
Thesis
External Knowledge Augmented Language

Models for Code Generation and Agents
Fangzheng (Frank) Xu

CMU-LTI-24-020

December 2024

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15123

Thesis Committee:
Graham Neubig (Chair) Carnegie Mellon University

Daniel Fried Carnegie Mellon University
Bogdan Vasilescu Carnegie Mellon University

Karthik Narasimhan Princeton University

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in

Language and Information Technology.

Copyright © 2024 Fangzheng (Frank) Xu

Keywords: external knowledge, language models, retrieval-augmented generation, LLM
agents, code generation

To my grandpapa & mama.

iv

Abstract

We interact with computers everyday. Although the user experience of operating
a computer has never been easier nowadays, there are still hurdles that prevent
users from making use of their full potential. One such example is the learning curve
of programming languages. Programmers have always dreamt of easier and more
intelligent tools to assist them with their work, and thus make developing more
effortless. End users that do not know how to program would also benefit from a
more natural way of instructing computers to accomplish certain customized tasks,
i.e., transforming computers into their personal agents that complete various tasks
with high level of autonomy and instruction-following ability. This sharply contrasts
to how effortlessly we communicate our goals and desires in natural language such
as English.

In this thesis, we propose to bridge natural language with programming language
and executable actions in daily life online environments. The anticipated outcomes
of this work aim to construct models, environments and evaluations for both code
generation tasks for programming jobs and large language model (LLM) agents for
online daily life and workplace, with a special focus on utilizing large data sources
and external knowledge for model pre-training and retrieval-augmented models.
We examine the problem from four perspectives that constitute the four parts of the
dissertation. In the first part we explore pre-training for code generation models.
Next, in the second part we perform human study of code generation. Then, in the
third part we improve retrieval-augmented models. Finally, In the fourth part we
explore interactive use of LLMs as agents.

vi

Acknowledgments

First and foremost, I thank Professor Graham Neubig for welcoming me into his
fantastic NeuLab and for showing me by example what it takes to be an excellent
researcher, engineer, leader, and mentor. I am so grateful for everything he has
taught me, whether it is about technical topics such as the early techniques of code
generation and semantic parsing or about the basics of being a researcher such as
the attention to detail needed to focus only on the high impact paper and to give a
good presentation. In particular, I learned that doing great research is not just about
working with a small circle of academics but also about creating open source tools,
gathering communities, and getting other people to use them.

I also thank Professor Bogdan Vasilescu, from whom I have learned a great deal
about software engineering, human studies, and empirical methods. I am grateful
for not only his lessons and discussions, but also, particularly, for the additional
perspective that I was not originally familiar with or thinking from. Thank you to
Professor Daniel Fried for high-level advice during my research on code generation
and agents, and Professor Karthik Narasimhan for agreeing to serve as members of
my doctoral committee, and for carefully checking this thesis and providing advice
during my presentation, and Dr. Vincent Hellendoorn for advising me on one of
the first code LLM pretraining project. I would also like to thank Professor Yonatan
Bisk, Professor Maarten Sap, Professor Dan Roth, Dr. Sudipta Sengupta for their
collaboration and advice on various research projects during my PhD studies. I
would also like to thank Dr. Christian Bird and Dr. Nicholas Monath for welcoming
me as an intern at Microsoft and Google, and for many enlightening discussions
about machine learning for software engineering, retrieval, and language models in
general, making both internships into precious experience.

Of course my time as a graduate student would not have been complete with the
members of the NeuLab. Thank you for all your help, all your advice, and all the fun
activities that brings us together during the hard times of COVID pandemic. Most
notably, I thank Zhengbao Jiang, Uri Alon, Shuyan Zhou, and Zora Wang, among
all others, for the countless discussions and all-nighters that lead to this thesis.

There are so many others who have helped me along my way that it would
be impossible to name them all, but there are a few people that deserve special
mention. I would like to thank Xingyao Wang, Robert Brennan, Boxuan Li, Yufan
Song, and all the amazing people in the OpenHands community for giving me the
opportunity to participate and contribute to a truly open-source thriving community

viii

and learn what it takes to build something that the community really needs and
how to collaborate on a big research endeavor within a large team. I would like to
thank Tianyue Ou, Yueqi Song, Faria Huq, and all the students that I have mentored.
I learned a lot from you on research perspectives, and it was because of you that I
discovered what it truly takes to become a mentor. I also would like to thank IBM
for supporting my PhD studies with a generous fellowship.

Mom, Dad, Grandpa and Grandma, and all of the rest of the family have been
endlessly encouraging and understanding, even when I decided to study so far
away from home. The travel restriction caused by the COVID pandemic also makes
everything even harder. I thank my family for being always there for me during
both my highs and lows, and remind me about the things that are really important
in life.

ix

x

Contents

1 Introduction 1

1.1 Pre-training for Code Generation . 2

1.2 Human Study of Code Generation Models . 4

1.3 Study of Retrieval-Augmented model Models . 5

1.4 From Code Generation to LLM Agents . 8

I Pre-training for Code Generation 13

2 Incorporating External Knowledge through Pre-training for Natural Language
to Code Generation 15

2.1 Introduction . 15

2.2 Approach . 17

2.3 Experiments . 21

2.4 Conclusion and Future Work . 25

3 A Systematic Evaluation of Large Language Models of Code 27

3.1 Introduction . 28

3.2 Related Work . 30

3.3 Evaluation Settings . 32

3.4 Compared Models . 33

3.5 Results . 37

3.6 Conclusion . 43

xi

II Human Study of Code Generation Models 45

4 In-IDE Code Generation from Natural Language: Promise and Challenges 47

4.1 Introduction . 48
4.2 Overview of Our Study . 50
4.3 NL2Code IDE Plugin Design . 53
4.4 Human Study Design . 57
4.5 RQ1: NL2Code Plugin Effects on Task Completion Time and Program Correctness 64
4.6 RQ2: Comparison of Generated vs Retrieved Code 68
4.7 RQ3: User Perceptions of the NL2Code Plugin . 79
4.8 Discussion and Implications . 82
4.9 Related Work . 88
4.10 Conclusion . 92
4.11 Appendix . 93

III Study of Retrieval-Augmented Models 105

5 Capturing Structural Locality in Non-parametric Language Models 107

5.1 Introduction . 107
5.2 Non-parametric Language Models . 109
5.3 Defining Structural Locality . 110
5.4 Structural Locality and Nearest Neighbors . 112
5.5 Incorporating Structural Locality in Non-parametric LMs 115
5.6 How Does Structural Locality Improve Language Modeling? 116
5.7 Conclusion . 120

6 Why do Nearest Neighbor Language Models Work? 127

6.1 Introduction . 127
6.2 Formalizing and Generalizing kNN-LM . 130
6.3 Baseline kNN-LM Results . 132
6.4 Effect of DifferentWds Formulations . 134
6.5 Approximate kNN & Softmax Temperature . 139
6.6 Probably Wrong Hypotheses for Why kNN-LM Works 142
6.7 Conclusion . 149

xii

6.8 Appendix . 149

7 DocPrompting: Generating Code by Retrieving the Docs 157

7.1 Introduction . 158
7.2 Code Generation by Reading the Docs . 159
7.3 Practical Instantiations of DocPrompting . 161
7.4 Experimental Setup . 162
7.5 Results . 164
7.6 Analysis . 168
7.7 Related Work . 171
7.8 Conclusion . 171
7.9 Appendix . 172

8 FLARE: Active Retrieval Augmented Generation 185

8.1 Introduction . 185
8.2 Retrieval Augmented Generation . 188
8.3 FLARE: Forward-Looking Active REtrieval Augmented Generation 189
8.4 Multi-time Retrieval Baselines . 193
8.5 Experimental Setup . 194
8.6 Experimental Results . 196
8.7 Related Work . 200
8.8 Conclusion . 201
8.9 Limitations . 201
8.10 Appendix . 201

IV Iterative Use of LLMs as Agents 205

9 WebArena: A Realistic Web Environment for Building Autonomous Agents 207

9.1 Introduction . 208
9.2 WebArena: Websites as an Environment for Autonomous Agents 210
9.3 Benchmark Suite of Web-based Tasks . 213
9.4 Baseline Web Agents . 218
9.5 Results . 219
9.6 Related Work . 220

xiii

9.7 Conclusion . 222
9.8 Technical Details . 222

10 Beyond Simple Browsing Agent 233
10.1 Platform: OpenHands Agent Framework . 234
10.2 Baseline Browsing Agent Implementations . 241
10.3 Beyond Browsing Only: Coding + Web Agents . 244
10.4 Coding + Web Agents on WebArena Tasks . 250

11 TheAgentCompany: Benchmarking LLM Agents on Consequential Real World
Tasks 259
11.1 Introduction . 260
11.2 Benchmark Desiderata and Comparison to Other Benchmarks 262
11.3 TheAgentCompany Environment Setup . 264
11.4 Task Structure . 265
11.5 Task Creation . 270
11.6 Baseline Agent . 272
11.7 Experimental Results . 273
11.8 Implications and Future Directions . 277
11.9 Appendix . 278

12 Conclusion 291

Bibliography 295

xiv

Chapter 1

Introduction

We interact with computers everyday. Although the user experience of operating a computer has
never been easier nowadays, there are still hurdles that prevent users from making use of com-
puters’ full potential. One such example is the learning curve of programming languages [355].
Programmers have always dreamt of easier and more intelligent tools to assist them with their
work, and thus make developing more effortless. End users that do not know how to program
would also benefit from a more natural way (sometimes called “natural programming” [292]) of
instructing computers to accomplish certain customized tasks [240, 314], e.g., helping financial
specialists with complex data analysis, enabling users to use computers as natural language
personal assistants for online activities like shopping, or improve the accessibility of the cur-
rent user interface via natural language instructions [234, 374]. This sharply contrasts to how
effortlessly we communicate our goals and desires in natural language such as English.

Despite early skepticism towards the idea of “natural language programming” [89], re-
searchers now widely agree on a range of scenarios where it can be useful to be able to formulate
instructions using natural language and have the corresponding source code snippets automati-
cally produced. For example, software developers can save keystrokes or avoid writing dull pieces
of code [108, 297, 351, 429]; and non-programmers and practitioners in other fields, who require
computation in their daily work, can get help with creating data manipulation scripts [131, 224].
Students can have access to more advanced tutoring systems that allow interaction in natural
language [387], or instructors can get help grading programming assignments [324, 331]. This
motivation started early research in constructing natural language interface [126, 154, 305] to
computers to provide better human-computer interaction than graphical user interface. There
were also lines of research for creating natural language interface to database so that end users
without SQL and database schema knowledge could query the database and do data analysis

1

with natural language commands [19, 155, 177, 491]. In this thesis, we examine the problem
from four perspectives: 1) pre-training for code generation (Part I), 2) human study of code
generation (Part II), 3) study of retrieval-augmented models (Part III) and 4) interactive use of
LLMs as agents (Part IV).

1.1 Pre-training for Code Generation

Pretraining for code generation models. Coding is among one of the most important ways
of interacting with computer systems. My first line of work is closely aligned with both natural
language and software engineering, and the bridging between the two. The eventual goal is
to enable machine learning models to capture the procedural and intent semantics of the natural
language commands, to understand the semantics and structures of programming languages,
and to bridge the two drastically different domains of languages together, so that users could use
natural language to instruct the computers in the future. A great part of software development
involves conceptualizing or communicating the underlying procedures and logic that needs
to be expressed in programs. One major difficulty of programming is turning concept into
code, especially when dealing with the APIs of unfamiliar libraries. A key application at the
intersection of the two domains is natural language to code generation, where a user gives a
natural language intent and the model generates a code snippet that satisfies the user need.

When I first started the thesis in 2019, one of the main research focus in the field, semantic
parsing, the task of generating machine executable meaning representations from natural
language (NL) intents, has generally focused on limited domains [81, 479], or domain-specific
languages with a limited set of operators [36, 91, 216, 244, 336, 472, 473, 474, 491]. However,
recently there has been a move towards applying semantic parsing to automatically generating
source code in general-purpose programming languages [3, 248, 458, 461, 469]. Automatically
generating general domain programs given natural language is considered more generalized
semantic parsing. Prior work in this area [92, 172, 250, 337, 397, 435, 462, 465, 467] used a
variety of models, especially neural architectures, to achieve good performance. Many of these
existing efforts in NL to code generation involve using large amounts of annotated data to train
sequence-to-sequence models in a supervised fashion. Recognizing that such parallel data is
costly, and motivated by the intuition that developers usually retrieve resources on the web
when writing code, we proposed a method of incorporating two varieties of external knowledge
into NL-to-code generation (Chapter 2): automatically mined NL-code pairs from the online
programming QA forum StackOverflow and programming language API documentation [439].

2

We first pretrained the model on noisy mined data and then finetune on clean annotated data.
The previous best model already can generate basic functions and copy strings/variables to the
output, but we observed that incorporating external knowledge improves the results in two
main ways: 1) better argument placement for APIs, and 2) better selection of which API call
should be used for a certain intent. We can also see that the NL to code generation task is still
challenging, especially with more complex intents that require nested or chained API calls, or
functions with more arguments. We were also among the first to utilize pretraining to improve
code models.

Era of large languagemodels. Previously we focus on improving sequence-to-sequence task-
specific models trained in supervised fashion, and now we explore a more general form of using
language models to represent and generate code. As time went on, large language models (LMs)
of code have recently shown tremendous promise in completing code and synthesizing code
from natural language descriptions. Language models (LMs) assign probabilities to sequences of
tokens, and arewidely applied to natural language text [27, 35, 54]. Around 2021, LMs have shown
impressive performance in modeling also source code, written in programming languages [13,
152, 158, 193]. These models excel at useful downstream tasks like code completion [351] and
synthesizing code from natural language descriptions [87]. The current state-of-the-art large
language models for code, such as Austin et al. [24], have shown significant progress for AI-based
programming assistance. Most notably, one of the largest of these models, Codex [65] has been
deployed in the real-world production tool GitHub Copilot1, as an in-IDE developer assistant
that automatically generates code based on the user’s context.

Despite the great success of large language models of code, the strongest models are not

publicly available. This prevents the application of these models outside of well-resourced
companies and limits research in this field for low-resourced organizations. For example, Codex
provides non-free access to the model’s output through black-box API calls,2 but the model’s
weights and training data are unavailable. This prevents researchers from fine-tuning and
adapting this model to domains and tasks other than code completion. The lack of access to
the model’s internals also prevents the research community from studying other key aspects of
these models, such as interpretability, distillation of the model for more efficient deployment,
and incorporating additional components such as retrieval.

Several medium to large-sized pre-trained language models were publicly available at the
1https://copilot.github.com/
2https://openai.com/blog/openai-codex/

3

https://copilot.github.com/
https://openai.com/blog/openai-codex/

time, such as GPT-Neo [39], GPT-J [415] and GPT-NeoX [40]. Given the variety of model sizes
and training schemes involved in these models and lack of comparisons between these, the
impact of many modeling and training design decisions remains unclear. We presented a first
systematic evaluation of existing models of code – Codex, GPT-J, GPT-Neo, GPT-NeoX, and
CodeParrot – across various programming languages (Chapter 3). We aim to shed more light on
the landscape of code modeling design decisions by comparing and contrasting these models, as
well as providing a key missing link: thus far, no large open-source language model was trained
exclusively on code from multiple programming languages. We provide three such models,
ranging from 160M to 2.7B parameters, which we release under the umbrella name “PolyCoder”,
which at the time were the largest open-source code-specific pretrained language models. We
perform an extensive comparison of the training and evaluation settings between PolyCoder,
open-source models, and Codex. We evaluate the models on the HumanEval benchmark [65] and
compare how domodels of different sizes and training steps scale, and how different temperatures
affect the generation quality. Finally, since HumanEval only evaluates the natural language
to Python synthesis, we curate an unseen evaluation dataset in each of the 12 languages, to
evaluate the perplexity of different models.

Although most open models at the time performed worse than OpenAI’s Codex, we hope
that this systematic study helps future research in this area to design more efficient and effective
models. More importantly, through this systematic evaluation of different models, we encouraged
the community to study and release medium-large scale language models for code. We believed
that our efforts were a significant step towards democratization of large language models of code.
Today, we have seen this goal come true, as more and more open-source large language models
have come out, many including code understanding and generation ability, e.g., LLAMA [404],
CodeGen [301, 302], SantaCoder [6], StarCoder [236], Code Llama [363].

1.2 Human Study of Code Generation Models

From previous work, including that described above, we see improvements of code generation
or retrieval performance on benchmark datasets over the time. However, these have primarily
been evaluated purely based on retrieval accuracy or surface form overlap of generated code
with developer-written code. For example BLEU score, which is a standard metric on some code
generation tasks [468], is not necessarily a good proxy of the quality of generated code, as it
only captures the surface token-based similarity with the ground truth, without considering the
syntax, semantics, and runtime correctness of the code. For example, an empirical study on code

4

migration by Tran et al. [406] showed that the BLEU [315] accuracy score commonly used in
natural language machine translation has only weak correlation with the semantic correctness of
the translated source code [406]. The actual effect of these methods on the developer workflow
is surprisingly unattested, and thus we asked a crucial question: are these models good enough
to be useful to actual developers?

To answer this question, we conducted a user study on in-IDE natural language to code
generation, where we perform the first comprehensive investigation of the promise and chal-
lenges of using such technology inside an IDE, asking “at the current state of technology does
it improve developer productivity or accuracy, how does it affect the developer experience,
and what are the remaining gaps and challenges?” (Chapter 4) We answer 3 concrete research
questions: 1) How does using a NL2Code developer assistant affect task completion time and
program correctness? 2) How do users query the NL2Code assistant, and how does that associate
with their choice of generated vs retrieved code? 3) How do users perceive the usefulness of the
in-IDE NL2Code developer assistant?

To facilitate the study, we first developed a plugin for the PyCharm IDE that implements a
hybrid of code generation and code retrieval functionality, and orchestrate virtual environments
to enable collection of many user events (e.g. web browsing, keystrokes, fine-grained code edits).
We asked developers with various backgrounds to complete 7 varieties of 14 Python programming
tasks ranging from basic file manipulation to machine learning or data visualization, with or
without the help of the plugin. While qualitative surveys of developer experience were largely
positive, quantitative results with regards to increased productivity, code quality, or program
correctness were inconclusive. Further analysis identified several pain points that could improve
the effectiveness of future machine learning-based code generation/retrieval developer assistants,
and demonstrated when developers prefer code generation over code retrieval and vice versa.
What this study made clear is that while these tools have significant potential, there are many
open research questions that need to be tackled to make them practical.

1.3 Study of Retrieval-Augmented model Models

Retrieval-augmented model deep dive. One of the key pain point we discovered from the
human study is that previous code generation models often lacks context. The study suggests
that some queries may be better answered through code retrieval techniques, and others through
code generation. Sometimes it is required to consider the user’s local workspace context as part
of the input. On some occasions, it is better to refer to the programming library documentations

5

and relevant open-source projects on the internet for more accurate code snippets.
This problem leads us to dive into studying retrieval-augmented language models. At the

time, most current neural LMs are based on parametric neural networks, using RNN [282] or
Transformer [413] architectures. These models make predictions solely using a fixed set of
neural network parameters. Then, more and more neural LMs also incorporate non-parametric

components [123, 135, 147, 200], or “retrieval-augmented LMs” [14, 44, 123, 135, 147, 201],
which usually first select examples from an external source and then reference them during
the prediction. For example, Khandelwal et al. [200] model the token-level probability by
interpolating the parametric LM probability with a probability obtained from the nearest context-
token pairs in an external datastore. Using such non-parametric components in LMs is beneficial
because the model no longer needs to memorize everything about the language in its parameters.
One of the most surprising results from Khandelwal et al. [201] is that kNN-LM reduces the
perplexity of the base LM even when the kNN component is retrieving examples from the same

training set that the LM was originally trained on, indicating that kNN-LM improves the ability to
model the training data and is not simply benefiting from access to more data. Intrigued by this
finding, we wonder why does kNN-LM work, and how does it improve already-trained strong
transformer-based models? We set out to understand why kNN-LMs work even in this setting
and concluded with some most important contributing factors to the improvement, as well as
sharing many failed hypotheses for future insight (Chapter 6).

With more insights and better understanding of how non-parametric language models work,
we could now incorporate retrieval with generation in these language models. To tackle the
problem of code generation models at the time lacks user context when used inside an IDE,
we explore the importance of structural locality in models of code (Chapter 5). Structural
locality (e.g., article and section levels, code path in project directories, etc.) is a ubiquitous
feature of real-world datasets, wherein data points are organized into local hierarchies. We
explore utilizing this structural locality within non-parametric language models, which generate
sequences that reference retrieved examples from an external source [199]. The intuition is that
source code files that are under the same project may be more useful for reference than random
source code found on the Internet. We propose a simple yet effective approach for adding
locality information into such models by adding learned parameters that improve the likelihood
of retrieving examples from local neighborhoods. Experiments on two different domains, Java
source code and Wikipedia text, have demonstrated that locality features improve model efficacy
over models without access to these features, with interesting differences. We also performed
an analysis of how and where locality features contribute to improved performance and why

6

the traditionally used contextual similarity metrics alone are not enough to grasp the locality
structure.

Retrieval-augmentedmodel applications With the discoveries in non-parametric language
models, we turn to the applications of such retrieval-augmented methods in code generation
domain. Many existing code generation models either learn directly from input-output pairs
provided as training data [11, 13, 53, 173, 423, 439, 463], or learn the mapping between input
and output implicitly from naturally occurring corpora of intertwined natural language and
code [24, 300]. Nevertheless, all these works assume that all libraries and function calls were

seen in the training data; and that at test time, the trained model will need to generate only seen

libraries and function calls. However, new functions and libraries are introduced all the time,
and even a seen function call can have unseen arguments. Thus, these existing models inherently
cannot generalize to generate such unseen usages. In contrast to these existing models, human
programmers frequently refer to manuals and documentation when writing code [229, 304].
This allows humans to easily use functions and libraries they have never seen nor used before.
Inspired by this ability, we propose DocPrompting: a code generation approach that learns to
retrieve code documentation before generating the code (Chapter 7).

In natural language domain, retrieval augmented LMs commonly use a retrieve-and-generate
setup where they retrieve documents based on the user’s input, and then generate a complete
answer conditioning on the retrieved documents [63, 137, 174, 176, 182, 223, 226, 232, 295, 333,
364, 380]. Long-form generation (e.g., long answer QA, summarization, etc.) presents complex
information needs that are not always evident from the input alone. Similar to how humans
gradually gather information as we create content such as papers, essays, or books, long-
form generation with LMs would require gathering multiple pieces of knowledge throughout the

generation process. Based on this intuition, our goal is to create a simple and generic retrieval
augmented LM that actively decides when and what to retrieve throughout the generation process,
and are applicable to a variety of long-form generation tasks. We propose Forward-Looking
Active REtrieval augmented generation (FLARE) (Chapter 8). FLARE iteratively generates a
temporary next sentence, use it as the query to retrieve relevant documents if it contains low-
probability tokens and regenerate the next sentence until reaches the end. It is applicable to any
existing LMs at inference time without additional training.

7

1.4 From Code Generation to LLM Agents

Throughout my thesis, prior work mostly focus on generating general domain programs given
natural language. However, another important part of the over-arching goal of interacting with
computers via natural language is to make computers as personal agents that execute tasks that
are not limited to programming, but rather actually operating the computer graphical interface
as if the agent is human: e.g., online shopping, spreadsheet analysis, document management,
etc. During the course of my thesis work, large language models, as well as generative AI has
gone through significant development. Latest large language models such as OpenAI’s GPT-4
have shown impressive zero-shot ability in many tasks and domains [56]. With advances in
generative AI, there is now potential for autonomous agents to manage daily tasks via natural
language commands. Autonomous agents that perform everyday tasks via human natural
language commands could significantly augment human capabilities, improve efficiency, and
increase accessibility.

However, current agents are primarily created and tested in simplified synthetic environ-
ments, leading to a disconnect with real-world scenarios. Current environments for evaluat-
ing agents tend to over-simplify real-world situations. As a result, the functionality of many
environments is a limited version of their real-world counterparts, leading to a lack of task
diversity [18, 121, 283, 379, 383, 384, 450]. In addition, these simplifications often lower the
complexity of tasks as compared to their execution in the real world [332, 383, 450]. Finally, some
environments are presented as a static resource [85, 379] where agents are confined to accessing
only those states that were previously cached during data collection, thus limiting the breadth
and diversity of exploration. For evaluation, many environments focus on comparing the textual
surface form of the predicted action sequences with reference action sequences, disregarding the
functional correctness of the executions and possible alternative solutions [85, 179, 243, 332, 442].
These limitations often result in a discrepancy between simulated environments and the real
world, and can potentially impact the generalizability of AI agents to successfully understand,
adapt, and operate within complex real-world situations.

At the beginning, we focused on automating web browsing tasks as they cover a large
amount of daily tasks from online shopping to sending emails. To kickstart research in agents
for goal-oriented web browsing tasks, we created WebArena, a realistic and reproducible web
environment designed to facilitate the development of autonomous agents capable of executing
tasks (Chapter 9). Our environment comprises four fully operational, self-hosted web applica-
tions, each representing a distinct domain prevalent on the internet: online shopping, discussion

8

forums, collaborative development, and business content management. It introduces a multi-step,
long action horizon execution-based evaluation benchmark on interpreting high-level realistic
natural language commands to concrete web-based interactions. It is also complemented by an
extensive collection of documentation and knowledge bases that vary from general resources like
English Wikipedia to more domain-specific references, such as manuals for using the integrated
development tool [101]. The content populating these websites is extracted from their real-world
counterparts, preserving the authenticity of the content served on each platform.

Along with WebArena, we also release a ready-to-use benchmark with 812 long-horizon
web-based tasks. Each task is described as a high-level natural language intent, emulating the
abstract language usage patterns typically employed by humans [38]. We focus on evaluating
the functional correctness of these tasks, i.e., does the result of the execution actually achieve the
desired goal. This evaluation is not only more reliable [65, 425, 490] than comparing the textual
surface-form action sequences [85, 332] but also accommodate a range of potential valid paths
to achieve the same goal, which is a ubiquitous phenomenon in sufficiently complex tasks.

We use this benchmark to evaluate several agents that can follow NL command and perform
web-based tasks. These agents are implemented in a few-shot in-context learning fashion with
powerful large language models (LLMs) such as GPT-4 and PALM-2. Experiment results show
that the best GPT-4 agent performance is somewhat limited, with an end-to-end task success
rate of only 14.41%, while the human performance is 78.24%.

These outcomes underscore the necessity for further development towards robust and
effective agents [225]. Based on the limited performance for the current state-of-the-art systems
in our benchmark, we follow up with several directions of work in improving the ecosystem
around LLM agents. Even though web browsing is a natural way of interacting with computers
for humans, it may not necessary be the best interface for LLM agents, as the representation of
the current webpage, either being HTML source code or screenshots are sometimes too complex
and contains a lot of irrelevant distractors for LLM consumption. Besides, they also tend to take
up a lot of valuable context length available to the LLM input. At the same time, software is one
of the most powerful tools that we humans have at our disposal; it allows a skilled programmer
to interact with the world in complex and profound ways. We argue that APIs may provide
more concise information with better machine readability for LLM agents. Coding and web
browsing combined in agents provide the best of both worlds. We first build an agent platform
and framework to facilitate this. We introduce OpenHands (f.k.a. OpenDevin), a platform for the
development of powerful and flexible AI agents that interact with the world in similar ways to
those of a human developer: by writing code, interacting with a command line, and browsing the

9

web. The platform allows for the implementation of new agents, safe interaction with sandboxed
environments for code execution, coordination between multiple agents, and incorporation of
evaluation benchmarks.

Now with an agent framework that enables both coding and browsing, we then explore if
there will be a gain with a hybrid agent combining the best of both web browsing and API calling.
What if we were to take tasks traditionally tackled by browsing agents, and give AI agents access
to APIs? To do so, we propose two varieties of agents: (1) an API-calling agent that attempts to
perform online tasks through APIs only, similar to traditional coding agents, and (2) a Hybrid
Agent that can interact with online data through both web browsing and APIs. In experiments
on WebArena, a widely-used and realistic benchmark for web navigation tasks, we find that
API-based agents outperform web browsing agents. Hybrid Agents out-perform both others
nearly uniformly across tasks. These results strongly suggest that when APIs are available,
they present an attractive alternative to relying on web browsing alone, further confirming our
hypothesis of building unified platform with access to both API (through coding) and browsing
(through web browsers). All these series of work on the agent framework and agents beyond
simple browsing is detailed in Chapter 10.

Finally, with an agent with access to both coding and browsing, in theory the agent is capable
of completing much more complex tasks than simple daily online chores. As a result, we need a
more advanced benchmark to test the capability of such agents. WebArena is a first step for
evaluating web agents on actual tasks that people perform in every-day life. In constructing
WebArena, we took a semi-systematic approach of viewing the browsing history of the research
team and choosing tasks that reflected the types of tasks that we did in our everyday life. There
are several obvious issues with this if we want to evaluate web agents with broader implications:

1. Despite some grounding in realistic data, the process of creating tasks from this data was
quite heuristic, and no consideration was made for how important or time consuming the
tasks are.

2. The tasks are biased towards those important for academics in computer science, and not
reflective of tasks performed by the entire population.

3. The tasks are relatively more towards everyday life topics instead of professional topics.

We then propose a new benchmark, TheAgentCompany, significantly evolving previous
WebArena-like benchmarks to a broader variety of tasks motivated by tasks performed during
real-world work. The goal is to create a realistic, reproducible, executable benchmark and
environment suite that tests agents’ ability in performing tasks in professionals’ work time from

10

various fields, such as software engineers, designers, analyst, managers, etc. The existing agent
benchmark mostly focused on daily life scenarios, or coding-only scenarios, and cannot test the
expert domain knowledge and compositional complexities required in many professional tasks.
The benchmark is described in more detail in Chapter 11.

11

12

Part I

Pre-training for Code Generation

13

Chapter 2

Incorporating External Knowledge
through Pre-training for Natural
Language to Code Generation

Open-domain code generation aims to generate code in a general-purpose programming language
(such as Python) from natural language (NL) intents. Motivated by the intuition that developers
usually retrieve resources on the web when writing code, we explore the effectiveness of
incorporating two varieties of external knowledge into NL-to-code generation: automatically
mined NL-code pairs from the online programming QA forum StackOverflow and programming
language API documentation. Our evaluations show that combining the two sources with data
augmentation and retrieval-based data re-sampling improves the current state-of-the-art by up
to 2.2% absolute BLEU score on the code generation testbed CoNaLa. The code and resources
are available at https://github.com/neulab/external-knowledge-codegen.

2.1 Introduction

Semantic parsing, the task of generating machine executable meaning representations from
natural language (NL) intents, has generally focused on limited domains [81, 479], or domain-
specific languages with a limited set of operators [36, 91, 216, 244, 336, 472, 473, 474, 491].
However, recently there has been a move towards applying semantic parsing to automatically
generating source code in general-purpose programming languages [3, 248, 458, 461, 469]. Prior
work in this area [92, 172, 250, 337, 397, 435, 462, 465, 467] used a variety of models, especially

15

https://github.com/neulab/external-knowledge-codegen

Annotated pairs <code, NL>

External Knowledge Resources:

Pre-train

Mined pairs from

Parsed pairs from API docs

Text-to-Code
Gen. Model

Noisy but real-use distributed

Clean but uniformly distributed

Re-sampling w/
Real Distribution

Human Curated Data:

Real Distribution
Estimation

Fine-tune

Figure 2.1: Our approach: incorporating external knowledge by data re-sampling, pre-training
and fine-tuning.

neural architectures, to achieve good performance.

However, open-domain code generation for general-purpose languages like Python is chal-
lenging. For example, given the intent to choose a random file from the directory contents of the

C drive, ‘C:\\’, one would expect the Python code snippet random.choice(os.listdir(‘C:\\’)),
that realizes the given intent. This would involve not just generating syntactically correct
code, but also using (and potentially combining) calls to APIs and libraries that implement
some of the desired functionality. As we show in § 2.3, current code generation models still
have difficulty generating the correct function calls with appropriate argument placement. For
example, given the NL intent above, although the state-of-the-art model by Yin and Neubig [465]
that uses a transition-based method to generate Python abstract syntax trees is guaranteed to
generate syntactically correct code, it still incorrectly outputs random.savefig(random(compile(
open(‘C:\\’))+100).isoformat()).

A known bottleneck to training more accurate code generation models is the limited number
of manually annotated training pairs available in existing human-curated datasets, which are in-
sufficient to cover themyriad of ways in which some complex functionality could be implemented
in code. However, increasing the size of labeled datasets through additional human annotation
is relatively expensive. It is also the case that human developers rarely reference such paired
examples of NL and code, and rather take external resources on the web and modify them into
the desired form [49, 50, 128]. Motivated by these facts, we propose to improve the performance
of code generation models through a novel training strategy: pre-training the model on data
extracted automatically from external knowledge resources such as existing API documentation,
before fine-tuning it on a small manually curated dataset (§ 2.2.1). Our approach, outlined in

16

Figure 2.1, combines pairs of NL intents and code snippets mined automatically from the Q&A
website StackOverflow (§ 2.2.2), and API documentation for common software libraries (§ 2.2.3).1

While our approach is model-agnostic and generally applicable, we implement it on top of a
state-of-the-art syntax-based method for code generation, TranX [465], with additional hypoth-
esis reranking [467]. Experiments on the CoNaLa benchmark [469] show that incorporating
external knowledge through our proposed methods increases BLEU score from 30.1 to 32.3, out-
performing the previous state-of-the-art model by up to 2.2% absolute. Qualitatively analyzing
a sample of code snippets generated by our model reveals that the generated code is more likely
to use the correct API calls for desired functionality and to arrange arguments in the right order.

2.2 Approach

2.2.1 Over-arching Framework

The overall strategy for incorporating external knowledge that we take on this work is to (1)
pre-train the model on the NL-code pairs obtained from external resources, then (2) fine-tune
on a small manually curated corpus. This allows the model to first learn on larger amounts of
potentially noisy data, while finally being tailored to the actual NL and code we want to model
at test time. In order to perform this pre-training we need to convert external data sources into
NL-code pairs, and we describe how to do so in the following sections.

2.2.2 Mined NL-code Pairs

When developers code, most will inevitably search online for code snippets demonstrating how
to achieve their particular intent. One of the most prominent resources online is StackOverflow,2

a popular programming QA forum. However, it is not the case that all code on StackOverflow
actually reflects the corresponding intent stated by the questioner – some may be methods defin-
ing variables or importing necessary libraries, while other code may be completely irrelevant.
Yin et al. [469] propose training a classifier to decide whether an NL-code pair is valid, resulting
in a large but noisy parallel corpus of NL intents and source code snippets. The probability
assigned by the method can serve as confidence, representing the quality of the automatically
mined NL-code pairs. We use these mined pairs as a first source of external knowledge.

1Of course external knowledge for code covers a large variety of resources, other than these two types.
2https://stackoverflow.com

17

https://stackoverflow.com

class collections.deque([iterable[, maxlen]])

Returns a new deque object initialized ...
append(x)

Add x to the right side of the deque.
rotate(n=1)

Rotate the deque n steps to the right. …

heapq.nlargest(n, iterable, key=None)
Return a list with the n largest elements from …

class methods

top-level functions

d=collections.deque(iterable) d=collections.deque(iterable,maxlen)
d.append(x)

d.rotate() d.rotate(n=1)
heapq.nlargest(n,iterable) heapq.nlargest(n,iterable,key=None)

pre-process

Figure 2.2: Examples from Python API documentation and pre-processed code snippets, including
class constructors, methods, and top-level functions. We use red, blue, and green to denote
required, optional positional, and optional keyword arguments respectively.

2.2.3 API Documentation

Second, motivated by the intuition that much of modern software development relies on libraries,
and that developers often turn to programming language and software library references for help
while writing code, we consider API documentation as another source of external knowledge.

Figure 2.2 shows some examples from the Python standard library API documentation. It
contains descriptions of libraries, classes, methods, functions, and arguments. The documenta-
tion is already in a paired form consisting of code signatures and their descriptions. However,
the signatures shown in the documentation mainly provide the prototype of the API rather than
valid API usages appearing in source code. The text descriptions in the documentation tend to
be verbose for clarity, while real questions from developers are usually succinct. We use a few
heuristics to transform these to emulate real inputs a code generation system may face.

Most APIs define required and optional arguments in the signature. In real usage, developers
usually provide none or only some of those arguments. To simulate this, we permute all possible
combinations (with a limit) of the optional arguments and append them to the required arguments,
following correct syntax. For class constructors and methods, we create a heuristic variable
name based on the class name to store the instantiated class object and to call methods upon.

18

To make concise description for each code snippet created, we preserve only the first sentence
in the corresponding documentation, as well as the first sentences that contain mentions of
each argument in the snippet. In the rare case where arguments are not found in the original
description, we add another sentence containing these arguments to the end of the NL snippet,
ensuring all variables in code are covered in the NL.

We then describe detailed heuristics used for API documentation preprocessing. The goal is
to harvest NL-code pairs with API docs as a source.

Arguments

Most APIs will have arguments, either required or optional. For the required arguments, we
leave them “as-is”. We deal with two types of optional arguments, positional arguments and
keyword arguments through permutation and sampling. In the Python documentation, optional
positional arguments are bracketed in “[.., [..]]”. Nested brackets are commonly used to
represent more than one possible optional positional arguments. Another type of optional
arguments are implemented using keyword arguments in the form of key=default.

In real usage, developers usually only provide none or some of those arguments. To
simulate this, we permute all possible combinations of the optional arguments, and append
them to the required arguments. For example, if the code signature in the documentation
writes “collections.deque([iterable[, maxlen]])”, we produce all 3 possible usages:
“collections.deque()”, “collections.deque(iterable)”, and “collections.deque(iterable,
maxlen)”. For keyword arguments like “heapq.nlargest(n, iterable, key=None)”, we will
also include “heapq.nlargest(n, iterable)” in addition. The total number of permutations
is n + 1 for a function with n optional positional arguments, and 2n = (n0) + (

n
1
) + ... + (nn) for

a function with n optional keyword arguments, which leads to exponentially large number
of samples for functions with many optional keywords. Motivated by the observation that
developers rarely specify all of the optional arguments, but rather tend to use default values, we
only keep the top 10 permutations with the least number of optional arguments.

Class Initializers and Methods

Other heuristics are used to transform code signatures related to classes to emulate real usage.
For class initializers in the documentation, we construct an assignment statement with lower-
cased variable name using the first character of the class name to store the instantiated class, e.g.
d = collections.deque(iterable). For class methods, we prepend a heuristically created

19

variable name to the method call, emulating a real method call on an instantiated class, e.g.
d.append(x).

Documentation

Official documentation tends to be verbose for clarity, while real questions from developers are
usually succinct. Thus we use the following heuristics to keep only sentences in the document
that are necessary for generating the code as the intent text. We include the first sentence
because it usually describes the functionality of the API. For each argument in the emulated
API usage code snippet, we include the first sentence in the documentation that mentions the
argument through string matching. For arguments not mentioned in the documentation, we
add a sentence in the end: “With arguments ’arg_name’ ...” to ensure all arguments are covered
verbatim in the intent text.

2.2.4 Re-sampling API Knowledge

External knowledge from different sources has different characteristics. NL-code pairs auto-
matically mined from StackOverflow are good representatives of the questions that developers
may ask, but are inevitably noisy. NL-code pairs from API documentation are clean, but there
may be a topical distribution shift from real questions asked by developers. For example, the
library curses has significantly more API entries than json (178 vs. 17),3 while json is more
frequently asked about and used. This distributional shift between pre-training and fine-tuning
causes performance degradation, as shown later in § 2.3.2.

To mitigate this problem, we propose a retrieval-based re-sampling method to close the gap
between the API documentation and the actual NL-code pairs we want to model. We use both
human annotated data Dann and mined data Dmine to model the distribution of NL-code pairs
because they are both produced by real users. For each sample in this real usage distribution,
we retrieve k NL-code pairs from the set of pairs harvested from API documentation DAPI and
aggregate the frequencies of each pair y ∈ DAPI being retrieved:

freq(y) = ∑
x∈Dann+mined

δ(y ∈ R(x,DAPI, k)),

whereR(x,DAPI, k) retrieves the top k most similar samples fromDAPI given x, either according
to NL intent or code snippet. δ(⋅) is Kronecker’s delta function, returning 1 if the internal

3https://docs.python.org/3.7/library/curses.html and https://docs.python.org/3.7/library/

json.html

20

https://docs.python.org/3.7/library/curses.html
https://docs.python.org/3.7/library/json.html
https://docs.python.org/3.7/library/json.html

condition is true, and 0 otherwise. We use the BM25 retrieval algorithm [186] implemented in
ElasticSearch.4 We take this frequency and calculate the probability distribution after smoothing
with a temperature τ ∈ [1,∞]:

P (y) = freq(y)1/τ/ ∑
y′∈DAPI

freq(y′)1/τ

As τ changes from 1 to ∞, P (y) shifts from a distribution proportional to the frequency to
a uniform distribution. Using this distribution, we can sample NL-code pairs from the API
documentation that are more likely to be widely-used API calls.

2.3 Experiments

2.3.1 Experimental Settings

Dataset and Metric: Although the proposed approach is generally applicable and model-
agnostic, for evaluation purposes, we choose CoNaLa [469] as the human-annotated dataset
(2,179 training, 200 dev and 500 test samples). It covers real-world English queries about Python
with diverse intents. We use the same evaluation metric as the CoNaLa benchmark, corpus-level
BLEU calculated on target code outputs in test set.
Mined Pairs: We use the CoNaLa-Mined [469] dataset of 600K NL-code pairs in Python
automatically mined from StackOverflow (§ 2.2.2). We sort all pairs by their confidence scores,
and found that approximately top 100K samples are of reasonable quality in terms of code
correctness and NL-code correspondence. We therefore choose the top 100K pairs for the
experiments.
API Documentation Pairs: We parsed all the module documentation including libraries,
built-in types and functions included in the Python 3.7.5 distribution.5 After pre-processing
(§ 2.2.3), we create about 13K distinct NL-code pairs (without re-sampling) from Python API
documentation. For fair comparison, we also sample the same number of pairs for the re-sampling
setting (§ 2.2.4).
Methods: We choose the current state-of-the-art NL-to-code generation model TranX [465] with
hypothesis reranking [467] as the base model. Plus, we incorporate length normalization [71]
to prevent beam search from favoring shorter results over longer ones. Man denotes training

4https://github.com/elastic/elasticsearch. When retrieving with code snippets, all the punctuation
marks are removed.

5https://docs.python.org/release/3.7.5/library/index.html

21

https://github.com/elastic/elasticsearch
https://docs.python.org/release/3.7.5/library/index.html

Data Strategy Method BLEU

Man 27.20

Man+Mine
50k 27.94
100k 28.14

Man+Mine+API

w/o re-sampling 27.84
direct intent 29.66
dist. intent 29.31
direct code 30.26
dist. code 30.69

Man
+rerank

30.11
Man+Mine(100k) 31.42
Our best 32.26

Table 2.1: Performance comparison of different strategies to incorporate external knowledge.

solely on CoNaLa. Man+Mine refers to first pre-training on mined data, then fine-tuning on
CoNaLa. Man+Mine+API combines both mined data and API documentation for pre-training.
As a comparison to our distribution-based method (denoted by dist., § 2.2.4), we also attempt to
directly retrieve top 5 NL-code pairs from API documents (denoted by direct).6

Implementation Details: We experiment with k = {1,3,5} and τ = {1,2,5} in re-sampling,
and find that k = 1 and τ = 2 perform the best. We follow the original hyper-parameters in
TranX, except that we use a batch size of 64 and 10 in pre-training and fine-tuning respectively.

2.3.2 Results

Results are summarized in Table 2.1. We can first see that by incorporating more noisy mined
data during pre-training allows for a small improvement due to increased coverage from the
much larger training set. Further, if we add the pairs harvested from API docs for pre-training
without re-sampling the performance drops, validating the challenge of distributional shift
mentioned in § 2.2.4.

Comparing the two re-sampling strategies direct vs. dist., and two different retrieval targets
NL intent vs. code snippet, we can see that dist. performs better with the code snippet as the
retrieval target. We expect that using code snippets to retrieve pairs performs better because it

6We choose 5 to obtain comparable amount of pairs.

22

makes the generation target, the code snippet, more similar to the real-world distribution, thus
better training the decoder. It is also partly because API descriptions are inherently different than
questions asked by developers (e.g. they have more verbose wording), causing intent retrieval to
be less accurate.

Lastly, we apply hypothesis reranking to both the base model and our best approach and
find improvements afforded by our proposed strategy of incorporating external knowledge are
mostly orthogonal to those from hypothesis reranking.

After showing the effectiveness of our proposed re-sampling strategy, we are interested
in the performance on more-used versus less-used APIs for the potentially skewed overall
performance. We use string matching heuristics to obtain the standard Python APIs used in
the dataset and calculated the average frequency of API usages in each data instance. We then
select the top 200 and the bottom 200 instances out of the 500 test samples in terms of API usage
frequencies. Before and after adding API docs into pre-training, the BLEU score on both splits
saw improvements: for high-frequency split, it goes from 28.67 to 30.91 and for low-frequency
split, it goes from 27.55 to 30.05, indicating that although the re-sampling would skew towards
high-frequency APIs, with the appropriate smoothing temperature experimentation, it will still
contribute to performance increases on low-frequency APIs.

Besides using BLEU scores to perform holistic evaluation, we also perform more fine-grained
analysis of what types of tokens generated are improving. We apply heuristics on the abstract
syntax tree of the generated code to identify tokens for API calls and variable names in the
test data, and calculated the token-level accuracy for each. The API call accuracy increases
from 31.5% to 36.8% and the variable name accuracy from 41.2% to 43.0% after adding external
resources, meaning that both the API calls and argument usages are getting better using our
approach.

2.3.3 Case Study

We further show selected outputs from both the baseline and our best approach in Table 2.2. In
general, we can see that the NL to code generation task is still challenging, especially with more
complex intents that require nested or chained API calls, or functions with more arguments.
The vanilla model already can generate basic functions and copy strings/variables to the output,
but we observe that incorporating external knowledge improves the results in two main ways:
1) better argument placement for APIs, and 2) better selection of which API call should be used
for a certain intent.

23

Open a file “f.txt” in write mode.
✓ f=open(‘f.txt’, ‘w’)

♠ f=open(‘f.txt’, ‘f.txt’)

♣ f=open(‘f.txt’, ‘w’)

lower a string text and remove non-
alphanumeric characters aside from space.
✓ re.sub(r‘[^\sa−zA−Z0−9]’, ‘’, text)

.lower().strip()

♠ text.decode.translate(text.strip(),

‘non-alphanumeric’, ‘’)

♣ re.sub(r‘[^\sa−zA−Z0−9]’, ‘’, text)

choose a random file from the directory con-
tents of the C drive, ‘C:\\’.
✓ random.choice(os.listdir(‘C:\\’))

♠ random.savefig(random(compile(open

(‘C:\\’))+100).isoformat())

♣ random.choice(os.path.expanduser(‘C

:\\’))

Table 2.2: Examples, where ✓ is the ground-truth code snippet, ♠ is the original output, and ♣ is
the output with our proposed methods. Correct and erroneous function calls are marked in blue
and red respectively.

In the first example, we can see that although the baseline gets the function call “open()”
correct, it fails to generate the correct second argument specifying write mode, while our
approach is able to successfully generate the appropriate ‘w’. In the second and third example,
we can see that the baseline uses the wrong API calls, and sometimes “makes up” APIs on its
own (e.g. “random.savefig()”). However, our approach’s outputs, while not perfect, are much
more successful at generating correct API calls that actually exist and make sense for the intent.

On a closer look, we can observe that both the addition of mined examples and API docs
may have brought the improvement. The example of the “open()” function added from API
docs uses the default mode “r”, so learning the meaning of “w” argument is due to the added
mined real examples, but learning the argument placement (first file name as a string, second
a shorthand mode identifier as a character) may have occurred from the API docs. In other
examples, “random.choice()” and “re.sub()” both are Python standard library APIs so they

24

are included in the API doc examples.

2.4 Conclusion and Future Work

We proposed a model-agnostic approach based on data augmentation, retrieval and data re-
sampling, to incorporate external knowledge into code generation models, which achieved
state-of-the-art results on the CoNaLa open-domain code generation task.

In the future, evaluation by automatically executing generated code with test cases could
be a better way to assess code generation results. It will also likely be useful to generalize
our re-sampling procedures to zero-shot scenarios, where a programmer writes a library and
documents it, but nobody has used it yet. For example, developers may provide relative estimates
of each documented API usages to guide the re-sampling; or we could find nearest neighbors to
each API call in terms of semantics and use existing usage statistics as estimates to guide the
re-sampling.

25

26

Chapter 3

A Systematic Evaluation of Large
Language Models of Code

The previous chapter introduced a novel way of utilize pre-training to improve the performance
of natural language to code generation. However, they are based on specifically trained, task-
specific code generation models.

In this chapter, we explore a more general form of representing and generating code. Large
language models (LMs) of code have recently shown tremendous promise in completing code
and synthesizing code from natural language descriptions. However, the current state-of-the-art
code LMs (e.g., Codex [65]) are not publicly available, leaving many questions about their model
and data design decisions. We aim to fill in some of these blanks through a systematic evaluation
of the largest existing models: Codex, GPT-J, GPT-Neo, GPT-NeoX-20B, and CodeParrot, across
various programming languages. Although Codex itself is not open-source, we find that existing
open-source models do achieve close results in some programming languages, although targeted
mainly for natural language modeling. We further identify an important missing piece in the
form of a large open-source model trained exclusively on a multi-lingual corpus of code. We
release a new model, PolyCoder, with 2.7B parameters based on the GPT-2 architecture, that
was trained on 249GB of code across 12 programming languages on a single machine. In the C
programming language, PolyCoder outperforms all models including Codex. Our trainedmodels are
open-source and publicly available at https://github.com/VHellendoorn/Code-LMs, which
enables future research and application in this area.

27

https://github.com/VHellendoorn/Code-LMs

3.1 Introduction

Language models (LMs) assign probabilities to sequences of tokens, and are widely applied
to natural language text [27, 35, 54]. Recently, LMs have shown impressive performance in
modeling also source code, written in programming languages [13, 152, 158, 193]. These models
excel at useful downstream tasks like code completion [351] and synthesizing code from natural
language descriptions [87]. The current state-of-the-art large language models for code, such as
Austin et al. [24], have shown significant progress for AI-based programming assistance. Most
notably, one of the largest of these models, Codex [65] has been deployed in the real-world
production tool GitHub Copilot1, as an in-IDE developer assistant that automatically generates
code based on the user’s context.

Despite the great success of large language models of code, the strongest models are not

publicly available. This prevents the application of these models outside of well-resourced
companies and limits research in this field for low-resourced organizations. For example, Codex
provides non-free access to the model’s output through black-box API calls,2 but the model’s
weights and training data are unavailable. This prevents researchers from fine-tuning and
adapting this model to domains and tasks other than code completion. The lack of access to
the model’s internals also prevents the research community from studying other key aspects of
these models, such as interpretability, distillation of the model for more efficient deployment,
and incorporating additional components such as retrieval.

Several medium to large-sized pre-trained language models are publicly available, such as
GPT-Neo [39], GPT-J [415] and GPT-NeoX [40]. Despite being trained on a mixture of a wide
variety of text including news articles, online forums, and just a modest selection of (GitHub)
software repositories [112], these language models can be used to generate source code with a
reasonable performance [65]. In addition, there are a few open-source language models that are
trained solely on source code. For example, CodeParrot [410] was trained on 180 GB of Python
code.

Given the variety of model sizes and training schemes involved in these models and lack of
comparisons between these, the impact of many modeling and training design decisions remains
unclear. For instance, we do not know the precise selection of data on which Codex and other
private models were trained; however, we do know that some public models (e.g., GPT-J) were
trained on a mix of natural language and code in multiple programming languages, while other

1https://copilot.github.com/
2https://openai.com/blog/openai-codex/

28

https://copilot.github.com/
https://openai.com/blog/openai-codex/

models (e.g., CodeParrot) were trained solely on code in one particular programming language.
Multilingual models potentially provide better generalization, because different programming
languages share similar keywords and properties, as shown by the success ofmultilingual models
for natural language [78] and for code [502]. This may hint that multilingual LMs can generalize

across languages, outperform monolingual models and be useful for modeling low-resource
programming languages, but this is yet to be verified empirically.

In this paper, we present a systematic evaluation of existing models of code – Codex, GPT-J,
GPT-Neo, GPT-NeoX, and CodeParrot – across various programming languages. We aim to shed
more light on the landscape of code modeling design decisions by comparing and contrasting
these models, as well as providing a key missing link: thus far, no large open-source language
model was trained exclusively on code from multiple programming languages. We provide three
such models, ranging from 160M to 2.7B parameters, which we release under the umbrella name
“PolyCoder”. First, we perform an extensive comparison of the training and evaluation settings
between PolyCoder, open-source models, and Codex. Second, we evaluate the models on the
HumanEval benchmark [65] and compare how do models of different sizes and training steps
scale, and how different temperatures affect the generation quality. Finally, since HumanEval
only evaluates the natural language to Python synthesis, we curate an unseen evaluation dataset3

in each of the 12 languages, to evaluate the perplexity of different models. We find that although
Codex is allegedly focused on Python ([65] §3.1), Codex performs surprisingly well in other
programming languages too, and even better than GPT-J and GPT-NeoX that were trained on
the Pile [112]. Nonetheless, in the C programming language, our PolyCoder model achieves a

lower perplexity than all these models, including Codex.

Althoughmost current models performworse than Codex, we hope that this systematic study
helps future research in this area to design more efficient and effective models. More importantly,
through this systematic evaluation of different models, we encourage the community to study
and release medium-large scale language models for code, in response to the concerns expressed
by Hellendoorn and Sawant [153]:

[...] this exploding trend in cost to achieve the state of the art has left the

ability to train and test such models limited to a select few large technology

companies—and way beyond the resources of virtually all academic labs.
We believe that our efforts are a significant step towards democratization of large language

models of code.

3The exact training set that Codex was trained on is unknown.

29

pa

ra
m

et
er

s

500M

1B

5B

10B

50B

100B

Cod
eG

PT

Cod
eB

ERT

Cod
eT

5

CuB
ERT

PLB
ART

Cod
eP

arr
ot

GPT-N
eo

Poly
Cod

er

GPT-J

Cod
ex

GPT-N
eo

X

Aus
tin

 '2
1

Figure 3.1: Existing language models of code, their sizes and availability (open source vs.
not open-source).

recursive MASK0
def binarySearch(arr, left, right, x):

mid = (left + MASK1
if arr MASK2 == x:

return mid

MASK0 binary search MASK1 right) // 2
MASK2 [mid]

recursive binary search
def binarySearch(arr, left, right, x):

mid = (left + MASK) // 2
if arr[mid] == x:

return mid

right

recursive binary search
def binarySearch(arr, left, right, x):

mid = (left + ???

right

Left-to-Right Language Models Masked Language Models Encoder-Decoder Models

Figure 3.2: Three types of pretrained language models.

3.2 Related Work

At the core of code modeling lies ongoing work on pretraining of language models (LMs).
Large-scale pretraining of LMs has had an astounding impact on natural language processing in
recent years [139]. Figure 3.1 provides an overview of how different models compare in size and
availability.

3.2.1 Pretraining Methods

We discuss three popular pretraining methods used in code language modeling. An illustration
of these methods are shown in Figure 3.2.

Left-to-Right Language Models (Figure 3.2, left) Auto-regressive, Left-to-right LMs, predict
the probability of a token given the previous tokens. In code modeling, CodeGPT (124M) [263],
CodeParrot (1.5B) [410], GPT-Neo (2.7B) [39], GPT-J (6B) [415], Codex (12B) [65], GPT-NeoX
(20B) [40], and Google’s (137B) [24] belong to this category. The left-to-right nature of these

30

models makes them highly useful for program generation tasks, such as code completion. On
the other hand, as code is usually not written in a single, left-to-write pass, it is not trivial to
leverage context that appears “after” the location of the generation. In this paper, we focus
on this family of models and will discuss the existing models in more detail in the following
sections.

Masked Language Models (Figure 3.2, middle) While auto-regressive language models are
powerful for modeling the probability of sequences, their unidirectional nature makes them
less suitable for producing effective whole-sequence representations for downstream tasks such
as classification. One popular bidirectional objective function used widely in representation
learning is masked language modeling [88], where the aim is to predict masked text pieces based
on surrounding context. CodeBERT (125M) [105] and CuBERT (345M) [191] are examples of
such models in code. In programming contexts, these methods provide useful representations of
a sequence of code for downstream tasks such as code classification, clone detection, and defect
detection.

Encoder-decoder Models (Figure 3.2, right) An encoder-decoder model first uses an encoder
to encode an input sequence, and then uses a left-to-right LM to decode an output sequence
conditioned on the input sequence. Popular pretraining objectives include masked span predic-
tion [342] where the input sequence is randomly masked with multiple masks and the output
sequence are the masked contents in order, and denoising sequence reconstruction [230] where
the input is a corrupted sequence and the output is the original sequence. These pretrained
models are useful in many sequence-to-sequence tasks [342]. In code, CodeT5 (220M) [423], and
PLBART (406M) [4] use the two objectives mentioned above respectively, and performs well
in conditional generation downstream tasks such as code commenting, or natural language to
code generation.

3.2.2 Pretraining Data

Some models (e.g. CodeParrot and CodeT5) are trained on GitHub code only, with corpora
extracted using either Google BigQuery’s GitHub dataset 4, or CodeSearchNet [167]. Others
(e.g., GPT-Neo and GPT-J) are trained on “the Pile" [112], a large corpus containing a blend

4https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-

the-open-source-code

31

https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code
https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code

of natural language texts and code from various domains, including Stack Exchange dumps,
software documentations, and popular (>100 stars) GitHub repositories. The datasets on which
other proprietary models (Codex, Google’s) were trained on are unknown. One goal of our study
is to try to shed light on what corpora might be the most useful for pretraining models of code.

3.3 Evaluation Settings

We evaluate all models using both extrinsic and intrinsic benchmarks, as described below.

Extrinsic Evaluation One of the most popular downstream tasks for code modeling is code
generation given a natural language description. Following [65], we evaluate all models on the
HumanEval dataset. The dataset contains 164 prompts with descriptions in the form of code
comments and function definitions, including argument names and function names, and test
cases to judge whether the generated code is correct. To generate code given a prompt, we use
the same sampling strategy as Chen et al. [65], using softmax with a temperature parameter
softmax(x/T). We evaluate using a wide range of temperatures T = [0.2,0.4,0.6,0.8] to control
for the confidence of the model’s predictions. Similarly to Codex, we use nucleus sampling [162]
with top-p = 0.95. We sample tokens from the model until we encounter one of the following
stop sequences that indicate the end of a method:5 ‘\nclass’, ‘\ndef’, ‘\n#’, ‘\nif’, or ‘\nprint’.
We randomly sample 100 examples per prompt in the evaluation dataset.

Intrinsic Evaluation To evaluate the intrinsic performance of different models, we compute
the perplexity for each language on an unseen set of GitHub repositories. To prevent training-
to-test data leakage for models such as GPT-Neo and GPT-J, we remove repositories in our
evaluation dataset that appeared in the GitHub portion of the Pile training dataset 6. To evaluate
Codex, we use OpenAI’s API 7, choosing the code-davinci-001 engine. We note that the data
that this model was trained on is unknown, so we cannot prevent data leakage from the training
to the test set for Codex. We sampled 100 random files for each of the 12 programming languages
in our evaluation dataset. To make perplexity comparable across different tokenization methods
used in different models, we use Pygments 8 to equally normalize the log-likelihood sum of each

5The absence of whitespace, which is significant in Python, signals an exit from the method body.
6https://github.com/EleutherAI/github-downloader
7https://beta.openai.com/docs/engines/codex-series-private-beta
8https://pygments.org/docs/lexers/

32

https://github.com/EleutherAI/github-downloader
https://beta.openai.com/docs/engines/codex-series-private-beta
https://pygments.org/docs/lexers/

model, when computing perplexity.9

3.4 Compared Models

3.4.1 Existing Models

As discussed in Section 3.2, we mainly focus on auto-regressive left-to-right pretrained language
models, most suitable for code completion tasks.

We evaluate Codex, as it is currently deployed in real-world and has impressive performance
in code completion [65]. Codex uses the GPT-3 language model [54] as its underlying model
architecture. Codex was trained on a dataset spanning 179GB (after deduplication) covering
over 54 million public Python repositories obtained from GitHub on May 2020. As reflected in
its impressive results in other programming languages than Python, we suspect that Codex was
also trained on large corpora of additional programming languages. The model available for
querying through a non-free API.

As for open-source models, we compare GPT-Neo, GPT-J and GPT-NeoX, the largest variants
having 2.7, 6 and 20 billion parameters, respectively. GPT-NeoX is the largest open-source
pretrained language models available. These models are trained on the Pile dataset, so they are
a good representatives of models that were trained on both natural language texts from various
domains and source code from GitHub. We also compare CodeParrot with at most 1.5 billion
parameters, a model that was only trained on Python code from GitHub. CodeParrot follows
the process used in [65] that obtained over 20M files Python files from Google BigQuery Github
database, resulting in a 180GB dataset, which is comparable to Codex’s Python training data, but
the model itself is much smaller.

There was no large open-source language model trained almost exclusively on code from
multiple programming languages. To fill this gap, we train a 2.7 billion model, PolyCoder, on a
mixture of repositories from GitHub in 12 different programming languages.

3.4.2 PolyCoder’s Data

Raw Code Corpus Collection GitHub is an excellent source for publicly available source
code of various programming languages. We cloned the most popular repositories for 12 popular

9Every model uses its original tokenizer for predicting the next token. We use the shared tokenizer only for
computing the perplexity given the log-likelihood sum.

33

Language Repositories Files Size Before Filtering Size After Filtering

C 10,749 3,037,112 221G 55G
C# 9,511 2,514,494 30G 21G
C++ 13,726 4,289,506 115G 52G
Go 12,371 1,416,789 70G 15G
Java 15,044 5,120,129 60G 41G
JavaScript 25,144 1,774,174 66G 22G
PHP 9,960 1,714,058 21G 13G
Python 25,446 1,550,208 24G 16G
Ruby 5,826 674,343 5.0G 4.1G
Rust 4,991 304,842 5.2G 3.5G
Scala 1,497 245,100 2.2G 1.8G
TypeScript 12,830 1,441,926 12G 9.2G

Total 147,095 24,082,681 631.4G 253.6G

Table 3.1: Training corpus statistics.

programming languages with at least 50 stars (stopping at about 25K per language to avoid a
too heavy skew towards popular programming languages) from GitHub in October 2021. For
each project, each file belonging to the majority-language of that project was extracted, yielding
the initial training set. This initial, unfiltered dataset spanned 631GB and 38.9M files.

Data Preprocessing The detailed data preprocessing strategy comparison with other models
are analyzed in Table 3.2. In general, we tried to follow Codex’s design decisions, although there
is a fair bit of ambiguity in the description of its data preprocessing.

Deduplication and Filtering Similarly to Codex and CodeParrot, very large (>1MB) and
very short (<100 tokens) files were filtered out, reducing the size of the dataset by 33%, from
631GB to 424GB. This only reduced the total number of files by 8%, showing that a small number
of files were responsible for a large part of the corpus.10

[7] has shown that code duplication that commonly manifests in datasets of code adversely
effects language modeling of code. Therefore, we deduplicated files based on a hash of their

10Codex additionally mentions removing “auto-generated" files, but the definition of this was not clear, so we
omitted this step.

34

PolyCoder CodeParrot Codex

Dedup Exact Exact Unclear, mentions “unique”

Filtering Files > 1 MB, < 100 tokens Files > 1MB, max line
length > 1000, mean line
length > 100, fraction of al-
phanumeric characters <
0.25, containing the word
"auto-generated" or simi-
lar in the first 5 lines

Files > 1MB, max line length >
1000, mean line length > 100,
auto-generated (details unclear),
contained small percentage of al-
phanumeric characters (details
unclear)

Tokenization Trained GPT-2 tokenizer
on a random 5% subset (all
languages)

Trained GPT-2 tokenizer
on train split

GPT-3 tokenizer, add multi-
whitespace tokens to reduce re-
dundant whitespace tokens

Table 3.2: Comparison of data preprocessing strategies of different models.

content, which reduced the number of files by nearly 30%, and the dataset size by additional
29%, leaving 24.1M files and 254GB of data.

Overall, the filtering of very large and very short files plus deduplication, reduced the number
of files by 38%, and the dataset size by 61%, roughly on par with the 70% dataset size reduction
reported by CodeParrot. A key difference that remains is that other approaches use more fine-
grained filtering strategies, such as limiting the maximum line length or average line length,
filtering of probable auto-generated files, etc. For example, Chen et al. [65] have filtered only
11% of their training data.

The dataset statistics are shown in Table 3.1, showcasing data sizes per language before and
after filtering. Our dataset contains less Python code (only 16G) than Codex or CodeParrot, and
instead covers many different programming languages.

Tokenizer We train a GPT-2 tokenizer (using BPE [371]) on a random 5% subset of all the
pretraining data, containing all the languages. Codex uses an existing trained GPT-3 tokenizer,
with the addition of multi-whitespace tokens to reduce the sequence length after tokenization,
as consecutive whitespaces are more common in code than in text.

35

0 25 50 75 100 125 150
×1000 steps

0.50

0.75

1.00

1.25

1.50
Tr

ai
ni

ng
 L

os
s

2.7B
400M
160M

(a) Training

0 25 50 75 100 125 150
×1000 steps

0.50

0.75

1.00

1.25

1.50

Va
lid

at
io

n
Lo

ss

2.7B
400M
160M

(b) Validation

Figure 3.3: Training and validation loss during the 150K step training process.

3.4.3 PolyCoder’s Training

Considering our budget, we chose the GPT-2 [339] as our model architecture. To study the effect
of scaling of model size, we train 3 different sized models, with 2.7 billion, 400 million and 160
million parameters, as the largest 2.7B model being on par with GPT-Neo for fair comparison.
The 2.7 billion model is a 32 layer, 2,560 dimensional Transformer model, with a max context
window of 2048 tokens, trained with a batch size of 128 sequences (262K tokens). The model is
trained for 150K steps. The 400 million model is a 24 layer, 1,024 dimensional variant, and the
160 million model is a 12 layer, 768 dimensional variant, otherwise idem. We use GPT-NeoX
toolkit 11 to train the model efficiently in parallel with 8 Nvidia RTX 8000 GPUs on a single
machine. The wall time used to train the largest 2.7B model is about 6 weeks. In its default
configuration, this model should train for 320K steps, which was not feasible with our resources.
Instead, we adjusted the learning rate decay to half this number and trained for up to 150K
steps (near-convergence). The training and validation loss curves for different sized models are
shown in Figure 3.3. We see that even after training for 150K steps, the validation losses are still
decreasing. This, combined with the shorter training schedule and faster learning rate decay,
strongly signals that the models are still under-fitting and could benefit from longer training.

We compare the training setting and hyperparameters with CodeParrot and Codex in Ta-
ble 3.3. Due to high computational costs, we were unable to perform hyperparameter search.
Most hyperparameters are the same as those used in their respective GPT-2 model training 12

to provide a good default with regards to the corresponding model size. Some key differences
include context window sizes to allow for more tokens as context, batch sizes and tokens trained,

11https://github.com/EleutherAI/gpt-neox
12https://github.com/EleutherAI/gpt-neox/tree/main/configs

36

https://github.com/EleutherAI/gpt-neox
https://github.com/EleutherAI/gpt-neox/tree/main/configs

PolyCoder (2.7B) CodeParrot (1.5B) Codex (12B)

Model Initialization From scratch From scratch Initialized from GPT-3
NL Knowledge Learned from comments

in the code
Learned from comments
in the code

Natural language knowl-
edge from GPT-3

Learning Rate 1.6e-4 2.0e-4 1e-4
Optimizer AdamW AdamW AdamW
Adam betas 0.9, 0.999 0.9, 0.999 0.9, 0.95
Adam eps 1e-8 1e-8 1e-8
Weight Decay - 0.1 0.1
Warmup Steps 1600 750 175
Learning Rate Decay Cosine Cosine Cosine

Batch Size (#tokens) 262K 524K 2M
Training Steps 150K steps, 39B tokens 50K steps, 26B tokens 100B tokens
Context Window 2048 1024 4096

Table 3.3: Comparison of design decisions and hyper-parameters in training different models of
code.

as well as model initialization with or without natural language knowledge.

3.5 Results

3.5.1 Extrinsic Evaluation

The overall results are shown in Table 3.4.13 The numbers are obtained by sampling with different
temperatures and picking the best value for each metric. Among existing models, PolyCoder
is worse than similarly sized GPT-Neo and the even smaller Codex 300M. Overall, PolyCoder
lies after Codex, GPT-Neo/J, while performing stronger than CodeParrot. PolyCoder, which
was trained only on code, falls behind a similar sized model (GPT-Neo 2.7B) trained on the
Pile, a blend of natural language texts and code. Looking at the rightmost columns in Table 3.4
offers a potential explanation: in terms of total Python tokens seen during training, all models

13Due to the large model size of GPT-NeoX (20B) and limited computational budget, we did not include it in the
HumanEval experiment.

37

Model Pass@1 Pass@10 Pass@100 Tokens Trained Code Tokens Python Tokens

PolyCoder (160M) 2.13% 3.35% 4.88% 39B 39B 2.5B
PolyCoder (400M) 2.96% 5.29% 11.59% 39B 39B 2.5B
PolyCoder (2.7B) 5.59% 9.84% 17.68% 39B 39B 2.5B

CodeParrot (110M) 3.80% 6.57% 12.78% 26B 26B 26B
CodeParrot (1.5B) 3.58% 8.03% 14.96% 26B 26B 26B

GPT-Neo (125M) 0.75% 1.88% 2.97% 300B 22.8B 3.1B
GPT-Neo (1.3B) 4.79% 7.47% 16.30% 380B 28.8B 3.9B
GPT-Neo (2.7B) 6.41% 11.27% 21.37% 420B 31.9B 4.3B
GPT-J (6B) 11.62% 15.74% 27.74% 402B 30.5B 4.1B

Codex (300M) 13.17% 20.37% 36.27% 100B* 100B* 100B*
Codex (2.5B) 21.36% 35.42% 59.50% 100B* 100B* 100B*
Codex (12B) 28.81% 46.81% 72.31% 100B* 100B* 100B*

*Codex is initialized with another pretrained model, GPT-3.

Table 3.4: Results of different models on the HumanEval benchmark, and the number of different
types of tokens seen during the training process.

substantially exceed ours. This in partly because they use a higher proportion of Python code
(we aimed to balance data volume across programming languages), and in part because of
resource limitations, which lead to PolyCoder not observing its entire training data. In addition,
the natural language blend in the training corpus may help code language modeling as well,
especially with code-related texts such as Stack Exchange dumps being included.

Compared to GPT-Neo (2.7B), PolyCoder has seen fewer Python tokens, but more code
tokens in other programming languages, hinting that transfer from other languages to Python
helps to achieve a similar performance. This suggests that future research could benefit from
blending code in different programming languages, as well as natural language text.

Scaling Effect To further understand the effect of the number ofmodel parameterswith respect
to HumanEval code completion performance, we show the Pass@1, Pass@10 and Pass@100
percentage with respect the the model size in Figure 3.4. We can see that the performance
of the Codex models are significantly better than all the other open-source models across all
numbers of parameters. The performance on HumanEval benchmark increases linearly with

38

107 108 109 1010

#Parameters

0

5

10

15

20

25

30

Pa
ss

@
1

(%
)

PolyCoder
CodeParrot
GPT-Neo/J
Codex

(a) Pass@1

107 108 109 1010

#Parameters
0

10

20

30

40

Pa
ss

@
10

 (%
)

PolyCoder
CodeParrot
GPT-Neo/J
Codex

(b) Pass@10

107 108 109 1010

#Parameters
0

20

40

60

Pa
ss

@
10

0
(%

)

PolyCoder
CodeParrot
GPT-Neo/J
Codex

(c) Pass@100

Figure 3.4: The scaling effect of HumanEval performance on different models.

the magnitude (log scale) of the number of parameters in the model. Similar scaling effects
could be found on PolyCoder and GPT-Neo/J models. Interestingly, the CodeParrot models
that are trained only on Python seem to have reached a saturating performance with respect to
increasing number of parameters, where the training corpus being focused on Python may have
some effect. With higher number of parameters (2.7B), PolyCoder’s performance is trending
worse than that of GPT-Neo/J. Comparing GPT-Neo/J that is trained on Pile dataset containing a
blend of text, Stack Exchange dumps and GitHub data, with PolyCoder that are trained on only
GitHub repositories of popular programming languages, we hypothesize that the added text,
especially texts in technical and software engineering domains, may be crucial for the larger
model to boost the performance.

We compare the performance difference between the model trained after 100K steps versus
the model after 150K steps in Figure 3.5, and find that training for longer helps the larger model
more as it is still under-fitted. We can see that in the larger 2.7B model, by training the model
longer till 150K steps, the performance increases uniformly, with Pass@100 increasing the most.
However, for a smaller model such as the 400M model, by training the model longer till 100K
steps, the improvements are subdued and Pass@100 drops. This suggests that with the larger
model, training for longer may provide additional boost in performance. This echoes with the
observation from the training curve (Figure 3.3) as well.

Temperature Effect All the above results are obtained by sampling the language model with
different temperatures and picking the best value for each metric. We are also interested in how
different choices of temperature affects the final generation quality. We summarize the results in
Figure 3.6. The general trend is for Pass@1, lower temperatures are better, and for Pass@100, a
higher temperature will help, while for Pass@10 a temperature in the middle is better suited. We

39

100 110 120 130 140 150
×1000 steps

5.0

7.5

10.0

12.5

15.0

17.5

Pa
ss

 R
at

e
(%

)

Pass@1
Pass@10
Pass@100

(a) 2.7B Model

100 110 120 130 140 150
×1000 steps

2

4

6

8

10

12

Pa
ss

 R
at

e
(%

)

Pass@1
Pass@10
Pass@100

(b) 400M Model

Figure 3.5: HumanEval performance comparison after training the model for longer.

hypothesize that this is because a higher temperature during generationmakes themodel less con-
fident in its predictions and thus allow for more exploration and more diverse outputs, resulting
in better accuracy at Pass@100. Too high a temperature (0.8) is also hurtful if the model is capable
enough.

