent variables are used and thus the family
of data generative distribution could be somewhat limited, the massive number
of parameters and RNN’s representing power to capture long term dependencies
compensates the lack of latent variables. This verifies that powerful generative
modeling without latent variables is possible.

However, the story is totally different for continuous sequential data, where
the succeeding methods in terms of data likelihood are those based on recurrent
latent variable models. For example, on modeling raw speech signals, significantly
higher data likelihoods are obtained by incorporating latent variables to RNN, e.g.,
variational recurrent neural networks (VRNN) (Chung et al., 2015), SRNN (Fraccaro
et al., 2016), z-forcing (Kim et al., 2018) and Stochastic WaveNet (Lai et al., 2018).
It is argued that due to the high volatility and varying dynamics underlying
continuous sequential data, latent variables are introduced for each timestamp and
a more flexible family of data generating distribution for each time stamp can be
constructed.

Though recurrent latent variable models achieve state-of-the-art in modeling
continuous sequential data, they bring up two major difficulties:

1 Each pixel in each of the RGB channel of an image is treated as discrete values from [0, 255]
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• An additional inference model is required for variational inference model
model learning. This could be more difficult if the recurrent generative model
is complex;

• No exact likelihood evaluation can be provided as variational inference is
only approximately optimizing the data likelihood.

In this chapter, we try to address the performance gap between the RNN-based
methods and recurrent latent variable models, by arguing that the key lies in
enriching the per-step data distribution in a context aware manner. We propose
to model continuous sequential data without latent variables by incorporating
RNN with conditional normalizing flows. The proposed model admits exact
inference thus avoiding the above two difficulties. Importantly, we show that in
empirical generative modeling of continuous sequential data, the proposed model
significantly outperforms all state-of-the-art methods in terms of data likelihood.

The rest of the chapter is organized as follows: we firstly briefly review the
basics of neural generative modeling of continuous sequences and then propose
to improve over existing approaches. Empirical evaluations and analysis are
conducted and lastly we conclude the chapter.

6.2 preliminaries

The problem of generative modeling of continuous sequential data is, given a
sequence of data vectors X = {x1, ..., xT } associated with timestamps from 1 to
T , where each vector is d-dimensional continuous vector xi ∈ Rd, to learn a
probabilistic model by maximizing the joint data likelihood

max
θ
pθ(x1, ..., xT ) = max

θ

T∏
i=1

pθ(xi|x1, ..., xi−1) (79)

Thus the essence of generative modeling is to learn the conditional density
p(xt|x1, ..., xt−1). Prior to the deep learning era, to model such temporal depen-
dencies, often historical data with a fixed window size s is considered, potentially
assuming that the data sequence is a Markov chain with order s. For continuous
sequences with an infinite support, a widely used family for the conditional density
p(xt|x1, ..., xt−1) is the Gaussians. A couple of existing methods can be categorized
to this setting; for example, the vector auto-regressive model (VAR) essentially
assumes a Gaussian conditional for p(xi|xi−1, ..., xi−s) and the model is learned by
minimizing the mean squared error (MSE) between the predicted value and true
one, equivalent to maximizing the Gaussian log-likelihoods.
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6.2.1 Recurrent generative models

To fully leverage long term dependencies from the sequence history without
exploding the number of parameters, recurrent generative models aims to capture
the conditional density p(xt|x1, ..., xt−1) via recurrent neural networks (RNN,
including all its variants such as LSTM (Hochreiter and Schmidhuber, 1997),
GRU (Cho et al., 2014a)). Specifically, the RNN hidden state reads in the history
and produce a digest, and then the conditional density is defined for the current
time stamp with the hidden state as a parameter

p(xt|x1, ..., xt−1) ≡ pθ(xt|ht−1) (80)

where ht−1 = RNN(x1, ..., xt−1) is the RNN hidden state encoding the data history
up to timestamps t− 1. Again for continuous sequences, a widely used distribution
family for pθ(xt|ht−1) is the Gaussians. With RNN in the setting, the mean and
variance for the Gaussian are defined as functions of the RNN hidden state, hence
all parameters can be learned by back propagation over the loss function in Eq.
(79). An illustration of recurrent generative models can be found in Figure 15(a).

ht ht+1

xt

(a) Recurrent generative models
(RNN)

ht ht+1

zt

xt

(b) Recurrent latent variable
models (VRNN)

ht ht+1

yt

xt

(c) Recurrent generative models
with normalizing flows (pro-
posed, the context aware NF
is highlighted in green)

Figure 15: Illustration of various generative models (diamonds denote deterministic vari-
ables while circles denot random variables. Gray color denotes observed vari-
ables.)

