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Abstract

Large pretrained language models have shown remarkable versatility across a
range of NLP tasks and domains, yet there has been limited attention on applying
these models to the climate domain. An ever-growing body of unstructured climate
textual documents contains crucial quantitative measurements on carbon emissions,
reduction commitments (e.g. reduce CO2 emission per kilometre from passenger
cars by 37.5%) and other climate-related information like policy goals. However,
current NLP systems struggle to comprehend the semantic meaning of numbers
and their units, and generalize poorly to concepts like policy goals in the climate
domain. To address these issues, in the first part of the thesis we propose new model
architectures that serve as a useful inductive bias for predicting numbers as continuous
values, extend these to predict units and quantities jointly, and introduce a new task
of predicting the correlation of multiple quantities in texts. In the second half of the
thesis, we introduce a new benchmark for climate policy goal classification tasks and
demonstrate that current climate-adapted NLP models perform no better than their
general counterparts. To address this shortcoming, we utilize existing semi-structured
climate questionnaires to train QA models with better transfer learning capabilities on
climate documents. Finally, we tackle alignment of unstructured climate documents
head-on with models we fine-tuned through weak-supervision, along with modern full-
fledged LLMs via prompting and in-context learning. Together, this thesis attempts to
lay a foundation for future work that combines numerical commonsense models for
the climate domain, paving the way for novel applications in climate documents such
as extracting critical climate measurements, mining correlative relationships between
quantities, and using retrieval-augmentation for numerical query answering.
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Chapter 1

Introduction

Globally, tens of thousands of climate reports have been generated by different stakeholders
such as corporations, cities, states, and national governments either voluntarily or in response
to regulatory pressure. These reports include climate assessments, climate legislation, agency
reports, regulatory filings, and corporate ESG (Environmental, Social, and Governance) and
CSR (Corporate Social Responsibility). The reports disclose vital information on greenhouse
gas emissions and targets, carbon footprints, environmental commitments, and climate risks.
This information is key to identifying and solving climate science problems, engineering climate
solutions, making informed policy, and helping stakeholders make actionable plans to curb global
greenhouse gas emissions. In addition to reporting in text-based documents, some entities also
answer questionnaires or provide tabular data with qualitative and quantitative components. These
reports are tens to hundreds of pages long and contain thousands of quantitative data points,
along with numerous details on climate policy targets, initiatives, and impacts that are not yet
standardized or accessible.

Climate researchers use these documents for a variety of purposes, we provide two such
examples below:

1. Climate Watch Tracking: The World Resources Institute has built Climate Watch (an open
data climate project) by manually labeling all climate commitments (e.g. use 80% renewable
energy for steel production by 2030) in national climate action plansE] By doing so, Climate
Watch allows climate researchers or policy makers to compare progress across countries
and identify which areas need financing, education, policy changes or other resources.
This transparency is critical as it has been shown to lead to higher levels of accountability
and more effective policy making. We show an example of Climate Watch annotations in
Figure|l.1

2. Comparing Life Cycle Analysis: To better understand which products are more environ-
mentally friendly, climate researchers may compare their life cycle analyses reports. A life
cycle analysis is a process to calculate the total carbon footprint of a particular product from
cradle to grave and may include all emissions from the resource extraction, production,
product use, and waste disposal stages.

Thttps://www.climatewatchdata.org/



National Climate Plan: Croatia National Climate Plan: India

SDG Target: Affordable and clean energy SDG Target: Clean water and sanitation

Furthermore, ambitious targets for improving energy efficiency and for increasing renewables in the EU 1 The Waste to Energy capacity is sought to be enhanced. Government is also encouraging conversion of
energy mix have been agreed. The efficiency of the EU's final and primary energy consumption will be waste to compost by linking it with sale of fertilizers and providing market development assistance.

improved by at least 32.5% by 2030 as compared to an historic baseline.® A new target for increasing

I}

Government has invested significantly in Solid Waste Management (SWM) projects over the years and

renewable energy in final energy consumption has been set to reach at least 32% by 2030, which will . - - . ) .
has provided INR 25 billion (USD 397 million) as grant in aid to states and Urban Local Bodies specifically

represent almost a doubling from 2017 levels. 10 These targets lead to greater greenhouse gas emissions
for SWM through public-private partnerships.

reductions than previously foreseen.
3 Similarly, initiatives on waste water mar would cover an additi ion of 41 million and

1 New, binding targets will reduce CO; emissions from road transport. CO emissions per kilometre from )
enhance recycling and reuse of treated water. There are about 816 Sewage Treatment Plants (522

passenger cars sold in the EU must be reduced, on average by 37.5% from 2021 levels by 2030, and new
operational and rest at different stages of construction and planning) having a combined capacity of

vans on average by 31% from 2021 levels by 2030.1* CO, emissions per kilometre from new large lorries . 5 .
23,277 million of liters per day across 28 States and Union Territories.

must be reduced on average by 30% from 2019/2020 reference period levels. As part of a mandated

IS

Government of India has recently launched a one-of-its kind ‘Swachh Bharat Mission’ (Clean India
review in 2022, targets may be revised and/or extended to smaller lorries, buses, coaches and trailers.12 4

Mission) with the objective of making the country clean and litter free with scientific solid waste

Progress has been made in further reducing emissions of non- CO, greenhouse gases as well. Waste
management in about 4041 towns covering a population of 306 million. It aims to construct 10.4 million

legislation was reviewed, tightening landfilling and recycling targets and increasing the circularity of the
individual household toilets and 0.5 million Community and Public Toilets.

EU emnomy.13 EU fossil fuel production and consumption will continue to decrease, resulting in fewer

Figure 1.1: Here are two real examples of portions of Croatian and Indian national plans annotated
with respect to "Clean Energy" & "Clean Water Sanitation" Labels as part of the Climate Watch
project. The SDG target refers to the categorization of the label.

From these two examples we see that a real problem arises. With over hundreds of thousands of
climate reports, the effort to manually extract information from these documents is simply not
feasible. Yet these text documents contain the critical information required by the largest global
coordination challenge in human history: reducing global climate emissions. From this it is clear
that we need computational NLP methods that can process this data at scale to enable climate
researchers to harness these climate documents to their full extent. These NLP systems should
be capable of finding, extracting, and summarizing the various quantitative measurements on
emissions, targets, impacts, and so on.

1.1 Challenges of Building NLP Systems for Climate Texts

There are many challenges that need to be overcome to build NLP systems that can process climate
text data at scale. We will now shed light on three such challenges: Lack of Standardization
of Measurements, Lack of Standardization of Climate Document Types, Lack of Large Labeled
Datasets.

1.1.1 Standardization of Measurements

The International System of Units (SI) is the most widely used system of measurement. However,
there is a lack of standardization in climate reporting requirements. Measurements expressed in SI
units are from a purely dimensional analysis perspective always comparable. However, physical
units alone are insufficient for us to describe and measure phenomena in the real world.
Semantic types (rainfall, carbon dioxide equivalents, humidity) describe what exactly is
being measured. Although useful for global carbon disclosure, total emissions of CO, is not as
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Exi# Samples of Real World Quantities

These models, powered by a 140 kW / 190 Hp four-cylinder diesel engine, reduce fuel consumption by up to
0.3 litres per 100 km.

Starting in 2001, this five-year contract is for 5.25 million kWhs of wind-power per year.

In 2019, our intake of fresh water was 192 million cubic metres, compared with 199 million in 2018.

In the USA, the average fuel consumption for the model year 2019 was 35.7 mpg 2 for passenger cars
(model year 2018: 35.1 mpg) and 29.8 mpg 2 for light trucks (model year 2018: 29.4 mpg). The average CO 2

4 emissions of both fleets is 33.7 mpg 2 or 167 g CO 2 / km 2 (model year 2018: 168 g CO 2 / km, internal
BMW calculation). In China, average petrol consumption was 6.1 1/ 100 km 3 in 2019 (2018: 6.2 | / 100 km),
and the median CO 2 emissions were 14 4 g CO 2 / km 2 (2018: 147 g CO 2 / km).

Here, the BMW Group exceeded the previously announced target of having 500,000 electrified vehicles on

5 the road since 2013 by selling around 504,000 units.

6 We aim to reduce the Net Carbon Footprint of the energy products we sell — expressed in grams of carbon
dioxide (CO2) equivalent per megajoule consumed - by around 50% by 2050.

7 Tata Steel generates two key long-term, strategic performance indicators: specific energy consumption (Giga

calorie / tonne of crude steel) and GHG intensity (tonne of CO 2 equivalent / tonne of crude steel).

Figure 1.2: Examples of measurements from sustainability reports. Example 4 uses footnotes
in the same position as we would expect to find unit exponents and has many spacing issues in
numbers and units. Examples 6 and 7 introduce new semantic unit types. Example 2 incorrectly
pluralizes the unit symbol kWh*s”. Example 3 and 5 use coreference to refer to units.

informative for corporations since changes in demand can drastically change emissions from year
to year. For this reason, companies engineer their own key performance metrics with respect
to climate change that capture their efficiency at a more fine-grained degree. For example, the
multinational oil and gas company Shell calculates “grams of CO, equivalent per megajoule
(gC0O,e/MJ) produced for each unit of energy delivered to, and used by, a consumer.” However,
companies prefer to use an even greater set of open class units that are customized to their own use
cases and industries. For example the CSR report of automaker BMW calculates the emissions of
CO,e in proportion to a single vehicle produced.

In other types of climate studies, open class units are even more common. For example, the
household appliances company Dyson, produced a study comparing their commercial hand drying
units against a competing system and also against paper towels. To capture both the environmental
economic impact as well as the functional use of the product, the study used a new functional unit
they called pair of dry hands.

Finally, there are certain metrics that contain key financial information and are therefore
only partially disclosed. For example, Google report their data center energy metric as the
noncomputing overhead energy use divided by IT equipment energy use but only provide the
resulting fraction and not the numerator or denominator values. Certain omissions can result
from numeric fused-heads (“I am 19.” can imply years old) which are commonplace in everyday
English. The complexity of the types of measurements used in climate texts is further exacerbated
by the use of non machine readable documents where existing PDF parsing tools struggle to
extract text and strip invaluable information such as superscripts, formatting, capitalization, and
spaces. See Figure for real-world examples of measurements observed in climate documents.

Although we expect that companies will exhibit similar reporting within their own respective



industries, to capture the long-tail of types of quantities that appear in climate studies will be
infeasible to manually codify. Since current models don’t have symbolic reasoning required to
handle even basic units, the semantic categories and open units combined with noisy text present
a major hurdle for NLP models.

1.1.2 Lack of Standardization of Document Structure

The vast majority of climate reports are voluntary (although strongly encouraged). In the US
it is still not required by law for public companies to disclose their carbon emissions. Further,
there exists fear that oversweeping mandatory climate disclosures may result in companies going
private where it becomes inconceivably more difficult to pass legislation for carbon reporting,
while also hurting smaller business that may not be able to afford costly life cycle analysis. In
contrast, climate researchers want as much data, as detailed, as standardized, comparable etc. For
these reasons climate policy makers and organizations responsible for designing disclosures walk
a fine line: encourage voluntary participation, help standardize reporting, and shine a light on new
areas relevant to climate researchers. By asking well defined but open-ended questions policy
makers are able to gauge how to proceed with more structure in future versions.

Further, standardization of climate reporting is a massive undertaking of experts (financial,
accounting, policy, scientists, etc.) and is still evolving. It took over 80 years from the founding of
the International Bureau of Weights and Measures (BIPM) in 1875 until the SI standard was born.
The Climate Watch example we discussed above is in fact an example of an organization that’s
aim is to transform information in one type of climate report (national climate action plans) to a
different climate framework (sustainable development goals). The difficulty of standardization is
exacerbated by reports being in different languages and submitted at different points in time.

There are numerous different types of climate report types which contain often overlapping
information with different levels of granularity and specificity. Since most climate reporting is
voluntary many entities only have a small subset of applicable documents. This makes it difficult
for NLP since there is not reliable formatting cues that are going to make this processing easy. Due
to the lack of repeatable structure across this domain text understanding is going to be required.

1.1.3 Lack of Large Labeled Datasets

There are many resources available for training general-purpose NLP models, such as Wikipedia,
Yelp data, Penn Treebank, GigaWord, and Internet crawls. Further, successful applications of NLP
to domains such as biomedical or legal have been made possible by assembling specific resources,
benchmarks, and annotated datasets. There are a handful of small existing datasets in the climate
domain such as Twitter stance detection or Wikipedia climate relevance, which we discuss in more
detail in Chapter [6] However, these datasets are only useful for evaluating model performance on
small subsets of the climate domain. Further, the use of proprietary datasets for both pretraining as
well as evaluation makes it difficult to effectively track NLP progress in the climate domain. For
example, the Global Reporting Initiative (GRI), a non-governmental organization, once hosted
over 63,000 corporate sustainability reports which are now inaccessibleE]

Zhttps://www.globalreporting.org/how-to-use-the-gri-standards/register-your-report/
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One of the properties that makes climate documents unique is that they combine many different
types of language, including technical, scientific, as well as policy language. They serve multiple
different audiences, including policy makers, scientists, company shareholders, and the general
public. For these reasons it is both challenging and expensive to label climate documents since it
requires various types of climate expertise (which can still result in low inter-annotator agreement
see Chapter [3)).

1.2 Overarching Goals

In this thesis we will make strides to tackle portions of each of these challenges. We will not
exhaustively address all aspects of the challenges presented above. For instance, our thesis will
not touch on the orthographic variation of numbers, or on improving the extraction from PDF
tools which are both important considerations but out of scope for this thesis. Instead we will
focus on a few concrete capabilities that we want to imbue our NLP models with.

First we want to design models that treat numbers not as discrete tokens but as continuous
values and support outputting distributions of quantities in text. Just as language models have
been applied for auto-complete, these models capable of numerical guesstimation would too be
useful. These systems can in turn be also used to detect anomalies in numbers be they from human
error, data corruption, or natural phenomena. Finding such outliers could be helpful for a variety
of climate applications such as: carbon accounting or aiding in the detection of greenwashing.

Second, we want to categorize and aggregate measurements according to their units. The
models should learn that different units can be expressed while measuring the same natural
phenomena e.g. total rainfall can be reported in either inches per year or gallons per year both
implying a certain region with an area. When a unit is not mentioned we should infer it from the
context. Our systems should be robust to such ambiguity and handle new units that we’ve never
seen before.

Finally, we aim to combine these capabilities into a fundamentally new type of numerical
commonsense QA system. The focus is not on symbolic reasoning or arithmetic operations, instead
it’s a correlative, quantitative, probabilistic framework that is learning numerical commonsense
from large collections of text. This system should be able to answer questions like: "What is the
average amount of carbon dioxide emitted by a 2000 1b car in the US?". It should learn that the
weight of a vehicle correlates positively with the amount of carbon dioxide emitted. And it should
be able to identify these salient quantities that may be related to each other.

To build systems capable of processing climate texts we propose to break down the problem
into three main technical challenges: (1) modeling the distribution of numbers in context, (2)
categorizing and aggregating measurements according to their units, and (3) information extraction
from climate documents. We will discuss each of these challenges in detail in the following
sections.

1.2.1 Goal 1: Modeling Distribution of Numbers in Context.

In natural language processing (NLP), numbers have been studied from different perspectives.
(1) The use of NLP models for pushing the frontier of mathematical understanding. (2) Solving
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algebraic expressions as a test bed for symbolic reasoning and as a method to harden existing
NLP tasks to prevent models from overfitting to spurious correlations in the data. (3) Ingraining
models with numerical commonsense knowledge for downstream applications such as information
extraction, anomaly detection, and question answering. Our focus in this thesis is on the third
perspective: building methods that can model numbers as real-valued continuous values and
evaluating how well they can approximate the true distribution of numbers in texts.

Let us start with an example: "A 2019 study found that the average American produces
#NUM# pounds of trash per day." What values of #NUM# are plausible? Is 5 pounds reasonable?
What about 100 pounds or 0.1 pounds? This is task of guesstimation is one that humans are
well-familiar with from a young age. We propose to build systems that can model the distribution
of numbers from their surrounding text. Currently and for most of the past of NLP, when a number
appears in data, it is simply treated as a special text token. Historically in NLP numbers were
tokenized with simple regular expression patterns (ddd.d) that would capture only features of the
shape of the number. Most tokenizers such as byte-pair encodings, treat numbers equal to the rest
of the vocabulary of tokens. For these reasons in most NLP models, numbers are not treated as
what they are: continuous values.

1.2.2 Goal 2: Categorization of Quantities

After being able to model the distribution of numbers in context, the next natural step is to be
able to categorize numbers according to their fypes. The most evident example of this is the
categorization of quantities to their corresponding physical units.

To illustrate an example consider a scenario where climate researcher studying coastal erosion
may use such a system to extract data from California Coastal Commission emergency permits
on feet of seawall, tons of riprap, and tons of sand applied for beach nourishment requested in
response to extreme winter storm events. After studying the data she may hypothesize that the
recent increase in flash floods are accelerating coastal erosion. To find such patterns she searches
for data on rainfall measurements. However, since flash floods are caused by heavy rainfall, she
is interested in the rate of rainfall, not the total amount rainfall. Further, she specifies that she is
interested in rainfall measurements expressed in units of millimeters per minute as opposed to
inches per year. From a dimensional analysis perspective inches per year and inches per minute
are both units of velocity and are mathematically equivalent up to a scaling factor. However, from
a semantic perspective of how we use these units these units behave differently. However, we tend
to express measurements with units that can imply different semantic interpretations. Finally, she
aggregates the data by year and sorts the results by heaviest rainfall rate.

1.2.3 Goal 3: Information Extraction for Climate Documents

In the past two goals we’ve highlighted specific goals: ability to infer a distribution over quantities
in text, and ability to infer the unit types of measurements in text. These represent a new type
of numerical commonsense, beyond basic declarative facts such as "a cat has four legs" and is
distinct from symbolic reasoning in algebraic word problems. The numerical commonsense we
are developing is a form of correlative, quantitative and probabilistic knowledge. It has unit types
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that form a basis for reasoning which on its surface seem similar to symbolic reasoning, but are
fundamentally different.

While improving numerical commonsense has many broad applications outside of under-
standing climate documents, the focus of our last goal is to build NLP models directly towards
extracting information from climate documents. To do so we need 1) methods to improve in-
domain performance without access to large scaled datasets 2) a benchmark to measure progress
and 3) a practical system for climate researchers to use. We will work through the lack of large
scaled datasets by leveraging the structure of climate questionnaires as weak-supervision to help
bootstrap performance to build better in domain NLP models. To measure progress, we will
construct new tasks and aggregate various climate text classification tasks into a single benchmark.
These systems should be practical for use by climate researchers for a wide spectrum of text based
tasks: ranging from searching for specific information in a large corpus or conducting exhaustive
information extraction for an entire corpus. Further, these systems must also be highly dynamic,
accommodating new tasks, taxonomies, and data sources as the field of climate science evolves.
Towards this end, we will explore transfer learning as well as few-shot learning techniques to test
how models adapt to changing data distributions and tasks.

1.3 Thesis Contributions and Proposed Work

Modeling Objective Sentence Masked Tokens
Masked Language Modeling "A 50 foot redwood tree requires | "100"

[MASK] gallons of water..."
Masked Numerical Modeling "A 50 foot redwood tree requires | 100.0
[#NUM] gallons of water..."
Masked Measurement Modeling | "A 50 foot redwood tree requires | (100.0, gallons)
[#NUM] [#UNIT] of water..."
Numerical Correlation "A 50 foot redwood requires 100 gal- | Positive
lons of water..."

Table 1.1: Example of the different modeling objectives we will consider in first section of this
thesis.

Here we give a brief overview of the contributions of this thesis and how they relate to the
three goals above. In Section 1, we present separate works on building numerical commonsense
NLP models that target each of the goals above separately.

Since the unit is part of the text context, in principle it is possible that models could learn to
make reasonable predictions for measurements from text alone. However, in Table [I.2] we show
a simple failure mode that current models have at predicting numbers with differing units with
traditional masked language modeling. We note that the number predictions vary significantly
between different units that are common substitutes for each other (e.g. meters and feet) as well
as units along with their corresponding acronyms (e.g. feet vs. ft). Although interpreting exactly
what is happening under the hood is hard (neural models being black boxes), from this we can
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Input: [UNIT] m km ft mi yd in meters kilometers  feet miles yards  inches

Output 200 10 200 2 100 1 200 20 20 2 50 3

Convertion factor 1 1000 0.3048 1609.34 0.9144 0.0254 1 1000 0.3048 1609.34 0.9144 0.0254

Metric Output 200.0 10000.0 60.96 3218.68 91.44 0.0254 200.0 20000.0 6.096 3218.68 45.72 0.0762

Mean (Metric Output) - 3086.8 m
std (Metric Output) - 5820 m

Table 1.2: Example outputs for Alex Honnold climbed for [MASK] [UNIT].

hypothesize that perhaps models are failing to learn measurements altogether, and are instead
relying on simpler bi-gram level statistics to coordinate the quantity and unit. This clear failure
mode motivates us to consider a more structured approach to modeling measurements and in
Table we show examples of the three modeling objectives we consider in contrast to the
standard masked language modeling task.

Below we provide a brief overview of the Chapters in the first Section on Building Numerical
Commonsense NLP.

* An Empirical Investigation of Contextualized Number Prediction. We begin our
investigations with Goal I by studying the ability of bidirectional transformers (BERT) to
predict numbers as continuous values over multiple domains of text with. We experiment
with novel combinations of contextual encoders and output distributions over the real
number line. Specifically, we introduce a suite of output distribution parameterizations
that incorporate latent variables to add expressivity and better fit the natural distribution
of numeric values in running text. We evaluate these models on two numeric datasets
in the financial and scientific domain. Our findings show that output distributions that
incorporate discrete latent variables and allow for multiple modes outperform simple flow-
based counterparts on all datasets, yielding more accurate numerical prediction and anomaly
detection. We also show evidence that our models can effectively utilize surrounding
quantities in and benefit from general-purpose unsupervised pretraining.

* Masked Measurement Prediction. We extend our previous model to reason specifically
about measurements by modeling dimensions, units, and quantities jointly. This work
aligns with Goal 2, building NLP models that can robustly categorize quantities according
to their physical units. We study pretrained transformer models (RoBERTa) and show
that on linear probing analysis they significantly underperform jointly trained number-unit
models, emphasizing the existing gap of numerical commonsense in NLP models and
the benefits of our proposed modeling approach. We show that by explicitly modeling
measurements jointly, models can infer units from the surrounding context with high fidelity,
spot unit errors in Wikipedia articles, and outperform human annotators on measurement
guesstimation.

* Numerical Correlation in Text. In our final work in this section we propose a new task of
identifying a correlation relationship between two numbers in text, which is a component of
Goal 3, building NLP models that can perform numerical commonsense question answering.
Consider the final row in Table as an example of this task where we wish for models to
learn that taller trees usually require more water. To this end, we introduce a new dataset,
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which contains over 2,000 Wikipedia sentences with two numbers and their correlation
relationship labeled by human annotators. Using this dataset we show that our proposed
techniques for numerically aware pretraining methods from earlier chapters lead to slight
improvements on this task. However, these methods still underperform both larger models
as well as the human baseline, posing a challenge for future work in this area.