0.2 0.4 0.6 0.8
Temperature

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Pa

ss
 R

at
e

(%
)
Pass@1
Pass@10
Pass@100

Figure 3.6: HumanEval performance
with different softmax temperatures
during generation.

On the contrary, a lower temperature makes the model
output very confident in its prediction and thus will be
better suited for generating very few correct examples,
and thus the better performance for Pass@1.

We also show how temperature affects HumanEval
performance on model of all three sizes in Figure 3.7.
We find that for a larger model, e.g., the 2.7B model, a
temperature as high as 0.8 is actually hurting the per-
formance for Pass@100, suggesting that if the model is
good enough, a very high temperature may cause the
outputs to be too diverse, thus hurting the correctness.
This suggests the importance of temperature and the
need to tune it individually for different model capacity and different generation scenarios.

3.5.2 Intrinsic Evaluation

The perplexity results on the evaluation datasets are shown in Figure 3.8. We show the detailed
perplexity of different models on different languages in Table 3.5. The number of tokens shown
in the table is obtained after tokenizing the code in each language using their respective lexers,
by Pygments. This number of tokens is used to normalize the perplexity scores to make them

40

0.2 0.4 0.6 0.8
Temperature

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Pa
ss

 R
at

e
(%

)

Pass@1
Pass@10
Pass@100

(a) 2.7B Model

0.2 0.4 0.6 0.8
Temperature

2

4

6

8

10

12

Pa
ss

 R
at

e
(%

)

Pass@1
Pass@10
Pass@100

(b) 400M Model

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Temperature

1

2

3

4

5

Pa
ss

 R
at

e
(%

)

Pass@1
Pass@10
Pass@100

(c) 160M Model

Figure 3.7: HumanEval performance using different softmax temperatures during generation.

0

1

2

3

4

C C# C++ Go Java JavaScript PHP Python Ruby Rust Scala TypeScript

Codex* PolyCoder 2.7B GPT-Neo 2.7B GPT-J 6B GPT-NeoX 20B CodeParrot

* Since the exact training set of Codex is unknown, it may include files from these test sets
rendering Codex’s results overly-optimistic.

Figure 3.8: Perplexity comparison on our evaluation dataset of different models on different
programming languages. Note that the y-axis is capped at 4; CodeParrot’s entropy on all
languages other than Python is much higher than shown here (see Table 3.5).

comparable across models. Note that CodeParrot is only trained on Python data and thus
performs poorly in other languages.

The plot caps the perplexity score to 4 as CodeParrot performs poorly in languages other
than Python. It is important to note that although Codex’s perplexities are lower than other
models in most languages, Codex might have been trained on the test sets, and its results are
thus over-optimistic.

Notably, PolyCoder outperforms Codex and all other models in the C language. Comparing the
open-source models only, PolyCoder performs better than the similarly sized GPT-Neo 2.7B in
C, JavaScript, Rust, Scala and TypeScript.

In the other 11 languages other than C, all other open-source models, including ours, are

41

Language #tokens Codex* PolyCoder 2.7B GPT-Neo 2.7B GPT-J 6B GPT-NeoX CodeParrot

C 55,333 2.55 2.33 3.69 2.82 2.37 19.23
C# 67,306 1.72 2.58 2.49 2.20 2.12 7.16
C++ 69,627 1.95 2.99 2.87 2.47 2.32 8.48
Go 79,947 1.39 2.57 2.19 1.89 1.85 10.00
Java 65,484 1.94 2.92 2.78 2.49 2.47 6.79
JavaScript 54,620 2.17 3.06 3.07 2.73 2.62 9.23
PHP 45,682 1.98 3.70 3.61 2.81 2.45 19.91
Python 79,653 1.47 3.18 3.00 2.68 2.61 2.95
Ruby 46,537 1.39 3.96 3.77 3.13 2.89 14.26
Rust 107,717 1.96 3.24 3.30 2.92 2.92 8.68
Scala 65,756 1.75 3.87 3.88 3.37 3.33 12.91
TypeScript 55,895 2.40 3.61 3.90 3.43 3.41 12.54

* Since the exact training set of Codex is unknown, it might have been trained on these test sets,

and Codex’s results are over-optimistic.

Table 3.5: Perplexity of different models for different programming languages on our evaluation
dataset.

significantly worse (higher perplexity) than Codex. We hypothesize that this is due to the fact
that PolyCoder is trained on an imbalanced mixture of different languages, with C and C++
being closely related and the two most dominant in the entire training corpus (Section 3.4.2).
Thus, the larger volume in total (because of long files) makes C the most “favored” language by
PolyCoder. The reason why PolyCoder does not outperform Codex in C++ is possibly due to
the complexity of C++ language and Codex’s significantly longer context window size (4096,
compared to PolyCoder’s 2048), or because Codex is possibly trained on more C++ training data.

With the same pretraining corpus, the gain from a 2.7B model (GPT-Neo) to a 6B model
(GPT-J) is significant over all languages. However, when increasing the model size further to
20B, the improvement varies across different languages. For example, the performance on Go,
Java, Rust, Scala, TypeScript do not increase significantly when the model size increases by 3
times. This suggests that for some programming languages, and given the amounts of data, the
capacity of GPT-J is sufficient. Interestingly, these languages seem to coincide with languages
where PolyCoder outperforms a similarly sized model trained on Pile. This may hint that for the
languages in which larger models do not provide additional gains, training the model only using

42

code may be enough or slightly more helpful than training on both natural language and code.
We can see that comparing different models, perplexity trends for Python correlates well

with the HumanEval benchmark performance of the extrinsic evaluation (Section 3.5.1). This
suggests that perplexity is a useful and low-cost metric to estimate other, downstream, metrics.

3.6 Conclusion

In this paper, we perform a systematic evaluation of large language models for code. The
performance generally benefits from larger models and longer training time. We also believe
that the better results of GPT-Neo over PolyCoder in some languages show that training on
natural language text and code can benefit the modeling of code. To help future research in the
area, we release PolyCoder, a large open-source language model for code, trained exclusively
on code in 12 different programming languages. In the C programming language, PolyCoder
achieves lower perplexity than all models including Codex.

43

44

Part II

Human Study of Code Generation Models

45

Chapter 4

In-IDE Code Generation from Natural
Language: Promise and Challenges

A great part of software development involves conceptualizing or communicating the under-
lying procedures and logic that needs to be expressed in programs. One major difficulty of
programming is turning concept into code, especially when dealing with the APIs of unfamiliar
libraries. Recently, there has been a proliferation of machine learning methods for code gen-
eration and retrieval from natural language queries, but these have primarily been evaluated
purely based on retrieval accuracy or overlap of generated code with developer-written code,
and the actual effect of these methods on the developer workflow is surprisingly unattested.
In this paper, we perform the first comprehensive investigation of the promise and challenges
of using such technology inside the PyCharm IDE, asking “at the current state of technology
does it improve developer productivity or accuracy, how does it affect the developer experience,
and what are the remaining gaps and challenges?” To facilitate the study, we first develop a
plugin for the PyCharm IDE that implements a hybrid of code generation and code retrieval
functionality, and orchestrate virtual environments to enable collection of many user events (e.g.
web browsing, keystrokes, fine-grained code edits). We ask developers with various backgrounds
to complete 7 varieties of 14 Python programming tasks ranging from basic file manipulation to
machine learning or data visualization, with or without the help of the plugin. While qualita-
tive surveys of developer experience are largely positive, quantitative results with regards to
increased productivity, code quality, or program correctness are inconclusive. Further analysis
identifies several pain points that could improve the effectiveness of future machine learn-
ing based code generation/retrieval developer assistants, and demonstrates when developers
prefer code generation over code retrieval and vice versa. We release all data and software

47

(https://github.com/neulab/tranx-study) to pave the road for future empirical studies on
this topic, as well as development of better code generation models.

4.1 Introduction

One of the major hurdles to programming is the time it takes to turn ideas into code [284].
All programmers, especially beginners but even experts, frequently reach points in a program
where they understand conceptually what must be done next, but do not know how to create a
concrete implementation of their idea, or would rather not have to type it in if they can avoid
it. The popularity of the Stack Overflow Q&A website is a great example of this need. Indeed,
developers ask questions about how to transform ideas into code all the time, e.g., “How do I
check whether a file exists without exceptions?,”1 “How can I merge two Python dictionaries
in a single expression?,”2 etc. Moreover, this need is likely to continue in the future, as new
APIs appear continuously and existing APIs change in non-backwards compatible ways [288],
requiring recurring learning effort [210, 291].

Despite early skepticism towards the idea of “natural language programming” [89], re-
searchers now widely agree on a range of scenarios where it can be useful to be able to formulate
instructions using natural language and have the corresponding source code snippets auto-
matically produced. For example, software developers can save keystrokes or avoid writing
dull pieces of code [108, 297, 351, 429]; and non-programmers and practitioners in other fields,
who require computation in their daily work, can get help with creating data manipulation
scripts [131, 224].

Given a natural language query carrying the intent of a desired step in a program, there are
two main classes of methods to obtain code implementing this intent, corresponding to two
major research thrusts in this area. On the one hand, code retrieval techniques aim to search for
and retrieve an existing code fragment in a code base; given the abundance of code snippets
online, on platforms such as Stack Overflow, it is plausible that a lot of the code that one might
write, especially for lower level functionality and API usage primitives, already exists somewhere,
therefore the main challenge is search. On the other hand, code generation techniques aim to
synthesize code fragments given natural language descriptions of intent. This is typically a
harder challenge than retrieval and therefore more ambitious, but it may be particularly useful
in practice if those exact target code fragments do not exist anywhere yet and can be generated

1https://stackoverflow.com/q/82831
2https://stackoverflow.com/q/38987

48

https://github.com/neulab/tranx-study
https://stackoverflow.com/q/82831
https://stackoverflow.com/q/38987

instead.
The early attempts at general-purpose code generation from natural language date back to

the early to mid 2000s, and resulted in groundbreaking but relatively constrained grammatical
and template-based systems, e.g., converting English into Java [329] and Python [411]. Recent
years have seen an increase in the scope and diversity of such programming assistance tools,
as researchers have devised code generation techniques that promise to be more flexible and
expressive using machine (deep) learning models trained on data from “Big Code” repositories
like GitHub and Stack Overflow; see Allamanis et al. [12] for an excellent survey of such
techniques. Code retrieval systems have also improved dramatically in recent years, thanks to
the increasing availability of source code online and more sophisticated information retrieval
and machine learning techniques; perhaps the most popular current code retrieval system is
Microsoft’s Bing Developer Assistant [429], which is an adaptation of the Bing search engine
for code.

While both types of methods (generation and retrieval) for producing appropriate code
given natural language intents have received significant interest in machine learning circles,
there is a surprising paucity of research using human-centered approaches [293] to evaluate the
usefulness and impact of these methods within the software development workflow. An important
open question is to what extent the typically high accuracy scores obtained during automatic
evaluations on benchmark datasets will translate to real-world usage scenarios, involving
software developers completing actual programming tasks. The former does not guarantee the
latter. For example, an empirical study on code migration by Tran et al. [406] showed that the
BLEU [315] accuracy score commonly used in natural language machine translation has only
weak correlation with the semantic correctness of the translated source code [406].

In this paper, we take one step towards addressing this gap. We implemented two state-
of-the-art systems for natural language to code (NL2Code) generation and retrieval as in-IDE
developer assistants, and carried out a controlled human study with 31 participants assigned to
complete a range of Python programming tasks with and without the use of the two varieties of
NL2Code assistance. Our results reveal that while participants in general enjoyed interacting
with our IDE plugin and the two code generation and retrieval systems, surprisingly there

were no statistically significant gains in any measurable outcome when using the plugin. That
is, tasks with code fragments automatically generated or retrieved using our plugin were, on
average, neither completed faster nor more correctly than tasks where participants did not use
any NL2Code assistant. This indicates that despite impressive improvements in the intrinsic
performance of code generation and retrieval models, there is a clear need to further improve

49

the accuracy of code generation, and we may need to consider other extrinsic factors (such as
providing documentation for the generated code) before such models can make sizable impact
on the developer workflow.

In summary, themain contributions of this paper are: (i) A hybrid code generation and
code retrieval plugin for the Python PyCharm IDE, that takes as input natural language queries.
(ii) A controlled user study with 31 participants observed across 7 types of programming tasks
(14 concrete subtasks). (iii) An analysis of both quantitative and qualitative empirical data
collected from the user study, revealing how developers interact with the NL2Code assistant
and the assistant’s impact on developer productivity and code quality. (iv) A comparison of code
snippets produced by the two models, generation versus retrieval. (v) An anonymized dataset
of events from our instrumented IDE and virtual environment, capturing multiple aspects of
developers’ activity during the programming tasks, including plugin queries and edits, web
browsing activities, and code edits.

4.2 Overview of Our Study

The goal of our research is to elucidate to what extent and in what ways current natural
language programming techniques for code generation and retrieval can be useful within the
development workflow as NL2Code developer assistants. Our main interest is evaluating the
usefulness in practice of state-of-the-art NL2Code generation systems, which have been receiving
significant attention from researchers in recent years, but have so far only been evaluated on
benchmark datasets using standard NLP metrics. However, as discussed above, code generation
and code retrieval are closely related problems, with increasingly blurred lines between them;
e.g., recent approaches to align natural language intents with their corresponding code snippets
in Stack Overflow for retrieval purposes [469] use similar deep learning technology as some code
generation techniques [464]. Therefore, it is important to also consider code retrieval systems
when experimenting with and evaluating code generation systems.

Given this complementarity of the two tasks, we select as a representative example of state-
of-the-art techniques for code generation the semantic parsing approach by Yin and Neubig
[464]. In short, the approach is based on a tree-based neural network model that encodes natural
language utterances and generates corresponding syntactically correct target code snippets;
for example, the model can generate the Python code snippet “x.sort(reverse=True)” given
the natural language input “sort list x in reverse order”. We chose the approach by Yin and
Neubig [464] over similar approaches such as those of Iyer et al. [171] and Agashe et al. [2] as it

50

31 participants

…

Instrumented VM, IDE

…
T1 T5 T6

Instrumented VM, IDE

…
T1 T3 T4 T6

Consent &
Pre-test survey

Post-test
survey

Event
logs

Post-test
survey

Event
logs

Log data
analysis

Survey data
analysis

RQ1

RQ2

RQ3

1 IDE plugin design

2 Task design

3 Human study

Popular coding
education websites

Stack Overflow
questions

7 representative
task categories

(with 2 tasks each)

Natural language
intent (English)

Ranked list of both
generated and

retrieved snippets

Code generation
(Yin & Neubig, 2018)

Code retrieval
(custom)

…

Figure 4.1: Overview of our study.

is the most general purpose and most naturally comparable to code retrieval approaches; see
Section 4.9 for a discussion. For code retrieval, the closest analogue is Microsoft’s proprietary
Bing Developer Assistant [429], which takes English queries as input and returns existing
matching code fragments from the Web, using the Bing search engine. However, given the
proprietary nature of this system, we build a custom Stack Overflow code search engine inspired
by it rather than use the system itself.

We then designed and carried out the controlled human study summarized in Figure 4.1.
First, we implement the two code generation and retrieval techniques as a custom plugin for
the PyCharm3 IDE, which takes as input natural language text intents and displays as output
the corresponding code snippets generated and retrieved by the respective underlying models.
Second, we compile 14 representative Python programming tasks across 7 task categories
with varying difficulty, ranging from basic Python to data science topics. Third, we recruit 31
participants with diverse experience in programming in Python and with the different task

3https://www.jetbrains.com/pycharm/

51

https://www.jetbrains.com/pycharm/

application domains. Then, using an instrumented virtual environment and our IDE plugin, we
collect quantitative and qualitative data about task performance and subjective tool use from
each participant, as well as over 170 person hours of telemetry data from the instrumented
environment.

Finally, we analyze these data to answer three research questions, as follows.

RQ1. How does using a NL2Code developer assistant affect task completion time and program

correctness? This research question investigates quantitatively differences in outcome variables
between tasks completed in the treatment and control conditions. To this end, we use the log data
from our instrumented virtual environment to compute task completion times, and rubric-based
manual scoring of the solutions submitted by study participants to evaluate program correctness.
Then, we use multivariate mixed-effects regression modeling to analyze the data. We expect that
using the plugin developers can complete tasks faster, without compromising solution quality.

RQ2. How do users query the NL2Code assistant, and how does that associate with their choice of

generated vs retrieved code? This research question investigates quantitatively three dimensions
of the inputs and outputs of the NL2Code plugin. Again using log data from our instrumented
virtual environment, we first model how the natural language input queries differ when study
participants favor the code snippets returned by the code generation model over those returned
by the code retrieval model. Second, we evaluate the quality of the natural language queries
input by study participants in terms of their ability to be answerable by an oracle (human expert),
which is also important for the success of NL2Code systems in practice, in addition to the quality
of the underlying code generation or retrieval systems. Third, we study how the length and the
frequency of different types of tokens changes after study participants edit the candidate code
snippets returned by the NL2Code plugin, which could indicate ways in which even the chosen
code snippets are still insufficient to address the users’ needs.

RQ3. How do users perceive the usefulness of the in-IDE NL2Code developer assistant? Fi-
nally, this research question investigates qualitatively the experience of the study participants
interacting with the NL2Code plugin and underlying code generation and retrieval models.

In the remainder of this paper, Sections 4.3–4.4 describe our study setup in detail; then
Sections 4.5–4.7 present our answers to the research questions; Section 4.8 discusses implications;
and Section 4.9 discusses related work.

Following best practices for empirical software engineering research [386, 431], we make
our study replicable, publishing our plugin prototype, instrumented virtual environment, data
extraction and analysis scripts, and the obtained anonymized raw data; see the online ap-

52

pendices at https://github.com/neulab/tranX-plugin and https://github.com/neulab/
tranX-study.

4.3 NL2Code IDE Plugin Design

We designed and built a joint NL2Code generation and retrieval plugin for PyCharm, a popular
Python IDE. Our plugin is open source and available online.4 As mentioned above, the plugin
takes as input an English query describing the user’s intent, and gives as output a ranked list of
the most relevant code snippets produced by each of the two underlying code generation and
retrieval systems. Using IDE plugins to query Web resources such as Stack Overflow is expected
to be less disruptive of developers’ productivity than using an external Web browser, since it
reduces context switching [26, 326]. Moreover, there exist already a number of IDE plugins for
Web / Stack Overflow search and code retrieval [58, 326, 346, 429], therefore the human-computer
interaction modality should feel at least somewhat natural to study participants.

The Underlying Code Generation System. For code generation, we use the model by Xu
et al. [439] (available online5), which is an improved version of the tree-based semantic parsing
model by Yin and Neubig [466], further pre-trained on official API documentation in addition to
the original training on Stack Overflow questions and answers.6

This model reports state-of-the-art accuracy on the CoNaLa benchmark dataset [469], a
benchmark dataset of intent/code pairs mined from Stack Overflow and standardly used to
evaluate code generation models. Accuracy is computed using the BLEU score [315], a standard
metric used in the NLP community, that measures the token-level overlap between the generated
code and a reference implementation. As discussed above, the BLEU score (and similar automated
metrics) are typically not sufficiently sensitive to small lexical differences in token sequence
that can greatly alter the semantics of the code [406], hence our current human-centered study.
Still, qualitatively, it appears that the model can generate reasonable code fragments given short
text inputs, as shown in Table 4.1. Note how the model can generate syntactically correct code
snippets by construction; demonstrates ability to identify and incorporate a wide variety of
API calls; and also has the ability to copy important information like string literals and variable
names from the input natural language intent, in contrast to the code retrieval results. When

4At https://github.com/neulab/tranX-plugin
5https://github.com/neulab/external-knowledge-codegen
6We deployed the model on an internal research server and exposed a HTTP API that the plugin can access;

queries are fast enough for the plugin to be usable in real time.

53

https://github.com/neulab/tranX-plugin
https://github.com/neulab/tranX-study
https://github.com/neulab/tranX-study
https://github.com/neulab/tranX-plugin
https://github.com/neulab/external-knowledge-codegen

Open a file “f.txt” in write mode.
✓ f = open(’f.txt’, ’w’)

♣ f = open(’f.txt’, ’w’)

♠ with open("users.txt", "a")as f: f.write(username + "\n")

Remove first column of dataframe df.
✓ df = df.drop(df.columns[[0]], axis=1)

♣ df.drop(df.columns[[0]])

♠ del df[’column_name’]

Lower a string text and remove non-alphanumeric characters aside
from space.
✓ re.sub(r’[^\sa−zA−Z0−9]’, ’’, text).lower().strip()

♣ re.sub(r’[^\sa−zA−Z0−9]’, ’’, text)

♠ re.sub(r’[^\sa−zA−Z0−9]’, ’’, text).lower().strip()

Table 4.1: Examples, where ✓ is the ground-truth code snippet, ♣ is the output from the state-of-
the-art code generation model, and ♠ is the first candidate retrieved from Stack Overflow using
Bing Search.

displaying multiple generation results in the plugin described below, these results are ordered
by the conditional probability of the generated code given the input command.

The Underlying Code Retrieval System. For code retrieval, similarly to a number of recent
works on the subject [58, 326, 429], we implement a wrapper around a general-purpose search
engine, specifically the Bing7 search engine.8 The wrapper queries this search engine for relevant
questions on Stack Overflow,9 the dominant programming Q&A community, and retrieves code
from the retrieved pages. A dedicated search engine already incorporates advanced indexing and
ranking mechanisms in its algorithms, driven by user interaction data, therefore it is preferable
to using the internal Stack Overflow search engine directly [429].

Specifically, we add the “Python” prefix to all user queries to confine the search to the Python
programming language domain, and add “site:stackoverflow.com” to confine the results to the

7https://www.bing.com/
8We chose Bing rather than other alternatives such as Google due to the availability of an easily accessible

search API.
9https://stackoverflow.com/

54

https://www.bing.com/
https://stackoverflow.com/

Stack Overflow platform. We do not structurally alter the queries otherwise, e.g., we do not
remove variables referenced therein, if any, although we do strip away grave accents that are
part of the code generation model’s syntax.10 For the query example mentioned above, the actual
query string for Bing search would become “Python reverse a list x site:stackoverflow.com”.
For each Stack Overflow question page retrieved, we then extract the code snippets from the
top 3 answers into a ranked list, sorted descending by upvotes. The code snippet extraction
procedure follows Yin et al. [469] for identifying the code part of the answer, based on Stack
Overflow-specific syntax highlighting and heuristics. When displaying multiple retrieval results,
these results are ordered by the order they appeared in Bing search engine results and the
ordering of answers inside SO posts is done by upvotes.

Table 4.1 shows a few example outputs. Note how the retrieval results sometimes contain
spurious code, not part of the natural language intent (first example), and otherwise seem to
complement the generation results. Indeed, in the second example the generation result is
arguably closer to the desired answer than the retrieval result, with the opposite situation in the
third example.

Interacting With the Plugin. Figure 4.2 illustrates the plugin’s user interface. The user first
activates the query interface by pressing a keyboard shortcut when the cursor is in the IDE’s
editor. A popup appears at the current cursor position (Figure 4.2a), and the user can enter a
command in natural language that they would like to be realized in code (e.g., “reverse a list
`x`”11). The plugin then sends the request to the underlying code generation and code retrieval
systems, and displays a ranked list of results, with the top 7 code generation results at the top,
followed by the top 7 code retrieval results (Figure 4.2b); 14 results are displayed in total.12

10To mitigate concerns that user queries using the specified syntax (command form sentences and including
variable names) may adversely affect the retrieval results, after the full study was complete we modified 59 user-
issued queries that were indeed complete sentences with full variable names, converting them into short phrases
without variable names and re-ran the retrieval. We then compared the results and manually annotated the number
of times the search engine returned a result that we judged was sufficient to understand how to perform the
programming task specified by the user’s intent. As a result, the user-written full intent resulted in a sufficient
answer 34/59 times, and the simplified intent without variable names returned a sufficient answer 36/59 times, so it
appears that including variable names has a marginal to no effect on whether the search engine was able to provide
a good top-1 result. We also measured the exact-match overlap between the top-1 results, and found it to be 22/59,
and overlap between the top-7 result lists was 182/(59*7).

11Note the special syntax used to mark explicit variables; see Appendix 4.11.6 for full syntax details.
12We note that the main motivation for this ordering is that the generation results tend to be significantly

more concise than the retrieval results (Figure 4.6). If we put the retrieval results first it is likely that the users
would rarely scroll past the retrieval results and view the generation results due to issues of screen real-estate. It is

55

(a) Query input interface (b) Code snippet candidates

Figure 4.2: Screenshots of the in-IDE plugin taking a natural language query as input and listing
code snippet candidates from both code generation and code retrieval.

The number 7 was chosen subjectively, trying to maximize the amount and diversity of
resulting code snippets while minimizing the necessary screen space to display them and,
therefore, the amount of scrolling expected from study participants looking to inspect all the
plugin-returned results. After completing the current study, we found that the most relevant
code snippets are typically within the top 3 results, and thus a smaller number of candidates
may be sufficient. While the number and ordering of candidates has the potential to have a
significant impact on the efficiency and efficacy of the developer assistant, a formal evaluation
of this impact is beyond the scope of this work.

If a code snippet is selected, the code snippet is then inserted in the current cursor’s position
in the code editor. The user’s selection is also recorded by our instrumentation in the back end.
Understandably, some returned code snippets may not be directly suitable for the context inside
the editor, so the user is welcome (and encouraged by the instructions we give as part of our
human study) to edit the auto-inserted code snippets to fit their specific intent. After the edit is
done, the user is asked to upload their edits to our server, along with the context of the code,

important to consider that alternative orderings may result in different experimental results, although examining
alternate orderings was not feasible within the scope of the current study.

56

(a) Generated code with errors in the context (b) The user fixes the error and uploads

Figure 4.3: Screenshots of fixing the small errors in generated code and upload the correct
snippet.

using a dedicated key combination or the IDE’s context menu. The process is illustrated in
Figure 4.3. The edit data enable us to analyze how many and what kind of edits the users need
to make to transform the auto-generated code to code that is useful in their context.13

4.4 Human Study Design

Given our NL2Code joint code generation and retrieval IDE plugin above, we designed and carried
out a human study with 31 participants assigned to complete a range of Python programming
tasks in both control (no plugin) and treatment (plugin) conditions.

4.4.1 Task Design

To emulate real world Python development activities, but also fit within the scope of a user study,
we compiled a set of 14 reasonably sized Python programming tasks, organized into 7 categories
(2 tasks per category) that span a diversity of levels of difficulty and application domains.

We started by identifying representative task categories that many users would encounter in
practice. To that end, we analyzed two sources. First, we manually reviewed all the Python pro-
gramming courses listed on three popular coding education websites, Udacity,14 Codecademy,15

and Coursera,16 to identify modules commonly taught across all websites that indicate common
13The edit data may also be helpful as training data for improving code generation and retrieval models. We

release our data publicly to encourage this direction in future work.
14https://www.udacity.com/courses/all
15https://www.codecademy.com/catalog
16https://www.coursera.org/

57

https://www.udacity.com/courses/all
https://www.codecademy.com/catalog
https://www.coursera.org/

usage scenarios of the Python language. Second, we cross checked if the previously identified
use cases are well represented among frequently upvoted questions with the [python] tag on
Stack Overflow, which would further indicate real programmer needs. By searching the category
name, we found that each of our identified categories covers more than 300 questions with more
than 10 upvotes on Stack Overflow. We iteratively discussed the emerging themes among the
research team, refining or grouping as needed, until we arrived at a diverse but relatively small
set of use cases, covering a wide range of skills a Python developer may need in practice.

In total, we identified 7 categories of use cases, summarized in Table 4.2. For each of the 7
categories, we then designed 2 tasks covering use cases in the most highly upvoted questions on
Stack Overflow. To this end, we searched Stack Overflow for the “python” keyword together
with another keyword indicative of the task category (e.g., “python matplotlib,” “python pandas”),
selected only questions that were asking how to do something (i.e., excluding questions that ask
about features of the language, or about how to install packages), and drafted and iteratively
refined after discussion among the research team tasks that would cover 3-5 of themost frequently
upvoted questions.

We illustrate this process with the following example task for the “Data visualization”
category:17

By running python3 main.py, draw a scatter plot of the data in shampoo.csv and save it to shampoo.png.
The plot size should be 10 inches wide and 6 inches high. The Date column is the x axis (some dates are
missing from the data and in the plot the x axis should be completed with all missing dates without sales data).
The date string shown on the plot should be in the format (YYYY-MM-DD). The Sales column is the y axis.
The graph should have the title “Shampoo Sales Trend”. The font size of the title, axis labels, and x & y tick
values should be 20pt, 16pt, and 12pt respectively. The scatter points should be colored purple.

This task covers some of the top questions regarding data visualization with matplotlib

found on Stack Overflow through the approach described above:
1. How do you change the size of figures drawn with matplotlib?18

2. How to put the legend out of the plot?19

3. Save plot to image file instead of displaying it using Matplotlib?20

17Corresponding to the search https://stackoverflow.com/search?tab=votes&q=python%20matplotlib.
18https://stackoverflow.com/questions/332289/how-do-you-change-the-size-of-figures-drawn-

with-matplotlib
19https://stackoverflow.com/questions/4700614/how-to-put-the-legend-out-of-the-plot
20https://stackoverflow.com/questions/9622163/save-plot-to-image-file-instead-of-

displaying-it-using-matplotlib

58

https://stackoverflow.com/search?tab=votes&q=python%20matplotlib
https://stackoverflow.com/questions/332289/how-do-you-change-the-size-of-figures-drawn-with-matplotlib
https://stackoverflow.com/questions/332289/how-do-you-change-the-size-of-figures-drawn-with-matplotlib
https://stackoverflow.com/questions/4700614/how-to-put-the-legend-out-of-the-plot
https://stackoverflow.com/questions/9622163/save-plot-to-image-file-instead-of-displaying-it-using-matplotlib
https://stackoverflow.com/questions/9622163/save-plot-to-image-file-instead-of-displaying-it-using-matplotlib

4. How do I set the figure title and axes labels font size in Matplotlib?21

For each task designed, we also provide the user with required input data or directory
structure for their program to work on, as well as example outputs (console print-outs, output
files & directories, etc.) so that they could verify their programs during the user study.

Table 4.2 summarizes the 14 tasks. The full task descriptions and input/output examples can
be found online, as part of our replication package at https://github.com/neulab/tranx-
study. The tasks have varying difficulties, and on average each task would take about 15-40
minutes to complete.

Table 4.2: Overview of our 14 Python programming tasks.

Category Tasks

Basic Python
T1-1 Randomly generate and sort numbers and characters with dictionary
T1-2 Date & time format parsing and calculation with timezone

File
T2-1 Read, manipulate and output CSV files
T2-2 Text processing about encoding, newline styles, and whitespaces

OS
T3-1 File and directory copying, name editing
T3-2 File system information aggregation

Web Scraping
T4-1 Parse URLs and specific text chunks from web page
T4-2 Extract table data and images from Wikipedia page

Web Server & Client
T5-1 Implement an HTTP server for querying and validating data
T5-2 Implement an HTTP client interacting with given blog post APIs

Data Analysis & ML
T6-1 Data analysis on automobile data of performance metrics and prices
T6-2 Train and evaluate a multi-class logistic regression model given dataset

Data Visualization
T7-1 Produce a scatter plot given specification and dataset
T7-2 Draw a figure with 3 grouped bar chart subplots aggregated from dataset

4.4.2 Participant Recruitment & Task Assignments

Aiming to recruit participants with diverse technical backgrounds but at least some programming
experience and familiarity with Python so as to be able to complete the tasks, we advertised
our study in two ways: (1) inside the university community through personal contacts, mailing

21https://stackoverflow.com/questions/12444716/how-do-i-set-the-figure-title-and-axes-

labels-font-size-in-matplotlib

59

https://github.com/neulab/tranx-study
https://github.com/neulab/tranx-study
https://stackoverflow.com/questions/12444716/how-do-i-set-the-figure-title-and-axes-labels-font-size-in-matplotlib
https://stackoverflow.com/questions/12444716/how-do-i-set-the-figure-title-and-axes-labels-font-size-in-matplotlib

lists, and Slack channels, hoping to recruit researchers and students in computer science or
related areas; (2) on the freelancer platform Upwork,22 hoping to attract participants with
software engineering and data science experience. We promised each participant US$5 per task
as compensation; each participant was expected to complete multiple tasks.

To screen eligible applicants, we administered a pre-test survey to collect their self-reported
levels of experience with Python and with each of the 7 specific task categories above; see
Appendix 4.11.2 for the actual survey instrument. We only considered as eligible those applicants
who reported at least some experience programming in Python, i.e., a score of 3 or higher given
the answer range [1: very inexperienced] to [5: very experienced]; 64 applicants satisfied these
criteria.

We then created personalized task assignments for each eligible applicant based on their
self reported levels of experience with the 7 specific task categories (see Appendix 4.11.3 for the
distributions of participants’ self reported experience across tasks), using the following protocol:

1. To keep the study relatively short, we only assign participants to a total of 4 task categories
(8 specific tasks, 2 per category) out of the 7 possible.

2. Since almost everyone eligible for the study reported being at least somewhat experienced
with the first 2 task categories (Basic Python and File), we assigned everyone to these
2 categories (4 specific tasks total). Moreover, we assigned these 2 categories first and
second, respectively.

3. For the remaining 5 task categories, sorted in increasing complexity order,23 we rank them
based on a participant’s self reported experience with that task genre, and then assign
the participant to the top 2 task categories with most experience (another 4 specific tasks
total).

Note that this filtering by experience is conducive to allowing participants to finish the tasks in
a reasonable amount of time, and reflective of a situation where a developer is working in their
domain of expertise. However, at the same time it also means that different conclusions might
be reached if novice programmers or programmers without domain expertise used the plugin
instead.

Next, we randomly assigned the first task in a category to either the treatment condition,
i.e., the NL2Code plugin is enabled in the virtual environment IDE and the participants are
instructed to use it,24 or the control condition, i.e., the NL2Code plugin is disabled. The second

22https://www.upwork.com/
23The task identifiers in Table 4.2 reflect this order.
24Despite these instructions, some participants did not use the plugin even when it was available and when

60

https://www.upwork.com/

task in the same category is then automatically assigned to the other condition, e.g., if the plugin
is on for task1-1, it should be off for task1-2. Therefore, each participant was asked to complete
4 tasks out of 8 total using the NL2Code plugin, and 4 without.

Finally, we invited all eligible applicants to read the detailed study instructions, access the
virtual environment, and start working on their assigned tasks. Only 31 out of the 64 eligible
applicants after the pre-test survey actually completed their assigned tasks.25 Their backgrounds
were relatively diverse; of the 31 participants, 12 (39%) were software engineers and 11 (35%)
were computer science students, with the rest being researchers (2, 6%), and other occupations
(6, 19%). Our results below are based on the data from these 31 participants.

4.4.3 Controlled Environment

Participants worked on their assigned tasks inside a custom instrumented online virtual environ-
ment, accessible remotely. Our virtual machine is preconfigured with the PyCharm Community
Edition IDE26 and the Firefox Web browser; and it has our NL2Code plugin either enabled or
disabled inside the IDE, depending on the condition. See Appendix 4.11.1 for complete technical
details.

In addition, the environment logs all of the user’s interactions with the plugin in the PyCharm
IDE, including queries, candidate selections, and edits; all of the user’s fine-grained IDE editor
activities; the user’s Web search/browsing activities inside Firefox; all other keystrokes inside
the VM; and the source code for each one of the user’s completed tasks.

To get a sense of how the source code evolves, whenever the user does not makemodifications
to the code for at least 1.5 seconds, the plugin also automatically uploads the current snapshot
of the code to our server. The intuition behind this heuristic is that after a user makes some
type of meaningful edit, such as adding or modifying an argument, variable, or function, they
usually pause for a short time before the next edit. This edit activity granularity can be more
meaningful than keystroke/character level, and it is finer grained than intent level or commit
level edits.

Given that it is identifiable, we record participants’ contact information (only for compen-

instructed. We discovered this while analyzing the data collected from the study and filtered out 8 participants that
did not use the plugin at all. They do not count towards the final sample of 31 participants we analyze data from,
even though they completed tasks.

25Note that 4 of the 31 participants did not complete all 8 of their assigned tasks. We include their data from the
tasks they completed and do not consider the tasks they did not finish.

26https://www.jetbrains.com/pycharm/download/

61

https://www.jetbrains.com/pycharm/download/

All (224) Basic Python (61) File (59) OS (38) Web Scraping (12) Web Server &
Client (7)

Data Analysis &
Machine Learning (29)

Data
Visualization (18)

0

2000

4000

6000

8000

10000
Co

m
pl

et
io

n
Ti

m
e

 w/ plugin
 w/o plugin

Figure 4.4: Distributions of task completion times (in seconds) across tasks and conditions (w/
and w/o using the plugin). The horizontal dotted lines represent 25% and 75% quartiles, and the
dashed lines represent medians.

sation purposes) separately from their activity logs. This Human Subjects research protocol
underwent review and was approved by the Carnegie Mellon University Institutional Review
Board.

4.4.4 Data Collection

To answer our research questions (Section 4.2), we collect the following sets of data.

Task Performance Data (RQ1). The first research question compares measurable properties
of the tasks completed with and without the help of or NL2Code IDE plugin and its underlying
code generation and code retrieval engines. One would expect that if such systems are useful in
practice, developers would be able to complete programming tasks faster without compromising
on output quality. To investigate this, we measure two variables related to how well study
participants completed their tasks and the quality of the code they produced:

• Task Completion Time. Since all activity inside the controlled virtual environment is logged,
including all keystrokes and mouse movements, we calculate the time interval between
when a participant started working on a task (first keystroke inside the IDE) and when
they uploaded their final submission to our server.

Recall that participants worked asynchronously and they may have decided to take
breaks; we designed our virtual environment to account for this, with explicit pause/resume
functionality. To account for possible breaks and obtain more accurate estimates of time
spent on task, we further subtract the time intervals when participants used our explicit
pause/resume functionality, as well as all intervals of idle time in which participants had

62

no mouse or keyboard activity for 2 minutes or more (they may have taken a break without
recording it explicitly).

Figure 4.4 shows the distributions of task completion times across the two conditions
(with and without the plugin).

• Task Correctness. Following the common practice in computer science education [59, 83,
127], we design a rubric for each task concurrently with designing the task, and later
score each submission according to that rubric. We weigh all tasks equally, assigning a
maximum score of 10 points to each. For each task, the rubric covers both basic aspects
(e.g., runs without errors/exceptions; produces the same output as the example output
provided in the task description) as well as implementation details regarding functional
correctness (e.g., considers edge cases, implements all required functionality in the task
description).

For example, for the data visualization task described in Section 4.4.1, we created the
following rubric, with the number in parentheses representing the point value of an item,
for a total of 10 points: (i) Runs without errors (2); (ii) Correct image output format (png)
(2); (iii) Read in the raw data file in correct data structure (1); (iv) Correct plot size (1);
(v) Correctly handle missing data points (1); (vi) Date (x axis) label in correct format (1);
(vii) Title set correctly (1); (viii) Font size and color set according to specification (1).

To reduce subjectivity, we graded each submission blindly (i.e., not knowing whether
it came from the control or treatment condition) and we automated rubric items when
possible, e.g., using input-output test cases for the deterministic tasks and checking if the
abstract syntax tree contains nodes corresponding to required types (data structures) such
as dictionaries. See our online appendix27 for the complete rubrics and test cases for all
tasks.

Figure 4.5 shows the distributions of scores across tasks, between the two conditions.

Plugin Queries, Snippets and User Edits (RQ2). We record user queries using the plugin,
both the generated and retrieved code snippet candidates returned for the query, and the user
selection from the candidates to insert into their source code. We use the data to analyze the
NL queries and whether users preferred to use generated vs. retrieved code. In addition, we
also record the user edits after inserting the code snippet from the plugin, along with the code
context for the analysis on post edits required after using the plugin.

27https://github.com/neulab/tranx-study/blob/master/rubrics.md

63

https://github.com/neulab/tranx-study/blob/master/rubrics.md

All (237) Basic Python (62) File (61) OS (38) Web Scraping (12) Web Server &
Client (8)

Data Analysis &
Machine Learning (36)

Data
Visualization (20)

2

4

6

8

10
Sc

or
e

 w/ plugin
 w/o plugin

Figure 4.5: Distributions of task correctness scores (0–10 scale) across tasks and conditions. The
horizontal dotted lines represent 25% and 75% quartiles, and the dashed lines represent medians.

Participant Perceptions of Tool Use (RQ3). We ran short post-test surveys after every
task and a final post-test survey at the end of the study as a whole (see Appendix 4.11.4 for
instruments) to collect data on the participants’ subjective impressions of using the NL2code
plugin and interacting with the code generation and code retrieval systems. We asked Likert-
style and open-ended questions about aspects of using the plugin the participants enjoyed, and
aspects they wish to see improved.

Next we describe how we analyzed these data and we answer each of our research questions.

4.5 RQ1: NL2Code Plugin Effects on Task Completion Time

and Program Correctness

We start by describing our shared data analysis methodology, applied similarly to both variables
corresponding to RQ1, then present our results for each variable.

Methodology. Recall, we assign each participant a total of 8 tasks, 2 per task category, based on
their experience levels with those categories; in each category, we randomly assign one of the 2
tasks to the NL2Code plugin (treatment) condition and the other task to the no plugin (control)
condition. We then compute the three sets of outcome variables above.

The key idea behind our analysis is to compare the distributions of outcome variables
between tasks completed in the treatment and control conditions. However, this comparison
is not straightforward. First, our study design imposes a hierarchical structure during data
collection, therefore the individual observations are not independent—by construction, the
same participant will have completed multiple tasks over the course of the study. Moreover,

64

tasks vary in difficulty, again by construction, therefore it is expected that their corresponding
response variables, e.g., task completion times, can be correlated with the tasks themselves; e.g.,
on average, more complex tasks will take longer to complete. Finally, the participants vary in
their self reported levels of Python and individual task category experience; we should separate
experience-related effects from effects of using the plugin, if any.

Therefore, we usemixed-effects [117] as opposed to themore common fixed-effects regression
models to analyze our data. Fixed-effects models assume that residuals are independently and
identically distributed, which is an invalid assumption in our case given the hierarchical nature
of our data: e.g., responses for the different measurement occasions (tasks) within a given
individual are likely correlated; a highly experienced Python programmer completing one task
quickly is more likely to complete other tasks quickly as well. Mixed-effects models address
this issue by having a residual term at each level, e.g., the observation level and the study
participant level, in which case the individual participant-level residual is the so-called random
effect. This partitions the unexplained residual variance into two components: higher-level
variance between higher-level entities (study participants) and lower-level variance within these
entities, between measurement occasions (tasks).

We consider two model specifications for each response variable. Our default model includes
random effects for the individual and task, per the rationale above, a fixed effect for task
category experience (e.g., participants with more machine learning experience should complete
the machine learning task faster, on average), and a dummy variable to indicate the condition
(plugin vs no plugin). For example, for the task completion time response, we estimate the
model:28

completion_time = experience + uses_plugin + (1∣user) + (1∣task) (4.1)

As specified, our default model may suffer from heterogeneity bias [33]. Task category
experience, a higher-level (i.e., individual-level as opposed to observation-level) predictor, varies
both within and across study participants: within participants, experience can vary across the
4 task categories—a user may be more experienced with basic Python than with data science;
and across participants, experience with any given task category is likely to vary as well—some
participants report higher experience with data science-related tasks than others. This means
that experience (a fixed effect) and user (a random effect) may be “correlated.” In turn, this may
result in biased estimates, because both the within- and between-effect are captured in one
estimate.

28We are using the R syntax to specify random effects.

65

There are two sources of variation that can be used to explain changes in the outcome:
(1) overall, more experienced programmersmay bemore efficient at completing tasks (group-level
pattern); and (2) when becomingmore experienced, programmersmay also becomemore efficient
at completing tasks (individual-level pattern). Therefore, to address potential heterogeneity bias,
we split our fixed effect (experience) into two variables, each representing a different source of
variation: a participant’s average experience across all task categories (experience_btw), and
the deviation for each task from the participants’s overall mean experience (experience_wi).
This process is known as de-meaning or person-mean centering [117]. This way, mixed-effects
models can model both within- and between-subject effects [33], as recommended for a long
time by Mundlak [287]. Taking the same task completion time response variable as an example
(other variables are modeled analogously), our refined model becomes:

completion_time = experience_btw + experience_wi + uses_plugin + (1∣user) + (1∣task) (4.2)

In both cases, the estimated coefficient for uses_plugin indicates the effect of using the
plugin, while holding fixed the effects of experience and other random user and task effects.

For estimation we used the functions lmer and lmer.test in R. We follow the traditional level
for statistical significance when interpreting coefficient estimates, i.e., p < 0.05. As indicators of
goodness of fit, we report a marginal (R2

m) and a conditional (R2
c) coefficient of determination

for generalized mixed-effects models [185, 294], as implemented in the MuMIn package in R:
R2

m describes the proportion of variance explained by the fixed effects alone; R2
c describes the

proportion of variance explained by the fixed and random effects together.

Threats to Validity. Besides potential threats to statistical conclusion validity arising from the
very nature of the data we are regressing over, discussed above and mitigated through our choice
of mixed-effects regression models and their specific designs, we note the standard threats to
statistical conclusion validity affecting linear regression models in general. To mitigate these,
we take standard precautions. First, we removed as outliers the top 1% most extreme values.
Second, we checked for collinearity among the predictors we use the variance inflation factor
(VIF) [76]; all were below 3, i.e., multicollinearity is not an issue [211]. Finally, we acknowledge
that additional time may be spent as the users are asked to upload their edits, increasing the
amount of time necessary in the plugin setting. However the time spent for uploading is minimal
as the plugin automatically helps the user to remove the auto-generated comments with only a
press of a keyboard shortcut.

Results. Table 4.3 summarizes our default specification mixed-effects regressions for both
response variables; the models with our second specification (de-meaned task experience) are

66

equivalent, see Appendix 4.11.7. All models include controls for the amount of users’ experience
with the respective task categories as well as other random user and task effects. In all cases,
the models fit the data reasonably well (ranging from R2

c = 29% for task correctness scores, to
R2

c = 64% for task completion time), with most of the variance explained attributable to the two
random effects (task and user)—there is significant user-to-user and task-to-task variability in
all response variables.

Table 4.3: LMER task performance models (default specification).

Dependent variable:

Completion time Correctness score

(1) (2)

Experience −195.62 0.07

(183.11) (0.24)

Uses plugin 15.76 0.44

(196.11) (0.30)

Constant 3,984.51∗∗∗ 5.88∗∗∗

(838.07) (1.03)

Observations 224 237

Num users 31 31

Num tasks 14 14

sd(user) 1489.25 0.82

sd(task) 1104.7 1.14

R2m 0.004 0.008

R2c 0.642 0.289

Akaike Inf. Crit. 3,987.14 1,106.66
Bayesian Inf. Crit. 4,007.61 1,127.46

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Analyzing the models we make the following observations. First, looking at the completion

67

time model (1), there is no statistically significant difference between the two conditions. Stated
differently, we do not find sufficient evidence to conclude that users in the plugin condition
complete their tasks with different speed on average than users in the control group, contrary
to our expectation.

Second, and this time in line with our expectation, there is no statistically significant differ-
ence between the two conditions in task correctness scores (model (2)). That is, the code written
by users in the plugin condition appears statistically indistinguishably as correct from the code
written by users in the control group.

We investigate more differences between the code written by study participants in each of
the two conditions in more detail in the next section.

4.6 RQ2: Comparison of Generated vs Retrieved Code

In this section we focus on how study participants are interacting with the code generation and
retrieval systems. Specifically, we dive deeper into both the inputs to and the outputs of the
plugin, i.e., we analyze the quality of the queries issued by study participants and of the code
snippets produced in return, contrasting code generation to retrieval throughout. We analyze
these data along three dimensions, detailed next.

4.6.1 For What Queries do Users Tend to Favor Generation vs Retrieval

Answers

First, we investigate whether there are any discernible characteristics of the natural language
queries (and therefore tasks) that associate with study participants tending to favor the code
snippets returned by the code generation model over those returned by the code retrieval model.

Methodology. Using our instrumented environment, we collect all successful queries issued
by the study participants, i.e., those for which a code snippet from among the listed candidates
was selected, and we record which of the two sources (generation or retrieval) the snippet came
from. See Table 4.10 in Appendix 4.11.8 for the complete set of queries from our 31 participants,
organized per task. We then build a binary logistic regression model with snippet source as
outcome variable and bag-of-words features of the natural language input queries as predictors.

If this model is able to predict the source of the code snippet better than by chance, then
we can conclude that there is some correlation between the type of input query and the users’
preference for generated versus retrieved code snippets. Moreover, the word feature weights in

68

the logistic regression model could shed some light on what features are the most representative
of queries that were effectively answered using generation or retrieval. For our analysis, we
manually review the top 20 (approx. 7%) contributing query features for each value of the
outcome variable (“generation” vs “retrieval”) and discuss patterns we observe qualitatively,
after thematic analysis.

Specifically, for each query, we tokenize it, filter out English stopwords, and compute a bag-of-
words and bag-of-bigrams vector representation, with each element of the vector corresponding
to the number of times a particular word or bigram (two-word sequence) occurred in the query.
The number of distinct words in all queries is 302, and the number of distinct bigrams in all
queries is 491, and thus the dimensionality of the query vector is 793.29 We then estimate the
model:

Pr(chosen snippet is “generated”) = exp(Xβ)
1 + exp(Xβ)

, (4.3)

where X here represents a k-dimensional bag-of-word vector representation of a given query,
and β are the weights to be estimated. To this end, we randomly split all the collected query and
candidate selection pairs into training (70% of the data) and held-out test (30%) sets. We then
train the model using 5-fold cross-validation until it converges, and subsequently test it on the
held-out set. We use 0.5 as a cutoff probability for our binary labels. In addition, we also build a
trivial baseline model that always predicts “retrieval.”

The baseline model is 55.6% accurate (among the successful queries in our sample there are
slightly more code snippets retrieved rather than generated). Our main logistic regression model
is 65.9% accurate, i.e., the model was able to learn some patterns of differences between those
queries that result in code generation results being chosen over code retrieval ones and vice
versa.

Threats to Validity. One potentially confounding factor is that the plugin always displays
code generation results first, before code retrieval. Ordering effects have been reported in other
domains [354] and could also play a role here. Specifically, users who inspect query results
linearly, top-down, would see the code generation results first and might select them more
frequently than if the results were displayed in a different order. That is, we might infer that
users prefer code generation to retrieval only because they see code generation results first, thus
overestimating the users’ preference for code generation versus retrieval.

29We also experimented with other features, e.g., query length, query format compliance, etc., but did not notice
a significant difference in prediction accuracy.

69

Table 4.4: Most important 20 features and their weights from the logistic regression modeling
whether successful plugin queries result in generated or retrieved code snippets.

Generation Retrieval

Weight Feature Weight Feature Weight Feature Weight Feature

0.828 open 0.352 current 0.471 letters 0.294 extract
0.742 time 0.345 delete row 0.442 copy 0.289 set
0.676 sort 0.345 random number 0.438 matplotlib 0.289 plt set
0.590 read csv 0.339 trim 0.437 datetime 0.282 read file
0.556 list 0.330 text file 0.410 python 0.282 cross validation
0.507 number 0.326 keys 0.365 column csv 0.274 scikit
0.402 search 0.310 round 0.361 bar 0.274 dataframe csv
0.399 open file 0.293 numbers 0.344 copy files 0.274 sklearn
0.385 dictionary 0.291 row dataframe 0.334 delete column 0.272 digit
0.353 read 0.290 load csv 0.302 write file 0.270 folders

Even though testing ordering effects experimentally was not practical with our study design,
we could test a proxy with our log data—to what extent the code generation results overlap with
the code retrieval ones. High overlap could indicate that code retrieval results might have been
chosen instead of code generation ones, if presented earlier in the candidates list. Whenever
study participants chose a snippet returned by the code generation model, we compared (as
strings) the chosen snippet to all candidates returned by the code retrieval engine. Only 6 out of
173 such unique queries (~3.5%) also contained the exact chosen code generation snippet among
the code retrieval results, therefore we conclude that this scenario is unlikely.30

Another potentially confounding factor is that an icon indicative of generation or retrieval
is displayed next to each result in the plugin UI. This means that users know which model
produced which candidate snippet and might choose a snippet because of that reason rather than
because of the snippet’s inherent usefulness. More research is needed to test these effects. We
hypothesize that biases may occur in both directions. On the one hand, holding other variables
like ordering fixed, users might prefer code generation results because of novelty effects. On
the other hand, users might prefer code retrieval results because of general skepticism towards
automatically generated code, as has been reported, e.g., about automatically generated unit

30Note that this only considers exact substring matches. There may be additional instances of functionally
equivalent code that is nonetheless not an exact match.

70

tests [109, 362].
Regarding the analysis, we use an interpretable classifier (logistic regression) and follow

standard practice for training and testing (cross-validation, held-out test set, etc.), therefore we
do not expect extraordinary threats to validity related to this part of our methodology. However,
we do note the typical threats to trustworthiness in qualitative research related to our thematic
analysis of top ranking classifier features [303]. To mitigate these, we created a clear audit trail,
describing and motivating methodological choices, and publishing the relevant data (queries,
top ranking features after classification, etc.). Still, we note potential threats to transferability
that may arise if different features or different classifiers are used for training, or a different
number/fraction of top ranking features is analyzed qualitatively for themes.

Results. In Table 4.4, we show the top features that contributed to predicting each one of the
two categories, and their corresponding weights. Inspecting the table we make two observations.

First, we observe that for code generation, the highest ranked features (most predictive
tokens in the input queries) refer mostly to basic Python functionality, e.g., “open, read csv,
text file” (opening and reading a file), “sort, list, number, dictionary, keys” (related to basic data
structures and operations in Python), “random number” (related to random number generation),
“trim” (string operations), etc. For example, some stereotypical queries containing these tokens
that result in the code generation snippets being chosen are “open a csv file `data.csv` and read
the data”, “get date and time in gmt”, “list all text files in the data directory”, etc.

In contrast, we observe that many queries that are more likely to succeed through code
retrieval contain terms related to more complex functionality, some usually requiring a series of
steps to fulfill. For example, “datetime” (regarding date and time operations), “cross validation,
sklearn, column csv” (regarding machine learning and data analysis), “matplotlib” (data visual-
ization), etc. are all among the top features for queries where users more often chose the code
retrieval snippets.

In summary, it seems predictable (substantially more so than by random chance) whether
natural language user queries to our NL2Code plugin are more likely to succeed through code
generation vs code retrieval on average, given the contents (words) of the queries.

4.6.2 HowWell-Specified Are the Queries

Search is a notoriously hard problem [167, 252], especially when users do not start knowing
exactly what they are looking for, and therefore are not able to formulate clear, well-specified
search queries. In this subsection we investigate the quality of the input natural language queries,

71

and attempt to delineate it from the quality of the underlying code generation and retrieval
systems—either one or both may be responsible for failures to obtain desirable code snippets for
a given task.

Anecdotally, we have observed that input queries to our NL2Code plugin are not always
well-specified, even when the participants selected and inserted into their code one of the
candidate snippets returned by the plugin for that query. A recurring issue seems to be that
study participants sometimes input only a few keywords as their query (e.g., “move file”), perhaps
as they are used to interacting with general purpose search engines like Google, instead of more
detailed queries as expected by our plugin. For example, study participants sometimes omit
(despite our detailed instructions) variable names part of the intent but defined elsewhere in
the program (e.g., “save dataframe to csv” omits the DataFrame variable name). Similarly, they
sometimes omit flags and arguments that need to be passed to a particular API method (e.g.,
“load json from a file” omits the actual JSON filename).

Methodology. The key idea behind our investigation here is to replace the underlying code
generation and retrieval systems with an oracle assumed to be perfect—a human expert Python
programmer—and study how well the oracle could have produced the corresponding code
snippet given a natural language input query. If the oracle could successfully produce a code
snippet implementing the intent, then we deem the query “good enough”, or well-specified;
otherwise, we deem the query under-specified. The fraction of “good enough” queries to all
queries can be considered as an upper bound on the success rate of a perfect code generation
model.

Concretely, we randomly sampled 50 queries out of all successful queries issued during
the user study (see Table 4.11 in Appendix 4.11.9 for the sample), and had the first author of
this paper, an proficient programmer with 8 years of Python experience, attempt to generate
code based on each of them. The oracle programmer considered two scenarios: (1) generating
code given the input query as is, without additional context; (2) if the former attempt failed,
generating code given the input query together with the snapshot of the source file the study
participant was working in at the time the query was issued, for additional context.

For each query, we record three binary variables: two indicating whether each of the oracle’s
attempts succeeded, without and with additional context, respectively,31 and the third indicating
whether the code snippet actually chosen by the study participant for that query came from the
code generation model or the code retrieval one; see Table 4.11 in Appendix 4.11.9.32

31The former implies the latter but not vice versa.
32Note that on the surface, when looking at the data in Table 4.11, the values of the former two binary variables

72

We then measure the correlation, across the 50 queries, between each of the two oracle
success variables and the code snippet source variable, using the phi coefficient ϕ [79], a standard
measure of association for two binary variables similar to the Pearson correlation coefficient in
its interpretation. This way we can assess how close the code generation model is from a human
oracle (the good enough as is scenario), and whether contextual information from the source
code the developer is currently working on might be worth incorporating into code generation
models in the future (the good enough with context scenario); note that the code generation
model we used in this study [439, 466] does not consider such contextual information.

Threats to Validity. We follow standard practice for the statistical analysis in this section,
therefore we do not anticipate notable threats to statistical conclusion validity. Due to the
limitations of our telemetry system, we did not record unsuccessful queries (i.e. queries that the
user entered but no candidate is selected). As a result, queries that favor neither generation nor
retrieval cannot be compared. However, we acknowledge three other notable threats to validity.
First, we used only one expert programmer as oracle, which may introduce a threat to construct
validity given the level of subjectivity in determining which queries are “good enough”. To
mitigate this, we discussed among the research team, whenever applicable, queries for which
the expert programmer was not highly confident in the determination. Second, our random
sample of 50 queries manually reviewed by the expert programmer is only representative
of the population of 397 queries with 95% confidence and 13% margin of error, which may
introduce a threat to internal validity. However, the relatively small sample size was necessary
for practical reasons, given the high level of manual effort involved in the review. Finally, we
note a potential threat to construct validity around the binary variable capturing the source
(generation or retrieval) of the candidate code snippets selected by the study participants. There
is an implicit assumption here that study participants know what the right answer (code snippet)
should be given a natural language query, and are able to recognize it among the candidates
provided by the NL2Code plugin; therefore, we assume that the snippet source variable captures

(the oracle’s determination) may not always seem intuitive given the query. For example, the oracle determined the
query “pandas to csv” to be not good enough, even with context, while the query “pandas output csv”, seemingly
equivalent, was found to be good enough with context. In both cases, the intent appears to be exporting a pandas
dataframe (a popular data science Python library) as a csv file. However, in the first example the snapshot of the
source file the study participant was working in at the time of the query did not yet include any such dataframe
objects; the user appears to have issued the query ahead of setting up the rest of the context. A context-aware code
generation model would also not be able to extract any additional information in this case, similarly to the human
oracle.

73

actual quality differences between code snippets produced by the generation and retrieval
models, respectively. However, this may not be the case. To test this, we reviewed all the
candidate snippets returned by the plugin for the first 6 among the 50 queries analyzed. Across
the 6 ⋅2 models (generation/retrieval) ⋅7 candidates per model = 84 candidate snippets, we only
discovered one case where the study participant could have arguably chosen a more relevant
snippet. Therefore, we expect the incidence of violations of this assumption to be rare enough
to not materially affect our results.

Table 4.5: Contingency tables for the two oracle comparison
scenarios in Section 4.6.2; see Table 4.10 in Appendix 4.11.8 for
the actual queries.

Snippet Query

Generation
Good enough as is Good enough w/ context

False True False True

False 23 8 15 16
True 7 12 1 18

Results. Table 4.5 shows contingency tables for each of the two oracle comparison scenarios.
Note that the “good enough with context” category includes all queries that are “good enough
as is”, by construction. Inspecting the results in the table, we make the following observations.

First, the natural language queries analyzed are more often than not insufficiently well-
specified for even the human expert to be able to write code implementing those intents;
only 20 out of 50 queries (40%) are deemed “good enough as is” by the oracle. Representative
examples of failures from Table 4.11 are the queries consisting of a few keywords (e.g., “csv
writer”, “defaultdict”) rather than queries containing sufficient details about the user’s intent
(e.g., “remove first column from csv file”). Considering the source file the user was editing at
query time helps, with 34 (68%) of the queries now being deemed “good enough with context”
by the oracle.

Second, there is moderately high and statistically significant association between the suc-
cess of the code generation model (i.e., the study participant choosing one of those candidate
code snippets) and the quality of queries in both scenarios: ϕ = 0.37 (p = 0.008) for already
well-specified queries and ϕ = 0.45 (p = 0.001) for queries that become informative enough
given additional context. This suggests that input query quality can have a big impact on

74

the performance of the code generation model, and that incorporating additional contextual
information may help.

Analyzing the failure rate of the code generation model (generation = False), we observe that
it is relatively high in general (31 out of 50 queries, or 62%). However, most of these cases are in
response to under-specified queries (23 out of the 31 failures; 74%), for which even the human
oracle failed to generate the corresponding code. Still, there are 8 (26%) failure cases where the
human expert could directly implement the natural language intent without additional context:
“date now”, “for loop on range 100”, “generate random letters”, “get now one week from now”,
“get time and date”, “open "data.csv" file”, “how to remove an item from a list using the index”,
and “plt create 3 subplots”. All but the last one seem to refer to basic Python functionality. These
queries are targets where further improved code generation techniques could improve the utility
of the plugin.

Interestingly, we also observe a non-trivial number of under-specified queries (7 out of 30;
23%) for which the code generation model succeeded despite the human oracle failing: “call
ˋpick_with_replacementˋ”, “copy a file to dist”, “pandas round value”, “pandas to csv”, “rename
column pandas”, “plt ax legend”, and “scatter”.

4.6.3 How Much Are the Code Snippets Edited After Plugin Use

Choosing (and inserting into the IDE source file) one of the candidate code snippets returned by
the NL2Code plugin indicates that the code snippet was generally useful. However, while useful,
the code snippet may still be far from an ideal solution to the user’s query. To get a sense of how
appropriate the accepted code snippets are given the user intent, we compare the distributions
of snippet lengths before (i.e., as returned by the plugin) and after potential edits in the IDE.

Methodology. When inserting a code snippet a user selected from among the plugin-returned
candidates, we also insert special code comments in the source file around the snippet, to mark
the start and end of the code fragment corresponding to that particular intent (as shown in
Figure 4.3). Study participants are instructed to use a certain key combination when they are
done editing that code fragment to remove the delimiters and submit the edited version of the
code fragment back to our server. Our analysis in this section compares the length of code
snippets and types of tokens present between these two versions.

Specifically, we first tokenize and tag each version of a code snippet using a Python tokenizer,
and then compare the pairs of distributions of lengths before and after edits for code snippets
originating from each of the two underlying models, generation and retrieval, using the non-

75

parametric Wilcoxon signed-rank test; in addition, as a measure of effect size we compute the
median difference between members of the two groups, i.e., the Hodges–Lehman estimator [161].
We also compute and report on the Levenshtein edit distance between the two versions, in terms
of number of tokens. Figure 4.6 visualizes these different distributions.

Threats to Validity. We note two potential threats to construct and external validity related to
the analysis in this section. First, we have no way of enforcing that study participants contain
their code edits related to a particular intent to the section of the source file specially delimited
by code comments for this purpose. One may include unrelated edits in the same code region, or
make related edits outside of the designated region. Therefore, our measurement of snippet length
post edits may not accurately reflect the construct of snippet length as related to a particular in-
tent. To mitigate this, we gave clear instructions to participants at the beginning of the study and
manually reviewed a small sample of the edited versions of a snippet, not discovering any obvious
noise. Second, not all study participants followed our instructions every time they used the plugin,
and submitted their final (edited or not) version of the snippet back to our server. Only 303 out of
the 397 successful queries recorded (76.3%) had final code snippets uploaded back to our server.
Since this was not a random sample, our findings on this sample may not generalize to the entire
population of 397 successful queries. To assess the severity of this potential threat, we compared
the distributions of plugin-returned code snippet lengths between all successful queries and just
the 303 queries where study participants uploaded their edits onto our server; for both generated
(Wilcoxon p = 0.54) and retrieved (p = 0.93) code snippets, we found the respective two distribu-
tions statistically indistinguishable, therefore we expect this to not be a sizable threat to validity.

Results. Comparing the two distributions of token lengths for acceptable code snippets from
the code generation model before and after edits, we do not find any statistically significant
differences in their mean ranks (p = 0.345). The mean edit distance between the two versions of
these snippets is 5.2 tokens (min 0, max 130, median 1).

In contrast, comparing the two distributions of token lengths for acceptable code snippets
from the code retrieval engine before and after edits, we find a statistically significant difference
in their mean ranks (p = 1.195 × 10−7). The Hodges–Lehman median difference between the
edited and unedited versions of these snippets is 18 tokens, with a 95% confidence interval from
11 to 23 tokens. The edit distance metric paints a similar picture—acceptable code snippets from
the code retrieval engine, before and after edits, are at a mean edit distance of 13.2 tokens from
each other (min 0, max 182, median 0).

We also note that code retrieval snippets tend to be longer than code generation ones both

76

Original Length Final Length Edit Distance
0

20

40

60

80

100

120

140

To
ke

ns

Retrieved
Generated

Figure 4.6: Split violin plots comparing the length (in tokens) of the code snippets chosen by the
study participants across all successful queries, before and after potential edits in the IDE. The
horizontal dotted lines represent 25% and 75% quartiles, and the dashed lines represent medians.

before (p < 2.2 × 10−16; median difference 18 tokens, with a 95% confidence interval from 14 to
Infinity) and after edits (p = 2.657 × 10−14; median difference 10 tokens, with a 95% confidence
interval from 7 to Infinity). This may help explain why the retrieved snippets require more
edits to correct the code to better suit the current programming code context, compared to the
generated snippets.

Diving deeper into the edits to the plugin-supplied version of the different snippets, we
compute the frequency distribution of tokens in both versions (plugin and final), normalized
based on total token count in each corpus. Table 4.6 highlights the tokens with the greatest
increases and decreases in relative frequency during editing. We observe that study participants
seem to add common keywords such as “in, for, if, with”, built-in names and functions such
as “key, print”, and common variable names such as “line, filename” to the generated/retrieved
candidates. Stated differently, in these cases the code snippets seem to miss substantive parts
and relevant functionality, which also may be partly due to the lack of specificity described in
the previous section.

In contrast, study participants seem to delete number and string literals from the code
snippets. This may be explained by the fact that the tool used retrieved code snippets as they
appeared on Stack Oveflow, and thus many retrieved code snippets contain additional boilerplate
code required for initialization or setup, and hard-coded example inputs and outputs. We also
observe some commonly used variable names like “df, plt” that get deleted, suggesting that
variable replacement is one of the common operations when reusing the code snippets. An

77

interesting observation here is that “In” and “Out” are getting deleted frequently. We find that
it’s mostly due to some of the code snippets retrieved from Stack Overflow being in the format
of IPython REPL, which uses “In” and “Out” to separate the Python source code and execution
outputs. When integrating these snippets, the users will have to remove this superfluous text.
Figure 4.7 shows a representative example of such user edits after selecting a candidate snippet,
which involves deleting IPython REPL contents, variable replacement and addition, as well as
literal replacements.

Table 4.6: Most frequently added/deleted tokens after user edits to plugin-returned code snippets.

Addition Deletion

∆Freq. Token ∆Freq. Token ∆Freq. Token ∆Freq. Token

0.0040 in 0.0016 w -0.0071 2 -0.0016 In
0.0037 for 0.0015 with -0.0071 1 -0.0016 11
0.0030 line 0.0015 `` -0.0043 a -0.0015 y
0.0024 file 0.0015 days -0.0038 0 -0.0014 Seattle
0.0023 key 0.0015 cur_v -0.0034 3 -0.0014 12
0.0023 os.path.join 0.0015 company_info -0.0025 plt -0.0013 4
0.0021 dic 0.0015 n -0.0023 50 -0.0013 iris
0.0021 filename 0.0014 output -0.0021 id_generator -0.0013 string.digits
0.0018 print 0.0014 codecs.open -0.0018 Out -0.0013 10
0.0017 if 0.0014 v -0.0017 df -0.0013 matplotlib.pyplot

Unedited

1 In [479]: df

2 Out[479]:

3 ID birthyear weight

4 0 619040 1962 0.123123

5 1 600161 1963 0.981742

6 2 25602033 1963 1.312312

7 3 624870 1987 0.942120

8

9 In [480]: df["weight"].mean()

10 Out[480]: 0.83982437500000007

Edited

1 car_prices = car_prices["price"].mean()

Figure 4.7: Representative example of user edits to a code snippet retrieved from Stack Overflow.

78

Table 4.7: Frequency changes of different token types after user edits to plugin-returned code
snippets. Sorted in descending order, positive number represents addition and negative number
represents deletion.

∆Freq. Type ∆Freq. Type ∆Freq. Type ∆Freq. Type

0.0138 NAME 0.0053 DEDENT 0.0004 COMMENT -0.0095 OP

0.0053 INDENT 0.0022 STRING -0.0049 NEWLINE -0.0248 NUMBER

Furthermore, following the previous observations on actual tokens, we are interested in how
the frequency of different types of tokens changes before and after users edit the plugin-returned
code snippets. We use the tokenize33 Python 3 library to parse and tag the code snippets, and
compare the frequency changes by token type, similar to the previous analysis.34 The results are
shown in Table 4.7. We find that users add new NAME (identifiers, keywords) tokens the most,
with the frequency of STRING (string literal) tokens slightly increased, and COMMENT (comment
strings) tokens staying roughly the same after the edits. NUMBER (numeric literal) tokens are
deleted the most, in line with the observation above, again suggesting that many plugin-returned
snippets are not tailored to specific identifiers and parameters that the user desires. Interestingly,
we also see a slight decrease in frequency of NEWLINE tokens, representing a decrease in the
number of logical lines of Python code after edits. This suggests that the plugin-returned code
snippets are not concise enough in some cases.

4.7 RQ3: User Perceptions of the NL2Code Plugin

Our last research question gauges how study participants perceived working with the NL2Code
plugin, their pain points, and their suggestions for improvement.

Methodology. As part of our post-test survey, we asked the participants open-ended questions
about what worked well when using the plugin and, separately, what they think should be
improved. In addition, we asked participants to rate their overall experience using the plugin
on a Likert scale, ranging from 1 (very bad) to 5 (very good). We then qualitatively coded the
answers to open-ended questions to identify themes in the responses for the 31 who completed

33https://docs.python.org/3/library/tokenize.html
343 of the retrieved snippets cannot be parsed and thus are omitted. See full explanation of different token types

at https://www.asmeurer.com/brown-water-python/tokens.html. We also left out some uninteresting token
types, such as ENCODING, ENDMARKER, NL.

79

https://docs.python.org/3/library/tokenize.html
https://www.asmeurer.com/brown-water-python/tokens.html

all their assigned tasks.

Threats to Validity. We acknowledge usual threats to trustworthiness and transferability from
qualitatively analyzing a relatively small set of open-ended survey data [303], as also discussed
above. In particular, we note that only one researcher was involved in coding. To mitigate these
threats, we release all verbatim survey responses as part of our replication package.

Results. Overall, study participants report having a neutral (15/31; 48.4%) or at least somewhat
positive (15/31; 48.4%) experience using the NL2Code plugin, with only one participant rating
their experience as somewhat negative.

Among the aspects the participants report as positive, we distill two main themes:

The plugin helps find code snippets the developer is aware of but cannot fully remember
(P1, P2, P8, P10, P11, P19, P20, P21, P22, P30, P31) These tend to be small commands or less familiar
API calls and API usage patterns, that users have seen before. Two participants summarize this
well:

“On a few occasions, the plugin very conveniently gave me the snippet of code I
was looking for, [which] was “on the tip of my tongue”.” (P10)

“Sometimes I just cannot remember the exact code, but I remember the shape. I
could select the correct one easily.” (P2)

Respondents expressed appreciation for both the generation and retrieval results, and there
was little expression of preference for one method over the other, e.g.:

“Even just having the snippets mined from Stack Overflow visible in the IDE was a
good memory refresher / source of ideas” (P10)

“It was somewhat convenient to not have to switch tabs to Google things, ..., based
on my memory, that most of the suggestions I got were from the internet anyway.”
(P5)

“It has all resources needed at one place.” (P6)

Using an in-IDE plugin is less disruptive than using a web browser (P1, P4, P5, P6, P7,
P10, P18, P20, P24, P27) Many of our respondents who were positive about the plugin reiterate
expected context-switching benefits of not leaving the IDE while programming, e.g.:

“I like that the plugin stops me having to go and search online for solutions. [...] It
can be very easy to get distracted when searching for solutions online.” (P20)

“Compared with manual search, this is faster and less disruptive.” (P1)

80

Participants also describe many aspects of the plugin that could be improved.