6.2.2 Recurrent latent variable models

Besides directly modeling the data vector xt at each time stamp, in many cases we
often believe that there is some underlying structure governing the generation of
the actual data. Since the structure is not observable to us, we associate a latent
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variable zt with each time stamp. With the latent variable taken into consideration,
the following generative modeling process is can be defined

p(X,Z) =
N∏
i=1

p(zi|x1, ..., xi−1)p(xi|zi, x1, ..., xi−1) (81)

where Z is the collection of all zt. Figure 15(b) shows an illustration of such model.
An example of the above model is Gaussian-Markov Model if all conditionals are
defined as Gaussians.

In the context of deep neural networks, if one models the per-step joint density
p(xt, zt) with a recurrent neural network, this essentially turns to be a recurrent
latent variable model, as a recurrent sequence over the latent variables is defined as

p(zi|x1, ..., xi−1) ≡ pθ(zt|ht−1) (82)

p(xi|zi, x1, ..., xi−1) ≡ pφ(xi|zi,ht−1) (83)

for t ∈ {1, 2, ..., , T }, where ht−1 is the RNN hidden state summarizing the entire
context and for continuous data and latent variables, Gaussians are again assumed
and parameterized for both pθ(zt|ht−1) and pφ(xi|zi,ht−1).

The model is learned by maximizing the log-likelihood of observed data; however
due to the introduction of the latent variables, exact evaluation of the marginal
data likelihood in Eq. (79) is infeasible. Approximate inference learning methods
has to be applied, such as variational inference. Specifically to facilitate model
inference, an inference model parameterized from neural network is proposed

q(Z|X) =

T∏
t=1

q(zi|xi, zi−1) (84)

where similar constructions for p are used as for q. To this end, both the generative
model p and inference model q is joint learned by maximizing the ELBO

logp(X) = log Eq(Z|X)
p(X,Z)
q(Z|X)

(85)

> Eq(Z|X) logp(X,Z) − Eq(Z|X) logq(Z|X) (86)

The ELBO is the key to success of many recurernt latent variables for sequences,
including (Chung et al., 2015; Fraccaro et al., 2016; Kim et al., 2018), however this
brings difficulties to manually design and specify an inference network and also
that no exact likelihood evaluations can be provided from the learned model.



68 continuous sequences modeling with context-aware normalizing flows

6.3 context-aware normalizing flows

It’s well received that for continuous sequential data, such as speech signals and
time series, vanilla recurrent generative models based on RNN don’t have enough
representing power to model the temporal data generative distribution, thus latent
variables are all incorporated in state-of-the-art generative models for continuous
sequence modeling and significant performance boost have been observed (Chung
et al., 2015; Fraccaro et al., 2016; Kim et al., 2018). However, due to the fact that
all these recurrent latent variable models rely on variational inference for model
learning, significant amount of efforts must be devoted to designing and specifying
the inference networks, and deriving the ELBO for model learning. Besides, since
only a lower bound of the actual data likelihood is obtained, no exact evaluations
about data likelihood can be performed.

In this chapter, we take a step back by first pointing out that the expressive power
of current state-of-the-art recurrent latent variable models comes from the context
dependent prior for the latent variables at each timestamp. Based on that, we
further propose to enrich per-step data generative distribution with normalizing
flow (Rezende and Mohamed, 2015) in a context-aware manner. The resulting
framework, which we termed as “NF-RNN”, is not only able to capture complex
and flexible per-step data generative distribution underlying continuous sequences
without relying on latent variables and but also importantly, offering exact data
likelihood evaluations, entirely eliminating the need for approximate variational
inference.