In the second part of this thesis, we will delve into the specific challenges and opportunities
of applying NLP to the climate change domain. Despite the abundance of climate-related text
available, such as scientific papers, news articles, and social media posts, resources and tasks
specifically tailored to the climate change domain are still limited. Given this hurdle, we have set
our initial objective to construct classification models that can categorize sentences based on their
climate-related topics instead. This will lay the foundation for our ultimate goal of categorizing
climate quantities. As a result, the initial two chapters in Section 2 are focused on fulfilling Goal
2, without giving specific attention to the numerical data present in the sentences.

Below we provide a brief overview of the Chapters in the second Section on Applying NLP models
to Climate Domain.

* BERT Classification of Paris Agreement Climate Action Plans. We use the document
header structure of climate action plans to assign noisy policy-relevant labels such as
mitigation, adaptation, energy, and land use to sentences. Transformers finetuned on this
noisy labeled data provide only a slight improvement over simple heuristics and fall short
of the consistency observed between human annotators.

* Towards Answering Climate Questionnaires from Unstructured Climate Reports. We
introduce two new large-scale climate questionnaire datasets and use their existing structure
to train self-supervised models. We conduct experiments to show that these models can
learn to generalize to climate disclosures of different organizations types than seen during
training. We then use these models to help align texts from unstructured climate documents
to the semi-structured questionnaires in a human pilot study. Finally, to support further
NLP research in the climate domain we introduce a benchmark of existing climate text
classification datasets to better evaluate and compare existing general models with their
domain-adapted counterparts.

* Aligning Unstructured Paris Reports with SDG Framework Finally, in Chapter /| we
construct a benchmark for evaluating alignment of unstructured climate reports according
to the Sustainable Development Goals taxonomy. We reexamine our climate domain fine-
tuned cross-encoder models and compare them against modern LL.Ms with prompting and
in-context learning.
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Chapter 2

An Empirical Investigation of
Contextualized Number Prediction

* Daniel Spokoyny, Taylor Berg-Kirkpatrick, “An Empirical Investigation of Contextualized
Number Prediction.”, In Proceedings of the 2020 Conference of Empirical Methods in
Natural Language Processing

2.1 Introduction

Pretraining large neural architectures (e.g. transformers [33,[89]]) on vast amounts of unlabeled
data has lead to great improvements on a variety of NLP tasks. Typically, such models are
trained using a masked language modeling (MLM) objective and the resulting contextualized
representations are finetuned for a particular downstream task like question answering or sentence
classification [33160]. In this chapter, we focus on a related modeling paradigm, but a different
task. Specifically, we investigate contextualized number prediction: predicting a real numeric
value from its textual context using an MLM-style modeling objective. We conduct experiments
on two specific variants: (1) masked number prediction (MNM), in which the goal is to predict
the value of a masked number token in a sentence, and (2) numerical anomaly detection (NAD),
with the goal of deciding whether a specific numeric value in a sentence is errorful or anomalous.
In contrast with more standard MLLM training setups, here we specifically care about the accuracy
of the trained masked conditional distributions rather than the contextualized representations
they induce. While successful models for these tasks are themselves useful in applications like
typo correction and forgery detection [28]], better models of numeracy are essential for further
improving downstream tasks like question answering, numerical information extraction [[80, [101]]
or numerical fact checking [118]], as well as for processing number-heavy domains like financial
news, technical specifications, and scientific articles. Further, systems that detect anomalous
numbers in text have applications in practical domains — for example, medicine [117] — where
identification of numerical entry errors is critical.

Our modeling approach to contextualized number prediction combines two lines of past work.
First, following Chen et al. [28], we treat number prediction as a sentence-level MLM problem
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Figure 2.1: Outline of our model architecture consisting of a sentence representation X which is
fed to the encoder with parameters -y and an output distribution over the real number line with
parameters 6. In this example our masked numerical objective is to predict the masked out ‘2
trillion” quantity Y. Note that our model is able to use a numerical embedding of the unmasked
input 3 x 107 value (“thirty million”) as part of the context.

where only numerical quantities are masked. However, Chen et al. focused on predicting the
discrete exponent of masked numbers as a classification problem. In contrast, Spithourakis and
Riedel [107] demonstrate the utility of predicting full numerical quantities in text, represented as
real numbers, but do so in a language modeling framework, conditioned only on left context. Here,
we propose a novel setup that combines full-context encoding (i.e. both left and right contexts)
with real-valued output distributions for modeling numerical quantities in text. In Figure 2.1 we
illustrate an example where we aim to predict ‘2 trillion” as a quantity on the real number line.

We expand upon past work by conducting a large scale empirical investigation that seeks to
answer three questions: (1) Which encoding strategies yield more effective representations for
numbers in surrounding context? (2) Which encoding architectures provide the best representa-
tions of surrounding context? (3) What are the most effective real-valued output distributions
to model masked number quantities in text? To answer these questions, we propose a suite of
novel real-valued output distributions that add flexibility through the use of learned transformation
functions and discrete latent variables. We conduct experiments for both MNM and NAD tasks
on two large datasets in different domains, combining output distributions with both recurrent and
transformer-based encoder architectures, as well as different numeric token encoding schemes.
Further, while Chen et al. [28] studied a specific type of NAD (detecting exaggerated numbers in
financial comments), we examine several NAD variants with different types of synthetic anomalies
that are found to arise in practice across different domains of data. Finally, we further compare
results with a strong discriminative baseline.
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2.2 Models

Our goal is to predict numbers in their textual contexts. The way we approach this is similar
to masked language modeling (MLM), but instead of masking and predicting all token types,
we only mask and predict tokens that represent numeric values. For example in Figure 2.1 we
wish to predict that the value of the masked number [#MASK] should be 2 x 10*? € R given the
surrounding context.

For notational simplicity, we describe our model as predicting a single missing numeric value
in a single sentence. However, like other MLMs (see section [2.4.3)), during training we will mask
and predict multiple numeric values simultaneously. Let X be a sentence consisting of N tokens
where the kth token is a missing numerical value, Y. The goal of our model is to predict the value
of Y conditioned on X . We will use common notation for from similar setups and simply treat
the kth token in X as a masked numeric value, [#MASK].

Our models Py, (y|X) consist of three main components: an input representation of the
sentence, a contextual encoder with parameters v which summarizes the sentence, and an output
distribution with parameters 6 over the real number line. In this section we will describe our
strategies for numerical input representation, the two types of contextual encoders we use, along
with different formulations of numerical output distributions.

2.2.1 Input Context Representation

We first describe the input representation for the textual context X that will be passed into our
model’s encoder. We let z; represent the ith token in the input sequence. Like related MLMs that
leverage transformers (which is one type of encoder we consider in experiments) we separate
the representation of z; into several types of embeddings. We include a positional embedding
P and a word-piece token embedding eT°¥ like the original BERT. We also introduce our new
numeric value embedding eN"™ to help us learn better numerical representations. Finally, as
shown in Figure[2.1] the input representation for token z; is the sum of these three H-dimensional
embeddings.

If the token at position ¢ represents a numerical quantity, we replace it with a special symbol
[#MASK], and represent its numerical value using e?IUME] We use the extraction rules detailed in
Section [2.3.1]to find the numbers in our input sequence. In the next section we will describe two
strategies for numerical representation eN"M,

Digit-RNN Embedding

The large range ([1, 1¢'®] in our data) of numerical values prevents them from being used directly
as inputs to neural network models as this results in optimization problems due to the different
scales of parameters. One strategy to learn embeddings of numerical values has been shown by
Saxton et al. [[104] which used character-based RNNs to perform arithmetic operations such as
addition and multiplication. We conduct experiments with a similar strategy and represent each

"'We exclude segment type embeddings since we do not perform next sentence prediction. We also found it helpful
to use the zero vector as the numerical embedding for eNU™ if position i is not a quantity.

%
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number in scientific notation (d.ddde+d) with 6 digits of precision as a string. We then use a
digit-RNN to encode the string and use the last output as eN'M,

Exponent Embedding

A simpler approach to represent numbers would be to explicitly learn embeddings for their
magnitudes. Magnitudes have been shown to be a key component of the internal numerical
representation of humans and animals [6, 32, [137]. We conduct experiments with an encoding
scheme that learns embeddings for base-10 exponents.

2.2.2 Context Encoder

The encoder’s goal is to summarize the surrounding text, along with other numbers that appear
therein. We define H = f, (X) where the encoder f, is a function of the context X, and H is
the hidden representation of the encoder’s last layer. Next, we describe two encoder architectures:
a transformer and a recurrent approach.

Transformer Encoder

Transformer architectures pretrained on vast amounts of data have led to breakthroughs in textual
representation learning [60, 69, 89, [143]]. We use the 12-layer BERT-base architecture [33] with
the implementation provided by Huggingface [139]. We use the original BERT’s word-piece
vocabulary with 30,000 tokens and add a new [#MASK] token.

BiGru Encoder

Previous methods focusing on the related task of predicting the order of magnitude of a missing
number in text showed that RNNs were strong models for this task [28]]. In our real-valued output
task we use a bidirectional Gated Recurrent Unit (BiGRU), the best performing model from Chen
et al. [28]]. We use a one-layer BiGRU with a 64-dimensional hidden state and a dropout layer
with a 0.3 dropout rate. We use the same pretrained word-piece embeddings from BERT as this
allows us to directly compare the two encoders.

2.2.3 Real-valued Output Distributions

In early experiments, we observed that simple continuous distributions (e.g. Gaussian or Laplace)
performed poorly. Since numbers can have ambiguous or underspecified units, and further,
since numbers in text are heavy-tailed, asymmetric or multi-modal output distributions may be
desirable. For this reason, we propose several more flexible output distributions, some which
include learned transforms and others which include latent variables (both well-known methods
for adding capacity to real-valued distributions), to parameterize P(y|X).
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Figure 2.2: Left (a): We depict our LogLP and FlowLP graphical models along with the latent
and output distributions. Right (b): Probabilistic graphical model of our latent DExp model.

Log Laplace

A common method for constructing expressive probability density functions is to pass a simple
density through a transformation (e.g. a flow or invertible mapping function). As an initial
example (and our first output distribution), we describe the log Laplace distribution as a type of
flow. Since numbers in text are not distributed evenly on the number line due to a long tail of high
magnitudes, a simple trick is to instead model the log of numeric values. If the base distribution
is Laplace, this yields a log Laplace distribution, which we describe next as an exponential
transformation.

In Figure we illustrate our LogLP model with a continuous intermediate variable z,
encoder f., with exp as the transformation, gy , and consequently log as g, !. In equation
we show our generative process and training objective where both gy and g, ! are deterministic
functions with no parameters. We let 9(H ) denote a single layer MLP that outputs the location
parameter of the base Laplace distribution on z, which is transformed to produce the output
variable, y. More precisely:

Generative Process: Training Objective:
z ~ Laplace(uy(H), 1) g,'(y) =logy
¥ = 8@) = expz log P(y|X) = — | g5 (5) — #o(H) | = C +10g 10 ¥)
log () = log dj; )| = log |~ ‘

2.1
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Flow-transformed Laplace

The exp transformation may not be the ideal choice for our data. For this reason we consider
a parameterized transform (flow) to add further capacity to the model. For our purposes, we
are restricted to 1-dimensional transformations g : R — R. Further, by restricting the class
of functions, we ensure an efficient way of computing the log-derivative of the inverse flow,
which allows us to efficiently compute likelihood. We conduct experiments with the simple
parameterized flow described in Equation We use a single layer MLP to independently predict
each parameter a,b,c from H, the output of fV(X ). We also scale the range of b, ¢ to be between
[0.1, 10] using a Sigmoid activation. Similarly to the LogLP setting, j9(H ) is a single layer MLP
which predicts the location parameter of the Laplace.

Generative Process: Training Objective:
z ~ Laplace(uy(H), 1) gg'l(y) =a+blogcy
zZ—a
exp(——— -
Yy = g2) = # log P(y| X) = — |g9 ') — ug(H) | — C +10g J4,,(y)
dg~! b
log Je(y) = log | ——(y)| =log | —
Y y

(2.2)

This parameterization of flow is designed to allow for (1) re-centering of the input variable (via
parameter a), (2) re-scaling of the input (via parameter b), and (3) re-scaling of the output (via
parameter c). Together, this leads to a family of inverse flows that are all log-shaped (i.e. they
compress higher values), yet have some flexibility to change intercept and range.

Discrete Latent Exponent

While FlowLP adds flexibility over the LogLP model, both have the drawback of only being able
to produce unimodal output distributionsE] A well-established approach to parameterizing multi-
modal densities is to use a mixture model. The mixture component is determined by a discrete
latent variable in contrast with the continuous intermediate variable introduced in the flow-based
models. In Figure2.2| we show our DExp model where e represents an exponent sampled from a
multinomial distribution, and m is the mantissa sampled from a truncated Gaussian.

Prior work has shown the effectiveness of cross-entropy losses on numerical training [28},104].
For this reason we use a truncated Gaussian on the range of [0.1,1] to generate m, which
effectively restricts back-propagation to a single mixture component for a given observation. The
combination of exponent and mantissa prediction allows us to benefit from the effectiveness of
cross-entropy losses, while at the same time getting more fine-grained signal from the mantissa

’In principle, more complicated flows could also have multiple modes — though they are more challenging to
construct and optimize.
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loss. In Equation we show the DExp generative process and training objective. We let my(H )
denote a single layer MLP that outputs the multinomial parameters of P(e|X). Similarly, we let
wo(H , e) denote a two layer MLP with a [.1,1] scaled Sigmoid that outputs the mean parameter
of the mantissa normal distribution.

Generative Process: Training Objective:
e ~ Mult(z,(H)) e*(y) = llog,o(»)]
¥~ ¥ o (ol H, €), 0.05) log P(y| X) = log[P(e = e*(»))

Lo - 101 - i)
(2.3)

Gaussian Mixture Model

Inspired by the best performing model from Spithourakis and Riedel [107]] we also compare with a
Gaussian mixture model (GMM). This model assumes that numbers are sampled from a weighted
mixture of K independent Gaussians. During training the mixture from which a particular point
was sampled from is not observed and so it is treated as a latent variable. We can optimize the
marginal log-likelihood objective by summing over the K mixtures. In equation GMM has K
mixtures parameterized by K means and variances p, o, respectively. Following Spithourakis
and Riedel [107], we pre-train the parameters w, o on all the numbers in our training data D
using EM. The means and variances are then fixed and our masked number prediction model only
predicts mixture weights during training and inference. We let 7y (H ) denote a single layer MLP
that outputs the mixture weights P(e| X).

Generative Process: Training Objective:
< 1 -0 -m)
u=1pp .. . );0 =1[01,05,...06,] logP(y|X) = logz [P(e =k)- Eexp<276£>]

k=1
e ~ Mult(ny(H))

y~ Ny0,)
(2.4)

2.3 Data

Financial news Financial news documents are filled with many different ratios, quantities and
percentages which make this domain an ideal test-bed for MNM. The FinNews is a collection
of 306,065 financial news and blog articles from websites like Reuterﬂ We randomly break the
documents into [train, valid, test] splits with [246065, 30000, 30000] respectively.

Swww.kaggle.com/jeet2016/us-financial-news-articles
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Since FinNews has many occurrences of dates and years, we also evaluate on a subset corpus,
FinNews-$ , to measure effectiveness at modeling only dollar quantities in text. FinNews-$ is
constructed exactly as FinNews , with the added requirement that the number is preceded by a
dollar sign token ($). For all training and testing on FinNews-$ , we only predict dollar values.

Academic papers Academic papers have diverse semantic quantities and measurements that
make them an interesting challenge numeracy modeling. For this reason, we also use S20RC,
a newly constructed dataset of academic papers [[72]. We use the first 24,000 full text articles,
randomly splitting into [20000, 2000, 2000] [train, valid, test] splits. ﬂWe refer to this dataset as
Sci. All three datasets follow the same preprocessing discussed below and summary statistics are
provided in Table[2.1]

2.3.1 Preprocessing

Financial news, academic papers, and Wikipedia articles all have different style-guides that dictate
how many digits of precision to use or whether certain quantities should be written out as words.
While such stylistic queues might aid models in better predicting masked number strings, we are
specifically focused on modeling actual numeric values for two reasons: (1) reduced dependence
on stylistic features of the text domain leads to better generalization to new domains, and (2) the
numerical value of a numeric token conveys its underlying meaning and provides a finer-grained
learning signal. For example currencies are usually written as a number and magnitude like
$32 million however, many quantities can be written out as cardinals sixty thousand trucks. We
normalize our input numbers so that changing the style from five to 5 does not change our output
predictions.

As exemplified in Figure the aim of our approach is to incorporate both numbers as
context and numbers as predictions (i.e. 2 trillion and thirty million in the example). For this
reason, before tokenization we employ heuristics to combine numerals, cardinals and magnitudes
into numerical values, whilst removing their string components. We also use heuristics to change
ordinals into numbers. By following this normalization preprocessing procedure we get higher
diversity of naturally occurring quantitative data and mitigate the bias towards some particular
style guide.

For both FinNews and Sci we lowercase the text and ignore signs (+, —), so all numbers are
positive and restrict magnitudes to be in [1, 1¢'®]. We discard sentences that do not have numbers
or where the numbers are outside of our specified range. We also filter out sentences that have
less than eight words and break up sentences longer than 50 wordsE] We do not use the special
token [SEP] and all examples are truncated to a maximum length of 128 tokens.

4We also filter articles from only these categories {Geology, Medicine, Biology, Chemistry, Engineering, Physics,
Computer science, Materials science, Economics, Business, Environmental science}.
3Sentences under eight words in length tended to be titles of articles with the date as the only numeric quantity.
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FinNews FinNews-$ Sci
train valid test train valid test train valid test

#instances | 522996 58095 64433 | 188286 22338 23281 | 360514 36523 36104
avg-length | 102.5 108.3 1089 | 115.2 1154 116.1 | 125.6 1264 126.5

Z%numbers | 8.8 9.3 9.6 13.0 12.7 13.2 7.1 7.2 7.1
min 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
median 50 | 313.0  250.0 329.0 | 2016.0 2016.0 2016.0 | 9.0 8.0 9.0

median 75 | 3141.0 2558.0 3500.0 | ~ 10* ~10* ~10%* |42.0 40.0 43.0
median90 | ~ 10° ~ 105 ~10% | ~107 ~ 107 ~ 107 | 1959.0 1948.0 1972.1
max ~10% ~ 10" ~ 10 | ~10"® ~ 10" ~ 10 | ~10"® ~ 10" ~ 10%

Table 2.1: Statistics on our datasets. The top half of the table reveals the number of examples
per data split, the average length of sentences, and the fraction of tokens that are numbers. The
bottom half shows summary statistics for number values in both datasets.

2.4 Experiments

In this section we explain our experimental setup, starting with our evaluation metrics, implemen-
tation details, results, and ablation analyses. We use the following naming convention for models:
we specify the encoder (BiGRU, BERT) first, followed by one of our four output distributions
(LogLP, FlowLP, DExp, GMM).

2.4.1 Evaluation

For the MNM task on D4 and Dy splits we randomly select a single number to mask out from
the input and predict. We let ¢ denote the model’s arg max prediction from P(y|X ) and Y as the
actual observed number. In equation[3.2]and [2.6) we show how we calculate log-MAE (LMAE)
and exponent accuracy (E-Acc), both of which use log base 10.

1 N
LMAE = Drew| E |log Y — log 9| (2.5)
s Dtcst
1
E-Acc = 1i|logY | = |logy (2.6)
’Dtest‘gm [[log Y| = [log §]]

2.4.2 Numerical Anomaly Detection

Both LMAE and E-Acc metrics test the model’s argmax prediction and not the entire P(y|X)
distribution. We next consider the NAD task where our models need to discern the true number
versus some anomaly. We let ¢y denote an anomaly and describe two different ways, [string,
random], we construct an anomalous example. For string we use the true Y and randomly
perform one of three operations [add, del, swap]: inserting a new digit, deleting an existing digit,
and swapping the first two digits respectively. For random, we randomly sample a number from
the training data D as our anomaly. We choose these string functions as they constitute a large part
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of numerical entry errors [[117,138]]. Further, random mimics a copy-paste error. We report the
AUC of a ROC curve for both types as random-anomaly (R-AUC) and string-anomaly (S-AUC)
respectively, using the model’s output density to rank the true value against the anomaly.

2.4.3 Implementation Details

We train all models with stochastic gradient descent using a batch-size of 32 for 10 epochs. We
use early stopping with a patience of three on the validation loss. For pretrained BERT encoder
experiments, we use two learning rates {3e™°, 1e~2} for all pretrained parameters and newly
added parameters respectively. For all non-pretrained BERT experiments and all BiGRU encoders
we use a single learning rate of 2e~2.

Devlin et al. [33] propose a two step process to generate masked tokens. First, select tokens
for masking with an independent probability of 15%. Second, for a selected token: With 80%
probability replace it with a [MASK], 10% replace it with a random token, and 10% leave it
unchanged. Since there are fewer numbers than text tokens, we use a higher probability of 50%
for selection. We follow a similar strategy for masking numbers: 80% of the time masking out the
number, 10% of the time randomly substituting it with a number from train, and 10% of the time
leaving it unchanged.

We also consider a fully discriminative baseline trained to predict real vs. fake numbers with
binary cross entropy loss. The negative numerical samples are randomly drawn from training set
numbers to match exactly the random-anomaly task. During training each positive datum has one
negative example and is trained in the same batch-wise fashion. When this model uses exponent
embeddings for output numbers, emb,,, , we can also calculate the exponent accuracy by selecting
the exponent embedding with highest model score as a predicted value. We include this approach
in experiments as a non-probabilistic alternative to our four output distributions.

2.4.4 Results

We ran all combinations of encoders and output distributions using input exponent embeddings on
FinNews and show the results in Table We train the GMM model with four different settings
of K € {31, 63, 127, 255} and report results for the highest-performing setting.

Comparing the two encoders, we find that BERT results in stronger performance across all
metrics and all output distributions. Although both settings share the same pretrained embedding
layers, the pretrained transformer architecture has higher capacity and is able to extract more
relevant numerical information for both MNM and NAD.

We find that the parameterized FlowLP model was generally better across all metrics under
both encoders compared to the LogLP model. With the weaker BiGRU encoder, the LogLP
model’s S-AUC is only 0.04 better than random guessing.

The DExp model was the best performing output distribution across all metrics and both
encoders, yielding on average 10% higher E-Acc and a gain of 0.13 on AUC. This means that
DExp had the best overall fit in terms of the predicted mode (arg max) as well as the overall
density P(y|X).

In contrast, GMM , which is also a discrete latent variable model capable of outputting a
multimodal distribution, underperformed across all metrics. There was little effect from adjusting
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Model LMAE| E-AccT r-AUCT s-AUCT

Train-Mean 7.69 1.03 - -

Train-Median 1.88 5.52 - -

BiGRU-Disc - 55.8 0.756 0.646
BiGRU-LogLP 0.671 58.8 0.675 0.548
BiGRU-FlowLP 0.622 61.8 0.694 0.591
BiGRU-DExp 0.576 71.5 0.843 0.821
BERT-Disc - 62.7 0.762 0.656
BERT-GMM K=255 1.18 21.3 0.585 0.440
BERT-LogLP 0.5666 64.9 0.686 0.557
BERT-FlowLP 0.5732 65.5 0.717 0.609
BERT-DExp 0.500 74.6 0.861 0.828

Table 2.2: Results on FinNews where all models use input exponent embeddings emb.,,, and all
BERT encoders are pretrained. We also include the mean and median number from training D as
simple baselines.

the number of mixture components, with slight improvements using more mixtures. One possible
reason for the GMM model’s worse performance is that the mixtures are fit and fixed before
training without any of the surrounding textual information. Quantities such as dates and years
have many textual clues, but the model’s initial clustering may group them together with other
quantities. We also found that, empirically, optimization for this model was somewhat unstable.