The quality of code generation and retrieval results could be higher (P3, P4, P5, P7,
P9, P13, P14, P23, P27, P29, P31) Respondents mentioned that it was “rare” (P7) when they could
directly use code from plugin, without modifications. In some cases, results from the plugin
were “not related to the search” (P14), and users “didn’t find what [they were] searching for” (P31). As one
respondent humbly summarized it:

“The model needs some improvements.” (P4)

The insufficient quality of the plugin’s results was especially felt as the tasks became more
complex and involved APIs with complex usage patterns. One participant summarized this well:

“For easy tasks, like walking through a directory in the filesystem, the plugin saves
me time because what I did previously was to go to Stack Overflow and copy the
code. But for difficult tasks like data processing or ML, the plugin is not helpful.
Most snippets are not useful and I have to go to the website of sklearn to read the
full doc to understand what I should do.” (P3)

A particular related pain point is that the snippets from the code retrieval engine often
contain spurious elements (as also noted above). In one participant’s words:

“When inserting the code into my program, I would like to **not** copy the in-
put/output examples, and I can’t imagine ever wanting those in the program itself.”
(P5)

Users could benefit from additional context (P3, P5, P8, P18, P19, P20, P24, P26, P27) Some
respondents mention that it would be useful to include additional (links to) explanations and
documentation alongside the returned code snippets so that the user could understand what the
snippet is supposed to do, or even “which of the suggestions is the correct one when you are not familiar

with a module” (P11). In two participants’ words:
“It would be nice if the examples from the internet could contain the relevant context
of the discussion (e.g., things to consider when using this suggestion), as well as the
input/output examples.” (P5)

“I hope the generated code snippet can have more comments or usage [examples].
Otherwise I still need to search the web to understand what it is.” (P3)

A closely related theme is that using the plugin assumes one has a “good background understanding

of the underlying principles/modules/frameworks” (P11), and they primarily need help with “look[ing] up

81

little syntax bits that you have forgotten” (P11). (P1, P11, P16, P25) One participant was especially
critical:

“For more complex problems, I think the plugin does not help at all, because the
programmer needs to know the theoretical background.” (P16)

The plugin could benefit from additional context (P4, P9, P10, P17, P30) Some participants
suggest that the plugin could be “smarter” if it becomes more aware of the local context in the
developer’s IDE, e.g.:

“Sometimes I want to generate an expression to be inserted somewhere, to be
assigned to a variable, or to match the indentation level, without having to tell the
plugin this explicitly. I didn’t feel like the plugin was aware of context.” (P10)

Participants also comment on how the plugin’s query syntax takes some getting used to (P2,
P12, P15), referring in particular to the way the code generation model expects queries to include
variables, while the web search code retrieval engine allows users to only use keywords. For
example:

“[It became] useful to me towards the end when I got the hang of it and could
formulate questions in the correct way (which I feel is somewhat of a skill in itself)”
(P15)

“It is not very natural for me to ‘instantiate’ my questions, I mostly like to search
[using] keywords or just a description of what I want to achieve.” (P2)

Querying the plugin could be interactive (P11, P20, P30) Finally, some participants suggest
to make querying interactive, dialogue-based, rather than unidirectional. This could with refining
queries until they are sufficiently well-specified, or to decompose complex functionality into
smaller steps, e.g.:

“A chatbot [...] could identify the rough area in which the user needs assistance,
[and] could help narrow it down further, helping to pinpoint an exact solution.” (P20)

4.8 Discussion and Implications

Recent years have seen much progress from machine learning and software engineering re-
searchers developing techniques to better assist programmers in their coding tasks, that exploit
the advancements in (deep) learning technology and the availability of very large amounts of data

82

from Big Code repositories like GitHub and Stack Overflow. A particularly promising research
direction in this space has been that addressing the decades-old problem of “natural language
programming” [89], i.e., having people instruct machines in the same (natural) language they
communicate in with each other, which can be useful in many scenarios, as discussed in the
Introduction. However, while excited about this research direction and actively contributing to
it ourselves, we are also questioning whether the most impact from such work can be had by
focusing primarily on making technological advancements (e.g., as we write this, a one-trillion
parameter language model has just been announced [102], as only the most current development
in a very rapidly evolving field) without also carefully considering how such proposed solutions
can fit within the software development workflow, through human-centered research.

In this spirit, we have presented the results of a controlled experiment with 31 participants
with diverse background and programming expertise, observed while completing a range of
Python programming tasks with and without the help of a NL2Code IDE plugin. The plugin
allows users to enter descriptions of intent in natural language, and have corresponding code
snippets, ideally implementing said intent, automatically returned. We designed the plugin
with two research goals in mind. First, we sought to evaluate, to our knowledge for the first
time using a human-centered approach, the performance of some NL2Code generation model
with state-of-the-art performance on a benchmark dataset, but unknown performance “in the
wild”. Second, we sought to contrast the performance and user experience interacting with such
a relatively sophisticated model to those of a relatively basic NL2Code retrieval engine, that
“merely” retrieves existing code snippets from Stack Overflow given natural language search
queries. This way, we could estimate not only how far we are from not having to write any code
while programming, but also how far we have come on this problem given the many recent
advancements in learning and availability of datasets.

Main Results. Overall, our results are mixed. First, after careful statistical analysis in RQ1,
comparing tasks completed with and without using the NL2Code plugin (and either of its
underlying code generation or retrieval systems), we found no statistically significant differences
in task completion times or task correctness scores.

The results for code metrics (SLOC and CC) can be seen as mixed. One the one hand,
the code containing automatically generated or retrieved fragments is not, on average, any
more complex or any less maintainable than the code written manually, insofar as the CC and
SLOC metrics can distinguish. One the other hand, one could have expected the opposite result,
i.e., that since NL2Code tools are typically trained on idiomatic code, using them should lead

83

to “better”, more idiomatic code overall, which might suggest lower SLOC and CC values, on
average.

Among the possible explanations for why we don’t find supporting evidence for the “better
code” hypothesis, two stand out: (i) the twometrics are only crude approximations of the complex,
multifaceted concept of code quality; and (ii) even when writing code “manually”, developers
still consult the Web and Stack Overflow (i.e., the same resources that these NL2Code tools were
trained on) and copy-paste code therein. To better understand the interaction between using
the plugin and using a traditional Web browser, we used the event logs from our instrumented
environment and compared the distributions of in-browser Web searches between tasks where
the 31 study participants used the NL2Code plugin (median 3, mean 5, min 0, max 35 searches per
user per task) and tasks where they did not (median 4, mean 7, min 0, max 48). A mixed-effects
regression model similar to the ones in Section 4.5, controlling for individual self-reported
experience and with random effects for user and task, reveals a statistically significant effect
of using the plugin on the number of in-browser Web searches: on average, using the plugin
is associated with 2.8 fewer in-browser Web searches; however, this effect is smaller than the
standard deviation of the random user intercept (~4 in-browser Web searches). We conclude
that developers still search the Web when using the plugin, even if slightly less than when not
using the plugin.

Using a similar argument, the result for task correctness scores can be seen as mixed. Code
containing automatically generated or retrieved snippets is not, on average, any less appropriate
for a given task as per our rubric than code written manually. However, using the NL2Code
plugin doesn’t seem to help our study participants significantly improve their scores either,
despite there being room for improvement. Even though across our sample the median score per
task was 7 out of 10 when using the plugin and 6 when not using the plugin, the multivariate
regression analysis did not find the difference to be statistically significant.

The result for task completion times can be seen as negative and, thus, is perhaps the most
surprising of our results: on average, study participants do not complete their tasks statistically
significantly faster when using the NL2Code plugin compared to when they are not using
it. There are several possible explanations for this negative result. First, we acknowledge
fundamental limitations of our study design, which we hope future researchers can improve on.
In particular, our tasks, despite their diversity and, we believe, representativeness of real-world
Python use, may not lend themselves sufficiently well to NL2Code queries and, therefore, study
participants may not have sufficient opportunities to use, and benefit from, the plugin. Moreover,
our study population (31 participants) may not be large enough for us to detect effects with

84

small sizes, should they exist.

However, even with these limitations, considering also our results for RQ2 and RQ3 we
argue that another explanation is plausible: our NL2Code plugin and its main underlying code

generation technology, despite state-of-the-art (BLEU-score) performance on a benchmark dataset,

is not developed enough to be markedly useful in practice just yet. Our telemetry data (RQ2)
shows not only that study participants still carry out in-browser Web searches even though the
NL2Code plugin was available, as discussed above, but also that the code snippets returned by
the plugin, when used, undergo edits after insertion in the IDE, suggesting insufficient quality
to begin with. Our qualitative survey data (RQ3) paints a similar picture of overall insufficient
quality of the NL2Code results.

Implications. While our study suggests that state-of-the-art learning-based natural language
to code generation technology is ways away from being useful in practice, our results should be
interpreted more optimistically.

First, we argue that the problem is worth working on. In contemporary software devel-
opment, which involves countless and constantly changing programming languages and APIs,
natural language can be a useful medium to turn ideas into code, even for experienced program-
mers. A large fraction of our study participants commended NL2Code developer assistants for
helping them remember the precise syntax or sequence of API calls and their arguments, required
to implement some particular piece of functionality. When integrated into the development
workflow, e.g., through an IDE plugin, such systems can help developers focus by reducing
the need for context switching, further improving their productivity. Our quantitative task
performance results for the current version of this NL2Code plugin, while negative, do not imply
that future, better performing such systems will also not be markedly useful in practice; the
qualitative data from our our study participants already suggests otherwise, as does quantitative
data from prior research on the usefulness of in-IDE code search plugins [327].

Second, we argue that this particular style of code generation is worth working on. Our
analysis of input queries and resulting code snippets for RQ2 shows that the code generation
model produces fundamentally different results than the (simple) code retrieval engine we used
for comparison, and that study participants choose snippets returned by the code generation
model almost as frequently as they do snippets from the code retrieval engine. In turn, this
suggests that, at least within the scope of the current study, one type of model cannot be
used as a substitute for the other. As discussed above, the code generation model does almost
always produce different results than the code retrieval model. However, it was unclear from

85

that analysis whether the generated code snippets reflect some fundamentally higher level of
sophistication inherent to the code generation model, or whether the code retrieval engine we
used for comparison is simply too naive.

To further test this, we performed an additional analysis. Specifically, we looked up the
chosen code generation snippets in themanually-labeled Stack Overflow dataset used for training
the code generation model, to assess whether the model is simply memorizing the training
inputs. Only 13 out of the 173 unique queries (~7.5%) had as the chosen code fragment snippets
found verbatim in the model’s training dataset. Therefore, the evidence so far suggests that the
code generation model does add some level of sophistication, and customization of results to the
developers’ intent (e.g., composing function calls), compared to what any code retrieval engine
could.

Third, we provide the following concrete future work recommendations for researchers
and toolsmiths in this area, informed by our results:

• Combine code generation with code retrieval. Our results suggest that some queries may be
better answered through code retrieval techniques, and others through code generation.
We recommend that future research continue to explore these types of approaches jointly,
e.g., using hybrid models [140, 143] that may be able to combine the best of both worlds.

• Consider the user’s local context as part of the input. Our oracle comparison revealed that
users’ natural language queries can often be disambiguated by considering the local context
provided by the source files they were working in at the time, which in turn could lead to
better performance of the code generation model. There is already convincing evidence
from prior work that considering a user’s local context provides unique information about
what code they might type next [409]. In addition, some work on code retrieval has
also considered how to incorporate context to improve retrieval results [58]; this may be
similarly incorporated.

• Consider the user’s local context as part of the output. Considering where in their local IDE
users are when invoking an NL2Code assistant can also help with localizing the returned
code snippets for that context. Some transformations are relatively simple, e.g., pretty
printing and indentation. Other transformations may require more advanced program
analysis but are still well within reach of current technology, e.g., renaming variables used
in the returned snippet to match the local context (the Bing Developer Assistant code
retrieval engine [429] already does this), or applying coding conventions [9].

86

• Provide more context for each returned snippet. Our study shows that NL2Code generation or
retrieval systems can be useful when users already know what the right answer is, but they
need help retrieving it. At the same time, many of our study participants reported lacking
sufficient background knowledge, be it domain-specific or API-specific, to recognize when
a plugin-returned code snippet is the right one given their query, or what the snippet does
in detail. Future research should consider incorporating more context and documentation
together with the plugin’s results, that allows users to better understand the code, e.g.,
links to Stack Overflow, official documentation pages, explanations of domain-specific
concepts, other API usage examples. One example of this is the work of Moreno et al.
[285], which retrieves usage examples that show how to use a specific method.

• Provide a unified and intuitive query syntax. We observed that users are not always
formulating queries in the way that we would expect, perhaps because they are used to
traditional search engines that are more robust to noisy inputs and designed for keyword-
based search. The NL2Code generation model we experimented with in this study was
trained on natural language queries that are not only complete English sentences, but also
include references to variables or literals involved with an intent, specially delimited by
dedicated syntax (grave accents). As our respondents commented in the post-test survey,
getting used to formulating queries this way takes some practice. Future research should
consider not only what is the most natural way for users to describe their intent using
natural language, but also how to provide a unified query syntax for both code generation
and code retrieval, to minimize confusion. Robust semantic parsing techniques [23, 341]
may also help with interpreting ill-specified user queries.

• Provide dialogue-based query capability. Dialogue-based querying could allow users to
refine their natural language intents until they are sufficiently precise for the underlying
models to confidently provide some results. Future systems may reference work on query
reformulation in information retrieval, where the user queries are refined to improve
retrieval results both for standard information retrieval [22] and code retrieval [138, 157].
In addition, in the NLP community there have been notable advancements recently in
interactive semantic parsing [192, 459], i.e., soliciting user input when dealing with missing
information or ambiguity while processing the initial natural language query, which could
be of use as well.

• Consider new paradigms of evaluation for code generation and retrieval systems. Usage

87

log data, such as the ones we collected here, is arguably very informative and useful for
researchers looking to evaluate NL2Code systems. However, compared to automated
metrics such as BLEU, such data is much less readily available. We argue that such data is
worth collecting even if only in small quantities. For example, with little but high quality
data, one could still train a reranker [467] to try to select the outputs that a human user
selected; if the predictive power exceeds that of BLEU alone, then the trained reranker
could be used to automatically evaluate the quality of the generated or retrieved code
more realistically than by using BLEU.

4.9 Related Work

Finally, we more extensively discuss how this work fits in the landscape of the many other
related works in the area.

4.9.1 NL2Code Generation

While we took a particular approach to code generation, there are a wide variety of other
options. Researchers have proposed that natural language dialogue could be a new form of
human-computer interaction since nearly the advent of modern computers [89, 119, 151, 280].
The bulk of prior work either targeted domain-specific languages (DSLs), or focused on task-
specific code generation for general-purpose languages, where more progress could be made
given the relatively constrained vocabulary and output code space. Examples include generating
formatted input file parsers [228]; structured, idiomatic sequences of API calls [344]; regular
expressions [218, 271, 316]; string manipulation DSL programs [352]; card implementations
for trading card games [251]; and solutions to the simplest of programming competition-style
problems [29].

With the recent boom of neural networks and deep learning in natural language processing,
generating arbitrary code in a general-purpose language [464, 466] are becoming more feasible.
Some have been trained on both official API documentation and Stack Overflow questions and
answers [439]. There are also similar systems35 able to generate class member functions given

35This is, of course, among the many other use cases for neural network models of code and natural language
such as code summarization [170, 457], or embedding models that represent programming languages together with
natural languages [104]. Allamanis et al. [12] provide a comprehensive survey of the use cases of machine learning
models in this area.

88

natural language descriptions of intent and the programmatic context provided by the rest of
the class [171], and to generate the API call sequence in a Jupyter Notebook code cell given the
natural language and code history up to that particular cell [2].

4.9.2 NL2Code Retrieval

Code retrieval has similarly seen a wide variety of approaches. The simplest way to perform
retrieval is to start with existing information retrieval models designed for natural language
search, and adapt them specifically for the source code domain through query reformulation
or other methods [138, 157, 196, 262, 414, 429]. Other research works utilize deep learning
models [10, 129, 167, 170] to train a relevance model between natural language queries and
corresponding code snippets. It is also possible to exploit code annotations to generate additional
information to help improve code retrieval performance [460] or extracted abstract programming
patterns and associated natural language keywords for more content-based code search [196].
Many of the models achieve good performance on human annotated relevance benchmark
datasets between natural language and code snippets. Practically, however, many developers
simply rely on generic natural-language search engines like Google to find appropriate code
snippets by first locating pages that contain code snippets through natural language queries [365]
on programming QA websites like Stack Overflow.

4.9.3 Evaluation of NL2Code Methods

In order to evaluate whether NL2Code methods are succeeding, the most common way is to
create a “reference” program that indeed implements the desired functionality, and measure
the similarity of the generated program to this reference program. Because deciding whether
two programs are equivalent is, in the general case, undecidable [353], alternative means are
necessary. For code generation in limited domains, this is often done by creating a small number
of input-output examples and making sure that the generated program returns the same values
as the reference program over these tests [37, 217, 424, 456, 478, 479, 481, 489, 491]. However,
when scaling to broader domains, creating a thorough and comprehensive suite of test cases
over programs that have a wide variety of assumptions about the input and output data formats
is not trivial.

As a result, much research work on code generation and retrieval take a different tack.
Specifically, many code generation methods [2, 171, 439, 464] aim to directly compare generated
code snippets against ground truth snippets, using token sequence comparison metrics borrowed

89

from machine translation tasks, such as BLEU score [315]. However, many code snippets are
equivalent in functionality but differ quite largely in terms of token sequences, or differ only
slightly in token sequence but greatly in functionality, and thus BLEU is an imperfect metric of
correctness of a source code snippet [406].

Code retrieval, on the other hand, is the task of retrieving relevant code given a natural
language query, that is related to other information retrieval tasks. Since code retrieval is
often used to search for vague concepts and ideas, human-annotated relevance annotations are
needed for evaluation. The common methods used in research work [129, 167, 457] compare the
retrieved code snippet candidates given a natural language query, with a human annotated list
of code snippet relevance, using common automatic information retrieval metrics like NDCG,
MRR, etc. [270] The drawback of this evaluation method is that the cost of retrieval relevance
annotation is high, and often requires experts in the specific area. Also, since the candidate lists
are usually long, only a few unique natural language queries could be annotated. For example,
one of the most recent large scale code search challenge CodeSearchNet [167] contains only 99
unique natural language queries, along with their corresponding code snippet relevance expert
annotations, leading to smaller coverage of real world development scenarios in evaluation.

Regardless of the automatic metrics above, in the end our final goal is to help developers in
their task of writing code. This paper fills the gap of the fundamental question of whether these
methods will be useful within the developer workflow.

4.9.4 In-IDE Plugins

Similarly, many research works on deploying plugins inside IDEs to help developers have
been performed. Both Ponzanelli et al. [326] and Ponzanelli et al. [327] focus on reducing
context switching in IDE by incorporating Stack Overflow, by using the context in the IDE
to automatically retrieve pertinent discussions from Stack Overflow. Subramanian et al. [396]
proposes a plugin to enhance traditional API documentation with up-to-date source code
examples. Rahman and Roy [345] and Liu et al. [257] designs the plugin to help developers find
solutions on the Internet to program exceptions and errors. Following the similar route, Brandt
et al. [48] studies opportunistic programming where programmers leverage online resources
with a range of intentions, including the assistance that could be accessed from inside the IDE.

Besides plugin developed to reduce context-switching to other resources in developer work-
flows, Amann et al. [15] focus on collecting data of various developer activities from inside the
IDE that fuel empirical research on the area [330].

90

This paper proposes an in-IDE plugin that incorporates code generation in addition to code
retrieval to test the user experience in the real development workflow. In the meantime it also
collects fine-grained user activities interacting with the plugin as well as editing the code snippet
candidates, to provide public data for future work.

4.9.5 End-User Development

The direction of exploring using natural language intents to generate code snippets is closely
related to end-user development [246], which allows end-users (people who are not professional
software developers) to program computers. Cypher et al. [80] is among the first work that
enables end-user to program by demonstration.

Traditionally, programming has been performed by software developers who write code
directly in programming languages for the majority of functionality they wish to implement.
However, acquiring the requisite knowledge to perform this task requires time-consuming
training and practice, and even for skilled programmers, writing programs requires a great
amount of time and effort. To this end, there have been many recent developments on no-code or
low-code software development platforms that allow both programmers and non-programmers
to develop in modalities of interaction other than code [366]. Some examples include visual
programming languages such as Scratch [269] that offers a building-block style graphical user
interface to implement logic. In specific domains such as user interface design and prototyping,
recent advances in deep learning models also enable developers to sketch the user interface
visually and then automatically generates user interface code with the sketch [34], or using
existing screenshots [299].

Besides visual no-code or low-code programming interfaces, there has also been much
progress on program synthesis [31, 103, 106, 389], which uses input-output examples, logic
sketches, etc. to automatically generate functions, with some recent advances that use machine
learning models [29, 68, 98, 381]. Some work also generate programs from easier-to-write
pseudo-code [217, 489].

There are other work in the area. Barman et al. [30], Chasins et al. [61, 62] make web
automation accessible to non-coders through programming by demonstration, while Li et al.
[237, 238, 239] automates mobile applications with multimodal inputs including demonstration
and natural language intents. Head et al. [149] combines teacher expertise with data-driven
program synthesis techniques to learn bug-fixing code transformations in classroom scenarios.
Head et al. [150] helps users extract executable, simplified code from existing code. Ko and Myers

91

[208, 209] provides a debugging interface for asking questions about program behavior. Myers
and Stylos [289] discusses API designers should consider usability as a step towards enabling
end-user programming. Kery and Myers [197], Kery et al. [198] enable data scientists to explore
data easily with exploratory programming. Our paper’s plugin of using both state-of-the-art code
generation and code retrieval to provide more natural programming experience to developers,
with the potential future of enabling end-user programming, is related to Myers et al. [290] that
envisions natural language programming.

4.9.6 Code Completion

Many developers use Integrated Development Environments (IDEs) as a convenient solution
to help with many aspects during development. Most importantly, many developers actively
rely on intelligent code-completion aid like IntelliSense36 for Visual Studio [16, 330] to help
developers learn more about the code, keep track of the parameters, and add calls to properties
and methods with only a few keystrokes. Many of intelligent code-completion tools also consider
the current code context where the developer is editing. With the recent advances in machine
learning and deep learning, example tools like IntelliCode37 for Visual Studio, Codota38 and
TabNine39 present AI-assisted code-suggestion and code-completion based on the current source
code context, learned from abundant amounts of projects over the Internet. The scope of our
paper is to investigate generating or retrieving code using natural language queries, rather than
based on the context of the current source code.

4.10 Conclusion

In this paper, we performed an extensive user study of in-IDE code generation and retrieval,
developing an experimental harness and framework for analysis. This demonstrated challenges
and limitations in the current state of both code generation and code retrieval; results were
mixed with regards to the impact on the developer workflow, including time efficiency, code
correctness and code quality. However, there was also promise: developers subjectively enjoyed
the experience of using in-IDE developer management tools, and provided several concrete

36https://docs.microsoft.com/en-us/visualstudio/ide/using-intellisense
37https://visualstudio.microsoft.com/services/intellicode
38https://www.codota.com/
39https://www.tabnine.com/

92

https://docs.microsoft.com/en-us/visualstudio/ide/using-intellisense
https://visualstudio.microsoft.com/services/intellicode
https://www.codota.com/

areas for improvement. We believe that these results will spur future, targeted development in
productive directions for code generation and retrieval models.

4.11 Appendix

4.11.1 User Study Environment Design

To control the user study’s development environment for different users as much as possible,
and to enable data collection and activity recording outside the IDE (e.g. web browsing activity
during the development), we design a complete virtual machine-based environment for users to
access remotely and perform the user study on. We build the virtual machine based on a lot of
open source software, including Ubuntu 18.04 operating system40 with XFCE 4.1 desktop envi-
ronment.41 The virtual machine software is VirtualBox 6.1.10,42 and we use Vagrant software43

for automatic virtual machine provisioning.
Inside the Linux virtual machine, we install and configure a set of programs for data collection

and workflow control during the user study:
1. Python environment. Python 3.644 is installed inside the VM, alongside with pip package

manager and several commonly used Python packages for the user study tasks. The user
is free to install any additional packages they need during the development.

2. IDE with plugin. PyCharm Community Edition 2020.1, with the plugin described in
Section 4.3 is installed. This provides consistent Python development environment for the
user study and the testing of the code generation and retrieval. The plugin also handles
various data collection processes inside the IDE.

3. Man-in-the-middle proxy. We install mitmproxy45 in the VM, alongwith our customized
script sending logs back to our server. This infrastructure enables interception and data
collection of both HTTP and secured HTTPS requests. With this we can collect users’
complete web browsing activities during the user study.

4. Web browser. We install Firefox browser,46 configured to use the proxy mentioned above
40https://releases.ubuntu.com/18.04/
41https://www.xfce.org/
42https://www.virtualbox.org/wiki/Downloads
43https://www.vagrantup.com/
44https://www.python.org/
45https://mitmproxy.org/
46https://www.mozilla.org/en-US/firefox/

93

https://releases.ubuntu.com/18.04/
https://www.xfce.org/
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/
https://www.python.org/
https://mitmproxy.org/
https://www.mozilla.org/en-US/firefox/

so that all users’ browsing activities could be logged for analysis.

5. Keylogger. We develop a program that runs in the background during the user study, and
logs all the user’s keystrokes along with the timestamps to our server. With the keylogger
we can collect data outside the IDE about the users’ activities. This data is useful for
mining and analyzing developer activity patterns in terms of keyboard operations, for
example copy and pasting shortcuts.

6. User study control scripts. We provide users a handful of scripts for easy and fully
automatic retrieval, start and submission of the tasks. The scripts allow user to check their
completion status of the whole study, as well as to pause and resume during a task for a
break. All the user’s task start, pause, resume, and submission events are logged so that
the completion time of each task for the user could be calculated.

4.11.2 Pre-test Survey Details

For each of the prospective participants, we asked them about two parts of the information in a
pre-study survey, apart from personal information for contact purposes. The first is regarding
programming experience, used to determine if the participants have enough expertise in Python
as well as the categories of tasks that we designed. The questions are:

1. Which of the following best describes your current career status: Student (computer
science), Student (other field), Software Engineer, Data Scientist, Researcher, Other.

2. How do you estimate your programming experience? (1: very inexperienced to 5: very
experienced)

3. How experienced are you with Python? (1: very inexperienced to 5: very experienced)

4. How experienced are you with each of the following tasks in Python? (1: very inexperi-
enced to 5: very experienced) Basic Python, File, OS, Web Scraping, Web Server & Client,
Data Analysis & Machine Learning, Data Visualization.

The second part of the information is about their development preferences, used to ask for their
preferences with IDE and assistive tools. The questions are:

1. What editor/IDE do you use for Python projects? Vim, Emacs, VSCode, PyCharm, Jupyter
Notebook, Sublime Text, other.

2. Do you use any assistive tools or plugins to improve your coding efficiency? Some
examples are code linting, type checking, snippet search tools, etc. If yes, what are they?

94

4.11.3 Participants Programming Experience

The detailed participants’ programming experience responded in the survey is shown in Fig-
ure 4.8.

1 2 3 4 5
0

5

10

15

20

Co
un

t

0 (0.00%) 0 (0.00%)

6 (19.35%)

23 (74.19%)

2 (6.45%)

(a) Overall Python Experience

1 2 3 4 5
0

5

10

15

20

Co
un

t

0 (0.00%) 0 (0.00%)
1 (3.23%)

8 (25.81%)

22 (70.97%)

(b) Basic Python

1 2 3 4 5
0

2

4

6

8

10

12

14

16

Co
un

t

0 (0.00%)
1 (3.23%)

6 (19.35%)

16 (51.61%)

8 (25.81%)

(c) File

1 2 3 4 5
0

2

4

6

8

10

12

14

Co
un

t

0 (0.00%)

5 (16.13%)

15 (48.39%)

8 (25.81%)

3 (9.68%)

(d) OS

1 2 3 4 5
0

2

4

6

8

10

12

Co
un

t

9 (29.03%)

6 (19.35%)

13 (41.94%)

3 (9.68%)

0 (0.00%)

(e) Web Scraping

1 2 3 4 5
0

2

4

6

8

10

Co
un

t

7 (22.58%)

11 (35.48%)
10 (32.26%)

3 (9.68%)

0 (0.00%)

(f) Web Server & Client

1 2 3 4 5
0

2

4

6

8

10

Co
un

t

3 (9.68%)

1 (3.23%)

11 (35.48%)11 (35.48%)

5 (16.13%)

(g) Data Analysis & Machine
Learning

1 2 3 4 5
0

2

4

6

8

10

12

14

16

Co
un

t

1 (3.23%)

4 (12.90%)

16 (51.61%)

8 (25.81%)

2 (6.45%)

(h) Data Visualization

Figure 4.8: The experience and expertise for overall Python programming and 7 specific areas
that we design different tasks for, from all the participants that completed the survey. 1 represents
very inexperienced and 5 represents very experienced.

4.11.4 Post-study Survey Details

After each task, we ask the following questions to all users (disregarding using the plugin or
not) about the task design, self-assessment, as well as the help needed during the process:

95

1. How difficult did you feel about the task? (1: very easy to 5: very hard)

2. How would you evaluate your performance on the task? (1: very bad to 5: very good)

3. How often did you need to look for help during the task, including web search, looking
up API references, etc.? (1: not at all to 5: very often)

For users that completed the current task with plugin enabled, the following additional
questions about the plugin user experience are asked:

1. How do you think the plugin impacted your efficiency timewise, if at all? (1: hindered
significantly, to 3: neither hindered nor helped, to 5: helped significantly)

2. How do you think the plugin impacted your quality of life, with respect to ease of coding,
concentration, etc., if at all? (1: hindered significantly, to 3: neither hindered nor helped,
to 5: helped significantly)

After all assigned tasks are completed for the user, we ask them to complete a form about
the overall experience with the user study and the evaluation of the plugin, as well as soliciting
comments and suggestions.

1. What did you think of the tasks assigned to you in general?

2. Overall, how was your experience using this plugin? (1: very bad to 5: very good)

3. What do you think worked well, compared with your previous ways to solve problems
during programming?

4. What do you think should be improved, compared with your previous ways to solve
problems during programming?

5. Do you have any other suggestions/comments for the plugin?

4.11.5 Plugin Effect on Code Complexity Metrics

We also analyze the plugin’s effect on code complexity metrics, following the same methods used
in Section 4.5. We measure two standard proxies for code complexity of the Python programs
produced by our study participants in each of their assigned tasks, i.e., the number of source
lines of code (SLOC) and McCabe’s cyclomatic complexity (CC), a measure of the number of
linearly independent paths through a program’s source code [274]; in real programs, CC depends
a lot on the “if”-statements, as well as conditional loops, and whether these are nested. The two
measures tend to be correlated, but not strongly enough to conclude that CC is redundant with

96

SLOC [222]. We use the open-source library Radon47 to calculate CC.
One could expect that code produced by our NL2Code plugin may bemore idiomatic (possibly

shorter and less complex) than code written by the participants themselves.
Figure 4.9 shows the distributions of CC values across tasks and conditions. Figure 4.10

shows the distributions of SLOC values across tasks and conditions.

Table 4.8: LMER task performance models (default specification, w/ code complexity metrics).

Dependent variable:

Completion time Correctness score SLOC CC

(1) (2) (3) (4)

Experience −195.62 0.07 −0.62 −0.21

(183.11) (0.24) (1.61) (0.46)

Uses plugin 15.76 0.44 4.16∗∗ 0.73

(196.11) (0.30) (1.91) (0.58)

Constant 3,984.51∗∗∗ 5.88∗∗∗ 27.15∗∗∗ 5.64∗∗∗

(838.07) (1.03) (7.40) (1.95)

Observations 224 237 237 237

Num users 31 31 31 31

Num tasks 14 14 14 14

sd(user) 1489.25 0.82 6.16 1.18

sd(task) 1104.7 1.14 12.65 2.33

R2m 0.004 0.008 0.011 0.006

R2c 0.642 0.289 0.502 0.27

Akaike Inf. Crit. 3,987.14 1,106.66 2,002.42 1,417.27
Bayesian Inf. Crit. 4,007.61 1,127.46 2,023.23 1,438.08

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.8 summarizes our default specification mixed-effects regressions with CC and SLOC
47https://github.com/rubik/radon

97

https://github.com/rubik/radon

All (237) Basic Python (62) File (61) OS (38) Web Scraping (12) Web Server &
Client (8)

Data Analysis &
Machine Learning (36)

Data
Visualization (20)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Cy
clo

m
at

ic
Co

m
pl

ex
ity

 w/ plugin
 w/o plugin

Figure 4.9: Distributions of cyclomatic complexity values across tasks and conditions. The
horizontal dotted lines represent 25% and 75% quartiles, and the dashed lines represent medians.

All (237) Basic Python (62) File (61) OS (38) Web Scraping (12) Web Server &
Client (8)

Data Analysis &
Machine Learning (36)

Data
Visualization (20)

0

20

40

60

80

100

120

140

SL
OC

 w/ plugin
 w/o plugin

Figure 4.10: Distributions of SLOC values across tasks and conditions. The horizontal dotted
lines represent 25% and 75% quartiles, and the dashed lines represent medians.

variables included; the models with our second specification (de-meaned task experience) are
shown in Appendix 4.11.7. The models fit the data reasonably well (R2

c = 50% for SLOC,
R2

c = 27% for CC).

Analyzing themodels wemake the following observations. There is no statistically significant
difference between the two conditions in cyclomatic complexity values (model (4)). That is, the
code written by users in the plugin condition appears statistically indistinguishably as correct
and as complex from the code written by users in the control group.

We note a small effect of using the plugin on code length (model (3)). On average, the code
written by users in the plugin condition is ~4 source lines of code longer than the code written
by users without using the plugin. However, this effect is quite small, smaller than the standard
deviation of the random user intercept (~6 source lines of code).

98

4.11.6 NL2Code Plugin Query Syntax

For the best results from the code generation model, we also instruct the users to write queries
as expected by the model with the following rules:

• Quote variable names in the query with grave accent marks: ... `variable_name` ...

• Quote string literals with regular quotation marks: ... “Hello World!” ...

• Example query 1: open a file “yourfile.txt” in write mode.

• Example query 2: lowercase a string `text` and remove non-alphanumeric characters aside
from space.

4.11.7 Task Performance Models (De-meaned Specification)

Table 4.9 summarizes our alternative specification (de-meaned task experience) mixed-effects
regressions for two response variables in the main article, plug two response variables (CC and
SLOC) introduced in Appendix 4.11.5.

4.11.8 User Queries

Table 4.10: Unique successful user queries to the NL2Code plugin, per task, for the 31 study
participants. Queries for which the participant chose a snippet produced by the code generation
model are shown in boldface, and in the remainder a retrieved snippet was used.

Task Queries

T1-1 call ˋpick_with_replacementˋ how to generate random letter
create a dictionary with keys ˋrandom_lettersˋ and
values ˋrandom_numbersˋ

import library random

create dictionary list to dict
create empty dictionary loop on numbers from 0 to 100
create list "a_list" loop over a range of ˋcountˋ
defaultdict merge 2 dictionaries
dictionary of characters and int pair characters in ˋcharactersˋ and numbers in

ˋnumbersˋ
for loop on range 100 print ˋdicˋ keys on each line
generat integers 1-20 print ˋdicˋ keys sorted
generate 100 integers (1-20 inclusive). print ˋdicˋ sorted by keys
generate 100 random lower-cased leters print a to z
generate 100 random lowercase letters print list
generate 100 random numbers print list as string
generate 100 random numbers from 1 to 20 print list elements
generate a rondom lower case character print without newline
generate char lower case random
generate dict random character between a and z
generate list of random charachters random characters
generate lowercase char random integer between 1 and 20
generate random random number

99

Table 4.10: (continued)

Task Queries

generate random between 0 and 20 random sample with replacement
generate random charachter randomly generate 100 letters
generate random int randomly pick an item from ˋseqˋ
generate random letters rearrange dictionary keys into alphabetic order
generate random lower case letters sort a list
generate random nu,ber sort a list into ascending order
generate random number sort a list x into ascending order
generate random numbers sort dict by key
generate random numbers between 1-20 inclusive sort key of dict
get a random letter sort list
given list ˋlettersˋ and ˋintegersˋ, create a dicitonary
such that the values in ˋlettersˋ are keys and values
in ˋintegersˋ are values

sort list ’values’ into ascending order

how to append value in dict squence of integers from 1 to 20 inclusive
how to check if a key is in a dictionay zip 2 lists
how to generate random int in range between 1 and 20 zip ˋhundred_charactersˋ with ˋhundred_numbersˋ

T1-2 add a week to a datetime get gmt timezone
add days to time get now one week from now
assign current date and time to ˋnowˋ get the current date in utc
change date format get the current time in utc
change datetime format of ˋweek_dateˋ to mm-dd-yyyy

hh:mm
get the date and time a week from now in gmt

convert ˋweek_dateˋ to GMT timezone and assign to
ˋGMT_week_dateˋ

get time and date

convert date timezone get time and date in gmt in ˋdateˋ
date from 7 days get time and date one week from now
date gmt get time now
date now gmt
datetime gmt time 24
display ˋweek_dateˋ in format mm-dd-yyyy hh:mm import datetime
format datetime import time
format datetime 24 hour mm-dd-yyyy
format time print current date time
get current datetime print date and time in GMT in 24hr format
get date 7 days from today print datetime in mm-dd-yyyy hh:mm format
get date and time in gmt time add
get date and time one week from now time and date
get date time one week from now time and date in certain
get datetime timedelta

T2-1 copy column from "data.csv" file to another "output.csv" new line
copy column from "data.csv" to "output.csv" number of columns of csv
create ’output.csv’ csv file open "data.csv" file
csv write open a csv file ˋdata.csvˋ and read the data
csv writer open csv
cvs open csv file ˋdata.csvˋ
cvs files open csv file with read and write
delete a column in csv open file
delete column from csv pandas read csv
delete column from csv file pandas read csv named "data.csv"
delete first and last column in csv file print csv without row numbers
delete first and last column of ˋdfˋ python make dir
delete first and last row from the dataframe ˋdfˋ read "data.csv" file
delete first row from dataframe ˋdfˋ read csv file "data.csv"
delete row in csv read csv file using pandas
delete the first column in csv file ˋdfˋ read csv pure python
file to csv read cvs
get current path remove columns from csv file and save it to another csv file
get specific columns by index in pandas data frame remove first column from csv file
headers in a dataframe save ˋdfˋ to a file ˋoutput.csvˋ in a new directory

ˋexample_outputˋ

100

Table 4.10: (continued)

Task Queries

how to delete a column in a dataframe python save dataframe to csv
how to delete columns in dataframe save pandas dataframe to a file
how to save a dataframe in csv file save this dataframe to a csv
if dir exist write ˋoutputˋ to csv file
if directory "output" exists write csv ˋoutput_fˋ to file "output/output.csv"
make directory write output to csv file "output.csv"
make directory "output" if it doesn’t exist write to csv file

T2-2 change directory list files in folder
change directory to "data" list of filenames from a folder
check file encoding move file to other directory
check if directory exists normalize newlines to \n
convert binary decoded string to ascii open file
convert file encoding open text file
convert file to utf read a file and iterate over its contents
convert latin-1 to utf-8 read all files under a folder
convert str to utf-8 read file
convert text file encoding read ISO-8859-15
convert text files from encoding ISO-8859-15 to encoding

UTF-8.
readline encoding

copy a file redirect
copy file remove header
copy file ˋddd.pngˋ remove heading white space
copy file to other folder text normalize newlines to \n
covert file to utf traverse a directory
find character travverse list of files
get all files in directory trim heading whitespace
get the file extension trim the heading and trailing whitespaces and blank

lines for all text files
iterating files in a folder unkown encoding
list all text files in the data directory write to file
list files in directory

T3-1 check if ˋfileˋ is a directory match regex year month day
check if string has specific pattern move file
copy a file to dist move files from directory to directory
copy all files and directories from one folder to another recursive copy files and folders
copy directory to another directory recursively iterate over all files in a directory
copy directory to directory regex dd-mm-yy
copy directory tree from source to destination regex digit python
copy file from ˋsrc_pathˋ to ˋdest_pathˋ regex for date
copy files regex replace capture group
copy files and directories under ˋdataˋ directory regexp date
copy files creating directory rename file
copy files from folder rename file with regex
create file rename files
create folder replace pattern in string
datetime to string search all matches in a string
extract year month day from string regex search for pattern "%d%d-%d%d" in ˋfileˋ
get all files and folders walk all files in a directory
get the files that inside the folders walk all nested files in the directory "data"
list all filepaths in a directory walke all files in a directory
make a folder recersively write to file

T3-2 add entry to json file load json file
check if file ˋoutput_fileˋ exists load json from a file
check if file ends with .json read a json file named ˋfˋ
convert dict to string sorting a dictionary by key
convert list to dictionary write into txt file
import json parsing library write json in ˋretˋ to file ˋoutfileˋ

T4-1 find all bold text from html ˋsoupˋ parse all hyperlinks from ˋrˋ using bs4
find all hrefs from ˋsoupˋ visit ˋurlˋ and extract hrefs using bs4
find all red colored text from html ˋsoupˋ visit the given url ˋurlˋ and extract all hrefs from there

101

Table 4.10: (continued)

Task Queries

go to a url visit the url ˋurlˋ
how to get page urls beautifulsoup

T4-2 create directory regex []
download an image request save dict to csv
extract imafe from html save table beautifulsoup
http reques get html

T5-1 add json file to a list check email correctness
T5-2 argparse subprogram print format

exit program request with params
gET request to
"https://jsonplaceholder.typicode.com/posts"
with argument userId

T6-1 a list of dictionary to pandas dataframe pandas change dataframe column name
add a new column to a dataframe row pandas create buckets by column value
average by group pandas pandas dropnan
cast a float to two decimals pandas get average of column
cast a list to a dataframe pandas group by
column to integer pandas pandas join dataframes
create a dataframe from a list pandas join series into dataframes
csv pandas output csv
csv write pandas print with two decimals
delete coloumn pd pandas read from csv
df set column to 7 decimals pandas round value
filter df with two conditions pandas save csv two decimal
filter values in pandas df pandas to csv
find unique data from csv pandas to csv decimal
findall pandas write df to csv
floating data in csv group in digit pandas write to csv file
format output to 2 decimal pandas write to file decimal
get average of row values in pandas dataframe read csv
get average value from group of data in csv read csv file
get the head of dataframe ˋdfˋ remove repeated column in csv file
group by range pandas rename column pandas
group of data from csv rename pandas df columns
how to combine 2 lists into a dictionary round a variable to 2dp
how to remove an item from a list using the index save ˋcompan_dfˋ dataframe to a file
import pandas save ˋcompand_dfˋ dataframe to a file
list to an entry in pandas dataframe sort dataframe ˋjdfˋ by ˋscoresˋ
load csv file with pandas sort dataframe ˋjdfˋ by the values of column ’scores’
loop files recursive sort pandas dataframe
newline space standard deviation from group of data in csv
pandas add new column based on row values two deciaml place
pandas calculate mean write ˋfinal_dataˋ to csv file "price.csv"

T6-2 cross validation in scikit learn multinomial logistic regression model
cross validation mean accuracy numpy load from csv
disable warnings run 5-fold accuracy
how to determine cross validation mean in scikit learn set numpy random seed to 0
how to split dataset in scikit learn sklearn 5 fold cross validation
how to split dataset in scikit learn sklearn 5-fold cross validation
linear regressor 5 folder cross validation sklearn cross validation x, y for 5 folds
load wine dataset sklearn ignore warnings

T7-1 how to choose plot size in inches plt set x axis tick range
how to choose plot title in matplotlib plt set xtick font size
how to create ascatter plot using matplotlib reformat date
how to draw scatter plot for data in csv file save plot as image
plt create figure with size save plt figure
plt date as x axis scatter
plt set x axis label scatter plot purple

T7-2 bar graph side by side plot bar
bar plot with multiple bars per label plot size

102

Table 4.10: (continued)

Task Queries

get height of bars in subplot bar gaphs plot title
get labels above bars in subplots plt ax legend
group pandas df by two columns plt ax xlabel
horizontal subplot plt create 3 subplots
import matplotlib plt set title for subplot figure
matplotlib grouped bar chart plt set x tick labels
matplotlib multiple histograms plt show values on bar plot
matplotlib theme pyplot subplots
pandas dataframe from csv select row pandas
pandas dataframe groupby column

4.11.9 Randomly Sampled User Queries for the Oracle Analysis

Table 4.11: Sampled user queries for the oracle analysis. Queries for which the user chose a
snippet from the code generation model are shown in boldface. ● denotes queries “good enough”
on their own; ○ denotes queries good enough given the rest of the source file as context; the
former is a strict subset of the latter.

Task Queries

T1-1 call ˋpick_with_replacementˋ ○ defaultdict
generate lowercase char ●○ for loop on range 100 ●○
generate random between 0 and 20 ●○ generate char lower case
random sample with replacement ●○ generate random letters ●○
sort key of dict ●○ random characters

T1-2 change datetime format of ˋweek_dateˋ to mm-dd-yyyy
hh:mm ●○

format datetime

convert ˋweek_dateˋ to GMT timezone and assign to
ˋGMT_week_dateˋ ●○

get gmt timezone ○

print datetime in mm-dd-yyyy hh:mm format ●○ get now one week from now ●○
date now ●○ get time and date ●○

T2-1 remove first column from csv file ●○ how to delete columns in dataframe ○
csv writer open "data.csv" file ●○
how to delete a column in a dataframe python ○

T2-2 traverse a directory ○
T3-1 copy a file to dist ○ recursive copy files and folders ○

match regex year month day regexp date
T4-2 download an image request save dict to csv
T5-2 exit program ●○ argparse subprogram
T6-1 load csv file with pandas ●○ how to remove an item from a list using the index ●○

pandas round value ○ pandas create buckets by column value
pandas to csv pandas group by
read csv file ●○ pandas output csv ○
rename column pandas ○ pandas to csv decimal ○
filter df with two conditions pandas write df to csv

T6-2 load wine dataset
T7-1 plt create figure with size ●○ scatter ○
T7-2 plt ax legend ○ plt create 3 subplots ●○

bar plot with multiple bars per label ○

103

Table 4.9: LMER task performance models (de-meaned experience, w/ code complexity metrics).

Dependent variable:

Completion time Correctness score SLOC CC

(1) (2) (3) (4)

Experience BTW −478.55 −0.04 −1.47 0.04

(566.62) (0.43) (2.98) (0.74)

Experience WI −166.14 0.12 −0.30 −0.35

(191.33) (0.29) (1.87) (0.56)

Uses plugin 14.47 0.44 4.15∗∗ 0.74

(196.07) (0.30) (1.90) (0.58)

Constant 5,142.42∗∗ 6.32∗∗∗ 30.59∗∗ 4.62

(2,348.61) (1.77) (12.60) (3.07)

Observations 224 237 237 237

Num users 31 31 31 31

Num tasks 14 14 14 14

sd(user) 1482.32 0.81 6.15 1.17

sd(task) 1107.9 1.13 12.69 2.32

R2m 0.012 0.008 0.012 0.007

R2c 0.643 0.287 0.504 0.269

Akaike Inf. Crit. 3,988.86 1,108.56 2,004.30 1,419.09
Bayesian Inf. Crit. 4,012.74 1,132.84 2,028.58 1,443.36

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

104

Part III

Study of Retrieval-Augmented Models

105

Chapter 5

Capturing Structural Locality in
Non-parametric Language Models

Structural locality is a ubiquitous feature of real-world datasets, wherein data points are orga-
nized into local hierarchies. Some examples include topical clusters in text or project hierarchies
in source code repositories. In this paper, we explore utilizing this structural locality within
non-parametric language models, which generate sequences that reference retrieved examples
from an external source. We propose a simple yet effective approach for adding locality infor-
mation into such models by adding learned parameters that improve the likelihood of retrieving
examples from local neighborhoods. Experiments on two different domains, Java source code
and Wikipedia text, demonstrate that locality features improve model efficacy over models
without access to these features, with interesting differences. We also perform an analysis of
how and where locality features contribute to improved performance and why the traditionally
used contextual similarity metrics alone are not enough to grasp the locality structure.

5.1 Introduction

Language models (LMs) predict a probability distribution over sequences, and are most widely
studied to model and generate natural languages [27, 35, 54, 279]. Advances in LMs benefit
many natural language processing downstream tasks, such as machine translation [28], dialog
systems [392], question answering [342, 448], and general representation learning for natural
language [88, 260]. Recently, LMs have also been adopted to model sequences other than text,
such as source code written in programming language [13, 152, 158, 193], which can enable
useful downstream tasks like code completion [351].

107

Most current neural LMs are based on parametric neural networks, using RNN [282] or
Transformer [413] architectures. These models make predictions solely using a fixed set of neural
network parameters. Recently, more and more neural LMs also incorporate non-parametric

components [123, 135, 147, 200], which usually first select examples from an external source and
then reference them during the prediction. For example, Khandelwal et al. [200] model the token-
level probability by interpolating the parametric LM probability with a probability obtained from
the nearest context-token pairs in an external datastore. Using such non-parametric components
in LMs is beneficial because the model no longer needs to memorize everything about the
language in its parameters.

For such non-parametric LMs, one important concept is a distance metric between the
current context and other contexts in the datastore. One example of such metric is the ℓ2

distance between context vectors calculated by the parametric model [200]. This distance
can be used in both retrieval and probability calculation; items in the datastore that are less
distant from the current context are more likely to be retrieved and have a higher influence on
the final probability. However, given that non-parametric datastores are typically very large,
containing a myriad of contexts from disparate sources, calculating a metric that accurately
reflects semantic similarities is non-trivial; as we demonstrate in experiments, there is much
room for improvement in current practice.

In this paper, we argue that the relevance of contexts may be correlated with not only
contextual distance, but also structural characteristics of the underlying data. Specifically, we
take advantage of a property we dub structural locality, the propensity of text to be divided
into local groups sharing common hierarchical attributes. This property is ubiquitous across
many kinds of texts and can provide additional information on how closely related two different
examples are to each other. Throughout this paper, we will provide two case-studies of this
phenomenon. First, in the domain of programs written in source code, if two source files
originate from the same project, they are more likely to be related than files from other projects,
and even more so if they are from the exact same package [152]. Second, in natural language,
two sections of Wikipedia text may be more related if they fall within the same topical domain,
are from similarly titled sections, or even are from the same article (as in Figure 5.1). Notably this
locality often manifests itself at different levels, such as the levels of “project”, “subdirectory”,
and “file” cited above for source code.

In this paper, we hypothesize that by using multiple levels of structural locality, we can
better calibrate the distance metrics used to retrieve examples from non-parametric datastores,
thereby improving LM performance. Specifically, we propose a simple-yet-effective approach

108

Obama was awarded the

Judea Pearl received his

Terence Tao won the

Judea Pearl received the

Datastore Context

Geoffrey Hinton was awarded the

Target

Nobel

Bachelor

Turing

Fields

CS Awards

Category Section

Politics

CS

Math

CS

Awards

Early Life

Awards

Awards

query

Distance

𝑑

Nobel

Fields

Turing

Bachelor

3

10

20

22

Modified Distance

Turing 5

Nobel 15

Fields 22

Bachelor 50

𝑐 𝑤 𝑙 𝑔

𝑓(𝑐𝑡)
Current Context 𝑐𝑡

Normalize Aggregate

𝑝kNN(𝑤𝑡|𝑐𝑡)

Current Locality

?

𝑤𝑡

Figure 5.1: An example of incorporating structural locality in the computation flow of pkNN(wt∣ct).
The current context ct is used to calculate distance d to contexts in the datastore (c,w). Dashed
boxes and lines represent components proposed in our work, which leverage structural informa-
tion l (non-local, local) to allow for more accurate modified distances g (lower is more similar).

that can easily be applied to non-parametric LMs: we use different levels of structural locality
to define functions that modify the contextual distance metrics used by the non-parametric
module.

We evaluate our method on two drastically different domains: Java programming language
source code, and natural languageWikipedia articles, achieving noticeable LM performance gains
in both by adding just 5 & 7 parameters respectively. Moreover, we perform an in-depth analysis
showing how the traditionally used contextual similarity metrics alone are not enough to grasp
the locality structure, providing evidence for why adding the locality features is indeed useful.
We also compare programming languages and natural languages to highlight several interesting
differences in terms of how, and how much, the locality helps improve LM performance.

5.2 Non-parametric Language Models

Given a linguistic context consisting of a sequence of tokens ct = (w1, ...wt−1), autoregressive
parametric LMs estimate p(wt∣ct; θ), the probability distribution over the next token wt. Such
parametric LMs store information regarding the language being modeled in the parameters θ.
The size of θ is fixed in advance based on the hyperparameters of the model architecture, in recent
years typically a neural network [27, 54, 82, 122]. In contrast, a non-parametric LM’s number of
parameters is not determined by just the model architecture, but also by the underlying data used
to train the model. While non-parametric LMs using Bayesian statistics have existed for some
time [147, 375, 432], they have recently seen increased prevalence through the introduction of
neural LMs that retrieve relevant examples from an external datastore [135, 140]. In particular,
we focus on kNN-LMs [200], a variety of such models that uses a nearest neighbor retrieval

109

mechanism to augment a pre-trained parametric LM, achieving impressive results without any
additional training.

Neural network-based LMs usually map the context c to a fixed-length vector representation,
with a trained function f(c). In kNN-LMs, the non-parametric component consists of a collection
(D) of contexts for the kNN to retrieve from. Denoting these contexts and their corresponding
next token as (ci,wi) ∈ D, we create a datastore (K,V) = {(ki, vi)}, which contains key-value
pairs:

(K,V) = {(f (ci) ,wi) ∣ (ci,wi) ∈ D} (5.1)

During inference, the parametric component of the LM generates the output distribution
over next tokens pLM(wt∣ct; θ) and the corresponding context representation f(ct), given the
test input context ct. Then the non-parametric component of the LM queries the datastore
with f(ct) representation to retrieve its k-nearest neighbors N according to a distance function
d(⋅, ⋅). We can then compute a probability distribution over these neighbors using the softmax
of their negative distances. The model aggregates the probability mass for each vocabulary item
across all its occurrences in the retrieved targets. This distribution is then interpolated with the
parametric LM distribution pLM to produce the final kNN-LM distribution:

pkNN(wt∣ct) ∝ ∑
(ki,vi)∈N

1wt=vi exp(−d(ki, f(ct))) (5.2)

p(wt∣ct; θ) = λpkNN(wt∣ct) + (1 − λ)pLM(wt∣ct; θ) (5.3)

In our experiments, we follow Khandelwal et al. [200] in setting the interpolation factor λ to
0.25.

5.3 Defining Structural Locality

We define structural locality as a categorical feature calculated between a pair of contexts
(ci, cj) in a collection of data, that describes whether the pair share some common, potentially
hierarchical, attributes (e.g., the section title of a Wikipedia article section, or the directory path
of a source code file). For each domain, a set of hierarchical attributes {l0, l1, ..., ln} can be defined
based on prior knowledge of the domain. We denote lk(ci, cj) ∈ {0,1} as the boolean locality

feature value for the context pair, representing whether ci and cj share the same hierarchical
attributes lk. Here, l0 is reserved for “no locality”, in case the pair shares none of the attributes.
Without loss of generality, we set a constraint that ∑k lk(ci, cj) = 1, as new features can be
introduced by conjunction and negation of the attributes if needed.

110

Table 5.1: Locality features designed for each data type according to domain knowledge.

Locality Wikipedia text Java projects

l0 different article category, different section title different project
l1 same article category, different section title same project, different subdirectory
l2 same section title, different article category same subdirectory
l3 same section title, same article category –

Specific Instantiations. We instantiate these features on our two case studies of Wikipedia
text and Java source code, as summarized in Table 5.1.

In Wikipedia, for every context ci, we define four mutually exclusive hierarchical attributes,
l0 − l3. We calculate these features based on the Wikipedia article and section titles, using simple
pattern matching. We then link each article to a set of categories (one article may belong to
multiple categories) using the knowledge graph WikiData,1 by aggregating all the category
entities involving two properties: P31 (instance of) and P279 (subclass of). The criterion for
“same section title” is exact string match [141]. If there is at least one common category between
the sets of categories for two articles, the pair is assigned the “same article category”.

For Java source code, we define 3 mutually exclusive attributes, l0 − l2 based on the location
of the code. For each source file, we use the full file path to obtain the two attributes: project
name and sub-directory path.2 The criterion for both “same project” and “same subdirectory” is
exact string match. Note that these features are strictly hierarchical, hence only two features
are used to capture specific locality here.
An Aside: Connections to Domain Adaptation. Domain adaptation typically refers to
reusing existing information about a given problem (e.g., data or model) to solve a task in a
new domain. Domain adaptation for neural models generally focuses on fine-tuning models
on in-domain data [74, 372] or making direct modifications to the model to consider domain
information [51] or latent topic features [205, 281, 418]. Most of these methods do not natively
support new test-time contexts that were not seen at training time. In comparison, one immediate
advantage of non-parametric LMs is the ability to adapt to different domains at test time without
re-training [122, 123, 200, 278]. For example, some adaptive LMs [122, 123] make use of the
previous hidden states of test documents dynamically during inference. Similarly, our proposed
locality features do not require re-training on the training set.

1https://www.wikidata.org/
2For example, full path .../Journal.IO/src/main/java/journal/io/api/DataFile.java has project

Journal.IO and sub-directory src/main/java/journal/io/api/ for package journal.io.api.

111

https://www.wikidata.org/

Note that within the scope of this paper, although connected, the proposed structural locality
is a different concept from domain. We consider domains as higher-level classifications describing
the text where one example belongs to one domain label; e.g., a section about Kim Kardashian’s
early life belongs to a category of texts describing celebrities. One the other hand, with the
structural locality, a user could define multiple levels of locality: to that same section, we can
assign not only the domain label, but also, the section title “Early Life”. The lightweight nature
of our model combined with non-parametric LMs also makes adding more levels of features
straightforward, as the features only need to be calculated for the top nearest neighbors, and
the number parameters that need tuning in our proposed method (Section 5.5) is only about
twice the number of locality features.

5.4 Structural Locality and Nearest Neighbors

In this section, we examine the relationship between distances derived from neural LM features
d(f(ci), f(ct)), structural locality features l(ci, ct), and the accuracy of the next-word prediction
wi. Specifically, the underlying assumption of the kNN-LM is that less distant contexts will be
more likely to accurately predict the next wordwt. We would like to test whether this correlation
between distance d(⋅) holds uniformly across different locality levels l(⋅), or if locality provides
additional information indicative of whether a particular context is useful for predicting wi

beyond just that provided by the neural representations.

Data. We use two different corpora from different domains to examine this question.
Wikitext-1033 is a standard language modeling benchmark [278] consisting of natural

language text from English Wikipedia. It contains a 250K token, word-level vocabulary, with
103M tokens in the training set and 250K tokens in both the validation and test sets.

Java Github4 is a programming language corpus containing Java source code fromGithub [8]
that is widely used in source code modeling [152, 193]. It contains 1.44B tokens from 13,362
projects in the training split, 3.83M tokens from 36 projects in the validation split and 5.33M
tokens from 38 projects in the test split. The splits are separated by whole projects. The dataset
is tokenized with byte-pair encoding [371] using the vocabulary from Karampatsis et al. [193]
with 2,000 subtokens.

Base Model. As the neural model used to calculate context features, we follow Khandelwal et al.

3https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/.
4https://zenodo.org/record/3628665.

112

https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/
https://zenodo.org/record/3628665

[200],5 train an LM with the exact architecture and optimization described by Baevski and Auli
[27]: a decoder-only Transformer [413], with 1024 dimensional hidden states for the Wikitext-
103 dataset and 512 for Java Github. We set the number of retrieved nearest neighbors to be
analyzed to 1024, and the distance metric to ℓ2 following the default.

Datastore. To capture the effect of our proposed locality features, the datastore should ideally
be both closely related to the test examples, sufficiently large to ensure precise kNN retrieval
performance for a wide range of contexts, and not too sparse in terms of the prevalence of
locality features.

For Wikitext-103, we include the training set, as well as the validation/test set (excluding
the text currently being evaluated) in the datastore. For the Java Github, due to the relatively
large size of the validation/test set, and the unwieldy size of the training set, we include only
the validation/test set (also excluding the current file).

Analysis. Consider k nearest neighbor contextsNt = {cr∣r = 1...k} retrieved for any test context
ct in the test set C, ordered by the ascending distance: ∀r ∶ d(cr, ct) < d(cr+1, ct). We define
r ∈ [1, k] as the “rank” for the retrieved context cr. To study the quality of the retrieved contexts,
we calculate the number of correctly retrieved tokens, defined as #{wr = wtgold} across C.

We plot in Figure 5.2, from left to right: (1) Negative distances {−d(cr, ct)∣cr ∈ Nt, ct ∈ C}

grouped into bins, vs. the retrieval accuracy of the bin avg(#{wr = wtgold}). (2) Rank r vs. the
retrieval accuracy at rank r, avg(#{wr = wtgold}). (3) Rank r vs. the average negative distance
avg(−d(cr, ct)) at rank r. All of the plots are grouped by different locality levels l0 to ln.

Naturally, the left-most sub-figures reflect that the lower the (negative) distance, the lower
the accuracy on both datasets. Yet, interesting, on the Wikipedia domain (Figure 5.2a), as the
negative distance gets close to 0 (perfect match), the retrieval accuracy for the next word does
not always increase; the accuracy values in this range have very high variance and all 4 levels
of locality show no clear trend. This partly indicates that context-based distance is imperfect,
regardless of locality. Even so, at slightly lower distances, the trends stabilize and largely show a
consistent picture: more specific locality features, especially those involving the same category
(l1&l3) yield better predictions than the locality-insensitive component for identical distances.
This is especially significant at higher ranked retrievals (middle sub-figure), where contexts
that share the same section title and the same article category are substantially more likely
to share the same completion. This suggests that the proposed locality features are not fully
represented by, or correlated with the original distance metric, and thus implies that there is

5https://github.com/urvashik/knnlm

113

https://github.com/urvashik/knnlm

15.0 12.5 10.0 7.5 5.0 2.5 0.0
Neg. Distance

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

0 50 100 150 200
Rank

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

0 50 100 150 200
Rank

13.5

13.0

12.5

12.0

11.5

11.0

10.5

10.0

Ne
g.

 D
ist

an
ce

Locality
no locality
same category, different section
same section, different category
same section, same category

(a) Wikitext-103

400 300 200 100 0
Neg. Distance

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0 50 100 150 200
Rank

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

0 50 100 150 200
Rank

350

300

250

200

150

100

50

Ne
g.

 D
ist

an
ce

Locality
no locality
same project, different subdir
same subdir

(b) Java Github

Figure 5.2: The relationship between nearest neighbor rank, negative distance, and the retrieval
accuracy, grouped by different locality levels. Only top 200 nearest neighbors are shown for
clarity. Negative distance on x-axis represents the upper bound of the bin.

room for improvement by incorporating these features.

In the Java source code domain (Figure 5.2b), we generally observe that the retrieval accuracy
is much higher than that in the Wikipedia domain, suggesting that the kNN is doing a better job
retrieving relevant contexts. This is largely due to higher repetitiveness of source code [158];
as we show later, the base Transformer model also performs much better here than on natural
language text (Section 5.6.2). We also observe a more pronounced locality effect here: at the
same distances close to 0 and at the same rank, neighbors that are local to the current context
have far higher accuracy, indicating usefulness of locality features in the source code domain as
well. However, as we can see from the (right-most) plot of rank versus the negative distance,
the average distances of the neighbors with higher locality levels are also significantly smaller
than the distance of those without locality. This suggests that the distance in the Java source
code domain already correlates well with the level of locality, which may render incorporating

114

locality features less beneficial. We study the precise benefit under one instantiation of this
model next.

5.5 Incorporating Structural Locality in Non-parametric

LMs

Now that we have demonstrated that locality is additionally indicative of next-word prediction
accuracy beyond context distance, we propose a method to incorporate this information into
the non-parametric retrieval module. In the case of kNN-LMs (Section 5.2), recall that pkNN is
calculated based on the softmax of the negative distance −d(f(ci), f(ct)). Assuming locality
features {l0, l1, ..., ln} for each pair (ci, ct) consisting the retrieved nearest neighbor and the
current inference context ct, we modify the formulation of pkNN (Equation 5.3) to consider these
features as below:

pkNN(wt∣ct;{θn}) ∝ ∑
(ki,vi)∈N

1wt=vi exp(−g(ki, ct;{θn})) (5.4)

g(ki, ct;{θn}) = gn(d(ki, f(ct)); θn) if ln(ci, ct) = 1. (5.5)

where gn(d(⋅, ⋅); θn) is a learnable function of the distance of the nearest neighbors, with param-
eter θn for each type of locality feature ln. One can view function g(⋅) as a “modified” distance
for nearest neighbors after taking locality information into consideration. In our experiments,
we adopt a linear form of g(⋅):

gn(d(⋅, ⋅);wn, bn) = wnd(⋅, ⋅) + bn (5.6)

We omit the bias for g0(⋅) by setting b0 = 0 to remove one free parameter from the model and
potentially make optimization easier.6 To learn these functions, a user needs to provide just
a small sample of annotated data in the same domain, as there are only 2n + 1 parameters to
optimize. In our experiments, we use the validation split for optimization. The parameters are
trained to minimize the negative log-likelihood of the kNN prediction of the gold token:

argmin
{θn}

− log pkNN(wt = wtgold ∣ct;{θn}) (5.7)

To optimize the parameters, we use the Adam [207] optimizer with a learning rate of 0.0001 on
the validation set for 200 epochs. It converges within 20 minutes for both datasets.

6We also experimented with an adaptive variant that conditioned the weights and biases ({wn},{bn}) on
the current context representation f(ct) parameterized by a MLP. However, this did not result in significant
improvement over directly optimizing w and b (Section 5.6.3).

115

5.6 How Does Structural Locality Improve Language Mod-

eling?

5.6.1 Experimental Setup

Baselines. Since we base our model on kNN-LMs, this model will be our most directly compara-
ble baseline. We also compare our model to the underlying parametric LM [27], without the kNN
module. For the Java Github dataset, we additionally compare to the recent state-of-the-art
model from Karampatsis et al. [193] on code language modeling, which uses BPE and LSTMs. In
all experiments, the maximum number of tokens per input sample is 3,072.
Evaluation. We evaluate the performance of the LM with the standard perplexity metric and
token prediction top-k accuracy on the held-out data.7 The top-k accuracy is calculated by
checking if the ground truth token is among the predicted top-k list. This metric, primarily for
k ∈ {1,5}, is commonly used to evaluate predictive models of source code [158]. In order to
more easily incorporate and analyze the locality features, and also following Karampatsis et al.
[193], we split the evaluation dataset into independent test examples to evaluate, where each of
the example is an atomic unit in the locality hierarchy. For Java Github, each test example is a
source code file, and for Wikitext-103, each example is an article section.8

We show additional results on top-k (k = 10,20) accuracy and relative error reduction (RER)
on two datasets in Table 5.3.

5.6.2 Main Results

The high-level results are shown in Table 5.2. At first glance, we can already see that the two
datasets vary greatly in predictability. With a similar Transformer architecture, performance
on Java Github is much better than on the Wikitext-103 across the board, partly due to the
rigid nature of programming language syntax. With a Transformer model, we achieved a strong
state-of-the-art language model on Java code, with low perplexity and very high prediction
accuracy (∼75%).

7For Java Github, the perplexity is calculated on full tokens by aggregating the likelihood of subtokens. The
accuracy is calculated that all subtokens in a full token have to be predicted correctly.

8Note that because we predict Wikitext-103 section-by-section instead of article-by-article the perplexity
numbers reported here are somewhat worse than other works. Article-by-article calculation is not inherently
incompatible with our proposed method, but it would require additional implementation to use different locality
features for different locations in the output. Hence, we used section-by-section calculation for expediency.

116

Table 5.2: Perplexity and top-k token prediction accuracy results on two datasets. ∗Uses released
pre-trained model, †no stochastic training, for all others stddev < 0.01 for 5 runs.

Dataset Model Dev PPL Test PPL
Rel.

Gain

Top-1 Acc.

(Rel. Err. Red.)

Top-5 Acc.

(Rel. Err. Red.)

Wikitext
-103

Transformer1 ∗23.31 ∗23.73 – 39.0% (–) 64.0% (–)
+kNN2 †20.21 †19.94 16.0% 41.3% (3.79%) 66.8% (7.91%)
+kNN + locality 19.51 19.16 3.9% 43.2% (3.29%) 68.0% (3.56%)

Java
Github

BPE LSTM3 – ∗5.27 – – –
Transformer 3.29 3.07 41.7% 75.6% (–) 87.6% (–)
+kNN †2.43 †2.18 29.0% 83.9% (34.0%) 96.0% (67.9%)
+kNN + locality 2.37 2.13 2.3% 84.7% (4.91%) 96.6% (15.0%)

1[27], 2[200], 3[193]

Table 5.4: Learned parameters θ0,{θn}
for each locality level and a non-local
level g0.

Wikitext-103 Java Github
w b w b

g0 1.233 – 0.022 –
g1 1.246 -1.087 0.033 -3.627
g2 1.288 -1.250 0.041 -5.920
g3 1.285 -1.464 – –

By adding kNN module onto the Transformer-based
LMs, perplexity and accuracy in both domains improves
by a large margin. This is expected and in line with pre-
vious experiments on kNN-LMs [200]. The Wikipedia
domain enjoys less relative improvement in perplexity
(16%) than the Java source code domain (29%). This
is particularly interesting, considering that the datas-
tore used for Wikitext-103 contains both the current
held-out split and the training data (∼100M contexts),
compared to that for Java Github with only the current
held-out split (∼5M contexts). This reflects the fact that
source code is known to benefit strongly from project- and package-specific locality [152, 409].

Adding proposed locality features and finetuning the parameters on the validation set
improves the performance further on both datasets, albeit with a smaller relative gain. This
confirms our hypothesis that incorporating locality into the non-parametric retrieval-based LMs
is beneficial. We also see that locality features in the Wikipedia domain result in fairly consistent
gains, while the Java source code domain sees especially strong accuracy improvements. This
echoes our analysis of the source code corpus in Section 5.4, where we found that distance was
generally strongly correlated with accuracy, but that locality was particularly informative at
low distances. There, it may help discriminate between top-ranked completion candidates (as

117

Table 5.3: Additional token prediction top-k (k = 10,20) accuracy results and relative error
reduction (RER) on two datasets.

Dataset Model Top-10 RER Top-20 RER

Wikitext-103
Transformer 72.0% - 78.9% -
+kNN 74.6% 9.29% 81.0% 9.98%
+kNN + locality feat. 74.9% 1.30% 81.1% 0.84%

Java Github
Transformer 89.5% - 90.8% -
+kNN 97.3% 74.86% 98.2% 80.33%
+kNN + locality feat. 97.9% 21.89% 98.6% 25.41%

0 25 50 75 100 125 150 175 200
Rank

17

16

15

14

13

12

11

Ne
g.

 D
ist

an
ce

 (M
od

ifi
ed

)

Locality
no locality
same category, different section
same section, different category
same section, same category

(a) Wikitext-103

0 25 50 75 100 125 150 175 200
Rank

8

6

4

2

0

2

4

Ne
g.

 D
ist

an
ce

 (M
od

ifi
ed

)

Locality
no locality
same project, different subdir
same subdir

(b) Java Github

Figure 5.3: The relationship between nearest neighbor rank and the “modified” negative distance
−g guided by our proposed locality features, grouped by different locality levels. Similarly to
Figure 5.2, only top 200 nearest neighbors are shown for clarity.

also shown later in Tab. 5.5). It is notable that despite the fact that the perplexity and accuracy
on Java Github are already very strong with the vanilla Transformer, we still see a noticeable
relative error reduction of 4.9% by adding locality levels information.

We next study how locality features guide towards a “better” distance distribution among
nearest neighbors. We plot the relationship between the nearest neighbor ranks and “modified”
distance g(ki, ct) in Figure 5.3. Table 5.4 shows the specific learned parameters for each level
of g(⋅, ⋅). Evidently, the biases and weights vary accordingly with locality levels, as the model
tries to “correct” the original distance by emphasizing more local contexts. Compared with the
original negative distance −d(ki, f(ct)) depicted in Figure 5.2, the negative modified distance
is more separated between the different locality levels on either dataset, showing the relative

118

importance of different locality more clearly. We analyze several alternative approaches to
parameterizing locality in Section 5.6.3.

For Wikitext-103, comparing Figure 5.3a with Figure 5.2a, we can see that with the original
distance different localities cluster together, and the modified distance separates them much
better. We can also see that if two contexts have the same article category and the same section
title, then their distance on average is the closest, closely followed by those sharing article
categories only. On the other hand, contexts that only share section titles are not as closely
related. This is intuitively reasonable; the education section for a computer scientist and a
musician can be very different in content, even if sharing some commonalities, like the phrases
used to describe courses, grades, school locations, etc. This also underscores the usefulness
of explicit locality features in providing interpretable insights into the relevance of domain
knowledge.

For Java Github, comparing Figure 5.3b with Figure 5.2b, we can see that the original
distance is already more separated between different locality levels than that of Wikitext-103,
again suggesting better learned representations (in terms of locality sensitivity) for the Java
domain. However, the model still benefits somewhat from the contexts that are under the same
subdirectory (more so than just the same project), especially for top nearest neighbors: the gap
for ranks higher than 80 is more pronounced with the modified distance. This again verifies our
hypothesis about the hierarchical nature of structural locality. It also indicates potential practical
applications – if this model were deployed in a code editor, one could obtain representations of
the files in the same sub-directory as the current file and use them, along with the proposed
locality features, to bias auto-complete results.

Table 5.5 shows a randomly sampled test context from each domain where pkNN for the gold
token increases after using locality features. We can see that the nearest neighbor search using
context representations performs reasonably well at capturing patterns and themed phrases,
especially closer to the last token, finding two very similarly rated candidates. However, in
both examples, the second retrieved candidate has a wrong target token. Informed by locality
features – in the Wikitext-103 example, a matching section and category for the first candidate
– the more “local" context enjoys a large boost in probability, while the non-local one’s decreases
slightly. We present additional examples in Table 5.6. The Java example demonstrates the
same effect; the second retrieved example shows resemblances in variable name and template
structures, but the fact that the project is focused on Google API rather than Twitter API makes
the original retrieval undesirable.

119

5.6.3 Alternative Formulations to Learn Parameters for Locality Fea-

tures

An alternative way to incorporate locality features into the model is an adaptive variant that con-
ditions the weights and biases ({wn},{bn} in Equation 5.6) on the current context representation
f(ct) parameterized by a MLP:

[w0 ... wn b1 ... bn]
T
=MLP (f(ct)) (5.8)

In our experiments, we used a two-layer MLP with ReLU activations, with 64 hidden units
and 0.3 dropout rate during training. The perplexity results compared with directly optimizing
weights and biases ({wn},{bn}) are shown in Table 5.7.