6.3.1 Essence of recurrent latent variable models

For a vanilla recurrent generative model based on RNN, it parameterizes directly
the per-step data distribution p(xt|x1, ..., xt−1) ≡ pθ(xt|ht−1). Though RNN pro-
vides a flexible way to fit various distributions pθ(xt|ht−1) based on the data,
the distribution family it can capture is still limited. For example, assuming
pθ(xt|ht−1) is a Gaussian with its mean and co-variance matrix parameterized
as functions of (xt,ht−1), although hypothetically it is able to fit any Gaussians
with arbitrary mean and co-variances given sufficient number of parameters in the
RNN (Hornik, 1991), however it will never to able to fit perfectly to a distribution
with more than one modes (e.g., a mixture of 2 Gaussians).

To this end, recurrent latent variable models defines a hierarchical structure of
how data at each step is generated on the one hand; on the other hand, it essentially
defines a broader family of data distributions compared to the vanilla RNN case.
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Consider instead the case where latent variables are assumed for each time stamps,
from Eq. (83) the following per-step joint density over (xt, zt) is defined

p(xt, zt|ht−1) ≡ pθ(zt|ht−1)pφ(xt|zt,ht−1) (87)

Hence the actual conditional data generative distribution for xt becomes

p(xt|ht−1) =

∫
zt

p(xt, zt|ht−1)dzt (88)

=

∫
zt

p(zt|ht−1)p(xt|zt,ht−1)dzt (89)

= Ezt∼p(zt|ht−1)p(xt|zt,ht−1) (90)

which is essentially an infinite mixture of p(xt|zt,ht−1). Though similar to vanilla
recurrent generative models without latent variables, p(xt|zt,ht−1) might be of
simple forms, an infinite mixture of these simple densities could still constitute a
rather expressive generative model. Indeed the success of various recurrent latent
variables demonstrates the power of this technique (Chung et al., 2015; Fraccaro
et al., 2016; Kim et al., 2018; Lai et al., 2018)2, similar idea has been successfully
applied to the non-sequential data settings (Maaløe et al., 2016; Ranganath et al.,
2016).

It is worth pointing out that the history (context) dependent mixture weights,
p(zt|ht−1) is the key to successful enriching the per-step data generative distribu-
tion for sequential data, as also empirically validated by various state-of-the-art
recurrent latent variable models (Chung et al., 2015; Fraccaro et al., 2016; Kim et al.,
2018).

6.3.2 Context-aware normalizing flows

Besides introducing latent variables, another approach to enrich a distribution
family is to apply normalizing flow (Rezende and Mohamed, 2015) to transform a
random variable with a known density to a complex one, where the transformation
function is a bijective function. Suppose that y ∈ Rd is a random variable with
density p(y), and assume that the data x can be transformed from y by x = g(y),
where g is a normalizing flow. Thus y = g−1(x) ≡ f(x) is also a NF and the
distribution of x can be analytically written as

logp(x) = logp(y) − log
∣∣∣∣det

∂x

∂y

∣∣∣∣ (91)

= logp(f(x)) + log |det f ′(x)| (92)

2 WaveNet (Oord et al., 2016b) and Stochastic WaveNet (Lai et al., 2018) are not based on RNNs,
however they are still modeling the causal relationship between the past and the present, just with
CNN to replace RNN for better model training and testing efficiencies
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where det ∂x∂y denotes the determinant of the Jacobian matrix. With normalizing
flow, the resulting data generative distribution is enriched and its flexibility is
controlled by the capacity of the NF network.

However, we argue in this chapter that directly applying the NFs here will lead
to sub-optimal performances, as the NF is not aware of the history in the RNN. In
analogy to the history dependent prior distribution of latent variables in recurrent
latent variable models , we propose to employ history dependent normalizing
flows on top of the plain recurrent generative models to enrich the representation
power for recurrent generative models. Specifically, the NF for the data distribution
at time stamp t is assumed to be a function indexed by the data history up to that
point, i.e.

p(yt|x1, ..., xt−1) ≡ pθ(yt|ht−1) (93)

xt = fφ,ht−1(yt) (94)

where ht−1 is the hidden state encoding the context from an RNN and pθ is a
simple data generation density, such as Gaussian or mixture of Gaussians for
continuous data, and f is a normalizing flow. The free parameters are {θ,φ} and
we emphasize the dependence of f on ht−1. An illustration of NF-RNN compared
with recurrent generative models and recurrent latent variables can be found in
Figure 15.