Finally the Disc baseline was the second best performing model on NAD , though on MNM
it showed worse E-Acc than LogLP and FlowLP models. This baseline benefited from being
directly trained for NAD , which may explain it’s under-performance on MNM metrics. Due to the
comparatively worse performance of both the BiGRU encoder and the GMM output distribution,
we exclude them from the remainder of our experiments.

2.4.5 Ablations

Ablations on Numerical Embedding We select our best performing model, BERT-DExp, and
ablate the numerical input representation on FinNews. We compare using emb;,, emb,, , and
a version of ExpBert which has no numerical input representation. The top half of Table [2.3]
displays the results. We see that embg;, and emb,,, perform equally well. Using no input number
embeddings reduces performance by 8% on E-Acc and 0.03 AUC on both anomaly metrics. We
also see that there is no benefit from combining both of these input representations, which implies
that the model is able to extract similar information from each.

Ablations One-vs-All To measure our model’s effectiveness at using the other numbers in
the input we construct an ablated evaluation Al/ , where all input numbers are masked outﬁ In
Table [2.3| we see that all models that have a numerical embedding suffer a performance drop
of around 12% E-Acc and an increase of 0.4 on LMAE. This suggests that the model is in fact

%To make comparisons exact, every test example has at least 2 numerical values so that we can perform this
ablation.
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Ablation Type LMAE| E-Acct r-AUCT s-AUCtT | all-LMAE| all-E-Acc 1
Numerical Input Embedding

BERT-DExp (All #s Masked)  0.656 66.5 0.831 0.809 0.656 66.5
BERT-DExp + emb,y, 0.500 74.6 0.861 0.828 0.888 62.2
BERT-DExp + embg;q 0.506 74.4 0.858 0.826 0.920 62.1
BERT-DExp + embey, + embg;; 0.498 74.9 0.861 0.828 0.899 62.3
No Pretraining

BERT-DExp + emb,y, 0.615 68.8 0.840 0.810 0.889 60.6
BERT-FlowLP + emb,y, 0.769 57.9 0.670 0.563 0.861 54.4
BERT-Disc + emb,y, - 26.9 0.632 0.599 - -
BERT-LogLP + emb,y, 0.630 63.2 0.678 0.550 0.850 57.1

Table 2.3: Ablation on FinNews dataset. The top half of the table shows the effect of the
numerical input representation. The bottom half shows performance for models trained from
scratch, without leveraging pretrained BERT parameters.

using the other quantities for its predictions. We also find that the model with no input number
embeddings does better on the A/l setting since it was effectively trained with fully masked input
numbers.

Ablations on Pretraining In the bottom half of Table we compare the effect of starting
from a pretrained transformer versus training from scratch. We see that training from scratch hurts
all models by around 6% on E-Acc and 0.02 on R-AUC. We also note that BERT-LogLP seems
least affected, dropping only 1% on E-Acc.

Modeling Additional Domains In this section we explore how different models behave on the
alternative domain of academic papers, and how modeling is affected by focusing only dollar
quantities in financial news. In Table[2.4] we show results for pretrained BERT encoder models
with input exponent embeddings, trained and evaluated on Sci and FinNews-$ datasets.

On the Sci data, the generative models have similar performance on LMAE and E-Acc . We
further find that BERT-DEXxp is still the best performing model across most metrics on both Sci
and FinNews-$ data. The BERT-Disc baseline, which is directly trained to predict anomalies, is
consistently the second best across all datasets on NAD. Finally, we find that the FinNews-$ is the
most challenging of the three datasets, with BERT-DExp dropping on E-Acc by 20% compared
to FinNews data. This supports our initial reasoning that the distribution of dollar amounts is
more difficult to characterize than other quantities, such as dates, which tend to cluster to smaller
ranges.

2.5 Related Work

Math & Algebraic Word Problems: There is a wide literature on using machine learning to
solve algebraic word problems [67, 97, [144], building novel neural modules to directly learn
numerical operations [78, [120] and solving a variety of challenging mathematical problems
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FinNews-$ Sci

Model LMAE,| E-Acc?T r-AUCt s-AUCT | LMAE| E-Acct r-AUCT s-AUCYT
BERT-Disc - 46.9 0.828 0.588 - 68.8 0.722 0.657
BERT-LogLP 1.04 43.6 0.641 0.528 0.374 78.2 0.624 0.609
BERT-DExp 0.91 56.9 0.867 0.678 0.385 81.0 0.786 0.836
BERT-FlowLP 1.11 39.3 0.538 0.518 0.374 77.6 0.658 0.672

Table 2.4: Results on FinNews-$ and Sci where all models use input exponent embeddings
emb,,, and all BERT encoders are pretrained.

(59,161, 104]]. In these tasks, numbers can be treated as symbolic variables and computation based
on these values leverages a latent tree of arithmetic operations. This differs from our task setting
since there is no “true” latent computation that generates all the quantities in our text given the
available context.

Numerical Question Answering The DROP dataset [36] is a dataset that requires performing
discrete numerical reasoning within a traditional question answering framework. Andor et al. [3]]
treat DROP as a supervised classification problem, while recent work by Geva et al. [43]] show
how synthetic mathematical training data can build better numerical representations for DROP.
Unlike work on DROP, our primary focus is on the task of contextualized number prediction
and numerical anomaly detection in text, which involve correlative predictions based on lexical
context rather than concrete computation.

String Embeddings Recently, word and token embeddings have been analyzed to see if they
record numerical properties (for example, magnitude or sorting order) [84,[130]. This work finds
evidence that common embedding approaches are unable to generalize to large numeric ranges,
but that character-based embeddings fare better than the rest. However, this line of work also
found mixed results on overall numeracy of existing embedding methods and further investigation
is required.

Numerical Prediction Spithourakis and Riedel [[107] trained left-to-right language models
for modeling quantities in text as tokens, digits, and real numbers using a GMM. Our empirical
investigation focuses on MNM and considers both left and right contexts of numbers, along with
a broader class of generative output distributions. Chen et al. [28] predict magnitudes of numbers
in text and also consider a type of NAD to detect numerical exaggerations on financial data.
However, this modeling approach is restricted: it can only distinguish anomalies that result in a
change of exponent. In contrast, our real-valued distributions allow us to focus on a broader suite
of harder anomaly detection tasks, such as random substitutions and string input error.

2.6 Conclusion

In this work we carried out a large scale empirical investigation of masked number prediction and
numerical anomaly detection in text. We showed that using the base-10 exponent as a discrete
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latent variable outperformed all other competitive models. Specifically, we found that learning the
exponent representation using pretrained transformers that can incorporate left and right contexts,
combined with discrete latent variable output distributions, results is the most effective way to
model masked number quantities in text. Future work might explore combining more expressive
flows with discrete latent variables.
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Chapter 3
Masked Measurement Prediction

* Daniel Spokoyny and Ivan Lee and Zhao Jin and Taylor Berg-Kirkpatrick, “Masked Mea-
surement Prediction: Learning to Jointly Predict Quantities and Units from Textual Con-
text.”, In Proceedings of Findings NAACL 2022

3.1 Introduction

In this Chapter, we focus on a special subset of quantities: measurements. First, as an example of
masked number prediction (MNP), given the sentence “Cats have [#NUM | paws.” a model learns
to predict the number 4. While appropriate for numerical commonsense, MNP is deficient when
it is used to predict measurements. Measurements, such as 2 meters or 13.2 square miles, are a
special class of particularly common numbers in text that have a well-defined and typed system of
units. Given a simple question: “How long did Alex Honnold climb for?”, a single number alone
is an insufficient answer since it is meaningless without the unit. Answers like 1000 meters or 4
hours could both suffice.

Current MNP systems do not jointly reason about numbers with units. It is reasonable to
expect that pretrained models like BERT could leverage information of units directly as text
without any special treatment. However, as you recall from the preliminary experiments in the
introduction, we find that models yield poor numerical abilities. Furthermore, including units
as text directly raise more questions: should we evaluate using all units (meters, feet, inches)?
Should we equally weight across the units? Current models have no opinion about which unit is
appropriate because they are not required to make unit predictions during training. Together, this
indicates that current training objectives do not capture sufficient representations of measurements
and that a direct application of MNP to evaluate numeracy of measurements is ill-suited.

To address these shortcomings, we propose the more challenging task of Masked Measurement
Prediction (MMP) along with a new model. In this task, a model must reconstruct both the number
together with the correct unit. In Figure [3.1) we show how in a MMP setting our model generates
a dimension (“Length”), a number in metric log-space (“3.00”), the unit ("feet") and then uses the
conversion factor (“3.28”) to deterministically output the full measurement (‘3280 feet”). This
example illustrates a key distinction in that our model is flexible and can generate non-metric
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Alex Honnold climbed for [#NUM] [UNITj.l
v

Pred. Canonical
Number
(metric log-space)
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Figure 3.1: We present the Masked Measurement Prediction (MMP) task where the model predicts
the dimension, unit and real-valued number. We also show the model architecture of Generative
Masked Measurement model (GeMM), the model we propose to perform MMP. We display the
fixed operations used during unit conversion in yellow. In black, we show the different components
of the model’s prediction.

measurements (feet) but evaluates numerical prediction in canonical units (meters)[]

MMP is useful for two reasons: 1) as a way to train models to give them better numeracy
2) as a new kind of evaluation that allows for a much more fine-grained analysis of reasoning
over numerical quantities. The task of measurement estimation decouples the different aspects of
numeracy allowing for a more interpretable and thorough analysis of numerical reasoning. We
introduce a new evaluation benchmark for MMP based on Wiki-Convert (WiCo) [115]], a large
scale dataset of English Wikipedia sentences with ground truth measurement annotations. We
compare the performance of our models on their ability to accurately predict the dimension, unit,
and value of a measurement. We employ a large pretrained transformer model as our textual
encoder and examine the performance of different discriminative, generative, and latent variable
models along with several ablations. Our contributions are as follows:

* We introduce a novel challenging task MMP for pretraining and evaluating numeracy.

* We show that linear probing of existing pretrained models on MMP significantly underper-
forms tully finetuned models.

* We train a model that reasons jointly about numbers and units which predicts numbers 8.1
times more accurately than the probed pretrained models.

* We find our best performing generative model outperforms human annotators on two

'"Our metric of choice described in Equation is invariant to the specific choice of canonical unit i.e., log-mae
in meters is equal to log-mae in feet.
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Figure 3.2: GeMM as a graphical model. The broken arrows represent a deterministic unit
conversion. Examples of unit values and their corresponding dimension values are also shown.

evaluations, achieving 7.4-7.8% better dimension accuracy and 33.5-39.9% better unit
accuracy. Furthermore, this model predicts a number closer to ground truth than our
annotators 66.2-78.8% of the time.

Furthermore there are numerous applications of better measurement prediction and unit
reconstruction such as in table to text generation [83]], answering numerical queries [47, [103]] or
for improving e-commerce product search[8]. We hope that Masked Measurement Prediction
becomes a standard benchmarking tool from which we can gain insight how to best incorporate
new numeracy modeling techniques as well as evaluate existing models.

3.2 Models

3.2.1 Background + Notation

The International System of Units (SI) defines seven fundamental dimensions (Length, Time,
Mass, etc.) and seven corresponding base SI units (meters, seconds, kilograms, etc.). The SI
system is the most widely adopted measurement standard and is used internationally in domains
such as commerce, finance, logistics, and science. We designate D to be the set of composite
dimensions obtained from (and including) the fundamental dimensions. Values of D include
velocity and power. We let U be the set of all units: the various ways to describe dimensions.
For example, units of Length include meters and miles. Each training example consists of a real
number y, a dimension d € D, a unit u € U, and the remainder of the sentence S. In MMP, our
task is to predict y, d, and u given only S. In the next sections we describe our generative model
designed for MMP followed by the ablations we consider.
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3.2.2 Model

Measurements have complex semantic meanings, shaped by many standards, particular instru-
ments, and natural world phenomena. Consider a text concerning rainfall. From a dimensional
analysis perspective, the units inches per year (in/y) and meters per second (m/s) share the same
dimension velocity. However, mentioning in/y usually implies that the text is discussing total
rainfall in a region. Likewise, the use of m/s suggests that the text is examining the speed of
falling rain droplets. To capture this complexity, we consider a generative model that learns the
joint distribution of the number, dimension, and unit.

We now describe the generative process of our full model. To start, conditioned on S, our
model samples a discrete dimension variable . Then conditioned on the sampled dimension,
our model samples a discrete unit variable U compatible with the dimension. For example,
conditioned on the dimension velocity our model will output a distribution over the units of
velocity such as [miles per hour; meters per second, inches per year] as opposed to all of U.
We then separately predict a distribution on the canonicalized measurement, Y, which is the
numerical quantity represented in a base canonical (metric) unit like meters. During inference
time, we use the highest scoring dimension and unit and choose the proper conversion factor to
deterministically produce the final number y represented in the predicted unit. We refer to this
Generative Masked Measurement model as GeMM, where the joint p(D,Y ,U|S) is given by
the following equation:

p(D|S) x p(U|D, S) x p(Y|S)
We show the graphical model of GeMM in Figure We also consider, GeMM B4, a slight

variant where we have a direct dependence between the unit and number prediction with a joint

equal to:
p(D|S) x p(U|D, S) x p(Y |U, S)

3.2.3 Discrete Latent Dimension Model

We also consider an unsupervised generative model which treats the dimension as a discrete
latent variable. We use the same number of dimension classes |D| and train to maximize the
log-likelihood of the observed Y. We refer to this model as Lat-Dim and is characterized by:

p(Y[S) =) p(D|S) x p(Y|D,S)

To evaluate this model we build a contingency matrix of the predicted classes and using a linear
solver find the best mapping between our predicted and true dimensions. We can then apply this
mapping to the model predictions and calculate classification metrics for dimension prediction.

3.2.4 Model Ablations

We also consider several model ablations of GeMM. Our first ablation is GeMM which
models p(D|S). The second, GeMM Y], learns the distribution p(U, D|S) = p(D|S) x
p(U|D, S). The third, GeMM U], models p(Y, D|S) = p(D|S) x p(Y'|D, S). Our final
ablation is GeMM which learns P(Y'|S) directly.
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Split Examples Max# Min#

All 919,237 5.5E+36 1E-06
Train 728,629 5.5E+36 1E-06
Val 91,110 4.4E+14 1.2E-06
Test 91,092 1.6E+21 1.8E-06

Table 3.1: Summary statistics for Wiki-Convert. The median number of characters and tokens per
example is 106 and 33, respectively.

3.2.5 Model Architectures

For our textual encoder, we use the Huggingface Transformers [69, [140] implementation of
RoBERTa4, a pretrained 12-layer transformer. We refer to this text encoder as 1" such that given
a sentence S, our model outputs a 768-dimensional vector hr. We use a single linear layer,
Ws € R7%*M (o project hy to h and treat the dimension M as a hyper-parameter. To form
a distribution over the real number line R we use a Log-Laplace model, a competitive model
used in the numeracy literature [[108, [115,1145]]. This is equivalent to L, regression in log-space
and yields the following loss function where Y and Y * are predicted and ground truth numbers,
respectively:

log P(Y|S) = |logY* —log Y| + log

1
?‘ (3.1)

As shown in Figure 3.1, we project h with a linear layer Wp € RM*IP| to obtain a distribution
over D. We then use a separate linear layer, Wy, € RM <Ul to project h and obtain a distribution
over U. To predict Y, we project h with a linear layer Wy-. In the case of GeMM, we let
Wy € RM*IPl in order to parameterize a mean of a Log-Laplace distribution for each dimension
in D. For GeMM B, we set Wy € R¥*IUl to output the mean of a Log-Laplace distribution
for each unit in U and the remaining models, we set Wy € R”*! resulting in a single mean of
a Log-Laplace distribution. For training, we use cross-entropy loss for the dimension and unit
distributions, and the loss from the equation above for number prediction.

3.3 Dataset

We train and evaluate our models on WiCo [1135]], a dataset of English Wikipedia sentences where
the number and unit in each sentence are human-annotated. We canonicalize the units and map
each to a single dimension. For example both feet per second and miles per hour map to velocity.
We show the distribution of all measurements and lengths in Figure The resulting dataset
consists of 919,237 sentences with annotated (number, unit, dimension) triples. We provide more
details on the data in Appendix [3.8.1]
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Figure 3.3: Histograms of WiCo numbers binned by base-10 exponent. All numbers are canoni-
calized to their SI form. Left: All numbers labeled by dimension. Right: Numbers in the length

dimension labeled by unit.

Model 10-shot 40-shot 70-shot 100-shot
GeMMEIEURE 155 500 525 53.4
GeMM 42.5 51.2 57.6 60.5
Majority 14.3 14.3 14.3 14.3

Table 3.2: Results (measured by F1 1) of our few-shot experiment on dimension classification
(probing p(D|S)). x-shot implies the model is trained on x labeled examples per dimension.

indicates an ablation of GeMM where Y and U are not modeled. ¥ indicates the
model’s parameters are frozen during training.

3.4 Experiments

We train all models using a batch size of 200 and use the AdamW [73] optimizer with a learning
rate of 1e~* and a linear warm-up schedule of 500 steps. We use the ke symbol to indicate that
we freeze the transformer parameters for training. For all frozen models we use a log frequency
weighted cross-entropy due to the highly imbalanced classes as well as a higher learning rate of
le~3. We employ early stopping with a patience of five epochs on validation score.

To evaluate the performance of our models, we report the macro averaged F1 score for
dimension and unit prediction and log-mae to evaluate number prediction. We define log-mae
in Equation [3.2) where Y is the predicted number and Y* is the ground truth number. As a
simple baseline for dimension and unit prediction, we employ majority class voting. For number
prediction we use the median of all the numbers in the training set.

> |log, Y —log,, Y| 3.2)



Model 10-shot 40-shot 70-shot 100-shot

GeMMUDEE 194 1.82 1.72 1.75
GeMM 1.70 1.56 1.43 1.41

Median 1.99 1.99 1.99 1.99

Table 3.3: Results (log-mae ) of our few-shot experiment on number prediction (probing p(Y'|5)).

Model Probing Type Val Test
Majority - 33.1 33.1
GeMM= p(D|S) 69.1 67.5
GeMM YUl p(D|S) 88.0 86.8
GeMM p(D|S) 87.0 87.3
GeMM U] p(D|S) 87.2 86.6
Lat-Dim p(D]S) 9.0 9.1
GeMM p(D|S) 87.4 87.0
GeMM BN  p(D|S) 86.4 86.1

Table 3.4: Results (F1 1) for dimension prediction conditioned on .S only. GeMM indicates
a variant of GeMM where Y is dependent on U (in addition to S).

3.4.1 Few-Shot

To study the degree to which current pretrained models capture different aspects of numeracy, we
consider the following few-shot experiment. We sample a balanced dataset of dimensions where
each class gets 10, 40, 70, or 100 labeled examples. We train GeMM and GeMM on
the few-shot task where the pretrained text encoder 1" parameters are frozen and compare their
performance against full fine-tuning. Due to the high variance of GeMM [Y][-U], we report the
average of three random seeds. In Table [3.2|and Table |3.3| we show results of GeMM and
GeMM respectively.

Although performance improves with more data, the frozen models significantly underperform
their unfrozen counterparts across all dataset sizes. For example, in the 100-shot dataset, the
frozen model shows 7.1 lower F1 and 0.34 higher log-mae. These results suggest that current
pretrained transformers do not capture numeracy to a large extent.

3.4.2 Dimension Prediction

We train our models and their ablations on the full dataset and measure their performance on
dimension prediction. In Table 3.4, we show the results of dimension prediction conditioned on
S. We observe that the performance gap between the frozen and unfrozen GeMM grows to 19.5
F1 on the test split despite training on 3 orders of magnitude more training data than the few-shot
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Model Probing Type Val Test
GeMM[Ul  p(D|Y,S) 95.5 95.7
GeMMIGN p(D|Y, S) 96.4 96.6

Table 3.5: Results (F1 1) for dimension prediction conditioned on Y and S.

Model Probing Type Val Test
89 9.0

GeMM?%  p(U|D,S)  29.8 298
GeMM Y] p(U|D,S) 529 51.7
GeMM p(U|D,S) 51.5 54.9
GeMMBE p(U|D,S) 493 478

Majority

Table 3.6: Results (F1 1) on unit prediction conditioned on the true dimension and text. Ablations
are above the double horizontal line.

setting.

By using Bayes’ rule, we perform dimension prediction conditioned on both S and Y and
show our results in Table We observe that both models show improved dimension prediction
ability when supplied with the number with GeMM reaching 96.6 F1 score, an effective error
rate reduction of 75%.

3.4.3 Unit Prediction

We show the unit prediction performance of our models in Table[3.6] The strongest performing
model for unit prediction was GeMM with a F1 score of 54.9. Again, the frozen GeMM=¥
produced a 25.1 lower F1 score than its unfrozen counterpart.

We note that even though the F1 scores on unit prediction are much lower than dimension
prediction, they are still significantly better than the majority baseline. Although one can freely
substitute a unit with one in the same dimensional class, we tend to be more systematic and choose
units that allow for more straightforward human readability or reflect the actual instruments used
for measurement. As a result, we gravitate towards regularities that models can learn to recognize.
The converse of this is also interesting as it suggests that the expressed units imply more semantic
meaning than what is captured in the standardized measurement.

3.4.4 Number Prediction

We show the number prediction performance of our models in Table Consistent with
our previous experiments, all models outperform GeMM=F. Furthermore, we observe that not
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Model Probing Type Val  Test
Median - 198 197
GeMM=* p(Y|S) 1377 1.370
GeMM[UD] p(Y'|S) 0.529 0.531

(

(
comm YRS 048 42
Lat-Dim p(Y,D|S) 0545 0.546
GeMM p(Y]S) 0517 0.515
ey PYIU,D.S) 0401 0401

p(Y,U,D|S) 0526 0.526

Table 3.7: Results (log-mae |) for number prediction conditioned on S. In the second row of
GeMM U, we select the highest scoring d* € D and predict y conditioned on d* and S. In
the second row of GeMM B, we select the highest scoring v* € U and d* € D and predict
y conditioned on u*, d*, and S. For Lat-Dim, we sum over the latent variable D to predict y
conditioned on S.

modeling U and D (as is the case in GeMM [UIED)) increases log-mae, i.e., results in worse
numerical prediction. While competitive with GeMM and its variants on number prediction,
Lat-Dim cannot predict dimensions with the same efficacy (Table|3.4)).

We also experiment with the setting where GeMM [-U] conditionally generates the number
for a particular dimension. In this setting, GeMM [-U] improves log-mae to 0.469. Extending this
setting further, we condition GeMM on both a unit and a dimension to produce the best
log-mae among our models: 0.401.