We find that contextualizing the parameters does not result in significant improvements
over directly optimizing w and b, and sometimes makes the performance even worse. This is
perhaps because the context vector space is very large (512-1024 dimensions) compared to the
relatively few data points from the validation set used to train.

In Section 5.6.2, we discuss the effect of learned parameters for each locality level. Observing
that the bias terms (bi) and weights (wi) vary according to the locality levels in the learned
parameters and to study the weights of the non-local level w0, we freeze all weights except for
non-local weights (wi>0) to 1 and only optimize bias terms and the weight for the non-local level
(w0). This is to exacerbate the effect of bias on different locality levels. The learned parameters
are shown in Table 5.8. We see similar results where the bias terms vary aggressively to modify
the “distance” with different levels of locality, and the weights for the non-local level are less than
1, lowering the importance of those non-local retrieved candidates. It’s worth mentioning that
for Java Github these learned biases are much larger in amplitude than before, to compensate
for the small scale weights learned before (only around 0.03). However, the perplexity results
on both datasets are slightly worse than the full optimization setting that we use in the main
experiments (19.33 vs. 19.16 in Wikitext-103 and 2.15 vs. 2.13 in Java Github).

5.7 Conclusion

In this paper, we propose a novel method of incorporating structural locality into non-parametric
LMs that reference retrieved examples from a datastore. We evaluate this approach in both a
natural language and programming language domain, and empirically explore the similarities
and differences of how structural locality affects LMs in these settings. The improvement in

120

perplexity and prediction accuracy across both domains show the effectiveness and ubiquity of
such locality information. Besides language modeling, we also envision that the method can
benefit other applications that could be enhanced using user-defined prior domain knowledge
such as conditional generation or representation learning using retrieved information.
Connection with related work and novelty. Previous work [152] made the observation
that source code files from the same GitHub repository or sub-directory tend to be relatively
similar, but did not include an empirical analysis of this effect. Rather, their observation was
backed up by improved performance of their n-gram language model with multiple tiered caches.
Our work gives more fine-grained insights into this phenomenon, expands the applicability to
neural models and new domains, and proposes a more generalized formulation for encoding
multiple localities across multiple domains. Our work improves on this in a number of ways,
including: 1) directly examining the internal representations of a neural language model, 2)
demonstrating that the internal representations do not sufficiently capture structural locality
features, 3) providing efficient ways to compensate for this disconnect, leading to improved
language modeling performance, and 4) showing that this carries over to Wikipedia, which has
not been previously examined in this way.

As a result, our work both gives more fine-grained insights into this phenomenon and
expands the applicability to neural models and new domains. In addition, our work proposes a
more generalized formulation for encoding multiple localities across multiple domains than the
one proposed in Hellendoorn and Devanbu [152], which treated locality as strictly nested (e.g.
project→ sub-directory → file). Our formulation in Eq. 5.5 can encode more general hierarchies,
such as the lattice we used in the Wikipedia case:

same section & category

same section same category

any section & category

Limitations. Our method applies to settings where locality effects are present, there is suf-
ficient data to build a reliable datastore for each locality level, and that locality is not already
meaningfully captured by the model. While this may not apply to every domain, these features
are common: besides source code & Wikipedia, domains including books (features: authorship
& dewey decimal system information), research papers (venue, research area), product manuals
(kind, sections), and online discussions (time, topic) are all plausible candidates. The features

121

in our studied domains were selected based on availability and prior knowledge of the domain
(e.g., for Java, [152]). While they did provide measurable improvements and were natural to
interpret, these may not be the optimal choice, and other options are worth investigating. It
is also possible that LM improvements will eventually lead to learned context representations
that almost perfectly capture the relevant locality information. However, we believe this to be
unlikely: in many practical settings, there is some inherent ambiguity in partial contexts that
cannot be solved with the surface text only. For instance, in Java source code files, it is common
to declare a package, which will obviously match perfectly based on the first few tokens (e.g.,
package org.) with many other contexts. Yet given the scoped nature of this declaration,
locally retrieved continuations are inherently far more useful.

122

Table 5.5: Examples from two domains where incorporating locality features (non-local, local)
lead to a significant increase in the cumulative pkNN for the gold token, with corresponding
change in probability (normalized negative distance) for two nearest neighbors.

Test Context Test Target Initial log pkNN
∆

log pkNN

Section: Seasonal forecasts; Category: Pacific typhoon season The forecast indicated the potential

for 26.2 tropical storms, compared to the 10– and 30-year average of 27.8 and 26.3 storms, respectively.

The following month, the group raised their ...

forecast -2.20 +0.89

Datastore Context
Datastore
Target

Orig. Log-Prob.
∆Log-
Prob.

Section: Seasonal forecasts; Category: Pacific typhoon season Their main reasons behind this is due

to weaker trade force winds occurring in many parts of the basin, and there would be an enhanced

cyclonic vorticity over the northwestern part of the Pacific. On April 27, the GCACIC made their first

...

forecast -2.91 +1.25

Section: Earthquake; Category: earthquake Nickson Sioni from Simbo came on the (HF) radio and

announced the arrival of a huge wave that had washed away several houses and come inland about

200m. This information was passed on by telephone to the Hawaii-based Pacific Tsunami Warning

Center who then upgraded their ...

warning -3.01 -0.31

Test Context Test Target Initial log pkNN
∆

log pkNN

Directory: .../android/twitter/AuthConstants.java; Project: twitterdroid
public static final String CONSUMER_SECRET = "YOUR_CONSUMER_SECRET";

public static final String REQUEST_URL = "http://www. ...

twitter -2.03 +0.49

Datastore Context
Datastore
Target

Orig. Log-Prob.
∆Log-
Prob.

Directory: .../jtwitter/TwitterConnection.java; Project: twitterdroid
public static final String FRIENDS_TIMELINE_URL =

"http://api.twitter.com/1/statuses/friends_timeline.xml";

public static final String UPDATE_URL = "http://api. ...

twitter -1.99 +0.17

Directory: .../impl/ActivityTemplate.java; Project: spring-social-google
private static final String ACTIVITIES_PUBLIC = "/activities/public";

private static final String ACTIVITIES_URL = "https://www. ...

googleapis -1.87 -0.09

123

Table 5.6: Examples where locality features (non-local, local) lead to a significant increase in
the cumulative pkNN for the gold token, with corresponding change in probability (normalized
negative distance) for two nearest neighbors.

Test Context Test Target Initial log pkNN
∆

log pkNN

Section: Design; Category: ship class In an effort to outmatch the American New York class, planners

called for a ship armed with twelve 14-inch (36 cm) guns and faster than the 21 knots (39 km/h; 24

mph) of their rivals. Vickers files show that the Japanese had access to the designs for double- and

triple-gun turrets, yet opted for six double turrets over four triple turrets. The final design—designated

A-64 by the IJN—called for a ...

displacement -2.54 +1.09

Datastore Context
Datastore
Target

Orig. Log-Prob.
∆Log-
Prob.

Section: Design; Category: ship class Both ships were also given torpedo bulges to improve their

underwater protection and to compensate for the weight of the additional armour. In addition, their

sterns were lengthened by 7.62 metres (25 ft). These changes increased their overall length to 213.8

metres (701 ft), their beam to 31.75 metres (104 ft 2 in) and their draft to 9.45 metres (31 ft). Their ...

displacement -3.25 +1.23

Section: History; Category: gun mount The British Admiralty ordered a prototype of Coles’s patented

design in 1859, which was installed in the ironclad floating battery, HMS Trusty, for trials in 1861,

becoming the first warship to be fitted with a revolving gun turret. Coles’s aim was to create a ...

ship -2.98 -0.24

Test Context Test Target Initial log pkNN
∆

log pkNN

Section: La Venta; Category: colossal statueWhen discovered it was half-buried; its massive size

meant that the discoverers were unable to excavate it completely. Matthew Stirling fully excavated

the monument in 1940, after clearing the thick vegetation that had covered it in the intervening years.

Monument 1 has been ...

moved -2.97 +1.22

Datastore Context
Datastore
Target

Orig. Log-Prob.
∆Log-
Prob.

Section: San Lorenzo; Category: colossal statue The sculpture suffered some mutilation in antiquity,

with nine pits hollowed into the face and headdress. San Lorenzo Colossal Head 10 (also known as

San Lorenzo Monument 89) has been ...

moved -4.18 +1.36

Section: San Lorenzo; Category: castle The excavations investigated the north of the fortress,

searching for an entrance postulated by architect Eugene Viollet-le-Duc, but no such entrance was

found. However, the excavation did reveal was that there was an addition to the north of the castle to

enable the use of guns. Typologically, the structure has been ...

dated -4.63 -0.11

124

Table 5.7: The perplexity results comparing alternative formulation using MLP to contextualize
parameters for locality features on two datasets.

Dataset Model Dev PPL Test PPL

Wikitext-103

Transformer 23.31 23.73
+kNN 20.21 19.94
+kNN + locality (MLP contextualized) 20.11 19.92
+kNN + locality (direct) 19.51 19.16

Java Github

Transformer 3.29 3.07
+kNN 2.43 2.18
+kNN + locality (MLP contextualized) 2.47 2.20
+kNN + locality (direct) 2.37 2.13

Table 5.8: Learned parameters θ0,{θn} for each locality level and a non-local level g0, with fixed
wi>0 = 1 during optimization.

Wikitext-103 Java Github
w b w b

g0 1.127 – 0.901 –
g1 1.000 -0.385 1.000 -28.716
g2 1.000 -0.475 1.000 -55.428
g3 1.000 -0.726 – –

125

126

Chapter 6

Why do Nearest Neighbor Language
Models Work?

Language models (LMs) compute the probability of a text by sequentially computing a repre-
sentation of an already-seen context and using this representation to predict the next word.
Currently, most LMs calculate these representations through a neural network consuming the
immediate previous context. However recently, retrieval-augmented LMs have shown to improve
over standard neural LMs, by accessing information retrieved from a large datastore, in addition
to their standard, parametric, next-word prediction. In this paper, we set out to understand why

retrieval-augmented language models, and specifically why k-nearest neighbor language models
(kNN-LMs) perform better than standard parametric LMs, even when the k-nearest neighbor
component retrieves examples from the same training set that the LM was originally trained
on. To this end, we perform analysis of various dimensions over which kNN-LM diverges
from standard LMs, and investigate these dimensions one by one. Empirically, we identify
three main reasons why kNN-LM performs better than standard LMs: using a different input
representation for predicting the next tokens, approximate kNN search, and the importance
of softmax temperature for the kNN distribution. Further, we incorporate some insights into
the standard parametric LM, improving performance without the need for an explicit retrieval
component. The code is available at https://github.com/frankxu2004/knnlm-why.

6.1 Introduction

Language modeling is the task of predicting the probability of a text (often conditioned on
context), with broad-spanning applications across natural language processing [27, 35, 54, 279].

127

https://github.com/frankxu2004/knnlm-why

Multi Headed
Attention

Feed Forward
Network

Layer Norm

ℎ𝑠𝑚 𝑊𝑠𝑚
𝐷

𝑉 ℎ𝑑𝑠

𝑊𝑑𝑠

𝐷

𝑁𝑑𝑠

+

𝑃𝐿𝑀 parametric component 𝑃𝑘𝑁𝑁 non-parametric component

In 𝑘NN-LM:
𝑁𝑑𝑠: up to 5000𝑉

𝐷

𝐷

mask-to-k()

In 𝑘NN-LM:
top-𝑘()

FFN

ATT

softmax() softmax()

Figure 6.1: An illustration of the generalized formulation of kNN-LM in Equation 6.2.

It is usually done by sequentially encoding a context ct using a trained neural network function f ,
and computing the probability of the next wordwt according to f (ct) and a vector representation
of wt.

Recently, retrieval-augmented LMs have shown a series of impressive results [14, 44, 123, 135,
147, 201, 495]. Retrieval-augmented LMs compute next token distribution based not only on the
immediately preceding context ct and the model parameters, but also on an external datastore,
from which examples are retrieved and incorporated into the base LM’s prediction. One such
model that is notable for both its simplicity and efficacy is the k-nearest neighbor language
model [kNN-LM; 201]. kNN-LM extends a trained base LM by linearly interpolating the output
distribution with a kNN model. The nearest neighbors are retrieved according to the distances
between the current context embedding of the base LM and all the context embeddings in the
datastore. The datastore is created by encoding all contexts from any text, including the original
LM training data.

One of the most surprising results from Khandelwal et al. [201] is that kNN-LM reduces the
perplexity of the base LM even when the kNN component is retrieving examples from the same

training set that the LM was originally trained on, indicating that kNN-LM improves the ability to
model the training data and is not simply benefiting from access to more data. Intrigued by this
finding, we wonder why does kNN-LM work, and how does it improve already-trained strong
transformer-based models? In this paper, we set out to understand why kNN-LMs work even in
this setting.

128

In the following sections, we first elucidate connections between the added kNN component
and the standard LM component. Specifically, we note that word distributions from both
components are calculated using a softmax function, based on the similarity of the current
context hidden state with a set of embeddings that corresponds to different next words. With
this intuition, we formalize and generalize the non-parametric distribution with the softmax
layer and word embedding layer used in parametric LMs. We then show that this generalized
form exposes a variety of design choices, e.g., the number of context embeddings in the datastore,
the input representation used in softmax layer, different similarity functions, as well as the
approximation and sparsification implementations in the kNN search. This provides a general
framework for analyzing kNN-LM and similar models and allows us to perform ablation studies
that test the importance of various design decisions.

We proceed to propose multiple hypotheses as to why kNN-LM works, which are testable
by adjusting the various parameters exposed by our generalized formulation. Based on these
hypotheses, we perform ablation experiments and analyze the nuances between different im-
plementations of the generalized version of PkNN . As the answer to our question, “why do
kNN-LMs work?”, we eventually show that the most probable reasons are threefold:

1. Ensembling the output of softmax using two representations from different layers of the
transformer is important; in our experiments, this accounts for 55% of the performance gain of
kNN-LM, or 6.5% relative perplexity improvement compared to the base LM.

2. kNN-LM uses approximate nearest neighbor search to handle the large number of candi-
dates, and the lack of preciseness in the algorithm actually helps kNN-LM to generalize better
than exact nearest neighbor search and distance calculation, possibly due to regularization effect.
The relative perplexity improvement from this factor is about 2.6%.

3. Depending on the design decisions that are chosen for modeling, adding a temperature
term to the kNN non-parametric component can become crucial to the success of modeling
(although coincidentally, in the original settings of Khandelwal et al. [201], a temperature of
1.0 was close to optimal, which hid the importance of this term). In some settings, the relative
perplexity gap between the default and optimal temperature can be as high as 8.4%.

Finally, one significant drawback to the current kNN-LM is the inefficiency of kNN search
performed at each step [14, 44, 148, 416]. Because of the similarity between kNN-LM and the
parametric LM’s last layers and the many design choices, we also demonstrate that we are able to
make kNN-LM more efficient by substituting the kNN search with another matrix operation that
can fit in accelerator memory while maintaining more than half the perplexity improvement, or
6.5% relative improvement to the base LM.

129

6.2 Formalizing and Generalizing kNN-LM

kNN-LM [201] is a linear interpolation between a base LM and a kNN model. Given a set of
contexts ci and their corresponding next token wi as a pair (ci,wi) ∈ D, kNN-LMs create a
datastore (K,V) = {(ki, vi)}, as a set of key-value pairs (K,V) = {(f (ci) ,wi) ∣ (ci,wi) ∈ D},
where f (ci) is typically a transformer’s hidden state after reading ci. During inference, the
parametric component generates the output distribution pLM(wt∣ct; θ) over the next tokens
and produces the corresponding context representation f(ct), given the test input context ct.
Then the non-parametric component queries the datastore with the f(ct) representation to
retrieve its k-nearest neighbors N with a distance function d(⋅, ⋅). Next, kNN-LM computes a
probability distribution over these neighbors using the softmax of their negative distances, and
aggregates the probability mass for each vocabulary item across all of its occurrences in the
retrieved targets:

pkNN(wt∣ct) ∝ ∑
(ki,vi)∈N

1wt=vi exp(−d(ki, f(ct))) (6.1)

Finally, this distribution is interpolated with the parametric LM distribution pLM to produce the
final kNN-LM distribution p(wt∣ct; θ) = (1 − λ)pLM(wt∣ct; θ) + λpkNN(wt∣ct), where λ is a scalar
that controls the weights of the interpolation between two components, with higher λ putting
more weight on the non-parametric component.

Looking closely at Equation 6.1, we notice a similarity between the calculation of PkNN and
the standard PLM . The kNN distribution is based on the distances between the current context
and the nearest neighbors from the datastore, normalized by a softmax function. Recall that in
(standard) parametric language models, the distribution over the vocabulary is also based on a
measure of distance, the inner product between the current context embedding and the word
embeddings of every token in the vocabulary. Because each context embedding in the datastore
(K,V) corresponds to a target token, we can also view this datastore as a large word embedding
matrix with multiple word embeddings for each of the vocabulary words. Theoretically, given
unlimited computation, we could calculate the distribution based on the distances to every
embedding in the datastore, and aggregate by vocabulary items, making it more closely resemble
PLM . For Equation 6.1, this will result in k = ∣D∣, the size of the entire datastore, and N = D,
using the distances to every context in the datastore instead of a subset of nearest neighbors. In
practice, we use kNN search as a way of approximation, by limiting the calculation to only k

nearest neighbors to avoid the computational cost of calculating the distribution over the entire
datastore.

130

If we re-write and generalize Equation 6.1, both the kNN-LM of Khandelwal et al. [201] and
a large number of related models can be expressed through the following equation:

Pinterp = (1 − λ) softmax(Wsm ⋅ hsm)
´¹¹¸¹¹¶
PLM parametric component

+ λMsoftmax(mask-to-k(Wds ⊗ hds)/τ)
´¹¹¸¹¹¶

PkNN non-parametric component

.
(6.2)

Figure 6.1 provides an illustration of Equation 6.2. The first term of the equation is the standard
parametric language model, whereas the second represents a generalized version of utilizing
an external datastore. The first component, the output layer of a common parametric language
model, is relatively straightforward. Wsm of size V ×D is the embedding matrix of the output
token, and hsm is the context vector to calculate the distribution of the output token, usually the
output of the final feedforward layer in the transformer.

In the second component, Wds represents the datastore, of size Nds ×D. Nds is the number
of entries in the datastore, and D is the size of each context vector. hds represents the context
vector used to query the datastore. As shown in Figure 6.1, hds may come from a different layer
of the transformer than hsm. The operator ⊗ represents the operation type used to calculate
the similarity between context vectors and the query vector, which also has several alternatives
that we discuss below. mask-to-k(⋅) represents a function to sparsify similarity scores across
the datastore, setting all but k similarity scores to −∞, which results in probabilities of zero
for all masked similarity scores after the softmax. Practically, this is necessary for kNN-LMs
because the size of the datastore Nds makes it infeasible to calculate all outputs at the same
time. With the masked logits, we apply a more generalized version of softmax with temperature
τ . Intuitively adding the temperature can adjust the peakiness or confidence of the softmax
probability distribution output. After the softmax, the matrixM of dimension V ×Nds sums the
probability of the Nds datastore entries corresponding to each of the V vocabulary entries. Each
column in this matrix consists of a one-hot vector with a value of 1 and the index corresponding
to the vocabulary item wi corresponding to the datastore entry for ci.

Within this formulation, it becomes obvious that there are many design choices for kNN-
LM-like models. One important thing to note is that the right side of Equation 6.2 is actually
very similar to the left side representing the standard parametric language model, with a few
additional components: M , mask-to-k, and ⊗. More specifically, some of the design decisions
that go into the kNN-LM, and parallel with standard parametric models are:

Size ofWds: In standard parametric model, the size ofWsm is V embeddings, each with D

131

dimensions. In kNN-LM the size of Wds is very large: Nds, the size of the datastore, usually the
number of tokens in the training corpus.

Input representation: In the parametric model, hsm is the output from the feedforward
layer in the last transformer block, which we abbreviate “ffn”. In contrast, kNN-LM rather use
as hds the output from the multi-headed attention layer of the last transformer block (before
running the representations through the feed-forward network, and after the LayerNorm [25]),
which we abbreviate as “att”.

Similarity & Temperature: In the parametric model, the functional form of ⊗ is the inner
product (abbreviated IP), whereas kNN-LM use negative squared L2 distance (abbreviated L2) as
a similarity function between Wds and hds. As the similarity scores are turned into probability
distributions with the softmax function, the choice of softmax temperature (τ) can control the
scaling of the similarity scores and thus the peakiness of the non-parametric distribution.

Approximation & Sparsification: In the parametric model, k = V , and no values are
masked, but in the kNN-LM, k ≪ V , and most of the datastore entries are pruned out. The
definition of the mask-to-k(⋅) function, i.e. how to select the important datastore embeddings
to include in the similarity calculation (in kNN-LM’s case the k nearest neighbors), is a crucial
open design choice.

In the following sections, we set out to better understand how each of these design decisions
contributes to the improvement in accuracy due to the use of kNN-LMs.

6.3 Baseline kNN-LM Results

First, we evaluate kNN-LM on Wikitext-103 [278], and examine the importance of two design
choices: the input representation hds and the similarity function ⊗.

In models examined in this paper, the parametric model is a transformer language model
with mostly the same architecture as in Khandelwal et al. [201]. However, we make slight
modifications to the original base LM [27] to accommodate our experimentation need. We
use BPE tokenization [371] to train a smaller vocabulary (33K) than the original (260K) on the
training corpus of Wikitext-103, as subword tokenization is ubiquitous in many state-of-the-art
language models [54, 88]. Using subword tokenization also eliminates the need for adaptive
softmax [188]. This makes the output layer more general, sharing more resemblance to the kNN
component as described in § 6.2, and facilitates the ablation studies in this paper.1 This base

1By re-training the base LM from scratch with BPE tokenization and a standard output softmax, our LM’s
perplexity is worse than reported by Khandelwal et al. [201]. However, we observe similar relative gains from

132

LM has 268M parameters. To get a perspective on how large the datastore is, it is built on the
training data that contains nearly 150M BPE tokens, each paired with a context vector of size
1024. This datastore has a total memory consumption of about 300GB. Following Khandelwal
et al. [201], at every retrieval step, we take the top 1024 nearest neighbors, i.e., k = 1024. The
interpolated perplexity is computed with optimal interpolation parameter λ tuned according to
the perplexity on the development set, and fixed during inference.

hds ⊗ +#params PPL Interp. Oracle

Base LM - - 0 21.750 - -
kNN-LM-L2 att L2 Nds ×D ∞ 19.174 14.230
kNN-LM-IP att IP Nds ×D ∞ 19.095 14.077
kNN-LM-L2 ffn L2 Nds ×D ∞ 20.734 15.594
kNN-LM-IP ffn IP Nds ×D ∞ 21.101 16.254

Table 6.1: Performance of the parametric language model and several kNN-LM variants.

Results comparing multiple kNN-LM variants are shown in Table 6.1. The first row represents
the base parametric language model’s perplexity. The second is a formulation analogous to
that of kNN-LM, and in the remaining rows, we vary the input representation hds and distance
function ⊗ from Equation 6.2. All variants use a large datastore with size Nds, approximately
5000 times the size of the vocabulary V , as also reflected in “+#params”, the number of additional
parameters other than the base LM.

We report several important quantities. “Interp.” shows the interpolated perplexity. “PPL”
shows the perplexity of only the kNN component of the model pkNN(). This is∞ for all kNN-LM
models, as when the kNN search does not retrieve any datastore entries corresponding to the
true target word wt the probability of it will be zero. “Oracle” shows the lower bound of the
interpolated perplexity by choosing the best λ for each token in the evaluation dataset, which
will either be λ = 0 or λ = 1 depending on whether PLM(wt∣ct) > Pknn(wt∣ct). From the table,
we see that:

1. Using the output of the multi-headed attention layer (“att”) as hds (instead of the standard
“ffn” layer) is crucial for better performance of kNN-LM.

2. In general, using negative squared L2 distance or inner product as a similarity function
does not result in a large and consistent difference, although in our setting, IP provides slightly

the additional kNN component, and we argue that the base LM is orthogonal to the study of the factors behind
kNN-LM’s improvements.

133

better performance when using the “att” inputs, and slightly worse when using “ffn” inputs.
3. Interestingly, when using “ffn” and “IP”, the same input and distance metric used in the

parametric model, the results are the worst, indicating that kNN-LM particularly benefits from
a different view of the data than the parametric model.

We found in preliminary experiments that kNN-LM is generalizable to other base language
models as well, ranging from small models with 82M parameters to larger models with 774M
parameters. The gain from kNN-LM is more significant when used with a smaller, less capable
base language model (§ 6.8.1) In this paper, we mainly focus on the factors contributing to the
relative improvements from kNN-LM, instead of the absolute performance, so we use the 268M
model for the remainder of the paper. In the next sections, we perform ablation experiments
on the general formulation Equation 6.2 to elucidate the key elements contributing to the
performance improvements in kNN-LM.

6.4 Effect of DifferentWds Formulations

hds Nds +#params PPL Interp. Oracle

Base LM - - 0 21.750 - -
kNN-LM att Big Nds ×D ∞ 19.095 14.077

Learned Wds att 1x V ×D 22.584 20.353 16.954
kNN-LM ffn Big Nds ×D ∞ 21.101 16.254

Learned Wds ffn 1x V ×D 20.920 20.694 18.772

Table 6.2: Performance comparison how the choice of hds, input representation, affects kNN
baselines and models with learnable embeddings as datastore alternative. hds is the attention
layer output. ⊗ is IP.

6.4.1 Replacing Datastore with Trainable Embeddings

From the observation in § 6.3, we see that the choice of hds has a large impact on the performance
of kNN-LM. This intrigues us to explore if one key to the improvements of kNN-LM lies in
the combination of different input representations, namely the attention output (hds = att) and
feedforward output (hds = ffn). However, based only the experiments above, it is not possible

134

to disentangle the effect of the choice of hds and that of other design choices and factors in
Equation 6.2.

To test the effect of the choice of hds in a more controlled setting, we remove the non-
parametric datastore entirely, and initializeWds in Equation 6.2 with a randomly initialized word
embedding matrix of the same size (Nds = V) as the LM’s output embedding Wsm, and train
Wds with all other parameters fixed.2 The loss function for training is the cross-entropy loss of
softmax(Wds ⋅ hds) with respect to the ground-truth tokens, identically to how the base LM is
trained. We compare how using hds = att or hds = ffn affects the interpolated performance. The
results are shown in Table 6.2, with the results of kNN-LMs using these two varieties of input
representation for reference. From these experiments we find several interesting conclusions:

Effectiveness of re-trainingWds: In the case of “LearnedWds w/ FFN”, we are essentially
re-learning the weights for the softmax function separately from the underlying LM encoder.
Despite this fact, the model achieves a PPL of 20.920, which is 0.83 points better than the base
model. This suggests that it is beneficial to learn the parameters of Wds after freezing the
transformer encoder.

Effectiveness of ensembling two predictors: In both cases of Wds, the interpolated
perplexity is significantly better than that of using a single predictor. This is particularly the
case when using the “att” representation for hds, suggesting that the utility of ensembling
predictions from two views of the data is not only useful when using kNN-LM, but also in
standard parametric models as well.

Parametric ensembles as an alternative to kNN-LM? Overall, by using a separate word
embedding matrix with size V ×D as an alternative to kNN, we can recover about 55% of the
performance gain achieved by kNN-LM, with only a limited number of parameters and without
the necessity for slow kNN retrieval every time a token is predicted. This suggests that the
majority of the gain afforded by kNN-LM could be achieved by other more efficient means.

6.4.2 Increasing the Softmax Capacity

One premise behind kNN-LM is that the large datastore is the key reason for the kNN-LM’s
success: the larger the datastore’s capacity, the better the performance. We wonder whether
such a big datastore is warranted and whether the size and expressivity ofWds leads to better
performance. We test the effect of the datastore size for kNN retrieval on kNN-LM interpolated

2Because we previously found little difference between IP and L2 as similarity functions, we use IP in the
experiments. For simplicity, we set temperature τ = 1.

135

perplexity. If a bigger datastore is better in kNN-LM than a smaller datastore, then the hypothesis
of softmax capacity is more probable. We randomly subsample the full datastore in varying
percentages and the results are shown in the blue “FAISS mask, FAISS score” series in Figure 6.3.
The full datastore contains more than 150M entries and storing them takes 293GB when using
fp16. We see that the perplexity decreases linearly with a higher fraction of the original datastore.
Even with just 5% of the datastore size (15G), kNN-LM still provides a benefit over the base
LM. However, even when the subsampling percentage reaches 90%, more entrie in the datastore
still provide benefits without having significant diminishing returns, suggesting that a large
datastore is beneficial.

One possible reason why a larger datastore is helpful is that some words can be difficult
to predict. There are several reasons: (1) They are rare, or (2) they are frequent, but they have
multiple meanings and appear in different contexts. The softmax bottleneck [446] suggests that
the final dot product of languagemodelWsm ⋅hsm is capped atD rank, limiting the expressiveness
of the output probability distributions given the context; that is, a single output vector of a fixed
(1024) size cannot express all the possible mappings between 100M training examples and 33K
vocabulary outputs. We hypothesize that kNN-LM improves performance by alleviating the
problem, sinceM exp(Wds⊗hds) has a higher rank (M ⋅ sums softmax outputs of the same token)
and is more expressive than just exp(Wsm ⋅ hsm). kNN is a sparse approximation of the full
softmax over all the embeddings in the datastoreWds. To test this hypothesis, we disentangle the
effect ofWds size from the actual saved context embeddings inWds, by training an embedding
matrix of the same size from scratch.

We explore several potential solutions for increasing the capacity of softmax, and examine
if they can achieve a similar effect to kNN-LM. The first and easiest solution is to increase the
embedding matrix size by adding more embedding vectors for each word type in the vocabulary.
To test this, we replace Wds with a much smaller matrix of size nV ×D, where we allocate n
embedding vectors for each word type. When calculating the probability from this component,
we compute the softmax over nV items and sum the probabilities for each vocabulary entry.
mask-to-k(⋅) is no longer needed, as this formulation is small enough to fit the entire matrix in
the GPU. We then finetune the newWds on the training data until convergence.

Figure 6.2 compares the base LM using the original kNN-LM with using either the attention
layer output (“att”) or the feedforward layer output (“ffn”) as hds. We plot the number of
embeddings for each word type (nV total embeddings inWds) versus the interpolated perplexity,
with full details found in Table 6.3.

In both cases, comparing with the top horizontal line which represents the perplexity of

136

hds Nds ⊗ +#params PPL Interp. Oracle

- - - 0 21.750 - -

att Big IP Nds ×D ∞ 19.095 14.077
att 1x IP V ×D 22.584 20.353 16.954
att 2x IP 2V ×D 21.903 20.529 17.432
att 3x IP 3V ×D 22.434 20.395 17.132
att 4x IP 4V ×D 21.936 20.521 17.423
att 5x IP 5V ×D 22.025 20.643 17.560
att 6x IP 6V ×D 21.972 20.519 17.422
att 9x IP 9V ×D 22.084 20.696 17.631

ffn Big IP Nds ×D ∞ 21.101 16.254
ffn 1x IP V ×D 20.920 20.694 18.772
ffn 2x IP 2V ×D 20.889 20.646 18.701
ffn 3x IP 3V ×D 20.829 20.603 18.717
ffn 4x IP 4V ×D 20.769 20.629 18.876
ffn 5x IP 5V ×D 20.720 20.594 18.878
ffn 6x IP 6V ×D 20.726 20.599 18.902
ffn 9x IP 9V ×D 20.687 20.567 18.887

Table 6.3: Performance comparison of kNN baselines and models with learnable embeddings
of increasing size as Wds datastore alternative. hds is either attention layer output (att) or
feedforward layer output (ffn).

the base LM, replacing the datastore with a much smaller weight matrix (from Nds to nVds) by
assigning only a few more embeddings for each word helps, although only about half as effective
as kNN-LM. To give a perspective, the original datastore size is about 5000V . Surprisingly,
we find that increasing n does not always bring better performance, even though a larger
datastore is better than using a small datastore in kNN-LM. We see that when hds = ffn, over-
parameterization provides limited improvements, while for hds = att it does not bring consistent
improvements at all. Comparing the trend of increasing the embeddings inWds, with the bottom
horizontal line in the plot, which represents the perplexity of the standard kNN-LM using the
full datastore (Wds with approx. 5000V embeddings), we see no clear trend that more trainable
embeddings result in better perplexity, and that the gap between using trained embeddings and
using full datastore is still significant. This suggests that simply over-parameterizing Wds is not

137

Number of Trained Embeddings (nV)

In
te

rp
ol

at
ed

 P
er

pl
ex

ity
19

20

21

22

2 4 6 8

att ffn

kNN-LM w/ Full Datastore

Base LM

Figure 6.2: The number of embeddings per word type (nV total embeddings in Wds) versus
interpolated perplexity, compared with base LM and kNN-LM.

an effective method of achieving gains similar to kNN-LM.

We hypothesize that this is because by just adding more embeddings, while still using the
same training procedure as the original LM, the multiple embeddings for each word type after
learning could still be very close to each other, and thus do not increase the softmax capacity
much. This suggests that some regularization terms may be needed during training to make the
multiple embeddings not converge to the same vector, rendering over-parameterization useless.

Besides simply increasing the number of embedding vectors equally for each word type, we
also propose other alternatives to increase softmax capacity. First, we hypothesize that different
word types have different difficulties for the language model to predict. For those words that
appear very frequently, they may appear in many different contexts. As a result, instead of
adding an equal number of additional embeddings to each word type, we propose to adaptively
increase the number of embeddings for word types based on word frequency, or total training
loss for the word. Second, we try to break the softmax bottleneck. Yang et al. [446] proposes
a solution using Mixture of Softmax (MoS) to produce more linearly independent probability
distributions of words given different contexts. Last, instead of training word embeddings of
increased size, we also consider compressing the datastore down to a similar-sized embedding
matrix for softmax by clustering the datastore and finetuning of the matrix consisting of cluster
centroids. However, none of these alternative methods provided additional benefits over the
simple multi-embedding approach (§ 6.8.2).

138

PPL Interp. Oracle

Base LM 21.750 - -
kNN-LM w/ FAISS mask, FAISS score ∞ 19.174 14.230
kNN-LM w/ FAISS mask, real score ∞ 19.672 14.393
kNN-LM w/ real mask, real score ∞ 19.735 14.480

Table 6.4: Performance of the parametric language model and comparison of kNN-LMs using
the approximate versus ground truth kNN. ⊗ is L2. hds = att.

6.5 Approximate kNN & Softmax Temperature

6.5.1 Comparing Approximate kNN Search

To calculate PkNN of the non-parametric component in Equation 6.2, it is usually prohibitive
to use exhaustive kNN search, and thus Khandelwal et al. [199] use approximate kNN search
using the FAISS library [184]. The use of FAISS (similarly to other approximate search libraries)
results in two varieties of approximation.

Approximate Neighbors: Because the search for nearest neighbors is not exact, the set
of nearest neighbors might not be equivalent to the actual nearest neighbors. Recall that the
function mask-to-k(⋅) in Equation 6.2 is the function that selects kNN entries from the datastore
Wds. We denote “real mask” as the accurate nearest neighbors for mask-to-k(⋅) selection, and
“FAISS mask” as the approximate nearest neighbors returned by the FAISS library.

Approximate Scores: In addition, FAISS makes some approximations in calculating the
distances between the query and the retrieved neighbors for efficiency purposes. We denote
“real score” as the scores calculated from ground truth distances between the embeddings, and
“FAISS score” as the distances returned by FAISS approximate search.

The comparison of the different approximation settings is shown in Table 6.4. Quite
surprisingly, we actually find that the interpolated perplexity with approximate search is better
than that with exact search, both with respect to the mask and the score calculation. Intrigued
by this counter-intuitive result, we explore the effect of kNN search approximation.

First, we plot the subsampled size of the datastore with the interpolated perplexity Figure 6.3,
but showcasing the comparison between approximate and real masks, approximate and real
scores in both the full datastore as well as a small subsampled datastore setting. We find that
using an approximate FAISS mask to find nearest neighbors performs better than using the

139

Ratio to Full Datastore Size

In
te

rp
ol

at
ed

 P
er

pl
ex

ity
19

20

21

22

0.00 0.25 0.50 0.75 1.00

FAISS mask, FAISS score FAISS mask, real score
real mask, real score

Figure 6.3: The differences between using approximate and accurate kNN search on varying
sizes of the datastore.

exact nearest neighbors both at 5% and 100% of the datastore. However, using the approximate
score returned by FAISS is better than recomputing the exact distances between embeddings for
the kNN distribution only for the small 5% datastore scenario. Interestingly, the gap between
using an approximate score or real score given the same approximate neighbors (“FAISS mask,
FAISS score” vs. “FAISS mask, real score”) is larger than that between using approximate or
real neighbors given the same ground truth method of calculating the distance (“real mask, real
score” vs. “FAISS mask, real score”).

We hypothesize that this is related to regularization for preventing overfitting, and ap-
proximate search provides fuzziness that functions as a regularizer. We can think of the kNN
component of kNN-LM as a model, where the datastore size is the model capacity, and the
datastore is its training data. Considering that the kNN component uses the exact same training
data as the base parametric LM, having ground truth, accurate kNN search may cause the kNN
component to overfit the training data.

6.5.2 Adding Softmax Temperature to kNN Distribution

Because the number of retrieved nearest neighbors, k, is usually much smaller than the vocabu-
lary size V , intuitively, the kNN distribution PkNN used for interpolation tends to be more peaky
than the standard LM output distribution. When k = 1024 and V = 33000, as in our experiments,
PkNN will only have a few vocabulary items with a non-zero probability. Furthermore, many of
the retrieved neighbors share the same target token and thus make the kNN distribution even
peakier. One way to control the entropy, or peakiness of the distribution is to add tempera-

140

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Temperature

21.45

21.50

21.55

21.60

21.65

21.70

Pe
rp

le
xi

ty

real mask, real score
FAISS mask, FAISS score
FAISS mask, real score

(a) On 5% subsampled datastore.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Temperature

19.0

19.2

19.4

19.6

19.8

20.0

20.2

20.4

20.6

Pe
rp

le
xi

ty

real mask, real score
FAISS mask, FAISS score
FAISS mask, real score

(b) On full datastore.

Figure 6.4: The interpolated perplexity varies with different softmax temperature τ values.

ture to the distances that go into the softmax function [162]. We calculate the probability of
non-parametric component in Equation 6.2 where τ is the softmax temperature. In general, the
higher the temperature, the less “peaky” the distribution becomes. We experiment with both the
5% as well as the full datastore using different temperatures ranging from 0 to 3 at 0.1 intervals.
The results are shown in Figure 6.4a and Figure 6.4b respectively.

We see that the default temperature τ = 1 does not always result in the best-interpolated
perplexity and tuning the softmax temperature is desirable for all sizes of datastore. The lesson
learned here is that tuning the softmax temperature for the kNN distribution is crucial for
getting optimal results from each setting. Only coincidentally, a temperature of 1.0 was close to
optimal in the original settings of kNN-LM, which hid the importance of this hyperparameter.
Even at the optimal temperature of each setting, “real mask, real score” underperforms “FAISS
mask, real score”. This is consistent with the counter-intuitive phenomenon in § 6.5.1. There
are also differences between different datastore sizes. With the full datastore, using “real score”
outperforms “FAISS score” given the same “FAISS mask”. However, the opposite is true when
using the 5% datastore. This suggests that as the datastore size grows, using accurate distance
values are better than the approximate ones. The smaller gap between using “real score” and
“FAISS score” in both datastore settings shows that the main contributor to the improvements is
using approximate nearest neighbors (“FAISS mask”) rather than using approximate distance
values (“FAISS score”).

These results emphasize the effect of approximation discussed in § 6.5.1, because comparing
the small datastore with only 5% with the original datastore, we see that a small datastore means
a small training set for the kNN “model” and it thus it benefits more from this regularization,

141

both by using the FAISS mask and FAISS score (at optimal temperature settings). Surprisingly,
one of the important ingredients in kNN-LM seems to be approximate kNN search, which likely
prevents overfitting to the datastore created from the same training set. We further analyze this
unexpected result in § 6.8.3, where we find that longer words and words that appear in many
different contexts have slightly better results with approximate nearest neighbors.

Consistently with our findings, He et al. [148] found that dimensionality reduction using
PCA on the datastore vectors (from 1024 to 512 dimensions) improves the perplexity of the
original kNN-LM from 16.46 to 16.25, which can be explained by our findings as PCA may
provide another source of approximation that contributes to regularization. Notably, similar
effects, where an approximation component leads to better generalization, have been reported in
other NLP tasks as well, and are sometimes referred to as “beneficial search bias”, when modeling
errors cause the highest-scoring solution to be incorrect: for example, Meister et al. [276] suggest
that “quite surprisingly, beam search often returns better results than exact inference due to
beneficial search bias for NLP tasks”; Stahlberg and Byrne [394] also conclude that “vanilla NMT
in its current form requires just the right amount of beam search errors, which, from a modeling
perspective, is a highly unsatisfactory conclusion indeed, as the model often prefers an empty
translation”.

6.6 Probably Wrong Hypotheses for Why kNN-LMWorks

The results in the previous sections are the result of extensive analysis and experimentation, in
which we also tested a number of hypotheses that did not turn out to have a significant effect.
Additional details of these hypotheses are detailed in the following sections, and we hope that
they may provide ideas for future improvements of retrieval-based LMs.

Ensemble of Distance MetricsWe hypothesized that the ensemble of two distance metrics:
the standard inner product distance (which the LM uses) and the L2 distance (which the kNN
component uses), is the key to the improvement. However, we found that similar gains can be
achieved using the inner-product metric for the retrieved kNN (§ 6.6.1).

Ensembling of Two Models We hypothesized that the kNN component merely provides
another model for ensembling. The improvement from kNN-LM is purely due to the ensembling
effect of simply different models. However, we found that kNN-LM’s improvement is orthogonal
to ensembling with a different base LM (§ 6.6.5).

Sparsification The mask-to-k(⋅) used by kNN retrieval induces sparsity in the distribution
over the vocabulary, due to a small k (typically 1024) compared to the size of the vocabulary

142

V (33K in our experiments and 260K in the original setting). We hypothesized that kNN-LM
increases the probability of the top-k entries while taking “probability mass” from the long tail
of unlikely word types. However, we could not gain any benefits solely from sparsifying the
output probability of a standard LM and interpolating it with the original LM (§ 6.6.2).

Stolen Probabilities The stolen probabilities effect [84] refers to the situation where the
output embeddings of an LM are learned such that some words are geometrically placed inside

the convex hull that is formed by other word embeddings and can thus never be “selected” as
the argmax word. We hypothesized that kNN-LM solves the stolen probabilities problem by
allowing to assign the highest probability to any word, given a test context that is close enough
to that word’s datastore key. However, we found that none of the vectors in our embedding
matrix and in the original embedding matrix of Khandelwal et al. [201] is located in the convex
hull of the others, which is consistent with the findings of Grivas et al. [125] (§ 6.6.4).

MemorizationWe hypothesized that the kNN component simply provides memorization of
the training set. However, we could not improve a standard LM by interpolating its probability
with another standard LM that was further trained to overfit the training set (§ 6.6.6).

Soft Labels We hypothesized that kNN-LM’s improvement lies in reducing the “over-
correction” error when training with 1-hot labels, as hypothesized by Yang et al. [449], and that
retrieving neighbors is not important. If only “soft labels” are the key, we could hypothetically
improve the performance of another fresh LM with the same model architecture but trained
with the soft labels from the base LM, instead of from kNN-LM. This separates the effect of
“soft labeling” from the additional guidance provided by kNN. However, this did not help at all
(§ 6.6.7).

Optimizing Interpolated Loss We hypothesized that the standard LM cross-entropy
training loss does not emphasize the examples where base LM performs badly which could
benefit from kNN, and directly optimizing the interpolated loss of standard LM and a separate
trainable softmax layer could be a better alternative. However, we could not gain any benefits by
training an additional softmax layer together with a base LM using the interpolated loss (§ 6.6.8).

6.6.1 Distance Metric

We hypothesize that the key to kNN-LM’s performance gain is the ensemble of two distance
metrics: the standard dot product distance (which the LM uses) with the L2 distance (which the
kNN component uses as ⊗). We tried to replace the kNN component with a component that just
takes the tokens retrieved by the kNN search and returns their L2 distance to the LM output

143

word embeddings: Wsm ⊗hds instead ofWds ⊗hds, where ⊗ represents the negative L2 distance.
We tried this with both variants of hds, attention layer output, and feedforward layer output.
None of these helped.

6.6.2 Sparsification

In Equation 6.2, mask-to-k(⋅) used by kNN retrieval induces sparsity in the distribution over
the vocabulary, due to a small k compared to the number of vocabulary V . We hypothesize
that the in kNN-LM, the kNN distribution is sparse, practically increasing the probability of
the top-k entries. The kNN distribution has up to 1024 entries that are non-zero, concentrating
more probability mass over the most likely tokens. This effect is similar to the redistribution of
probability mass for text generation in [162]. We test this hypothesis only by taking top 32, 64,
128, 512, or 1024 tokens in the parametric LM probability and zeroing out the probabilities of
the rest of the tokens. To compensate, we experiment with different softmax temperatures and
then interpolate with the parametric LM probability. This isolates the effect of the datastore
and retrieval at all, and this does not help at all, suggesting that sparsification of the output
probability alone is not enough.

Another attempt is to hypothesize that the key in kNN-LM is that it selects “which tokens to
include” in the kNN distribution, and not their distances. The intuition behind is that maybe the
selection of the top tokens according to the kNN search is better than that from the dot-product
distance between the language model’s output vector and all the vocabulary embeddings. We
perform experiments similar to the previous attempt, sparsifying the output probability with
the tokens retrieved by the kNN search (but ignoring the distances provided by the kNN search)
rather than the top k tokens of the LM, with and without removing duplicates. In the best case,
they manage to reduce the perplexity by 0.5 (whereas kNN-LM reduces by nearly 2).

6.6.3 Location within Context Window

Supposedly, words in the beginning of the “context window” of the transformer at test time
have less contextual information than words toward the end of context window.

We hypothesized that maybe the base LM performs worse in one of these (beginning vs. end
of the context window), and maybe kNN-LM provides a higher improvement in one of these.
We measured the per-token test perplexity with respect to the location of each token in the
context window. However, we did not find any significant correlation between the performance

144

of the base LM and the location, and no significant correlation between the difference between
kNN-LM and the base LM and the location.

We also hypothesized that maybe the beginning of every Wikipedia article is more “pre-
dictable”, and the text becomes more difficult to predict as the article goes into details. However,
we also did not find any correlation with the location of the word within the document it appears
in.

6.6.4 Stolen Probabilities

The stolen probabilities effect [84] refers to the situation where the output embeddings of an
LM are learned such that some words are geometrically placed inside the convex hull that is
formed by other word embeddings. Since language models generate a score for every output
word by computing the dot product of a hidden state with all word embeddings, Demeter et al.
[84] prove that in such a case, it is impossible for words inside the convex hull to be predicted
as the LM’s most probable word (the “argmax”).

We hypothesized that kNN-LM solves the stolen probabilities problem by allowing to assign
the highest probability to any word, given a test hidden state that is close enough to that word’s
datastore key. Nevertheless, as shown by Grivas et al. [125], although this problem might happen
in small RNN-based language models, in modern transformers it rarely happens in practice.
Using the code of Grivas et al. [125], we checked the embeddings matrix of our model and of
the checkpoint provided by Khandelwal et al. [201]. Indeed, we found that in both models – no

word is un-argmaxable.

6.6.5 Are kNN-LM Just Ensembling?

Our hypothesis is that kNN component only provides another model for ensembling. The
interpolation process is basically an ensemble model. Technically it is unsurprising that kNN-
LM will have the benefit from ensembling, but we perform experiments to see how it compares
to other ensembling. We trained another language model with the same architecture as the base
LM we used throughout the experiments, with some variants having more than one embedding
vector for each word (similar to § 6.4.2). We interpolate the models with the original base LM,
and the results are shown in Table 6.5. We see that even just ensembling the base LM with
another identical model, but trained with a different random seed, provides a huge performance
boost, both on interpreted perplexity and on oracle perplexity.

145

Prev. Layers hds Nds ⊗ +#params PPL Interp. Oracle

same - - - 0 21.750 - -
same att Big L2 Nds ×D ∞ 19.174 14.230
same att Big IP Nds ×D ∞ 19.095 14.077
same ffn Big L2 Nds ×D ∞ 20.734 15.594
same ffn Big IP Nds ×D ∞ 21.101 16.254
diff ffn 1x IP F + V ×D 21.569 18.941 14.980
diff ffn 2x IP F + 2V ×D 21.914 18.948 14.885
diff ffn 3x IP F + 3V ×D 22.206 18.981 14.853

Table 6.5: Performance comparison of kNN baselines and models with different size output
embeddings re-trained from scratch.

However, just because ensembling two LMs of the same architecture provides better per-
formance than interpolating the base LM with kNN does not necessarily suggest that kNN’s
performance improvement can be fully replaced by model ensembling. In other words, we are
interested in whether the kNN performance improvements are orthogonal to that of model
ensembling. To test this, we compare the performance of the ensemble ofK multiple LMs versus
the ensemble ofK − 1 multiple LMs plus the kNN component. The comparison is fair because
we have the same number of models in the ensemble, and the only difference is whether the
kNN component is included. The results are shown in Figure 6.5. For the “LM” series, each point
isK LMs ensemble, and for the “kNN” series, each point isK − 1 LMs plus kNN. We see that
even at 4-ensemble, the ensemble that contain kNN as a component still have a considerable
edge over the 4-ensemble that contain just LMs.

6.6.6 Are kNN-LM Just Overfitting?

Since kNN-LM improves perplexity even with the same training dataset as datastore, we are
curious if kNN-LM works by only “memorizing” the training data. The hypothesis is that the
datastore and the kNN search are trying to memorize the training data. In other words, the
parametric LM is under-fitting some tokens. The intuition behind this is that the kNN component
retrieves examples directly from the training set. What if we could retrieve the same examples
using an overfitted LM? We took the trained LM, removed the dropout, and continued training
until almost perfect fit (very small training loss). We then interpolated the overfitted transformer

146

Number of Ensemble Components

16

18

20

22

1 2 3 4

LM kNN

LM and KNN

Figure 6.5: Ensembling effect comparison, between multiple base LMs and multiple base LMs
plus kNN component.

Prev. Layers hds Nds ⊗ +#params PPL Interp. Oracle

Base LM same - - - 0 21.750 - -
kNN-LM same att Big L2 Nds ×D ∞ 19.174 14.230
kNN-LM same att Big IP Nds ×D ∞ 19.095 14.077
kNN-LM same ffn Big L2 Nds ×D ∞ 20.734 15.594
kNN-LM same ffn Big IP Nds ×D ∞ 21.101 16.254

Overfit@92 diff ffn V IP F + V ×D 1702.806 21.732 17.764
Overfit@129 diff ffn V IP F + V ×D 8966.508 21.733 17.814

Table 6.6: Performance comparison of several baselines with two overfitted models, at 92 and
129 additional epochs.

with the original LM. The results are shown in Table 6.6. F represents the number of parameters
in the base LM, minus the output embedding matrix. We see that overfitting can provide very
little help after interpolation. Looking at the oracle performance, we think that the overfitted
model memorizes some rare contexts and tokens in the training set where it could be useful
during evaluation. However, the overfitting hurts the performance on other tokens too much so
that even interpolation is not able to balance the performance.

6.6.7 Are kNN-LM Just Soft-Label Training?

[449] claims that using “soft labels” during training is the key to kNN’s success, that interpolates
the ground truth labels with kNN-LM model outputs, effectively “distilling” kNN-LM. It is based

147

on the hypothesis that the room for kNN-LM’s improvement over base LM lies in the “over-
correction” when training with a 1-hot labels. This is related to the effect from label smoothing
methods [275, 322, 399]. However, we believe that this explanation is not satisfactory. If the key
is training with soft-labels, why do these soft labels must be provided specifically by a kNN
search? If soft labels were the key, then soft-label training where the labels come from the base
LM itself should have worked as well. To separate the effect of soft labeling from the kNN’s
additional guidance, we train another LM with the same model architecture as the base LM,
with the soft labels from the base LM. This teacher-student training is to distill the knowledge
from the base LM [159]. We find that by just training with “soft labels“ from the base LM to
alleviate the alleged “over-correction” problem is not the key, as this does not help with the
interpolated perplexity at all. This suggests that even with the same training data, kNN still
provides valuable additional guidance.

6.6.8 Are kNN-LM Just Training to Optimize Interpolated Loss?

In § 6.4.2, we discover that using over-parameterization with standard LM training loss does
not further close the gap towards kNN-LM. This suggests that some regularization term may
be needed during training to make the multiple embeddings not converge to the same vector,
rendering over-parameterization useless.

From Table 6.2, we see that a better interpolated perplexity may not require a very low
perplexity when measured only with the extra input representation. However, we still use a
standard LM loss to only train the additional embedding matrix, that directly minimizes the
perplexity using only the extra input representation. This discrepancy between training and
the evaluation with interpolation suggests that training with an alternative loss function that
interpolates the base LM’s output with the output using the extra input representation may be
beneficial.

To test the hypothesis that standard LM training loss do not emphasize the examples where
base LM performs badly, we train the extra model’s parameterWds, with interpolated loss L:

L = CrossEntropy(λsoftmax(Wds ⋅ hds) + (1 − λ)softmax(Wsm ⋅ hsm), y) (6.3)

y represents the ground truth label for each context. We only learn the parameterWds while
freezing all other parameters, similar to all other experiments. We choose λ = 0.25 as it is the
best hyper-parameter for kNN-LM experiments and our goal for this training is to mimic the
loss of kNN-LM after interpolation. This training loss effectively assigns a higher value to the

148

training examples where the base LM’s loss is high, suggesting the need for the extra Wds to
help with these hard cases. However, for either “att” for “ffn” for hds, either V or 3V for the
number of embeddings inWds, we are unable to achieve a better perplexity than just the base
LM. This suggests that, while nice on paper, the interpolated loss optimization process is not
trivial.

6.7 Conclusion

In this paper, we investigate why kNN-LM improves perplexity, even when retrieving examples
from the same training data that the base LM was trained on. By proposing and testing various
hypotheses and performing extensive ablation studies, we find that the key to kNN-LM’s success
is threefold: (1) Ensembling different input representations – the feedforward layer output
and the attention layer output – can recover 55% of the performance, even without retrieval.
(2) One of the most unexpected discoveries is that using approximate nearest neighbor search
allows kNN-LMs to generalize better than exact nearest neighbor search, possibly due to a
regularization effect. (3) Tuning the softmax temperature for the kNN distribution is crucial
to adjust the standard LM output distribution with the distribution created by the retrieved
neighbors’ distances. These findings are orthogonal to Drozdov et al. [95] where they discovered
kNN-LM works especially well when there is a large n-gram overlap between the training and
the test set.

We performed extensive experiments which ruled out other hypotheses as to why kNN-LMs
work, such as over-parameterization, sparsification, overfitting, ensembling of distance metrics,
etc. We believe that this work unlocks a variety of exciting research directions for efficient
kNN-LM alternatives in addition to existing improvement models [493]. For example, exploring
methods that replace the kNN component with trainable parameters and achieve comparable
results without the latency burden of kNN-LM.

6.8 Appendix

6.8.1 kNN-LM Generalization to Other LMs

To test the generalizability of kNN-LM, we follow the same experimental setup as used in § 6.3.
We select several pretrained models from the GPT2 family [339] of various parameter counts,
plus a distilled version of GPT2, DistillGPT2. [369] We take the pretrained model checkpoint,

149

#params Base LM PPL kNN-LM PPL Absolute PPL Gain

Ours 268M 21.75 19.17 2.58

Distilled-GPT2 82M 18.25 14.84 3.41
GPT2-small 117M 14.84 12.55 2.29

GPT2-medium 345M 11.55 10.37 1.18
GPT2-large 774M 10.56 9.76 0.80

Table 6.7: Performance of kNN-LM applied to other pretrained language models of different
sizes.

build the datastore and evaluate on the Wikitext-103 dataset splits. The results are shown
in Table 6.7. We see that kNN-LMs has good generalizability on other models. It improves the
perplexity of all the base LMs tested. However, the larger the model is, and usually the better
the base LM’s perplexity is, the less gain can be achieved from adding kNN. Note that our model
is trained from scratch on Wikitext-103 dataset and thus even with a relatively large model size,
the perplexity and perplexity gain from adding kNN is still less than models with pretraining.
Without loss of generalizability, we will use our own trained-from-scratch model as the base
LM in the following sections for ablation study.

6.8.2 Alternative Methods for Increasing Softmax Capacity

Adaptive Increasing Embedding Size

We hypothesize that different word types have different difficulties for the language model
to predict. For those words that appear very frequently, they may appear in many different
contexts. As a result, instead of adding equal number of additional embeddings to each word
type, we propose to adaptively increase the number of embeddings for word types based on word
frequency, or total training loss for the word. Based on the intuition of Zipf’s law [75], we assign
1 + logb fv for each word type v ∈ V , based on either the frequency or the total training loss of
the word, fv . The b is a hyperparameter that could be tuned. To ensure fair comparison, we tune
b so that for each experiment the total number of embeddings matches: ∑v∈V 1 + logb fv = nV .
The results are shown in Table 6.8. We see that although nice on paper, given the same number
of total embeddings, adaptively increasing the number of embeddings assigned for each word
type does not make a significant difference in the final perplexity, when compared with the

150

models that use equal number of embeddings for each word type.

hds Nds ⊗ +#params PPL Interp. Oracle

Base LM - - - 0 21.750 - -
KNN att Big L2 Nds ×D ∞ 19.174 14.230
KNN att Big IP Nds ×D ∞ 19.095 14.077

Equal Per Word att 3x IP 3V ×D 22.434 20.395 17.132
Loss Weighted att 3x IP 3V ×D 21.948 20.440 17.303
Freq. Weighted att 3x IP 3V ×D 22.507 20.387 17.105

KNN ffn Big L2 Nds ×D ∞ 20.734 15.594
KNN ffn Big IP Nds ×D ∞ 21.101 16.254

Equal Per Word ffn 3x IP 3V ×D 20.829 20.603 18.717
Loss Weighted ffn 3x IP 3V ×D 20.764 20.659 18.978
Freq. Weighted ffn 3x IP 3V ×D 20.757 20.572 18.782

Table 6.8: Performance comparison of kNN baselines and several configurations that adaptively
increase the embedding size with training loss or word frequency.

Mixture of Softmaxes

[446] proposes a solution to the problem using a Mixture of Softmax (MoS) to produce more
linearly independent probability distributions of words given different contexts. Suppose that
there are a total of R mixture components. MoS first uses R linear layers with weight wr to
transform the current query context vector hds intowrhds. With a shared word embeddingmatrix
Wsm, we calculate each softmax component’s probability distribution with softmax(Wsm ⋅wrhds).
The mixture distribution is then given by:

PMoS =
R

∑
r

πr,hds
softmax(Wsm ⋅wrhds) (6.4)

The priorweights are calculated using another linear layerwithweightwπ , as πr,hds
= softmax(wπhds).

The softmax ensures that ∑R
r πr,hds

= 1. Comparing the MoS with the first term in Equation 6.2,
Msoftmax(mask-to-k(Wds ⊗ hds)), we see that there are some connections between the two.
MoS eliminates the mask-to-k(⋅) operation, and replaces the single softmax across a very large
vector (size of datastore), into multiple smaller softmaxes, each across only a vector of the size
of vocabulary. As a result, the huge Wds is replaced by several linear layers to project the word

151

embedding matrix. Now the first term becomes:

M(⊕R
r softmax(Wsm ⋅wrhds)) (6.5)

Mir = πr,hds
,∀i ≤ V (6.6)

where ⊕ represents the vector concatenation operation, and the aggregation matrix M now
contains the mixture weights for each softmax being concatenated. We perform experiments
with a varying number of mixtures (R), different definitions hds, and whether to finetune the
output word embeddingsWsm. We allow finetuning the word embedding when we use attention
layer output as context vector, since the word embedding matrix is trained with feedforward
layer output originally. The results for this formulation are shown in Table 6.9. MoS models on its
own increase the performance of the language model marginally. When compared with Table 6.3,
we find that these models are worse than those that simply increases the number of embeddings.
This is expected because MoS has fewer added parameters compared to those, as it only requires
several additional linear projection layers for the embeddings.

hds R ⊗ +#params PPL Interp. Oracle

Base LM - - - 0 21.750 - -
KNN att - L2 Nds ×D ∞ 19.174 14.230
KNN att - IP Nds ×D ∞ 19.095 14.077
KNN ffn - L2 Nds ×D ∞ 20.734 15.594
KNN ffn - IP Nds ×D ∞ 21.101 16.254

Ft. MoS+embed att 2 IP V D + 2D2 + 2D 21.986 20.720 17.573
Ft. MoS+embed att 3 IP V D + 3D2 + 3D 22.106 20.779 17.609
Ft. MoS Only att 2 IP 2D2 + 2D 22.552 21.011 17.796
Ft. MoS Only att 3 IP 3D2 + 3D 22.573 21.024 17.812
Ft. MoS Only ffn 2 IP 2D2 + 2D 21.351 21.338 20.258
Ft. MoS Only ffn 3 IP 3D2 + 3D 21.495 21.460 20.322
Ft. MoS Only ffn 4 IP 4D2 + 4D 21.321 21.321 20.396
Ft. MoS Only ffn 5 IP 5D2 + 5D 21.371 21.367 20.406

Table 6.9: Performance comparison of kNN baselines and several MoS configurations. R is the
number of mixtures.

152

Clustering Datastore

Opposite to training the word embeddings of an increased size, we also consider ways to
compress the datastore down to a similar-sized embedding matrix for softmax computation. The
intuition is that the datastore contains redundant context vectors, and thus compression could
make the datastore smaller without sacrificing too much performance gain. [148] shows that
we can safely compress the datastore by clustering to 50% of the original size without losing
performance. We test this idea further by clustering the entire datastore into a size that could fit
in GPU memory (e.g. 2V , 3V) and thus could be easily finetuned further and use the resulting
centroids to replaceWds. Within each cluster, there will be a distribution of different words with
contexts, and we use the frequency of words within each cluster to calculate the aggregation
matrixM in Equation 6.2. This would have the added benefit of “multi-sense” embedding, which
allows similar meanings to be clustered to form a new “meta word” while the same word with
different meanings would form different “meta words”. A notable example is bank, shore, and
financial institution. However, this does not work, mostly because of the high compression loss
after clustering and the imbalanced distribution of word types among each cluster.

6.8.3 Which Words Benefit from Approximation?

To further understand the unexpected results when using the different kNN approximate retrieval
settings in § 6.5.1 and § 6.5.2, we analyze on a token level, based on how many times each ground
truth token’s probability in the evaluation set are helped by each kNN setting. It means that for
each ground truth token in the evaluation, we count the times when the kNN distribution is
higher than the base LM distribution PLM , i.e., PkNN > PLM .

Since we found previously that approximate kNN provides an additional performance boost
compared to ground truth kNN, we thus compare “real mask, real score” versus “FAISS mask, real
score” in this analysis. To prevent outliers, we filter out words with less than 10 occurrences in
the evaluation set. For each setting, we calculate the percentage of occurrences in the evaluation
set where each token in the vocabulary where the kNN module achieves a better probability
than base LM. We then plot the absolute difference between the percentages of the two settings,
with respect to various possible attributes of the token that achieves better probability using
each setting.

Figure 6.6 shows that the longer the token is, which usually suggests proper nouns and
harder and less common words in English, are better with approximate neighbors than ground
truth ones, and vice versa. We hypothesize that this is due to longer words are more prone to

153

Figure 6.6: The effect of the token character length on how much accurate nearest neighbors are
better than approximate FAISS neighbors. Negative values mean worse. The trend line of the
scatter points is shown.

overfitting in kNN-LM and thus using approximate kNN provides an effect similar to smoothing
and regularization.

We also compare words that could appear in more diverse contexts with words that co-occur
with few distinct contexts. To measure how diverse the contexts of each word in the vocabulary
is, we calculate both the forward and backward bigram entropy for each word in the evaluation
set that has more than 10 occurrences. The bigram entropy is a simple yet good indicator of
context diversity for a given word, as used in Kneser–Ney smoothing [298]. We calculate both
the forward and backward bigram entropy for each word w as follows, where wafter and wbefore

represent the word after and before the given word w.

Hforward(w) = − ∑
wafter

p(wafter∣w) log p(wafter∣w) (6.7)

Hbackward(w) = − ∑
wbefore

p(wbefore∣w) log p(wbefore∣w) (6.8)

Forward and backward entropy represents how diverse the context after and before the given
word is. Intuitively, bigram entropy is supposed to indicate words that can appear in lots of
different contexts. The higher the entropy of a word, the more diverse its context is, and vice
versa. For example, words like “Francisco” would have a low entropy because it mostly comes
after “San”.

The comparison is shown in Figure 6.7. We see that the higher the entropy in both forward
and backward cases, the better using approximate nearest neighbor search becomes. This
suggests that words that appear in many different contexts are better off with an approximate

154

Figure 6.7: The effect of the forward and backward entropy of words on how accurate nearest
neighbors are better than approximate FAISS neighbors. Negative values mean worse. The trend
line of the scatter points are shown.

kNN, and “easy-to-predict” examples such as “Jersey” and “Fransisco” is better with accurate
kNN, possibly because these examples are less prone to overfitting errors and thus requires less
regularization from approximation.

155

156

Chapter 7

DocPrompting: Generating Code by
Retrieving the Docs

Publicly available source-code libraries are continuously growing and changing. This makes it
impossible for models of code to keep current with all available APIs by simply training these
models on existing code repositories. Thus, existing models inherently cannot generalize to using
unseen functions and libraries, because these would never appear in their training data. In
contrast, when human programmers use functions and libraries for the first time, they frequently
refer to textual resources such as code manuals and documentation, to explore and understand
the available functionality. Inspired by this observation, we introduce DocPrompting: a natural-
language-to-code generation approach that explicitly leverages code documentation by (1)
retrieving the relevant documentation pieces given a natural language (NL) intent, and (2)
generating code based on the NL intent and the retrieved documentation. DocPrompting is
general: it can be applied to any programming language, and is agnostic to the underlying
neural model. We demonstrate that DocPrompting consistently improves NL-to-code models:
DocPrompting improves strong base models such as CodeT5 by 2.85% in pass@1 (52% relative
gain) and 4.39% in pass@10 (30% relative gain) in execution-based evaluation on the popular
Python CoNaLa benchmark; on a new Bash dataset tldr, DocPrompting improves CodeT5
and GPT-Neo-1.3B by up to absolute 6.9% exact match. Data and code are available at https:
//github.com/shuyanzhou/docprompting.

157

https://github.com/shuyanzhou/docprompting
https://github.com/shuyanzhou/docprompting

7.1 Introduction

We address the task of natural language to code generation (NL→code): generating a code
snippet, written in a general-purpose programming language such as Python or Bash, given
a natural language intent. This task has seen sharply growing popularity recently due to the
emergence of large language models trained on vast amounts of natural language and code
[65, 110, 440]. NL→code models facilitate programming for both professional and inexperienced
programmers, by allowing programmers to write code by only expressing their higher-level
intent.

Many existing code generation models either learn directly from input-output pairs provided
as training data [11, 13, 53, 173, 423, 439, 463], or learn the mapping between input and output
implicitly from naturally occurring corpora of intertwined natural language and code [24, 300].

Nevertheless, all these works assume that all libraries and function calls were seen in the

training data; and that at test time, the trained model will need to generate only seen libraries
and function calls. However, new functions and libraries are introduced all the time, and even a
seen function call can have unseen arguments. Thus, these existing models inherently cannot
generalize to generate such unseen usages.

In contrast to these existing models, human programmers frequently refer to manuals and
documentation when writing code [229, 304]. This allows humans to easily use functions and
libraries they have never seen nor used before. Inspired by this ability, we propose DocPrompt-
ing: a code generation approach that learns to retrieve code documentation before generating
the code. An overview of our approach is illustrated in Figure 7.1: First, a document retriever uses
the NL intent n⃝ to retrieve relevant code documentation { d1⃝, d2⃝, d3⃝} from a documentation
pool D⃝. Then, a code generator uses these docs in its prompt to generate the corresponding
code c⃝. The documentation pool serves as an external data store that can be updated frequently
with new contents (e.g., documentation of newly released libraries), without re-training any
model component. This way, DocPrompting can leverage newly added documentation, and
it can generate code containing unseen and unused functions and libraries. DocPrompting is
general and applicable to any programming language and underlying base architecture. To the
best of our knowledge, this is the first demonstration of leveraging documentation in models of
code explicitly and effectively.

We demonstrate the effectiveness of DocPrompting on two NL→code benchmarks and tasks,
across two programming languages, and using several base models: GPT-Neo [39], T5 [343],
CodeT5 [423], Fusion-in-Decoder [175]), and Codex [65]. Further, we experiment with both

158

Generate HTML with python
syntax highlighting for
“print(‘reading docs’)”

Re!iever Genera"r

!

n c

d1

d2

d3Pygment is a generic syntax highlighter

A lexer splits the source into tokens, fragments …

class PythonLexer
For Python source code

A formatter takes the token stream and writes it
to an output file …

class HtmlFormatter
Format tokens as HTML 4 tags with …

from pygments import *
code = ‘print(“reading docs”)’
s = highlight(code, PythonLexer(),
 HtmlFormatter())

Figure 7.1: DocPrompting: given an NL intent n⃝, the retriever retrieves a set of relevant
documentation { d1⃝, d2⃝, d3⃝} from a documentation pool D⃝. Then, the generator generates the
code c⃝ based on the NL and retrieved docs. DocPrompting allows the model to generalize to
previously unseen usages by reading those docs. Italic blue highlights the shared tokens between
NL and docs; Bold shows shared tokens between docs and the code snippet.

sparse retrievers such as BM25 [357] and dense retrieval models such as SimCSE [115]. Finally,
we introduce two new benchmarks for retrieval-based code generation: (a) in Bash, we curate a
new benchmark by crawling the tldr repository, and constructing the training/development/test
splits without overlapping commands; (b) in Python, we re-split the popular CoNaLa benchmark
[468] by making every test example contain at least one Python function that is not seen in the
training data. Models that use DocPrompting consistently outperform their base models that
generate code solely based on the NL intents. UsingDocPrompting improves strong base models
such as CodeT5 by 2.85% in pass@1 (52% relative gain) and 4.39% in pass@10 (30% relative gain)
in execution-based evaluation in CoNaLa; on the new tldr dataset, DocPrompting improves
CodeT5 and GPT-Neo-1.3B by up to absolute 6.9% exact match. We release our new benchmarks,
including annotation of oracle documents for each example and pools of documentation, to
serve as a test-bed for future retrieval-based code generation models.

7.2 Code Generation by Reading the Docs

Our underlying assumption is that code documentation is the most exhaustive yet succinct
resource for most libraries and programming languages [360], and that documentation allows
to effectively generalize to unseen libraries and functions [107]. We follow the retrieve-then-
generate paradigm [136, 231], focusing on retrieving documentation. In this section, we describe
the general approach of DocPrompting; in §7.3 and §7.6.2, we elaborate and experiment with

159

practical implementations of DocPrompting.
Formulation Given NL intent n, our goal is to generate a corresponding code snippet c written
in some programming language (PL) such as Python. We assume that a model has access to
a collection of code documentation D. Each document di ∈ D describes the usage of a library,
a function, or an argument in that PL. The construction of D is flexible: it can either be a
comprehensive set of all available libraries and functions in a PL, or a customized subset for the
scope of a specific project.

7.2.1 Background: Retrieval-Conditioned Generation

Although a model may use the entire collection of documents D, only a few documents in D are
relevant for any particular intent. Further, it is usually computationally infeasible to directly
condition on the entire, unbounded, collection of documents while making predictions. Thus,
we first let the model select a subset of documents Dn = {d1, d2, .., dk} ⊆ D that are potentially
relevant given n, and refer to this subset while generating c.

Overall, we decompose the probability of generating c into the probability of choosing
a particular subset of documents P (Dn ∣ D, n), and the probability of generating the code
conditioned on the intent and the selected documents P (c ∣ Dn, n); finally, we marginalizing
over all Dn ⊆ D:

P (c ∣ D, n) = ∑Dn⊆D
P (c ∣ Dn, n) ⋅ P (Dn ∣ D, n) (7.1)

assuming that c is independent of D given Dn (that is, (c á D ∣ Dn)). Since enumerating all pos-
sible subsets Dn is computationally infeasible, we follow the common practice and approximate
the marginalization over Dn in Equation (7.1) by taking the most probable subset of retrieved
documents D̂n, and then conditioning the prediction of c on these most likely documents:

D̂n ∶= argmaxDn⊆D
P (Dn ∣ D, n) P (c ∣ D, n) ≈ P (c ∣ D̂n, n) ⋅ P (D̂n ∣ D, n) (7.2)

7.2.2 DocPrompting: Generating Code by Retrieving the Docs

Equation 7.2 implies that DocPrompting relies of two main components: A retriever R retrieves
relevant documents D̂n given the intent n; and a generator G generates the code snippet c
conditioned on the retrieved documents D̂n and the intent n, which compose a new prompt.
Specifically, R computes a similarity score s (di, n) between a intent n and every document
di ∈ D. Thus, the subset D̂n ⊆ D is the top-k documents with the highest similarity scores:
D̂n = top-kdi∈D (s (di, n)).

160

An overview of our approach is illustrated in Figure 7.1: given the intent Generate HTML

with python syntax highlighting for “print(’reading docs’)”, the retriever R retrieves three rele-
vant documents: d1 describes the syntax highlighting library pygments, d2 describes the class
PythonLexer, and d3 describes the HtmlFormatter class. Given these docs and the intent, the
generator G generates the code snippet c, which uses PythonLexer and HtmlFormatter from
the pygment library.