Standard normalizing flows in the form of xt = f(yt) are context agnostic,
fortunately we can build context-aware normalizing flows easily by conditioning
the parameters of f on the context ht−1. There are various NFs we can choose from
to model f, including planar flow (Rezende and Mohamed, 2015), inverse auto-
regressive flow (Kingma et al., 2016), masked auto-regressive flow (Papamakarios
et al., 2017). In this chapter we adopt the convolutional normalizing flows (Zheng
et al., 2017b) for their simplicity to train and the ease to extend to the context-aware
setting.

6.3.3 Context Aware Convolutional Normalizing Flows

As proposed in (Zheng et al., 2017b), a convolutional normalizing flow (ConvFlow)
transforms an input random vector x with 1-d convolution, followed by a non-
linearity and necessary post operation after activation to generate an output vector.
Specifically,

f(x) = x+u� h(conv(x,w)) (95)

where w ∈ Rk is the parameter of the 1-d convolution filter (k is the convolution
kernel width), conv(z,w) is the 1d convolution operation with proper zero padding
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Figure 16: (a) Example of 1-d convolution, assuming the dimensions of the input/output
variable are both 8 (the input vector is padded with 0), the convolution kernel
size 3 and dilation is 1; (b) A ConvBlock, i.e., a stack of ConvFlow layers with
different dilations from 1, 2, 4, up to the nearest powers of 2 smaller than the
vector dimension.

to ensure the output vector has the same dimension as the input, shown in Figure
16(a), h(·) is a monotonic non-linear activation function, � denotes point-wise
multiplication, and u ∈ Rd is a vector adjusting the magnitude of each dimension
of the activation from h(·). Refer to (Zheng et al., 2017b) for a detailed coverage of
ConvFlow.

One appealing property about ConvFlow is its ability to flexibly warp the
input random vector with a simple density to a complex one, by stacking a
series of k ConvFlows to generate complex output densities. Furthermore, dilated
convolutions (Oord et al., 2016b; Yu and Koltun, 2015) are incorporated to the
flow to promote interactions among dimensions with long distance apart: different
dilations for each ConvFlow increase the receptive field without exploding the
number of model parameters, as illustrated by the ConvBlock in Figure 16(b). Most
importantly after applying one layer of ConvFlow, the Jacobian matrix is triangular,

∂f

∂x
= I+ diag(w1u� h ′(conv(x,w))) (96)

hence its determinant can be effectively computed in time linear to the input
dimension, which is critical to computing the density of the resulting vector from
a normalizing flow. The Jacobian matrix of applying a ConvBLock or more is
straightforward by simply multiplying the Jacobians of each individual transfor-
mation.

Context aware normalizing flow with ConvBlocks. Note that in the original
ConvFlow, both w and u are free paramters to learn. To make the normalizing
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flow context aware, we propose to extend u to be dependent on the hidden states
of the RNN, i.e. for time stamp t,

ut = l(ht−1) (97)

where g is a function, e.g. represented by a neural network, whose parameters can
be learned by back propagation. Thus the per-step data generative distribution
with one layer of context aware convolutional normalizing flow is

logp(xt|ht−1) = logpθ(f(xt)|ht−1) + log |det f ′(xt)|

where f(xt) = xt + l(ht−1)� h(conv(xt,w) (98)

The representative power of convolutional normalizing flow increases by stack-
ing multiple layers of convolutional flow layers with different dilations, i.e., a
ConvBlock as shown in Figure 16(b). In practice, we can stack multiple ConvBlocks
to construct a more expressive normalizing flow. Denote the normalizing flow with
k ConvBlocks as Fk (with all the u vectors parameterized similar to Eq. (97)), the
resulting per-step data generative distribution is

logp(xt|ht−1) = logpθ(Fk(xt)|ht−1) + log |det F ′k(xt)| (99)

To this end, with the proposed recurrent generative model with k layers of
context-aware ConvBlocks, the final objective function to optimize is

max logp(x1, ..., xT ) = max
T∑
t=1

logp(xt|ht−1)

=max
T∑
t=1

(
logpθ(Fk(xt)|ht−1) + log |det F ′k(xt)|

)
(100)

6.4 experiment

We conduct evaluations of generative modeling of continuous sequences of the
proposed method on a set of benchmark data sets, against state-of-the-art recurrent
latent variable models.