We now revisit our original motivating example: “Alex Honnold climbed for [NUM] [UNIT]”.
Assume we want to know the distance of a climb. To do this, we condition GeMM on
D = length and U = feet. If, on the other hand, we want to know the duration of a climb, we
change the conditioning to D = time and U = hours. Now, if we want to know the length of
Alex Honnold’s climbing career, we condition GeMM on D = time and U = years. These
examples illustrate the flexibility of GeMM and the importance of jointly modeling numbers,
units, and dimensions.

3.4.5 Quantitative Analysis
Dimensions and Unit

In Figure we visualize a confusion matrix of dimension predictions by GeMM M. The low
accuracy for electric charge and temperature is attributed to a mislabeling in the datasetE] For
mass, we find many ambiguous situations where either mass or length are appropriate. See the

2Sentences with mislabeled Celsius as Coulombs, which may due to wrong annotation between °C and C. Also
observed by Elazar et al. [40]
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Figure 3.4: Confusion matrices for predictions by GeMM over the validation split. Left
Dimension prediction. Most misclassified dimensions are similar to their ground truth
counterparts in terms of Manhattan distance. Right[3.4b} Unit prediction for examples that share
the length dimension. Most misclassified units of length share similar magnitudes to their ground
truth units.

first row of Table[3.10] for such an example.

Thus far, we have treated dimensions as distinct classes with no relationships. However,
dimensions are compositions of the seven fundamental dimensions. Therefore, dimensions that
share fundamental dimensions are more similar than those that do not. To quantify this similarity,
we can treat dimensions as a vector where each element represents the exponent of a fundamental
dimension. Then to measure the similarity of two dimensions, we take their Manhattan distance.
To illustrate, assume there exist only two fundamental dimensions: Length and Time. Let
speed = (1, —1) and length = (1,0) where the first element represents Length and the second
represents Time. The Manhattan distance between speed and length is equal to one. In Figure
we visualize the Manhattan distance between the predictions of GeMM and ground truth.
We observe that there is generally an inverse relationship between error count and the distance of
the errors. This observation suggests that our model has learned that some dimensions are more
similar than others. This suggestion is reinforced by Figure [3.4a] where misclassifications tend to
have small distances from the true dimension. For example, velocity is most often misclassified
as length. For unit prediction, we find that most mistakes occur substituting units with ones that
have similar magnitudes like feet for meters or kilometers for miles.

Numeracy

In Table 3.8] we show log-mae by dimension as predicted by GeMM [B¥]. We note that errors are
not uniform across dimensions, predicting areas is 2.2 times harder velocities. We also observe
that the magnitudes of errors seem to be positively correlated with the variances observed in

Figure 3.3
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Examples

Manhattan Distance

Figure 3.5: Manhattan distance between true and predicted dimensions by GeMM ¥, We treat
dimensions as vectors whose elements are the exponents of the fundamental dimensions that
compose a given dimension. Note that the y-axis is in log-scale.

Length Area Velocity Mass Power
0.37 0.54 0.19 0.55 0.27

Table 3.8: log-mae | by dimension. It is harder to predict numbers of Area and Mass than other
dimensions.

Human Evaluation

We perform two evaluations of GeMM B3] against human annotators. In the first evaluation,
we compare against the combined effort of three Technical Annotators on a balanced set of 90
sentences randomly sampled from the test set. The annotators worked together to predict the
missing dimensions, units, and accurate measurement estimates. Examples of sentences and
annotations shown in Table

In the second evaluation, we compare against Amazon Mechanical Turk (AMT) Annotators
on a balanced set of 2,122 sentences randomly sampled from the test set. We show the results for
both evaluations in Table 3.9

In both evaluations, the model outperforms the human annotators on every task. For dimension
prediction, the model led by 7.4-7.8 percentage points. Of the sentences where the dimension
was correctly annotated, the model led by 33.5-39.9 percentage points on unit prediction. For
sentences where both the model and human correctly predicted the dimension, the model predicted
a number closer to ground truth 66.2-78.8% of the time.
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Model Human Model >

Human

D U D U Y

Tech Ann.  96.7 86.2 889 463 78.8
AMT Ann. 96.7 77.0 89.3 435 66.2

Table 3.9: Dimension and unit prediction accuracy of our human evaluation experiment.
GeMM BN outperformed the human annotators in both evaluations. Tech Ann. is over a
balanced set of 90 sentences labeled by Technical Annotators. AMT Ann. is over a balanced set
of 2,122 sentences annotated by AMT Annotators. The final column shows the model predicted a
number closer to ground truth in 66.2-78.8% of the cases.
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Figure 3.6: t-SNE visualizations of semantic head embeddings labeled by (left [3.6a)) dimension,
(middle units of length, and (right number exponent bin. Middle: we observe a
clustering of imperial units: feet, yards, miles. Right: we show two directions where magnitudes
of length and area measurements increase in value.

3.4.6 Qualitative Analysis
Semantic Head Embeddings

In Figure 3.6/ we plot the t-SNE embeddings of the sentences’ h, the output of our text encoder.
We label each h with the masked measurement’s true dimension, unit and exponent of the number.
In [3.6a] we observe that most embeddings labeled by their true dimension tend to form tight
clusters. In[3.6b| we filter to only show embeddings that share the Length dimension and label
them by their units. We find that clusters are organized by the relative magnitudes of their units:
large (Kilometers, miles), medium (feet, meters), and small (millimeters, inches, centimeters).
Further we see that yards appear close to other imperial units of feet and miles. Finally, in
when embeddings are binned by the exponent of their values we observe that the left to right
direction appears to capture the increasing magnitude of a number.
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True GeMM Prediction Human Prediction

# Text Dim Unit Num Dim Unit Num  Dim Unit Num
1 Hope is gaff rigged, *V’-bottomed and has an [#NUM] [UNIT] Mass  pounds 385.6 Length feet 2.97 Length meter 50
centerboard.

miles

S8}

Some have been running for over 50 years, each covering about  Velocity

[#NUM] [UNIT].
Another medium-sized corvid, the [#{NUM] [UNIT] Eurasian Mass  grams 0.22 Mass grams 0.05 Mass grams 0.2
magpie (Pica pica) is also amongst the most widely reported

secondary prey species for goshawks there.

4 The twin cylinder, liquid-cooled, in-line two-stroke, [¥{NUM] Power horse- 47725 Power horse- 39248 Power horse- 45000
[UNIT] Rotax 582 has also been used. power power power

0.10 Area sgkm  2.09E+10Area sqmi 2.59E+07
year

w

W

Chrysothamnus may grow up to a [#{NUM] [UNIT] tall shrub Length cms 1.2 Length meters 1.147 Length meters 1
or subshrub, usually with woody stem bases

il il ¢
M 751 Velocity ™" 63.584  Velocity o
hour second

(=)}

Kurt Busch was the fastest in the first practice session with a  Velocity 10

time of 21.372 seconds and a speed of [#{NUM] [UNIT].

hour

Table 3.10: Instances of the MMP task performed during our human evaluation experiment, all
numbers are in SI units. In ex. 1, both the model and humans predict the incorrect dimension
length instead of mass. The preceding sentence of ex.?2 references “trains” leading both to
incorrectly predict area instead of velocity. In ex. 6 the model predicts the speed of the NASCAR
driver Kurt Busch’s car whereas the humans had mistaken him for a runner.

3.5 Related Work

3.5.1 Numeracy

Multiple works have probed word embeddings like word2vec, GloVe, FastText [84] and contextual
embeddings from models like BERT [[130}145] or TS [86] on a variety of numerical tasks like
sorting, numeration, magnitude prediction, and common sense [66]. Several works have targeted
numeracy pretraining using left to right language models [107], CNN and RNN based models
[28]], pretrained transformers [S1, [108]], for an overview [116].

Incorporating synthetic mathematical data augmentations [43]] has improved question answer-
ing while numerical pretraining has been shown to lower masked language modelling perplexity
[115]. Either directly or indirectly units have been involved in providing more interpretable
explanation of quantities [26], solving Fermi problems [S3] and resolving numeric Fused-Heads
[39].

Numeracy Benchmarks

Several numeracy benchmarks have been proposed like quantitative reasoning in natural language
entailment [90] and synthetic measurement estimation [S1]]. The closest benchmark to our work
is the Distribution over Quantities dataset (DoQ) introduced by Elazar et al. [40]. A rule-based
method was combined with simple heuristics to build DoQ resulting in its high-coverage albeit
also higher noise. Although, WiCo is smaller, it has much higher fidelity since it utilizes a feature
used by editors of Wikipedia to automatically convert quantities into different units. Further,
WiCo provides the whole sentence as context as opposed to triplets of words. Zhang et al. [145]
use artificial templates to probe models on DoQ and find little difference between numerically
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pretrained and frozen embeddings such as ELMo. In contrast, our findings show there is a
significant gap on WiCo between fully finetuned models and their frozen counterparts.

3.6 Limitations

The pretrained RoOBERTa model we use in experiments was likely pretrained on data that included
WiCo. Thus, it is reasonable to be concerned about inflated test performance. That said, the task
we consider is distinct from the self-supervised task used to pretrain ROBERTa (i.e. masked
word classification vs. masked number regression). Further, our experiments on directly probing
RoBERTza to predict masked numbers and units showed poor performance — indicating, perhaps,
that even if ROBERTa’s pre-training set did include WiCo, RoBERTa did not memorize aspects of
our test set relevant to masked number prediction, partially mitigating these concerns.

The human evaluation studies we conducted are a quite limited ‘guesstimating’ task. The
human annotators were not allowed to use any external information from searching the internet or
looking up answers in knowledge-bases. Their total average completion time per question was
33 seconds. Furthermore, many annotators may not have strong intuition about measurements
with unfamiliar and uncommon unit types. For these reasons it is not surprising that our models
outperform the human annotators in this limited experiment. However, these human evaluation
studies do help calibrate the difficulty of the MMP task on WiCo.

3.7 Conclusion

In this work we propose Masked Measurement Prediction, a new task that requires models to
jointly predict masked numbers and units in running text. We motivate this task as an important
extension of existing masked number-only prediction tasks that addresses their limitations and
allows for better evaluation of numeracy in NLP models. In our study, we show that probing of tra-
ditional pretrained transformers exposes a gap in their understanding of contextualized quantities.
Through careful quantitative and qualitative analysis of our new model, which directly reasons
about underlying units and dimensions, we find that it is possible to learn good representations of
measurements. For future work we aim to extend this dataset to cover more existing standardized
units from organizations such as UNECEE] We hope our MMP task encourages research into
further development of better numeracy methodologies.

3.8 Appendix

3.8.1 Dataset

We train and evaluate our models on Wiki-Convert (WiCo) [[115], a dataset of English Wikipedia
sentences where the number and unit in each sentence are human-annotated. The built-in template
in Wikipedia can ensure the text contains numbers and units. For example, {{convert|2|km|mi}}

3United Nations Economic Commission for Europe
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Input: [UNIT] m km ft mi yd in meters kilometers  feet miles yards  inches

Output 200 10 200 2 100 1 200 20 20 2 50 3

Convertion factor 1 1000 0.3048 1609.34 0.9144 0.0254 1 1000 0.3048 1609.34 0.9144 0.0254

Metric Output 200.0 10000.0 60.96 3218.68 91.44 0.0254 200.0 20000.0 6.096 3218.68 45.72 0.0762

Mean (Metric Output) - 3086.8 m
std (Metric Output) - 5820 m

Table 3.11: Example outputs for Alex Honnold climbed for [MASK] [UNIT].

displays as 2 kilometres (1.2 mi). By searching within Wikipedia articles for the use of this
template, the authors of WiCo automatically extract human-annotated numbers. To perform unit
canonicalization, we use Pintﬂwhenever the mapping is unambiguous. In the ambiguous case, we
manually inspect the sentence and perform the mapping. For example, we map the unit sgmi in
WiCo to square miles to let pint perform unit canonicalization. Table shows examples of
the extended dataset. The original dataset contains 924,473 sentence. The median sentence length
is 106 characters, with 29,597 sentences has a length shorter than 20 characters. We provide
statistics of the data in Table [3.1] For preprocessing we exclude sentences which have more than
64 tokens to have efficient computing memory or where the number is negative for simplicity.
According to Thawani et al. [115] WiCo, “... has been extracted from Wikipedia dumps, which
are licensed under the GNU Free Documentation License (GFDL) and the Creative Commons
Attribution-Share-Alike 3.0 License.” Thawani et al. [[115] constructed WiCo with the intent that
it be used to further numeracy NLP research. Our use of WiCo is aligned with its authors’ goals.

3.8.2 MLM Preliminary Unit Probe

We perform a preliminary unit probe shown in Table The model predicts vastly different
numbers when conditioned on different units. We observe a mean of 3086.8 and a standard
deviation of 5820 for all the converted metric output.

3.8.3 [Experiments

We train our model GeMM on a single Nvidia GeForce RTX 2080 Ti for 4 hours and 14
minutes with a total parameter of 124,696,538.

Quantitative Analysis

In Figure we show log-mae is relatively small for small magnitude units, which means
predicting numbers for small magnitude units is easier than predicting numbers for their larger
counterparts.

In Figure [3.4] we show confusion matrices of dimension and unit predictions by GeMM 0¥,

“Pint: https://github.com/hgrecco/pint
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Figure 3.7: log-mae | by units of length. Predicting numbers for small magnitude units is easier
than predicting numbers for their larger counterparts.

3.8.4 Human Annotators
Evaluation 1

The Technical Annotators have diverse scientific backgrounds ranging from chemistry, earth
sciences, and computer science. One annotator is a native Chinese speaker, and two are native
English speakers.

Evaluation 2

In Figure [3.8] we show the instructions provided along with the interface we designed for our
MMP task. While the workers’ geographic location were not provided to us by Mechanical Turk,
we aimed to compensate the workers above the US federal minimum wage of $7.25. We paid
workers $0.15 per annotation with an average completion time of 33 seconds. This equates to
an hourly rate of $12.80 after Mechanical Turk fees. Other demographic information is only
provided by Mechanical Turk for an extra fee.

3.8.5 Ethical Considerations

Like any system that makes predictions, those made by GeMM are not necessarily accurate
and may be used by malicious actors to generate fake information to mislead their audience.
Additionally, GeMM is an extension of ROBERTa and therefore inherits the biases learned during
the training of ROBERTa. Our work focuses exclusively on English and Arabic numerals. As noted
by Thawani et al. [115]], the units in WiCo are heavily biased towards European and American
units as they are over-represented in English Wikipedia.
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My building is [#NUM] [UNIT] tall.

Please Guess the Dimension

Lengthl Massl Areald Velocityl Powerls!
Please Guess the Number

100

and the Units

meters (m)el

Labeling Instructions X miles (mi)ts!

Instructions: For each sentence please give your best estimate for the number in the units. centimeters (cm)™
Do not look things up, certain questions are ambiguous and that's okay. Really important the

i (al
number will be interpreted in the units that you select! For number please just input the digits kilometers (km)

and decimals points without any spaces or commas. millimeters (mm)lwl
Some examples:
1. 'My car weights [#NUM][UNIT].' Answer: Dimension=Mass, Unit=ton, Value=1 feet (ft)tel

2. 'My brother is [#NUM][UNIT] tall." Answer: Dimension=Length, Unit=ft, Value=5.8

. " . . i in)d
3. 'My house is [#NUM][UNIT] large.' Answer: Dimension=area, Unit=sqft, Value=1200.41 inches (m)

yards (yd)e!

Figure 3.8: Left: Instructions for labeling task. Right: we show the interface used by the labelers
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Chapter 4

Numerical Correlation in Text

* Daniel Spokoyny and Chien-Sheng Wu and Caiming Xiong, “Numerical Correlation in
Text.”, In Proceedings of EMNLP Workshop on Mathematical Natural Language Processing
2022

4.1 Introduction

Numerical reasoning tasks are one area where the performance of Large Language Models (LLMs)
has not improved as drastically [88] as on other tasks. Good performance is critical for many
downstream applications in areas such as fact checking, question-answering, or search. Different
tasks have been proposed to evaluate the numerical reasoning capabilities of LLMs [182].

We can analyze these tasks along two dimensions: diversity of knowledge required and how
solvable the task is. Higher diversity ensures better coverage across different domains while higher
solvability yields more interpretable metrics. Mathematical word problems (MWPs) are written
in a way that the text of the problem is always sufficient to determine the exact unique answer
and are therefore highly solvable. However, they lack in diversity since many MWP datasets are
constructed from templates or are even fully synthetic.

In contrast numerical cloze-style problems requires highly diverse knowledge since they can
be easily formed from any text that includes numbers. A consequence of formulating cloze-style
problems is that many texts do not provide sufficient information to determine the correct answer
and have inherent uncertainty which results in a lower solvability. As an example from the
NumerSense dataset [66]], "Some plant varieties can grow up to <mask> feet tall." In Figure 4.1
we show an illustrative plot of tasks along these two dimensions. A good numeracy evaluation
task should be both diverse and solvable.

In this work we propose Numerical Correlation, a new task that aims to retain both high
diversity and high solvability. Given two numbers in text the task is to predict whether the
numbers are positively, negatively or not correlated. For example: “Some plant varieties can grow
up to 6 feet tall and require 20 liters of water a month”. We expect a positive correlation between
the height of the plant and the amount of water it would need. This shows the key insight that
predicting the correlation relationship between two numbers is possible without having to exactly
predict the missing numbers. The task of numerical correlation requires a variety of commonsense
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Figure 4.1: An illustrative plot of certain numerical evaluation tasks along the two dimensions of
diversity and solvability. Our aim with numerical correlation is for the task to be both diverse and
solvable.

# Text Label

A #*¥2%* bedroom, **1800** square feet house is hard to find in this neighborhood. Positive

Ex

1.  The president travels on average **30** times a year on Air Force one a Boeing **747**_  Neutral
2.

3. To cook a 20 Ib turkey place in the oven for **2%* hours at **435%* degrees. Negative

Table 4.1: Explanations for the three examples: 1) the model of the plane should not change how
often the president travels, 2) we expect more bedrooms to increase the size of the house, and 3)
we expect an increase of temperature to decrease the cooking time.

reasoning skills but is trained with a cross-entropy objective and evaluated with a simple accuracy
metric. We provide examples of sentences and their labels in Table {.1]

Although correlation between two numbers can involve incredibly complex functions, we
approximate the correlation to be linear and treat it as a three-way classification. We use a
qualification task to select a group of Amazon Mechanical Turk (AMT) labelers and construct a
dataset of Wikipedia sentences which contain two numbers and their correlation relationship.

We investigate the performance of four models: two general pretrained language transformers
and two numerically aware models on our new dataset in a few-shot setting. When probed
on the numerical correlation task we see that all models exhibit a plateau in their performance
with only 6% of the training data. Further all models underperform the human baseline in both
the finetuning and linear probing setting. Surprisingly, our results also indicate that existing
numerically pretraining methods do not result in better performance on the numerical correlation
task.
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Test F1
(Neutral, Positive, Negative)

w/ 10% Train GenBERT GeMM RoBERTa-Base Bart-Large Human Jackknife
Linear Probing 33.0 37.9 23.7 64.9
(71.1/26.7/0.1) (72.3/41.6/0) (71.1/0/0) (76.6 / 57.7 1 60.4)
~77
Finetuning 62.1 66.7 69.6 68.6
(77.5/59.3/49.6) | (77.9/65.5/56.8) | (80.7/66.3/61.8) */*17)

Figure 4.2: Summary of the performance of the four models on the numerical correlation task
with 10% of the training data.

4.2 Dataset

4.2.1 Qualification

We used ten handwritten numerical correlation examples and had 100 AMT workers with 99%>
approval rate label them. On average each question took around 1 minute to complete. Threshold-
ing on 80% accuracy or above left us with 18 AMT-labelers. Examples are shown in Table[6.1]
and instructions given in Figure [4.5]

4.2.2 Annotation

We use the WikiConvert dataset [[115] which contains over 900k sentences with at least one
measurement in each sentence. We use the three original correlation labels (Positive, Negative,
Neutralﬂ and had each sentence labeled by three different AMT-labelers. We selected 1,000
random sentences that contain two measurements and another 1,000 sentences that contain any
two quantities

We used Krippendorff alpha to measure the inter-annotator agreement and found that the
agreement was 0.55 (scale is [-1,1]). We computed an average "Jackknife" F1 score of 77 by
choosing one label to be the ground truth and averaging the F1 score of the other two labels. We
also observe that the time taken to label each sentence rose to 1.7 minutes on average, likely due
to the increased difficulty to ascertain the correlation in random sentences.

Negative

Out of the 2,000 sentences only 42 were found to have a negative correlation which is too few data
points to train or evaluate a model. For this reason we experimented with two strategies to generate
more negative correlation examples: 1) editing a measurement in real sentence 2) providing a
description of a real negative relationship and prompting labelers to provide a sentence as an

'We introduce a fourth label (Unanswerable) which we advised the labelers to use sparingly when they were

unsure of the answer
2We filtered out sentences that contained dates or where shorter than 64 characters in length.
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example. In a small pilot we found that the first strategy was incredibly more time consuming
to complete and so we only used the second strategy to generate negative correlation examples.
We provided 60 descriptions of negative relationships and asked the three labelers to provide an
example for each sentenceE] In total our dataset consists of 124 sentences with negative correlation,
746 with positive correlation and 1,155 with neutral correlation.

4.3 Experiments

Given a sentence X and two numbers y; and y» in the text, we define the task of predict-
ing the correlation between the two numbers as a classification task with the label set C' =
{Positive, Negative, Neutral}. We compare four models, two general pretrained language
models (BART [65]] and RoBERTa [70]) and two numerically aware models (GeMM [109] and
GenBERT [44]]). We conduct few-shot learning experiments where the model is trained on be-
tween 1% to 10% of the training data and the remaining data is split into a validation and test set
evenly. We train all models with the AdamW optimizer [/3]] with a learning rate of le-5 and a
batch size of 16. We use the majority vote labeling to choose the final label for each sentence in
all subsequent experimentsf_f] We report the test F1 scores averaged over 5 initialization seeds.

4.3.1 Supervised

We conduct few-shot linear probing as well as full finetuning experiments and plot the results
in Figure 4.3| and Figure respectively. For our linear probing experiments we freeze the
parameters of the model and only train a linear classifier, Wy € R%3, where d is the hidden size
of the model. We observed that BART performed better by a large margin (20 F1) as compared
to the second best performing model, GeMM. However, all models experience a plateau in
performance after only 6% of the training data.

Unlike the linear probing experiments, when we finetune the models we observe that all
models (except GenBERT) converge to similar performance, approximately 10 F1 points below
human performance. The poor performance of GenBERT could be explained by the fact that it
uses a BERT architecture whilst the other models are based on ROBERTa and BART. We present
all of the supervised Test-F1 results with 10% of the training data in Figure 4.2,

4.3.2 Unsupervised

Since we observe the actual values of the both numbers we can probe a model in an unsupervised
fashion to predict the correlation relationship. We do this by selecting one number (y;) to be
the target prediction and masking its value in the sentence. We then probe the model to predict
the value of the target (y;) with different values of the other number (y3). We use GeMM, a
numerically pretrained model [109] and denominate the model’s prediction for the masked value
as Y.