7.3 Practical Instantiations of DocPrompting

DocPrompting is a general approach that is not bound to any specific model choices, and it
can be instantiated with any base retriever and generator. This section presents the concrete
instantiations of R and G that we found to provide the best performance in our experiments.

7.3.1 Retriever Instantiation

We experiment with two main types of retrievers: sparse retrievers and dense retrievers. As our
sparse retriever, we use Elasticsearch1 with the standard BM25 [357]. This retriever represents
documents using sparse features that rely on word frequencies, such as BM25 and TF-IDF.

As our dense retriever, we follow prior work [66, 115, 194]: given a triplet (n, c,D∗n), where
D∗n are the oracle docs for n, each d+i ∈ D

∗
n and n form a positive pair (n, d+i), while each d−j ∉ D

∗
n

and n form a negative pair (ni, d−j). We train the retriever in a contrastive fashion where the
similarity score of a positive pair is maximized while that of in-batch negative pairs is minimized.
For a pair (ni, d+i), the loss function is defined as:

L
r
= − log

exp (sim(hn,hd+i
))

exp (sim(hn,hd+i
)) +∑d−j ∈B/D

∗
n
exp (sim(hn,hd−j

))
(7.3)

where hx is the representation of x computed by a neural encoder, and B are positive docs for
other examples in the batch. We define sim(hx,hy) as the cosine similarity between hx and hy .

We use all (ni, d+i) in the training set as our supervised training dataset. Additionally, we
use all sentences in the documentation pool for weak supervision: Following Chen et al. [66]
and Gao et al. [115], representations of the same sentence with different dropout masks are
treated as a positive example. Instead of using either supervised or weakly supervised training
as in Gao et al. [115], we simply mix the two resulting supervision signals, and examples

1https://github.com/elastic/elasticsearch

161

https://github.com/elastic/elasticsearch

are randomly distributed into batches. This mixture of tasks not only facilitates the learning
process (§7.6.2), but also reduces the engineering effort required to store and reload models
for separate supervised and unsupervised training phases. We initialize the retriever encoder
with either the best model of Gao et al. [115] or the encoder of CodeT5-base [423]. Additional
training details are provided in Appendix 7.9.3

7.3.2 Generator Instantiation

We experimented with a variety of generator models. We used GPT-Neo-125M, GPT-Neo-
1.3B [39] and Codex [65], where we concatenate the retrieved documents and the NL intent
as a single, long, prompt. T5-base [342] and CodeT5-base [423] have a shorter input size of
512 tokens, which is sometimes too short for the concatenation of multiple docs. Thus, for
T5 and CodeT5 we apply the fusion-in-decoder approach [FiD; 175]: we first concatenate the
intent n with each retrieved di ∈ D̂n and encode each (n, di) pair independently. Then, the
decoder attends to all encoded NL-document pairs. We finetune the generator to maximize the
log-likelihood of the reference code c given n and D̂n.

With Codex [65], we performed few-shot learning rather than finetuning because the model
parameters are not publicly available. We constructed the prompt with three static examples,
each of which is a concatenation of retrieved documentation, an NL intent and the reference code
snippet. We then appended the test example and its retrieved documentation to the few-shot
examples. We used the code-davinci-001 version because we suspect potential leakage of the test
set into the training set of code-davinci-002. See more details in Appendix 7.9.8. Training details,
hyper-parameter settings and example prompts can be found in Appendices 7.9.5 and 7.9.4.

7.4 Experimental Setup

We evaluateDocPrompting on two NL→code tasks: shell scripting (§7.4.1), in which we generate
complex shell commands given an intent, and Python programming (§7.4.2), where we generate
answers in Python for NL questions. In this section, we first introduce a newly curated benchmark
tldr; we then describe our re-split of the popular CoNaLa benchmark [468]. For each benchmark,
we provide a global documentation pool D that is shared for all examples and oracle documents
D∗n which we use to train the retriever. We release our newly curated benchmarks to serve as
test-bed for future retrieval-based code generation models.

162

Figure 7.2: An example NL-code pair from tldr, along with three oracle documentation items.

7.4.1 Shell Scripting

tldr is a community-driven project that maintains easily-readable help pages with examples for
over 2.5k Bash commands in over 25 natural languages2. We collected pairs of English intents and
Bash command lines. The NL intents are written by human users, and the Bash commands range
from popular ones like cat and tar, to uncommon commands such as toilet and faketime.
Our resulting tldr benchmark contains 1,879 unique Bash commands and 9,187 NL→Bash pairs.
We constructed the training, development and the test set with completely disjoint commands

to test the generalizability of a code generation model. The shared documentation pool D is
made up of the 400k paragraphs from the 1,879 Bash manuals. Each paragraph describes a single
concept such as an argument flag. We further curated the oracle documentsD∗n for each example
using simple string matching. An example from tldr is shown in Figure 7.2. To the best of our
knowledge, this is the first work to leverage tldr as an NL→code benchmark. Detailed statistics
and additional details are provided in Appendix 7.9.1. In tldr, each NL intent results in a single
Bash command with a combination of argument flags. We therefore first retrieve an entire Bash
manual; then, we take the top manual and retrieve the top-10 paragraphs from that manual.

Evaluation metrics We measure: (1) command name accuracy (CMD Acc) – whether the
command name (e.g., cat) is an exact match; (2) exact match (EM) – exact match between
the reference and the generation; (3) token-level F1; and (4) character-level BLEU [charBLEU;
249, 377]. In all metrics, we disregard user-specific variable names in the references and the
models outputs. For example, “mycli -u [user] -h [host] [database]” is evaluated as
“mycli -u $1 -h $2 $3”.

2https://github.com/tldr-pages/tldr

163

https://github.com/tldr-pages/tldr

7.4.2 Python Programming

CoNaLa [468] is a popular benchmark for NL→Python generation. NL intents are StackOverflow
questions, and code snippets are their answers. Both intents and code snippets are rewritten
by human annotators. We re-split the dataset to test models’ generalization to unseen Python
functions. In our re-split, we verifed that every example in the development or the test set uses at
least one Python function (e.g., plt.plot) that was not seen in the training data. In addition, we
make sure that the examples from the same StackOverflow posts are in the same set to prevent
leakage. This re-split results in 2,135/201/543 examples in the training/development/test sets,
respectively.

The CoNaLa documentation pool D contains 35,763 documents, each describing a single
function, from all Python libraries available on DevDocs (https://devdocs.io). These include
built-in libraries and other popular libraries such as numpy. We constructed the oracle docs D∗n
for each example by matching all function names in the target code c with docs. More details in
Appendix 7.9.2.

Evaluation metrics We follow Yin et al. [468] and measure BLEU-4. Since we focus on
generalization to unseen functions, we additionally report function name recall (recall) and
unseen function recall (recallunseen), whichmeasures recall among function calls that do not appear
in the training set. Finally, following Austin et al. [24], Chen et al. [65], we used the manually
written unit tests from Wang et al. [425] for 100 examples from CoNaLa’s test set and measure
pass@k. We followed Chen et al. [65] and performed nucleus sampling [162] with p = 0.95. For
each k, we searched for the best temperature for each model from {0.2,0.4,0.6,0.8,1.0}. On
average, each example has 2.03 tests. The concatenation of multiple Python docs often exceeded
the length limit of GPT-Neo, we hence experimented in this dataset with FiD, which allows
longer inputs. Additional details are provided in Appendix 7.9.2.

7.5 Results

In all following results, all models with DocPrompting use the top-10 retrieved docs from
the best retriever on that dataset (Table 7.4). Every baseline uses the exact same setup as its
“+DocPrompting” version, except for not using the documentation.

164

https://devdocs.io

Table 7.1: Results on shell scripting, using a BM25 retriever with top-10 retrieved docs, on the
test set of tldr. For the “oracle command name” experiments, we selected the best model of
each type.

Model CMD Acc (%) EM (%) Token F1 charBLEU

GPT-Neo-125M
- 11.96 1.94 28.75 19.99

+DocPrompting 25.32 3.56 31.23 24.43

GPT-Neo-1.3B
- 14.55 3.12 32.46 24.70

+DocPrompting 27.59 9.05 37.24 30.57

T5
- 10.02 0.76 19.90 25.48

+DocPrompting 30.28 9.16 37.58 31.97

CodeT5
- 14.60 2.18 30.00 21.50

+DocPrompting 30.72 9.15 36.71 33.83

Codex 3-shots
- 27.48 8.94 36.04 16.94

+DocPrompting 31.21 9.29 36.77 23.72

With the oracle command name

T5
- - 12.96 59.36 45.05

+DocPrompting - 22.55 64.84 54.28

Codex 3-shots
- - 22.44 62.26 50.29

+DocPrompting - 32.43 69.73 55.21

7.5.1 Shell Scripting Results

Results for tldr are shown in Table 7.1. DocPrompting consistently improves the base models.
For example, T5+DocPrompting achieves more than twice higher accuracy in predicting the
command name, more than 16 charBLEU points on the entire prediction, and almost 9% of
absolute exact match gain, compared to the vanilla T5. In the few-shot learning setting with
Codex, DocPrompting brings gains of 6.7 charBLEU points, and consistent improvement across
all metrics over the baseline that observes only NL-code pairs in its prompt. These results show
that retrieving documentation also benefits strong models such as Codex, and with only few
examples in the context.

165

Table 7.2: Comparison to approaches that retrieve examples [318, 319]

.

Model CMD Acc (%) EM (%) Token F1 charBLEU

GPT-Neo-125M
+ExPrompting 6.68 0.32 20.49 11.15
+DocPrompting 25.32 3.56 31.23 24.43

GPT-Neo-1.3B
+ExPrompting 14.01 2.8 30.07 22.11
+DocPrompting 27.59 9.05 37.24 30.57

Code generation with oracle command names In realistic settings, a human programmer
may know the command name they need to use (e.g., awk), but not know the exact usage and
flags. In fact, better understanding of the usage of known commands is the purpose of Unix
man pages and the tldr project. We conducted an oracle experiment where we provided T5
(which was the strongest model using DocPrompting) and Codex with the oracle command
name (e.g., awk). This oracle information is provided to both the baseline and the model that
uses DocPrompting. The results are shown on the bottom part of Table 7.1. When the oracle
command is given, DocPrompting further improves over the base models. For example, when
providing Codex with the ground truth command name, DocPrompting improves its exact
match from 22.44% to 32.43%.

Should we retrieve documentation or examples? All existing retrieval-based models of code
retrieve NL-code pairs or code snippets, rather than documentation. To simulate this scenario,
we followed Parvez et al. [318] and Pasupat et al. [319] to retrieve NL-code pairs from the
training set of tldr, and refer to this baseline as ExPrompting. We finetuned the best retriever
RoBERTa and two generators, and retrieved the top-30 NL-code pairs for every example. As
shown in Table 7.2, retrieving documentation (DocPrompting) provides much higher gains than
retrieving examples (ExPrompting). Theoretically, adding examples of unseen commands can
help ExPrompting generalize to them as well. However, new libraries and functions may not
have available examples on the web yet, while documentation often does becomes available
when the library is released.

166

Table 7.3: Results on CoNaLa, using a CodeT5 retriever with top-10 retrieved docs. Function
recall (Recall) measures how many functions in the reference code are correctly predicted, and
unseen function recall (Recallunseen) only considers the subset held out from the training data.

Model BLEU Recall Recallunseen

Codex 3-shots
- 43.16 39.52 -

+ DocPrompting 43.47 39.87 -

+ DocPrompting oracle docs 50.59 57.84 -

T5
- 28.07 14.36 2.57

+ DocPrompting 30.04 21.34 8.24

CodeT5
- 34.57 24.24 9.03

+ DocPrompting 36.22 27.80 18.30

+ DocPrompting oracle docs 49.04 72.20 63.91

7.5.2 Python Programming Results

Table 7.3 shows the results on CoNaLa. CodeT5+DocPrompting yields a 1.65 BLEU improvement
over the state-of-the-art baseline that was initialized with CodeT5.3 When measuring the recall
of the generated function names, the benefit of DocPrompting is especially higher for unseen
functions (recallunseen). For example, DocPrompting achieves 18.30 compared to only 9.03 of the
base CodeT5 in unseen functions. Additionally, DocPrompting improves in-context learning
setting with Codex. We hypothesis that the minor gain is mainly due to the potential data
leakage of Codex, which violates the split of seen and unseen functions. Another reason is
that a strong generator such as Codex may require an equally strong retriever as well. We find
that Codex can achieve even higher results with an oracle retriever, which shows the potential
further improvement by improving the retrievers. Finally, CodeT5 performs better than T5,
with and without using DocPrompting. This emphasizes the importance of using code-specific
pretrained models.
Execution-based evaluation The results are shown in Figure 7.3. Using DocPrompting consis-
tently outperforms the baseline CodeT5 for all values of pass@k. For example, DocPrompting
yields 2.85% improvement on pass@1 and 4.45% improvement on pass@5, which are realistic

3In a separate experiment on the original split of CoNaLa, this baseline achieved a BLEU score of 39.12, which
outperforms the previous state-of-the-art [32] by 4.92 BLEU points.

167

110 50 100 200
0
5
10
15
20
25
30
35
40

8.26

18.70

27.54
31.87

35.46

5.41

14.31
23.38 25.54 27.08

k

pa
ss
@
k

+DocPrompting
CodeT5

Figure 7.3: Pass@k of CodeT5 with and without
DocPrompting on 100 CoNaLa examples.

1 2 3
0%
20%
40%
60%
80%

100%

12%
0% 0%

24%

2% 0%

n-gram

Re
ca
ll

tldr

1 2 3 4 5

30%

14% 11% 9% 7%

91%

52%

28%
16%

11%

n-gram

CoNaLa

NL←→Code
(NL+Docs)←→Code

Figure 7.4: Using documentation significantly
increases the n-gram overlap recall between
the input and the output, in tldr and CoNaLa.

numbers of completions that can be suggested in an IDE. When k = 200, DocPrompting widens
the gap to 8.38%. These results demonstrate that DocPrompting does not only improve the
quality of the generated code in its surface form, but also increase its functional correctness.
Additional details and results are provided in Appendix 7.9.7.

7.6 Analysis

7.6.1 Why does reading the documentation help generating more accu-

rate code?

We believe that one of the major reasons is that documentation eases the mapping between NL

intents and code, since the documentation contains both NL descriptions and function signatures.
We calculated the n-gram overlap between the NL intents and their corresponding code snippets
(NL←→code), and the overlap between the NL intents with their top-10 retrieved documents
and their code snippets ((NL+docs)←→code). As shown in Figure 7.4, adding documentation
significantly increases the overlap across n-grams, and increase, for example, the unigram
overlap from 12% to 24% in tldr. That is, one of the reasons that retrieving documentation helps
generating accurate code is that documentation bridges the gap between the “intent terminology”
and the “code terminology”.

168

Table 7.4: Retrieval performance of multiple models on the dev set of tldr (top) and CoNaLa (bot-
tom). RoBERTa is the best model taken from from Gao et al. [115], and CodeT5 is the encoder
of CodeT5-base [423]. Models with the subscript “off-shelf” are the off-the-shelf models, and
the other models were finetuned with the objective in Equation 7.3. The last column is the best
model (RoBERTa for tldr and CodeT5 for CoNaLa) trained without the weak supervision corpus.

n BM25 RoBERTaoff-shelf RoBERTa CodeT5off-shelf CodeT5 Best w/o weak sup.

tldr

1 32.81 17.53 30.03 10.45 18.10 28.30
5 51.73 37.89 52.50 20.26 38.52 50.50
10 59.86 46.80 60.33 25.73 51.03 59.84
20 62.01 56.11 64.30 33.65 57.26 62.30

CoNaLa

1 3.01 4.46 13.49 4.60 16.54 10.51
5 7.16 7.58 26.38 8.63 42.35 21.15
10 9.73 10.93 34.86 12.25 55.81 29.34
20 11.46 13.89 45.46 18.46 66.79 42.21

7.6.2 Ablation Study

We compared different configurations of the retriever, to gather more insights for effective
DocPrompting. Table 7.4 shows a comparison between different retrievers and their setups.
First, the performance of BM25 varies among datasets: In tldr, BM25 matches the recall of
trained dense retrievers; however in CoNaLa, BM25 achieves only recall@10 of 9.73%, and strong
dense retrievers such as the encoder of CodeT5 achieve recall@10 of 55.81. We hypothesize
that this difference between datasets stems from the ways these datasets were created: tldr
intents were written based on existing Bash commands and manuals; while CoNaLa examples
were mined from StackOverflow posts, where users ask questions with limited or no context.
Thus, NL intents in CoNaLa require a better semantic alignment with the documents, and thus
benefit from dense retrievers. The gap resulting from different data curation processes was also
observed by Rodriguez and Boyd-Graber [359] in open-domain question answering (QA).

Second, retrievers that were pretrained on the target programming language are generally
stronger. For example in CoNaLa, CodeT5 which was pretrained on Python, is both a better
off-the-shelf retriever and a better finetuned-retriever than RoBERTa, which was pretrained
mainly on text. In contrast, tldr is based on Bash, which neither CodeT5 nor RoBERTa were
explicitly pretrained on. Thus, tldr benefits mostly from BM25 and RoBERTa rather than

169

CodeT5 as retrievers.

Finally, training the retriever using weak supervision on the documentation pool (Sec-
tion 7.3.1) dramatically improves the retriever. The recall of the best retrievers of each dataset
without this corpus is shown in the last column of Table 7.4 (“Best w/o weak sup.”). On CoNaLa,
removing this corpus results in severe performance degradation. One possible explanation is
that this weak supervision helps the retriever perform domain adaptation more effectively.

7.6.3 Case study

We examine the models’ outputs and show two representative examples in Table 7.5. In the first
example, Image.open was not seen in the training set, and the baseline CodeT5 incorrectly
predicts os.open. In contrast, using DocPrompting allows to retrieve the docs and to correctly
predict Image.open. In the second example, df.to_csv was not seen in training, and the
baseline CodeT5 fails to correctly predict it. In contrast, DocPrompting does predict most of the
df.to_csv call correctly, thanks to the retrieved docs. Nevertheless, DocPrompting generates
an incorrect argument skiprows=1, instead of header=False. The reason is that along with
the retrieved documentation of df.to_csv, the retriever also retrieved the documentation of
df.read_csv, which has a skiprows argument. That is, the generator uses an argument of
df.read_csvwith the function df.to_csv. Further improving the retrievers and the generators,
and post-filtering based on the validity of argument names, may mitigate such mistakes.

Table 7.5: Examples of predictions from CoNaLa, of the base CodeT5 compared to
CodeT5+DocPrompting. Unseen functions are

:::::::::::::
underscored.

NL Intent: Open image "picture.jpg"

Ground truth: img =
:::::::::::
Image.open(’picture.jpg’) \n Img.show

CodeT5: os.open(’picture.jpg’, ’r’)

CodeT5+DocPrompting: image =
::::::::::
Image.open(’picture.jpg’, ’rb’)

NL Intent: Exclude column names when writing dataframe ‘df’ to a csv file ‘filename.csv’

Ground truth:
::::::::::
df.to_csv (’filename.csv’, header=False)

CodeT5: df.drop([’col1’, ’col2’], axis=1, inplace=True)

CodeT5+DocPrompting:
::::::::::
df.to_csv(’filename.csv’, skiprows=1)

170

7.7 Related Work

Code generation The most common practice in NL→code generation is training a model on
a dataset of NL-code pairs [11, 173, 338, 463]. Nevertheless, all these works assume that their
training corpus covers all required libraries and functions, and their models are inherently
incapable of generating libraries and functions that were not seen in the training data. On the
contrary, DocPrompting allows models to generate calls to unseen function, by retrieving these
functions’ documentation and reading them at test time. Hashimoto et al. [140], Hayati et al.
[144], Parvez et al. [318] and Lu et al. [264] learn to retrieve examples at test time; Pasupat et al.
[319] also considered settings where the test data has a distribution shift from the training data.
However, when new libraries are released they often come with documentation, and thus we
assume that documentation for new libraries is much more likely to be available than concrete
natural language intent and code snippet pairs (n, c) that use these libraries already. The models
of Shrivastava et al. [385] and Wu et al. [434] retrieve code snippets from relevant files in the
same project; contrarily, when predicting new libraries and functions that are external to the
user’s project, documentation is the source that is the most likely to be available.
Retrieval augmented generation The paradigm of retrieve-then-generate has gained pop-
ularity in the field of open-domain question answering [136, 194, 231], where the answer for
an open-domain question exists in only few documents out of a much larger pool. Although
DocPrompting takes a similar approach, documentation retrieval in code generation is even
more valuable, since code libraries are updated constantly, and new libraries are introduced daily.
Thus, DocPrompting allows updating the documentation pool frequently with new contents,
without re-training any model components.
Documentation conditioned generation The model of Zhong et al. [492] reads documents
to understand environment dynamics in a grid-world game, and Branavan et al. [47] controls
situated agents in a game (Civilization II) by reading the game’s manual. However, all their
models were tailored to specific games; in contrast, DocPrompting is general and is applicable
for a variety of programming languages and datasets.

7.8 Conclusion

We propose DocPrompting, a simple and effective approach for code generation by retrieving
the relevant documentation. DocPrompting consistently improves NL→code models in two
tasks, in two PLs, and across multiple strong base models. DocPrompting improves strong base

171

models such as CodeT5 by 2.85% in pass@1 (52% relative gain) in execution-based evaluation on
the popular Python CoNaLa benchmark; on a new Bash dataset tldr, DocPrompting improves
CodeT5 and GPT-Neo-1.3B by up to 6.9% exact match, and Codex by 6.78 charBLEU score.

These results open a promising direction for NL→code generation. We believe that our
results can be further improved using more clever encoding of the structured nature of long
documents, and using joint training of the retriever and the generator, which hopefully will
avoid cascading errors. Further, we believe that the principles and the methods presented in this
paper are applicable to additional code-related tasks, and other documentation-like resources
such as tutorials and blog posts. To these ends, we make all our code, data, and models publicly
available.

7.9 Appendix

7.9.1 tldr: A Newly Curated Shell Scripting Benchmark

NL→Bash pairs For each command (e.g., cat), users contribute examples of pairs of NL
descriptions and bash code (mainly one-liners), including various flags and arguments, which
cover the common usages of that command. An example is shown in Figure 7.2.

We crawl NL-code pairs from the markdown files4 in the linux and common folders. We
discard Bash commands whose manual is unavailable (discussed below). The detailed statistics
are shown in Table 7.6. On average, each command has 4.84 NL→Bash pairs and there is a
total of 9187 NL-code pairs. To test the generalizability of a model, we construct the training,
development and the test set with completely different commands.

Table 7.6: The statistics of the tldr shell scripting benchmark

Commands NL→Bash pairs

train 1315 6414
dev 376 1845
test 188 928

total 1879 9187

4e.g., https://github.com/tldr-pages/tldr/blob/main/pages/linux/toilet.md

172

https://github.com/tldr-pages/tldr/blob/main/pages/linux/toilet.md

Documentation pool D We take the bash manual of the 1897 bash commands in tldr to
construct a documentation pool. We search each command name at manned.org5, a website
which archives Unix manual pages (the same as the Unix ‘ man <command> command), and then
extract the text contents from the returned manual page. We further break each manual into
multiple paragraphs by line breaks so that each paragraph delicately describes a single concept
such as a command functionality or a flag usage. We make this decision due to the large volume
of content each manual has, which is too long to fit the length limitation of a neural model, and
too noisy and distracts the model with irrelevant information. This results in 400k individual
entries in the pool in total.

Oracle manual D∗i We find the ground truth documentation for each (n, c) pair through
command name and flag matching heuristics. For instance, given a code snippet toilet
’input_text’ -f ’font_filename’, we constrain our search to the documentation from
toilet manual page and select documentation that starts with -f flag as an oracle paragraph.
Along with the first paragraph that commonly summarizes a command, these paragraphs forms
D∗n.

Evaluation metrics We use four evaluation metrics to measure the quality of the generated
code: (1) command name accuracy (CMD Acc) – measures whether the command name (e.g.,
cat) is predicted correctly; (2) token-level F1 – converts the reference code and the generated
code to bag of words and measures the token-level precision, recall, and F1 overlap; (3) exact
match (EM) – measures the exact match between the reference and the generation; and (4)
character-level BLEU [charBLEU; 249, 377].

For token level F1, exact match, and charBLEU, we disregard all user-specific variables in the
references and the system outputs. For example, ”mycli -u [user] -h [host] [database]”
is converted into ”mycli -u $1 -h $2 $3”. This is mainly because the variables are not
instantiated in tldr and the style of the placeholder varies among contributors. For example,
some contributors might write [user] as [username] or [your_name]. Therefore, measuring
the surface form of user-specific variable names is less meaningful.

5https://manned.org

173

https://manned.org

7.9.2 Re-splitting CoNaLa

NL→Python pairs We adapt the popular CoNaLa benchmark and re-split the dataset to test
the generalization scenario. This re-split makes every example in the development and the test
set have at least one Python function (e.g., plt.plot) that was not seen in the training data.
There are 2135, 201, and 543 examples in the training, development and test sets, respectively.
We follow the original work [468] to evaluate the system outputs with BLEU-4. Since we focus
on the generalization setting, we additionally report unseen function accuracy, which measures
the percentage of correctly predicted held-out functions that do not appear in the training set.

Human-annotated unit tests Following Chen et al. [65] and Austin et al. [24], we conduct
execution-based evaluation on CoNaLa to measure the functional correctness of the generated
code. We randomly selected 100 examples from the test set and manually annotated unit test
for each example. For example, we wrote tests such as assert gen_code("abcds", 2) ==

4 and assert gen_code("abde", 2) == -1 to verify whether the function gen_code could
perform “find the index of sub string ’s’ in string ‘str‘ starting from index 2”. Each example was
annotated by a single annotator. The annotation was done by two authors of the paper who
program with Python daily. On average, we annotate 2.03 unit tests for each example.

Documentation pool D Our documentation pool contains 35763 manuals. These functions
are from all Python libraries that are available on DevDocs6. These libraries contains the Python
built-in library, and popular libraries like numpy and pandas. The documentation on DevDocs

are curated and further transformed and indexed to allow for quick searching of APIs. We then
extract each API signature and the corresponding documentation in every library, remove any
content in the documentation that is not text, and segment the documentation into multiple
paragraphs based on the <p> HTML tags. The documentation pool then contains pairs of
the API signature and a single paragraph in the corresponding documentation. Although the
documentation pool is not comprehensive to cover all Python libraries and functions, we find
it has a high coverage rate on the CoNaLa dataset. This choice reflects the flexibility of our
approach upon the characteristics of a target scenario.

Oracle manual D∗i To find the oracle documents for a given NL intent D∗i from the original
(n, c) example, we first index the function names with absolute path (e.g., plot is indexed with

6https://devdocs.io

174

https://devdocs.io

matplotlib.pyplot.plot) with Elasticsearch. Then we query the search engine with clean
version of c where variable name are removed. The top-5 functions after de-duplication are
treated as oracle manuals D∗i .

Natural language and code associations during pretraining Despite our efforts, it is
possible that some of the held-out functions in the test set were seen to associate with NL
contexts (e.g., comments) during the pretraining of a retriever and a generator. Since the gener-
ators were initialized from the same checkpoint in both the baselines and the DocPrompting
models, such a possible association is expected to equally help both models. In the retriever,
such a possible association did not cause the retriever to see the exact NL intents together with
the corresponding documentation, and thus the matching between NL←→doc was not leaked.
However, it is possible that there had been semantically similar intents seen along with the
code snippets of the held-out functions. Nevertheless, such co-occurrence is “indirect” and
“unsupervised”.

7.9.3 Dense Retriever Training

We finetune the model for 10 epochs with batch size of 512 and learning rate of 1e − 5. Since
CodeT5 does not use [CLS] token, we alternatively take the average of the hidden state of the
last layer as the text representation. For CoNaLa, we also use the first 100k ”mined” examples
provided as part of CoNaLa as the supervised corpus. For CoNaLa, we only apply a single search
step because each code snippet commonly contains more than one function. We also observed
that using the first sentence that normally summarizes the usage of a function achieve the
best retrieval performance than other alternatives such as using the first paragraph, or simply
truncating to the maximum token length. The training takes up to 15 hours on a single A6000
GPU.

7.9.4 Generator Training

We train our single-source generators for 20 epochs with learning rate 4e − 5. We train our
FiD-based generators for 10000 steps. The doc length is set to 200, any further content will be
truncated. We follow [175] to set learning rate to 5e − 5 with 2000 steps warmup and linear
learning rate decay. The batch size is set to 8. The best model is selected based on the token-level

175

1 3 5 10 15 20 25 30

20
30
40
50
60
70

16.5

33.1
42.3

55.8
60.4

66.7
70.1

73.7
Re

tri
ev
al
Re

ca
ll@

k

1 3 5 10 15 20 30

33.7

35.9
36.2 36.2

33.4

35.6

34.9

36.3

Retrieved Docs

Ge
ne
ra
tio

n
BL

EU

CoNaLa

Recall
BLEU

Figure 7.5: The recall@k (%) and the corresponding BLEU score by using these top-k docs on
CoNaLa dataset (using CodeT5).

F1 score on the development set for tldr and BLEU score for CoNaLa. The training takes 8
hours on a single A6000 GPU.

7.9.5 Codex Prompts

For the baseline, we prompt Codex with three NL-code pairs and append the test query to the
end. An example on tldr is shown on top of Table 7.7. On the bottom, we list the prompt
with DocPrompting where documentation is provided along too. In the oracle command name
setting, we prepend the command name before each NL intent for the baseline prompt. For
DocPrompting prompt, we replace the potential docs with the retrieved docs from the oracle
manual.

7.9.6 Additional Analysis

Parameter efficiency As shown in Table 7.1, under a given parameter budget, we find that
DocPrompting mostly benefits from parallel encoding (FiD). For example, the parallel encoding
T5+DocPrompting (220M parameters) significantly outperforms the 125M parameters joint
encoding Neo-125M+DocPrompting. Only scaling up Neo+DocPrompting to 1.3B parameters
manages to match the 220M parameter T5+DocPrompting. A possible explanation is that
although the base Neo-1.3B (without DocPrompting) generally performs better than the base
T5 (without DocPrompting), parallel encoding allows to utilize the retrieved documents better,
since documents are encoded independently on the encoder side.
The impact of the number of documents Figure 7.5 shows the recall@k and the BLEU score
compared to k, the number of retrieved documents. Increasing k consistently yields a higher

176

get the label of a fat32 partition
fatlabel /dev/sda1

END
display information without including the login, jcpu and pcpu columns
w –short

END
sort a csv file by column 9
csvsort -c 9 data.csv

END
search for a package in your current sources

Potential document 0: fatlabel will display or change the volume label or volume ID on the MS- DOS filesystem located on
DEVICE ...
get the label of a fat32 partition
fatlabel /dev/sda1

END
Potential document 0: w displays information about the users currently on the machine, and their processes. The header
shows, in this order ...
Potential document 1: -s, –short Use the short format. Don’t print the login time, JCPU or PCPU times.
display information without including the login, jcpu and pcpu columns
w –short

END
Potential document 0: Sort CSV files. Like the Unix “sort” command, but for tabular data
Potential document 1: usage: csvsort [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u 0,1,2,3] [-b] [-p ESCAPECHAR]
Potential document 2: optional arguments: -h, –hel show this help message and exit -n, –names Display column names and
indices from the input CSV and exit. -c COLUMNS ...
Potential document 3: csvsort -c 9 examples/realdata/FY09_EDU_Recipients_by_State.csv
Potential document 4: csvcut -c 1,9 examples/realdata/FY09_EDU_Recipients_by_State.csv | csvsort -r -c 2 | head -n 5
sort a csv file by column 9
csvsort -c 9 data.csv

END
Potential document 1: ...
Potential document 2: ...
search for a package in your current sources

Table 7.7: Top: baseline Codex prompt with three NL-code pairs and a test intent. Bottom:
DocPrompting prompt for Codex. In each in-context learning example, the oracle docs, the NL
intent and the corresponding bash command are provided. We use up to five oracle docs for
these examples. For a test example, the top-5 paragraphs from the retriever are represented with
the NL intent. The documents’ contents were omitted (“...”) to save space.

177

Table 7.8: n-gram overlap between different contents (%). Using documentation significantly
increases the n-gram overlap recall between the input and the output, in tldr and CoNaLa.

tldr 1 2 3

NL←→Code 12 0 0
(NL+retrieved docs)←→Code 24 2 0
NL←→Retrieved docs 39 8 3

CoNaLa 1 2 3 4 5

NL←→Code 30 14 11 9 7
(NL+retrieved docs)←→Code 91 52 28 16 11
NL←→Retrieved docs 72 14 3 1 1

recall; however, as more irrelevant documents are retrieved, the generator cannot effectively
distinguish them from the relevant ones and the overall performance remain similar. For example,
CodeT5 achieves the highest BLEU score using 5 ≤ k ≤ 10. In contrast, when the generator is
provided with the oracle docs only, its BLEU score reaches 49.04 (Table 7.3). This suggests that
both precision and recall of docs are important, and the benefit of using larger values of k in
open domain QA [175] does not necessarily hold in code generation.

Full n-gram overlap Table 7.8 shows that using documentation significantly increases the
n-gram overlap recall between the input and the output, in tldr and CoNaLa. Since we used
BM25 to retrieve docs in tldr, the NL←→Retrieved docs overlap is high by construction. In
CoNaLa, the NL←→Retrieved docs unigram overlap is high as well, but since we used a dense
retriever, the general n-gram overlap does not have to be high for DocPrompting to work well.

Retrieval latency Although retrieving docs results in additional test-time computation, the
increase in latency is not prohibitive. First, encoding the input for the retrieval step “costs” a
single forward pass through the retriever’s encoder, which is significantly less expensive than
generation (which requires multiple time steps of the decoder). All the documentation in the
retrieval pool can be encoded in advance, and finding the top-k results can be performed quickly
using libraries such as FAISS [184] on the GPU or ScaNN [132] on CPU. The cost of this top-k
search is sub-linear in the size of the document pool. Second, the additional input to the generator
results in an increased memory consumption, but only a small increase in latency since the
tokens of a given input can be encoded in parallel. If this difference is crucial in practical settings,
we can decrease the number of retrieved documents. Figure 7.5 shows that retrieving as few as
five docs may be sufficient in many cases.

178

0 25 50 75 100 125 150 175 200
k

0.06

0.08

0.10

0.12

0.14

0.16

0.18

pa
ss

@
k

temperature=0.2

CodeT5
+DocPrompting

0 25 50 75 100 125 150 175 200
k

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

pa
ss

@
k

temperature=0.4
CodeT5
+DocPrompting

0 25 50 75 100 125 150 175 200
k

0.05

0.10

0.15

0.20

0.25

0.30

pa
ss

@
k

temperature=0.6
CodeT5
+DocPrompting

0 25 50 75 100 125 150 175 200
k

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pa
ss

@
k

temperature=0.8
CodeT5
+DocPrompting

0 25 50 75 100 125 150 175 200
k

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pa
ss

@
k

temperature=1.0
CodeT5
+DocPrompting

Figure 7.6: Pass@k on 100 examples on the test set with different temperatures.

179

7.9.7 Full Pass@k Plots

In the main execution-based evaluation, pass@k results in Section 7.5.2 and Figure 7.3, we took
the best temperature for every model and value of k. Here, we show all the pass@k plots with
different temperatures in Figure 7.6.

7.9.8 Experiments with code-davinci-002

The results with code-davinci-002 under few-shot learning setting is shown in Table 7.9. In the
non-oracle settings, Codex+DocPrompting did not improve over the base Codex; one explana-
tion might be that the datasets are leaked into the training corpus of the Codex. For example,
CoNaLawas extracted from StackOverflow, which is included in the large CommonCrawl corpus7

that was used to train GPT-3, and possibly Codex. Therefore, Codex might have memorized the
target code, and thus did not need the additional documentation. Although the data leakage
issue might have happened in code-davinci-001 as well, we suspect that this issue has worsened
in the stronger 002 version. Regardless, we believe that the large capacity of Codex requires an
equally strong retriever to improve over the base model. With an oracle retriever,DocPrompting
yields significant improvement on both datasets. Thus, the non-oracle results could be further
improved using a stronger non-oracle retriever.

7.9.9 Examples

7.9.10 tldr

Examples on tldr are in Table 7.10 . In the top three cases, the baseline T5 could not generate
the correct bash command while T5+DocPrompting retrieves the correct bash documentation
and use the correct arguments. In the bottom two cases, T5 also predicts the bash command
correctly. However, in the puppet case, it misses concrete usages of executing the code. In the
elixir case, it halluciate the argument flags –example and –arguments which elixir does
not support at all. On the other hand, T5+DocPrompting does ground its generation to the
retrieved docs and therefore it generates more accurate code.

7.9.11 CoNaLa

More examples on CoNaLa are shown in Table 7.11.
7https://commoncrawl.org/the-data/

180

https://commoncrawl.org/the-data/

Table 7.9: Results on tldr and CoNaLa with code-davinci-002.

tldr

Model CMD Acc (%) EM (%) Token F1 charBLEU

Codex - 39.01 14.55 44.89 33.93

3-shots +DocPrompting 36.10 13.97 42.55 32.93

With the oracle command name

- - 20.22 59.22 38.14
+DocPrompting - 33.15 68.59 44.76

CoNaLa

BLEU Recall

- 48.39 43.35
+ DocPrompting 47.21 44.70

+ DocPrompting oracle docs 54.67 59.68

181

Table 7.10: Examples of predictions from tldr, of the base T5 compared to T5+DocPrompting.
In tldr, the bash commands in the test set are completely different from those in the training
set.

play a midi file in a specific key (0 = c major/a minor, 1 = f major/d minor, +1 = g major/e minor, etc.)
Ground truth: timidity –force-keysig=’-flats|+sharps’ ’path/to/file.mid’

T5: midiplay ’key’

T5+DocPrompting: timidity –force-keysig ’f|f|f’ ’path/to/file.midi’

clean up all temporary tex files in the current directory
Ground truth: latexmk -c

T5: tex clean

T5+DocPrompting: latexmk -c

specify the hash algorithm for the index file (experimental)
Ground truth: git show-index –object-format=’sha1|sha256’ ’path/to/file’

T5: hash –experimental ’path/to/index.hashes’

T5+DocPrompting: git show-index –object-format= ’path/to/hash-algorithm’

’path/to/experimental’

execute puppet code
Ground truth: puppet apply –execute ’code’

T5: puppet

T5+DocPrompting: puppet apply –execute ’path/to/file.puppet’

evaluate elixir code by passing it as an argument
Ground truth: elixir -e ’code’

T5: elixir –example –arguments ’path/to/file.elixir’

T5+DocPrompting: elixir -e ’path/to/file.elixir’

182

Table 7.11: Examples of predictions from CoNaLa, of the base CodeT5 compared to
CodeT5+DocPrompting. Unseen functions are

:::::::::::::
underscored.

set the current working directory to ’c:\Users\uname\desktop\python’

Ground truth:
:::::::::
os.chdir(’c:\Users\uname\desktop\python’)

CodeT5: os.system(’c:\Users\uname\desktop\python’)

CodeT5+DocPrompting:
:::::::::
os.chdir(’c:\Users\uname\desktop\python’)

convert dataframe ’df’ to integer-type sparse object
Ground truth:

:::::::::::::
df.to_sparse(0)

CodeT5: np.isinstance(df, np.integer)

CodeT5+DocPrompting:
:::::::::::::
df.to_sparse(’i’)

183

184

Chapter 8

FLARE: Active Retrieval Augmented
Generation

Despite the remarkable ability of large language models (LMs) to comprehend and generate lan-
guage, they have a tendency to hallucinate and create factually inaccurate output. Augmenting
LMs by retrieving information from external knowledge resources is one promising solution.
Most existing retrieval augmented LMs employ a retrieve-and-generate setup that only retrieves
information once based on the input. This is limiting, however, in more general scenarios involv-
ing generation of long texts, where continually gathering information throughout generation is
essential. In this work, we provide a generalized view of active retrieval augmented generation,
methods that actively decide when and what to retrieve across the course of the generation. We
propose Forward-Looking Active REtrieval augmented generation (FLARE), a generic method
which iteratively uses a prediction of the upcoming sentence to anticipate future content, which
is then utilized as a query to retrieve relevant documents to regenerate the sentence if it contains
low-confidence tokens. We test FLARE along with baselines comprehensively over 4 long-form
knowledge-intensive generation tasks/datasets. FLARE achieves superior or competitive per-
formance on all tasks, demonstrating the effectiveness of our method. Code and datasets are
available at https://github.com/jzbjyb/FLARE.

8.1 Introduction

Generative language models (LMs) [55, 73, 308, 311, 403, 484, 486] have become a foundational
component in natural language processing (NLP) systems with their remarkable abilities. Al-
though LMs have memorized some world knowledge during training [180, 323, 356], they still

185

https://github.com/jzbjyb/FLARE

Generate a summary about Joe Biden.

Search results: !!
[1]: …
[2]: …

Joe Biden (born November 20, 1942) is the 46th president of the United States.

Joe Biden (born November 20, 1942) is the 46th president of the United States.

He graduated from the University of Delaware in 1965 with a Bachelor of Arts
in history and political science.

Joe Biden attended the University of Pennsylvania, where he earned a law
degree.

Retriever

Input

Step 1

Search results: !"!
[1]: …
[2]: …

"##
##

"#$

#$

$

Step 2

Joe Biden announced his candidacy for the 2020 presidential election on April
25, 2019.

Joe Biden announced his candidacy for the 2020 presidential election on August
18, 2019.

"#%

#%

Step 3

Search results: !""
[1]: …
[2]: …

Retrieved
documents

LM

Ge
ne

ra
tio

n

$

%$

%%

Figure 8.1: An illustration of forward-looking active retrieval augmented generation (FLARE).
Starting with the user input x and initial retrieval results Dx, FLARE iteratively generates a
temporary next sentence (shown in gray italic) and check whether it contains low-probability
tokens (indicated with underline). If so (step 2 and 3), the system retrieves relevant documents
and regenerates the sentence.

tend to hallucinate and create imaginary content [273, 494]. Augmenting LMs with retrieval
components that look up relevant information from external knowledge resources is a promising
direction to address hallucination [176, 202].

Retrieval augmented LMs commonly use a retrieve-and-generate setup where they retrieve
documents based on the user’s input, and then generate a complete answer conditioning on
the retrieved documents [63, 137, 174, 176, 182, 223, 226, 232, 295, 333, 364, 380]. These single-
time retrieval augmented LMs outperform purely parametric LMs, particularly for short-form
knowledge-intensive generation tasks such as factoid question answering (QA) [187, 221], where
the information needs are clear in the user’s input, and it is sufficient to retrieve relevant knowledge

once solely based on the input.

Increasingly powerful large LMs have also demonstrated abilities in more complex tasks
that involve generating long-form output, such as long-form QA [100, 395], open-domain
summarization [77, 120, 142], and (chain-of-thought; CoT) reasoning [118, 156, 160, 427]. In

186

contrast to short-form generation, long-form generation presents complex information needs
that are not always evident from the input alone. Similar to how humans gradually gather
information as we create content such as papers, essays, or books, long-form generation with
LMs would require gathering multiple pieces of knowledge throughout the generation process.
For example, to generate a summary about a particular topic, the initial retrieval based on the
topic name (e.g., Joe Biden) may not cover all aspects and details. It is crucial to retrieve extra
information as needed during generation, such as when generating a certain aspect (e.g., Joe
Biden’s education history) or a specific detail (e.g., the date of Joe Biden’s presidential campaign
announcement).

Several attempts have been made to retrieve multiple times throughout generation. These
attempts include methods that passively use the past context to retrieve additional information at
a fixed interval [43, 202, 349, 407] which might not accurately reflect what LMs intend to generate
in the future or retrieve at inappropriate points. Some works in multihop QA decompose the
full question into sub-questions, each of which is used to retrieve extra information [203, 204,
328, 451].

We ask the following question: can we create a simple and generic retrieval augmented
LM that actively decides when and what to retrieve throughout the generation process, and are
applicable to a variety of long-form generation tasks? We provide a generalized view of active
retrieval augmented generation. Our hypothesis regarding when to retrieve is that LMs should
retrieve information only when they lack the required knowledge to avoid unnecessary or
inappropriate retrieval that occurs in passive retrieval augmented LMs [43, 202, 349, 407]. Given
the observation that large LMs tend to be well-calibrated and low probability/confidence often
indicates a lack of knowledge [189], we adopt an active retrieval strategy that only retrieves
when LMs generate low-probability tokens. When deciding what to retrieve, it is important to
consider what LMs intend to generate in the future, as the goal of active retrieval is to benefit
future generations. Therefore, we propose anticipating the future by generating a temporary
next sentence, using it as a query to retrieve relevant documents, and then regenerating the
next sentence conditioning on the retrieved documents. Combining the two aspects, we propose
Forward-Looking Active REtrieval augmented generation (FLARE), as illustrated in Figure 8.1.
FLARE iteratively generates a temporary next sentence, use it as the query to retrieve relevant
documents if it contains low-probability tokens and regenerate the next sentence until reaches
the end.

FLARE is applicable to any existing LMs at inference time without additional training.
Considering the impressive performance achieved by GPT-3.5 [311] on a variety of tasks, we ex-

187

amine the effectiveness of our methods on text-davinci-003. We evaluate FLARE on 4 diverse
tasks/datasets involving generating long outputs, including multihop QA (2WikiMultihopQA),
commonsense reasoning (StrategyQA), long-form QA (ASQA), and open-domain summariza-
tion (WikiAsp) [118, 142, 160, 395]. Over all tasks, FLARE achieves superior or competitive
performance compared to single-time and multi-time retrieval baselines, demonstrating the
effectiveness and generalizability of our method.

8.2 Retrieval Augmented Generation

We formally define single-time retrieval augmented generation and propose the framework of
active retrieval augmented generation.

8.2.1 Notations and Definitions

Given a user input x and a document corpus D = {di}
∣D∣

i=1 (such as all Wikipedia articles), the
goal of retrieval augmented LMs is to generate the answer y = [s1,s2, ...,sm] = [w1,w2, ...,wn]

containing m sentences or n tokens leveraging information retrieved from the corpus.
In retrieval augmented LM, the LM typically pairs with a retriever that can retrieve a list

of documents Dq = ret(q) for a query q; the LM conditions on both the user input x and
retrieved documents Dq to generate the answer. Since we focus on examining various methods
of determining when and what to retrieve, we follow existing methods [349, 407] to prepend
the retrieved documents before the user input to aid future generation for both baselines and
our method for fair comparisons: y = LM([Dq,x]), where [⋅, ⋅] is concatenation following the
specified order.

8.2.2 Single-time Retrieval Augmented Generation

The most common choice is to directly use the user input as the query for retrieval and generate
the complete answer at once y = LM([Dx,x]).

8.2.3 Active Retrieval Augmented Generation

To aid long-form generation with retrieval, we propose active retrieval augmented generation. It
is a generic framework that actively decides when and what to retrieve through the generation
process, resulting in the interleaving of retrieval and generation. Formally, at step t(t ≥ 1), the

188

retrieval query qt is formulated based on both the user input x and previously generated output
y<t = [y0, ...,yt−1]:

qt = qry(x,y<t),

where qry(⋅) is the query formulation function. At the beginning (t = 1), the previous generation
is empty (y<1 = ∅), and the user input is used as the initial query (q1 = x). Given retrieved
documents Dqt , LMs continually generate the answer until the next retrieval is triggered or
reaches the end:

yt = LM([Dqt ,x,y<t]),

where yt represents the generated tokens at the current step t, and the input to LMs is the
concatenation of the retrieved documents Dqt , the user input x, and the previous generation y<t.
We discard previously retrieved documents ∪t′<tDqt′ and only use the retrieved documents from
the current step to condition the next generation to prevent reaching the input length limit of
LMs.

8.3 FLARE: Forward-Looking Active REtrieval Augmented

Generation

Our intuition is that (1) LMs should only retrieve information when they do not have the
necessary knowledge to avoid unnecessary or inappropriate retrieval, and (2) the retrieval
queries should reflect the intents of future generations. We propose two forward-looking active
retrieval augmented generation (FLARE) methods to implement the active retrieval augmented
generation framework. The first method prompts the LM to generate retrieval queries when
necessary while generating the answer using retrieval-encouraging instructions, denoted as
FLAREinstruct. The second method directly uses the LM’s generation as search queries, denoted
as FLAREdirect, which iteratively generates the next sentence to gain insight into the future
topic, and if uncertain tokens are present, retrieves relevant documents to regenerate the next
sentence.

8.3.1 FLARE with Retrieval Instructions

Inspired by Toolformer [370], a straightforward way of expressing information needs for retrieval
is to generate “[Search(query)]” when additional information is needed [370], e.g., “The colors
on the flag of Ghana have the following meanings. Red is for [Search(Ghana flag red meaning)]

189

Search results: !!
[1]: …
[2]: …

Joe Biden attended

Search results: !"!
[1]: …
[2]: …

Search results: !""
[1]: …
[2]: …

[Search(Joe Biden University)]

[Search(Joe Biden degree)]

the University of Pennsylvania, where he earned

a law degree.

Generate a summary about Joe Biden.In
pu

t

$

&$

&#
%$

&%
%%Ge

ne
ra

tio
n

Retriever

$

%$

%%

Figure 8.2: An illustration of forward-looking active retrieval augmented generation with
retrieval instructions (FLAREinstruct). It iteratively generates search queries (shown in gray italic)
to retrieve relevant information to aid future generations.

the blood of martyrs, ...” When working with GPT-3.5 models that offer only API access, we
elicit such behavior by few-shot prompting [55].

Specifically, for a downstream task, we place the search-related instruction and exemplars at
the beginning as skill 1, followed by the instruction and exemplars of the downstream task as
skill 2. Given a test case, we ask LMs to combine skills 1 and 2 to generate search queries while
performing the task. The structure of the prompt is shown in Prompt 8.3.1.

Prompt 8.3.1: retrieval instructions
Skill 1. An instruction to guide LMs to generate search queries.
Several search-related exemplars.

Skill 2. An instruction to guide LMs to perform a specific downstream task (e.g., multihop QA).
Several task-related exemplars.

An instruction to guide LMs to combine skills 1 and 2 for the test case.
The input of the test case.

As shown in Figure 8.2, when the LM generates “[Search(query)]” (shown in gray italic),
we stop the generation and use the query terms to retrieve relevant documents, which are
prepended before the user input to aid future generation until the next search query is generated
or reaches the end. Additional implementation details are included in § 8.10.1.

190

8.3.2 Direct FLARE

Since we cannot fine-tune black-box LMs, we found queries generated by FLAREinstruct through
retrieval instructions might not be reliable. Therefore, we propose a more direct way of forward-
looking active retrieval that uses the next sentence to decide when and what to retrieve.

Confidence-based Active Retrieval

As shown in Figure 8.1, at step t, we first generate a temporary next sentence ŝt = LM([x,y<t])
without conditioning on retrieved documents. Then we decide whether to trigger retrieval and
formulate queries based on ŝt. If the LM is confident about ŝt, we accept it without retrieving
additional information; if not, we use ŝt to formulate search queries qt to retrieve relevant
documents, and then regenerate the next sentence st. The reason we utilize sentences as the
basis of our iteration is due to their significance as semantic units that are neither too short nor
too lengthy like phrases and paragraphs. However, our approach can also utilize phrases or
paragraphs as the basis.

Since LMs tend to be well-calibrated that low probability/confidence often indicates a lack
of knowledge [181, 189, 412], we actively trigger retrieval if any token of ŝt has a probability
lower than a threshold θ ∈ [0,1]. θ = 0 means retrieval is never triggered, while θ = 1 triggers
retrieval every sentence.

yt =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ŝt if all tokens of ŝt have probs ≥ θ

st = LM([Dqt ,x,y<t]) otherwise

where the query qt is formulated based on ŝt.

Confidence-based Query Formulation

One way to perform retrieval is to directly use the next sentence ŝt as the query qt. This shares
a similar spirit with methods that use generated hypothetical titles or paragraphs from LMs as
retrieval queries or evidences [113, 272, 398, 475]. We generalize such techniques to long-form
generation where active information access is essential.

We found retrieving with the next sentence achieves significantly better results than with
the previous context, as shown later in § 8.6.2. However, it has a risk of perpetuating errors
contained in it. For example, if the LM produces the sentence “Joe Biden attended the University
of Pennsylvania” instead of the correct fact that he attended the University of Delaware, using

191

Joe Biden attended the University of Pennsylvania,
where he earned a law degree.

Ask a question to which the answer is “the University of Pennsylvania”
Ask a question to which the answer is “a law degree”

What university did Joe Biden attend?
What degree did Joe Biden earn?

implicit query
by masking

explicit query by
 question generation

Joe Biden attended , where he earned .

LM such as ChatGPT

Figure 8.3: Implicit and explicit query formulation. Tokens with low probabilities are marked
with underlines.

this erroneous sentence as a query might retrieve misleading information. We propose two
simple methods to overcome this issue as illustrated in Figure 8.3.

Masked sentences as implicit queries. The first method masks out low-confidence tokens
in ŝt with probabilities below a threshold β ∈ [0,1], where a higher β results in more aggressive
masking. This removes potential distractions from the sentence to improve retrieval accuracy.

Generated questions as explicit queries. Another method is to generate explicit questions
that target the low-confident span in ŝt. For example, if the LM is uncertain about “the University
of Pennsylvania”, a question like “Which university did Joe Biden attend?” can help retrieve
relevant information. Self-ask [328] achieved this by manually inserting follow-up questions
into downstream task exemplars, which requires task-specific annotation efforts. Instead, we
developed a universal approach that generates questions for low-confidence spans without
additional annotation. Specifically, We first extract all spans from ŝt with probabilities below β.
For each extracted span z, we prompt gpt-3.5-turbo to generate a question qt,z that can be
answered with the span:

192

Prompt 8.3.2: zero-shot question generation
User input x.
Generated output so far y≤t.

Given the above passage, ask a question to which the answer is the term/entity/phrase “z”.

We retrieve using each generated question and interleave the returned documents into a
single ranking list to aid future generations. In summary, queries qt are formulated based on ŝt

as follows:

qt =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∅ if all tokens of ŝt have probs ≥ θ

mask(ŝt) or qgen(ŝt) otherwise

8.3.3 Implementation Details

Base LM Wevalidate ourmethod on one of themost advancedGPT-3.5 LMs text-davinci-003
by iteratively querying their API.1

Document corpus and retrievers. Since we focus on the integration of retrieval and gen-
eration, we use off-the-shelf retrievers that take queries as inputs and return a list of relevant
documents. For datasets that mainly rely on knowledge from Wikipedia, we use the Wikipedia
dump from Karpukhin et al. [195] and employ BM25 [358] as the retriever. For datasets that rely
on knowledge from the open web, we use the Bing search engine as our retriever.2

Retrieved document formatting. Multiple retrieved documents are linearized according to
their ranking and then added to the beginning of the user input.

Other implementation details such as sentence tokenization and efficiency are included
§ 8.10.1.

8.4 Multi-time Retrieval Baselines

Existing passive multi-time retrieval augmented LMs can also be formulated using our framework
(§ 8.2.3). In this section, we formally introduce three baseline categories based on when and
what to retrieve. These baselines are not exact reproductions of the corresponding paper because

1https://api.openai.com/v1/completions April 23.
2https://www.microsoft.com/en-us/bing/apis/bing-web-search-api

193

 https://api.openai.com/v1/completions
https://www.microsoft.com/en-us/bing/apis/bing-web-search-api

many design choices differ which makes direct comparisons impossible. We implemented them
using the same settings, with the only variation being when and what to retrieve.

Previous-window approaches trigger retrieval every l tokens, where l represents the window
size. Generated tokens from the previous window are used as the query:

qt = yt−1 (t ≥ 2),

yt = [w(t−1)l+1, ...,wtl].

Some existing methods in this category are RETRO [43], IC-RALM [349], which retrieve every
few tokens, and KNN-LM [202], which retrieves every token.3 We follow Ram et al. [349] to use
a window size of l = 16.

Previous-sentence approaches trigger retrieval every sentence and use the previous sentence
as the query, and IRCoT [407] belongs to this category:

qt = yt−1 (t ≥ 2),

yt = st.

Question decomposition approaches manually annotated task-specific exemplars to guide
LMs to generate decomposed sub-questions while producing outputs. For example, self-ask
[328], a method in this category, manually inserts sub-questions in exemplars. For the test case,
retrieval is triggered dynamically whenever the model generates a sub-question.

The aforementioned approaches can retrieve additional information while generating. How-
ever, they have notable drawbacks: (1) Using previously generated tokens as queries might not
reflect what LMs intend to generate in the future. (2) Retrieving information at a fixed interval
can be inefficient because it might occur at inappropriate points. (3) Question decomposition
approaches require task-specific prompt engineering, which restricts their generalizability in
new tasks.

8.5 Experimental Setup

We evaluate the effectiveness of FLARE on 4 diverse knowledge-intensive tasks using few-shot
in-context learning [55, 256, 340]. We follow previous works [407] to sub-sample at most 500

3Since KNN-LM uses the contextualized representation corresponding to the current decoding position to
retrieve relevant information which encodes all previous tokens. Strictly speaking, qt should be y<t.

194

examples from each dataset due to the cost of running experiments. Datasets, metrics, and
settings are summarized in Table 8.7 of § 8.10.2. The hyperparameters of FLARE are selected
based on the development set. FLARE refers to FLAREdirect if not specifically stated.

Multihop QA The goal of multihop QA is to answer complex questions through informa-
tion retrieval and reasoning. We use 2WikiMultihopQA [160] which contains 2-hop complex
questions sourced from Wikipedia articles that require composition, comparison, or inference,
e.g., “Why did the founder of Versus die?” We follow Wang et al. [422] to generate both the
chain-of-thought and the final answer. Experimental setting details are included in § 8.10.2.

We use regular expressions to extract the final answer from the output and compare it with
the reference answer using exact match (EM), and token-level F1, precision, and recall.

Commonsense reasoning Commonsense reasoning requires world and commonsense knowl-
edge to generate answers. We use StrategyQA [118] which is a collection of crowdsourced
yes/no questions, e.g., “Would a pear sink in water?” We follow Wei et al. [427] to generate both
the chain-of-thought and the final yes/no answer. Details are included in § 8.10.2.

We extract the final answer and match it against the gold answer using exact match.

Long-form QA Long-form QA aims to generate comprehensive answers to questions seeking
complex information [100, 395]. We use ASQA [395] as our testbed where inputs are ambiguous
questions with multiple interpretations, and outputs should cover all of them. For example,
“Where do the Philadelphia Eagles play their home games?” could be asking about the city, sports
complex, or stadium. We found in many cases it is challenging even for humans to identify
which aspect of the question is ambiguous. Therefore, we created another setting (ASQA-hint)
where we provide a brief hint to guide LMs to stay on track when generating answers. The hint
for the above case is “This question is ambiguous in terms of which specific location or venue is
being referred to.” Experimental setting details are included in § 8.10.2.

We usemetrics from Stelmakh et al. [395], including EM, RoBERTa-based QA score (Disambig-
F1), ROUGE [247], and an overall score combining Disambig-F1 and ROUGE (DR).

Open-domain summarization The goal of open-domain summarization is to generate a
comprehensive summary about a topic by gathering information from open web [120]. We use
WikiAsp [142] which aims to generate aspect-based summaries about entities from 20 domains

195

0.0

20.0

40.0

60.0

80.0

2WikiMultihopQA StrategyQA ASQA ASQA-hint WikiAsp

No ret. Single-time ret. Previous-window ret. Forward-Looking Active REtrieval augmented generation (FLARE)

Figure 8.4: Comparision between FLARE and baselines across all tasks/datasets. We report
the primary metric for each dataset: EM for 2WikiMultihopQA, StrategyQA, and ASQA, and
UniEval for WikiAsp.

in Wikipedia, e.g., “Generate a summary about Echo School (Oregon) including the following
aspects: academics, history.” Experimental setting details are included in § 8.10.2.

Metrics include ROUGE, named entity-based F1, and UniEval [488] which measures factual
consistency.

8.6 Experimental Results

We first report overall results across 4 tasks/datasets and compare the performance of FLARE
with all the baselines introduced in § 8.4. We then run ablation experiments to study the efficacy
of various design choices of our method.

8.6.1 Comparison with Baselines

Overall results. The overall performance of FLARE and baseline across all tasks/datasets
are reported in Figure 8.4. FLARE outperforms all baseline on all tasks/datasets, indicating that
FLARE is a generic method that can effectively retrieve additional information throughout the
generation.

Among various tasks, multihop QA shows the most significant improvement. This is largely
due to the task’s clear definition and specific objective of producing the final answer through a
2-hop reasoning process, which makes it easier for LMs to generate on-topic output. In contrast,
ASQA and WikiAsp are more open-ended, which increases the difficulty of both generation and
evaluation. The improvement on ASQA-hint is larger than that of ASQA because identifying
ambiguous aspects is challenging even for humans in many cases, and providing a generic hint

196

Methods EM F1 Prec. Rec.

No retrieval 28.2 36.8 36.5 38.6
Single-time retrieval 39.4 48.8 48.6 51.5

Multi-time retrieval

Previous-window 43.2 52.3 51.7 54.5
Previous-sentence 39.0 49.2 48.9 51.8
Question decomposition 47.8 56.4 56.1 58.6
FLAREinstruct (ours) 42.4 49.8 49.1 52.5
FLAREdirect (ours) 51.0 59.7 59.1 62.6

Table 8.1: FLARE and baselines on 2WikiMultihopQA. Previous-window [43, 349], previous-
sentence [407], and question decomposition [328, 451] methods are reimplemented for fair
comparisons.

helps LMs to stay on topic.

Thorough comparisons with baselines. The performance of all baselines on 2WikiMulti-
hopQA are reported in Table 8.1. FLARE outperforms all baselines by a large margin, which
confirms that forward-looking active retrieval is highly effective. Most multi-time retrieval
augmented approaches outperform single-time retrieval but with different margins. The im-
provement of retrieving using the previous sentence is relatively small which we hypothesize is
mainly because the previous sentence often describes entities or relations different from those
in the next sentence in 2WikiMultihopQA. While the previous-window approach might use the
first half of a sentence to retrieve information potentially helpful for generating the second half.
Among all baselines, the question decomposition approach [328] achieves the best performance.
which is not surprising since the in-context exemplars manually annotated with decomposed
sub-questions guide LMs to generate sub-questions that align with the topic/intent of future
generations. FLARE outperforms this baseline, indicating that manual exemplar annotation is
not necessary for effective future-aware retrieval. The gap between FLAREinstruct and question de-
composition is large, indicating that teaching LMs to generate search queries using task-generic
retrieval instructions and exemplars is challenging.

We report all metrics for the other datasets in Table 8.2. FLARE outperforms baselines with
respect to all metrics. Retrieval using the previous window underperforms single-time retrieval
on ASQA, which we hypothesize is because the previous window does not accurately reflect

197

Datasets StrategyQA ASQA ASQA-hint WikiAsp

Metrics EM EM D-F1 R-L DR EM D-F1 R-L DR UniEval E-F1 R-L

No retrieval 72.9 33.8 24.2 33.3 28.4 40.1 32.5 36.4 34.4 47.1 14.1 26.4
Single-time retrieval 68.6 40.0 27.1 34.0 30.4 43.2 34.8 37.4 36.0 52.4 17.4 26.9

Multi-time retrieval

Previous-window 71.2 39.9 27.0 34.3 30.4 43.7 35.7 37.5 36.6 51.8 18.1 27.3
Previous-sentence 71.0 39.9 27.9 34.3 30.9 44.7 35.9 37.5 36.7 52.6 17.8 27.2
FLARE (ours) 77.3 41.3 28.2 34.3 31.1 46.2 36.7 37.7 37.2 53.4 18.9 27.6

Table 8.2: Comparison between FLARE and baselines on StrategyQA, ASQA, ASQA-hint, and
WikiAsp. D-F1 is Disambig-F1, R-L is ROUGE-L, and E-F1 is named entity-based F1.

2WikiMultihopQA ASQA-hint

EM F1 Prec. Rec. EM D-F1 R-L DR

Previous 39.0 49.2 48.9 51.8 42.5 34.1 36.9 35.5
Next 48.8 57.6 57.1 60.5 45.9 35.7 37.5 36.6

Table 8.3: A head-to-head comparison between using the previous sentence and the next sentence
for retrieval.

future intent. Since we focus on evaluating factuality, metrics with an emphasis on factual
content (such as EM, Disambig-F1, UniEval) are more reliable than metrics computed over all
tokens (ROUGE-L).

8.6.2 Ablation Study

Importance of forward-looking retrieval. We first validate that forward-looking retrieval
is more effective than past-context-based retrieval. We run ablation experiments on 2Wiki-
MultihopQA and ASQA-hint comparing retrieval using the previous versus the next sentence.
Specifically, both methods retrieve every sentence and directly use the complete previous/next
sentence as queries. As shown in Table 8.3, using the next sentence to retrieve is clearly better
than using the previous sentence, confirming our hypothesis.

We also run previous-window approaches using different numbers of past tokens as queries.
As shown in Table 8.4, using too many tokens (> 32) in the past hurts the performance, further

198

#Tokens EM F1 Prec. Rec.

16 43.2 52.3 51.7 54.5
32 43.6 52.4 52.0 55.0
48 40.0 49.3 49.0 52.0
All 39.0 48.5 48.2 51.1

Table 8.4: Previous-window approaches using different numbers of tokens as queries.

%steps/sentences with retrieval

0.0

20.0

40.0

60.0

80.0

0.0 25.0 50.0 75.0 100.0

2WikiMultihopQA StrategyQA

Figure 8.5: Performance (EM) of FLARE with respect to the percentage of steps/sentences with
retrieval on 2WikiMultihopQA and StrategyQA.

confirming our hypothesis that previous context might not be relevant to intent of future
generations.

Importance of active retrieval. Next, we investigate how active retrieval threshold θ affects
performance. To alter our method from not retrieving to retrieving every sentence, we adjust the
confidence threshold θ that determines when to trigger retrieval from 0 to 1. We then calculate
the proportion of steps/sentences where retrieval is activated, and present the performance based
on it. As shown in Figure 8.5, on 2WikiMultihopQA, the performance plateaus when the retrieval
percentage exceeds 60%, indicating that retrieval when LMs are confident is not necessary. On
StrategyQA, the performance drops when the retrieval percentage exceeds 50%, indicating that
unnecessary retrieval can introduce noise and impede the original generation process. We
found triggering retrieval for 40%-80% of sentences usually leads to a good performance across
tasks/datasets.

Effectiveness of different query formulation methods We study implicit query formation
bymasking and explicit query formulation through question generation. In Table 8.5, we compare
the performance of FLARE with different masking thresholds β. Retrieving directly with the

199

β EM F1 Prec. Rec.

0.0 0.488 0.576 0.571 0.605
0.2 0.498 0.588 0.582 0.616
0.4 0.510 0.597 0.591 0.627
0.6 0.506 0.593 0.586 0.622

Table 8.5: Performance of FLARE with respect to the masking threshold β on 2WikiMultihopQA.

ASQA-hint WikiAsp

EM D-F1 R-L DR UniEval E-F1 R-L

Implicit 45.7 36.9 37.7 37.3 53.4 18.8 27.7
Explicit 46.2 36.7 37.7 37.2 53.4 18.9 27.6

Table 8.6: A comparison between implicit and explicit query formulation methods in FLARE.

complete sentence (β = 0) is worse than masking tokens with low probabilities, confirming our
hypothesis that low-confidence erroneous tokens can distract retrievers. We compare implicit
and explicit query formulation methods in Table 8.6. Performances of both methods are similar,
indicating that both methods can effectively reflect information needs.

8.7 Related Work

We refer to § 8.2.2 and § 8.4 for extensively discussion on single-time and multi-time retrieval
augmented LMs, which is the most relevant area to this paper.

Iterative and adaptive retrieval Iterative retrieval and refinement has been studied in both
text and code generation tasks [321, 476, 480, 483]. FLARE differs from these methods in the
granularity of generation and retrieval strategies. Adaptive retrieval has been studied in single-
time retrieval scenarios based on either question popularity or generation probabilities [235, 268],
while we focus on long-form generation requiring active information access.

Browser-enhanced LMs WebGPT [295] and WebCPM [334] train LMs to interact with
browser to enhance factuality using reinforcement learning or supervised trainingwheremultiple
queries can be triggered before generation. FLARE is built on text-based retrievers but can be

200

combined with a browser to potentially improve retrieval quality.

8.8 Conclusion

To aid long-form generation with retrieval augmentation, we propose an active retrieval aug-
mented generation framework that decides when and what to retrieve during generation. We
implement this framework with forward-looking active retrieval that iteratively uses the upcom-
ing sentence to retrieve relevant information if it contains low-confidence tokens and regenerates
the next sentence. Experimental results on 4 tasks/datasets demonstrate the effectiveness of our
methods. Future directions include better strategies for active retrieval and developing efficient
LM architectures for active information integration.

8.9 Limitations

We also conduct experiments on Wizard of Wikipedia [90] and ELI5 [100], and found that
FLARE did not provide significant gains. Wizard of Wikipedia is a knowledge-intensive dialogue
generation dataset where the output is relatively short (∼20 tokens on average) so retrieving
multiple disparate pieces of information might not be necessary. ELI5 [100] is a long-form
QA dataset requiring in-depth answers to open-ended questions. Due to issues mentioned in
Krishna et al. [215] such as difficulties of grounding generation in retrieval and evaluation, both
single-time retrieval and FLARE did not provide significant gains over not using retrieval. From
an engineering perspective, interleaving generation and retrieval with a naive implementation
increases both overheads and the cost of generation. LMs need to be activated multiple times
(once for each retrieval) and a caching-free implementation also requires recomputing the
previous activation each time after retrieval. This issue can be potentially alleviated with special
architectural designs that encode the retrieved documents Dqt and the input/generation (x/y<t)
independently.

8.10 Appendix

8.10.1 FLARE Implementation Details

FLAREinstruct implementation details We found that LMs can effectively combine retrieval
and downstream task-related skills and generate meaningful search queries while performing

201

the task. However, there are two issues: (1) LMs tend to generate fewer search queries than
necessary. (2) Generating excessive search queries can disrupt answer generation and adversely
affect performance. We address these issues using two methods respectively. First, we increase
the logit of the token “[” by 2.0 to improve the chances of LMs generating “[Search(query)]”.
Second, whenever LMs generate a search query, we use it to retrieve relevant information,
promptly remove it from the generation, and generate the next few tokens while forbidding “[”
by adding a large negative value to the logit of “[”.

The initial query of FLARE. FLARE starts with the user input x as the initial query to
retrieve documents to generate the first sentence ŝ1 = LM([Dx,x]) to bootstrap the iterative
generation process. For the following steps, the temporary forward-looking sentence is generated
without retrieved documents.

Sentence tokenization. For each step t, we generate 64 tokens which are longer than most
sentences, and use NLTK sentence tokenizer4 to extract the first sentence and discard the rest.

Efficiency As shown in § 8.6.2, on average retrieval is triggered for 30% ∼ 60% of sentences
depending on downstream tasks. In comparision, KNN-LM [202] retrieves every token, RETRO
or IC-RALM [43, 349] retrievers every 4∼32 tokens, and IRCoT [407] retrieves every sentence.
Compared to single-time retrieval, however, interleaving retrieval and generation with a naive
implementation indeed increases overheads, which we discuss in the limitation section (§ 8.9).

8.10.2 Datasets and Settings

Datasets, metrics, and experimental settings are summarized in Table 8.7.

Multihop QA For “Why did the founder of Versus die?”, the output we aim to generate is “The
founder of Versus was Gianni Versace. Gianni Versace was shot and killed on the steps of his
Miami Beach mansion on July 15, 1997. So the answer is shot.” We use 8 exemplars from Trivedi
et al. [407] for in-context learning, BM25 as the retriever, and Wikipedia articles as the retrieval
corpus. Similar to the observation in Trivedi et al. [407], we found incorporating retrieval results
for exemplars improves the performance, we use the input x of each exemplar to retrieve several
documents and then add them using the prompting format. We found increasing the number

4https://www.nltk.org/api/nltk.tokenize.PunktSentenceTokenizer.html

202

https://www.nltk.org/api/nltk.tokenize.PunktSentenceTokenizer.html

of retrieval documents often increases performance. Therefore, we use the maximum number
of documents that can fit within the input length limit of text-davinci-003, which is 2 for
2WikiMultihopQA.

Commonsense Reasoning For “Would a pear sink in water?”, the output we aim to generate
is “The density of a pear is about 0.6g/cm3, which is less than water. Objects less dense than
water float. Thus, a pear would float. So the final answer is no.” We use 6 exemplars from Wei
et al. [427], BM25 on the Wikipedia corpus, and 3 retrieved documents to run experiments.

Long-form QA For “Where do the Philadelphia Eagles play their home games?”, the output
we aim to generate is “We need to consider the different possible locations or venues that could
be considered the home field of the Philadelphia Eagles. These include the city, the sports
complex, or the stadium. Therefore, this question has 3 interpretations and the answers are:
(1) The city is Philadelphia. (2) The sports complex is the South Philadelphia Sports Complex.
(3) The stadium is the Lincoln Financial Field stadium.” For both the original setting (ASQA)
and the setting with hints (ASQA-hint), we manually annotate 8 exemplars, use BM25 on the
Wikipedia corpus, and 3 retrieved documents to run experiments.

Open-domain Summarization The original WikiAsp dataset is designed for multi-document
summarization and provides a list of references to systems. We converted it into the open-domain
setting by removing the associated references and instead gathering information from the open
web. For “Generate a summary about Echo School (Oregon) including the following aspects:
academics, history.”, the output we aim to generate is “# Academics. In 2008, 91% of the school’s
seniors received their high school diploma... # History. The class of 2008 was the 100th class in
the school’s history.” where # is used to indicate aspects. We manually annotate 4 exemplars,
and use the Bing search engine to retrieve 5 documents from the open web. To avoid leaking,
we exclude several Wikipedia-related domains listed in Table 8.8 from Bing’s search results.