6.4.1 Data sets and setups

We mainly evaluate on two widely evaluated speech signal data sets: TIMIT3 and
Blizzard4. TIMIT contains 6,300 spoken English sentences recorded by 630 speakers

3 https://catalog.ldc.upenn.edu/ldc93s1

4 http://www.cstr.ed.ac.uk/projects/blizzard/

https://catalog.ldc.upenn.edu/ldc93s1
http://www.cstr.ed.ac.uk/projects/blizzard/
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Model Blizzard TIMIT

(Chung et al., 2015) - RNN 7413 26643

(Oord et al., 2016b) - WaveNet −5777 26074

(Chung et al., 2015) - VRNN > 9392 > 28982

(Fraccaro et al., 2016) - SRNN > 11991 > 60550

(Goyal et al., 2017) - Z-forcing(+kla) > 14226 > 68903

(Goyal et al., 2017) - Z-forcing(+kla, aux) > 15024 > 70469

(Lai et al., 2018) - Stochastic WaveNet > 15708 > 72463

(Ours) NF-RNN (k = 4) 15983 72619

Table 8: Test set log-likelihood on natural speech modeling (higher is better, k is the number
of ConvBlocks in NF-RNN)

with each reading ten sentences. The Blizzard dataset (Prahallad et al., 2013) is
from the Blizzard Challenge 2013, which contains 300 hours of spoken English by
a single speaker.

For both datasets, we follow the same pre-processing procedures as in previous
works (Chung et al., 2015; Fraccaro et al., 2016; Kim et al., 2018). Models are trained
on the training set; best model is picked by best likelihood on the validation set
and the corresponding likelihood on the test set is reported.

We also evaluate on one handwriting data set, the IAM-OnDB data set5, which
contains 13,040 handwritten lines by 500 writers (Liwicki and Bunke, 2005). Each
line is a sequence of 3-dimensional vectors, with two dimensions recording the
coordinates and the other one indicating pen-up or pen-down. The data set is
pre-processed and split in the same manner as previous works (Graves, 2013).

To enable fair comparisons with existing state-of-the-arts, we use the following
setups for model parameters:

• TIMIT: The data is mapped to a 512-dimensional embedding space and we
use a one-layer LSTM for the RNN, with 1024 hidden units and a mixture of 20

Gaussians is used for the per-step generative distribution for the intermediate
variable yt. Following previous work, we report the average log likelihood
per sequence for the test set.

• Blizzard: The data is mapped to a 1024-dimensional embedding space and a
one-layer LSTM is implemented for the RNN, with 2048 hidden units and

5 http://www.fki.inf.unibe.ch/databases/iam-on-line-handwriting-database

http://www.fki.inf.unibe.ch/databases/iam-on-line-handwriting-database
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a mixture of 20 Gaussians is used for the per-step generative distribution
for the intermediate variable yt. Similar to previous works, we report the
average log-likelihood on half-second sequences for the test set.

• IAM-OnDB: The 3-dimensional data is mapped to a 200-dimensional em-
bedding space before feeding to a one-layer LSTM, with 200 hidden units.
Note that only 2 our of the three data dimensions is continuous and the
third one is binary indicating whether the pen is up or down, hence the
proposed normalizing flow only applies to this two dimensions and the
results is concatenated with the third binary dimension to form a complete
normalizing flow transformation. Similar to previous works, we report the
average log-likelihood for the validation set6.

On all three data sets, the context awareness reflected by Eq. (97) are all imple-
mented by MLPs with 2 hidden layers with rectifier nonlinearities. The setups en-
sures comparable number of parameters used with existing state-of-the-arts. We use
Adam (Kingma and Ba, 2014) with the cosine learning rate scheduling (Loshchilov
and Hutter, 2016) for all experiments on three data sets and initial learning rates
are tuned based on pilot exploratory analysis. For convolutional normalizing
flows, the 1-d convolutional kernel size is set to 100 for TIMIT and Blizzard, and 2

for IAM-OnDB. The proposed model is implemented in PyTorch7 and all experi-
ments are conducted on an Nvidia GeForce GTX 1080Ti graphics card. Training
is performed for 500, 500, and 200 epochs on TIMIT, Blizzard and IAM-OnDB,
respectively and models with the best performance on validation sets are retained.
Code to reproduce the reported numbers will be made publicly available.