3We hand filtered out sentences that did not properly follow the instructions.
“In case of a tie we do not use the sentence in our data.
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Figure 4.3: Linear probing experiments with 1% to 10% of the training data.
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Figure 4.4: Full finetuning experiments with 1% to 10% of the training data.
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We construct N examples, { X1, X'}, by selecting values linearly spaced between {y, *
0.5,y * 2} and pass each example to the model to predict the N values of {)71, }A/N}. We can then
calculate the R-squared values of the linear regression for each pair of numbers in a sentence.
We pick a threshold value 7 and build a deterministic classifier which predicts ‘“Neutral” if the
R-squared value is less than 7, “Positive” if the R-squared value is greater than 7 and the slope is
positive, and “Negative” if the R-squared value is greater than 7 and the slope is negative. When
evaluated on a held out test set this classifier performs close to randomly guessing the label.

4.4 Related Work

4.4.1 Numerical Reasoning

An active area of research in NLP is focused on solving numerical reasoning tasks. There
have been many datasets collected such as AQuA-RAT [68]], Dolphin18K [49], Math23K [134],
MathQA [4] which contain a mathematical question expressed in natural language and an answer.
Benchmarks which aim to evaluate the general abilities of LLMs like BIG-bench, have also
incorporated numerical reasoning tasks such as arithmetic questions or unit conversion [110]. To
solve these problems a model needs to perform certain necessary calculations to arrive at the
answer. Typically the value of the numbers provide no information to help disambiguate the
derivation of the solution and can be treated symbolically. One key aspect of these tasks is that
there exists no ambiguity in the answer.

4.4.2 Commonsense Reasoning

Another area of research has focused on cloze-style prediction of numbers in textual contexts.
Certain works have limited the output space of numbers to small ranges [66], their exponent
value [28]] whilst others have aimed to produce distributions over the entire real number line [106,
108]]. As opposed to the previous section, these tasks commonly do not have a correct answer but
are ambiguous. A great advantage of numerical cloze-style reasoning is the ubiquity of available
data in different forms and domains. However, it is difficult to measure progress and interpret the
evaluation metrics such as likelihood for these types of commonsense tasks.

There are other NLP tasks which have concentrated on the difficulties that arise when numbers
are present in a text. Ravichander et al. [91] proposed EQUATE, a benchmark quantitative rea-
soning in natural language inference while other works have focused on quantity entailment [98]].
Dubey et al. [37] built a dataset where the numerical values were useful to predict the sentiment of
sarcastic tweets. Sundararaman et al. [[112] proposed a classification task of numbers into entities
(Count, Size, Year, Percentage, Date, Age), while similar work has considered the problem of
solving numeric Fused-Heads [38]]. Our work on the correlation task focuses on a particular
relationship between two quantities in text. However there are others potential relationships
between numbers in text that could be explored such as causation.
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Task instructions
You will be shown a sentence with two numbers marked with stars (**) inside the text. Please choose the relationship between these two numbers from one of the 3
categories mentioned below.

Label categories

Positive:

If you were to increase one number you would expect the other number to also increase.
If you were to decrease one number you would expect the other number to also decrease.
Examples:

Sentence:: My 40 liter luggage weights 50 pounds when full.
Answer :: Answer: Positive relationship
Explanation:: The first number describes the volume in liters of the luggage. If the volume increases we expect the weight of to also increase when it is filled up.

Negative:

If you were to increase one number you would expect the other number to decrease.
If you were to decrease one number you would expect the other number increase.
Examples:

Sentence::He smokes 3 packs a day and his expected life age is 73
Answer :: Negative relationship
Explanation:: Smoking cigarettes lowers your expected life age. Increasing the number of cigarettes you smoke should result in

No Relationship:

Increasing or decreasing one number should result in no predictable or senseable changes to the second number.
Examples:

Sentence:: There are 200 coffee shops in Amsterdam and the average person bikes 15 miles a day.
Answer :: No relationship
Explanation:: Having more or fewer coffee shops may change the average amount people in Amsterdam bike but not in any readily predictable and senseable way.

Sentence:: Comprising 219 sgkm of land, the city proper has 4,457 inhabitants per km2.
Answer:: No relationship
Explanation:: If the city has less land it may have a higher density of people, however, it may also be a smaller city that has less land, smaller population and thus less people.

Figure 4.5: Instructions given to the labellers for the qualification task.

4.5 Conclusion

We introduced a new task of predicting numerical correlation in text and build an annotated dataset
to evaluate models on this task. Using this dataset we show that pretrained language models have
poor performance on this task and that current methods to add numerically aware pretraining to
models are not effective. We identified that there exists a large gap between human performance
and the best supervised model. In the future we hope to expand our annotation to include the slope
of the correlation. We believe that predicting both the slope and correlation type of two numbers
can be improve interpretability in numerical question answering and commonsense reasoning
applications. In future work we also plan to expand the dataset to capture numerical correlation
relationships in longer chunks of text such as paragraphs and documents.

4.6 Appendix
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# Ex ‘ Text ‘ Label

1. I wear my nike shoes out in only **3** months because the soles | Positive
are only **1/2*%* an inch thick.

2. To cook a 20 Ib turkey place in the oven for **2** hours at **435%* | Negative
degrees.

3. Jordan trained for his race by running **5%** miles at a pace of | Negative
*#10%* mph.

4. The president travels on average **thirty** times a year on Air Force | No Relationship
one a Boeing **747%*,

5. My house has **2** bedrooms and is **1800** square feet. Positive

6. Blackthorn was one of **39** original **180** feet seagoing buoy | No Relationship
tenders built between 1942-1944.

7. The family bought a **two** ton pickup truck with 180 hp and a | Negative
fuel efficiency of **25** miles per gallon.

8. My subaru has a **4** cylinder and **150** horse power enginer. | Positive

9. Like all Type UB III submarines UB-102 carried **10** torpedoes | No Relationship
and was armed with a **10** cms deck gun.

10. | The Triple Crown of Canoe Racing consists of three separate | Positive

marathon races with a total distance of **308** miles over **5%*
days of racing.

Table 4.2: The ten examples used to qualify AMTworkers.

50



Chapter 5

BERT Classification of Paris
Agreement Climate Action Plans.

* Tom Corringham, Daniel Spokoyny, Eric Xiao, Christopher Cha, Colin Lemarchand, Man-
deep Syal, Ethan Olson, Alexander, “BERT Classification of Paris Agreement Climate
Action Plans.”, In Proceedings of ICML 2021 Workshop on Tackling Climate Change with
Machine Learning.

5.1 Introduction

The United Nations Framework Convention on Climate Change (UNFCCC) is a global framework
for addressing the challenges of anthropogenic climate change [62]. Under the 2015 Paris
Agreement each UNFCCC signatory agreed to submit a Nationally Determined Contribution
(NDC) upon ratification of the agreement by the country’s national government [122]. These
climate action plans set objectives and timelines for reductions in greenhouse gas emissions for
each country. The documents, while often aspirational in nature, provide useful information
about the challenges facing each country, their stance towards climate change, and their ambitions
regarding mitigation efforts [[121]. Here, a deep learning model is applied to 165 of these
documents to build a sentence classifier which could be used to generate policy-relevant metrics
over a wide range of documents.

The volume of information contained in climate policy documents is growing rapidly. Ev-
ery year large stakeholders such as governments and corporations produce text-based climate
assessments and action plans to communicate and satisfy regulatory requirements. NLP and
machine learning can be used to provide data for climate policy analysis, improve tools for
evaluating policy, and provide new tools for policy assessment [95]]. Supervised and unsupervised
NLP content analysis methods have been used to analyze political texts [45] including climate
negotiation texts [9, 99, [129], climate adaptation analyses [[15], and corporate climate financial
disclosures [[76].

BERT [34] is a bidirectional transformer model that has been pretrained on a large corpus
of textual data using the masked language modeling objective. BERT and other pretrained

51



transformer models through finetuning have achieved state-of-the-art results in a variety of NLP
tasks [94] including sentence classification. This is makes them good candidates for climate
change text applications where large labeled data sets are currently unavailable.

Recently, the BERT model has been used to extract information from climate-related regulatory
disclosures. Varini et al. [[127] use BERT to classify sentences from U.S. Securities and Exchange
Commission (SEC) filings as climate related or not climate related. Kolbel et al. [S6] apply
BERT to SEC filings to distinguish between sentences that discuss physical climate risk (e.g.,
due to sea level rise or extreme weather events) and transition risk (due to expected changes
in climate-related regulation). Using the classified text they develop metrics that they relate to
credit default swap rates. Bingler et al. [[17] use BERT to classify sentences and paragraphs from
corporate risk disclosure documents into four categories to assess the impact of the Task Force on
Climate-related Financial Disclosures (TCFD).

Here, BERT is applied in a similar way to classify sentences in national climate action
plans. Metrics derived from BERT-classified climate documents could be used to investigate the
relationships between document characteristics and country characteristics such as exposure to
climate risks or energy and resource endowments. Understanding these relationships could be
used to evaluate, monitor, and improve global climate policy.

5.2 Data and Labeling

As raw data, 165 English-language NDCs and Intended NDCs [123]] were obtained in HTML
format from Climate Watch [3]]. Paragraph, list, and table elements were extracted from these
HTML documents. The text elements typically contain multiple sentences, sentence fragments,
and in the case of tables, numeric data. Numeric data were removed from the tables, and text
elements were sentencized [48]]. Sentences under 10 words in length were discarded to remove
less useful sentence fragments. This process generated 25,500 unique sentences. Document
length ranged from 18 to 482 sentences with a mean of 154 and a median of 130 sentences.
Manual classification of sentences into topic groups was not feasible. Instead, “weak” labels were
generated for each sentence by exploiting the nested headers, subheaders, and table structures
within the HTML documents.

The full set of lemmatized words found in the HTML headers and table row names were
manually divided into 11 topic areas by human climate policy experts. For example, terms such as
“deforestation” or “LULUCEF” (land use, land-use change, and forestry) were assigned to the Land
Use topic. The topic identified with the most deeply nested header was assigned to all sentences
within that text element. In cases where multiple topic words appeared in a given header, the less
frequent topic was assigned (e.g., if both Land Use and Mitigation keywords were present then
the less frequent Land Use label was applied). In some cases, no topic was assigned in which
case the sentence was labeled as “No Label.” The distribution of topics was not uniform. Some
topics, such as Mitigation or Adaptation appear more frequently than others such as Industry
or Environment (Table 1). These reference labels are referred to as weak labels to emphasize
that they are noisy and often do not correspond to topic labels that would be assigned by human
annotators.

52



Table 5.1: Frequency of weak labels over NDC sentences.

WEAK LABEL  FREQUENCY (%)

NO LABEL 16.3
ADAPTATION 15.0
AGRICULTURE 4.7
EcoNoMIC 4.5
ENERGY 5.0
ENVIRONMENT 3.0
EQuiITy 7.1
INDUSTRY 2.0
LAND USE 3.4
MITIGATION 16.0
STRATEGY 21.7
WASTE 1.2

5.3 Model Framework

The weakly labeled sentences were split into training, validation, and test sets comprising 80, 10,
and 10 percent of the sentences, respectively. The transformer models were iteratively optimized
on the training data. At each epoch of the training process, model loss was calculated using the
validation data. If the validation loss increased for three epochs in a row the training process was
halted and the model with the lowest validation loss was chosen. The final model was then applied
to the hold-out test set of sentences to evaluate model performance.

Two uncased transformer models were trained and tested against the data: BERTgasg and
SciBERT [11]. SciBERT is a BERT model pretrained on a large corpus of scientific publications
which has been shown to provide improvements on standard NLP tasks on data sets from scientific

domains. Examples of the training, validation, and test set evaluation scores are shown for the
BERT model in Table 2.

Table 5.2: BERT evaluation metrics. Precision and recall calculated using macro averaging.

DATA ACCURACY PRECISION RECALL F

TRAIN 0.907 0.692 0.673 0.669
VALIDATE 0.839 0.450 0.436 0.429
TEST 0.847 0.417 0.406 0.397

The BERT and SciBERT model performances were compared to three benchmark classifiers.
The null Random classifier assigned labels randomly with equal frequencies. The Majority
classifier assigned the most common topic, Strategy, to all sentences. The Contains classifier
applied a simple heuristic: if any of the topic words associated with a topic label appeared in a
sentence then the sentence received that topic label. As with the weak reference labels, if multiple
topic words appeared within the same sentence the lowest frequency topic label was assigned.
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The reasoning is that lower frequency labels have greater specificity and are likely to capture more
salient content.

Finally, a balanced 600-sentence subset of the test set (50 sentences with each weak label)
was manually labeled by two student annotators. The human labels were evaluated relative to the
weak labels to provide an upper bound to the NLP classification metrics. The two sets of human
labels were compared to quantify inter-annotator agreement.

5.4 Results

5.4.1 Model Evaluation

Table 3 presents weighted evaluation metrics for each of the classifiers. The Random and Majority
classifiers perform poorly with weighted £ scores of 0.09 and 0.07, respectively. The Contains
heuristic shows some improvement over the null classifiers with £} of 0.17. BERT outperforms
these classifiers with F7 of 0.40. SciBERT is marginally less accurate than BERT and has a lower
[ score, perhaps indicating that the policy documents are more similar to general text corpora
than to collections of scientific documents.

Table 5.3: Model performance. Precision and recall calculated using macro averaging.

CLASSIFIER ACCURACY PRECISION RECALL Fy

RANDOM 0.813 0.117 0.081 0.089
MAIJORITY 0.757 0.041 0.203  0.069
CONTAINS 0.829 0.229 0.170 0.171
SCIBERT 0.843 0.398 0.379  0.362
BERT 0.847 0.417 0.406  0.397
HUMAN* 0.867 0.281 0.250 0.251

* The Human metrics are calculated on a 600-sentence subset of the hold-out test set.

To put the BERT F} score in context, the Contains and BERT predicted labels were tested
against the human labels (Table 4) on the balanced 600-sentence subset of the test set. One of
the human annotators, referred to here as Student, was a student researcher with no knowledge
of climate policy who was simply directed to label sentences using their best judgment. The
other human annotator, the Expert, was a student with climate policy research experience and
familiarity with the NDC documents. In these results “Human” scores are averages over both
annotator scores.

On average, the simple Contains heuristic shows better agreement with the human annotators’
labels than the BERT classifier. This is not surprising, given that BERT was optimized to predict
the weak labels which provide a very noisy representation of semantic content. Ideally BERT
would be trained on human-annotated data, but in many applications such data sets are expensive
to generate.

Interestingly, the Contains heuristic only outperforms BERT trained on weak labels when
compared with the Student labels. When compared to the Expert labels BERT slightly outperforms
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Table 5.4: Comparison of Contains and BERT to human annotators.

WEIGHTED F} REFERENCE LABEL
HUMAN STUDENT EXPERT
CONTAINS  0.350 0.399 0.302
CLASSIFIER BERT 0.301 0.284 0.317
STUDENT 0.472

Contains although the difference in £ scores is not significant (using bootstrapped 95% confidence
intervals). It may be that the Contains heuristic more closely mimics an untrained annotator while
BERT is better able to emulate expert-level context-sensitive classification. More annotated data
would be required to explore this possibility.

5.4.2 Error Analysis

An illustrative set of test sentences (edited here for concision) are presented in Table 5 with
their weak reference labels and the Contains, BERT, Student and Expert predicted labels. In
the first sentence the classifiers agree: the keywords “emission” and “mitigation” both indicate
that the sentence concerns Mitigation. The second sentence is correctly labeled Strategy by
BERT and the human annotators, but not by Contains, i.e., BERT outperforms Contains. The
third sentence contains keywords from different topics (“sequestration” indicates the Mitigation
topic; “afforestation” indicates Land Use). Here Contains matches the weak label. BERT predicts
Agriculture which is semantically similar to Land Use suggesting potential improvements to
the classification algorithm. The Student seizes upon the first keyword “mitigation” as a label,
demonstrating a potential weakness of manual annotation. The fourth sentence predictions are
confused although BERT has matched the Expert annotator’s label. Finally, the last sentence is
not related to climate change but instead provides background information on a country’s recent
history. Relative to manual annotation the weak reference label seems inappropriate; in this case
the sentence has fallen under an HTML section header that indicates the Environment topic. It is
not surprising that none of the classifiers match the weak label.

5.5 Discussion and Future Work

Using weak topic labels derived from the document header structure as reference labels is clearly
inferior to a system in which a large number of training, validation, and test sentences are manually
annotated by climate policy experts. However, manual annotation is often infeasible for large
corpora. While BERT outperforms simpler methods and even the human annotators in predicting
the weak reference labels, the simpler Contains classifier provides better agreement with the
human annotators. The difference is not as pronounced when the annotator with more domain-
specific expertise is used as the reference, but the results underscore the importance of clean
reference data for training deep learning models.

The development of this framework suggests several areas for improvement. First, sentences
could be classified with multiple labels. For example, the phrase ‘“The mitigation actions that
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Table 5.5: Error analysis.

SENTENCE LABEL CONTAINS BERT STUDENT EXPERT

It is envisaged that emission reduction MITIGATION MITIGATION  MITIGATION MITIGATION MITIGATION
will be achieved through the mitigation
actions in the sectors.

The Steering Committee is the supreme STRATEGY MITIGATION STRATEGY STRATEGY STRATEGY
body for decision making and sectoral

implementation.

The mitigation actions that enhance LAND USE LAND USE AGRICULTURE MITIGATION LAND USE

afforestation are projected to result in
the sequestration of 1 mtCO2e annually.

In the absence of project activity, STRATEGY EqQuITY ENERGY INDUSTRY ENERGY
fossil fuels could be burned in power
plants that are connected to the grid.

Due to the outbreak of the Ebola Virus ENVIRONMENT NO LABEL MITIGATION No LABEL NO LABEL
the development gains made after a
10-year civil war were rudely reversed.

enhance afforestation are projected to result in the sequestration of 1 mtCO2e annually” could be
classified as both a Mitigation sentence and a Land Use sentence.

To generate predicted topic labels, BERT takes the argmax of a vector of weights derived from
the final hidden layer of the neural network. These weights can be normalized to provide sentence
topic probabilities. Such soft labels may generate more meaningful document-level climate policy
metrics than hard single-topic sentence labels. Similarly, simple bag-of-words classifiers often
yield multiple predictions when conflicting keywords appear in the same sentence. In this study,
the two human annotators were instructed to list all relevant topics and then to choose the topic
they felt was most relevant. The next step in this research will be to evaluate these multi-label
classifiers against weak multi-labels and against each other.

A more complex multi-labeling approach could account for hierarchies within the set of topics.
For example, there are energy strategies that fall under the framework of mitigation (e.g., transition
to renewables) and energy strategies that fall under the framework of adaptation (e.g., protection
of nuclear power plants from sea level rise). Classification with hierarchical topic labels could
further improve metrics for policy analysis.

The selection of topics and of topic words using text from the HTML headers was performed by
two trained climate researchers. Manual classification is inherently subjective, and compromises
were required between the experts to obtain a reasonable classification scheme. Automated
approaches such as those discussed in Lucioni & Palacios [76] or Kolbel et al. [S6] may offer
some improvement. Furthermore, the number of topics selected in this analysis was limited to
11 plus the null label for ease of computation and to avoid problems arising from sparse labels.
Initially over 25 topics were proposed on the basis of the header words. If possible, it would be
interesting to extend the analysis to consider a much wider range of topics, including specialized
topics such as indigenous community involvement [31] or the impacts of climate change on
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coastal communities and marine ecosystems [42].

5.6 Conclusion

Under the Paris Agreement, signatories are expected to submit updated NDCs every five years.
As of May 2021, eight countries have submitted their second NDC [123] though more plans are
expected once the COVID-19 pandemic is brought under control. In the U.S., 33 states have
released climate action plans [21]]. Globally, 28 cities in the C40 Cities Climate Leadership Group
have published Paris Agreement compatible climate action plans [22]. The continued development
of state-of-the-art NLP tools tailored to climate policy will allow climate researchers and policy
makers to extract meaningful information from this growing body of text, to monitor trends over
time and administrative units, and to identify potential policy improvements.
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Chapter 6

Towards Answering Climate
Questionnaires from Unstructured
Climate Reports

* Daniel Spokoyny and Tanmay Laud and Tom Corringham and Taylor Berg-Kirkpatrick,
“Towards Answering Climate Questionnaires from Unstructured Climate Reports.”, In
Proceedings of EMNLP Workshop on NLP for Positive Impact 2022

6.1 Introduction

As mentioned earlier, there is an evergrowing body of climate reports generated by different
stakeholders such as corporations, cities, states, and national governments either voluntarily or in
response to regulatory pressure. These reports disclose vital information on carbon emissions,
impacts, and risks — for example, a firm’s emissions reduction targets or a city’s water risk and
exposure to drought. Increasingly, NLP is a critical technology supporting large scale processing
of climate reports to enable downstream applications like detecting corporate greenwashing [[18]]
or identifying misinformation about climate change [79]. However, for climate researchers to
make use of the information contained in these unstructured text documents, their contents must
first be collated into semi-structured questionnaires that have consistent fields across reporting
bodies and report types. These structured questionnaires, in turn, allow climate researchers to
compare progress across different stakeholders and identify which areas need financing, education,
policy changes or other resources. Currently, this extraction process requires an immense amount
of manual effort resulting in whole organizations focused on mapping a single type of unstructured
reports (Nationally Determined Contribution) to a single type of semi-structured questionnaires
(Sustainable Development Goals)

In order to facilitate NLP research for this task, we introduce two new datasets, CLIMA-CDP
and CLIMA-INS, which are composed of publicly accessible semi-structured questionnaires

'World Resources Institute’s: www.climatewatchdata.org
For more background info see Appendix
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Unstructured Docs Semi-Structured Docs =
Environment, Social and Corporate —_— City CDP .( . et =
Gaovernance (ESG) =
Nationally Determined Contributions State CDP ( """ ’
(NDCs) Corporate CDP
Climate Action Plans (CAPs) /
. . Stakeholder| California | @5-2: Describe the current and/or
California CAP Report (2021} anticipated  impacts of climate
...5ea level rise will inundate some nearby change.
coastal areas, and related sall-water Type State | A52: The state has already seen
intrusion, coupled with increased drought increased  average temperatures,
stress may impact water supplies.... Year 2021 ::;ﬁsex!reme hot days, fewer cold

Climate Documents

Figure 6.1: We conduct 3 experiments on CDP-QA. In-Domain (6.5.3) refers to training and
evaluating on the same stakeholder-type. Cross-Domain (6.5.4)) refers to training and testing on
different stakeholder-types. Finally, Unstructured Questionnaire Filling (6.5.3)) involves training
on the whole CDP-QA corpus and then using the model for mapping text from a CAP report to a
CDP. We use solid and dashed arrows to denote training and inference/evaluation respectively.
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from different stakeholders including cities, states and corporations. We utilize the structure of
the questionnaires to train self-supervised classification models to align answers to questions
(Section[6.5.3)). Further, we show how the setup of our objective allows our model to generalize
to a more challenging scenario where the set of questions and the stakeholder-type are both
different at test time (Section @ Finally, we show that models trained on CLIMA-CDP can
be directly applied to map passages from unstructured documents into questionnaire categories,
which matches the real-world use-case that climate researchers need solved (Section [6.5.5)). In
Figure[6.T| we depict all three of these experiments as well as examples of the different reports
and stakeholder-types.