203

Settings 2WikiMultihopQA StrategyQA ASQA WikiAsp
[160] [118] [395] [142]

Dataset statistics

Task multihop QA commonsense QA long-form QA open-domain summarization
#Examples 500 229 500 500

Evaluation settings

Metrics EM, F1, Prec., Rec. EM EM, Disambig-F1, ROUGE, DR UniEval, entity-F1, ROUGE

Retrieval settings

Corpus Wikipedia Wikipedia Wikipedia open web
Retriever BM25 BM25 BM25 Bing
Top-k 2 3 3 5

Prompt format

#Exemplars 8 6 8 4
Ret. for exemplars ♣ ♠ ♠ ♠

Table 8.7: Dataset statistics and experimental settings of different tasks.

wikipedia.org, wikiwand.com, wiki2.org, wikimedia.org

Table 8.8: Wikipedia-related domains excluded from Bing’s search results.

204

Part IV

Iterative Use of LLMs as Agents

205

Chapter 9

WebArena: A Realistic Web Environment
for Building Autonomous Agents

With advances in generative AI, there is now potential for autonomous agents to manage daily
tasks via natural language commands. However, current agents are primarily created and tested
in simplified synthetic environments, leading to a disconnect with real-world scenarios. In
this chapter, we build an environment for language-guided agents that is highly realistic and
reproducible. Specifically, we focus on agents that perform tasks on the web, and create an
environment with fully functional websites from four common domains: e-commerce, social
forum discussions, collaborative software development, and content management. Our envi-
ronment is enriched with tools (e.g., a map) and external knowledge bases (e.g., user manuals)
to encourage human-like task-solving. Building upon our environment, we release a set of
benchmark tasks focusing on evaluating the functional correctness of task completions. The
tasks in our benchmark are diverse, long-horizon, and designed to emulate tasks that humans
routinely perform on the internet. We experiment with several baseline agents, integrating
recent techniques such as reasoning before acting. The results demonstrate that solving complex
tasks is challenging: our best GPT-4-based agent only achieves an end-to-end task success rate
of 14.41%, significantly lower than the human performance of 78.24%. These results highlight
the need for further development of robust agents, that current state-of-the-art large language
models are far from perfect performance in these real-life tasks, and that WebArena can be used
to measure such progress.

Our code, data, environment reproduction resources, and video demonstrations are publicly
available at https://webarena.dev/.

207

https://webarena.dev/

9.1 Introduction

Autonomous agents that perform everyday tasks via human natural language commands could
significantly augment human capabilities, improve efficiency, and increase accessibility. Nonethe-
less, to fully leverage the power of autonomous agents, it is crucial to understand their behavior
within an environment that is both authentic and reproducible. This will allow measurement of
the ability of agents on tasks that human users care about in a fair and consistent manner.

Current environments for evaluate agents tend to over-simplify real-world situations. As
a result, the functionality of many environments is a limited version of their real-world coun-
terparts, leading to a lack of task diversity [18, 121, 283, 379, 383, 384, 450]. In addition, these
simplifications often lower the complexity of tasks as compared to their execution in the real
world [332, 383, 450]. Finally, some environments are presented as a static resource [85, 379]
where agents are confined to accessing only those states that were previously cached during
data collection, thus limiting the breadth and diversity of exploration. For evaluation, many
environments focus on comparing the textual surface form of the predicted action sequences
with reference action sequences, disregarding the functional correctness of the executions and
possible alternative solutions [85, 179, 243, 332, 442]. These limitations often result in a dis-
crepancy between simulated environments and the real world, and can potentially impact the
generalizability of AI agents to successfully understand, adapt, and operate within complex
real-world situations.

We introduce WebArena, a realistic and reproducible web environment designed to facili-
tate the development of autonomous agents capable of executing tasks (§9.2). An overview of
WebArena is in Figure 9.1. Our environment comprises four fully operational, self-hosted web
applications, each representing a distinct domain prevalent on the internet: online shopping,
discussion forums, collaborative development, and business content management. Furthermore,
WebArena incorporates several utility tools, such as map, calculator, and scratchpad, to best
support possible human-like task executions. Lastly, WebArena is complemented by an extensive
collection of documentation and knowledge bases that vary from general resources like English
Wikipedia to more domain-specific references, such as manuals for using the integrated devel-
opment tool [101]. The content populating these websites is extracted from their real-world
counterparts, preserving the authenticity of the content served on each platform. We deliver the
hosting services using Docker containers with gym-APIs [52], ensuring both the usability and
the reproducibility of WebArena.

Along with WebArena, we release a ready-to-use benchmark with 812 long-horizon web-

208

Agent

Action

Feedback

Tell me how much I spent on
food purchase in March 2023

“
”

“
”

Create a ‘NolanFans' repo,
listing Nolan's Oscar-winning
films in a README file

check_repo
check_readme
check_answer

Functional
Success

Functional
Failure

Reddit wordmark
Whenever possible, Reddit’s icon and
wordmark should appear together.

Reddit’s wordmark is a refined
variation on its classic logo. The
rounded letters and shorter “i” reflect
the brand’s friendly, whimsical nature.
The dot on the “i” is Orangered
(FF4500, PMS 172 C) and oversized,
recalling Snoo’s eyes.

The wordmark should be aligned with
the Snoo in the horizontal lockup, and
the safe area determines relative
placement in both configurations.

REDDIT LOGO

Version 09-2020 04

Self-hosted fully functional web applications

CMS

Toolbox Knowledge resources

WebArena

Figure 9.1: WebArena is a standalone, self-hostable web environment for building autonomous
agents. WebArena creates websites from four popular categories with functionality and data
mimicking their real-world equivalents. To emulate human problem-solving, WebArena also em-
beds tools and knowledge resources as independent websites. WebArena introduces a benchmark
on interpreting high-level realistic natural language command to concrete web-based interac-
tions. We provide annotated programs designed to programmatically validate the functional
correctness of each task.

based tasks (§9.3). Each task is described as a high-level natural language intent, emulating
the abstract language usage patterns typically employed by humans [38]. Two example intents
are shown in the upper left of Figure 9.1. We focus on evaluating the functional correctness of
these tasks, i.e., does the result of the execution actually achieve the desired goal (§9.3.2). For
instance, to evaluate the example in Figure 9.2, our evaluation method verifies the concrete
contents in the designated repository. This evaluation is not only more reliable [65, 425, 490]
than comparing the textual surface-form action sequences [85, 332] but also accommodate a
range of potential valid paths to achieve the same goal, which is a ubiquitous phenomenon in
sufficiently complex tasks.

We use this benchmark to evaluate several agents that can follow NL command and perform
web-based tasks (§9.4). These agents are implemented in a few-shot in-context learning fashion
with powerful large language models (LLMs) such as GPT-4 and PALM-2. Experiment results
show that the best GPT-4 agent performance is somewhat limited, with an end-to-end task
success rate of only 14.41%, while the human performance is 78.24%. We hypothesize that the
limited performance of current LLMs stems from a lack of crucial capabilities such as active
exploration and failure recovery to successfully perform complex tasks (§9.5.2). These outcomes
underscore the necessity for further development towards robust and effective agents [225] in

209

WebArena.

9.2 WebArena: Websites as an Environment for Autonomous

Agents

Our goal is to create a realistic and reproducible web environment. We achieve reproducibility by
making the environment standalone, without relying on live websites. This circumvents technical
challenges such as bots being subject to CAPTCHAs, unpredictable content modifications, and
configuration changes, which obstruct a fair comparison across different systems over time.
We achieve realism by using open-source libraries that underlie many in-use sites from several
popular categories and importing data to our environment from their real-world counterparts.

9.2.1 Controlling Agents through High-level Natural Language

The WebArena environment is denoted as E= ⟨S,A,O,T ⟩ with state space S , action space
A (§9.2.4) and observation space O (§9.2.3). The transition function T ∶ S ×AÐ→ S is determin-
istic, and it is defined by the underlying implementation of each website in the environment.
Given a task described as a natural language intent i, an agent issues an action at∈ A based on
intent i, the current observation ot∈ O, the action history at−1

1 and the observation history ot−1
1 .

Consequently, the action results in a new state st+1∈ S and its corresponding observation ot+1∈ O.
We propose a reward function r(aT

1 , s
T
1) to measure the success of a task execution, where aT

1

represents the sequence of actions from start to the end time step T , and sT1 denotes all inter-
mediate states. This reward function assesses if state transitions align with the expectations
of the intents. For example, with an intent to place an order, it verifies whether an order has
been placed. Additionally, it evaluates the accuracy of the agent’s actions, such as checking the
correctness of the predicted answer.

9.2.2 Website Selection

To decide which categories of websites to use, we first analyzed approximately 200 examples
from the authors’ actual web browser histories. Each author delved into their browsing histories,
summarizing the goal of particular segments of their browser session. Based on this, we classified
the visited websites into abstract categories. We then identified the four most salient categories
and implemented one instance per category based on this analysis: (1) E-commerce platforms

210

Search for museums
in Pittsburgh

webarena.wikipedia.com

Search for each art
museum on the Map

webarena.openstreetmap.com

Record the optimized
results to the repo

webarena.gitlab.com

…

Create an efficient itinerary to visit all of Pittsburgh's art museums with minimal driving distance
starting from Schenley Park. Log the order in my “awesome-northeast-us-travel” repository

“
”

Figure 9.2: A high-level task that can be fully executed in WebArena. Success requires sophisti-
cated, long-term planning and reasoning. To accomplish the goal (top), an agent needs to (1) find
Pittsburgh art museums on Wikipedia, (2) identify their locations on a map (while optimizing
the itinerary), and (3) update the README file in the appropriate repository with the planned
route.

supporting online shopping activities (e.g., Amazon, eBay), (2) social forum platforms for opinion
exchanges (e.g., Reddit, StackExchange), (3) collaborative development platforms for software
development (e.g., GitLab), and (4) content management systems (CMS) that manage the creation
and revision of the digital content (e.g., online store management).

In addition to these platforms, we selected three utility-style tools that are frequently used
in web-based tasks: (1) a map for navigation and searching for information about points of
interest (POIs) such as institutions or locations (2) a calculator, and (3) a scratchpad for taking
notes. As information-seeking and knowledge acquisition are critical in web-based tasks, we
also incorporated various knowledge resources into WebArena. These resources range from
general information hubs, such as the English Wikipedia, to more specialized knowledge bases,
such as the website user manuals.

Implementation We leveraged open-source libraries relevant to each category to build our
own versions of an E-commerce website (OneStopShop), GitLab, Reddit, an online store content
management system (CMS), a map, and an English Wikipedia. Then we imported sampled data
from their real-world counterparts. As an example, our version of GitLab was developed based
on the actual GitLab project.1 We carefully emulated the features of a typical code repository

1https://gitlab.com/gitlab-org/gitlab

211

https://gitlab.com/gitlab-org/gitlab

 <div>

 <div class>
 Outdoor Patio …

 <div>
 Rating:
 <div>
 82%
 </div>
 12
Reviews

webarena.onestopshop.comwebarena.onestopshop.com

RootWebArea ‘Patio, Lawn ..’
 link 'Image'
 img 'Image'
 link 'Outdoor Patio..’
 LayoutTable ''
 StaticText 'Rating:'
 generic '82%'
 link '12 Reviews'
 StaticText ‘$49.99'
 button 'Add to Cart’ focusable: True
 button 'Wish List’ focusable: …
 button 'Compare’ focusable: …

webarena.onestopshop.com

Figure 9.3: We design the observation to be the URL and the content of a web page, with options
to represent the content as a screenshot (left), HTML DOM tree (middle), and accessibility tree
(right). The content of the middle and right figures are trimmed to save space.

by including both popular projects with many issues and pull requests and smaller, personal
projects. Details of all websites in WebArena can be found in Appendix 9.8.1. We deliver the
environment as dockers and provide scripts to reset the environment to a deterministic initial
state (See Appendix 9.8.2).

9.2.3 Observation Space

We design the observation space to roughly mimic the web browser experience: a web page
URL, the opened tabs , and the web page content of the focused tab. WebArena is the first web
environment to consider multi-tab web-based tasks to promote tool usage, direct comparisons
and references across tabs, and other functionalities. The multi-tab functionality offers a more
authentic replication of human web browsing habits compared to maintaining everything in
a single tab. We provide flexible configuration to render the page content in many modes:
(see Figure 9.3 for an example): (1) the raw web page HTML, composed of a Document Object
Model (DOM) tree, as commonly used in past work [85, 243, 379]; (2) a screenshot, a pixel-based
representation that represents the current web page as an RGB array and (3) the accessibility
tree of the web page.2 The accessibility tree is a subset of the DOM tree with elements that are
relevant and useful for displaying the contents of a web page. Every element is represented as its
role (e.g., a link), its text content, and its properties (e.g., whether it is focusable). Accessibility
trees largely retain the structured information of a web page while being more compact than the
DOM representation.

We provide an option to limit the content to the contents within a viewport for all modes.
2https://developer.mozilla.org/en-US/docs/Glossary/Accessibility_tree

212

https://developer.mozilla.org/en-US/docs/Glossary/Accessibility_tree

This ensures that the observation can be input into a text-based model with limited context
length or an image-based model with image size or resolution requirements.

9.2.4 Action Space

Following previous work on navigation and operation in web and embodied environments
[254, 379], we design a compound action space that emulates the keyboard and mouse operations
available on web pages. Figure 9.4 lists all the available actions categorized into three distinct
groups. The first group includes element operations such as clicking, hovering, typing, and key
combination pressing. The second comprises tab-related actions such as opening, closing, and
switching between tabs. The third category consists of URL navigation actions, such as visiting
a specific URL or navigating forward and backward in the browsing history.

Building on these actions, WebArena provides agents with the flexibility to refer to elements
for operation in different ways. An element can be selected by its on-screen coordinates, (x, y),
or by a unique element ID that is prepended to each element. This ID is generated when
traversing the Document Object Model (DOM) or accessibility tree. With element IDs, the
element selection is transformed into an n-way classification problem, thereby eliminating any
disambiguation efforts required from the agent or the underlying implementation. For example,
issuing the action click [1582] clicks the button given the observation of [1582] Add to

Cart. This flexible element selection allows WebArena to support agents designed in various
ways (e.g., accepting input from different modalities) without compromising fair comparison
metrics such as step count.

User Role Simulation Users of the same website often have disparate experiences due to
their distinct roles, permissions, and interaction histories. We emulate this scenario by generating
unique user profiles on each platform. The details can be found in Appendix 9.8.3.

9.3 Benchmark Suite of Web-based Tasks

We provide a benchmark with 812 test examples on grounding high-level natural language
instructions to interactions in WebArena. Each example has a metric to evaluate the functional
correctness of the task execution. In this section, we first formally define the task of controlling
an autonomous agent through natural language. Then we introduce the annotation process of
our benchmark.

213

9.3.1 Intent Collection

We focus on curating realistic intents to carry out complex and creative tasks within WebArena.
To start with, our annotators were guided to spend a few minutes exploring the websites to
familiarize themselves with the websites’ content and functionalities. As most of our websites are
virtually identical to their open-web counterparts, despite having sampled data, most annotators
can quickly comprehend the websites.

Next, we instructed the annotators to formulate intents based on the following criteria:
(1) The intent should be abstract and high-level, implying that the task cannot be fulfilled

with merely one or two actions. As an example, instead of “click the science subreddit”,
we encouraged annotators to come up with something more complex like “post a greeting
message on science subreddit”, which involves performing multiple actions.

(2) The intent should be creative. Common tasks such as account creation can be easily thought
of. We encouraged the annotators to add constraints (e.g., “create a Reddit account identical
to my GitLab one”) to make the intents more unique.

(3) The intent should be formulated as a template by making replaceable elements as variables.
The annotators were also responsible for developing several instantiations for each variable.
For example, the intent “create a Reddit account identical to my GitLab one” can be converted
into “create a {{site1}} account identical to my {{site2}} one”, with an instantiation like “{site1:
Reddit, site2: GitLab}” and another like “{site1: GitLab, site2: OneStopShopping}”. Notably,
tasks derived from the same template can have distinct execution traces. The similarity
resides primarily in the high-level semantics rather than the specific implementation.
We also provided a prompt for the annotators to use with ChatGPT3 for inspiration, that

contains an overview of each website and instructs the model to describe potential tasks to be
performed on these sites. Furthermore, we offered a curated list of examples for annotators to
reference.

Intent Analysis In total, we curated 241 templates and 812 instantiated intents. On average,
each template is instantiated to 3.3 examples. The intent distribution is shown in Figure 9.6.

Furthermore, we classify the intents into three primary categories with examples shown in
Figure 9.5:
(1) Information-seeking tasks expect a textual response. Importantly, these tasks in WebArena

often require navigation across multiple pages or focus on user-centric content. This makes
3https://chat.openai.com/

214

https://chat.openai.com/

Action Type Description

noop Do nothing
click(elem) Click at an element
hover(elem) Hover on an element
type(elem, text) Type to an element
press(key_comb) Press a key comb

tab_focus(index) focus on i-th tab
new_tab Open a new tab
tab_close Close current tab

go_back Visit the last URL
go_forward Undo go_back

goto(URL) Go to URL

Figure 9.4: Action Space of WebArena

Category Example

Information
Seeking

When was the last time I bought shampoo

Compare walking and driving time
from AMC Waterfront to Randyland

Site
Navigation

Checkout merge requests assigned to me

Show me the ergonomic chair
with the best rating

Content
&

Config
Post to ask “whether I need a car in NYC”

Delete the reviews from the scammer Yoke

Figure 9.5: Example intents from three categories.

them distinct from open-domain question-answering [220, 447], which focuses on querying
general knowledge with a simple retrieval step. For instance, to answer “When was the last

time I bought the shampoo”, an agent traverses the user’s purchase history, checking order
details to identify the most recent shampoo purchase.

(2) Site navigation: This category is composed of tasks that require navigating through web
pages using a variety of interactive elements such as search functions and links. The objective
is often to locate specific information or navigate to a particular section of a site.

(3) Content and configuration operation: This category encapsulates tasks that require
operating in the web environment to create, revise, or configure content or settings. This
includes adjusting settings, managing accounts, performing online transactions, generating
new web content, and modifying existing content. Examples range from updating a social
media status or README file to conducting online purchases and configuring privacy
settings.

9.3.2 Evaluation Annotation

Evaluating Information Seeking Tasks To measure the correctness of information-seeking
tasks where a textual answer is expected, we provide the annotated answer a∗ for each intent.
The a∗ is further compared with the predicted answer â with one of the following scoring
functions rinfo(â, a∗).

215

First, we define exact_match where only â that is identical with a∗ receives a score of one.
This function is primarily applicable to intent types whose responses follow a more standardized
format, similar to the evaluation on question answering literature [347, 447].

Second, we create must_include where any â containing a∗ receives a score of one. This
function is primarily used in when an unordered list of text is expected or where the emphasis
of evaluation is on certain key concepts. In the second example in Table 9.1, we expect both the
correct name and the email address to be presented, irrespective of the precise wording used to
convey the answer.

Finally, we introduce fuzzy_match where we utilize a language model to assess whether â
is semantically equivalent to a∗. Specifically, in this work, we use gpt-4-0613 to perform this
evaluation. The corresponding prompt details are provided in Appendix 9.8.6. The fuzzy_match
function applies to situations where the format of the answer is diverse. For instance, in respond-
ing to “Compare the time for walking and driving route from AMC Waterfront to Randyland”, it is
essential to ensure that driving time and walking time are accurately linked with the correct
terms. The fuzzy_match function could also flexibly match the time “2h58min” with different
forms such as “2 hour 58 minutes”, “2:58” and others.

Evaluating Site Navigation and Content & Config Tasks The tasks in these categories
require accessing web pages that meet certain conditions or performing operations that modify
the underlying data storage of the respective websites. To assess these, we establish reward
functions rprog(s) that programmatically examine the intermediate states s within an execution
trajectory to ascertain whether the outcome aligns with the intended result. These intermediate
states are often the underlying databases of the websites, the status, and the content of a web
page at each step of the execution.

Evaluating each instance involves two components. First, we provide a locator, tasked
with retrieving the critical content pertinent to each intent. The implementation of this lo-
cator varies from a database query, a website-supported API call, to a JavaScript element
selection on the relevant web page, depending on implementation feasibility. For example,
the evaluation process for the intent of the fifth example in Table 9.1, first obtains the URL
of the latest post by examining the last state in the state sequence s. Then it navigates
to the corresponding post page and obtains the post’s content by running the Javascript
“document.querySelector(‘.submission__inner’).outerText”.

Subsequently, we annotate keywords that need to exist within the located content. For
example, the evaluation verifies if the post is correctly posted in the “nyc” subreddit by examining

216

Function ID Intent Eval Implementation

rinfo(a∗, â)

1 Tell me the name of the customer who
has the most cancellations in the history exact_match(â, “Samantha Jones”)

2 Find the customer name and
email with phone number 8015551212

must_include(â, “Sean Miller”)
must_include(â, “sean@gmail.com”)

3
Compare walking and driving time
from AMC Waterfront to Randyland

fuzzy_match(â, “walking: 2h58min”)
fuzzy_match(â, “driving: 21min”)

rprog(s)

4
Checkout merge requests

assigned to me

url=locate_current_url(s)

exact_match(URL, “gitlab.com/merge_
requests?assignee_username=byteblaze”)

5 Post to ask “whether I
need a car in NYC”

url=locate_latest_post_url(s)

body=locate_latest_post_body(s)

must_include(URL, “/f/nyc”)
must_include(body,“a car in NYC”)

Table 9.1: We introduce two evaluation approaches. rinfo (top) measures the correctness of
performing information-seeking tasks. It compares the predicted answer â with the annotated
reference a∗ with three implementations. rprog (bottom) programmatically checks whether the
intermediate states during the executions possess the anticipated properties specified by the
intent.

the URL of the post and if the post contains the requested content by examining the post content.
We reuse the exact_match and must_include functions from information-seeking tasks for
this purpose.

Unachievable Tasks Due to constraints such as inadequate evidence, user permissions (§9.8.3),
or the absence of necessary functional support on the website, humans may ask for tasks that are
not possible to complete. Inspired by previous work on evaluating question-answering models
on unanswerable questions [348], we design unachievable tasks in WebArena. For instance,
fulfilling an intent like “Tell me the contact number of OneStopShop” is impracticable in WebArena,
given that the website does not provide such contact information. We label such instances as
"N/A" and expect an agent to produce an equivalent response. These examples allow us to assess
an agent’s ability to avoid making unfounded claims and its adherence to factual accuracy.

217

Annotation Process The intents were contributed by the authors following the annotation
guideline in §9.3.1. Every author has extensive experience with web-based tasks. The reference
answers to the information-seeking tasks were curated by the authors and an external annotator.
To ensure consistency and accuracy, each question was annotated twice. If the two annotators
disagreed, a third annotator finalized the annotation. The programs to evaluate the remaining
examples were contributed by three of the authors who are proficient in JavaScript programming.
Difficult tasks were often discussed collectively to ensure the correctness of the annotation. The
annotation required the annotator to undertake the full execution and scrutinize the intermediate
states.

Avg. Time 110s
Success Rateinfo 74.68%
Success Rateothers 81.32%
Success Rateall 78.24%

Human Performance We sample one task from each of the 170
templates and ask five computer science graduate students to perform
these tasks. The human performance is on the right. Overall, the hu-
man annotators complete 78.24% of the tasks, with lower performance
on information-seeking tasks. Through examining the recorded tra-
jectories, we found that 50% of the failures are due to misinterpreting the intent (e.g., providing
travel distance when asked for travel time), incomplete answers (e.g., providing only name
when asked for name and email), and incomplete executions (e.g., partially filling the product
information), while the remaining instances have more severe failures, where the executions are
off-target.

9.4 Baseline Web Agents

We experiment with three LLMs using two prompting strategies, both with two examples in the
context. In the first setting, we ask the LLM to directly predict the next action given the current
observation, the intent and the previously performed action. In the second setting, with the
same information, the model first performs chain-of-thought reasoning steps in the text before
the action prediction (CoT, Wei et al. [428], Yao et al. [452]). Before the examples, we provide a
detailed overview of the browser environment, the allowed actions, and many rules. To make
the model aware of the unachievable tasks, the instruction explicitly asks the agent to stop if it
believes the task is impossible to perform. We refer to this directive as Unachievable hint, or UA
hint. This introduction is largely identical to the guidelines we presented to human annotators
to ensure a fair comparison. We use an accessibility tree with element IDs as the observation
space. The agent can identify which element to interact with by the ID of the element. For

218

instance, the agent can issue click [1582] to click the “Add to Cart” button with the ID of
1582. The full prompts can be found in Appendix 9.8.7. The detailed configurations of each
model can be found in Appendix 9.8.5.

9.5 Results

9.5.1 Main Results

CoT UA Hint Model SR SRAC SRUA

✓ ✓ text-bison-001 5.05 4.00 27.78
✗ ✓ GPT-3.5 6.41 4.90 38.89
✓ ✓ GPT-3.5 8.75 6.44 58.33
✓ ✓ GPT-4 11.70 8.63 77.78

✗ ✗ GPT-3.5 5.10 4.90 8.33
✓ ✗ GPT-3.5 6.16 6.06 8.33
✓ ✗ GPT-4 14.41 13.02 44.44

- ✓ Human 78.24 77.30 100.00

Table 9.2: The end-to-end task success rate (SR %)
on WebArena with different prompting strategies.
CoT: the model performs step-by-step reasoning
before issuing the action. UA hint: ask the model
to stop when encountering unachievable questions.

The main results are shown on the top of
Table 9.2. GPT-4 [309] with CoT prompting
achieves a modest end-to-end task success
rate of 11.70%, which is significantly lower
than the human performance of 78.24%.
GPT-3.5 [307] with CoT prompting is only
able to successfully perform 8.75% of the
tasks. The explicit reasoning procedure is
somewhat helpful, it brings 2.34% improve-
ment over the version without it. Further,
text-bison-001 [20] underperforms GPT-
3.5, with a success rate of 5.05%. These
results underline the inherent challenges
and complexities of executing tasks that
span long horizons, particularly in realistic
environments such as WebArena.

9.5.2 Analysis

Domodels knowwhen to stop? In our error analysis of the execution trajectories, we observe
a prevalent error pattern of early stopping due to the model’s conclusion of unachievability. For
instance, GPT-4 erroneously identifies 54.9% of feasible tasks as impossible. This issue primarily
stems from the UA hint in the instruction, while this hint allows models to identify unachievable
tasks, it also hinders performance on achievable tasks. To address this, we conduct an ablation
study where we remove this hint. We then break down the success rate for both achievable and
unachievable tasks. As shown in Table 9.2, eliminating this instruction led to a performance

219

boost in achievable tasks, enhancing the overall task success rate of GPT-4 to 14.41%. Despite
an overall decline in identifying unachievable tasks, GPT-4 retains the capacity to recognize
44.44% of such tasks. It does so by generating reasons of non-achievability, even without explicit
instructions. On the other hand, GPT-3.5 rarely exhibits this level of reasoning. Instead, it tends
to follow problematic patterns such as hallucinating incorrect answers, repeating invalid actions,
or exceeding the step limits. This result suggests that even subtle differences in instruction
design can significantly influence the behavior of a model in performing interactive tasks in
complex environments.

0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0
Success rate (%) within a template

0

5

10

15

20

25

Te

m
pl

at
e

gpt-3.5-direct
gpt-3.5-cot
gpt-4-cot

Table 9.3: Distribution of
success rates on templates
with ≥ 1 successful execu-
tions on gpt models (no UA
hint).

Can a model maintain consistent performance across sim-
ilar tasks? Tasks that originate from the same template usually
follow similar reasoning and planning processes, even though
their observations and executions will differ. We plot a histogram
of per-template success rates for our models in Table 9.3. Of the
61 templates, GPT-4 manages to achieve a 100% task success rate
on only four templates, while GPT-3.5 fails to achieve full task
completion for any of the templates. In many cases, the models are
only able to complete one task variation with a template. These
observations indicate that even when tasks are derived from the
same template, they can present distinct challenges. For instance,
while “Fork metaseq” can be a straightforward task, “Fork all repos
from Facebook” derived from the same template requires more
repetitive operations, hence increasing its complexity. Therefore, WebArena provide a testbed to
evaluate more sophisticated methods. In particular, those that incorporate memory components,
enabling the reuse of successful strategies from past experiments [417, 496]. More error analysis
with examples can be found in Appendix 9.8.8.

9.6 Related Work

Benchmarks for Controlling Agents through Natural Language Controlling agents via
natural language in the digital world have been studied in the literature [46, 85, 243, 254, 379, 405,
442]. However, the balance between functionality, authenticity, and support for environmental

dynamics remains a challenge. Existing benchmarks often compromise these aspects, as shown
in Table 9.4. Some works rely on static states, limiting agents’ explorations and functional

220

Benchmark
Dynamic

Interaction?
Realistic

Environment?
Diverse

Human Tasks?
Functional
Correctness?

Mind2Web [85] ✗ ✓ ✓ ✗

Form/QAWoB [379] ✗ ✓ ✓ ✗

MiniWoB++ [254] ✓ ✗ ✗ ✓

Webshop [450] ✓ ✗ ✗ ✓

ALFRED [383] ✓ ✗ ✗ ✓

VirtualHome [332] ✗ ✗ ✓ ✗

AndroidEnv [405] ✓ ✓ ✗ ✗

WebArena ✓ ✓ ✓ ✓

Table 9.4: The comparison between our benchmark and existing benchmarks on grounding
natural language instructions to concrete executions. Our benchmark is implemented in our
fully interactable highly-realistic environment. It features diverse tasks humans may encounter
in their daily routines. We design evaluation metrics to assess the functional correctness of task
executions.

correctness evaluation [85, 379], while others simplify real-world complexities, restricting task
variety [254, 450]. While AndroidEnv [405] replicates an Android setup, it does not guarantee
the reproducibility since live Android applications are used. [214, 332, 383] and extends to
gaming environments [101, 219], where the environment mechanisms often diverge from human
objectives.

Interactive Decision-Making Agents [296] introduce WebGPT which searches the web
and reads the search results to answer questions. [133] propose a web agent that decomposes
tasks into more manageable sub-tasks and synthesizes Javascript code for the task executions.
Adding a multi-modal dimension, [227] and [376] develop agents that predict actions based
on screenshots of web pages rather than relying on the text-based DOM trees. Performing
tasks in interactive environments requires the agents to exhibit several capabilities including
hierarchical planning, state tracking, and error recovery. Existing works [166, 241, 267] observe
LLMs could break a task into more manageable sub-tasks [497]. This process can be further
refined by representing task executions as programs, a technique that aids sub-task management
and skill reuse [114, 245, 417, 496]. Meanwhile, search and backtracking methods introduce a
more structured approach to planning while also allowing for decision reconsideration [261,

221

454]. Existing works also incorporate failure recovery, self-correction [206, 382], observation
summarization [393] to improve execution robustness. The complexity of WebArena presents a
unique challenge and opportunity for further testing and improvement of these methods.

9.7 Conclusion

We present WebArena, a highly-realistic, standalone, and reproducible web environment designed
for the development and testing of autonomous agents. WebArena includes fully functional web
applications and genuine data from four major categories, providing a realistic platform for agent
interaction. It further supports a wide range of tools and external knowledge bases, fostering
a focus on human-like problem-solving. Additionally, we curate a comprehensive benchmark
consisting of 812 examples that focus on translating high-level natural language intents into
specific web interactions. We also offer metrics to programmatically ascertain whether tasks
have been completed according to the desired objectives. Our experiments show that even GPT-4
only achieves a limited end-to-end task success rate of 14.41%, significantly lagging behind the
human performance of 78.24%. These findings underscore the need for future research to focus
on enhancing the robustness and efficacy of autonomous agents within WebArena environment.

9.8 Technical Details

9.8.1 Website Implementation

Given the selected websites described in §9.2.2, we make the best attempt to reproduce the func-
tionality of commonly used sites in a reproducible way. To achieve this, we utilized open-source
frameworks for the development of the websites across various categories and imported data
from their real-world counterparts. For the E-commerce category, we constructed a shopping
website with approximately 90k products, including the prices, options, detailed product de-
scriptions, images, and reviews, spanning over 300 product categories. This website is developed
using Adobe Magento, an open-source e-commerce platform4. Data resources were obtained
from data from actual online sites, such as that included in the Webshop data dump[450]. As for
the social forum platform, we deployed an open-source software Postmill5, the open-sourced

4https://github.com/magento/magento2
5https://postmill.xyz/

222

https://github.com/magento/magento2
https://postmill.xyz/

counterpart of Reddit6. We sampled from the top 50 subreddits7. We then manually selected
many subreddit for northeast US cities as well as subreddit for machine learning and deep
learning-related topics. This manual selection encourages cross-website tasks such as seeking
information related to the northeast US on both Reddit and the map. In total, we have 95
subreddits, 127390 posts, and 661781 users. For the collaborative software development platform,
we choose GitLab8. We heuristically simulate the code repository characteristics by sampling at
least ten repositories for every programming language: 80% of them are sampled from the set of
top 90 percentile wrt stars repos using a discrete probability distribution weighted proportional
to their number of stars; the remaining are sampled from the bottom ten percentile set using
similar weighted distribution. This is done to ensure fair representation of repos of all kinds,
from popular projects with many issues and pull requests to small personal projects. In total,
we have 300 repositories and more than 1000 accounts with at least one commit to a repository.
For the content management system, we adapted Adobe Magento’s admin portal, deploying
the sample data provided in the official guide. We employ OpenStreetMap9 for map service
implementation, confining our focus to the northeast US region due to data storage constraints.
We implement a calculator and a scratchpad ourselves.

Lastly, we configure the knowledge resources as individual websites, complemented with
search functionality for efficient information retrieval. Specifically, we utilize Kiwix10 to host an
offline version of English Wikipedia with a knowledge cutoff of May 2023. The user manuals for
GitLab and Adobe Commerce Merchant documentation are scraped from the official websites.

9.8.2 Environment Delivery and Reset

One goal for our evaluation environment is ease of use and reproducibility. As a result, we
deploy our websites in separate Docker images 11, one per website. The Docker images are
fully self-contained with all the code of the website, database, as well as any other software
dependencies. They also do not rely on external volume mounts to function, as the data of
the websites are also part of the docker image. This way, the image is easy to distribution
containing all the pre-populated websites for reproducible evaluation. End users can download

6https://www.reddit.com/
7https://redditlist.com/sfw.html
8https://gitlab.com/gitlab-org/gitlab
9https://www.openstreetmap.org/
10https://www.kiwix.org/en/
11https://www.docker.com/

223

https://www.reddit.com/
https://redditlist.com/sfw.html
https://gitlab.com/gitlab-org/gitlab
https://www.openstreetmap.org/
https://www.kiwix.org/en/
https://www.docker.com/

our packaged Docker images and run them on their systems and re-deploy the exact websites
together with the data used in our benchmarks for their local benchmarking.

Since some evaluation cases may require the agent to modify the data contained in the
website, e.g., creating a new user, deleting a post, etc., it is crucial to be able to easily reset the
website environment to its initial state. With Docker images, the users could stop and delete the
currently running containers for that website and start the container from our original image
again to fully reset the environment to the initial state. Depending on the website, this process
may take from a few seconds to one minute. However, not all evaluation cases would require an
environment reset, as many of the intents are information gathering and are read-only for the
website data. Also, combined with the inference time cost for the agent LLMs, we argue that
this environment reset method, through restarting Docker containers from the original images,
will have a non-negligible but small impact on evaluation time.

9.8.3 User Roles Simulation

Users of the same website often have disparate experiences due to their distinct roles, permissions,
and interaction histories. For instance, within an E-commerce CMS, a shop owner might possess
full read and write permissions across all content, whereas an employee might only be granted
write permissions for products but not for customer data. We aim to emulate this scenario by
generating unique user profiles on each platform.

On the shopping site, we created a customer profile that has over 35 orders within a span of
two years. On GitLab, we selected a user who maintains several popular open-source projects
with numerous merge requests and issues. This user also manages a handful of personal projects
privately. On Reddit, our chosen profile was a user who actively participates in discussions, with
many posts and comments. Lastly, on our E-commerce CMS, we set up a user profile for a shop
owner who has full read-and-write access to all system contents.

All users are automatically logged into their accounts using a pre-cached cookie. To our
best knowledge, this is the first publicly available agent evaluation environment to implement
such a characteristic. Existing literature typically operates under the assumption of universally
identical user roles [85, 254, 379].

9.8.4 Intent Distribution

The distribution of intents across the websites are shown in Figure 9.6.

224

CMS

22.4%

Map

13.4%

E-commerce
23.0%

Reddit

13.1%

Gitlab

22.2%
Cross Site

5.9%

Figure 9.6: The intent distribution across different websites. Cross-site intents necessitate
interacting with multiple websites. Notably, regardless of the website, all user intents require
interactions with multiple web pages.

CoT UA Hint Model SR

✓ ✗ GPT-3.5 6.28

Table 9.5: The task success rate (SR %) of GPT-3.5-turbo-16k-0613 with temperature 0.0.

9.8.5 Experiment Configurations

We experiment with GPT-3.5-turbo-16k-0613, GPT-4-0613, and text-bison-001 with a temper-
ature of 1.0 and a top-p parameter of 0.9. The maximum number of state transitions is set to 30.
We halt execution if the same action is repeated more than three times on the same observation
or if the agent generates three consecutive invalid actions. These situations typically indicate a
high likelihood of execution failure and hence warrant early termination. For text-bison-001,
we additionally allow ten retries until it generates a valid action.

Primarily, we use a high temperature of 1.0 to encourage the exploration. To aid replicating
the results, we provide the results of GPT-3.5-turbo-16k-0613 with temperature 0.0 in Table 9.5
and the execution trajectories in our code repository.

225

9.8.6 Prompt for fuzzy_match

Help a teacher to grade the answer of a student given a question. Keep in mind that the student
may use different phrasing or wording to answer the question. The goal is to evaluate whether
the answer is semantically equivalent to the reference answer.
question: {{intent}}
reference answer: {{reference answer}}
all the string ’N/A’ that you see is a special sequence that means ’not achievable’
student answer: {{prediction}}
Conclude the judgement by correct/incorrect/partially correct.
Predictions that are judged as “correct” will receive a score of one, while all other predictions

will receive a score of zero.

9.8.7 The Prompts of the Baseline Web Agents

The system message of the reasoning agent for both GPT-3.5 and GPT-4 is in Figure 9.7, and two
examples are in Figure 9.8. The system message of the direct agent for GPT-3.5 is in Figure 9.9
and the two examples are in Figure 9.10. UA hint refers to the instruction of “ If you believe the
task is impossible to complete, provide the answer as "N/A" in the bracket.”. We remove this
sentence in our ablation studies.

9.8.8 Additional Error Analysis

Observation Bias Realistic websites frequently present information on similar topics across
various sections to ensure optimal user accessibility. However, a GPT-4 agent often demonstrates
a tendency to latch onto the first related piece of information it encounters without sufficiently
verifying its relevance or accuracy. For instance, the homepage of the E-Commerce CMS displays
the best-selling items based on recent purchases, while historical best-seller data is typically
accessed via a separate report. Presented with the task of “What is the top-1 best-selling product in

2022”, the GPT-4 agent defaults to leveraging the readily available information on the homepage,
bypassing the necessary step of generating the report to obtain the accurate data.

Failures inObservation Interpretation Interestingly, while GPT-4 is capable of summarizing
the observations, it occasionally overlooks more granular information, such as the previously
entered input. As in the right-hand example of Figure 9.11, [5172] StaticText indicates that

226

You are an autonomous intelligent agent tasked with navigating a web browser. You will be given web-based tasks. These tasks will be
accomplished through the use of specific actions you can issue.

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page’s accessibility tree: This is a simplified representation of the webpage, providing key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous action: This is the action you just performed. It may be helpful to track your progress.

The actions you can perform fall into several categories:
Page Operation Actions
ˋclick [id]ˋ: This action clicks on an element with a specific id on the webpage.
ˋtype [id] [content] [press_enter_after=0|1]ˋ: Use this to type the content into the field with id. By default, the "Enter" key is pressed after
typing unless press_enter_after is set to 0.
ˋhover [id]ˋ: Hover over an element with id.
ˋpress [key_comb]ˋ: Simulates the pressing of a key combination on the keyboard (e.g., Ctrl+v).
ˋscroll [direction=down|up]ˋ: Scroll the page up or down.

Tab Management Actions:
ˋnew_tabˋ: Open a new, empty browser tab.
ˋtab_focus [tab_index]ˋ: Switch the browser’s focus to a specific tab using its index.
ˋclose_tabˋ: Close the currently active tab.

URL Navigation Actions:
ˋgoto [url]ˋ: Navigate to a specific URL.
ˋgo_backˋ: Navigate to the previously viewed page.
ˋgo_forwardˋ: Navigate to the next page (if a previous
ˋgo_backˋ action was performed).

Completion Action:
ˋstop [answer]ˋ: Issue this action when you believe the task is complete. If the objective is to find a text-based answer, provide the answer in
the bracket. If you believe the task is impossible to complete, provide the answer as "N/A" in the bracket.

Homepage:
If you want to visit other websites, check out the homepage at http://homepage.com. It has a list of websites you can visit.
http://homepage.com/password.html lists all the account names and passwords for the websites. You can use them to log in to the websites.

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Generate the action in the correct format. Start with a "In summary, the next action I will perform is“ phrase, followed by action inside
ˋˋˋˋˋˋ. For example, "In summary, the next action I will perform is ˋˋˋclick [1234]ˋˋˋ”.
5. Issue stop action when you think you have achieved the objective. Don’t generate anything after stop."""

Figure 9.7: The system message of the reasoning agent. This message has a general explanation
of the task, the available actions, and some notes on avoiding common failures.

227

example_user
OBSERVATION:
[1744] link ’HP CB782A#ABA 640 Inkjet Fax Machine (Renewed)’
[1749] StaticText ’$279.49’
[1757] button ’Add to Cart’
[1760] button ’Add to Wish List’
[1761] button ’Add to Compare’

URL: http://onestopmarket.com/office-products/office-electronics.html
OBJECTIVE: What is the price of HP Inkjet Fax Machine
PREVIOUS ACTION: None

example_assistant
Let’s think step-by-step. This page lists the information of HP Inkjet Fax Machine, which is the product identified
in the objective. Its price is $279.49. I think I have achieved the objective. I will issue the stop action with the
answer. In summary, the next action I will perform is ˋˋˋstop [$279.49]ˋˋˋ

example_user
OBSERVATION:
[164] textbox ’Search’ focused: True required: False
[171] button ’Go’
[174] link ’Find directions between two points’
[212] heading ’Search Results’
[216] button ’Close’
URL: http://openstreetmap.org
OBJECTIVE: Show me the restaurants near ABC
PREVIOUS ACTION: None

example_assistant
Let’s think step-by-step. This page has a search box whose ID is [164]. According to the nominatim rule of
openstreetmap, I can search for the restaurants near a location by r̈estaurants near̈. I can submit my typing by
pressing the Enter afterwards. In summary, the next action I will perform is ˋˋˋtype [164] [restaurants near ABC]
[1]ˋˋˋ

Figure 9.8: The two examples provided as example_user and example_assistant for the
reasoning agent. Before issuing the action, the agent first perform reasoning.

228

You are an autonomous intelligent agent tasked with navigating a web browser. You will be given web-based tasks. These tasks will be
accomplished through the use of specific actions you can issue.

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page’s accessibility tree: This is a simplified representation of the webpage, providing key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous action: This is the action you just performed. It may be helpful to track your progress.

The actions you can perform fall into several categories:
Page Operation Actions
ˋclick [id]ˋ: This action clicks on an element with a specific id on the webpage.
ˋtype [id] [content] [press_enter_after=0|1]ˋ: Use this to type the content into the field with id. By default, the "Enter" key is pressed after
typing unless press_enter_after is set to 0.
ˋhover [id]ˋ: Hover over an element with id.
ˋpress [key_comb]ˋ: Simulates the pressing of a key combination on the keyboard (e.g., Ctrl+v).
ˋscroll [direction=down|up]ˋ: Scroll the page up or down.

Tab Management Actions:
ˋnew_tabˋ: Open a new, empty browser tab.
ˋtab_focus [tab_index]ˋ: Switch the browser’s focus to a specific tab using its index.
ˋclose_tabˋ: Close the currently active tab.

URL Navigation Actions:
ˋgoto [url]ˋ: Navigate to a specific URL.
ˋgo_backˋ: Navigate to the previously viewed page.
ˋgo_forwardˋ: Navigate to the next page (if a previous
ˋgo_backˋ action was performed).

Completion Action:
ˋstop [answer]ˋ: Issue this action when you believe the task is complete. If the objective is to find a text-based answer, provide the answer in
the bracket. If you believe the task is impossible to complete, provide the answer as "N/A" in the bracket.

Homepage:
If you want to visit other websites, check out the homepage at http://homepage.com. It has a list of websites you can visit.
http://homepage.com/password.html lists all the account name and password for the websites. You can use them to log in to the websites.

To be successful, it is very important to follow the following rules:
To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. Generate the action in the correct format. Always put the action inside a pair of ˋˋˋ. For example, ˋˋˋclick [1234]ˋˋˋ
4. Issue stop action when you think you have achieved the objective. Don’t generate anything after stop."""

Figure 9.9: The system message of the direct agent. This message has the general explanation
of the task, the available actions and some notes on avoiding common failures.

229

example_user
OBSERVATION:
[1744] link ’HP CB782A#ABA 640 Inkjet Fax Machine (Renewed)’
[1749] StaticText ’$279.49’
[1757] button ’Add to Cart’
[1760] button ’Add to Wish List’
[1761] button ’Add to Compare’

URL: http://onestopmarket.com/office-products/office-electronics.html
OBJECTIVE: What is the price of HP Inkjet Fax Machine
PREVIOUS ACTION: None

example_assistant
ˋˋˋstop [$279.49]ˋˋˋ

example_user
OBSERVATION:
[164] textbox ’Search’ focused: True required: False
[171] button ’Go’
[174] link ’Find directions between two points’
[212] heading ’Search Results’
[216] button ’Close’
URL: http://openstreetmap.org
OBJECTIVE: Show me the restaurants near ABC
PREVIOUS ACTION: None

example_assistant
ˋˋˋtype [164] [restaurants near ABC] [1]ˋˋˋ

Figure 9.10: The two examples provided as example_user and example_assistant for the
direct agent. The agent directly emits the next action given the observation.

230

[2430] searchbox 'Search query'
 [5172] StaticText 'DMV area'

[2361] link 'Projects 0'
[2365] link 'Users 1'
[2070] heading " We couldn't
find any projects matching
Facebook"

Figure 9.11: Two examples where the GPT-4 agent failed, along with their screenshot and the
accessibility tree of the relevant sections (grey). On the left, the agent fails to proceed to the
“Users” section to accomplish the task of “Fork all Facebook repos”; on the right, the agent
repeats entering the same search query even though the observation indicates the input box is
filled.

231

the search term “DMV area” has already been entered. However, the agent disregards this detail
and continuously issues the command type [2430] [DMV area] until it reaches the maximum
step limit. Furthermore, the agent often neglects the previous action information that is provided
alongside the observation.

We hypothesize that these observed failures are related to the current pretraining and
supervised fine-tuning on dialogues employed in GPT models [312]. These models are primarily
trained to execute instructions given immediate observations (i.e.,, the dialogue history); thereby,
they may exhibit a lack of explorations. Furthermore, in dialogue scenarios, subtle differences in
NL expressions often have less impact on the overall conversation. As a result, models may tend
to overlook minor variations in their observations.

232

Chapter 10

Beyond Simple Browsing Agent

From our previous work on WebArena, we find that current LLMs struggle at navigating web
pages through the observations used commonly by humans. However, we argue that since
the Web UI is mostly designed with a focus on real-human user experience, there might be
some designs that may seem natural to human users yet pose a big challenge to AI agents. For
example, a cleaner design using a lot of icons instead of descriptive text may be intuitive for
humans but not for AI agents; a web page containing a lot of animations and transitions for
aesthetics; or even a webpage riddled with advertisements for human consumption.

In the previous chapter, we mainly explored browsing-only agent infrastructure, including
how to represent the observation and action space of a web browser and the best practices of
using LLMs to predict the next actions to take, as well as proposing a new execution-based,
realistic benchmark for web browsing tasks. These agents are implemented in a few-shot
in-context learning fashion with powerful large language models (LLMs) such as GPT-4 and
PALM-2. Experiment results show that the best GPT-4 agent performance is somewhat limited,
with an end-to-end task success rate of only 14.41%, while the human performance is 78.24%.
Even though web browsing is a natural way of interacting with computers for humans, it may
not necessary be the best interface for LLM agents, as the representation of the current webpage,
either being HTML source code or screenshots are sometimes too complex and contains a lot of
irrelevant distractors for LLM consumption. Besides, they also tend to take up a lot of valuable
context length available to the LLM input. At the same time, software is one of the most powerful
tools that we humans have at our disposal; it allows a skilled programmer to interact with the
world in complex and profound ways. We argue that coding and web browsing combined in
agents provide the best of both worlds. In this chapter, we discuss how to extend beyond only
simple web browsing to enable more capable agents to solve a broader horizon of more realistic

233

tasks, and presenting a even more consequential task agent benchmark for more challenging
and professional oriented scenarios.

10.1 Platform: OpenHands Agent Framework

Software is one of the most powerful tools that we humans have at our disposal; it allows a skilled
programmer to interact with the world in complex and profound ways. At the same time, thanks
to improvements in large language models (LLMs), there has also been a rapid development in
AI agents that interact with and affect change in their surrounding environments.

AI agents nowadays are moving towards performing complex tasks such as developing
software [183], navigating real-world websites [498], doing household chores [5], or even
performing scientific research [41, 400].

As AI agents become capable of tackling complex problems, their development and evaluation
have also become challenging. There are numerous recent efforts in creating open-source
frameworks that facilitate the development of agents [64, 163, 433]. These agent frameworks
generally include: 1) interfaces through which agents interact with the world (such as JSON-
based function calls or code execution), 2) environments in which agents operate, and 3)
interaction mechanisms for human-agent or agent-agent communication. These frameworks
streamline and ease the development process in various ways (Table 10.1).

When designing AI agents, we can also consider how human interacts with the world. The
most powerful way in which humans currently interact with the world is through software –
software powers every aspect of our life, supporting everything from the logistics for basic needs
to the advancement of science, technology, and AI itself. Given the power of software, as well as
the existing tooling around its efficient development, use, and deployment, it provides the ideal
interface for AI agents to interact with the world in complex ways. However, building agents
that can effectively develop software comes with its own unique challenges. How can we enable
agents to effectively create and modify code in complex software systems? How can we provide
them with tools to gather information on-the-fly to debug problems or gather task-requisite
information? How can we ensure that development is safe and avoids negative side effects on the
users’ systems?

In this section, we introduce OpenHands, a platform for the development of powerful and
flexible AI agents that interact with the world in similar ways to those of a human developer:
by writing code, interacting with a command line, and browsing the web. We describe how
the platform allows for the implementation of new agents, safe interaction with sandboxed

234

Table 10.1: Comparison of different AI agent frameworks. Swe refers to ‘software engineering’.
Standardized tool library: if framework contains reusable tools for different agent implemen-
tations; Built-in sandbox & code execution: if it supports sandboxed execution of arbitrary
agent-generated code; Built-in web browser: if it provides agents access to a fully functioning
web browser; Human-AI collaboration: if it enables multi-turn human-AI collaboration (e.g.,,
human can interrupt the agent during task execution and/or provide additional feedback and in-
structions); AgentHub: if it hosts implementations of various agents; Evaluation Framework:
if it offers systematic evaluation of implemented agents on challenging benchmarks; Agent
QC (Quality Control): if the framework integrates tests to ensure overall framework software
quality.

Framework Domain
Graphic

User Interface
Standardized
Tool Library

Built-in Sandbox
& Code Execution

Built-in Web
Browser

Multi-agent
Collaboration

Human-AI
Collaboration

AgentHub
Evaluation
Framework

Agent
QC

AutoGPT [124] General " % % % % % " % "

LangChain [60] General % " %∗ %∗ % % " % %

MetaGPT [163] General % " % " " % " % "

AutoGen [433] General % " " " " " " " %

AutoAgents [64] General % % % % " % % % %

Agents [499] General % % % % " " % % %

Xagents [402] General " " % " " % " % %

OpenAgents [436] General " % " " % % " % %

GPTSwarm [501] General % " % % " " % % %

AutoCodeRover [485] SWE % % " % % % % % %

SWE-Agent [445] SWE % % " % % % % % %

OpenHands General " " " " " " " " "

* No native support. Third-party commercial options are available.

environments for code execution, coordination between multiple agents, and incorporation of
evaluation benchmarks. This is a community-driven platform designed for the development of
generalist and specialist AI agents that interact with the world through software. It features:

(1) An interaction mechanism which allows user interfaces, agents, and environments to
interact through an event stream architecture that is powerful and flexible.

(2) A runtime environment that consists of a docker-sandboxed operating system with a bash
shell, a web browser, and IPython server that the agents can interact with.

(3) An interface allowing the agent to interact with the environment in a manner similar
to actual software engineers. We provide the capability for agents to a) create and edit
complex software, b) execute arbitrary code in the sandbox, and c) browse websites to collect
information.

(4) Multi-agent delegation, allowing multiple specialized agents to work together.

(5) Evaluation framework, facilitating the evaluation of agents across a wide range of tasks.

Importantly, OpenHands is not just a conceptual framework, but it also includes a compre-

235

Figure 10.1: OpenHands User Interface (UI) allows users to view files, check executed bash
commands/Python code, observe the agent’s browser activity, and directly interact with the
agent.

236

Agent
produce new action

[1] Message (source=user)

Can you create a list of numbers from 1 to 10, and
create a web page to display them at port 5000?

[2] IPythonRunCellAction (source=agent)

Sure! Let me create a file first:

<execute_ipython>

</execute_ipython>

Event History

[Past Action(s) & Observation(s)]

[3] IPythonRunCellObservation

[File: /workspace/app.py (1 lines total)]

1|

[File app.py created.]

[4] IPythonRunCellAction (source=agent)

I will write the Python code for starting a server.

<execute_ipython>

</execute_ipython>

Action
EDITED_CODE=\"\"\"[Omitted for Brevity]\"\"\"
edit_file(start=1, end=1, content=EDITED_CODE)

create_file('app.py')

[5] IPythonRunCellObservation

[... Omitted for Brevity ...]

4|@app.route('/')

5|def index():

6| numbers = list(range(1, 11))

7| return str(numbers)

[... Omitted for Brevity ...] [File updated.]

[6] CmdRunAction (source=agent)

I have created a Python file `app.py` that will
display a list of numbers from 1 to 10 when you run
it. Let me run the server for you:

<execute_bash>

python3 app.py > server.log 2>&1 &

cat server.log

</execute_bash>

[7] CmdRunObservation

[1] 124

* Serving Flask app 'app'

 * Debug mode: off

WARNING: This is a development server. Do not
use it in a production deployment. Use a
production WSGI server instead.

 * Running on http://127.0.0.1:5000

Press CTRL+C to quit

[8] BrowseInteractiveAction (source=agent)

The server is running on port 5000 with PID 124. Let
me browse to the page at http://127.0.0.1:5000

<execute_browse>

goto("http://127.0.0.1:5000")

</execute_browse>

 [9] BrowserOutputObservation

 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Docker Sandbox

Interactive Python
(IPython) Server

Bash Shell

Browser

Playwright Chromium

Observation

where each Action execution
leads to an Observation

Event Stream: List[Action_1,
Observation_1, Action_2, ...]

Agent: Event History -> Action

Runtime: Action -> Observation

Abstraction

where all Action-Observation(s) are tracked

Event Stream Agent RuntimeUser Interface
Command Line

Web UI

IDE Plugins

[...]

Multi-turn

User-Agent

Interaction

OpenHands-maintained

Action Execution API

Action

OpenHands automatically install
“action execution API” into user-
provided arbitrary docker images

Figure 10.2: OpenHands consists of 3 main components: 1)Agent abstractionwhere community
can contribute different implementation of agents into agenthub); 2) Event stream for tracking
history of actions and observations; 3) Runtime to execute all actions into observations.

hensive and immediately usable implementation of agents, environments, and evaluations. As
of this writing, OpenHands includes an agent hub with over 10 implemented agents, including a
strong generalist agent implemented based on the CodeAct architecture [419], with additions
for web browsing [373] and code editing specialists [445]. Interaction with users is implemented
through a chat-based user interface that visualizes the agent’s current actions and allows for real-
time feedback (Figure 10.1). Furthermore, the evaluation framework currently supports more
than 15 benchmarks, which we use to evaluate our agents. Based on our currently incorporated
benchmarks, we perform an evaluation of agents over 15 challenging tasks, including software
engineering (e.g.,, Swe-bench) and web browsing (e.g.,, WebArena), among others. Released
under the permissive MIT license, OpenHands is a community project spanning academia and
industry with more than 2.1K contributions from over 188 contributors. I am a core contributor
leading the browsing infrastructure as well as the browsing agents.

We next describe using OpenHands in detail. In particular, we discuss 1) how to define and
implement an agent, 2) how each action execution leads to an observation, 3) how to reliably
manage and extend commonly used skills for agents , and 4) how to compose multiple agents
together for task solving. Figure 10.2 provides an overview.

237

10.1.1 Agent Definition and Implementation

An agent can perceive the state of the environment (e.g.,, prior actions and observations) and
produce an action for execution while solving a user-specified task.
The State and Event Stream. In OpenHands, the state is a data structure that encapsulates all
relevant information for the agent’s execution. A key component of this state is the event stream,
which is a chronological collection of past actions and observations, including the agent’s own
actions and user interactions (e.g.,, instructions, feedback). In addition to the event stream, the
state incorporates auxiliary information for agent’s operation, such as the accumulative cost of
LLM calls, metadata to track multi-agent delegation, and other execution-related parameters.
Actions. Inspired by CodeAct [419], OpenHands connects an agent with the environment
through a core set of general actions. Actions IPythonRunCellAction and CmdRunAction

enable the agent to execute arbitrary Python code and bash commands inside the sandbox
environment (e.g.,, a securely isolated Linux operating system). BrowserInteractiveAction
enables interaction with a web browser with a domain-specific language for browsing introduced
by BrowserGym [94]. These actions were chosen to provide a comprehensive yet flexible set of
primitives covering most tasks performed by human software engineers and analysts. The action
space based on programming languages (PL) is powerful and flexible enough to perform any task
with tools in different forms (e.g.,, Python function, REST API, etc.) while being reliable and easy
to maintain [419] . This design is also compatible with existing tool-calling agents that require a
list of pre-defined tools [60]. That is, users can easily define tools using PL supported in primitive
actions (e.g.,, write a Python function for calculator) and make those tools available to the agent
through JSON-style function-calling experiences [335]. Moreover, the framework’s powerful
PL-based primitives further make it possible for the agents to create tools by themselves (e.g.,,
by generating Python functions, [477]) when API to complete the task is unavailable. These
core PL-based actions can be composed into a diverse set of tools.
Observations. Observations describe the environmental changes (e.g.,, execution result of prior
actions, text messages from the human user etc.) that the agent observes.
Implement a NewAgent. The agent abstraction is designed to be simple yet powerful, allowing
users to create and customize agents for various tasks easily. The core of the agent abstraction
lies in the step function, which takes the current state as input and generates an appropriate
action based on the agent’s logic. By providing this abstraction, OpenHands allows the users to
focus on defining desired agent behavior and logic without worrying about the low-level details
of how actions are executed.

238

10.1.2 Agent Runtime: How Execution of Actions Results in Observa-

tions

Agent Runtime provides a general environment that equips the agent with an action space
comparable to that of human software developers, enabling OpenHands agents to tackle a wide
range of software development and web-based tasks, including complex software development
workflows, data analysis projects, web browsing tasks, and more. It allows the agent to access a
bash terminal to run code and command line tools, utilize a Jupyter notebook for writing and
executing code on-the-fly, and interact with a web browser for web-based tasks (e.g.,, information
seeking).
Docker Sandbox. For each task session, OpenHands spins up a securely isolated docker
container sandbox, where all the actions from the event stream are executed. OpenHands
connects to the sandbox through a REST API server running inside it (i.e., the OpenHands action
execution API), executes arbitrary actions (e.g., bash command, python code) from the event
stream, and returns the execution results as observations. A configurable workspace directory
containing files the user wants the agent to work on is mounted into that secure sandbox for
OpenHands agents to access.
OpenHands Action Execution API. OpenHands maintains an API server that runs inside the
docker sandbox to listen for action execution requests from the event stream. The API server
maintains:
(1) A bash shell that connects with the operating system environment (specified by the docker

image) for command execution.

(2) A Jupyter IPython server to handle interactive python [169] code execution requests and
return the execution results back to the event stream.

(3) A Chromium browser based on [325]. The provider provides a set of action primitives
defined by BrowserGym [94, 373], such as navigation, clicking, typing, and scrolling. After
executing these actions, the browser runtime provides a rich set of observations about the
current state of the browser, including HTML, DOM, accessibility tree [286], screenshot,
opened tabs, etc.. These observations can be also augmented with configurable attributes that
could allow agents to better understand web page observations, such as using a set-of-marks
on screenshot [146, 444], visible element marking, focused element, interactable element
marking, in-viewport element filtering [498], etc..

Arbitrary Docker Image Support. OpenHands allows agents to run on arbitrary operat-
ing systems with different software environments by supporting runtime based on arbitrary

239

docker images. OpenHands implements a build mechanism that takes a user-provided arbitrary
docker image and installs OpenHands action execution API into that image to allow for agent
interactions.

10.1.3 Agent Skills: The Extensible Agent-Computer Interface

SWE-Agent [445] highlights the importance of a carefully crafted Agent-Computer Interface
(ACI, i.e.,, specialized tools for particular tasks) in successfully solving complex tasks. However,
creating, maintaining, and distributing a wide array of tools can be a daunting engineering chal-
lenge, especially when we want to make these tools available to different agent implementations.
To tackle these, we build an AgentSkills library, a toolbox designed to enhance the capabilities
of agents, offering utilities not readily available through basic bash commands or python code.

Easy to create and extend tools. AgentSkills is designed as a Python package consisting
of different utility functions (i.e.,, tools) that are automatically imported into the Jupyter IPython
environment. The ease of defining a Python function as a tool lowers the barrier for community
members to contribute new tools to the library. The generality of Python packages also allows
different agent implementations to easily leverage these tools through one of our core action
IPythonRunCellAction.

Rigorously tested and maintained. We follow best practices in software engineering and
write extensive unit tests for tools in AgentSkills to ensure their reliability and usability.

Inclusion criteria and philosophy. In the AgentSkills library, we do not aim to wrap
every possible Python package and re-teach agents their usage (e.g.,, LLM already knows pandas
library that can read CSV file, so we don’t need to re-create a tool that teaches the agent to read
the same file format). We only add a new skill when: (1) it is not readily achievable for LLM to
write code directly (e.g.,, edit code and replace certain lines), and/or (2) it involves calling an
external model (e.g.,, calling a speech-to-text model, or model for code editing [368]).

Currently supported skills. AgentSkills library includes file editing utilities adapted from
SWE-Agent [445] and Aider [116] like edit_file, which allows modifying an existing file from
a specified line; scrolling functions scroll_up and scroll_down for viewing a different part of
files. It also contains tools that support reading multi-modal documents, like parse_image and
parse_pdf for extracting information from images using vision-language models (e.g.,, GPT-4V)
and reading text from PDFs, respectively.

240

10.1.4 Agent Delegation: Cooperative Multi-agent Interaction

OpenHands allows interactions between multiple agents as well. To this end, we use a special
action type AgentDelegateAction, which enables an agent to delegate a specific subtask to
another agent. For example, the generalist CodeActAgent, with limited support forweb-browsing,
can use AgentDelegateAction to delegate web browsing tasks to the specialized BrowsingAgent
to perform more complex browsing activity (e.g.,, navigate the web, click buttons, submit forms,
etc.).

10.2 Baseline Browsing Agent Implementations

Based on our agent abstraction, OpenHands supports a wide range of agent implementations for
end users to choose from and act as baselines for different agent tasks. Among those, the default
agent for coding tasks is CodeAct agent and the default for browsing tasks is the WebArena
Browsing Agent. They serve as a good starting point for more specific tasks.

CodeAct Agent. CodeActAgent is the default generalist agent based on the CodeAct
framework [419]. At each step, the agent can (1) converse to communicate with humans in
natural language to ask for clarification, confirmation, etc., or (2) to perform the task by executing
code (a.k.a., CodeAct), including executing bash commands, Python code, or browser-specific
programming language (defined in BrowserGym). This general action space allows the agent to
perform various tasks, including editing files, browsing the web, running programs, etc.

Browsing-only Agent. We implemented a generalist web agent called Browsing Agent,
to serve as a simple yet effective baseline for web agent tasks. The agent is similar to that in
WebArena [498], but with improved observations and actions, with only zero-shot prompting.
At each step, the agent prompts the LLM with the task description, browsing action space
description, current observation of the browser using accessibility tree, previous actions, and
an action prediction example with chain-of-thought reasoning. The expected response from
the LLM will contain chain-of-thought reasoning plus the predicted next actions, including the
option to finish the task and convey the result to the user. It can be extended to create more
capable web agents, or called by other agents through delegation to enable browsing capability
of other agents, which is also what we improve upon in the following sections, about combining
browsing and coding capabilities together.

241

10.2.1 The Web Browsing Task

Various benchmarks have been developed to evaluate the performance of web browsing agents.
MiniWoB (Miniature World of Bits) is an early benchmark that provides simple web-based tasks
such as clicking links or typing into forms, but it remains limited in complexity and realism
[378]. Mind2Web scales up these tasks, introducing more sophisticated interactions across
websites, but it often lacks the dynamic, real-world scenarios found on the broader web [85].
WebArena [498] advances web browsing benchmarks by creating reproducible sandboxes of a
variety of websites, such as managing repositories, posting online, performing online shopping,
and planning trips using map services, while VisualWebArena extends WebArena to the vision
modality [212].

In this section, we focus on WebArena tasks, which simulate real-world scenarios to evaluate
an agent’s ability to complete diverse web-based activities.1 Tasks in WebArena include interact-
ing with platforms like Gitlab (to manage projects and repositories), Reddit (to browse and post
content), e-commerce websites (for shopping), and mapping services (for trip planning) [498].
Task success is evaluated in three ways: (1) if the task requires producing a specific output, the
agent’s response is checked for correctness; (2) for tasks involving changes to a website’s state
(e.g., adding an item to a shopping cart), success is measured by verifying whether the state has
changed as expected, such as ensuring the correct item and quantity have been added to the
cart; and (3) if the task involves navigation, success is determined by whether the agent reaches
the correct URL displaying the desired content.

10.2.2 A Web Browsing Only Agent

While there are a wide variety of agents proposed for such web navigation tasks, in this work we
build upon the WebArena baseline agent [498], which operates purely through web interaction
by leveraging the accessibility tree2, a structure that exposes interactive elements like buttons,
input fields, and hyperlinks [130, 453]. Each element of the accessibility tree is characterized
by its functionality such as a hyperlink, its content, and specific web attributes [145, 259, 266].
This exposes web page elements in a hierarchical structure that is easy for agents to navigate
[57, 367].

Agents based on this framework utilize an action space that simulates human browsing
1Notably, upon investigation of VisualWebArena we found that APIs for handling images were relatively

limited, and hence we chose to experiment on text-only tasks in this paper.
2https://developer.mozilla.org/en-US/docs/Glossary/Accessibility_tree

242

https://developer.mozilla.org/en-US/docs/Glossary/Accessibility_tree

How many commits
did the user SaptakS
make to "a11yproject"?

Web Browsing Traces. Failed after 15 steps.

API Calling via Python requests library

<execute_ipython>
(1)r=requests.get('gitlab.com/api/a11yproject/commits')
(2)commits=r.json()
(3)len([c for c in commits if c['author'] == 'SaptakS'])
</execute_ipython>

(1) goto `gitlab.com` (2) login with credentials
(3) click `a11yproject` (4) click `Repository`
(5) click `Commits` (6) No commits found -> scroll down
(7) No commits found -> scroll down (15) No
commits found but no steps left, conclude 0 commits are
made by SaptakS.

Br
ow

sin
g A

ge
nt

API-Based Agent

Figure 10.3: The API-based agent can often solve problems in many fewer function calls than
traditional browsing agents . In this task, web browsing failed to solve the intent "find the
number of commits the user SaptakS made to the repo a11yproject" after 15 steps, while our
API-based agent successfully completed the task with only three lines of code.

behavior, incorporating actions such as simulated clicks, form input, and navigation between
pages [134, 258, 390]. Importantly, these agents maintain a comprehensive history of their
previous actions, allowing them to contextualize their decision-making in past actions.

While agents utilizing this method can navigate arbitrary web pages and often perform well
on simpler layouts, challenges arise with the complexity of the accessibility tree. Many large
language models (LLMs) are not familiar with this structure, leading to difficulties in completing
tasks that require numerous or complex interactions. As a result, the average accuracy hovers
in the low double digits [85, 111, 255]. These methods also struggle with content that need to be
dynamically loaded or contents not immediately visible within the tree [1, 69, 265].

To give one motivating example, in Figure 10.3, we demonstrate a task where the agent needs
to perform a task determining the number of commits made by the user SaptakS in a repository
named a11yproject. Specifically, for each task, the agent is given a fixed number of steps within
which it has to finish the task. Using a traditional web-browsing approach, the agent follows
a complex trajectory, starting with logging into the website, navigating to the correct project,
accessing the repository, and finally attempting to view the list of commits. However, due to the
large number of commits made by other users, the commits by SaptakS are located much further
down on the web page, requiring the agent to scroll down many times. As a result, despite
completing 15 actions, the browsing agent is unable to retrieve the required information.

243

API Calling
Web Browsing

Web BrowsingUser Input

API Calling

Accessibility Tree

API Calls + Code

API Calls + Code
 AND / OR
Accessibility Tree

Agent Output

User Input

Agent Output

User Input

Agent Output
Gitlab Map Shop Admin Reddit Multi Avg

A
cc

ur
ac

y
(%

)

0

20

10

30

40

50

Hybrid
Agent

API-Based
Agent

Browsing
Agent

Figure 10.4: A comparison of three types of agents. The Browsing Agent performs tasks
through web browsing only, utilizing the accessibility tree to interact with web pages, achieving
an average performance of 14.8% on WebArena. The API-Based Agent performs tasks by
making API calls and generating code without relying on web browsing, achieving an average
accuracy of 29.2%. The Hybrid Agent combines both methods, dynamically switching between
web browsing and API calling, depending on the task. This allows the execution of either API
calls or web browsing actions, or both in combination, improving performance by more than 5
percentage points compared to the API-Based Agent .

10.3 Beyond Browsing Only: Coding + Web Agents

In the previous section, we mainly discussed OpenHands framework enabling agent implemen-
tations for web browsing tasks and coding tasks. However, what if some tasks in our daily life,
like those proposed in WebArena, can be solved more easily with additional interface to the
world other than just a browser?

Web agents use browsers as an interface to facilitate humans in performing daily tasks such
as online shopping, online planning, trip planning, and other work-related tasks [67, 97, 165,
242, 253, 313, 320, 350]. Existing web agents typically operate within the space of graphical
user interfaces (GUI) [482, 487, 498], using action spaces that simulate human-like keyboard
and mouse operations, such as clicking and typing. To observe web pages, common approaches
include using accessibility trees, a simplified version of the HTML DOM tree, as the input
to text-based models [93, 498], or multi-modal, screenshot-based models [164, 212, 437, 471].
However, regardless of the method of interaction with web sites, there is no getting around the
fact that these sites were originally designed for human consumption, and may not be the ideal
interface for machines.

244

Notably, there is another interface designed specifically for machine interaction with online
content: application programming interfaces (APIs). APIs allow machines to communicate
directly with the backend of a web service [45], sending and receiving data in machine-friendly
formats such as JSON or XML [277, 441]. Nonetheless, whether AI agents can effectively use
APIs to tackle real-world online tasks, and the conditions under which this is possible, remain
unstudied in the scientific literature. In this work, we explore methods for tackling tasks normally
framed as web-navigation tasks with an expanded action space to interact with APIs. To do
so, we develop new API-based agents that directly interact with web services via API calls, as
depicted in Figure 10.4. This method bypasses the need to interact with web page GUIs through
simulated clicks.

At the same time, not all websites have extensive API support, in which case web browsing
actions may still be required. To address these cases, we explore a hybrid approach that combines
API-based agents with web-browsing agents, as described in Figure 10.4. By implementing
an agent capable of interleaving API calls and web browsing, we found that agents benefit
from the flexibility of this hybrid model. When APIs are available and well-documented, the
agent can directly interact with the web services. For websites with limited API support, the
agent seamlessly switches to web browsing mode, simulating human interaction to ensure task
completion.

We evaluated our API-based and Hybrid Agents on WebArena, a benchmark for real-world
web tasks [498], and the results are shown in Figure 10.4. Our experiments revealed three key
findings: (1) The API-based agent consistently outperforms browsing-based agents onWebArena
tasks by around 15% on average, regardless of the comprehensiveness of APIs. (2) The API-based
agent yields a higher success rate on websites with extensive API support (e.g., Gitlab) compared
to those with limited API support (e.g., Reddit). This result underscores the importance of
developing comprehensive API support for more accurate and efficient web task automation in
the future. (3) The Hybrid Agent outperforms solely browsing-based agents and solely API-based
agents, further improving accuracy by more than 5% compared to the API-based agent. By
dynamically switching between approaches, the Hybrid Agent is able to provide more consistent
and reliable outcomes.

In summary, our results suggest that allowing agents to interact with APIs, interfaces
designed specifically for machines, is often preferable or at least complementary to direct
interaction with graphical interfaces designed for humans.

245

Commits
GET /api/{id}/commits: Get a list of commits in a project.
Attribute	Type	Description
`id`	integer/string	The ID or path of the project.
`since`	string	Only commits after or on this date.
`until`	string	Only commits before or on this date.
Output: JSON containing all commits that meet the given criteria.

<execute_ipython>
requests.get('gitlab.com/api/a11yproject/commits')
</execute_ipython>

[......{
 "id": "ed37a2f2",
 "created_at": "2023-03-13T21:04:49.000-04:00",
 "title": "Update README.md",
 "message": "Update README.md",
 "author": "SaptakS",
}]

API
Documentation

API Calling

JSON Output

Figure 10.5: An example of API documentation showing how to get commits of a project, the
API call using a Python script to retrieve commits from a project repository, and the resulting
JSON response.