6.4.2 Generative modeling on speech signals

Table 8 presents the log-likelihoods of the proposed method as well as those of
previous state-of-the-art models on both TIMIT and Blizzard.

We can observe that the proposed NF-RNN provides exact log-likelihoods,
similar to RNN and WaveNet, however the generative modeling performance is
significantly better than these baseline methods. Secondly, compared to state-
of-art recurrent latent variables, the log-likelihoods are significantly higher than
those without KL regularization and auxiliary losses in training (VRNN, SRNN).
Against baseline methods applying KL regularization and/or auxiliary losses in
training, NF-RNN performs still slightly higher than them (Z-forcing and Stochastic
WaveNet), or at least comparable to them since only lower bounds of log-likelihoods
can be reported by those recurrent latent variable model baselines. This verifies

6 Existing state-of-the-arts split the entire data set into a training set and a validation set only.
7 https://pytorch.org/

https://pytorch.org/
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Model IAM-OnDB

(Chung et al., 2015) - RNN 1016

(Chung et al., 2015) - VRNN > 1334

(Lai et al., 2018) - Stochastic WaveNet > 1301

(Oord et al., 2016b) - WaveNet 1021

(Ours) - NF-RNN 1359

Table 9: Log-likelihood on IAM-OnDB (higher is better)

that for recurrent latent variables to work, additional regularization strategies
need to be considered due to the large variance occurred in stochastic variational
inference methods; in contrast, learning and inference with NF-RNN is much
simpler and efficient as no additional inference network design and stochastic
variational learning is needed to achieve these results. Plus, due to the analytical
likelihood evaluations from the model, exact data likelihood evaluations are easily
obtained.

6.4.3 Generative modeling on human handwritings

Table 9 presents the log-likelihoods of all methods on the validation data set for
human handwriting modeling. NF-RNN achieves the best log-likelihoods among
all existing methods, indicating that even when the data dimension is small (3
in the handwriting case), using normalizing flows will still significantly enrich
the data generative distribution. Additionally, NF-RNN provides exact likelihood
inference, another advantage not possessed by recurrent latent variable models.

6.4.4 Ablation studies

We conduct ablation studies on TIMIT and Blizzard where the data dimensions
(200) are much larger than that of IAM-OnDB (3). We modify and test the proposed
model in three aspects.

Importance of context awareness. We first test the role of context awareness
plays in the proposed model. To do this, we fixed the number of ConvBlocks used
and all other components of the architectures, but uses only the original context
agnostic normalizing flow (as formulated in Eq.(95) where u is a free parameter
independent from the RNN hidden state ht). Table 10 presents the results of the
two settings. It can be observed that on TIMIT, without context awareness, NF-RNN
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is still able to achieve significantly higher log-likelihoods compared to recurrent
generative model baseline (RNN with 7413) and two recurrent latent variable model
baselines (VRNN with 9392). After including context awareness, the performance
is further gained, hence demonstrating the importance of incorporating historical
information when enriching the data generative distribution per step. Similar
trends can also be observed on Blizzard.

Model Blizzard TIMIT

(Ours) NF-RNN (k = 4, context independent) 10228 51387

(Ours) NF-RNN (k = 4, context aware) 15983 72619

Table 10: Test set log-likelihood on natural speech modeling with context independent NF
and context awaren NF (higher is better)

Effects on the number of ConvBlocks. We next test NF-RNN with varying
number of ConvBlocks for k = 1, 2, 4. Note that by increasing k, the number of
parameters increases for NF-RNN, but only in a rather small amount since the
convoluation window size is relatively small (100 for both TIMIT and Blizzard, 2 for
IAM-OnDB) compared to the number of hidden units used in the RNN (1024 for
TIMIT, 2048 for Blizzard and 200 for IAM-OnDB), thus the number of parameters
is still comparable. Table 11 presents the full results, indicating that slightly better
results can be obtained with larger k, which verifies that a more expressive data
generative distribution can be obtained by stacking multiple ConvBlocks.