There are other existing climate-specific datasets for detecting relevance to climate [64],
identifying stance detection [125] and fact-checking [63] of social media claims. In contrast, the
questionnaires we introduce have an order of magnitude more data, are comprehensive in both the
breadth of topics covered and the depth of detail provided making our models most suitable for a
wide range of climate applications.

Climate reports have also been used as a source of unlabeled data to continue pretraining large
language models to better adapt them for climate specific tasks [77,1135]]. However, it remains an
open question whether these domain-specific models can effectively generalize since evaluation
of these models has been limited on the climate domain. To address this gap in comprehensive
evaluation, we collate five existing climate datasets, along with our two new datasets into a
benchmark dataset (CLIMABENCH), and find that the domain-specific models like ClimateBERT
underperform compared to existing general models (Section [6.5.2).

In summary, our contributions are as follows:

1. We introduce two new datasets, CLIMA-CDP and CLIMA-INS, consisting of difficult

classification tasks that are analogous to current manual work done by climate researchers,
and conduct extensive in-domain experiments.

2. We collate and release CLIMABENCH, an evaluation dataset of climate-related text classi-
fication tasks and show that, counter-intuitively, general-purpose ML models outperform
domain-specific models across tasks within the benchmark.

3. We conduct a pilot study, evaluated manually by a climate researcher, that uses a model
trained on CLIMA-CDP to populate a questionnaire from real-world unstructured climate
reports.

We believe our contributions are an important step for an emerging domain of building NLP

tools for climate researchers. To that end, we release our benchmarkﬂ and open-source our trained
model{f] to encourage researchers to extend our existing datasets and contribute new ones.

6.2 Related Work

Climate policy evaluation is an active area of research in climate sciences where the goal is to
evaluate the effectiveness of current climate policies so as to inform future policy decisions [25,
113]]. It allows for the development, assessment, and improvement of regulation, increases

3https://github.com/climabench/climabench
“https://huggingface.co/climabench/miniLM-cdp-all
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transparency and public support, and encourages public and private sector entities to make pledges
or increase their levels of action [41, 96]. NLP has the potential to derive understandable insights
from policy texts for these applications.

Academic literature provides a valuable source of information for conducting these evaluation
studies. However, a necessary first step is systematic evidence mapping or identifying which
papers are relevant to a particular policy. Berrang-Ford et al. [14]], for instance, build a machine
learning system to filter scientific literature relevant to climate adaptation.

Another area of research involves utilizing unstructured climate documents for topic classi-
fication. Corringham et al. [30] attempt to use document headers from unstructured Nationally
Determined Contribution (NDC) reports as coarse-grained labels to train a supervised classifier.
Most similar to our CLIMA-QA work is Luccioni et al. [77] who trained a model to map text
passages from public financial disclosures to the 14 questions in Task Force on Climate-related
Financial Disclosures (TCFD). They recruited experts to manually label the text passages to the
TCFD questions and only train their models on this labeled data. Our work focuses on using the
existing structure of large-scale public questionnaires to first train models and then apply them to
unstructured texts.

NLP is also used to analyze social media data to understand public opinions and discourse
around climate change [S5]. CLIMATEXT [64] and CLIMATEFEVER [63] extracted and filtered
documents from Wikipedia and other sources to curate a CC corpus that was further annotated
by humans. In climate finance, Kolbel et al. [S7]] have built NLP classifiers to distinguish texts
describing physical climate risk versus transition risk. While these studies have independently
analyzed small annotated datasets, we make use of semi-structured disclosure forms comprising a
much larger set of supervised data, made available to the CC and NLP communities in a clean
and accessible format. Similar work has been conducted manually in the CC policy evaluation
community (e.g., ClimateWatch) but not over the breadth and scope of documents we consider.

Finally, benchmarks have been an effective way to track progress and highlight the shortcom-
ings of NLP models in both general-purpose understanding (GLUE [132], SuperGLUE [131]]) as
well as specific domains such as legal NLP (LexGLUE [27]) or biomedical NLP (BLURB [46]).
CLIMABENCH follows on this chain of thought to provide a unified way to evaluate models on
CC-specific problems.

6.3 Datasets

In this section we first describe our two new questionnaire datasets, CLIMA-CDP and CLIMA-INS,
and then present all the text classification datasets we collected into CLIMABENCH. We consider
a questionnaire, a semi-structured document, filled out by a stakeholder for a particular year to
have a set of questions and answers, (¢, A) where the i-th question-answer pair {g;, a;} are both
free-form text. Table[6.1]lists a few interesting examples from the newly introduced datasets. The
overall statistics of each dataset are given in Table the token length distribution is given in
Appendix Table [6.8]and details are explained below.
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Free-form Text/Answer Class / Question # Classes
CLIMA- ...Each year Aflac reports its US operations Scope 1 and Scope 2 emissions to the Carbon Does the company have a plan 8
INS Disclosure Project. Since 2007, Aflac’s owned facilities in terms of square feet have to assess, reduce or mitigate
increased by more than 10% while total Scope 1 and 2 CO2e emissions have significantly its emissions in its operations
decreased compared to 2007 emissions... or organizations?
CDP- ...These Plans must include management of CD&E waste, both through on-site recycling Governance and Data Man- 12
ToriC and re-use and on-site waste processing prior to disposal. Westminster will contribute to  agement
the London Plan target of net self-sufficiency (managing 100% of London’s waste within
London) by 2026 by planning for Westminster’s apportionment targets...
CDP-QA  Flooding from sea level rise will damage building and roads in the coastal neighborhoods Please describe the impacts ex- 294
(Cities) of the city. Flooding also represents a risk to major transportation hubs infrastructure in the perienced so far, and how you

region. Coastal flooding can have a long-term effect on major industrial and commercial
activities along the coastal areas of the city as well as damage urban forestry and local
natural biodiversity.

expect the hazard to impact in
the future.

Table 6.1: Examples (pairs of inputs and outputs) for the newly introduced datasets.

Dataset Source Task Type Domain Stakeholder # Train #Dev # Test # Classes
CLIMA-INS Ours Multi-class Classification NAIC Corporations 137K 1.7K 17K 8
CDP-TorIC Ours Topic Classification CDP Cities 46.8K 87K 89K 12

Cities 482K 85K 93K 294
CDP-QA Ours Question Answering CDP States 87K 09K 1.1K 132

Corporations 345K  3.6K 49K 43
CLIMATEXT Leippold and Varini [[64] Binary Classification Wikipedia, 10-K - 6K 03K 1.6K 2
CLIMATESTANCE Vaid et al. [126] Ternary Classification Twitter - 30K 03K 03K 3
CLIMATEENG Vaid et al. [126] Multi-class Classification Twitter - 3K 03K 03K 5
CLIMATEFEVER Leippold and Diggelmann [63] Fact-Checking Wikipedia - - - 15K 3
SciDCC Mishra and Mittal [81] Topic Classification Science Daily - 92K 11K 11K 20

Table 6.2: General statistics of the datasets collected for CLIMABENCH and CDP-QA.

6.3.1 CLIMA-INS

The annual NAIC Climate Risk Disclosure SurveyE] is a U.S. insurance regulation tool where
insurers file non-confidential disclosures of their assessments and management of climate-related
risks. The purpose of the survey is to enhance transparency about how insurers manage climate-
related risks and opportunities to enable better-informed collaboration on climate-related issues.
The dataset contains survey responses for the years 2012-2021, where each survey consists of
eight questions all shown in Appendix [6.8]and examples in Table[6.1] Companies have an option
to fill the survey individually or as a group (in case of a conglomerate). In the case of group
filing, there may be duplicate answers repeated across all subsidiaries. We remove such responses
resulting in a total of 17K question-answer pairs. Further, we delete the first sentence in each
response as it contains obvious markers (like "Yes, we do X." or "No, we do not participate in Y.").
The splits for training, validation and testing (80%, 10%, 10%) are created by stratifying based on
the company so that similar responses from the same company are not seen during train and test.

Shttps://interactive.web.insurance.ca.gov
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6.3.2 CLiMA-CDP

Carbon Disclosure Project (CDP) is an international organisation that runs a global disclosure
questionnaire for various stakeholders to report their environmental information. In 2021 alone
over 14,000 organizations filled out the questionnaire which contains hundreds of unique questions.

The CLIMA-CDP, D4, is composed of parts [ D.izy, Dcorp, Dstate] Where each part is a set of
questionnaires filled out by a city, company, or state respectively. From the questionnaires we
construct two tasks: topic classification (CDP-TOPIC) and question classification (CDP-QA).

CDP-Toric The CDP questionnaire contains a hierarchy of questions organized by topics
such as energy, food, waste. We utilize these topics as labels for a classification task and show the
mapping in Appendix Table Thus, for each question-answer pair {¢;, a;} we also have a topic
label. We formulate a topic classification task where the goal is to predict the topic given the text
of the answer.

CDP-QA Our aim is to construct controlled experiments with proper evaluation metrics
which closely resemble the real-world scenario of aligning unstructured climate reports to semi-
structured ones. For example, the CDP DATASET allows us to test whether models can generalize
to questionnaires of different stakeholder-type. However, since the set of questions for each
stakeholder type (Q.ity» Qcorps Wstate) are different from one another, a classifier predicting
the question type will not be able to transfer to a new stakeholder type. By using the text
of the questions directly we can handle new questions at test time, which allows us to train
on questionnaires from cities and test their generalization on questionnaires for states. Since
organization may file yearly reports which contain similar information we build train, dev and test
splits stratified by the organizations. Further we filter out duplicate, non-English, and short (less
than 10 words) responses.

6.3.3 CLIMABENCH

In this section we introduce CLIMABENCH, a benchmark of climate related text classification
tasks for evaluating NLP models. We collate five existing climate change related text datasets,
described in detail below along with CLIMA-INS and CDP-ToPIC.

CLIMATEXT is a dataset for sentence-based climate change topic detection [64]. Each
sentence is labelled indicating whether it is relevant to climate change or not. Sentences were
collected from the general web and Wikipedia as well as the climate-related risks section of US
public companies’ 10-K reports.

CLIMATESTANCE and CLIMATEENG Vaid et al. [126]] extracted Twitter data consisting
of 3777 tweets posted during the 2019 United Nations Framework Convention on Climate
Change. Each tweet was labelled for two tasks: stance detection and categorical classification.
For the stance detection the authors labelled each tweet as In Favour, Against or Ambiguous
towards climate change prevention. For categorical classification, the five classes are Disaster,
Ocean/Water, Agriculture/Forestry, Politics, and General.

CLIMATEFEVER [63] adopts the FEVER [119] format for a fact-verification task based on
climate change claims found on the Internet. The dataset consists of 1,535 claims and five relevant
evidence passages from Wikipedia for each claim. The label set for each claim-evidence pair is
Supports, Refutes, or Not Enough Info for a total 7675 labelled examples. For CLIMATEFEVER,
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we concatenate the texts of each claim-evidence pair as a single input to the model.

ScIDCC [81] The Science Daily Climate Change or SCIDCC dataset is curated by scraping
news articles from the Science Daily website [81]. It contains around 11k news articles with 20
labeled categories relevant to climate change such as Earthquakes, Pollution and Hurricanes. Each
article comprises of a title, a summary, and a body which on average is much longer (500-600
words) than the other climate text datasets. For SCIDCC, we concatenate the text fields (title,
summary and body) and provide a train, validation and test split (80%, 10%, 10%) for this data,
ensuring the distribution of categories in the splits matches the overall distribution.

6.4 Models

Next, we are going to describe the various baselines and models that we use to conduct ex-
periments using the datasets described above. Most tasks are classification tasks that require
in-domain finetuning. For the text classification tasks in CLIMABENCH, we examine Transformer-
based [128]] pre-trained language models like BERT [35]], RoBERTa [71], distilled versions like
DistilRoBERTa [102], longer context models like Longformer [13]], and domain specific models
like ClimateBERT [135]] and SciBERT [12]. This helps us contrast the effects of model archi-
tecture, input length and in-domain pretraining on downstream tasks. We provide more details
about models in Appendix Section and Table For a baseline, we consider a linear kernel
Support Vector Machine (SVM) trained using TF-IDF transformed n-gram (1,2,3-gram) features.
We also include a simple Majority and Random class voting baselines.

For experimentation on CDP-QA we consider a pre-trained Cross-Encoder MiniLM [133]]
model which was separately finetuned on the MS MARCO Passage Retrieval Dataset [23] by
Reimers and Gurevych [92]]. The MS MARCO dataset contains real user queries together with
annotated relevant text passages. The model takes in as input the query concatenated with the
passage and is trained to predict the pair’s binary relevance score. This model achieved state
of the art performance across many retrieval tasks [[114]. We consider this as a strong general
purpose model in contrast to ClimateBERT which is a domain specific model.

6.5 Experiments

In our work we conduct four experiments: (1) climabench classification, (2) in-domain self-
supervised questionnaire filling, (3) cross-domain questionnaire filling, and (4) unstructured
questionnaire filling. For the first experiment, we examine the performance of existing gen-
eral models as well as climate-specific models on our new CLIMABENCH evaluation dataset.
Experiments 2 and 3 focus on how we can utilize the semi-structured CLIMA-QA dataset to
create a self-supervised version of the unstructured document alignment task in a controlled
setting with proper evaluation metrics. Finally, in experiment 4 we will evaluate using human
relevance judgements a model trained using the semi-structured CDP dataset can aid in aligning
an unstructured climate report to the CDP questionnaire.
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CLiMA- Cbpp CLIMA- CLIMATE- CLIMATE- CLIMATE-

Models INS Topric TEXT STANCE ENG SciDCC FEVER AVG.
Majority 4.11 3.65 42.08 29.68 13.83 0.79 26.08 20.10
Random 12.14 6.45 46.86 25.52 16.71 5.05 30.62 24.09
SVM 86.00 5834  83.39 42.92 51.81 48.02 - -
BERT 84.57 64.64"  87.04 55.37% 71.78 54.74% 62.47% 70.57%
RoBERTa 85.611 65.22 8597 59.69 74.58 52.90 60.74 71.14
DistilRoBERTa 84.38 63.61 86.06 52.51 72.331 51.13 61.54 69.27
Longformer 84.35 64.03  87.80 34.68 72.28 54.79 60.82 67.72
SciBERT 84.43 63.62  83.29 48.67 70.50 51.83 62.68 68.45
ClimateBERT  84.80 64.24  85.14 52.84 71.83 52.97 61.54 69.44

Table 6.3: Macro F1 Scores on the Classification Datasets. Bold and 1 indicate first and second
highest performing model respectively. ROBERTa scores the best on average followed by BERT
and ClimateBERT.

6.5.1 Task Learning Details

Each task has its own supervised training data that allows for in-domain finetuning for the target
classification task. In all experiments for all transformer models except MiniLM, we will add a
classification head and do full finetuning. For all the pre-trained models, we use publicly available
Hugging Face [141] checkpointsﬂ For the Longformer, we use the default settings (windows of
512 tokens and a single global [C'LS] token). We use the Scikit-learn API [87] for the simple
classifiers (Random and Majority class) and TF-IDF-based linear SVM models. We grid-search
the hyper parameters for SVM with 5-fold validation (Table [6.TT).

We use a training batch size of 32 and optimize using AdamW [/4] with a learning rate
of 5e-5 (linear warm-up ratio of 0.1, weight decay of 0.01) for 10 epochs with early stopping
based on performance on development data (F1). We use mixed precision (fp16), gradient
checkpointing and gradient accumulation steps of 2 to train models efficiently on the limited
compute (Appendix [6.8.1). We truncate the input text when it exceeds the maximum input length
of the model and otherwise pad the input.

6.5.2 Text Classification on CLIMABENCH

In this section we use the new text classification CLIMABENCH dataset as an evaluation framework
to compare the performance of the different models. We use macro-averaged F1 score as our

5We use the *-base configuration of each pre-trained model, i.e., 12 Transformer blocks, 768 hidden units,
and 12 attention heads. For ClimateBERT we report scores for the F variant model on Huggingface. For the
QA Cross-encoder, we use the MiniLM (12 layer, 384 hidden-unit) finetuned on MSMARCO available at https:
//huggingface.co/cross-encoder/ms-marco-MinilLM-L-12-v2
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evaluation metric since the datasets are imbalanced and all classes are equally important. For
the pre-trained transformer models, we add a single linear classification layer on top of the final
[C'LS] token representation and use a weighted cross-entropy loss with class balanced weights[]

Results on CLIMABENCH

We report text classification results on CLIMABENCH in Table[6.3]as well as an average across
all tasks. We find there is no single model that does the best across the board, but ROBERTa
is a clear winner as it beats the other baselines on four out of eight tasks. Both of the domain
adapted models, SciBERT and ClimateBERT do worse than their non-adapted counterparts. For
example, ClimateBERT and the model it was warm-started from, DistilRoBERTa, are very similar
in performance. Overall, the transformer models have significantly better gains over linear ones
except on CLIMA-INS where the TF-IDF+SVM model is superior. It shows that simple word
co-occurrence statistics are enough for certain tasks and deep language models might not be the
right solution in such cases.

6.5.3 In-Domain CDP-QA

| CDP-CITIES | CDP-STATES | CDP-CORP
Model | MRR@10 | MRR@10| MRR@10
No Finetuning on CDP

BM25 | 0.055 | 0.084 | 0.153
MiniLM | 0.099 | 0.120 | 0.320
Finetuned on CDP

\ In-Domain \ In-Domain \ In-Domain

ClimateBERT | 0.331 | 0.422 | 0.753

MiniLM | 0.366 | 0.482 | 0.755
Best Model Finetuned on all

MiniLM | 0.352 | 0.489 | 0.745

Table 6.4: MRR @10 scores for BM25, ClimateBERT and MSMARCO-MinilLM on the three
subsets of CLIMA-QA. Models finetuned and evaluated on same subset fall under In-Domain.

We utilize the semi-structured nature of the questionnaire to train models in self-supervised
fashion. Specifically, we concatenate the free-form text of the answer and question and train a

"We do not evaluate linear models on fact-checking or QA as the heterogeneity of the input in these tasks do not
align with the linear setup.
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binary classifier to predict whether, in fact, the input answer matches the input question — i.e.
does a;, the ith answer in our dataset, provide an answer to g;, the jth question in our dataset:
p(yi; = 1|¢;, a;). Since we assume that the indices are setup so that a; matches ¢; if and only if
i = j, the ground truth labels are given by y;; = 1[i = j].

We use the filled out questionnaires as positive or relevant pairs and randomly sample five
negative QA pairs for each relevant pair. We train separate models on each stakeholder-type
partition of the CDP DATASET and evaluate them on the corresponding in-domain test sets.
During inference time, given an answer we compute a relevance score for all combinations of QA
pairs from the full set of questions of a particular stakeholder-type.

argmax;c o o)) p(yi; = 1qj, ;)

Since there is a large number of questions, instead of accuracy we consider the Mean Reciprocal
Rank at £ (MRR@F) scores for the top £ items returned by a model. MRR, a popular metric used
in the Information Retrieval field, is the average of the reciprocal ranks of results for a sample of
queries where the relevance grading is binary (Yes/No).

We narrow down to two models, MiniLM and the ClimateBERT model to study the effects
of fine-tuning and transfer learning on the three subdomains: CDP-CITIES, CDP-STATES and
CDP-CoRP. We also use BM25 [93] and MiniLM with no training as baselines.

Results

We report the results of our in-domain experiments on CLIMA-QA in Table[6.4] (detailed results in
Appendix Table . We find that MiniLM, a much smaller model, beats ClimateBERT across
all three different subsets. It is hard to diagnose the exact reason why domain adaptation does not
help in this case as well since the data used to further pretrain ClimateBERT is non-public. There
may be further room for improvement in domain adaptation for the MiniLM, but we leave this as
future work. Lastly, the best performing model, MiniLM, when finetuned on all three subsets,
achieves comparable performance on Cities and Corporations while ranking highest on States.

6.5.4 Transfer CDP-QA

In this section we explore whether it is possible for transfer learning to adapt to questionnaire
from a new unseen stakeholder-type. Since the D, dataset is the largest we use this partition
as our training data. Furthermore, since we have the ground truth questionnaires for both states
and corporations we are able to evaluate the performance in a controlled setting. At test time we
follow the same procedure as for the in-domain experiment however, we marginalize over the set
of questions from the unseen stakeholder-type.

Results

We summarize the MRR@F£ (k=10) results for the transfer learning experiments in Table 6.5
(detailed results in Appendix Table[6.13]). We show that both models are able to beat the no-training
baselines. We again find that the MiniLM model outperforms the ClimateBERT model across
both transfer learning scenarios. We do observe a significant drop in performance as compared to
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| CDP-STATES | CDP-CORP
Model ‘ MRR@10 ‘ MRR@10

No Finetuning

BM25 | 0.084 | 0.153
MiniLM | 0.120 | 0.320
Finetuned on CDP-CITIES

‘ Transfer ‘ Transfer
ClimateBERT | 0.298 | 0.465
MiniLM | 0.353 | 0.489

Table 6.5: MRR@10 scores for BM25, ClimateBERT and MiniLLM on the Transfer experiments.
Models are finetuned on CDP-CITIES and evaluated on States and Corporations.

Prec@1 Prec@2 Prec@3 Prec@4 Prec@5

Relevant 63.0 67.0 68.6 69.5 71.0
Highly Relevant 30.0 32.0 32.3 32.5 35.6

Table 6.6: Precision@ K: We report the fraction of items in the top K ranked retrievals that are
either marked as highly relevant, or at least relevant, averaged across text examples. Relevance
judgements were performed manually by an expert annotator.

the in-domain finetuning experiments. This gap is the largest for the corporations dataset, where
the MRR @10 drops from 0.745 to 0.48. Overall, we find that the transfer learning models are
able to adapt to the unseen stakeholder-type but that there is still room for improvement.

6.5.5 Questionnaire Filling

In our final experiment we consider the task of filling in a questionnaire based on an unstructured
text document — specifically, we assume a State’s Climate Action Plan (CAP) is available but the
corresponding structured CDP report is not. Typically the CAPS are much longer (~100 pages)
and more comprehensive than any particular disclosure report. The CAPS include quantitative
data, such as emission values or renewable electricity generation capacity, and qualitative data
such as specific policy interventions across different sectors. Populating CDP questionnaires
allows for consistent comparisons to existing datasets which could further be used to compare
strategies, identify gaps, or rank jurisdictions on the content and level of ambition in their stated
plans. However, this process is time-consuming and requires expert manual effort.

We select our best model, MinilLM, finetuned on the full CLIMA-CDP dataset to conduct our
unstructured questionnaire filling. We can consider a State CAP as an unstructured document
Dy, to be a collection of texts, D,,, = {t1,ts,...,t,}, where ¢; is a text segment. The task
is then to align a text segment ¢; to its corresponding CDP-State question ¢; € @, 1.€.
argmax;eq; oy Py =1 |¢j, a;). Since we do not have the ground truth alignment we use a

J
climate change researcher in a procedure as follows: 1) First, the expert (climate policy researcher
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on our team and co-author) selected 5 pages at random from a collection of 20 State CAPS and
then selected a random paragraph from each page as a text segment ¢;. 2) Then, using our model
we calculated relevance scores for each text segment question pair (¢;, ¢;) and selected the top 5
scoring questions for each text segment. 3) We then presented each segment along with the five
questions to the climate change researcher and had them annotate the relevance for each pair on a
three point scale: No Relevance, Relevant, Highly Relevantﬂ

Human Evaluation

Table 6.6 shows the climate change researcher’s evaluation metrics for our model. Overall, 71.0%
of the 500 questions retrieved were judged Relevant and 35.6% rated Highly Relevant. One pitfall
of our model is that there were more very relevant predictions ranked fifth than first. One possible
explanation for this is that the top retrieved questions were often more general while the questions
that were ranked lower were more specific and easier to match (see Table [6.14]in the Appendix).
We show some examples of text segments and the selected questions in Appendix Table [6.13]
Although our pilot study is quite limited, it shows both the promise and the challenges of aligning
unstructured climate documents to semi-structured questionnaires.