10.3.1 Agent Using APIs

In contrast to web browsing, API calling offer a direct interface for machines to communicate
with web services, reducing operational complexity. In this section, we explore an API-based
approach when performing web tasks.

APIs and API Documentation

For websites that offer API support, pre-defined endpoints can be utilized to perform tasks
efficiently. These APIs, following standardized protocols like REST3, allow interaction with
web services through sending HTTP requests (e.g., GET, POST, PUT) and receiving structured
data such as JSON objects4 as responses. Websites often provide official documentation for
the APIs, which can give guidance on how to utilize the APIs. Some documentation is pro-
vided in README 5 format, some are in OpenAPI YAML6 format, and some are in plain
text format. For instance, Figure 10.5 shows the official README documentation of a Git-
lab API GET /api/{id}/commits. It documents the functionality, input arguments, and out-
put types of the API. For example, one could use the Python requests library, by calling
requests.get("gitlab.com/api/a11yproject/commits"), to retrieve all commits of the
repository a11yproject. This would return a JSON list containing all the commits to this

3https://en.wikipedia.org/wiki/REST
4https://www.json.org/json-en.html
5https://en.wikipedia.org/wiki/README
6https://yaml.org/

246

https://en.wikipedia.org/wiki/REST
https://www.json.org/json-en.html
https://en.wikipedia.org/wiki/README
https://yaml.org/

repo, as shown in Figure 10.5.

Obtaining APIs for Agents

One important design decision is how to obtain APIs for agents to use. The way agents interact
with APIs depends heavily on the availability of APIs and quality of API documentation. In
this work, we acquired APIs by manually looking up official API documentation on a website,
although this process could potentially be automated in the future. We classify the availability
of APIs according to the following three scenarios:

Sufficient APIs and Documentation Many websites provide comprehensive API support
and well-documented API documentation in YAML or README format. In this case, simply use
the APIs/documentation as-is. Figure 10.5 depicts an example of API documentation.

Sufficient APIs, Insufficient Documentation There are some challenging situations where
APIs exist but good documentation is not officially available. In such cases, additional steps
may be required to obtain a list of accessible APIs. In this case, we inspected the frontend or
backend code of the website to extract undocumented API calls that can still be utilized by the
agent. Then, based on the implementation of APIs of the website, leverage an LLM (GPT-4o7) to
generate these YAML or README files. By prompting GPT-4o with the relevant implementation
details of the APIs (for example, the implementation files of the APIs or example traces of API
calls), we generate comprehensive documentation, including input parameters, expected outputs,
and example API calls.

Insufficient APIs In the more challenging cases, where only minimal APIs are available, it
may be necessary to create new APIs. These custom APIs allow agents to perform tasks that
otherwise would require manual web browsing steps.

Using APIs in Agents

Once we have the APIs and documentation, we then need to provide methods to utilize them in
agents. We utilize two different methods based on the size of the API documentation.

7https://openai.com/index/hello-gpt-4o/

247

https://openai.com/index/hello-gpt-4o/

One-Stage Documentation for Small API Sets For websites with a smaller number of API
endpoints8, we directly incorporate the full documentation into the prompt provided to the
agent. This approach of directly feeding the full documentation worked well for websites with a
limited number of API endpoints, as it allowed the agent to have immediate access to all the
necessary information without the need for a more complex retrieval mechanism.

Two-Stage Documentation Retrieval for Large API Sets For websites with a larger number
of endpoints, providing the full documentation directly within the prompt was impractical due
to the size limitations of agent inputs. To address this, we employ a two-stage documentation
retrieval process, which allowed access to only the relevant information as needed, keeping the
initial prompt concise.

In the first stage, the user prompt provide a description of the task, with a list of all
available API endpoints along with a very brief description of each API. For example, {"GET
/api/{id}/commits": "Get a list of commits in a project"}. This initial summary
helps facilitating understanding the scope of all the available APIs while staying within the
prompt size constraints.

In the second stage, if the model determines that it needs detailed information about a
specific API endpoint or some API endpoints, it can use a tool called get_api_documentation.
This tool maintains a dictionary that maps each API to its API documentation respectively.
The dictionary is generated using pattern match in Python to retrieve substrings related to
each endpoints. get_api_documentation is able to searche the dictionary and retrieve the full
README or YAML documentation for any given endpoint by calling get_api_documentation
with the endpoint’s identifier. This might include the input parameters, output formats, and
examples of how to interact with the endpoint. For example, to retrieve the documentation
for the endpoint GET /api/id/commits, the agent would call get_api_documentation("GET
/api/id/commits"), and an example returned API documentation is the documentation in
Figure 10.5.

This retrieval method allows the agent to make flexible and informed choices during the
execution of tasks. If the agent finds that an API does not meet its needs or if it encounters an
error, it can easily retrieve the documentation for a different API endpoint by calling the function
again. This dynamic approach promotes adaptability and minimizes the risk of incorrect API
usage when the number of APIs available is large.

8Specifically, we use a threshold of 100 APIs, but this could be adjusted depending on the supported language
model context size.

248

10.3.2 Hybrid Browsing + API Calling Agents

We have proposed API-based methods for handling web tasks, but the question arises: given
the benefits of API calling, should we discard web browsing altogether? The most obvious
bottleneck is that not all websites offer comprehensive API support. Some platforms offer limited
or poorly documented APIs (e.g. there is no API for shopping on Amazon9), forcing agents to
rely on traditional web browsing methods to complete tasks.

To deal with these situations, we propose a hybrid methods that integrates both browsing-
based and API-based approaches, and developed a Hybrid Agent capable of interleaving API
calls and web browsing, switching dynamically based on task requirements and the available
resources.

Specifically, for each task, the agent is given the fixed step budget within which it has to
finish the task. In each step, the agent could either (1) communicate with humans in natural
language to ask for clarification or confirmation, or 2) generate and executes Python code which
could include performing API calling, or 3) performs web browsing actions. The agent could
choose freely among these three options, depending on the agent’s confidence which method
could best tackle the task.

The ideal case is that for websites that offer comprehensive API support, the Hybrid Agent
can utilize well-documented endpoints to perform tasks more efficiently than it could through
web browsing; for websites with limited API support or poorly documented APIs, the Hybrid
Agent could rely more on web browsing to fulfill certain tasks. We later find that enabling an
agent to interleave API calling and web browsing boost the agent’s performance.

Prompt Construction The Hybrid Agent’s prompt construction extends upon the API-based
agent by incorporating both API and web-browsing documentation. Similar to the API-based
agent, the Hybrid Agent is provided with a description of available API calls. In addition, the
Hybrid Agent receives a detailed specification of the web-browsing actions, which mirrors
the information given to the browsing agent, including a breakdown of all potential browser
interactions. It also maintains a history of all its prior steps such that the agent could make
more informed actions.

9https://www.amazon.com

249

https://www.amazon.com

10.4 Coding + Web Agents on WebArena Tasks

For our experiments, we utilized the WebArena dataset [498] as the primary evaluation bench-
mark. WebArena is a comprehensive benchmark designed for real-world web tasks, providing a
diverse set of websites that simulate various online interactions. The tasks within WebArena
reflect common user activities such as navigating websites, performing administrative tasks,
and posting online.

The dataset mainly includes five distinct websites, each containing various intents represent-
ing different tasks: Gitlab,Map, Shopping, Shopping Admin, Reddit, andMulti-Website
Tasks. This diverse set of websites and tasks within WebArena allows for a comprehensive
evaluation of the agents, testing their ability to handle both API-based interactions and web
browsing across varied web settings.

10.4.1 API Statistics for WebArena Sites

In this section, we provide a detailed analysis of the API support for various websites used in
the WebArena tasks, categorized into three levels: good, medium, and poor. The availability,
functionality, and documentation of APIs, as described in Table 10.2, play a crucial role in the
efficiency and flexibility of our agents.

Websites Gitlab Map Shopping Admin Reddit

Number of Endpoints 988 53 556 556 31
API/Doc Quality Good Good Fair Fair Poor

Table 10.2: Number of endpoints, quality of API, and documentation quality for WebArena
websites.

Good API Support

Gitlab For Gitlab, we leveraged the open Gitlab REST APIs10, which consist of 988 endpoints.
These APIs offer extensive coverage across a wide range of functionalities, including repositories,
commits, users, merge requests, and issues. This comprehensive API support allows for effective

10Documentation of all Gitlab APIs could be found at https://docs.gitlab.com/ee/api/rest/.

250

https://docs.gitlab.com/ee/api/rest/

interaction with most tasks required inWebArena, making it one of the best-supported platforms
in terms of API availability.

The majority of Gitlab-related tasks can be handled with the provided APIs, with only a small
fraction of tasks, such as retrieving the user’s Gitlab feed token, not covered by any existing
endpoints. Overall, Gitlab’s API structure provides robust support.

Map The Map website offers three sets of APIs, each offering distinct functionalities, with a
total of 53 endpoints. Although fewer in number compared to Gitlab and Shopping, these APIs
still provide significant coverage for the tasks in WebArena.

The first set of APIs, openly available at Nominatim11, offers essential endpoints for ge-
ographic searches. The second set of APIs, from Project OSRM12, focuses on routing and
navigation functionalities. The third set of APIs, available at OpenStreetMap13, deals primarily
with map database operations. This API is rarely used in WebArena tasks but offers capabilities
for interacting with OSM data.

Despite the smaller number of endpoints compared to other websites, the APIs available for
the Map tasks are mostly well-documented and cover most of the essential WebArena use cases.

Medium API Support

Shopping and Shopping Admin The Shopping and Shopping Admin websites share a
common set of APIs from the Adobe Commerce API14, consisting of 556 endpoints. These APIs
provide a reasonable level of support for common shopping tasks such as managing products,
categories, and customer accounts.

However, some features are absent, such as the ability to add items to a wish list, and thus
these tasks must be handled via web browsing. Despite this, the API documentation is fairly
detailed and covers most core functionalities, making it a solid, though not exhaustive, solution
for handling shopping-related tasks.

11https://nominatim.org/release-docs/develop/api/Overview/
12Openly available at https://project-osrm.org/docs/v5.5.1/api
13Publicly available at https://wiki.openstreetmap.org/wiki/API_v0.6
14https://developer.adobe.com/commerce/webapi/rest/quick-reference/

251

https://nominatim.org/release-docs/develop/api/Overview/
https://project-osrm.org/docs/v5.5.1/api
https://wiki.openstreetmap.org/wiki/API_v0.6
https://developer.adobe.com/commerce/webapi/rest/quick-reference/

Poor API Support

Reddit The Reddit tasks in WebArena are based on a self-hosted limited clone of the Reddit
website 15, with limited functionalities as compared to the official site. As a result, all of the
available APIs are self-implemented, with a best effort to mimic to official Reddit APIs. With
only 31 endpoints, this website offers minimal API support and no API documentation, making
it the least API-friendly website in the benchmark.

Many critical functionalities, such as searching for specific posts, are missing, leaving agents
to rely heavily on web browsing to complete tasks. The limited API support significantly hampers
the efficiency of task execution on Reddit, highlighting the need for a hybrid browsing+API
approach.

10.4.2 API Implementation Details

In this section, we will discuss how we provided the APIs to the agents when evaluating different
web applications inside WebArena, where we follow the methodologies as discussed in Section
10.3.1.

One-Stage Documentation for Small API Sets

For websites with fewer than 100 API endpoints, namely the Map and Reddit websites, we
directly incorporated the full documentation into the prompt provided to the agent.

In the case of the Map API, the documentation was sourced directly from the public API
documentation provided for the website. The only modification made was the addition of an
explanation detailing how to make HTTP requests using the requests library in Python for
interacting with the Map API’s endpoints. This ensured that the agent could comprehend both
the structure of the API and how to implement calls programmatically.

For Reddit, since there was no pre-existing documentation for the APIs, we leveraged GPT-
4o16 itself to generate these README files. By prompting GPT-4o with a file containing all
implementations of the API endpoints, we generated a README documentation, including
input parameters, expected outputs, and example API calls.

15https://codeberg.org/Postmill/Postmill
16https://openai.com/index/hello-gpt-4o/

252

https://codeberg.org/Postmill/Postmill
https://openai.com/index/hello-gpt-4o/

Two-Stage Documentation Retrieval for Large API Sets

For websites with more than 100 endpoints, such as GitLab, Shopping, and Shopping Admin, we
employ a two-stage documentation retrieval process.

For GitLab, we obtained the README documentation from the official GitLab REST API
documentation site. For the Shopping and Shopping Admin websites, the documentation was
provided in the form of an OpenAPI specification, structured in YAML format.

10.4.3 Evaluation Framework

We employed OpenHands as our primary evaluation framework to facilitate the development
and testing of our agents [421]. OpenHands is an open-source platform designed for creating
and evaluating AI agents that interact with both software and web environments, making it an
appropriate infrastructure for our proposed methods. The OpenHands architecture supports
a variety of interfaces for agents to interact with. Moreover, this framework allows agents to
keep a detailed record of past actions in the prompt, enabling agents to execute actions in a way
that is consistent with earlier steps. For coding tasks, it implements an agent based on CodeAct
[419] that incorporates a sandboxed bash operating system and Jupyter IPython17 environments,
enabling the execution of Python code. Additionally, it includes a BrowsingAgent browsing
agent that focuses solely on web navigation. This agent operates within a Chromium web
browser powered by Playwright18, utilizing a comprehensive set of browser actions defined by
BrowserGym [94]. However, while the browsing agent can browse websites, and the CodeActA-
gent make API calls and execute code, there is not an agent that can natively do both. Given
this base, we developed two varieties of agents for API-based solving of web tasks.

API-Based Agent First, our API-based agent essentially uses the CodeAct architecture [419].
In addition to the basic CodeAct framework, we tailor the agent for API calling by adding
specialized instructions and examples that guide its understanding of various API endpoints and
their usage. At each step, the agent could utilize all previous actions to make informed selection
of actions.

Hybrid Browsing/API Calling Agent In addition to the API-based agent, we developed a
Hybrid Agent that integrates Chromium web browsing functionalities powered by Playwright

17https://ipython.org
18https://playwright.dev/

253

https://ipython.org
https://playwright.dev/

Agents Gitlab Map Shopping Admin Reddit Multi AVG.

WebArena Base [498] 15.0 15.6 13.9 10.4 6.6 8.3 12.3
AutoEval [313] 25.0 27.5 39.6 20.9 20.8 16.7 26.9
AWM [426] 35.0 42.2 32.1 29.1 54.7 18.8 35.5
SteP [388]† 32.2 31.2 50.8 23.6 57.5 10.4 36.5

Browsing Agent 12.8 20.2 10.2 22.0 10.4 10.4 14.8
API-Based Agent 43.9 45.4 25.1 20.3 18.9 8.3 29.2
Hybrid Agent 44.4 45.9 25.7 41.2 28.3 16.7 35.8

Table 10.3: Performance of Agents across WebArena Websites. †Note that SteP uses prompts
inspired specifically by WebArena test set tasks, while other methods are task-agnostic. We
achieve the highest performance among the task-agnostic agents.

into the existing framework of the API-based agent. This Hybrid Agent is provided the prompt
describing both the APIs and the browsing actions, allowing for free transitions between API
calling and web browsing. At each step, the agent can utilize the current state of the browser,
all previous actions taken by the agent, and the results of those actions to determine the next
course of action.

For the browsing, API-based, and Hybrid Agents, we utilized GPT-4o as the base LLM.
However, this could be easily changed to other LLMs.

10.4.4 Main Results

The main results of our evaluation, as summarized in Table 10.3, demonstrate the performance
of three different agents across the websites in the WebArena benchmark.

The API-Based Agent consistently performed well across most tasks, achieving higher scores
in all websites compared to the Browsing agent. This agent’s strong performance is attributed
to its specialized design for API calling, enabling it to efficiently interact with the websites’ APIs
and complete tasks with minimal reliance on browsing capabilities.

In contrast, the Browsing Agent, which is designed solely for navigating web interfaces,
demonstrated significantly lower performance across all domains. It achieved its best scores on
Gitlab and Map, but struggled more on Reddit.

The Hybrid Agent, which integrates both API calling and web browsing, outperformed the

254

Actions Gitlab Map Shopping Admin Reddit Multi AVG.

Browsing only 7.8 3.7 38.5 2.2 17.0 8.3 14.3
API only 21.1 4.6 7.5 1.1 0.9 10.4 8.0
Browsing+API 71.1 91.7 54.0 96.7 82.1 81.3 77.7

Table 10.4: Percentage of Actions (%) that our Hybrid Agent takes for each type of tasks. Each
column sums up to 1.

Choices of Action Gitlab Map Shopping Admin Reddit Multi AVG.

Browsing only 7.1(1/14) 50.0(2/4) 23.6(17/72) 50.0(2/4) 11.1(2/18) 25.0(1/4) 21.6(25/116)
API only 47.4(18/38) 40.0(2/5) 21.4(3/14) 50.0(1/2) 0.0(0/1) 20.0(1/5) 38.5(25/65)
Browsing+API 47.7(61/128) 46.0(46/100) 27.7(28/101) 40.9(72/176) 32.2(28/87) 15.4(6/39) 38.2(241/631)

Table 10.5: The accuracy (%) of the Hybrid Agent across choices of actions for each website,
with the number of correct instances / number of total instances in parentheses.

other agents in all categories. The agent’s ability to dynamically switch between API calling
and web browsing proved beneficial. API calling delivers high performance for web tasks when
well-supported APIs are available, while web browsing serves as a backup when API endpoints
are unavailable or incomplete. Even if the website provides comprehensive APIs, there might
be corner cases where APIs are not supportive. In these cases, relying on web browsing is still
needed for tasks that would otherwise fail through API-only interactions. Table 10.4 documents
the percentage of actions of our Hybrid Agent. Across all websites, our Hybrid Agent chooses
to do both Browsing and API in the same task at least half of the time.

Table 10.5 documents the accuracy of the Hybrid Agent across website when performing
different choices of actions. We can see that it show consistently high accuracy when choosing
API only and API+browsing.

Overall, the results indicate that the Hybrid Agent is the most effective for handling diverse
tasks in WebArena, particularly in environments that require a blend of API and browsing
actions. The API-Based Agent excels in tasks that are primarily API-driven, while the Browsing
Agent is more suitable for simple navigation tasks but lacks the versatility needed for more
complex scenarios.

Additionally, we use Table 10.6 to demonstrate the average steps taken and the average
cost for each agent to complete WebArena tasks. Figure 10.6 demonstrates a scatterplot of the
average accuracy of each agent on WebArena over their average steps and average cost.

255

Browsing Agent API-Based Agent Hybrid Agent

steps cost steps cost steps cost

8.4 $0.1 7.8 $1.2 8.9 $1.5

Table 10.6: Average number of steps and cost of agents on WebArena tasks

Figure 10.6: Number of steps (left) and cost (right) of agents averaged across WebArena Websites

Steps The browsing agent consistently takes more steps to complete tasks compared to the
API-based agent, while the Hybrid Agent takes the most steps amongst the three agents. This is
likely due to the browsing agent’s reliance on navigating web interfaces and interacting with
visual elements, which involves a sequential and more time consuming processes. The API-based
agent is the most efficient in terms of steps, as it can directly interact with structured data via
APIs, bypassing many of the steps involved in traditional web navigation. The Hybrid Agent,
combining both action spaces from the browsing agent and the API-based agent, takes more
steps than both agents.

Costs The cost of completing tasks shows a different trend. While the browsing agent requires
more steps, it is much cheaper compared to the API-based agent and the Hybrid Agent. This is
primarily because the prompts needed for browsing agents are much shorter. When browsing,
the agent only needs instructions on how to use the web interface and the limited action space
around 14 browsing actions. In contrast, API-based and Hybrid Agents require access to a
much larger set of API calls. For example, when interacting with GitLab, the agent is provided
with 988 available APIs, leading to much longer prompts and significantly increasing the cost
of execution. The cost goes down when the prompt for API calling is shorter. For example,

256

Number of Endpoints 18 31

Accuracy on Reddit 9.4% 18.9%

Table 10.7: Change in performance of the API-Based Agent on Reddit upon incorporating new
APIs.

the Reddit website has the least length of API documentation, where its cost is also less than
other websites. However, as visualized in Figure 10.6, the accuracy of the API-based agent and
the Hybrid Agent is much higher than the browsing agent, which makes the increase in cost
justifiable due to the significantly improved task performance. The higher cost is offset by the
agents’ ability to complete tasks more accurately and efficiently. In the future, this increased
cost could potentially be mitigated by methods that retrieve only relevant APIs on the fly.

10.4.5 Does API Quality Matter?

The short answer is yes, API quality does significantly impact the performance of the API-based
agent. High quality APIs provide comprehensive and well-documented endpoints that enable
agents to interact accurately and efficiently with websites. With comprehensive API support,
the API-based agent is able to tackle more tasks through API calling, while the Hybrid Agent
could rely less on the browsing agent; on the other hand, clear and detailed documentation
allows agents to utilize the APIs effectively, ensuring that requests are accurate, and minimizing
potential errors in task execution. For example, the websites Gitlab and Map with the best API
support as mentioned in Section 10.4.1, demonstrates the highest task completion accuracy by
the API-based agent and the Hybrid Agent across all websites.

Conversely, low-quality APIs, characterized by incomplete functionality or ambiguous
documentation, can significantly degrade performance. In such cases, the absence of necessary
endpoints may prevent the API-based agent from completing tasks, forcing the Hybrid Agent to
resort to web browsing. Moreover, poorly documented APIs can result in incorrect parameters
and headers being used, further reducing the effectiveness of the agent. This highlights the
importance for websites to maintain comprehensive and well-documented API support.

An illustrative example of this is the case of Reddit, where the initial performance of the API-
based agent was suboptimal due to limited API availability. As depicted in Table 10.7, initially,
Reddit offered only 18 APIs, lacking the major functionality that common online forums have,
such as post voting. Recognizing this limitation, we manually introduced 13 additional APIs

257

including one API on post voting, with our best effort trying to mimic the official Reddit website.
This results in a marked improvement in the API-based agent’s performance, underscoring the
direct correlation between the availability of high-quality APIs and the average performance of
the API-based agent.

Moreover, API quality can also correlate with the performance of browsing agents. This
may be because websites with well-implemented APIs often have clean, user-friendly interfaces,
which benefit machine agents when interacting with the web interface. Good API practices
suggest a thoughtful design process that tends to carry over into the overall user interface and
experience, allowing the browsing agent to more easily parse and interact with the website’s
elements. As a result, both API-based and browsing agents are able to function more effectively
in environments where high API standards are maintained.

10.4.6 Limitations of API Calling and Neccessity of Browsing

API Availability A key limitation of API-based agents is the inconsistent availability and
coverage of APIs across websites. Even platforms with extensive API ecosystems, such as GitLab,
may lack support for specific functionalities (e.g., retrieving a user’s official username from a
displayed name), leading to edge cases where API-based agents are unable to complete tasks
due to incomplete API support. However, advancements in techniques like Automatic Web API
Mining (AWM) [426] could potentially address this limitation by automatically generating APIs
for unsupported tasks, reducing reliance on manual API creation.

Incorporating APIs Unlike browsing agents, which can adapt to new websites without
manual intervention, the API-based agent requires additional effort to integrate the necessary
APIs documentation to the action space of the agent for each website. This manual integration
process increases complexity, particularly when the agent must support a wide range of web-
sites, limiting scalability compared to agents that rely solely on web browsing for interactions.
However, future advancements in automated API scraping and documentation generation could
eliminate this bottleneck, allowing for more scalable and flexible API-based agents.

258

Chapter 11

TheAgentCompany: Benchmarking LLM
Agents on Consequential Real World
Tasks

In the previous section, we proposed a hybrid API calling plus browsing agent, that utilizes
a more comprehensive array of interface usually available to computer users. We tested and
showcased good performance gain from the incorporation of coding ability of calling website
APIs on WebArena tasks, which mainly focuses on daily online tasks that only fundamentally
requires browser to complete. This lead us to create a more comprehensive and consequential
benchmark, that covers more complex tasks that could make full use of a broader computer
interface.

We interact with computers on an everyday basis, be it in everyday life or work, and many
aspects of work can be done entirely with access to a computer and the Internet. At the same
time, thanks to improvements in large language models (LLMs), there has also been a rapid devel-
opment in AI agents that interact with and affect change in their surrounding environments. But
how performant are AI agents at accelerating or even autonomously performing work-related
tasks? The answer to this question has important implications for both industry looking to
adopt AI into their workflows and for economic policy to understand the effects that adoption
of AI may have on the labor market. To measure the progress of these LLM agents’ performance
on performing real-world professional tasks, in this paper we introduce TheAgentCompany, an
extensible benchmark for evaluating AI agents that interact with the world in similar ways to
those of a digital worker: by browsing the Web, writing code, running programs, and communi-

259

Tasks

Environment

Simulated
Colleague

PlaneGitLab

Brow
ser

>_
Terminal

Python
Code

Engineer

CTO

HR

Agent

action

observe

Evaluation

Admin arrange meeting room

DS analyze spreadsheet

SDE prepare code release

HR resume screening

PM team sprint planning

Finance reimburse travel bills

access bills

check reimburse
-ment criteria

consult Mike

confirm reimburse
amount

+1 +1 +0 +0
Score

2/4
Checkpoint-based

Reproducible
Self-hosted

Diverse
Realistic

Professional

Figure 11.1: An overview of TheAgentCompany benchmark. It features a reproducible and self-
hosted environment, simulated colleagues to test agent communication capabilities, checkpoint
and execution-based evaluation, and a set of 175 diverse, realistic and professional tasks in a
software engineering company setting.

cating with other coworkers. We build a self-contained environment with internal web sites and
data that mimics a small software company environment, and create a variety of tasks that may
be performed by workers in such a company. We test baseline agents powered by both closed
API-based and open-weights language models (LMs), and find that the most competitive agent
can complete 24% of tasks autonomously. This paints a nuanced picture on task automation with
LM agents–in a setting simulating a real workplace, a good portion of simpler tasks could be
solved autonomously, but more difficult long-horizon tasks are still beyond the reach of current
systems. The code is available at https://github.com/TheAgentCompany/TheAgentCompany.

11.1 Introduction

We are in the midst of a technological transformation. With the rapid year-by-year and month-
by-month progress brought about by large language models (LLMs), we are seeing AI-based
assistance or automation become commonplace in tasks that were unthinkable only a few years
ago. In fact, the pace of progress is so fast that some have gone so far as to claim that the
majority of human labor may be automatable within the next couple of years [17, 99]. On the
other hand, others are skeptical, claiming that language models cannot truly reason [190], do
not generalize well to novel tasks [72], and may only have an impact on a small minority of the
labor market [430].

What is the reason for this disconnect? We argue that it is, in part, due to a lack of objective

260

https://github.com/TheAgentCompany/TheAgentCompany

benchmarks that not only demonstrate the power of existing LLM-based agents to accelerate a
wide variety of repetitive tasks encountered in every-day workplaces, but also provide appropri-
ate caveats about the tasks that agents cannot do. This is a pressing issue, because the commercial
and policy implications of diverse and effective acceleration or automation of work-related tasks
will be broad, both positive (e.g. increase of quality of life and accelerated scientific discovery)
and negative (e.g. potential displacement or loss of jobs and increase in wealth disparities). In
this paper, we take some first steps towards resolving this gap and providing a clearer view of
where we are now with respect to acceleration or automation of consequential work-related
tasks, and a litmus test for future development in this direction.

Concretely, we propose a benchmark, TheAgentCompany (Figure 11.1) that estimates the
ability of AI agents to perform tasks encountered in everyday workplaces. We create a simulated
software development company where agents must perform tasks related to software engineer-
ing, project management, financial analysis, and other typical tasks encountered in such business
settings. The agents must browse the web, code, and interact with other simulated co-workers
to achieve success on the provided tasks. TheAgentCompany’s environment is based entirely
on open-source software and self-hostable for reproducibility purposes, and we create rigorous
evaluators that also assign partial credit when the agent gets the answer partially correct.

We perform experiments using seven large language model backbones, including API-based
models such as Anthropic Claude [21], OpenAI GPT-4o [310], Google Gemini [401], Amazon
Nova [168], as well as open models including Meta Llama [96] and Alibaba Qwen [443]. All
models are run using the OpenHands agent framework [420],1 which provides a stable and
strong agent harness for both web browsing and coding. As a result of experiments, we find
that the best performing model, Claude 3.5 Sonnet was able to autonomously perform 24.0% of
the provided tests to completion, and achieve a score of 34.4% on our metric that provides extra
credit for partially completed tasks.

These results present a nuanced picture of the current ability of AI agents to perform
tasks. Agents powered by the current gold-standard AI techniques are able to autonomously
perform a wide variety of tasks encountered in everyday work. However, they are not close to
automating every task encountered in a workspace, even on the subset of tasks presented in
TheAgentCompany, which are well-scoped administrative and coding tasks encountered in a
software company’s day-to-day work.

In the rest of this paper, we explain detail comparisons to other existing benchmarks (§ 11.2),

1https://github.com/All-Hands-AI/OpenHands

261

https://github.com/All-Hands-AI/OpenHands

Table 11.1: Comparison of different AI agent benchmarks. Interface: the interface agent has access
to; is web browser, is desktop, is API usage, is Python script, is chat platform, is bash
terminal. Supported Tasks: tasks in the benchmark, ∗ indicate tasks with no association with real-
world occupations; SE refers to software engineering, HR is human resources, PM is project manager.
Checkpoint-based evaluation: if tasks are evaluated at intermediate checkpoints and assigned partial
scores. Interact with NPC Agents: If the agent can interact with other NPC agents during task-solving.

Framework
Diverse

Real-world Work
Task Categories

Requires
Interaction

Long-Horizon
w/ Checkpoints

Interface
Self-Hosted
Environment

MiniWob++ [254] % Browsing∗ % % "

Mind2Web [86] % Browsing∗ % % %

WebLINX [266] % Browsing∗ % % %

AssistantBench [470] % Browsing∗ % % %

WebArena [498] % Browsing∗ % % "

VisualWebArena [213] % Browsing∗ % % "

VideoWebArena [178] % Browsing∗ % % "

WorkArena [94] " Enterprise Software % % %

OSWorld [438] " Office, Coding % % "

Windows Agent Arena [42] " Browsing∗, Office, Coding % % "

AppWorld [408] % Daily % % "

Gorilla APIBench [320] % Coding % % "

τ -bench [455] " Retail, Airline " % %

SWE-bench [183] % SWE % % "

DevBench [233] % SWE % % %

Smallville [317] % Social∗ " % "

Sotopia [500] % Social∗ " % "

TheAgentCompany "
SWE, HR, Admin,

PM, Research, Finance
" " "

how we set up realistic and reproducible environments (§ 11.3), how we define tasks (§ 11.4)
and how we create them (§ 11.5), our baseline agent (§ 11.6), experimental results (§ 11.7), and
finally implications and future directions (§ 11.8).

11.2 BenchmarkDesiderata andComparison toOther Bench-

marks

In order to evaluate the ability of agents to perform tasks in complex real-world settings, we
built TheAgentCompany with a number of desiderata in mind. The comparison with several
existing prominent agent benchmarks with respect to these desiderata is in Table 11.1.

262

Coverage of Multiple Work-related Tasks: In order to make any valid statements about
the potential of AI to accelerate or automate various types of real-world work, we should have
tasks that are motivated by real-world work across multiple job categories. Many benchmarks
are not relevant to real-world work (e.g. MiniWob++ [254]) or very relevant to real-world work,
but only over a limited scope of tasks (e.g. SWE-Bench [183]). In contrast, TheAgentCompany
contains a set of more diverse, realistic, and professional tasks that would typically be completed
by multiple job roles in a software engineering company.

Requirement for Interaction: If agents are to integrate into real-world workplaces, they will
need to communicate with the other human members of the workspace. Most other benchmarks
do not measure communication or interactivity, with the exception of τ -bench [455], which only
measures interaction in customer service scenarios. TheAgentCompany provides a better testbed
for communication as many tasks involve asking and providing information to colleagues as
part of a more complex task.

Long-horizon Tasks with Checkpoints: In real-world settings, many tasks require taking
many different steps to achieve a higher-level goal. One major novel contribution of TheAgent-
Company is that we both (1) contain tasks that require an agent to perform significantly more
consecutive work (i.e., involving more steps and realistically taking human professionals longer
to accomplish) than previous benchmarks, and (2) provide granular evaluators that measure the
ability of models to perform subtasks of these larger tasks.

Versatile Environment Interface: In order to handle a diversity of tasks in real-world
settings, we minimally should be able to interact with the tools that real-world workers use – in-
cluding web interfaces, programs, command-line terminals, and communication tools. TheAgent-
Company covers all of these interfaces, while most previous benchmarks focus only on one or
two.

Self-hosted and Reproducible: In order to allow for careful comparisons between differ-
ent methods that remain constant over time, the benchmark should be fully self-hosted and
reproducible. This contrasts with existing benchmarks that do not have execution environments
(e.g. Mind2Web [86]) or require the usage of third-party software (e.g. WorkArena [94]).

263

11.3 TheAgentCompany Environment Setup

Our benchmark is set in an imaginary software engineering startup called TheAgentCompany,
hence the benchmark’s name. Within TheAgentCompany, we create tasks inspired by tasks
handled by workers inside such companies. More details about the company’s imaginary
background, overview and employees can be found in § 11.9.1. The benchmark environment
contains multiple components.

Local Workspace The local workspace runs locally on the agent’s host, which is analogous
to a human professional’s local workspace, e.g., their work laptop computer. This environment
is created as a sandboxed Docker environment to provide a safe execution environment that
will not affect other parts of the evaluation machine [420].2 This environment is where agents
work on the task, and within this environment the TheAgentCompany baseline agent (§ 11.6)
uses a browser, code editor and a Linux terminal with typical software preinstalled.3

Intranet This part of the environment mimics the company’s internal websites that host code,
documents, project management software, and communications software. To achieve our goal
of a reproducible, self-contained environment, we follow WebArena [498], in using open-source,
self-hostable software to host our environment. The environment mainly contains the following
websites:

1. GitLab,4 an open-source alternative to source-code repositories such as GitHub. This is
used for hosting TheAgentCompany’s code repositories and tech-oriented wiki pages.

2. OwnCloud,5 an open-source alternative to office software such as Google Drive or Mi-
crosoft Office. This to save and share files, especially for document storage and collabora-
tive editing.

3. Plane,6 an open-source alternative to task management software such as Jira or Linear.
This is used to track issues, run sprints cycles, and manage product roadmaps.

2https://docs.all-hands.dev/modules/usage/how-to/custom-sandbox-guide
3Other options would include using something like a GUI-based desktop environment with office software

[438], but we opt to build a baseline solution that is entirely web-based, reflecting the recent trend of more enterprise
software moving to the cloud.

4https://about.gitlab.com/install/
5https://doc.owncloud.com/
6https://github.com/makeplane/plane

264

https://docs.all-hands.dev/modules/usage/how-to/custom-sandbox-guide
https://about.gitlab.com/install/
https://doc.owncloud.com/
https://github.com/makeplane/plane

4. RocketChat,7 an open-source alternative to communication software such as Slack. This
is a company-internal real-time messaging tool that facilitates collaboration between
employees.

All the websites hosted are reproducible and reset-able with mock data inspired by that
from a software engineering company. The data inside these company internal websites are
populated with real-world software project data, as well as data manually curated by co-authors
who have some experience in the relevant corporate roles.

Simulated Colleague Communication One major aspect of working in a company is
communicating with other company members, and in TheAgentCompany we also test the ability
of models to perform this type of communication. Specifically, we allow agents to use RocketChat
to message other company members and obtain information that may not be available in the
original task description. To create these simulated colleagues, we rely on the Sotopia platform
[500], which supports the creation of simulated human characters with LLMs. Each simulated
colleague is equipped with a detailed profile that includes their name, role, responsibilities, and
project affiliations. (e.g., Sarah Johnson, who serves as the CTO, oversees technical strategy
planning and R&D team leadership, with access to all technical channels). Agents can interact
with these simulated colleagues through direct messages or in specific channels, as is standard
in RocketChat and other platforms. By default, all simulated human characters are backed by
the Claude-3-5-Sonnet-20241022 LLM across experiments, as we found that it provided the
best results during preliminary experiments. For example conversations between the agent and
the simulated colleagues drawn from empirical experiments, please refer to § 11.9.2.

11.4 Task Structure

The tasks in TheAgentCompany include a task intent, a list of checkpoints that the agent must
achieve, a programmatic evaluator to check success on these checkpoints, and code to initialize
and finalize the environment. We show some examples in Table 11.2, and describe each of aspect
in detail below.

Task Intent Each task begins with an English description, simulating how a user would
instruct an LLM-based agent to perform a real-world task. In general, we aim for these tasks to
be clear enough so that a human worker would be able to complete the task without asking for

7https://www.rocket.chat/install

265

https://www.rocket.chat/install

further instructions directly from the user (although they may need to ask questions of their
other co-workers).

Checkpoints Tasks are divided into checkpoints representing intermediate milestones, each
assigned a point value to measure progress. Each checkpoint is awarded a certain number of
points based on its significance to the overall completion of the task. Checkpoints are written in
English, and typically specify one or more of the following:

• Action Completion: Verifying whether required actions, such as using tools, navigating to
URLs, or collecting data, were carried out successfully.

• Data Accuracy: Evaluating the correctness and completeness of the output, such as extracted
data or formatted documents.

• Collaboration: Assessing interactions with simulated colleagues or sharing of output, such
as posting messages or asking for additional information to complete the task.

Evaluators Checkpoints are created in the task design phase, but for actual evaluation, each of
the checkpoints must be concretely implemented through an evaluator – a program that checks
the completion of the checkpoint. These evaluators are implemented by examining environment
states, such as the local workspace, intranet status, simulated colleague interactions, or by
analyzing agent trajectories, like verifying browsing history or action sequences.

In most cases, these evaluators are deterministic and written as simple Python functions.
For instance, in the SWE task in Table 11.2, the checkpoints are deterministic: verifying if the
JanusGraph repository is cloned, the binary file is built, and the server is launched with an HTTP
endpoint. However, for tasks with more complex and unstructured deliverables, such as in
Table 11.2, the last checkpoint in the Finance task requires contacting the correct finance director
(David Wong) to resolve ambiguous questions, which involves a judgment from a (simulated)
human colleague, deterministic evaluation can be challenging due to subjectivity and variability.
In such cases, we employ LLM-based evaluation. This involves prompting LLMs with predefined
rubrics or reference outputs to assess the agent’s deliverables, enabling a more nuanced and
flexible evaluation of these tasks. Same as the NPC backbone, all LLM-based evaluators are
backed by the Claude-3-5-Sonnet-20241022.

266

11.4.1 Evaluation Metrics

Due to our checkpoint-based evaluation scheme and the need for showcasing both the progress
of the agent’s capability improvement as well as the eventual goal completion ability, we calculate
two scalar agent capability metrics and two efficiency metrics.

Full completion score We define the full completion score Sfull as:

Sfull =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if all checkpoints are successfully passed,

0 otherwise.

This binary metric evaluates whether the agent successfully completed the task by passing all
checkpoints.

Partial completion score To provide a more nuanced measure that rewards partial task
completion while strongly incentivizing full task completion, we define partial completion
score Spartial as:

Spartial = 0.5 ⋅
Result
Total

+ 0.5 ⋅ Sfull,

where:
• Result: Sum of awarded points across all checkpoints (including partial credit),

• Total: Sum of the total points for all checkpoints,

• Result
Total : Fractional progress toward full completion,

• Sfull: Binary indicator equal to 1 when the task is fully completed.
This formulation ensures that agents are awarded partial credit in proportion to the points

achieved, reflecting their progress toward task completion. At the same time, full task completion
is strongly incentivized by incorporating an additional 50% credit, which is awarded only when
all checkpoints are successfully completed. This design ensures that agents achieving partial
progress receive scores scaled linearly with their performance, while those reaching 100%
completion are distinctly rewarded to emphasize the importance of achieving the end goal.

Number of steps The number of steps is defined as the total number of LLM calls made
during the task execution. This metric quantifies the operational effort required to perform the
task.

267

Cost per instance The cost per instance measures the monetary cost of querying the
underlying LLM through its API to complete a task. Assuming no prompt caching, the cost is
calculated as:

Cost = (Prompt token count×Prompt token cost)+(Completion token count×Completion token cost).

This efficiency metric reflects the computational expense of task completion based on token
usage.

11.4.2 Workflow

Each task typically follows a workflow involving the following stages:

1. Initialization: The agent sets up its workspace and prepares to execute the task.

2. Execution: The agent completes subtasks, such as navigating tools, collecting data, or
processing information or if required by the task, the agent interacts with simulated colleagues
or shares results via communication platforms.

3. Finalization: The agent produces and submits the final output for evaluation.

Example Task We consider a task designed to evaluate an agent’s ability to perform realistic
project management workflows using multiple tools and services hosted in the benchmark. The
task involves managing a sprint for the RisingWave project, requiring the agent to execute inter-
dependent steps such as sprint issue management, team communication, repository operations,
and report generation while incorporating feedback from a simulated project manager.

The workflow as illustrated in Figure 11.2 begins with the agent identifying unfinished issues
in the current sprint on Plane and updating their sprint assignments. This step is worth 2 points
and is fully completed, earning the agent the maximum score of 2/2. Next, the agent successfully
notifies the relevant assignees using Rocket.Chat regarding their pending tasks and earns 1/1
point.

The agent then proceeds to clone the RisingWave repository from GitLab and execute a
Python script in the terminal to calculate updated code coverage. This step, worth 2 points,
is only partially completed, as the agent successfully clones the repository but fails to run
code coverage. As a result, the agent earns 1/2 points for this checkpoint. The subsequent
steps—generating and sharing the sprint summary report on OwnCloud and incorporating
feedback from a simulated project manager—are not completed, resulting in 0/2 and 0/1 scores,
respectively. Notably, the checkpoints can also fail if the report does not meet quality standards

268

Clone
Repo

Checkpoints
Score : 4/8

Access and
Update
Sprint Issues

Notify issue
assignees via

Incorporate
feedback from
manager

Share with
manager

2/2

1/1

1/2

0/2

0/1

Run
Code
Coverage

Upload
report

Checkpoint

Checkpoint

Checkpoint

Checkpoint

Checkpoint

Input Task Intent

Figure 11.2: Example TheAgentCompany workflow illustrating an agent managing a sprint for
the RisingWave project. The task involves identifying and moving unfinished issues to next
sprint cycle, notifying assignees of those issues, running a code coverage script, uploading
summarized report to OwnCloud, and incorporating feedback on report from a simulated project
manager.

as assessed by the LLM-based evaluator, which evaluates the report for clarity, completeness,
and successful incorporation of feedback. This ensures that the assessment reflects both the
generation of outputs and their qualitative relevance to the task.

Finally, the overall score is calculated using the partial completion formula defined in
paragraph 11.4.1, where the total possible points are 8, and the awarded points sum to 4.
Substituting these values, the agent achieves a final score of 0.25 (25%). Our scoring mechanism
thus rewards incremental progress while strongly incentivizing full completion.

This example represents a typical task in the TheAgentCompany benchmark, where agents
are required to handle complex workflows involving multiple tools and interdependent steps.
By evaluating both partial progress and overall outcomes, our benchmark provides a rigorous
and realistic measure of agent performance, allowing us to identify their strengths and pinpoint
areas for improvement in task execution.

269

11.5 Task Creation

11.5.1 Choosing Task Categories

Many previous agent benchmarks discussed in § 11.2 were created to evaluate agents on tasks
people perform in daily life [86, 266, 498], or tasks that accomplish digital chores [408, 470].
Obtaining realistic tasks for the benchmark poses challenges. Some benchmark [94, 438, 470]
crowdsourced tasks based on predetermined interfaces, platforms, and services available to the
agent. They also adopt a strategy to first gather task templates and then instantiate more task
instances by filling in the variables. Some benchmark [42, 213, 498] took a semi-systematic
approach of reviewing the action history of the research team and choosing tasks that reflected
the types of task that the researchers carried out in their daily life. There are several obvious
issues with this if wewant to evaluate agents with broader implications in the TheAgentCompany
benchmark. Despite some grounding in realistic data, the process of creating tasks from these
data was susceptible to heuristic, and no consideration was made for how important or time-
consuming the tasks are. The tasks are biased towards those important for academics in computer
science and do not reflect the tasks performed by the entire population.

In TheAgentCompany, we attempt to cover a wide variety of tasks motivated by real-world

work. While it is highly challenging to create a representative sample of tasks, fortunately we
can rely on existing resources created for other purposes as a reference. Specifically, we start by
referencing the 29.1 release of O*NET database [306, 361], which is a database of jobs performed
by workers in the US created by the US Department of Labor. It also contains information about
tasks performed within the context of each job, abilities required to perform each task, whether
the task is a major or minor task for that job category, and other pieces of relevant information.

Based on this data, we first identified a few categories of occupation categories to focus on.
First, based on statistics from O*NET, we identified job categories that have a large number
of people performing this job. Then, we used median salary information for each of these job
categories from the US department of labor statistics, and multiplied the number of employees
in that category to estimate the aggregate value of performing this job.

Based on this, we identified several categories of jobs such as “General and Operations
Managers”, “Registered Nurses”, “Software Developers”, and “Financial Managers” that have
both a high population and high average salary. Because TheAgentCompany is designed to
be a non-embodied benchmark in the digital domain, we excluded the categories that require
extensive physical labor such as “Registered Nurses”, and eventually settled on the setting of a

270

software company, which would allow us to cover tasks from the other categories.

11.5.2 Choosing Tasks

Next, within this setting we chose tasks to implement. In this setting, we attempted to create
a diversity of tasks, but mostly focused on concrete tasks that have well-defined goals and
success criteria. These tasks were created through a combination of referencing the O*NET
task list, introspection based on paper co-authors who had experience in each task category,
and brainstorming lists with language models. It is important to note that in no cases have we

covered an extensive list of all the tasks that are performed in a particular occupational category,
and therefore we caution against making any assumptions about whether a particular job may
be in danger of full automation based solely on TheAgentCompany. Rather, it may provide
insight into whether certain tasks within jobs may be accelerated or automated, and inform
further analysis by labor professionals into this question.

11.5.3 Manual Task Curation

Once we set up the environment required for our desired jobs and task categories (§ 11.3), we
return to the curated list, and perform a manual curation process for tasks. For each task, this
consists of the following steps: We first create a description of task intent, checkpoints, and how
to evaluate each checkpoint. We then identify and import the required data for the task that
are currently missing in the company Intranet services and create any necessary data. We then
write scripts to configure the required initialization state in the local workspace. Finally, we
implement the checkpoint evaluators that calculate the scalar scores for each checkpoint.

All tasks were created by coauthors of the paper. Overall, it took 20 computer science
students, software engineers, and project managers over 2 months, consuming approximately
3,000 person-hours in total. Some of the more complex tasks take more than 10 hours each
to design, implement, test, and verify. To ensure quality control of the task creation process,
we implement several check and verification processes. For each task implementation, we
require screenshot proof that the evaluator is valid and that the task is able to get a full score
when successfully completed. We also encourage including tests for the implemented evaluator
programs. Each task contribution is also code reviewed by a panel of lead authors before
merging into the benchmark. After creating all tasks, a final round of manual human double-
check of required environment data, evaluator behavior, and checkpoint scoring for every task
is performed to ensure quality. Notably, during the process, a person who has not curated the

271

Agent

[1] Message

Find API server codebase in internal wiki, clone the
repository to /workspace folder, and start up the
API server locally, then

Event History

[Past Action(s) & Observation(s)]

[6] IPythonRunCellAction

<execute_ipython>

from apiserver import *

api_server.run(port=8080)

..��

[7] IPythonRunCellObservation

...

Listening to 0.0.0.0:8080

TheAgentCompany API server started.

[4] CmdRunAction

<execute_bash>

git clone git://repos/apiserver

</execute_bash>

Action

[5] CmdRunObservation

 Cloning into `apiserver`... 
 remote: Counting objects: 10, done. 
 remote: Compressing objects: 100% (8/8), done. 
 remove: Total 10 (delta 1), reused 10 (delta 1) 
 Unpacking objects: 100% (10/10), done.

[2] BrowseInteractiveAction

<execute_browse>

input(“api server”, “searchbox”)

click(“search”)

</execute_browse>

 [3] BrowserOutputObservation

 API Server Repo: git://repos/apiserver

Interactive Python
(IPython) Server

Bash Shell

Browser

Playwright Chromium

Observation

Action

Figure 11.3: Overview of OpenHands’ default CodeAct + Browsing agent architecture, the
baseline agent used throughout the experiments.

tasks checks all the checkpoint score assignments to make sure that the importance scoring is
consistent over all the tasks and that it correlates reasonably with the relative importance of the
checkpoint within the task.

11.6 Baseline Agent

To test the current state-of-the-art performance on the TheAgentCompany benchmark, we
need agents that can at least perform tasks using a browser, operate a local workspace using a
terminal, and write and execute programs to perform most of the tasks. Throughout this paper,
we experiment with OpenHands’ main agent [391, 419, 420], CodeAct Agent with Browsing.8

An overview of the agent architecture is illustrated in Figure 11.3.

Interfaces The agent can interact with the environment through 3 interfaces. (1) A bash shell
that connects with the local workspace operating system environment for command execution.
(2) A Jupyter IPython server to handle interactive python [169] code execution requests and return
the execution results back. (3) A Chromium browser based on [325]. The provider provides a set
of action primitives defined by BrowserGym [94, 373], such as navigation, clicking, typing, and
scrolling. After executing these actions, the browser runtime provides a rich set of observations
about the current state of the browser, including HTML, DOM, accessibility tree [286], screenshot,
opened tabs, etc.. These observations can be also augmented with configurable attributes that

8More specifically, version 0.14.2. Full details can be found in https://github.com/All-Hands-AI/

OpenHands/tree/main/openhands/agenthub/codeact_agent

272

https://github.com/All-Hands-AI/OpenHands/tree/main/openhands/agenthub/codeact_agent
https://github.com/All-Hands-AI/OpenHands/tree/main/openhands/agenthub/codeact_agent

could allow agents to better understand web page observations, such as using a set-of-marks on
screenshot [146, 444], visible element marking, focused element, interactable element marking,
in-viewport element filtering [498], etc..

Actions The agent connects with the environment through a core set of general actions. Ac-
tions IPythonRunCellAction and CmdRunAction enable the agent to execute arbitrary Python
code and bash commands inside the sandbox environment (e.g.,, a secure isolated Linux operating
system used as our local workspace). BrowserInteractiveAction enables interaction with a
web browser with a domain-specific language for browsing introduced by BrowserGym [70, 94].
These actions provide a comprehensive, yet flexible set of primitives that cover most of the tasks
performed by human employees of TheAgentCompany, including navigation, click, hovering,
and typing, etc.

Observations Observations describe the environmental changes that the agent observes.
The main types of observations used in the CodeAct agent include the execution result of
bash terminal commands, Python programs, and browser actions. Specifically, the execution
result of browser actions is usually browser snapshots and textual representation in the form of
accessibility tree of the current browser viewport.

Workflow At each step, the underlying backbone LLM will take in prompts consisting of
previous agent history and the current observation of the environment, and generate a response
consisting of the action to execute next. On a higher level, the agent can perform the task
by executing code, including executing bash commands, Python code, or browser-specific
programming language (defined in BrowserGym).9 This general action space allows the agent
to perform various tasks, including editing files, browsing the Web, running programs, etc.

11.7 Experimental Results

In this section, we evaluate popular foundation models, both closed and open, on TheAgentCom-
pany benchmark. We use OpenHands CodeAct agent (§ 11.6) for all experiments. This serves as
a baseline for future development of both the foundation LLMs and the agent infrastructure.
Note that since LLM evaluators and NPCs are part of the environment rather than the agent

9https://github.com/ServiceNow/BrowserGym/blob/main/browsergym/core/src/browsergym/core/

action/functions.py

273

https://github.com/ServiceNow/BrowserGym/blob/main/browsergym/core/src/browsergym/core/action/functions.py
https://github.com/ServiceNow/BrowserGym/blob/main/browsergym/core/src/browsergym/core/action/functions.py

being evaulated, we fix their backbone LLM to Claude-3-5-Sonnet-20241022, which demon-
strated the best qualitative accuracy in simulating human colleagues and judging deliverables in
preliminary experiments.

11.7.1 Result Overview

Table 11.3 shows the evaluation results of both closed and open foundation models on the full
evaluation set of TheAgentCompany (175 tasks). We can see that the Claude-3.5-Sonnet is the
clear winner across all models. However, even with the strongest frontier model, it only manages
to complete 24% of the total tasks and achieves a score of 34.4% taking into account partial
completion credits. Note that this result comes at a cost: It requires an average of almost 30
steps and more than $6 to complete each task, making it the most expensive model to run both
in time and in cost. This is expected as most of the tasks in our benchmark are of long-horizon
nature. The Gemini 2.0 Flash model that comes second in terms of capability requires 40 steps
on average to complete the tasks, which is time consuming, yet only to achieve less than half the
success rate compared to the top-performing model. Surprisingly, its cost is less than $1, making
it a very cost-efficient yet relatively strong model. A qualitative examination demonstrated
that this was due to instances where the agent got stuck in a loop or aimlessly explored the
environment.

Among the open-weight models, Llama 3.1 (405B) achieves the highest performance, nearly
on par with OpenAI’s GPT-4o model, though still having a big gap behind the leading Claude
3.5 Sonnet. Interestingly, comparing the number of steps and costs between the open Llama 3.1
(405B) model and the closed OpenAI GPT-4o model, Llama 3.1 takes more steps and costs nearly
2x more to run, while having a lower success than GPT-4o. Anecdotally, our inspection showed
that GPT-4o seems to be better at giving up early, saving steps and costs if the task is clearly out
of the capacity range of the agent. This suggests that open-weight models are not always the
most cost-effective choice in agents given serving cost, especially with highly complex tasks.

On the other hand, the newer generation of Llama model, Llama 3.3 (70B) achieves a con-
siderably high performance of 6.9% success rate, on par with the much larger (405B), older
generation (Llama 3.1) model. This model also costs significantly less because of its smaller size.
This suggests a promising future for LLM development, as smaller and more efficient models
begin to catch up in agent performance.

274

Platform

0

20

40

GitLab Plane RocketChat ownCloud

Claude-3.5-sonnet Llama-3.1-405B

(a) Success rate across platforms

Task Category

0

20

40

SDE PM DS Admin HR Finance Other

Claude-3.5-sonnet Llama-3.1-405B

(b) Success rate across task categories

Figure 11.4: Comparing agent success rate across platforms (left) and task categories (right).

11.7.2 Analysis

How well do agents operate on different platforms? Table 11.4 presents performance
breakdown on tasks that involve different platforms in TheAgentCompany. A task is categorized
under a platform if one of the platforms that the task requires it. From Figure 11.4a, we can see
that most models struggle with RocketChat and ownCloud. RocketChat platform is where all the
social interaction with peers happens, and the low performance on this platform suggests that
current-day LLMs still need improvements in communicating with others. ownCloud platform
provides online Office suite functionality, and due to the complexity of the UI of web-based
Office software, it is expected that current LLMs fail badly on the platform. This suggests that the
browsing capability of the agents, especially on more complex websites, still needs improvement.
These results underscore the inherent challenges and complexities of performing tasks that
occur in real-world work environments, involve social interaction, or require understanding
and navigating complex web interfaces.

How well do agents perform on different type of tasks? Table 11.5 presents performance
breakdown on different types of tasks in TheAgentCompany. According to the nature of the task,
i.e., what kind of professionals are usually assigned with the task, the tasks in TheAgentCompany
can be categorized into several job departments: Software Development Engineering (SDE),
Project Management (PM), Data Science (DS), Administrative (Admin), Human Resources (HR),
Financial (Finance) and all the remaining (Other).

From the success rate demonstrated in Figure 11.4b, we can see that data science, adminis-
trative, and finance tasks are among the lowest, with many LLMs completing none of the tasks

275

successfully, and even the strongest Claude model achieving much less than the rest of the tasks.
On the other hand, software engineering tasks, which may seem like much harder tasks for
many humans, result in a higher success rate. This suggests that there exists a gap between the
perceived difficulty of the tasks for humans versus the difficulty for LLM agents.

For example, some tasks in the administrative and finance category involves making spread-
sheets, collecting and filling in a lot of information from various people, or reading and under-
standing images scanned by employees. These tasks are arguably easier conceptually for humans
in terms of professional skill sets than software engineering, as SDE jobs usually have a higher
barrier of entry and more prerequisites for certain knowledge. However, most LLMs achieve
a much higher score on the SDE tasks. However, LLMs fail these seemingly easier tasks due
to lack of ability to understand documents, communicate with other people, navigate complex
software and tedious processes, and autonomously automate repetitive tasks. We hypothesize
that part of the reason lies in the fact that current LLM development is heavily based on software
engineering abilities, such as coding, due to several high profile benchmarks that measure this
capability (e.g., HumanEval, SWE-Bench) as well as the abundance of publicly available training
data related to software. On the other hand, administrative and financial tasks, are usually
private data within companies, not readily available for training LLMs.

11.7.3 Common Agent Failures

Overall, the agent performance on TheAgentCompany is still low and a majority of tasks are
failed. Among those, we try to find some common and interesting agent mistakes that are often
surprising because they are usually not made by humans.

Lack of commonsense Some tasks are failed because the agent lacks the common sense and
domain background knowledge required to infer implicit assumptions. For example, one task
asked the agent to “Write the responses to /workspace/answer.docx” but does not explicitly
states that this is a Microsoft Word file. A human can infer this requirement from the file
extension. The agent instead treats it as a plain text file, writing text directly to the file, resulting
in a task failure.

Lack of social skills Sometimes, the agent fails to understand the implications and goals in
the social conversations with colleagues in TheAgentCompany. For example, one task involves
asking Alex for help, and the agent first successfully asks the right question “Could you tell me

276

who I should introduce myself to next on the team?” Then the simulated colleague Alex replied
“You should introduce yourself to Chen Xinyi next. She’s on our frontend team and would be
a great person to connect with!” At this point, a human would then talk to Chen Xinyi, but
instead the agent then decides to not follow up with her, and prematurely considers the task
accomplished.

Incompetence in browsing Often times, the biggest obstacle in tasks is the parts that require
browsing the Web. This is expected as browsing is still hard for agents given the complexity
of modern-day web UIs and the numerous distractions on a webpage. For example, on many
tasks that involve ownCloud, the closable popup that sometimes shows up and asks the user to
download the mobile phone apps for a better experience has become an obstacle. Humans can
simply click on the ‘x’ to close the popup, while the agents are stuck. Similarly, when trying
to download a file from ownCloud, there are several popups to click through before the actual
download, and each step is error prone for agents due to the complex UI.

Deceiving oneself Interestingly, we find that for some tasks, when the agent is not clear
what the next steps should be, it sometimes try to be clever and create fake “shortcuts” that omit
the hard part of a task. For example, during the execution of one task, the agent cannot find the
right person to ask questions on RocketChat. As a result, it then decides to create a shortcut
solution by renaming another user to the name of the intended user.

11.8 Implications and Future Directions

In this paper, we present TheAgentCompany, a new benchmark that stands out because it
specifically focuses on real-world tasks that would be tackled within the context of real-world
work. Unsurprisingly, current state-of-the-art agents fail to solve a majority of the tasks,
suggesting that there is a big gap for current AI agents to autonomously perform most of the
jobs a human worker would do, even in a relatively simplified benchmarking setting. Looking
at how different models perform on different types of tasks, we argue that tasks that involve
social interaction with other humans, navigating through complex user interfaces designed for
professionals, and tasks that are typically performed in private, without a significant open and
publicly available resources, are the most challenging. However, we believe that currently new
LLMs are making significant progress: not only are they becoming more and more capable in
terms of raw performance, but also more cost-efficient (e.g., Gemini 2.0 Flash). Open-weights

277

models are closing the gap between proprietary frontier models too, and the newer models are
getting smaller (e.g., Llama 3.3 70B) but with equivalent performance to previous huge models,
also showcasing that efficiency will further improve.

That said, this is just a first step towards forming a firmer grasp on how AI may affect the
tasks performed within a workspace, and it has its limitations. First, our tasks are generally on
the more straightforward side due to the need to automatically evaluate with programs and test
cases, and we do not cover more complex creative tasks such as brainstorming new product
ideas or designing system architectures. Second, we are only using one agent scaffold as the
baseline performance, and others may differ in performance. Third, while it would be interesting
to know the actual performance of human professionals on these tasks to understand how LLM
agents perform in comparison, due to resource limitations we were not able to perform this
comparison in the current iteration of TheAgentCompany. Fourth, the topic and content of
the tasks were mostly created through introspection by people familiar with these workspaces,
which may result in some disconnect with actual tasks performed in enterprise settings.

Based on this, there are many future directions for further improvement of TheAgentCom-
pany or other related benchmarks in this space. These include further expanding the benchmark
tasks to those encountered in other industries, or tasks that require physical labor. Benchmarking
may also be expanded with tasks that have more vague intents to better simulate real-world
scenarios where the goal is not immediately clear at the very beginning. Further, benchmarks
could also be expanded to include higher-level longer-horizon tasks such as conceptualizing
a new product and carrying it to execution. We hope that TheAgentCompany provides a first
step, but not the only step, towards these goals, and that we or others may build upon the open
source release of TheAgentCompany to further expand in these promising directions.

11.9 Appendix

11.9.1 More TheAgentCompany Environment Details

TheAgentCompany Overview

Company Introduction
The Agent Company is an innovative software firm specializing in distributed systems, database technologies,
and artificial intelligence. Our core business includes developing and maintaining high−performance
distributed graph databases, streaming databases, and providing advanced AI solutions.

278

Main Products and Services
1. Distributed Graph Database (based on JanusGraph)
2. Streaming Database (based on RisingWave)
3. AI Model Development and Inference Platform (based on OpenHands and llama.cpp)
4. Web Crawler Framework (based on Colly)
5. Distributed Search Engine (based on OpenSearch)
6. Low−Code Event−Driven Application Platform (based on Node−RED)

Technology Stack
− Programming Languages: Rust, Python, C++, Go, Java
− Databases: Graph databases, Streaming databases, Search engines
− AI/ML: Large Language Models (LLM)
− Others: Distributed systems, API development, Documentation management

Company Vision
To become a global leader in distributed systems and artificial intelligence, solving complex data processing
and analysis challenges through innovative technologies.

Company Mission
To provide businesses and developers with the most advanced, efficient, and user−friendly data processing
and AI tools, driving technological innovation and maximizing the value of data.

TheAgentCompany Employee Roster with Project Assignments and Slack Channels

1. AI Agent (Agent employee being tested in TheAgentCompany)
− Role: All
− Responsibilities: All
− Project: All
− Slack Channels: All

2. Sarah Johnson (Female, 42 years old)
− Role: CTO
− Responsibilities: Technical strategy planning, R&D team leadership, new technology assessment
− Project: Oversees all technical projects
− Slack Channels: All technical channels, #general, #tech−talk

3. Li Ming (Male, 35 years old)
− Role: Database Team Project Manager
− Responsibilities: Managing database projects, resource coordination, ensuring timely delivery

279

− Skills: Java, distributed systems
− Project: JanusGraph (Graph Database)
− Slack Channels: #project−graphdb, #engineering, #tech−talk

4. Zhang Wei (Male, 31 years old)
− Role: Senior Software Engineer (Streaming Database Team)
− Responsibilities: Developing and optimizing core streaming database functionalities
− Skills: Rust, database systems
− Project: RisingWave (Streaming Database)
− Slack Channels: #project−streamdb, #engineering, #tech−talk

5. Wang Fang (Female, 28 years old)
− Role: AI Researcher (AI Team)
− Responsibilities: Designing and implementing machine learning models, optimizing model performance
− Skills: Python, machine learning, LLM
− Project: OpenHands (LLM project)
− Slack Channels: #project−ai, #engineering, #tech−talk

6. Mike Chen (Male, 33 years old)
− Role: Senior Software Engineer (AI Team)
− Responsibilities: Developing and optimizing LLM inference engines
− Skills: C++, CUDA, performance optimization
− Project: llama.cpp (LLM inference project)
− Slack Channels: #project−ai, #engineering, #tech−talk

7. Emily Zhou (Female, 29 years old)
− Role: Software Engineer (Web Crawler Team)
− Responsibilities: Designing and implementing web crawler functionalities
− Skills: Go, distributed systems
− Project: Colly (Web Crawler Framework)
− Slack Channels: #project−webcrawler, #engineering, #tech−talk

8. Liu Qiang (Male, 36 years old)
− Role: Quality Assurance Engineer
− Responsibilities: Developing test strategies, executing tests, ensuring product quality
− Project: All projects (focusing on testing and quality)
− Slack Channels: All project channels, #engineering, #tech−talk

9. Priya Sharma (Female, 27 years old)
− Role: Documentation Engineer
− Responsibilities: Writing technical documentation, maintaining wiki, improving documentation

processes
− Project: Documentation (Wiki)

280

− Slack Channels: All project channels, #engineering, #tech−talk

10. Mark Johnson (Male, 40 years old)
− Role: Sales Director
− Responsibilities: Developing sales strategies, managing sales team, expanding client relationships
− Project: N/A (Sales)
− Slack Channels: #sales−marketing, #general

11. Jessica Lee (Female, 32 years old)
− Role: Marketing Manager
− Responsibilities: Developing marketing strategies, managing brand image, organizing marketing events
− Project: N/A (Marketing)
− Slack Channels: #sales−marketing, #general

12. Chen Xinyi (Female, 30 years old)
− Role: Human Resources Manager
− Responsibilities: Recruitment, employee training, compensation management
− Project: N/A (HR)
− Slack Channels: #hr−announcements, #general

13. David Wong (Male, 45 years old)
− Role: Finance Director
− Responsibilities: Financial planning, budget management, financial reporting
− Project: N/A (Finance)
− Slack Channels: #general

14. Huang Jie (Male, 34 years old)
− Role: Product Manager (Search Engine Team)
− Responsibilities: Defining product requirements, planning product roadmap, communicating with

clients
− Project: OpenSearch (Search Engine)
− Slack Channels: #project−search, #product, #tech−talk

15. Sophia Rodriguez (Female, 37 years old)
− Role: UX Designer
− Responsibilities: Designing user interfaces, improving user experience, conducting user research
− Project: All projects (focusing on user experience)
− Slack Channels: All project channels, #product, #tech−talk

16. Alex Turner (Male, 30 years old)
− Role: Software Engineer (Low−Code Platform Team)
− Project: Node−RED (Low−Code Platform)
− Slack Channels: #project−lowcode, #engineering, #tech−talk

281

17. Emma Lewis (Female, 33 years old)
− Role: Software Engineer (API Team)
− Project: API−server (Python project)
− Slack Channels: #engineering, #tech−talk

18. Jessica Chen (Female, 28 years old)
− Role: Frontend Software Engineer
− Responsibilities: Developing user interfaces, implementing responsive designs, optimizing web

performance
− Project: E−commerce Website Redesign
− Slack Channels: #project−ecommerce, #frontend, #tech−talk

TheAgentCompany Q3 2024 Quarterly Sprint Goals

Engineering Teams
1. Graph Database Team (JanusGraph)

− Optimize large−scale graph query performance
− Implement new graph analysis algorithms
− Improve stability of distributed deployments

2. Streaming Database Team (RisingWave)
− Implement new stream processing operators
− Optimize memory usage
− Improve fault recovery mechanisms

3. AI Team (OpenHands & llama.cpp)
− Integrate latest LLM models
− Optimize model inference speed
− Develop model fine−tuning functionality

4. Web Crawler Team (Colly)
− Implement distributed crawling functionality
− Improve anti−crawling detection and bypass mechanisms
− Develop data cleaning and preprocessing modules

5. Search Engine Team (OpenSearch)
− Optimize full−text search performance
− Implement new relevance ranking algorithms
− Develop custom analyzer functionality

6. Low−Code Platform Team (Node−RED)

282

− Design new visual components
− Improve workflow execution engine
− Develop more third−party service integrations

Product Team
− Conduct user research, collect product feedback
− Develop Q4 product roadmap
− Optimize product documentation and user guides

Quality Assurance Team
− Develop automated test suites
− Conduct performance and load testing
− Improve bug tracking and reporting processes

Sales and Marketing Team
− Organize industry trade show participation
− Launch new content marketing campaigns
− Develop sales team training programs

Human Resources Team
− Implement new employee development plans
− Optimize recruitment processes
− Organize team−building activities

Finance Team
− Prepare Q2 financial reports
− Develop Q4 budget plans
− Optimize financial analysis tools

TheAgentCompany Internal Documents

Employee Handbook
Company Policies and Procedures Document
Payroll and Compensation Structure Document
Performance Evaluation Forms and Guidelines
Project Management Templates (including Gantt charts, risk assessment forms, etc.)
Technical Architecture Documentation
Coding Standards and Best Practices Guide
Product Roadmap
Marketing Strategy Document
Sales Process and CRM Usage Guide
Financial Reporting Templates

283

Budget Planning Document
Human Resources Policies (including recruitment, training, promotion, etc.)
IT Security Policies and Guidelines
Customer Support Process Documentation

11.9.2 Agent-Simulated Colleagues Conversation Examples

We present some examples (see Figure 11.5, Figure 11.6 and Figure 11.7) of the agent’s interaction
with the simulated colleagues within our environment.

284

Zhang Wei
Male, 31 years old
Senior Software Engineer (Streaming Database Team)

Good morning! Which equipment do you need,
and in what quantities?

We require three desktop computers (HP
WorkStation) and three wireless mice.

Thank you for providing the details. However, the
total cost comes to $4,704, which exceeds your
department's budget. Could you please consider
reducing the equipment request to align with the
allocated budget?

I understand the budget limitations so we can cut
down on two mice and one desktop but not more
than this because these are critical for our team
to effectively work on RisingWave project.

Thank you so much for understanding. I will
update you once we confirm the order. Have a
great day!

9:43 AM

10:03 AM

10:04 AM

10:24 AM

10:25 AM

Figure 11.5: Simulated Colleague Communication Example 1 – The agent is tasked with collecting
required equipment while adhering to the department’s budget. After calculating that the
requested items exceed the budget, the agent negotiates with the simulated colleague to reduce
the request, showcasing its ability of effective communication.

285

11:23 AM

Hi Ming, where can I find the job description template
for the new grad database engineering position?

The job description template for the new grad
software engineering position is located on your local
machine under the /instruction directory with the
filename template.md

Thank you for the details. Also, what are the minimum
and preferred qualifications?

Minimum qualifications:
1. Recent or upcoming Bachelor's/Master's

Degree in Computer Science, Information
Systems, or related fields.

2. Experience with SQL and at least one
database system (e.g., MySQL, PostgreSQL).

3. Knowledge of database design, normalization,
and query optimization.

Preferred qualifications:
1. Internship experience in database

development or administration.
2. Familiarity with cloud databases (e.g., AWS

RDS, Azure SQL).
3. Strong problem-solving and troubleshooting

skills.

Thank you so much! Lastly, what is the ideal salary
range?

9:50 AM

10:06 AM

10:07 AM

10:24 AM

10:25 AM

Li Ming
Male, 34 years old
Project Manager (Graph Database Team)

The salary range for the new grad database engineer
position is between $120,000 and $150,000. If you
have further questions, feel free to ask!

11:34 AM

Figure 11.6: Simulated Colleague Communication Example 2 – The agent is tasked with writing
a job description for a new graduate software engineering position. To fulfill the task, the agent
communicates with simulated Project Manager to gather requirements. The agent requests
the job description template, minimum and preferred qualifications, and the ideal salary range.
This interaction evaluates the agent’s ability to gather information systematically and clarify
task-related requirements through effective communication.

286

Emily Zhou
Female, 29 years old
Software Engineer (Web Crawler Team)

Good morning! I'd like to schedule a meeting with
you and Liu. When are you available?

Hi there, I'm available for a meeting on
Wednesday or Thursday. What time works best
for you on those days?

Great! I’m also available on Wednesday
afternoons or Thursday mornings. Let me check
Liu Qiang's schedule and confirm.

Sounds good. Once you've checked with Liu, let
me know the final time for Wednesday or
Thursday, and I'll block it on my calendar.

Hello Emily! The final meeting time is 10:30 AM
on Thursday.

9:43 AM

10:03 AM

10:04 AM

10:04 AM

10:38 AM

Liu Qiang
Male, 36 years old
Quality Assurance Engineer

Hi Liu Qiang, I’d like to schedule a meeting with
you and Emily. She’s available on Wednesday or
Thursday. When are you available?

Hello! I’m available on Thursday for the meeting
with Emily. Please let me know what time works
best for both of you.

Oh good, I think Thursday works for us. Could we
aim for a mid-morning slot? Perhaps around
10:30 AM?

Yup. That works for me. I will send Emily a link
myself.

Thank you. The final meeting time is 10:30 AM on
Thursday. Have a great day!

10:05 AM

10:24 AM

10:25 AM

10:37 AM

10:38 AM

Figure 11.7: Simulated Colleague Communication Example 3 - The agent is tasked with schedul-
ing a meeting between NPCs Emily Zhou and Liu Qiang based on their availability. Emily is
available on Wednesday and Thursday, while Liu is only available on Thursday. The agent
identifies Thursday as the common free day and successfully proposes a mid-morning slot
at 10:30 AM, which both participants confirm. This example highlights the agent’s ability to
manage multi-turn conversations, effectively going back and forth between participants to align
schedules and finalize a meeting time.

287

Table 11.2: Example task intents and checkpoints for three domains.

Domain Task Intent Checkpoints

SWE Set up JanusGraph and run it locally with an HTTP endpoint:
• Clone JanusGraph directory under /workspace folder

(http://the-agent-company.com:8929/root/janusgraph).

• Build the binary file.

• Launch JanusGraph server locally on port 8182 with an HTTP endpoint.

Checkpoint 1 (1pt): Check if JanusGraph
repo is cloned.
Checkpoint 2 (3pts): Check if the binary
file is built (requires skipping Docker in
pom.xml, hence higher points).
Checkpoint 3 (2pts): Check the Janus-
Graph Server as an HTTP endpoint.