Model Blizzard TIMIT

(Ours) NF-RNN (k = 1) 14372 64630

(Ours) NF-RNN (k = 2) 15417 69328

(Ours) NF-RNN (k = 4) 15983 72619

Table 11: Test set log-likelihood on natural speech modeling with different number of
ConvBlocks (higher is better)

Effects on the convolutional kernel size of ConvBlocks. Lastly we test the
effects of using different convolution kernel size in ConvBlocks for NF-RNN. On
TIMIT and Blizzard, we test on two different settings, convolution kernel size with
40 and 100, corresponding to 1/5 and half of the data size, respectively. Again
tuning the kernel size only changes the total number of parameters by a small
amount, since they are relatively small compared to the number of hidden units
used in RNN. Table 12 presents the log-likelihoods for both settings. (The number
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of ConvBlocks is set to 4). The results aligns with the observation that a longer
convolution filter will model multiple dimensions from input more effectively, thus
leading to a more expressive data generative distribution.

Model Blizzard TIMIT

(Ours) NF-RNN (kernel size 40) 15162 69077

(Ours) NF-RNN (kernel size 100) 15983 72619

Table 12: Test set log-likelihood on natural speech modeling (higher is better)

6.5 conclusions

In this chapter, we present a simple yet effective method for generative modeling
of continuous sequences with exact inference. We point out that the key ingredient
to expressive probabilistic modeling for continuous sequences modeling lies in
constructing a flexible data generative distribution. All existing state-of-the-arts
rely on recurrent latent variables models to achieve better generative modeling
performances, however that comes at the costs of manually designing complex in-
ference network for necessary stochastic variational inference. Instead, we propose
an exact method, termed NF-RNN, to construct expressive data generative distri-
butions via convolutional normalizing flows and emphasize that context awareness
is important to accommodate the rich dynamics underlying the sequential data.
Empirical evaluations on two natural speech data data sets and one human hand-
writing data set clearly demonstrate the advantages of NF-RNN over recurrent
latent variable models for continuous sequences modeling.





7
C O N C L U S I O N S A N D F U T U R E W O R K

In this thesis, we aim to address the limitations of existing work in incorporating
stochastic deep neural networks for probabilistic modeling. Specifically,

a) To facilitate stochastic variational inference for complex generative models de-
fined by deep neural networks, we propose to enrich the family of variational
posterior distributions for stochastic variational inference with two different
strategies. One is to incorporate auxiliary random variables into the inference
network for variational inference, which essentially results in an expressive
variational posterior with an infinite mixture of simple densities; the other
is to compose flexible and expressive densities for variational inference by
warping simple densities with a novel and effective type of normalizing flows
based on 1-d convolutions;

b) Certain discrete structures, including permutations, which are important
to many machine learning tasks, haven’t been studied in the context of
neural probabilistic modeling. To this end, we propose to model and learn
permutations with adversarial training for the unpaired setting; for the
unsupervised setting, we construct probabilistic models over permutations
and propose to learn such latent permutations from the data in a fully
unsupervised manner;

c) Probabilistic modeling for sequential data domains, such as natural languages
and continuous time series, haven’t been fully explored and significantly
more effective and elegant models could still be expected. For natural lan-
guage modeling and continuous time series modeling, we propose two new
probabilistic models respectively, based on simple insights from the task.
Empirical evaluations have demonstrated the clear advantage of the proposed
approaches over existing state-of-the-arts.

This thesis also shed light on understanding and manipulating stochasticity with
deep neural networks for probabilistic modeling. A non-exhaustive list of possible
interesting directions for future work includes:

79



80 conclusions and future work

• A general framework for stochastic architecture search to automatically design
stochastic deep neural networks to better cater individual problems with
uncertainty involved;

• A theoretical understanding of where randomness should be injected in
stochastic deep neural networks to model uncertainty. Currently, there are
models which place randomness on the input end, output end, and also in
between; however, a thorough understanding of the differences among these
ways of handling stochasticity is still lacking;

• Incorporating the generative permutation learning framework with language
generation is also an interesting direction to pursue, where we can model the
process of language generation as firstly generating a set of words and then
permuting them to the correct order to make a natural sentence.
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