6.6 Conclusion

In summary, we introduced two climate questionnaire datasets and illustrated how using their
existing structure we can train self-supervised models for climate question answering tasks
analogous to real-world challenges faced by climate researchers. Finally we lay the groundwork
for future work in this domain by introducing a collated benchmark of existing climate text
classification datasets.

6.7 Limitations

One current limitation of our benchmark is that the datasets are English only, thus restricting
evaluation to English trained models. Although the CDP DATASET has disclosures in other
languages it represents a small portion of the reports. We plan to include relevant climate
change datasets from the multilingual European Union Public Data Catalo in the future, while
encouraging contributions from the broader community. Another limitation is that for our human
evaluation pilot study we were able to only get results for a single model. We wish to build a small
labeled dataset where climate experts map State climate action plans to their corresponding CDP
questions for evaluation purposes. Doing such manual labeling is particularly difficult for CDP
due to the large number of questions but this resource could then be used efficiently to evaluate
multiple models and baselines.

We do not thoroughly investigate the efficiency-accuracy trade-offs of the Transformer models
in this work. We provide the compute and training efficiency statistics in[6.8.2] and Table[6.10] as

8By construction, in our rating there may be multiple relevant questions found for each text segment.
%data.europa.edu
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only a step in this direction. In this work we used the MiniLM model, a cross-encoder, for the
CDP-QA experiments. Although this model is much smaller, at test time it requires a forward
pass for each question-answer pair, which is computationally expensive. In future work it would be
interesting to compare the cross-encoder to bi-encoders model architectures to better understand
the accuracy vs. performance trade-off. We encourage future work on CLIMABENCH to leverage
models that are both performant and efficient.

6.8 Appendix

6.8.1 Compute Details

We used a 24 core AMD Ryzen CPU machine with 128 GB RAM for data processing. For training
and inference of the deep learning models, we utilize 4 Nvidia RTX 2080Ti GPUs with 11GB
memory each. Each model was trained on a single GPU at a time.

Section Category/Label
Hazards: Adaptation Adaptation
Adaptation Adaptation
Buildings Buildings
Hazards: Climate Hazards Climate Hazards
Hazards: Social Risks Climate Hazards
Climate Hazards Climate Hazards
Climate Hazards and Vulnerability Climate Hazards
Climate Hazards & Vulnerability Climate Hazards
City-wide Emissions Emissions
Emissions Reduction Emissions

GHG Emissions Data Emissions

Local Government Emissions Emissions
Emissions Reduction: City-wide Emissions

City Wide Emissions Emissions
Emissions Reduction: Local Government Emissions

Local Government Operations GHG Emissions Data Emissions
Energy Data Energy

Energy Energy

Food Food
Governance and Data Management Governance and Data Management
Opportunities Opportunities
Strategy Strategy

Urban Planning Strategy
Transport Transport

Waste Waste

Water Water

Water Security Water

Table 6.7: The section topics in the CDP Cities Questionnaire and the corresponding Labels
assigned by a climate expert.
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Task Average Max Min Std
CLIMA-INS 203 4588 11 326
CLIMA-INS 206 4588 11 335
CLIMA-CDP 73 801 11 83
CLIMA-QA 105 834 15 88
CLIMATEXT 23 124 11 10
CLIMATESTANCE 30 98 11 12
CLIMATEENG 30 98 11 12
CLIMATEFEVER 47 311 11 19
SciDCC 580 2014 13 223

Table 6.8: Statistics for the number of tokens in each task of CLIMABENCH

Model Source #Params Vocab Size Max Length
BERT [35]] 110M 30K 512
RoBERTa [71] 125M 50K 512
DistilRoBERTa  [[102] 82M 50K 512
Longformer [13] 149M 50K 4096
SciBERT [12] 110M 30K 512
ClimateBERT  [135]] 82M 50K 512

Table 6.9: Pretrained Transformer Language Models used for Classification tasks

6.8.2 CO2 Emission Related to Experiments

A cumulative of 338 hours of computation was performed on hardware of type RTX 2080 Ti
(TDP of 250W). Total emissions are estimated to be 36.5 kgCOseq. Estimations were conducted
using the MachineLearning Impact calculator presented in [S8].

Model Avg. Runtime (in hours) Avg. Train Samples/Second Avg. Train Steps/Second

ClimateBERT 0.40 104.83 1.64
DistilRoBERTa 0.40 101.04 1.58
SciBERT 0.70 53.86 0.84
RoBERTa 0.80 50.46 0.79
BERT 0.85 49.32 0.77
Longformer 14.95 13.82 0.76

Table 6.10: Compute Efficiency Metrics for the Pretrained Transformer models for the experiments
conducted on CLIMABENCH. Models based on the DistilRoBERTa architecture are the most
efficient due to smaller model size.
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6.8.3 Pretrained Transformer Models

BERT [335] is a popular Transformer-based language model pre-trained on masked language
modeling and next sentence prediction tasks. It makes use of WordPiece tokenization algorithm
that breaks a word into several subwords, such that commonly seen subwords can also be
represented by the model.

RoBERTa [71] uses dynamic masking and eliminates the next sentence prediction pre-training
task, while using a larger vocabulary and pre-training on much larger corpora compared to BERT.
Another notable difference is the use of byte pair encoding compared to wordPiece in BERT.
DistilRoBERTa [[102] leverages knowledge distillation during the pre-training phase reducing
the size of the ROBERTa model by 40%, while retaining 97% of its language understanding
capabilities and being 60% faster. Sanh et al. [[102] originally distilled the BERT model but we
utilize the better performing RoBERTa version in our experiments.

Longformer [13] extends Transformer-based models to support longer sequences with the help
of sparse-attention. It uses a combination of local attention and global attention mechanism that
allows for linear attention complexity and thus makes it feasible to run on longer documents (max
4096 tokens). It however takes much longer to train than the shorter context (512 tokens) models.
SciBERT [12], a pretrained language model based on BERT, leverages unsupervised pretraining
on a large multi-domain corpus of scientific publications to improve performance on downstream
scientific NLP tasks. It was evaluated on tasks like sequence tagging, sentence classification and
dependency parsing with datasets from scientific domains. SCiBERT gives significant improve-
ments over BERT on these datasets.

ClimateBERT [[135] was warm-started from the DistilRoBERTa model and pretrained on text
corpora from climate-related research paper abstracts, corporate and general news and reports from
companies that were not publicly released with the model. It was evaluated on tasks like sentiment
analysis (using a private dataset), and public datasets like CLIMATEXT and CLIMATEFEVER. In
this paper, we evaluate and compare the performance of ClimateBERT on diverse CC tasks for
the first time, providing a comprehensive, publicly available and reproducible evaluation.

Parameter  Values

loss hinge, squared_hinge
C 0.01,0.1,1, 10
class_weight none, balanced

Table 6.11: For the linear SVM, we grid search over the parameters with 5-fold validation to get
the best fit out of 80 candidates (16 values * 5 folds) with F1 Macro as the scoring mechanism

6.9 Climate Text Sources
The reports considered here include climate assessments, climate legislation, agency reports,

regulatory filings, climate action plans (CAPs), and corporate ESG (Environmental, Social, and
Governance) and CSR (Corporate Social Responsibility) documents [/1} 24]].
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‘ CDP-CITIES ‘ CDP-STATES ‘ CDP-CoORpP

Model ‘ MRR@10 ‘ MRR@AIl ‘ MRR@10 ‘ MRR@AIl ‘ MRR@10 ‘ MRR@AIl

No Finetuning on CDP

BM25 \ 0.055 \ 0.077 \ 0.084 \ 0.105 \ 0.153 \ 0.180

MiniLM ‘ 0.099 ‘ 0.118 ‘ 0.120 ‘ 0.142 ‘ 0.320 ‘ 0.342
Finetuned on CDP
‘ In-Domain ‘ In-Domain ‘ In-Domain
ClimateBERT ‘ 0.331 ‘ 0.344 ‘ 0.422 ‘ 0.431 ‘ 0.753 ‘ 0.754
MiniLM ‘ 0.366 ‘ 0.378 ‘ 0.482 ‘ 0.491 ‘ 0.755 ‘ 0.757

Best Model Finetuned on all

MiniLM \ 0.352 \ 0.364 \ 0.489 \ 0.497 \ 0.745 \ 0.747

Table 6.12: MRR@FE scores for BM25, ClimateBERT and MSMARCO-MinilLM on the three
subsets of CLIMA-QA. Models finetuned and evaluated on same subset fall under In-Domain.

| CDP-STATES | CDP-CORP
Model | MRR@10 | MRR@AIl | MRR@10 | MRR@AII

No Finetuning

BM25 | 0.084 | 0.105 | 0.153 | 0.180
MiniLM | 0.120 | 0.142 | 0.320 | 0.342
Finetuned on CDP-CITIES
‘ Transfer ‘ Transfer
ClimateBERT | 0.298 | 0.314 | 0.465 | 0.477
MiniLM | 0.353 | 0.366 | 0.489 | 0.500

Table 6.13: MRR @k scores for BM25, ClimateBERT and MSMARCO-MiniLM on the Transfer
experiments. Models are finetuned on CDP-CITIES and evaluated on States and Corporations.

A key step in curbing emissions and mitigating climate change has been the development of
standards and frameworks for climate reporting such as GRI (Global Reporting Initiative), TCFD
(Task Force on Climate-Related Financial Disclosures), CDP (Carbon Disclosure Project), SASB
(Sustainability Accounting Standards Board), and SDG (Sustainable Development Goals) [2, 16,
20, 100]

For example, the World Resources Institute has built Climate Watch [3]] to keep track of
progress and commitments nations have made under the 2015 Paris Agreement. One element of
their work has been the manual labeling of Nationally Determined Contributions (NDCs) with
a number of descriptors including cross references to the UN Sustainable Development Goals
which strongly overlap with the categories in our CDP dataset and task.
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Question MRR@132

Please provide details of your climate actions in the Agriculture sector. 0.870
Please provide details of your climate actions in the Waste sector. 0.789
Please provide details of your climate actions in the Transport sector. 0.774
Please provide details of your climate actions in the Buildings & Lighting sector. 0.597
Please describe these current and/or anticipated impacts of climate change. 0.492
Please complete the table below. 0.487
Please indicate the opportunities and describe how the region is positioning itself to 0.445
take advantage of them.

Please provide details of your climate actions in the Energy sector. 0.397
Please describe the adaptation actions you are taking to reduce the vulnerability of 0.378
your region’s citizens, businesses and infrastructure to the impacts of climate change

identified in 6.6a.

Please describe these current and/or future risks due to climate change. 0.327
List any emission reduction, adaptation, water related or resilience projects that you 0.319

have planned within your region for which you hope to attract financing, and provide

details on the estimated costs and status of the project. If your region does not have

any relevant projects, please select “No relevant projects” under Project Area.

Please provide details of your climate actions in the Land use sector. 0.286
Please provide the details of your region-wide base year emissions reduction target(s). 0.252
You may add rows to provide the details of your sector-specific targets by selecting

the relevant sector in the sector field.

Please describe the adaptation actions you are taking to reduce the vulnerability 0.247
of your region’s citizens, businesses and infrastructure to the risks due to climate

change identified in 5.4a.

Table 6.14: Question difficulty evaluated on the test set of CDP-STATES ranked from best
performing to worst performing. Filtered to only questions that appeared at least twenty times.

Although SDGs were first established by the United Nations to measure the progress of nation
states towards development goals, they have been adopted by both corporations and regional and
local jurisdictions to measure their sustainability efforts.

However, since the cross-referencing with SDGs is largely voluntary many cities, for example,
have CAPs that are hundreds of pages in length but that provide no alignment with SDGs. Being
able to effectively align the text between different climate documents to the various standards
and disclosure frameworks is a critical component of climate policy evaluation and a real-world
challenge. See also Stede and Patz [[111]] for more in-depth information.
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Ex. Text Segment from State Climate Action Plans Top Questions from CDP-STATES (using fine-tuned MiniLM)

1 Sea level rise will inundate some nearby coastal areas, and related Q1: Please describe the current and/or anticipated impacts of
salt-water intrusion, coupled with increased drought stress may climate change.
impact water supplies. Q3: Please detail any compounding factors that may worsen the

impacts of climate change in your region.

2 The afforestation goal is to increase the area of forested lands in ~ Q1: Please provide the details of your region’s target(s).
the state by 50,000 acres annually through 2025. Q2: Please provide details of your climate actions in the Land use

sector.

3 State law defines environmental justice as the fair treatment of Ql: Please explain why you do not have policies on deforestation
people of all races, cultures, and incomes with respect to the and/or forest degradation.
development, adoption, implementation, and enforcement of Q4: Please provide details of your climate actions in the Gover-
environmental laws, regulations, and policies. nance sector.

4 By a majority vote, the ICCAC presents a policy option that, if Q3: Please provide details of your renewable energy or electricity
deemed necessary, would build one new 1200-megawatt nuclear  target(s).
power plant in Iowa by January 1, 2020. Q4: Please provide details of your climate actions in the Energy

sector.

5 California maintains a GHG inventory that is consistent with QI: Please give the name of the primary protocol, standard, or
IPCC practices ... Reports from facilities and entities that emit methodology you have used to calculate your government’s GHG
more than 25,000 MTCO2e are verified by a CARB-accredited emissions.
third-party verification body. Q3: Please provide the following information about the emissions

verification process.

6 A leading driver of these high emissions is the fact that the Q4: Please indicate if your region-wide emissions have increased,

District’s daytime population swells by 400,000 workers every
workday, which is the largest percentage increase in daytime
population of any large city in the nation.

decreased, or stayed the same since your last emissions inventory,
and please describe why.

Q5: Please report your region-wide base year emissions in the
table below.

Table 6.15: Examples from our human pilot study in which our climate expert has evaluated the
relevance of CDP questions linked to selected text from state climate action plans. A fragment of
the matched text is presented with two illustrative questions from the set of five question matches
generated by our model. The first two examples show high degrees of success. In example 1, our
model correctly identifies the state CAP text as impact-related and captures the specific discussion
of compound risks. However, example 3 appears to highlight a gap in the CDP questionnaire
related to the topic of environmental justice, a result in itself of considerable interest.
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Chapter 7

Aligning Unstructured Paris Reports
with SDG Framework

* Daniel Spokoyny and Jannele Cai and Tom Corringham and Taylor Berg-Kirkpatrick,
“Aligning Unstructured Paris Reports with SDG Framework.”

7.1 Introduction

In the final chapter we re-examine the Nationally Determined Contributions (NDC ) reports from
Chapter [5]in the modern era of Large Language Models. We saw in the previous Chapter that
there are existing semi-structured climate questionnaires (Carbon Disclosure Project) that can be
utilized as a source of weak supervision for finetuning models for information extraction tasks
over climate documents such as aligning passages according to their CDP questions. However,
as we have alluded earlier, the vast majority of climate documents are largely unstructured and
non-standardized, yet are critically important for climate scientists, policymakers, and various
stakeholders.

Specifically, the United Nations Paris Agreement of 2015 established a set of over 160 country
specific Nationally Determined Contributions (NDCs), updated in 2021, and underscored an
international commitment towards a more sustainable and resilient future. Both sets of NDCs laid
out ambitious targets, reflecting a collective will to act against climate change. These unstructured
texts, while critically important, vary widely in format and are dense with diplomatic and technical
jargon, presenting an opportunity for computational methods to distill and map their content to
tangible goals.

The United Nations Sustainable Development Goals (SDGs) offer a structured framework,
comprising 17 goals and 169 sub targets that promote global well-being and environmental
protection. Specifically, we consider the SDGs as a taxonomy with a hierarchical set of classes
with natural language descriptions of each class, but it does not contain any explicit labeled data.
Linking the commitments made in the NDCs to the SDGs allows for a coherent understanding
of global sustainability aspirations and establishes a concrete pathway for tracking progress and
implementation. Aligning unstructured climate documents to new taxonomies with limited labeled
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data is a challenging task which appears frequently in the climate domain. In this work we seek to
study methods for addressing this challenge.

First, can we simply use the same cross-encoder based models from the previous chapter
to align the NDCs to the SDGs? In a small human evaluation we saw potential in using the
cross-encoder to align unstructured state climate action plans to the CDP framework. However,
this task now involves both unstructured documents and a new framework which the models have
not seen before. We set out to empirically analyze this and find that although they generalize to
some extent, they are a ways below human performance on this task.

Second, we seek to explore whether a new technology: Large Language Models (LLMs) offer
a potential opportunity to address this challenge. Might they through few-shot prompting be able
to classify sentences in the NDCs with their corresponding SDG goals and targets? Prompting
LLMs provides a relatively unsophisticated and yet extremely powerful way to leverage the
models’ capabilities. Furthermore, today some of the most advanced LLLMs are easily accessible
through APIs and web interfaces, making them a potentially well-suited tool for a wide range of
climate policy researchers.

As part of this study, we are going to utilize the World Resources Institute’s Climate Watch
dataset [85] which contains manual annotations from NDCs reports according to the SDG frame-
work. Although this dataset is a valuable resource, through our analysis we will show that it only
covers a small portion of the NDCs, motivating the need for NLP methods that could scale to the
entire corpus. To achieve this, we will use our own annotated data that will 1) help validate and
better understand the Climate Watch dataset 2) provide an evaluation benchmark where we can
compare our models along with a measure of inter-annotator agreement.

Our contributions are as follows: 1) We conduct an empirical study of LLMs as well as
cross-encoder architectures on the task of aligning NDCs to SDGs. 2) We introduce a benchmark
for cross-comparing our models, annotators, and the existing Climate Watch dataset. 3) We
analyze specific methods to further boost performance on this task.

Finally, we aim to release the entirety of the NDC reports along with their predicted SDG
alignment as an artifact for the community to use. By doing so, we aim to bridge a gap between
global commitments and tangible outcomes, to foster transparency and ensure that the aims of
these international agreements are better understood, monitored, and ultimately realized.

7.2 Datasets

In this section we will introduce the World Resources Institute’s Climate Watch dataset that we
utilized for our experiments [85]]. The dataset includes sentences from NDCs submitted before
2021, each of which are labeled with goals and targets. There are 17 goals, and 169 targets, each
of which are associated with a goal. Statistics on the dataset are shown in Table[/.1|and Table

Each sentence in the document is labeled with one of the 17 SDGs and one of the 169 targets.
Some sentences may also be labeled with multiple goals or targets. Example sentences and
their labels are shown in Table In Figure[/.1| we show the distribution of SDG-Goals in the
Climate-Watch dataset.
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Figure 7.1: Histogram of the number of labels for each SDG in the Climate Watch dataset.

Table 7.1: Statistics for the Climate Watch dataset.

Property Number
NDC Documents 214
Countries with Documents 186
Labelled Sentences 6813
Sentences with Multiple Goal Labels 1386
Sentences with Multiple Target Labels 2302

Preprocessing The Climate-Watch dataset has the SDG annotations, various associated meta-
data, and the raw text snippet from the NDC documents. However, these snippets are not directly
linked to the exact locations in the NDC documents. We obtain a dataset of the full texts of the
NDC documents as HTML files and using simple heuristics were able to match 94.8% of the
annotations to their exact document spans. In Figure [7.2] we plot the distribution of where in the
NDC documents the Climate-Watch annotations are found.

Table 7.2: Statistics for sentences in the Climate Watch dataset.

Property Mean
Sentence Length (characters) 137.2
Labelled Sentences per Document 66.4
Goals per Sentence 1.34
Targets per Sentence 1.49
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Figure 7.2: Histogram of where in the NDC documents the Climate-Watch annotations are found.

Table 7.3: SDG-Goal and SDG-Target labels of example sentences from the Climate-Watch
dataset.

Climate Watch Labelled Examples Goals Targets
Reduce rural peoples’ dependence on fuel for cooking and heating. 12 12.2
Reduce fuel consumption through efficiency standards 7,11 7.3,11.2
Guyana will implement other policies to encourage energy efficiency 7 7.2,7.3

and the use of renewable energy, including building codes and net-
metering of residential renewable power.

80



7.2.1 Constructing Additional Benchmarks

We also created two small evaluation datasets that we will use to benchmark various aspects of
our prompting strategies.

To construct the Data-Random dataset, we preprocess the HTML version of the NDC reports,
using the NLTK sentencizer on the the HTML tags that contain the majority of the textual content
(<p> and <li>). We further filter the sentences to be between 80 and 300 characters in length.
Across all of the reports, this yields over 100,000 sentences. From this set, we randomly sampled
120 sentences to be labeled by our annotators.

To construct the Data-Balanced dataset, we selected 5 random annotations from Climate-
Watch for each of the 17 SDG-Goals . The Data-Random and the Data-Balanced were drawn
from 32 and 53 NDC reports, respectively.

Both of these datasets were subsequently labeled by three separate manual annotators, com-
prising one expert climate scientist and two university students with some climate policy under-
standing. Each sentence was independently labeled with up to three SDG-Goals that the annotator
believed were most relevant to the sentence. For the Data-Random dataset, annotators could
optionally select a “not relevant” label if they believed the sentence did not align with any of the
SDG-Goals .

Inter Annotator Agreement

Later, in Section|/.3.1|we will use the Data-Random to estimate the portion of the NDC documents
that have been labeled in the Climate-Watch dataset. Whereas, the Data-Balanced dataset will
allow us to compare the performance of both our models and annotators against a balanced set of
the Climate-Watch dataset.

Using our annotators, we show in Figure the distribution of the predicted SDG-Goals
for the Data-Random dataset, which we can contrast with the distribution of SDG-Goals in the
Climate-Watch dataset (Figure[7.2). We found the most common SDG-Goals in Data-Random
were 13, 15, 7 whereas in the Climate-Watch dataset it is 7, 15 and 2. The SDG Goal 13 (Take
urgent action to combat climate change and its impacts) could be interpreted very broadly and
thus our annotators ended up selecting it for a variety of sentences.

For the Data-Random split we calculated the inter-annotator agreement using Cohen’s kappa
(which has a range of -1 to 1) between the expert and each of the novices as (0.629, 0.524) [29].
However, on the Data-Balanced the agreement was lower (K = 0.215, K = 0.179), reflecting
disparate annotation strategies among the annotators. Notably, some annotators demonstrated
a conservative approach, opting to select only the primary goal, whereas others exhibited more
leniency in their selections.

7.3 Experiments

In this section, we introduce our experiments in which we use different prompting strategies with
GPT models to classify sentences according to SDG . We will use ChatGPT-3.5 and GPT-4-Turbo
as our main models to conduct prompt-based classification experiments. We will use JSON-mode
API option to ensure the model outputs are properly structured for classification tasks. As our
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Figure 7.3: Histogram of the predicted SDG-Goals for the Data-Random dataset aggregated
across all annotators.

zero-shot classification baselines we will use MiniCDP , the cross-encoder model finetuned on
the semi-structured CDP questionnaire data from Chapter[6|as well as its base model architecture
MiniLM model.

7.3.1 Data-Random

First, using our manual annotations we will try to estimate the existing coverage of the Climate-
Watch dataset. We found that out of 120 sentences, 13 were labeled non-relevant by the Expert
and 8 were labeled as not-relevant by at least two of the annotators. Since there are on average
724 sentences per document and only 66.4 sentences are labeled in the Climate-Watch dataset, we
estimate that only 10-15% of the NDC have been labeled. We show a histogram of the predicted
SDG-Gouals for the Data-Random dataset in Figure [7.3]

Although this is a very rough estimate, it clearly shows that the vast majority remains unlabeled
and motivates the need for a more scalable approach to labeling these documents. Although, to our
knowledge, there is no full description of the methodology used to construct the Climate-Watch
dataset, Northrop et al. [83]] suggests that keyword searches were used to select climate actions.

Following this analysis, we aim to also measure how LLMs perform compared to our annota-
tors on this random subset of sentences from the NDC documents. To do so we construct a simple
prompt to predict a single SDG-Goal for each sentence. We have a simple instruction:

Given the following Input Text predict the Sustainable Development
Goal (label) out of the following 17 options:
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Table 7.4: Results on single SDG-Goal prediction for the Data-Random dataset.

Annotator Accuracy

Annotator-1 80.0%
Annotator-2  70.8%

Model Avg

ChatGPT-3.5 72.5%
GPT-4-Turbo 75.0%

Table 7.5: Results on multiple SDG-Goal prediction for the Data-Random dataset.

Annotator Jaccard

Annotator-1 0.59
Annotator-2  0.50

Model Avg

ChatGPT-3.5 0.55
GPT-4-Turbo 0.59

followed by listing out all of the SDG-Goals (see Table[7.12). To further encourage the model to
produce well-formatted JSON outputs, we include an output specification in the prompt:

Generate a json object like so: {\’label\’: [\’2\’]1}

And lastly, to capture non-relevant sentences, we include “O: None of the above labels are
applicable” as an option in the list of SDG-Goals as well.

As models we use ChatGPT-3.5 and GPT-4-Turbo with the same prompt. We find that GPT-4-
Turbo predicted 6 out of 13 non-relevant sentences correctly, while ChatGPT-3.5 was unable to
predict any of them. Upon closer inspection, we found that ChatGPT-3.5 predicted a very general
goal, (Goal-13: Take urgent action to combat climate change and its impacts), for a majority of
non-relevant sentences.

To evaluate the performance of the models we calculate the accuracy as whether the model’s
prediction matched one of the Expert labels. We show results in Table We find that both
models perform well with GPT-4-Turbo being slightly better. We also include the other two
annotators as a point of reference although it is not a direct comparison, as annotators were
allowed to select up to three SDG-Goals .

For a more fair comparison, we simply modify the prompt output specification

Generate a json object like so: {\’label\’: [\’1\’, \’2\’1}

to allow the models to predict multiple SDG-Goals . We use the Jaccard similarity to measure
the overlap between the sets of SDG-Goals . We show the results in Table From the results,
we see that on random sentences from the NDC documents, both GPT models perform at similar
levels to the annotators.
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Figure 7.4: Confusion matrix for the Data-Balanced dataset.

7.3.2 Data-Balanced

First we want to compare the performance of our annotators against the annotations from the
Climate-Watch dataset. As our metric, we report whether the percentage of sentences where
annotators selected the same SDG-Goal as the Climate-Watch dataset. For our three annotators we
found this to be 49.4%, 57.6%, and 48.2%. By using a balanced dataset, we can also evaluate the
average accuracy of our annotators for each SDG-Goal shown in Table[7.6|along with a confusion
matrix in Figure[7.4]

In Table we compare the performance of our models on the Data-Balanced dataset. We
find that with the top scoring SDG-Goal the MiniCDP model achieves an accuracy of 30.6% while
the MiniLM model is almost 9% lower at 21.1%. Both of the LLMs perform much better with the
ChatGPT-3.5 model achieving 47.1% and the GPT-4-Turbo model achieving 49.4%.

Since in the Data-Balanced split there is only a single SDG-Goal label for each sentence, we
also aim to quantify how well the models perform against our annotators with multiple SDG-Goal
label predictions. For the MiniLM and MiniCDP models, we simply take the models’ top three
scoring goal predictions.

We select the annotator with the highest accuracy against the Climate-Watch labels to compare
our model predictions against. We use the Jaccard similarity to measure the overlap between the
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Table 7.6: Average Annotator Performance by SDG-Goal on the Data-Balanced dataset.

SDG-Goal Avg

7 93.33
15 86.67
6 86.67
13 80.00
5 73.33
3 66.67
2 66.67
4 66.67
16 53.33
14 46.67
12 40.00
8 33.33
9 26.67
17 26.67
1 13.33
11 13.33
10 6.67

sets of SDG-Goals . The results are presented in Table

We again find that the MiniCDP model to be slightly better than the MiniLM model with
Jaccard scores of 0.19 and 0.17, respectively. While both of the other annotators have Jaccard
scores of 0.46, the GPT models achieve higher similarity scores of 0.48 and 0.50.

7.3.3 Climate-Watch

Although, the Data-Random and Data-Balanced data splits are relatively small, we have found that
prompting GPT models to predict SDG-Goals is a promising approach for classifying sentences.
In our final set of experiments, we will use the Climate-Watch dataset to benchmark prediction of
SDG-Targets . From the full Climate-Watch dataset we randomly selected 200 sentences and in
this section will refer to it as the ground truth.

We explore two modes for predicting the SDG-Targets , oracle: where we use the ground truth
SDG-Goal label to sub-select only the corresponding SDG-Targets , and full: where we predict all
SDG-Targets for a given sentence. We prompt the models to produce the SDG-Target labels as
JSON objects. Since many sentences have multiple SDG-Target labels, for our metric we use the
Jaccard similarity. Results for these experiments are shown in Table

For the full mode, we see that GPT-4-Turbo is substantially better than ChatGPT-3.5 with
Jaccard scores of 0.42 and 0.28, respectively. As expected, in the oracle mode both models
perform better with the gap between the two models slightly decreasing.
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Table 7.7: Single SDG-Goal prediction results for the Data-Balanced dataset.

Annotator Avg

Expert 49.4%
Annotator-1  57.6%
Annotator-2  48.2%

Model

MiniLM 21.1%
MiniCDP 30.6%
ChatGPT-3.5 47.1%
GPT-4-Turbo 49.4%

Table 7.8: Multi SDG-Goals prediction results for the Data-Balanced dataset compared to top
performing annotator.

Annotator Jaccard

Annotator-1  0.46
Annotator-2  0.46

Model

MiniLM 0.17
MiniCDP 0.19
ChatGPT-3.5 0.48
GPT-4-Turbo 0.50

Table 7.9: Multi SDG-Targets prediction results for the Climate Watch dataset.

Model Jaccard

ChatGPT-3.5 full 0.28
GPT-4-Turbo full 0.42
ChatGPT-3.5 oracle 0.49
GPT-4-Turbo oracle 0.57
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Table 7.10: Multi SDG-Target prediction results with in-context learning for the Climate-Watch
dataset.

Model Number ICL Jaccard
ChatGPT-3.5 1 0.31
ChatGPT-3.5 10 0.35
ChatGPT-3.5 20 0.36
GPT-4-Turbo 20 0.44

Table 7.11: Multi SDG-Target prediction results with expert prompting on the Climate-Watch
dataset.

Model Jaccard

ChatGPT-3.5 full 0.27
GPT-4-Turbo full 0.42
ChatGPT-3.5 oracle 0.52
GPT-4-Turbo oracle 0.58

In Context Learning

One of the most desirable features of modern LLMs is their ability to use task-specific examples
in their prompt to further boost performance. In the next set of experiments, we additionally
provide up to 20 in-context learning (ICL) examples to both of our models. We show the results
in Table

We find that the ChatGPT-3.5 model improves with additional ICL examples, getting much
closer to the performance of the GPT-4-Turbo model. In contrast the 20 ICL examples only
slightly improve the performance of the GPT-4-Turbo model.

Prompting Strategies

There are a variety of prompting techniques that have been shown improve performance such
chain of thought [[136]], maieutic prompting [52], or self-ask [S0]. Xu et al. [142] found that
providing a model with a prompt that describes an identity of distinguished expert can improve
performance. We experiment with a simple form of expert-prompting for a climate policy expert.
We generated the expert identity using GPT-4 using an example from Xu et al. [[142], and added
“You are a climate policy expert...” to the beginning of our instruction. The results are shown in
Table [7.11|and the full expert-prompt is shown in the Appendix. We find that there is a small
improvement for both models in the oracle mode but no effect in the full mode.
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7.4 Artifact

To enable climate researchers to we use the best existing system/configuration we identified to
annotate the entire NDC documents according to the SDG Goals and Targets. We will aim to
provide the annotations, in a structured format along with the original NDC documents.

7.5 Related Work

7.5.1 NDC SDG Linking

There is research that has explored connecting NDCs and SDGs but it has predominantly been
through manual expert annotations Policymakers across several jurisdictions observe that there is
significant overlap between the implementation process for SDGs and NDCs, and that the linking
of both policymaking processes increases the efficacy of climate policy design. Northrop et al.
[85]] and Brandi et al. [19] provide detailed evidence for the convergence between SDGs and
NDCs. Antwi-Agyei et al. [7]] aim to leverage the alignments and misalignments between West
African NDCs and global SDGs to increase the efficacy of West African climate policies.

However, due to the painstaking effort required to align these documents most studies are
limited in scope: concentrating on a specific geographical region [[7] or selecting a single or subset
of the SDG goals [42, 1035]. In contrast our study we have significant coverage across all: SDG
Goals and Targets, geographical regions provided the availability of NDC document in English
language, the entire texts of the documents. Additionally, some approaches utilize keyword search
or extraction techniques to label data, however, these methods have limitations [54], including
potential biases introduced by the choice of keywords.

7.5.2 NLP for Climate

Research in applying/building NLP tools for climate-related tasks has largely focused on peer-
reviewed academic papers, climate finance documents [75], and non-climate texts such as
Wikipedia. Most recently, Smith et al. [105] analyzed peer-reviewed scientific articles pub-
lished between 2001 and 2020 which are indexed as relevant to SDG 3 and one or more SDGs in
Dimensions, “the most exhaustive database for scientific publications” (Smith et al., 2023). They
used results from an existing machine learning method to classify scientific publications by their
SDG relevance.

There has been exploratory work on using ChatGPT to interact with climate documents such
as the Intergovernmental Panel on Climate Change Report (IPCC)[[124]. In contrast, our aim is to
understand how modern LLMs with zero shot prompting, or few-shot in-context-learning could
assist in these tasks.

7.6 Conclusion

In summary we have constructed benchmarks which allowed us to compare the performance of
models, annotators, using the Climate-Watch dataset on unstructured NDC documents. Using
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this data we were able to show that existing manual efforts are low coverage and motivating the
need for automated methods. We then found that our finetuned cross-encoder model from the
previous Chapter was still slightly better than its underlying base model, although the improvement
was marginal. Finally, we saw across various experiments that by prompting GPT models we
were able to match the performance of our annotators on SDG-Goal and SDG-Target prediction.
Overall, these findings highlight the potential of leveraging machine learning models, particularly
GPT-based ones, to effectively annotate unstructured climate documents such as the NDCs. To
enable climate researchers, we use the best existing configuration we identified to annotate the
entire NDC documents according to the SDG Goals and Targets. We will aim to provide the
annotations, in a structured format along with the original NDC documents.
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Table 7.12: The 17 Sustainable Development Goals.

Goal Description

1 End poverty in all its forms everywhere

2 End hunger, achieve food security and improved nutrition and promote sustainable
agriculture

3 Ensure healthy lives and promote well-being for all at all ages

4 Ensure inclusive and equitable quality education and promote lifelong learning
opportunities for all

5 Achieve gender equality and empower all women and girls

6 Ensure availability and sustainable management of water and sanitation for all

7 Ensure access to affordable, reliable, sustainable and modern energy for all

8 Promote sustained, inclusive and sustainable economic growth, full and productive
employment and decent work for all

9 Build resilient infrastructure, promote inclusive and sustainable industrialization
and foster innovation

10 Reduce inequality within and among countries

11 Make cities and human settlements inclusive, safe, resilient and sustainable

12 Ensure sustainable consumption and production patterns

13 Take urgent action to combat climate change and its impacts

14 Conserve and sustainably use the oceans, seas and marine resources for sustainable
development

15 Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably
manage forests, combat desertification, and halt and reverse land degradation and
halt biodiversity loss

16 Promote peaceful and inclusive societies for sustainable development, provide
access to justice for all and build effective, accountable and inclusive institutions at
all levels

17 Strengthen the means of implementation and revitalize the global partnership for

sustainable development

7.7 Appendix

One Full Goal Prompt with 5 ICL examples.

Given the following Input Text predict the Sustainable

Development Goal (goal) out of the following 17 options:

Sustainable Development Goal

1:
2:

End poverty in all its forms everywhere

End hunger, achieve food security and improved nutrition and
promote sustainable agriculture

Ensure healthy lives and promote well-being for all at all
ages
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4: Ensure inclusive and equitable quality education and promote
lifelong learning opportunities for all
5: Achieve gender equality and empower all women and girls
6: Ensure availability and sustainable management of water and
sanitation for all
7: Ensure access to affordable, reliable, sustainable and modern
energy for all
8: Promote sustained, inclusive and sustainable economic growth,
full and productive employment and decent work for all
9: Build resilient infrastructure, promote inclusive and
sustainable industrialization and foster innovation
10: Reduce inequality within and among countries
11: Make cities and human settlements inclusive, safe, resilient
and sustainable
12: Ensure sustainable consumption and production patterns
13: Take urgent action to combat climate change and its impacts
14: Conserve and sustainably use the oceans, seas and marine
resources for sustainable development
15: Protect, restore and promote sustainable use of terrestrial
ecosystems, sustainably manage forests, combat
desertification, and halt and reverse land degradation and
halt biodiversity loss
16: Promote peaceful and inclusive societies for sustainable
development, provide access to justice for all and build
effective, accountable and inclusive institutions at all
levels
17: Strengthen the means of implementation and revitalize the
global partnership for sustainable development
Input Text: By 2026, a study will have been developed on the
impacts derived from climate change on agricultural and
fishing production systems, including effects on agricultural
health, and whose results are shared appropriately to the
realities and worldviews of the different communities.
goal :13
Input Text: establishment of information centers for farmers
that provides guidance on adaptive management of agriculture;
etc
goal:2
Input Text: These additional mitigation actions will be achieved
through focusing on energy sector and industrial processes,
as well as conservation and development of forests,
sustainable agriculture and waste management. "Market-based
mechanisms” and transfer of environment friendly technologies
under the legal regime of UNFCCC as well as transfer of
management practices, play a key role in successful and
result oriented conditional mitigation actions.
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goal:15

Input Text: reforestation and afforestation for the
rehabilitation of degraded lands.

goal:15

Input Text: public awareness is being raised on the need for
rationalizing water use

goal:12

Input Text: Save water for irrigation by using plastic films/
mulches on potato and vegetable fields;

goal:

Below is the full expert prompt that we used in our experiments.

You are a climate policy expert specializing in understanding the
complexities of climate systems and the impacts of human
activities. Your knowledge spans climate science, mitigation, and

adaptation strategies. You excel in analyzing research findings
and developing policies that balance scientific evidence,
political realities, and societal needs. Your expertise is
instrumental in crafting effective and equitable climate policies
at all levels, driving action towards a sustainable and
resilient future.
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Chapter 8

Conclusion

In this dissertation we have outlined the different challenges and opportunities in applying NLP to
the climate-related domain.

8.1 Numeracy

Numbers appear in text in all sorts of contexts, and different parts of the NLP community have
been working on different aspects of understanding numbers in text.

Strides have been made studying NLP for math word problems as test-bed of how well models
can reason about latent structures in a controlled setting. In this sub-field, the numbers are usually
treated as symbolic variables for manipulation. Separately, but along side this, a separate sub-field
emerged of pushing the boundaries of what mathematical reasoning can be done with neural
networks. From the other side of the spectrum, NLP works aimed at factual generation has
examined better grounding of numerical facts in text. In this thesis we carved out a relatively
unexplored and yet crucial aspect of understanding numbers in text: numerical commonsense.

Before, numerical commonsense was encompassed by the general notion of commonsense
in NLP, with simple numerical facts such as knowing that a cat has four legs or that there are
12 months in a year. These types of facts can be trivially solved through either memorization
or lookups to a knowledge base. However, in this thesis we explore quantities that are deeply
embedded in documents, and in some domains (academic papers, news articles, etc.) constitute
the vast majority of numerical mentions. When encountered with these quantities, they may be
unique and appearing for the first time in the text. These quantities may have explicit types such
as measurements with physical units, or they may have implicit types such as “cars produced at a
facility”.

To understand these quantities, we need to understand 1) the surrounding context with which
they appear, 2) the types of quantities they represent, and 3) the relationships they have with other
quantities in the text. The metrics we use to train and evaluate LLMs models were designed for
language composed of solely discrete symbols or words. Yet this overlooks the simple fact that
quantities are not discrete symbols, but are in fact continuous. The same way that using perplexity
as a core metric has been instrumental for benchmarking LLLMs and driving language model
research, numerical commonsense needs its own set of tasks and metrics to drive progress in this
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field. With this as context, we offer a different framing of our numeracy work: as contributing
new tasks along with metrics that are more suited for evaluating numerical commonsense for NLP
models.

In our research, we have reached several conclusions about the capabilities of deep learning
models in learning and understanding numerical information. While these models have the
potential to learn numerical commonsense, our findings show that they are not always effective.
By building custom reasoning modules and carefully considering training objectives we have
shown that it is possible to learn this type of knowledge. However, just as it does not make
practical sense to learn conversion factors, we should aim to imbue as much of this type-level
knowledge into the model as possible.

8.1.1 Numeracy and LLMs

Although, modern model architectures have had no specialized mechanisms for handling quantities,
with possibly the exception of tokenizing numbers using digits, they have surpassed across a
wide range of numerical reasoning tasks. However, it is unclear to what extent these models
are learning numerical commonsense, and a full evaluation of this is beyond the scope of this
thesis. It is conceivable that at a large enough scale these models capture symbolic reasoning,
numerical commonsense, and are able to recall numerical facts as well. However, it could also be
the case that by integrating continuous representations of quantities at the input and output level,
the models fare even better while being more sample efficient. One promising avenue for future
work worth exploring is post-hoc modifying these existing models to perform better on numerical
commonsense tasks.

8.1.2 LLMs and Tool Use

One increasingly favorable aspect of modern LLMs is the integration of "Tools." These tools
can take various forms, such as "schedule an appointment for Monday," "search Google for,"
and "send an email to Robert." Essentially, tools allow an LLM to initiate arbitrary computations
through text output and receive the results in raw text form. This concept is incredibly powerful,
facilitating the development of more advanced Al assistants and even more sophisticated theorem
provers. In the context of numeracy, this capability has enabled models to perform complex
numerical computations by invoking Python programs. Consequently, LLLMs do not need to
execute these mathematical operations themselves, as there are already simple, efficient, and
accurate methods for such computations. In this thesis, we similarly refrained from having the
model learn proper unit conversion calculations when studying measurements. The tasks we
examined, such as masked measurement infilling, are not solvable using existing tools and thus
provide a signal for learning better numerical representations. The true benefit of using LLMs
with tools lies in the complementary strengths of these systems, which can combine different
forms of fuzzy and precise reasoning effectively.
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8.1.3 Numeracy and Retrieval Augmented Measurement Prediction

Whereas, in this thesis we have studied quantities within a short context window of a document
they appear in, this presupposes that the quantities of interest are already present in the surrounding
context. One of the most exciting future directions would be to break this restriction, and consider
the case of retrieving information from a large corpus of text. Using a separate numerical retriever
could also be viewed as a specialised tool to help improve numerical commonsense. We speculate
that the task of masked quantity infilling as the task could provide strong enough signal to train a
retriever to represent quantities in a way that is unique and distinct from retrievers built for general
language tasks. These representations could then be helpful for a variety of downstream use cases,
such as numerical question answering, fact checking, information retrieval, and more.

8.2 NLP for Climate Documents

In looking at applying NLP to the climate domain, we have examined different strategies to bolster
NLP models with domain-specific weakly supervision: using document structure, semi-structured
questionnaires, and few-shot prompting. Climate domain experts require the whole gamut of
workflows and tools ranging from exhaustively labeling documents to quickly searching across
large collections for specific relevant information. The same strategies we used to improve
cross-encoders for the climate domain, by leveraging weak-supervision in structured surveys,
could also enhance existing LLMs as well. In the last chapter, we showed that by prompting
LLM:s one could match human annotator performance on a real world climate text classification
task. And advances on better text representation using LLMs such as LLM2Vec [[10] could allow
for increased performance on large scale corpus data mining.

With the all of the benefits of LLMs, there arise plenty of challenges in successfully adopting
them in the climate domain. These billion parameter models are out of reach for most organizations
to deploy. Many of the best performing models are proprietary, and the closed-source nature
of these models restricts and hampers certain types of research. By not knowing the training
data, it could lead to misinterpretation of generalization vs. memorization. The competitive
landscape further fuels restrictions on the use of these models, such as not being able to record
true output probabilities, or lack of full control surrounding decoding strategies. On the other
hand, open-source models are steadily improving, and many organizations devote resources to
make inference with these models as accessible as with the proprietary models.

Prompting of LLMs is also a double-edged sword. There is an abundance of research on
designing prompting strategies, selecting in-context learning examples, or using LLMs as judges.
However, each of these carries potential pitfalls and biases that are not yet fully understood. And
unlike with past NLP technologies, the failures of LLMs are silent and not easily detectable. What
can not be overstated however, is that due to the natural language interface it provides, prompting
could be utilized by climate researchers without requiring them to be experts in NLP. However,
these by no means are these challenges insurmountable and should not deter the community
from adapting these models to the climate domain. One exciting area of future work lies in HCI
studies that can help communities of climate experts build high-quality datasets by interacting
with LLMs.
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8.2.1 Broader Impacts and Proliferation

The largest headway for impact in the climate domain lay not in the models themselves, but in the
development of cleanly labeled datasets, well-formulated tasks, and the development of tools that
can support climate domain experts without requiring them to be experts in NLP. This is by no
means a problem unique to the climate domain, in fact, Thakur et al. [[114] showed the problems
that arise due to annotation selection bias in the information retrieval community. Evaluating
against these benchmarks artificially underestimated the performance of deep learning models. In
the climate domain, the use of keyword-based methods for labeling data is still prevalent.

Finally, the most important aspect of this work is identifying individuals or organizations
capable of serving as a bridge between these two communities. This requires having strong
domain expertise in a climate-related domain, and an overall understanding of data science,
machine learning, and NLP. Organizations such as the Climate Policy Radar or Climate Change
Al through various initiatives are able to scale these sorts of interdisciplinary, multi-stakeholder
projects. Getting involved early in the task formulation and annotation process, is crucial for
future work in this domain and maximizing potential impact.
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