Finance Navigate to ownCloud at http://the-agent-company.com:8092 and
complete Section B—Alternative Simplified Credit of IRS Form 6765:
• Gather necessary information from

/Documents/Financials/TAC_financials.csv and
/workspace/research_wages.csv.

• Consult /Documents/Financials/f6765_instructions.pdf for
instructions.

• Contact the finance director (David Wong) on Rocket.Chat
(http://the-agent-company.com:3000/home) for ambiguous
questions.

• Save the filled form as /workspace/filled_f6765.pdf.

Checkpoint 1 (5pts): Check if all 16 ques-
tions in Section B of the form have been an-
swered correctly.
Checkpoint 2 (3pts): Check if the correct
finance director (DavidWong) was contacted
to answer two ambiguous questions.

PM Analyze The Agent Company’s performance and create a summary in
Plane:
• Access Plane (http://the-agent-company.com:8091/tac/) and

navigate to "Analytics."

• Collect metrics: Open Tasks, Backlog Tasks, Unstarted Tasks, Started
Tasks, Unassigned Issues, Pending Issues.

• Create a summary and share it on Rocket.Chat
(http://the-agent-company.com:3000/home) in the #kudos
channel.

Checkpoint 1 (1pt): Check if Plane was ac-
cessed and the agent navigated to "Analytics"
section.
Checkpoint 2 (3pts): Check if all required
project metrics were collected.
Checkpoint 3 (1pt): Check if the sum-
mary was shared in the #kudos channel on
Rocket.Chat.

288

http://the-agent-company.com:8929/root/janusgraph
http://the-agent-company.com:8092
http://the-agent-company.com:3000/home
http://the-agent-company.com:8091/tac/
http://the-agent-company.com:3000/home

Table 11.3: Performance comparison of various foundation models on TheAgentCompany.

Model Success Score Steps Costs

API-based Models

Claude-3.5-Sonnet 24.0% 34.4% 29.17 $6.34
Gemini-2.0-Flash 11.4% 19.0% 39.85 $0.79
GPT-4o 8.6% 16.7% 14.55 $1.29
Gemini-1.5-Pro 3.4% 8.0% 22.10 $6.78
Amazon-Nova-Pro-v1 1.7% 5.7% 19.59 $1.55

Open-weights Models

Llama-3.1-405b 7.4% 14.1% 22.95 $3.21
Llama-3.3-70b 6.9% 12.8% 20.93 $0.93
Qwen-2.5-72b 5.7% 11.8% 23.99 $1.53
Llama-3.1-70b 1.7% 6.5% 19.18 $0.83
Qwen-2-72b 1.1% 4.2% 23.70 $0.28

Table 11.4: Performance of the models in tasks that require different platforms in TheAgentCom-
pany. All numbers are percentages (%).

GitLab (71 tasks) Plane (17 tasks) RocketChat (79 tasks) ownCloud (70 tasks)
Model Success (%) Score (%) Success (%) Score (%) Success (%) Score (%) Success (%) Score (%)

API-based Models

Claude-3.5-Sonnet 30.99 40.25 41.18 50.37 21.52 34.68 10.00 21.81
Gemini-2.0-Flash 11.27 18.21 17.65 29.84 13.92 23.34 2.86 8.52
GPT-4o 11.27 19.46 23.53 33.68 5.06 16.08 1.43 7.76
Gemini-1.5-Pro 2.82 3.88 5.88 14.05 3.80 10.97 0.00 4.22
Amazon-Nova-Pro-v1 2.82 7.22 5.88 16.67 1.27 5.36 0.00 2.43

Open-weights Models

Llama-3.1-405b 5.63 11.84 29.41 39.12 8.86 16.46 0.00 4.45
Llama-3.3-70b 8.45 14.26 11.76 21.65 5.06 12.06 0.00 3.76
Qwen-2.5-72b 5.63 11.33 11.76 23.56 5.06 12.60 0.00 4.14
Llama-3.1-70b 1.41 6.09 5.88 15.35 2.53 8.23 0.00 3.32
Qwen-2-72b 1.41 1.94 5.88 12.45 0.00 4.88 0.00 2.60

289

Table 11.5: Performance of various models in tasks with different nature in TheAgentCompany.
All numbers are percentages (%).

SDE (69 tasks) PM (28 tasks) DS (14 tasks) Admin (15 tasks) HR (29 tasks) Finance (12 tasks) Other (8 tasks)
Model Success Score Success Score Success Score Success Score Success Score Success Score Success Score

API-based Models

Claude-3.5-Sonnet 30.43 38.02 35.71 51.31 14.29 21.70 0.00 11.59 24.14 34.49 8.33 25.17 12.50 22.40
Gemini-2.0-Flash 13.04 18.99 17.86 31.71 0.00 6.49 6.67 15.20 17.24 23.08 0.00 4.31 0.00 10.05
GPT-4o 13.04 19.18 17.86 32.27 0.00 4.70 6.67 13.89 0.00 8.28 0.00 7.36 0.00 10.78
Gemini-1.5-Pro 4.35 5.64 3.57 13.19 0.00 4.82 6.67 9.92 3.45 11.42 0.00 2.78 0.00 8.07
Amazon-Nova-Pro-v1 2.90 6.07 3.57 12.54 0.00 3.27 0.00 0.00 0.00 4.27 0.00 2.78 0.00 2.86

Open-weights Models

Llama-3.1-405b 5.80 11.33 21.43 35.62 0.00 5.42 0.00 3.33 6.90 12.56 0.00 5.00 12.50 17.45
Llama-3.3-70b 11.59 16.49 7.14 19.83 0.00 4.70 0.00 1.67 6.90 11.38 0.00 5.69 0.00 7.03
Qwen-2.5-72b 7.25 11.99 10.71 22.90 0.00 5.42 0.00 2.14 6.90 12.36 0.00 7.15 0.00 5.99
Llama-3.1-70b 1.45 4.77 3.57 15.16 0.00 5.42 0.00 2.42 3.45 7.19 0.00 3.82 0.00 2.86
Qwen-2-72b 2.90 3.68 0.00 7.44 0.00 4.70 0.00 0.56 0.00 4.14 0.00 3.61 0.00 4.95

290

Chapter 12

Conclusion

This thesis presented a series of approaches to enable natural language interactions with the ex-
isting computer interface. We first explored pre-training for code generation models, leveraging
external unlabeled large scale resources for improving performance on specific tasks. Next, we
perform human study of code generation, exposing a lot of promising directions for a better
natural language interface to programming. Then we improve retrieval-augmented models in
both coding and textual models. Finally, we explore the interactive use of LLMs as agents. We
built two benchmarks, WebArena and TheAgentCompany, for simpler daily online tasks and for
more consequential, real-world demanding job tasks that take place in an imaginary software
engineering company. We built an OpenHands agent platform to enable agent creation that can
utilize the full interface to the computer, including the terminal, browser, and editor. On top of it,
we tested and proposed a new agent that by combining coding and browsing in agent action and
observation space together, the agent will have a better performance, largely due to the ability
to choose the easiest route towards task completion, by either using code or using browsing.

Looking back, the recent rapid development of large language models has partially solved
some tasks that were struggling a few years ago. However, many of the previously identified
challenges are still valid even today. For example, the basic semantic parsing from natural
language to meaning representations might seem trivial today, but in order for such systems to
be truly useful, the bridge between language and the real world environment and the human
user is still a big challenge.

For a truly interactive and intelligent system that can enable humans to interact with
computers using natural language, the code generation still poses a few unsolved challenges.
For example, from human study we learned that people often need more context and knowledge
in order to judge the correctness of the generated code, and even with today strong AI coding

291

assistants, users, without enough knowledge, are still unable to confidently accept or reject the
generated code. Similarly, human intentions are usually ambiguous. People might not know
exactly what is needed and what should be specified until they gradually dive deeper into the
project. As a result, the ability for the system to ask for clarification and infer human implicit
intent with very natural interaction is very crucial but unsolved today.

From the thesis, we learned that retrieval is often necessary to achieve the goal, especially
when information sources are changing and evolving rapidly. However, with a less specified
and more implicit query, retrieval is still difficult. There has been a great improvement in terms
of both retrieval efficiency and accuracy in recent years, given clear queries. However, most of
the time, similar to what described above, the hard part is to infer what should be the actual
query - as the user input might be too high-level for it to be useful directly searching the Web,
and understanding when, where and what to retrieve remains a challenge to further improve
the factuality and provenance of these systems.

Looking forward, as discussed in the last part of the thesis, AI agents are the future towards
a better natural language interface to computers. They can interact and combine multiple
interfaces, such as computer programs, user interface, web, apps, and much more. We have
had some first attempts to benchmark the capability of such systems; however, even more
comprehensive and consequential tasks and more realistic and scalable environments are the
future. For example, what about completing a whole project from an idea to a final product
using an AI agent? New evaluations and safeguards on the safety of agents when deployed in
real world are also needed, as the interaction with the real world usually comes with greater
consequences. We also discovered the limitation of current text-only LLMs for agent tasks.
For web browsing, it is sometimes crucial to use visual input, and thus this requires more
development on multi-modal understanding of foundation models of the computer interfaces
as if the agents are human users - sharing the action space and input representation on par
with what humans would perform and perceive. Another aspect that is currently lacking is how
the agent will communicate and collaborate with other human users, and sometimes other AI
agents, in a socially intelligent way. Moreover, current research on LLM agents mostly focuses
on digital agents that interact with computers, but in the future, we would love to see the action
space and environment expand to physical world and observations.

Detailed Contributions The natural language to code generation model that first utilizes
pretraining external knowledge (Chapter 2) is published at ACL 2020. One of the largest open
source pre-trained code language models at the time of release, supporting multiple program-

292

ming languages and a comprehensive evaluation study (Chapter 3) is published in the Deep
Learning for Code (DL4C) Workshop at ICLR and the 6th Annual Symposium on Machine
Programming (MAPS) at PLDI, 2022. The human study of code generation in real-world IDE sce-
narios (Chapter 4) is published in ACM Transactions on Software Engineering and Methodology.
A better non-parametric language model utilizing “structural locality” information (Chapter 5)
is published in ICLR 2022. A comprehensive study of why non-parametric language models
like kNN-LM work (Chapter 6) is published in ICML 2023. DocPrompting that first retrieves
relevant library documentation and then generate code based on the reference (Chapter 7) is
published in ICLR 2023. FLARE that actively decides when and what to retrieve during long-form
language model generation (Chapter 8) is published in EMNLP 2023. WebArena, a realistic web
environment for building autonomous agents (Chapter 9) is published in ICLR 2024. Besides,
I also led the browsing infrastructure and agent effort as part of the larger open source agent
framework OpenHands (formerly known as OpenDevin)1, which serves as the base generalist
and coding agent platform for many of the follow-up work. Additionally, a hybrid browsing and
API-calling agent experimentation that achieves new state of the art on WebArena benchmark is
released (Chapter 10). A new agent benchmark, TheAgentCompany, (Chapter 11) is also released,
containing more consequential tasks that would happen inside real world workplace scenarios,
to provide on step-up towards more complexity and importance than the daily online tasks
previously contained in WebArena.

The work presented here has also inspired my other relevant research projects not included
in the thesis. These include probing and prompting language models for factual knowledge
(TACL paper), a benchmark for structured procedural knowledge extraction from cooking
videos (EMNLP 2020 Workshop paper), a code model learning structural edits via incremental
tree transformations (ICLR 2021 paper), a neuro-symbolic language model with automaton-
augmented retrieval (ICML 2022 paper), a benchmark called MCoNaLa for code generation from
multiple natural languages (EACL 2023 paper) and a hierarchical prompting method that assists
LLMs on web navigation (EMNLP 2023 paper), a scalable data synthesis recipe called Synatra
for training digital agents by turning indirect knowledge into direct demonstrations (NeurIPS
2024 paper).

1https://github.com/All-Hands-AI/OpenHands

293

https://github.com/All-Hands-AI/OpenHands

294

Bibliography

[1] Talor Abramovich, Meet Udeshi, Minghao Shao, Kilian Lieret, Haoran Xi, Kimberly Milner,
Sofija Jancheska, John Yang, Carlos E. Jimenez, Farshad Khorrami, Prashanth Krishna-
murthy, Brendan Dolan-Gavitt, Muhammad Shafique, Karthik Narasimhan, Ramesh Karri,
and Ofir Press. Enigma: Enhanced interactive generative model agent for ctf challenges,
2024. URL https://arxiv.org/abs/2409.16165.

[2] R. Agashe, Srini Iyer, and Luke Zettlemoyer. Juice: A large scale distantly supervised
dataset for open domain context-based code generation. In 2019 Conference on Empirical

Methods in Natural Language Processing and 9th International Joint Conference on Natural

Language Processing (EMNLP/IJCNLP), 2019.

[3] Rajas Agashe, Srinivasan Iyer, and Luke Zettlemoyer. JuICe: A large scale distantly
supervised dataset for open domain context-based code generation. In Proceedings of

the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th

International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
5435–5445, Hong Kong, China, November 2019. Association for Computational Linguistics.
doi: 10.18653/v1/D19-1546. URL https://www.aclweb.org/anthology/D19-1546.

[4] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified pre-
training for program understanding and generation. In Proceedings of the 2021 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pages 2655–2668, Online, June 2021. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2021.naacl-main.211.

[5] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron
David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al.
Do as i can, not as i say: Grounding language in robotic affordances. arXiv preprint

arXiv:2204.01691, 2022.

[6] Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki,

295

https://arxiv.org/abs/2409.16165
https://www.aclweb.org/anthology/D19-1546
https://www.aclweb.org/anthology/2021.naacl-main.211

Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, et al.
Santacoder: don’t reach for the stars! arXiv preprint arXiv:2301.03988, 2023.

[7] Miltiadis Allamanis. The adverse effects of code duplication in machine learning models
of code. In Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas,

New Paradigms, and Reflections on Programming and Software, pages 143–153, 2019.

[8] Miltiadis Allamanis and Charles Sutton. Mining source code repositories at massive scale
using language modeling. In 2013 10th Working Conference on Mining Software Repositories

(MSR), pages 207–216. IEEE, 2013.

[9] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. Learning natural
coding conventions. In International Symposium on Foundations of Software Engineering

(ESEC/FSE), pages 281–293, 2014.

[10] Miltiadis Allamanis, Daniel Tarlow, A. Gordon, and Y. Wei. Bimodal modelling of source
code and natural language. In The 32nd International Conference on Machine Learning

(ICML), 2015.

[11] Miltiadis Allamanis, Daniel Tarlow, Andrew D. Gordon, and Yi Wei. Bimodal modelling of
source code and natural language. In Francis R. Bach andDavidM. Blei, editors, Proceedings
of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11

July 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 2123–2132.
JMLR.org, 2015. URL http://proceedings.mlr.press/v37/allamanis15.html.

[12] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A survey of
machine learning for big code and naturalness. ACM Computing Surveys (CSUR), 51(4):
1–37, 2018.

[13] Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav. Structural language models of code.
In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18

July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages
245–256. PMLR, 2020. URL http://proceedings.mlr.press/v119/alon20a.html.

[14] Uri Alon, Frank F Xu, Junxian He, Sudipta Sengupta, Dan Roth, and Graham Neubig.
Neuro-symbolic language modeling with automaton-augmented retrieval. arXiv preprint
arXiv:2201.12431, 2022.

[15] S. Amann, Sebastian Proksch, and S. Nadi. Feedbag: An interaction tracker for visual
studio. International Conference on Program Comprehension (ICPC), pages 1–3, 2016.

296

http://proceedings.mlr.press/v37/allamanis15.html
http://proceedings.mlr.press/v119/alon20a.html

[16] Sven Amann, Sebastian Proksch, Sarah Nadi, and Mira Mezini. A study of visual studio
usage in practice. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), volume 1, pages 124–134. IEEE, 2016.

[17] Dario Amodei and Lex Fridman. Dario Amodei: Anthropic CEO on Claude, AGI & the
Future of AI & Humanity | Lex Fridman Podcast #452, November 2024. URL https:

//lexfridman.com/dario-amodei-transcript.

[18] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf,
Ian D. Reid, Stephen Gould, and Anton van den Hengel. Vision-and-language navigation:
Interpreting visually-grounded navigation instructions in real environments. In 2018 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,

June 18-22, 2018, pages 3674–3683. IEEE Computer Society, 2018. doi: 10.1109/CVPR.2018.
00387. URL http://openaccess.thecvf.com/content_cvpr_2018/html/Anderson_

Vision-and-Language_Navigation_Interpreting_CVPR_2018_paper.html.

[19] Ion Androutsopoulos, Graeme D Ritchie, and Peter Thanisch. Natural language interfaces
to databases–an introduction. Natural language engineering, 1(1):29–81, 1995.

[20] Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre
Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu, JonathanH.
Clark, Laurent El Shafey, Yanping Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica
Moreira, Mark Omernick, Kevin Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao, Yuanzhong
Xu, Yujing Zhang, Gustavo Hernandez Abrego, Junwhan Ahn, Jacob Austin, Paul Barham,
Jan Botha, James Bradbury, Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong
Cheng, Colin Cherry, Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clément
Crepy, Shachi Dave, Mostafa Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz, Nan Du,
Ethan Dyer, Vlad Feinberg, Fangxiaoyu Feng, Vlad Fienber, Markus Freitag, Xavier Garcia,
Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-Ari, Steven Hand, Hadi Hashemi, Le Hou,
Joshua Howland, Andrea Hu, Jeffrey Hui, Jeremy Hurwitz, Michael Isard, Abe Ittycheriah,
Matthew Jagielski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun, Sneha Kudugunta,
Chang Lan, Katherine Lee, Benjamin Lee, Eric Li, Music Li, Wei Li, YaGuang Li, Jian Li,
Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu, Frederick Liu, Marcello Maggioni, Aroma
Mahendru, Joshua Maynez, Vedant Misra, Maysam Moussalem, Zachary Nado, John
Nham, Eric Ni, Andrew Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex
Polozov, Reiner Pope, Siyuan Qiao, Emily Reif, Bryan Richter, Parker Riley, Alex Castro
Ros, Aurko Roy, Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone, Daniel

297

https://lexfridman.com/dario-amodei-transcript
https://lexfridman.com/dario-amodei-transcript
http://openaccess.thecvf.com/content_cvpr_2018/html/Anderson_Vision-and-Language_Navigation_Interpreting_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Anderson_Vision-and-Language_Navigation_Interpreting_CVPR_2018_paper.html

Smilkov, David R. So, Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay Vasudevan,
Kiran Vodrahalli, Xuezhi Wang, Pidong Wang, Zirui Wang, Tao Wang, John Wieting,
Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang,
Steven Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav Petrov, and Yonghui Wu.
Palm 2 technical report, 2023.

[21] Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2023. URL
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/

Model_Card_Claude_3.pdf.

[22] Yigal Arens, Craig A Knoblock, and Wei-Min Shen. Query reformulation for dynamic
information integration. Journal of Intelligent Information Systems, 6(2-3):99–130, 1996.

[23] Philip Arthur, Graham Neubig, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura.
Semantic parsing of ambiguous input through paraphrasing and verification. Transactions
of the Association for Computational Linguistics (TACL), 3:571–584, 2015.

[24] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski,
David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis
with large language models. ArXiv preprint, abs/2108.07732, 2021. URL https://arxiv.

org/abs/2108.07732.

[25] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

[26] Alberto Bacchelli, Luca Ponzanelli, and Michele Lanza. Harnessing stack overflow for
the ide. In International Workshop on Recommendation Systems for Software Engineering

(RSSE), pages 26–30. IEEE, 2012.

[27] Alexei Baevski and Michael Auli. Adaptive input representations for neural language
modeling. arXiv preprint arXiv:1809.10853, 2018.

[28] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. In Yoshua Bengio and Yann LeCun, editors, 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May

7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1409.0473.

[29] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel
Tarlow. Deepcoder: Learning to write programs. 5th International Conference on Learning

Representations (ICLR), 2017.

298

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
http://arxiv.org/abs/1409.0473

[30] S. Barman, Sarah E. Chasins, Rastislav Bodík, and Sumit Gulwani. Ringer: web automation
by demonstration. Proceedings of the 2016 ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications, 2016.

[31] D. Basin, Y. Deville, P. Flener, A. Hamfelt, and Jørgen Fischer Nilsson. Synthesis of
programs in computational logic. In Program Development in Computational Logic, 2004.

[32] Nathanaël Beau and Benoit Crabbé. The impact of lexical and grammatical process-
ing on generating code from natural language. In Findings of the Association for

Computational Linguistics: ACL 2022, pages 2204–2214, Dublin, Ireland, 2022. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.173. URL
https://aclanthology.org/2022.findings-acl.173.

[33] Andrew Bell, Malcolm Fairbrother, and Kelvyn Jones. Fixed and random effects models:
making an informed choice. Quality & Quantity, 53(2):1051–1074, 2019.

[34] Tony Beltramelli. pix2code: Generating code from a graphical user interface screenshot. In
Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems,

EICS 2018, Paris, France, June 19-22, 2018, pages 3:1–3:6. ACM, 2018. doi: 10.1145/3220134.
3220135. URL https://doi.org/10.1145/3220134.3220135.

[35] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural prob-
abilistic language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.
URL http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf.

[36] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on
Freebase from question-answer pairs. In Proceedings of the 2013 Conference on Empirical

Methods in Natural Language Processing, pages 1533–1544, Seattle, Washington, USA,
October 2013. Association for Computational Linguistics. URL https://www.aclweb.

org/anthology/D13-1160.

[37] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on
freebase from question-answer pairs. In Proceedings of the 2013 conference on empirical

methods in natural language processing (EMNLP), pages 1533–1544, 2013.

[38] Yonatan Bisk, Jan Buys, Karl Pichotta, and Yejin Choi. Benchmarking hierarchical script
knowledge. In Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers), pages 4077–4085, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1412. URL https://www.aclweb.org/

299

https://aclanthology.org/2022.findings-acl.173
https://doi.org/10.1145/3220134.3220135
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.aclweb.org/anthology/D13-1160
https://www.aclweb.org/anthology/D13-1160
https://www.aclweb.org/anthology/N19-1412
https://www.aclweb.org/anthology/N19-1412
https://www.aclweb.org/anthology/N19-1412

anthology/N19-1412.

[39] Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-Tensorflow, 2021. URL https:

//doi.org/10.5281/zenodo.5297715. If you use this software, please cite it using these
metadata.

[40] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding,
Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai
Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel
Weinbach. GPT-NeoX-20B: An open-source autoregressive language model. 2022.

[41] Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical
research with large language models. Nature, 624(7992):570–578, 2023.

[42] Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li,
Yadong Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, et al. Windows agent arena:
Evaluating multi-modal os agents at scale. arXiv preprint arXiv:2409.08264, 2024.

[43] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie
Millican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark,
Diego de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron
Huang, Loren Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini,
Geoffrey Irving, Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich
Elsen, and Laurent Sifre. Improving language models by retrieving from trillions of tokens.
In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan
Sabato, editors, International Conference on Machine Learning, ICML 2022, 17-23 July 2022,

Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages
2206–2240. PMLR, 2022. URL https://proceedings.mlr.press/v162/borgeaud22a.

html.

[44] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford,
Katie Millican, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc,
Aidan Clark, et al. Improving language models by retrieving from trillions of tokens. In
International conference on machine learning, pages 2206–2240. PMLR, 2022.

[45] S.R.K. Branavan, Harr Chen, Luke Zettlemoyer, and Regina Barzilay. Reinforcement
learning for mapping instructions to actions. In Proceedings of the Joint Conference

of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on

300

https://www.aclweb.org/anthology/N19-1412
https://www.aclweb.org/anthology/N19-1412
https://www.aclweb.org/anthology/N19-1412
https://www.aclweb.org/anthology/N19-1412
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://proceedings.mlr.press/v162/borgeaud22a.html
https://proceedings.mlr.press/v162/borgeaud22a.html

Natural Language Processing of the AFNLP, pages 82–90, Suntec, Singapore, August 2009.
Association for Computational Linguistics. URL https://www.aclweb.org/anthology/

P09-1010.

[46] S.R.K. Branavan, Harr Chen, Luke Zettlemoyer, and Regina Barzilay. Reinforcement
learning for mapping instructions to actions. In Proceedings of the Joint Conference of

the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural

Language Processing of the AFNLP, pages 82–90, Suntec, Singapore, 2009. Association for
Computational Linguistics. URL https://aclanthology.org/P09-1010.

[47] S.R.K. Branavan, David Silver, and Regina Barzilay. Learning to win by reading man-
uals in a Monte-Carlo framework. In Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human Language Technologies, pages 268–
277, Portland, Oregon, USA, 2011. Association for Computational Linguistics. URL
https://aclanthology.org/P11-1028.

[48] J. Brandt, P. Guo, J. Lewenstein, Mira Dontcheva, and Scott R. Klemmer. Two studies of
opportunistic programming: interleaving web foraging, learning, and writing code. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), 2009.

[49] Joel Brandt, Philip J Guo, Joel Lewenstein, Mira Dontcheva, and Scott R Klemmer. Two stud-
ies of opportunistic programming: interleaving web foraging, learning, and writing code.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages
1589–1598. ACM, 2009. URL http://pgbovine.net/publications/opportunistic-

programming-two-studies_CHI-2009.pdf.

[50] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R Klemmer. Example-centric
programming: integrating web search into the development environment. In Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Systems, pages 513–
522. ACM, 2010. URL https://hci.stanford.edu/publications/2010/blueprint/

brandt_chi10_blueprint.pdf.

[51] Denny Britz, Quoc Le, and Reid Pryzant. Effective domain mixing for neural machine
translation. In Proceedings of the Second Conference on Machine Translation, pages 118–126,
2017.

[52] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016. URL https://arxiv.org/abs/1606.

01540.

301

https://www.aclweb.org/anthology/P09-1010
https://www.aclweb.org/anthology/P09-1010
https://aclanthology.org/P09-1010
https://aclanthology.org/P11-1028
http://pgbovine.net/publications/opportunistic-programming-two-studies_CHI-2009.pdf
http://pgbovine.net/publications/opportunistic-programming-two-studies_CHI-2009.pdf
https://hci.stanford.edu/publications/2010/blueprint/brandt_chi10_blueprint.pdf
https://hci.stanford.edu/publications/2010/blueprint/brandt_chi10_blueprint.pdf
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540

[53] Marc Brockschmidt, Miltiadis Allamanis, Alexander L. Gaunt, and Oleksandr Polozov.
Generative code modeling with graphs. In 7th International Conference on Learning

Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.
URL https://openreview.net/forum?id=Bke4KsA5FX.

[54] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33:

Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December

6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/

1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

[55] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33:

Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December

6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/

1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

[56] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz,
Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial
general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

[57] Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Kumar, Kate Saenko, and Bryan A.
Plummer. A dataset for interactive vision-language navigation with unknown command
feasibility. In Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel,

October 23–27, 2022, Proceedings, Part VIII, page 312–328, Berlin, Heidelberg, 2022. Springer-

302

https://openreview.net/forum?id=Bke4KsA5FX
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

Verlag. ISBN 978-3-031-20073-1. doi: 10.1007/978-3-031-20074-8_18. URL https://doi.

org/10.1007/978-3-031-20074-8_18.

[58] Brock Angus Campbell and Christoph Treude. Nlp2code: Code snippet content assist via
natural language tasks. In International Conference on Software Maintenance and Evolution

(ICSME), pages 628–632. IEEE, 2017.

[59] Veronica Cateté and T. Barnes. Application of the delphi method in computer science
principles rubric creation. Proceedings of the 2017 ACM Conference on Innovation and

Technology in Computer Science Education, 2017.

[60] Harrison Chase. LangChain, October 2022. URL https://github.com/langchain-

ai/langchain.

[61] Sarah E. Chasins, S. Barman, Rastislav Bodík, and Sumit Gulwani. Browser record and
replay as a building block for end-user web automation tools. Proceedings of the 24th
International Conference on World Wide Web (WWW), 2015.

[62] Sarah E. Chasins, Maria Mueller, and Rastislav Bodík. Rousillon: Scraping distributed
hierarchical web data. Proceedings of the 31st Annual ACM Symposium on User Interface

Software and Technology (UIST), 2018.

[63] Danqi Chen, Adam Fisch, JasonWeston, and Antoine Bordes. Reading wikipedia to answer
open-domain questions. In Regina Barzilay and Min-Yen Kan, editors, Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver,

Canada, July 30 - August 4, Volume 1: Long Papers, pages 1870–1879. Association for
Computational Linguistics, 2017. doi: 10.18653/v1/P17-1171. URL https://doi.org/10.

18653/v1/P17-1171.

[64] Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F. Karlsson, Jie Fu,
and Yemin Shi. Autoagents: A framework for automatic agent generation, 2024.

[65] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluat-
ing large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[66] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple
framework for contrastive learning of visual representations. In Proceedings of the 37th

International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pages 1597–1607. PMLR, 2020.
URL http://proceedings.mlr.press/v119/chen20j.html.

303

https://doi.org/10.1007/978-3-031-20074-8_18
https://doi.org/10.1007/978-3-031-20074-8_18
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
http://proceedings.mlr.press/v119/chen20j.html

[67] Weize Chen, Ziming You, Ran Li, Yitong Guan, Chen Qian, Chenyang Zhao, Cheng Yang,
Ruobing Xie, Zhiyuan Liu, and Maosong Sun. Internet of agents: Weaving a web of
heterogeneous agents for collaborative intelligence. arXiv preprint arXiv:2407.07061, 2024.

[68] X. Chen, C. Liu, and D. Song. Execution-guided neural program synthesis. In 7th

International Conference on Learning Representations (ICLR), 2019.

[69] Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai
Chen, and Feng Zhao. Agent-FLAN: Designing data and methods of effective agent tuning
for large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors,
Findings of the Association for Computational Linguistics ACL 2024, pages 9354–9366,
Bangkok, Thailand and virtual meeting, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-acl.557. URL https://aclanthology.org/

2024.findings-acl.557.

[70] De Chezelles, Thibault Le Sellier, Maxime Gasse, Alexandre Lacoste, Alexandre Drouin,
Massimo Caccia, Léo Boisvert, Megh Thakkar, Tom Marty, Rim Assouel, et al. The
browsergym ecosystem for web agent research. arXiv preprint arXiv:2412.05467, 2024.

[71] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations us-
ing RNN encoder–decoder for statistical machine translation. In Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1724–1734, Doha, Qatar, October 2014. Association for Computational Linguistics. doi:
10.3115/v1/D14-1179. URL https://www.aclweb.org/anthology/D14-1179.

[72] François Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. ARC Prize 2024:
Technical Report, December 2024. URL https://arcprize.org/media/arc-prize-

2024-technical-report.pdf.

[73] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari,
Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Hen-
ryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiri-

304

https://aclanthology.org/2024.findings-acl.557
https://aclanthology.org/2024.findings-acl.557
https://www.aclweb.org/anthology/D14-1179
https://arcprize.org/media/arc-prize-2024-technical-report.pdf
https://arcprize.org/media/arc-prize-2024-technical-report.pdf

donov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai,
Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern,
Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language model-
ing with pathways. CoRR, abs/2204.02311, 2022. doi: 10.48550/arXiv.2204.02311. URL
https://doi.org/10.48550/arXiv.2204.02311.

[74] Chenhui Chu, Raj Dabre, and Sadao Kurohashi. An empirical comparison of domain
adaptation methods for neural machine translation. In Proceedings of the 55th Annual

Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages
385–391, 2017.

[75] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law distributions in
empirical data. SIAM review, 51(4):661–703, 2009.

[76] J. Cohen. Applied multiple regression/correlation analysis for the behavioral sciences.
Lawrence Erlbaum, 2003. ISBN 0805822232.

[77] Nachshon Cohen, Oren Kalinsky, Yftah Ziser, and Alessandro Moschitti. Wikisum: Co-
herent summarization dataset for efficient human-evaluation. In Chengqing Zong, Fei
Xia, Wenjie Li, and Roberto Navigli, editors, Proceedings of the 59th Annual Meeting

of the Association for Computational Linguistics and the 11th International Joint Confer-

ence on Natural Language Processing, ACL/IJCNLP 2021, (Volume 2: Short Papers), Virtual

Event, August 1-6, 2021, pages 212–219. Association for Computational Linguistics, 2021.
doi: 10.18653/v1/2021.acl-short.28. URL https://doi.org/10.18653/v1/2021.acl-

short.28.

[78] Alexis Conneau and Guillaume Lample. Cross-lingual language model pretraining. Ad-
vances in Neural Information Processing Systems, 32:7059–7069, 2019.

[79] Harald Cramér. Mathematical methods of statistics, volume 43. Princeton University Press,
1999.

[80] A. Cypher, Daniel C. Halbert, D. Kurlander, H. Lieberman, D. Maulsby, B. Myers, and Alan
Turransky. Watch what i do: programming by demonstration. 1993.

[81] Deborah A. Dahl, Madeleine Bates, Michael Brown, William Fisher, Kate Hunicke-Smith,
Christine Pao David Pallett, Alexander Rudnicky, , and Elizabeth Shriber. Expanding the
scope of the ATIS task: The ATIS-3 corpus. Proceedings of the workshop on Human Language

305

https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.18653/v1/2021.acl-short.28
https://doi.org/10.18653/v1/2021.acl-short.28

Technology, pages 43–48, 1994. URL http://dl.acm.org/citation.cfm?id=1075823.

[82] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhut-
dinov. Transformer-XL: Attentive language models beyond a fixed-length context. In
Proceedings of ACL, 2019.

[83] M. Dawood, Khalid A. Buragga, Abdul Raouf Khan, and Noor Zaman. Rubric based
assessment plan implementation for computer science program: A practical approach.
Proceedings of 2013 IEEE International Conference on Teaching, Assessment and Learning

for Engineering (TALE), pages 551–555, 2013.

[84] David Demeter, Gregory Kimmel, and Doug Downey. Stolen probability: A structural
weakness of neural language models. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, pages 2191–2197, 2020.

[85] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun,
and Yu Su. Mind2web: Towards a generalist agent for the web, 2023.

[86] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan
Sun, and Yu Su. Mind2web: Towards a generalist agent for the web. In Thirty-seventh

Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2023.
URL https://openreview.net/forum?id=kiYqbO3wqw.

[87] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark Marron,
and Subhajit Roy. Program synthesis using natural language. In Proceedings of the 38th

International Conference on Software Engineering, pages 345–356, 2016.

[88] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the

2019 Conference of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–
4186, Minneapolis, Minnesota, 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

[89] Edsger W Dijkstra. On the foolishness of “natural language programming”. In Program

Construction, pages 51–53. Springer, 1979.

[90] Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan, Michael Auli, and Jason Weston.
Wizard of wikipedia: Knowledge-powered conversational agents. In 7th International

Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=r1l73iRqKm.

306

http://dl.acm.org/citation.cfm?id=1075823
https://openreview.net/forum?id=kiYqbO3wqw
https://aclanthology.org/N19-1423
https://openreview.net/forum?id=r1l73iRqKm

[91] Li Dong and Mirella Lapata. Language to logical form with neural attention. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), pages 33–43, Berlin, Germany, August 2016. Association for Computational
Linguistics. doi: 10.18653/v1/P16-1004. URL https://www.aclweb.org/anthology/

P16-1004.

[92] Li Dong and Mirella Lapata. Coarse-to-fine decoding for neural semantic parsing. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 731–742, Melbourne, Australia, July 2018. Association for
Computational Linguistics. doi: 10.18653/v1/P18-1068. URL https://www.aclweb.org/

anthology/P18-1068.

[93] Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme,
Tom Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, et al.
Workarena: How capable are web agents at solving common knowledge work tasks?
arXiv preprint arXiv:2403.07718, 2024.

[94] Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme,
Tom Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas
Chapados, and Alexandre Lacoste. Workarena: How capable are web agents at solving
common knowledge work tasks?, 2024.

[95] Andrew Drozdov, Shufan Wang, Razieh Rahimi, Andrew McCallum, Hamed Zamani, and
Mohit Iyyer. You can’t pick your neighbors, or can you? when and how to rely on retrieval
in the kNN-LM. In Findings of the Association for Computational Linguistics: EMNLP 2022,
pages 2997–3007, Abu Dhabi, United Arab Emirates, December 2022. Association for
Computational Linguistics. URL https://aclanthology.org/2022.findings-emnlp.

218.

[96] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3
herd of models. arXiv preprint arXiv:2407.21783, 2024.

[97] Zane Durante, Bidipta Sarkar, Ran Gong, Rohan Taori, Yusuke Noda, Paul Tang, Ehsan
Adeli, Shrinidhi Kowshika Lakshmikanth, Kevin Schulman, Arnold Milstein, Demetri
Terzopoulos, Ade Famoti, Noboru Kuno, Ashley Llorens, Hoi Vo, Katsu Ikeuchi, Li Fei-Fei,
Jianfeng Gao, Naoki Wake, and Qiuyuan Huang. An interactive agent foundation model,
2024. URL https://arxiv.org/abs/2402.05929.

307

https://www.aclweb.org/anthology/P16-1004
https://www.aclweb.org/anthology/P16-1004
https://www.aclweb.org/anthology/P18-1068
https://www.aclweb.org/anthology/P18-1068
https://aclanthology.org/2022.findings-emnlp.218
https://aclanthology.org/2022.findings-emnlp.218
https://arxiv.org/abs/2402.05929

[98] K. Ellis, Maxwell Nye, Y. Pu, Felix Sosa, J. Tenenbaum, and Armando Solar-Lezama. Write,
execute, assess: Program synthesis with a repl. In 33rd Conference on Neural Information

Processing Systems (NeurIPS), 2019.

[99] Tyna Eloundou, Sam Manning, Pamela Mishkin, and Daniel Rock. GPTs are GPTs: An
Early Look at the Labor Market Impact Potential of Large Language Models, 2023.

[100] Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael
Auli. ELI5: long form question answering. In Anna Korhonen, David R. Traum, and Lluís
Màrquez, editors, Proceedings of the 57th Conference of the Association for Computational

Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages
3558–3567. Association for Computational Linguistics, 2019. doi: 10.18653/v1/p19-1346.
URL https://doi.org/10.18653/v1/p19-1346.

[101] Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu,
Andrew Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building
open-ended embodied agents with internet-scale knowledge. In Thirty-sixth Conference

on Neural Information Processing Systems Datasets and Benchmarks Track, 2022. URL
https://openreview.net/forum?id=rc8o_j8I8PX.

[102] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

[103] Y. Feng, R. Martins, Osbert Bastani, and Isil Dillig. Program synthesis using conflict-driven
learning. Proceedings of the 39th ACM SIGPLAN Conference on Programming Language

Design and Implementation, 2018.

[104] Zhangyin Feng, Daya Guo, Duyu Tang, N. Duan, X. Feng, Ming Gong, Linjun Shou, B. Qin,
Ting Liu, Daxin Jiang, and M. Zhou. Codebert: A pre-trained model for programming
and natural languages. In 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP), 2020.

[105] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Lin-
jun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for
programming and natural languages. arXiv preprint arXiv:2002.08155, 2020.

[106] John K. Feser, S. Chaudhuri, and Isil Dillig. Synthesizing data structure transformations
from input-output examples. In 36th annual ACM SIGPLAN conference on Programming

Language Design and Implementation (PLDI), 2015.

[107] Andrew Forward and Timothy C Lethbridge. The relevance of software documentation,

308

https://doi.org/10.18653/v1/p19-1346
https://openreview.net/forum?id=rc8o_j8I8PX

tools and technologies: a survey. In Proceedings of the 2002 ACM symposium on Document

engineering, pages 26–33, 2002.

[108] Christine Franks, Zhaopeng Tu, Premkumar Devanbu, and Vincent Hellendoorn.
CACHECA: A cache language model based code suggestion tool. In International Confer-

ence on Software Engineering (ICSE), volume 2, pages 705–708. IEEE, 2015.

[109] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg. Does
automated unit test generation really help software testers? a controlled empirical study.
ACM Transactions on Software Engineering and Methodology (TOSEM), 24(4):1–49, 2015.

[110] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi
Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model
for code infilling and synthesis. ArXiv preprint, abs/2204.05999, 2022. URL https:

//arxiv.org/abs/2204.05999.

[111] Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon
Bae, and Honglak Lee. Autoguide: Automated generation and selection of context-aware
guidelines for large language model agents. In ICML 2024Workshop on LLMs and Cognition,
2024. URL https://openreview.net/forum?id=Zu1MihB661.

[112] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster,
Jason Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset
of diverse text for language modeling. ArXiv preprint, abs/2101.00027, 2021. URL https:

//arxiv.org/abs/2101.00027.

[113] Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval
without relevance labels. CoRR, abs/2212.10496, 2022. doi: 10.48550/arXiv.2212.10496.
URL https://doi.org/10.48550/arXiv.2212.10496.

[114] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. Pal: Program-aided language models. In International Conference on

Machine Learning, pages 10764–10799. PMLR, 2023.

[115] Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of
sentence embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural

Language Processing, pages 6894–6910, Online and Punta Cana, Dominican Republic, 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.552. URL
https://aclanthology.org/2021.emnlp-main.552.

[116] Paul Gauthier. How aider scored sota 26.3% on swe bench lite | aider. https://aider.

309

https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
https://openreview.net/forum?id=Zu1MihB661
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.48550/arXiv.2212.10496
https://aclanthology.org/2021.emnlp-main.552
https://aider.chat/2024/05/22/swe-bench-lite.html
https://aider.chat/2024/05/22/swe-bench-lite.html
https://aider.chat/2024/05/22/swe-bench-lite.html

chat/2024/05/22/swe-bench-lite.html. Accessed: 2024-06-05.

[117] AndrewGelman and Jennifer Hill. Data analysis using regression andmultilevel/hierarchical

models. Cambridge University Press, 2006.

[118] Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did
aristotle use a laptop? a question answering benchmark with implicit reasoning strategies.
Transactions of the Association for Computational Linguistics, 9:346–361, 2021.

[119] J. Ginsparg. Natural language processing in an automatic programming domain. 1978.

[120] John M. Giorgi, Luca Soldaini, Bo Wang, Gary D. Bader, Kyle Lo, Lucy Lu Wang, and
Arman Cohan. Exploring the challenges of open domain multi-document summarization.
CoRR, abs/2212.10526, 2022. doi: 10.48550/arXiv.2212.10526. URL https://doi.org/10.

48550/arXiv.2212.10526.

[121] Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon, Dieter Fox,
and Ali Farhadi. IQA: visual question answering in interactive environments. In 2018

IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,

UT, USA, June 18-22, 2018, pages 4089–4098. IEEE Computer Society, 2018. doi: 10.1109/
CVPR.2018.00430. URL http://openaccess.thecvf.com/content_cvpr_2018/html/

Gordon_IQA_Visual_Question_CVPR_2018_paper.html.

[122] Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural language models
with a continuous cache. arXiv preprint arXiv:1612.04426, 2016.

[123] Edouard Grave, Moustapha Cissé, and Armand Joulin. Unbounded cache model for online
language modeling with open vocabulary. arXiv preprint arXiv:1711.02604, 2017.

[124] Significant Gravitas. Auto-gpt: An autonomous gpt-4 experiment, 2023. URL https://github.
com/Significant-Gravitas/Auto-GPT, 2023.

[125] Andreas Grivas, Nikolay Bogoychev, and Adam Lopez. Low-rank softmax can have
unargmaxable classes in theory but rarely in practice. In Proceedings of the 60th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
6738–6758, 2022.

[126] Barbara J Grosz, Douglas E Appelt, Paul A Martin, and Fernando CN Pereira. Team:
An experiment in the design of transportable natural-language interfaces. Artificial

Intelligence, 32(2):173–243, 1987.

[127] Shuchi Grover, S. Basu, and Patricia K. Schank. What we can learn about student learning

310

https://aider.chat/2024/05/22/swe-bench-lite.html
https://aider.chat/2024/05/22/swe-bench-lite.html
https://aider.chat/2024/05/22/swe-bench-lite.html
https://aider.chat/2024/05/22/swe-bench-lite.html
https://doi.org/10.48550/arXiv.2212.10526
https://doi.org/10.48550/arXiv.2212.10526
http://openaccess.thecvf.com/content_cvpr_2018/html/Gordon_IQA_Visual_Question_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Gordon_IQA_Visual_Question_CVPR_2018_paper.html

from open-ended programming projects in middle school computer science. Proceedings
of the 49th ACM Technical Symposium on Computer Science Education, 2018.

[128] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. Deep API learning.
In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering, pages 631–642. ACM, 2016. URL https://dl.acm.org/citation.

cfm?id=2950334.

[129] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep code search. In 2018 IEEE/ACM

40th International Conference on Software Engineering (ICSE), pages 933–944. IEEE, 2018.

[130] Yu Gu, Yiheng Shu, Hao Yu, Xiao Liu, Yuxiao Dong, Jie Tang, Jayanth Srinivasa, Hugo
Latapie, and Yu Su. Middleware for llms: Tools are instrumental for language agents in
complex environments, 2024. URL https://arxiv.org/abs/2402.14672.

[131] Sumit Gulwani. Automating string processing in spreadsheets using input-output exam-
ples. ACM SIGPLAN Notices, 46(1):317–330, 2011.

[132] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv
Kumar. Accelerating large-scale inference with anisotropic vector quantization. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18

July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages
3887–3896. PMLR, 2020. URL http://proceedings.mlr.press/v119/guo20h.html.

[133] Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck,
and Aleksandra Faust. A real-world webagent with planning, long context understanding,
and program synthesis. arXiv preprint arXiv:2307.12856, 2023.

[134] Izzeddin Gur, Hiroki Furuta, Austin V Huang, Mustafa Safdari, Yutaka Matsuo, Douglas
Eck, and Aleksandra Faust. A real-world webagent with planning, long context under-
standing, and program synthesis. In The Twelfth International Conference on Learning

Representations, 2024. URL https://openreview.net/forum?id=9JQtrumvg8.

[135] Kelvin Guu, Tatsunori B Hashimoto, Yonatan Oren, and Percy Liang. Generating sentences
by editing prototypes. Transactions of the Association for Computational Linguistics, 6:
437–450, 2018.

[136] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm:
Retrieval-augmented language model pre-training. ArXiv preprint, abs/2002.08909, 2020.
URL https://arxiv.org/abs/2002.08909.

311

https://dl.acm.org/citation.cfm?id=2950334
https://dl.acm.org/citation.cfm?id=2950334
https://arxiv.org/abs/2402.14672
http://proceedings.mlr.press/v119/guo20h.html
https://openreview.net/forum?id=9JQtrumvg8
https://arxiv.org/abs/2002.08909

[137] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. REALM:
retrieval-augmented language model pre-training. CoRR, abs/2002.08909, 2020. URL
https://arxiv.org/abs/2002.08909.

[138] Sonia Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. Lucia, and T. Menzies. Automatic
query reformulations for text retrieval in software engineering. 2013 35th International

Conference on Software Engineering (ICSE), pages 842–851, 2013.

[139] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong Qiu,
Liang Zhang, Wentao Han, Minlie Huang, et al. Pre-trained models: Past, present and
future. AI Open, 2021.

[140] Tatsunori B. Hashimoto, Kelvin Guu, Yonatan Oren, and Percy Liang. A retrieve-and-
edit framework for predicting structured outputs. In Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 31: Annual Conference on Neural

Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pages 10073–10083, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/

cd17d3ce3b64f227987cd92cd701cc58-Abstract.html.

[141] Hiroaki Hayashi, Zecong Hu, Chenyan Xiong, and Graham Neubig. Latent relation
language models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 7911–7918, 2020.

[142] Hiroaki Hayashi, Prashant Budania, Peng Wang, Chris Ackerson, Raj Neervannan, and
Graham Neubig. Wikiasp: A dataset for multi-domain aspect-based summarization.
Trans. Assoc. Comput. Linguistics, 9:211–225, 2021. doi: 10.1162/tacl_a_00362. URL
https://doi.org/10.1162/tacl_a_00362.

[143] Shirley Anugrah Hayati, Raphael Olivier, Pravalika Avvaru, Pengcheng Yin, Anthony
Tomasic, and Graham Neubig. Retrieval-based neural code generation. In Proceedings of

the 2018 Conference on Empirical Methods in Natural Language Processing, pages 925–930,
Brussels, Belgium, October-November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1111. URL https://www.aclweb.org/anthology/D18-1111.

[144] Shirley Anugrah Hayati, Raphael Olivier, Pravalika Avvaru, Pengcheng Yin, Anthony
Tomasic, and Graham Neubig. Retrieval-based neural code generation. In Proceedings of

the 2018 Conference on Empirical Methods in Natural Language Processing, pages 925–930,
Brussels, Belgium, 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-

312

https://arxiv.org/abs/2002.08909
https://proceedings.neurips.cc/paper/2018/hash/cd17d3ce3b64f227987cd92cd701cc58-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/cd17d3ce3b64f227987cd92cd701cc58-Abstract.html
https://doi.org/10.1162/tacl_a_00362
https://www.aclweb.org/anthology/D18-1111

1111. URL https://aclanthology.org/D18-1111.

[145] Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhen-
zhong Lan, and Dong Yu. WebVoyager: Building an end-to-end web agent with
large multimodal models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, edi-
tors, Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-

guistics (Volume 1: Long Papers), pages 6864–6890, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.371. URL
https://aclanthology.org/2024.acl-long.371.

[146] Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhen-
zhong Lan, and Dong Yu. Webvoyager: Building an end-to-end web agent with large
multimodal models. arXiv preprint arXiv:2401.13919, 2024.

[147] Junxian He, Taylor Berg-Kirkpatrick, and Graham Neubig. Learning sparse prototypes
for text generation. arXiv preprint arXiv:2006.16336, 2020.

[148] Junxian He, Graham Neubig, and Taylor Berg-Kirkpatrick. Efficient nearest neighbor
language models. arXiv preprint arXiv:2109.04212, 2021.

[149] Andrew Head, Elena Leah Glassman, Gustavo Soares, R. Suzuki, Lucas Figueredo,
L. D’Antoni, and B. Hartmann. Writing reusable code feedback at scale with mixed-
initiative program synthesis. Proceedings of the Fourth (2017) ACM Conference on Learning

@ Scale, 2017.

[150] Andrew Head, Elena Leah Glassman, B. Hartmann, and Marti A. Hearst. Interactive
extraction of examples from existing code. Proceedings of the 2018 CHI Conference on

Human Factors in Computing Systems, 2018.

[151] George E. Heidorn. Automatic programming through natural language dialogue: A survey.
IBM Journal of research and development, 20(4):302–313, 1976.

[152] Vincent J Hellendoorn and Premkumar Devanbu. Are deep neural networks the best choice
for modeling source code? In Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering, pages 763–773, 2017.

[153] Vincent J. Hellendoorn and Anand Ashok Sawant. The growing cost of deep learning for
source code. Commun. ACM, 65(1):31–33, dec 2021. ISSN 0001-0782. doi: 10.1145/3501261.
URL https://doi.org/10.1145/3501261.

[154] Gary G Hendrix. Natural-language interface. American Journal of Computational Linguis-

313

https://aclanthology.org/D18-1111
https://aclanthology.org/2024.acl-long.371
https://doi.org/10.1145/3501261

tics, 8(2):56–61, 1982.

[155] Gary G Hendrix, Earl D Sacerdoti, Daniel Sagalowicz, and Jonathan Slocum. Developing
a natural language interface to complex data. ACM Transactions on Database Systems

(TODS), 3(2):105–147, 1978.

[156] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song,
and Jacob Steinhardt. Measuring massive multitask language understanding. CoRR,
abs/2009.03300, 2020. URL https://arxiv.org/abs/2009.03300.

[157] E. Hill, Manuel Roldan-Vega, J. Fails, and Greg Mallet. Nl-based query refinement and
contextualized code search results: A user study. 2014 Software Evolution Week - IEEE

Conference on SoftwareMaintenance, Reengineering, and Reverse Engineering (CSMR-WCRE),
pages 34–43, 2014.

[158] Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu. On the
naturalness of software. Communications of the ACM, 59(5):122–131, 2016.

[159] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2(7), 2015.

[160] Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing A
multi-hop QA dataset for comprehensive evaluation of reasoning steps. In Donia Scott,
Núria Bel, and Chengqing Zong, editors, Proceedings of the 28th International Conference

on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13,

2020, pages 6609–6625. International Committee on Computational Linguistics, 2020. doi:
10.18653/v1/2020.coling-main.580. URL https://doi.org/10.18653/v1/2020.coling-
main.580.

[161] Joseph L Hodges Jr and Erich L Lehmann. Estimates of location based on rank tests. The
Annals of Mathematical Statistics, pages 598–611, 1963.

[162] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of
neural text degeneration. In 8th International Conference on Learning Representations,

ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:

//openreview.net/forum?id=rygGQyrFvH.

[163] Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang,
Ceyao Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta program-
ming for a multi-agent collaborative framework. In The Twelfth International Conference

on Learning Representations, 2023.

314

https://arxiv.org/abs/2009.03300
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH

[164] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan
Wang, Zihan Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao Dong, Ming Ding, and Jie
Tang. Cogagent: A visual language model for gui agents, 2023. URL https://arxiv.

org/abs/2312.08914.

[165] Qiuyuan Huang, Naoki Wake, Bidipta Sarkar, Zane Durante, Ran Gong, Rohan Taori,
Yusuke Noda, Demetri Terzopoulos, Noboru Kuno, Ade Famoti, Ashley Llorens, John
Langford, Hoi Vo, Li Fei-Fei, Katsu Ikeuchi, and Jianfeng Gao. Position paper: Agent ai
towards a holistic intelligence, 2024. URL https://arxiv.org/abs/2403.00833.

[166] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for embodied agents. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato, edi-
tors, International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore,

Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages 9118–9147.
PMLR, 2022. URL https://proceedings.mlr.press/v162/huang22a.html.

[167] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
Codesearchnet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

[168] Amazon Artificial General Intelligence. The amazon nova family of mod-
els: Technical report and model card. Amazon Technical Reports, 2024. URL
https://www.amazon.science/publications/the-amazon-nova-family-of-

models-technical-report-and-model-card.

[169] IPython. Jupyter and the future of IPython — IPython. URL https://ipython.org.

[170] Srini Iyer, Ioannis Konstas, A. Cheung, and Luke Zettlemoyer. Summarizing source code
using a neural attention model. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (ACL), 2016.

[171] Srini Iyer, Ioannis Konstas, A. Cheung, and Luke Zettlemoyer. Mapping language to code
in programmatic context. In 2018 Conference on Empirical Methods in Natural Language

Processing (EMNLP), 2018.

[172] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Mapping language
to code in programmatic context. In Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing, pages 1643–1652, Brussels, Belgium, October-
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1192.

315

https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2403.00833
https://proceedings.mlr.press/v162/huang22a.html
https://www.amazon.science/publications/the-amazon-nova-family-of-models-technical-report-and-model-card
https://www.amazon.science/publications/the-amazon-nova-family-of-models-technical-report-and-model-card
https://ipython.org

URL https://www.aclweb.org/anthology/D18-1192.

[173] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Mapping language
to code in programmatic context. In Proceedings of the 2018 Conference on EmpiricalMethods

in Natural Language Processing, pages 1643–1652, Brussels, Belgium, 2018. Association for
Computational Linguistics. doi: 10.18653/v1/D18-1192. URL https://aclanthology.

org/D18-1192.

[174] Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models
for open domain question answering. In Paola Merlo, Jörg Tiedemann, and Reut Tsarfaty,
editors, Proceedings of the 16th Conference of the European Chapter of the Association for

Computational Linguistics: Main Volume, EACL 2021, Online, April 19 - 23, 2021, pages 874–
880. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.eacl-main.74.
URL https://doi.org/10.18653/v1/2021.eacl-main.74.

[175] Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models
for open domain question answering. In Proceedings of the 16th Conference of the European

Chapter of the Association for Computational Linguistics: Main Volume, pages 874–880,
Online, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.eacl-
main.74. URL https://aclanthology.org/2021.eacl-main.74.

[176] Gautier Izacard, Patrick S. H. Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo
Schick, Jane Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Few-shot
learning with retrieval augmented language models. CoRR, abs/2208.03299, 2022. doi:
10.48550/arXiv.2208.03299. URL https://doi.org/10.48550/arXiv.2208.03299.

[177] Jürgen M Janas. The semantics-based natural language interface to relational databases.
In Cooperative Interfaces to Information Systems, pages 143–188. Springer, 1986.

[178] Lawrence Jang, Yinheng Li, Charles Ding, Justin Lin, Paul Pu Liang, Dan Zhao, Rogerio
Bonatti, and Kazuhito Koishida. Videowebarena: Evaluating long context multimodal
agents with video understanding web tasks, 2024. URL https://arxiv.org/abs/2410.

19100.

[179] Yacine Jernite, Kavya Srinet, Jonathan Gray, and Arthur Szlam. CraftAssist Instruction
Parsing: Semantic Parsing for a Minecraft Assistant. ArXiv preprint, abs/1905.01978, 2019.
URL https://arxiv.org/abs/1905.01978.

[180] Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. How can we know what
language models know. Trans. Assoc. Comput. Linguistics, 8:423–438, 2020. doi: 10.1162/

316

https://www.aclweb.org/anthology/D18-1192
https://aclanthology.org/D18-1192
https://aclanthology.org/D18-1192
https://doi.org/10.18653/v1/2021.eacl-main.74
https://aclanthology.org/2021.eacl-main.74
https://doi.org/10.48550/arXiv.2208.03299
https://arxiv.org/abs/2410.19100
https://arxiv.org/abs/2410.19100
https://arxiv.org/abs/1905.01978

tacl_a_00324. URL https://doi.org/10.1162/tacl_a_00324.

[181] Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham Neubig. How can we knowWhen

language models know? on the calibration of language models for question answering.
Trans. Assoc. Comput. Linguistics, 9:962–977, 2021. doi: 10.1162/tacl_a_00407. URL
https://doi.org/10.1162/tacl_a_00407.

[182] Zhengbao Jiang, Luyu Gao, Jun Araki, Haibo Ding, Zhiruo Wang, Jamie Callan, and
Graham Neubig. Retrieval as attention: End-to-end learning of retrieval and reading
within a single transformer. CoRR, abs/2212.02027, 2022. doi: 10.48550/arXiv.2212.02027.
URL https://doi.org/10.48550/arXiv.2212.02027.

[183] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R Narasimhan. SWE-bench: Can Language Models Resolve Real-world Github
Issues? In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=VTF8yNQM66.

[184] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs.
IEEE Transactions on Big Data, 7(3):535–547, 2019.

[185] Paul CD Johnson. Extension of nakagawa & schielzeth’s r2GLMM to random slopes models.
Methods in Ecology and Evolution, 5(9):944–946, 2014.

[186] K. Sparck Jones, S. Walker, and S.E. Robertson. A probabilistic model of informa-
tion retrieval: development and comparative experiments: Part 1. Information Pro-

cessing & Management, 36(6):779 – 808, 2000. ISSN 0306-4573. doi: https://doi.
org/10.1016/S0306-4573(00)00015-7. URL http://www.sciencedirect.com/science/

article/pii/S0306457300000157.

[187] Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale
distantly supervised challenge dataset for reading comprehension. In Regina Barzilay
and Min-Yen Kan, editors, Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1:

Long Papers, pages 1601–1611. Association for Computational Linguistics, 2017. doi:
10.18653/v1/P17-1147. URL https://doi.org/10.18653/v1/P17-1147.

[188] Armand Joulin, Moustapha Cissé, David Grangier, Hervé Jégou, et al. Efficient softmax
approximation for gpus. In International conference on machine learning, pages 1302–1310.
PMLR, 2017.

[189] Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,

317

https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.48550/arXiv.2212.02027
https://openreview.net/forum?id=VTF8yNQM66
http://www.sciencedirect.com/science/article/pii/S0306457300000157
http://www.sciencedirect.com/science/article/pii/S0306457300000157
https://doi.org/10.18653/v1/P17-1147

Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston,
Sheer El Showk, Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai,
Sam Bowman, Stanislav Fort, Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson
Kernion, Shauna Kravec, Liane Lovitt, Kamal Ndousse, Catherine Olsson, Sam Ringer,
Dario Amodei, Tom Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam McCandlish,
Chris Olah, and Jared Kaplan. Language models (mostly) know what they know. CoRR,
abs/2207.05221, 2022. doi: 10.48550/arXiv.2207.05221. URL https://doi.org/10.48550/
arXiv.2207.05221.

[190] Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly,
Siddhant Bhambri, Lucas Saldyt, and Anil Murthy. Llms can’t plan, but can help planning
in llm-modulo frameworks. arXiv preprint arXiv:2402.01817, 2024.

[191] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Learning and
evaluating contextual embedding of source code. In International Conference on Machine

Learning, pages 5110–5121. PMLR, 2020.

[192] Siddharth Karamcheti, Dorsa Sadigh, and Percy Liang. Learning adaptive language
interfaces through decomposition. In Proceedings of the First Workshop on Interactive

and Executable Semantic Parsing, pages 23–33, Online, November 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.intexsempar-1.4. URL https://www.

aclweb.org/anthology/2020.intexsempar-1.4.

[193] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and Andrea
Janes. Big code!= big vocabulary: Open-vocabulary models for source code. In 2020

IEEE/ACM 42nd International Conference on Software Engineering (ICSE), pages 1073–1085.
IEEE, 2020.

[194] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov,
Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answer-
ing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process-

ing (EMNLP), pages 6769–6781, Online, 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-main.550. URL https://aclanthology.org/2020.emnlp-

main.550.

[195] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick S. H. Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question
answering. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings

318

https://doi.org/10.48550/arXiv.2207.05221
https://doi.org/10.48550/arXiv.2207.05221
https://www.aclweb.org/anthology/2020.intexsempar-1.4
https://www.aclweb.org/anthology/2020.intexsempar-1.4
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550

of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP

2020, Online, November 16-20, 2020, pages 6769–6781. Association for Computational
Linguistics, 2020. doi: 10.18653/v1/2020.emnlp-main.550. URL https://doi.org/10.

18653/v1/2020.emnlp-main.550.

[196] I. Keivanloo, J. Rilling, and Ying Zou. Spottingworking code examples. In 36th International
Conference on Software Engineering (ICSE), 2014.

[197] Mary Beth Kery and B. Myers. Exploring exploratory programming. 2017 IEEE Symposium

on Visual Languages and Human-Centric Computing (VL/HCC), pages 25–29, 2017.

[198] Mary Beth Kery, Amber Horvath, and B. Myers. Variolite: Supporting exploratory
programming by data scientists. Proceedings of the 2017 CHI Conference on Human Factors

in Computing Systems (CHI), 2017.

[199] Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis.
Nearest neighbor machine translation. arXiv preprint arXiv:2010.00710, 2020.

[200] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Gen-
eralization through memorization: Nearest neighbor language models. In Proceedings of

ICLR, 2020.

[201] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Gen-
eralization through Memorization: Nearest Neighbor Language Models. In International

Conference on Learning Representations (ICLR), 2020.

[202] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Gener-
alization through memorization: Nearest neighbor language models. In 8th International

Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.net/forum?id=HklBjCEKvH.

[203] Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher
Potts, and Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language
models for knowledge-intensive NLP. CoRR, abs/2212.14024, 2022. doi: 10.48550/arXiv.
2212.14024. URL https://doi.org/10.48550/arXiv.2212.14024.

[204] Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark,
and Ashish Sabharwal. Decomposed prompting: A modular approach for solving complex
tasks. CoRR, abs/2210.02406, 2022. doi: 10.48550/arXiv.2210.02406. URL https://doi.

org/10.48550/arXiv.2210.02406.

319

https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://openreview.net/forum?id=HklBjCEKvH
https://doi.org/10.48550/arXiv.2212.14024
https://doi.org/10.48550/arXiv.2210.02406
https://doi.org/10.48550/arXiv.2210.02406

[205] Sanjeev Khudanpur and Jun Wu. Maximum entropy techniques for exploiting syntactic,
semantic and collocational dependencies in language modeling. Computer Speech &

Language, 14(4):355–372, 2000.

[206] Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer
tasks. ArXiv preprint, abs/2303.17491, 2023. URL https://arxiv.org/abs/2303.17491.

[207] Diederik P. Kingma and Jimmy Ba. Adam: Amethod for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,

ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

[208] A. Ko and B. Myers. Designing the whyline: a debugging interface for asking questions
about program behavior. In CHI 2004 Conference on Human Factors in Computing Systems

(CHI), 2004.

[209] A. Ko and B. Myers. Debugging reinvented. 2008 ACM/IEEE 30th International Conference

on Software Engineering (ICSE), pages 301–310, 2008.

[210] Amy Ko, Brad A Myers, and Htet Htet Aung. Six learning barriers in end-user program-
ming systems. In IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), pages 199–206. IEEE, 2004.

[211] Ned Kock and Gary Lynn. Lateral collinearity and misleading results in variance-based
sem: An illustration and recommendations. Journal of the Association for information

Systems, 13(7), 2012.

[212] Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Russ Salakhutdinov, and Daniel Fried. VisualWebArena: Evaluating
multimodal agents on realistic visual web tasks. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 881–905, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.50.
URL https://aclanthology.org/2024.acl-long.50.

[213] Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Russ Salakhutdinov, and Daniel Fried. VisualWebArena: Evaluating
multimodal agents on realistic visual web tasks. In Proceedings of the 62nd Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers). Association for
Computational Linguistics, 2024. URL https://aclanthology.org/2024.acl-long.

320

https://arxiv.org/abs/2303.17491
http://arxiv.org/abs/1412.6980
https://aclanthology.org/2024.acl-long.50
https://aclanthology.org/2024.acl-long.50
https://aclanthology.org/2024.acl-long.50
https://aclanthology.org/2024.acl-long.50

50.

[214] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti,
Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive
3D Environment for Visual AI. arXiv, 2017.

[215] Kalpesh Krishna, Aurko Roy, and Mohit Iyyer. Hurdles to progress in long-form question
answering. In North American Association for Computational Linguistics, 2021.

[216] Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gardner. Neural semantic parsing
with type constraints for semi-structured tables. In Proceedings of the 2017 Conference

on Empirical Methods in Natural Language Processing, pages 1516–1526, Copenhagen,
Denmark, September 2017. Association for Computational Linguistics. doi: 10.18653/v1/
D17-1160. URL https://www.aclweb.org/anthology/D17-1160.

[217] S. Kulal, Panupong Pasupat, K. Chandra, Mina Lee, Oded Padon, A. Aiken, and Percy
Liang. Spoc: Search-based pseudocode to code. In 33rd Conference on Neural Information

Processing Systems (NeurIPS), 2019.

[218] Nate Kushman and R. Barzilay. Using semantic unification to generate regular expressions
from natural language. In The 2013 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies (HLT-NAACL),
2013.

[219] Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Sel-
vatici, Edward Grefenstette, and Tim Rocktäschel. The nethack learning environment.
In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual

Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-

12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/

569ff987c643b4bedf504efda8f786c2-Abstract.html.

[220] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh,
Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina
Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkor-
eit, Quoc Le, and Slav Petrov. Natural questions: A benchmark for question answering
research. Transactions of the Association for Computational Linguistics, 7:452–466, 2019.
doi: 10.1162/tacl_a_00276. URL https://aclanthology.org/Q19-1026.

[221] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur P. Parikh,

321

https://aclanthology.org/2024.acl-long.50
https://aclanthology.org/2024.acl-long.50
https://aclanthology.org/2024.acl-long.50
https://aclanthology.org/2024.acl-long.50
https://www.aclweb.org/anthology/D17-1160
https://proceedings.neurips.cc/paper/2020/hash/569ff987c643b4bedf504efda8f786c2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/569ff987c643b4bedf504efda8f786c2-Abstract.html
https://aclanthology.org/Q19-1026

Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina
Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszko-
reit, Quoc Le, and Slav Petrov. Natural questions: a benchmark for question answering
research. Trans. Assoc. Comput. Linguistics, 7:452–466, 2019. doi: 10.1162/tacl_a_00276.
URL https://doi.org/10.1162/tacl_a_00276.

[222] Davy Landman, Alexander Serebrenik, Eric Bouwers, and Jurgen J Vinju. Empirical
analysis of the relationship between cc and sloc in a large corpus of java methods and c
functions. Journal of Software: Evolution and Process, 28(7):589–618, 2016.

[223] Angeliki Lazaridou, Elena Gribovskaya, Wojciech Stokowiec, and Nikolai Grigorev.
Internet-augmented language models through few-shot prompting for open-domain
question answering. CoRR, abs/2203.05115, 2022. doi: 10.48550/arXiv.2203.05115. URL
https://doi.org/10.48550/arXiv.2203.05115.

[224] Vu Le and Sumit Gulwani. Flashextract: a framework for data extraction by examples.
ACM SIGPLAN Notices, 49(6):542–553, 2014.

[225] Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27.
Open Review, 62, 2022.

[226] Haejun Lee, Akhil Kedia, Jongwon Lee, Ashwin Paranjape, Christopher D. Manning, and
Kyoung-Gu Woo. You only need one model for open-domain question answering. CoRR,
abs/2112.07381, 2021. URL https://arxiv.org/abs/2112.07381.

[227] Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu, Fangyu Liu, Julian Martin
Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova.
Pix2struct: Screenshot parsing as pretraining for visual language understanding. In
International Conference on Machine Learning, pages 18893–18912. PMLR, 2023.

[228] Tao Lei, F. Long, R. Barzilay, and M. Rinard. From natural language specifications to
program input parsers. In The 51st Annual Meeting of the Association for Computational

Linguistics (ACL), 2013.

[229] Timothy C Lethbridge, Janice Singer, and Andrew Forward. How software engineers use
documentation: The state of the practice. IEEE software, 20(6):35–39, 2003.

[230] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension. arXiv

preprint arXiv:1910.13461, 2019.

322

https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.48550/arXiv.2203.05115
https://arxiv.org/abs/2112.07381

[231] Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian
Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive NLP
tasks. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual

Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-

12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/

6b493230205f780e1bc26945df7481e5-Abstract.html.

[232] Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian
Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive NLP
tasks. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual

Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-

12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/

6b493230205f780e1bc26945df7481e5-Abstract.html.

[233] Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen
Qian, Binyuan Hui, Qicheng Zhang, et al. Devbench: A comprehensive benchmark for
software development. arXiv preprint arXiv:2403.08604, 2024.

[234] Fei Li and Hosagrahar V Jagadish. Constructing an interactive natural language interface
for relational databases. Proceedings of the VLDB Endowment, 8(1):73–84, 2014.

[235] Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jingyuan Wang, Jian-Yun Nie, and Ji-Rong Wen.
The web can be your oyster for improving large language models. CoRR, abs/2305.10998,
2023. doi: 10.48550/arXiv.2305.10998. URL https://doi.org/10.48550/arXiv.2305.

10998.

[236] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Cheng-
hao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the
source be with you! arXiv preprint arXiv:2305.06161, 2023.

[237] Toby Jia-Jun Li, Amos Azaria, and B. Myers. Sugilite: Creating multimodal smartphone
automation by demonstration. Proceedings of the 2017 CHI Conference on Human Factors

in Computing Systems (CHI), 2017.

[238] Toby Jia-Jun Li, I. Labutov, X. Li, X. Zhang, W. Shi, Wanling Ding, Tom Michael Mitchell,

323

https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.48550/arXiv.2305.10998
https://doi.org/10.48550/arXiv.2305.10998

and B. Myers. Appinite: A multi-modal interface for specifying data descriptions in
programming by demonstration using natural language instructions. 2018 IEEE Symposium

on Visual Languages and Human-Centric Computing (VL/HCC), pages 105–114, 2018.

[239] Toby Jia-Jun Li, Marissa Radensky, J. Jia, Kirielle Singarajah, Tom Michael Mitchell, and
B. Myers. Pumice: A multi-modal agent that learns concepts and conditionals from natural
language and demonstrations. Proceedings of the 32nd Annual ACM Symposium on User

Interface Software and Technology (UIST), 2019.

[240] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, Tom M Mitchell, and
Brad A Myers. Pumice: A multi-modal agent that learns concepts and conditionals from
natural language and demonstrations. In Proceedings of the 32nd annual ACM symposium

on user interface software and technology, pages 577–589, 2019.

[241] Xinze Li, Yixin Cao, Muhao Chen, and Aixin Sun. Take a break in the middle: Investigating
subgoals towards hierarchical script generation. ArXiv preprint, abs/2305.10907, 2023.
URL https://arxiv.org/abs/2305.10907.

[242] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural
language instructions to mobile UI action sequences. In Dan Jurafsky, Joyce Chai,
Natalie Schluter, and Joel Tetreault, editors, Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics, pages 8198–8210, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.729. URL
https://aclanthology.org/2020.acl-main.729.

[243] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural
language instructions to mobile UI action sequences. In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics, pages 8198–8210, Online, 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.729. URL
https://aclanthology.org/2020.acl-main.729.

[244] Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus, and Ni Lao. Neural symbolic
machines: Learning semantic parsers on Freebase with weak supervision. In Proceedings

of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), pages 23–33, Vancouver, Canada, July 2017. Association for Computational
Linguistics. doi: 10.18653/v1/P17-1003. URL https://www.aclweb.org/anthology/

P17-1003.

[245] Jacky Liang,WenlongHuang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence,

324

https://arxiv.org/abs/2305.10907
https://aclanthology.org/2020.acl-main.729
https://aclanthology.org/2020.acl-main.729
https://www.aclweb.org/anthology/P17-1003
https://www.aclweb.org/anthology/P17-1003

and Andy Zeng. Code as policies: Language model programs for embodied control. In
2023 IEEE International Conference on Robotics and Automation (ICRA), pages 9493–9500.
IEEE, 2023.

[246] H. Lieberman, F. Paternò, Markus Klann, and V.Wulf. End-user development: An emerging
paradigm. In End User Development, 2006.

[247] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text

Summarization Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/W04-1013.

[248] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D. Ernst. NL2Bash: A
corpus and semantic parser for natural language interface to the linux operating system. In
Proceedings of the Eleventh International Conference on Language Resources and Evaluation

(LREC-2018), Miyazaki, Japan, May 2018. European Languages Resources Association
(ELRA). URL https://www.aclweb.org/anthology/L18-1491.

[249] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D. Ernst. NL2Bash: A
corpus and semantic parser for natural language interface to the linux operating system. In
Proceedings of the Eleventh International Conference on Language Resources and Evaluation

(LREC 2018), Miyazaki, Japan, 2018. European Language Resources Association (ELRA).
URL https://aclanthology.org/L18-1491.

[250] Wang Ling, Phil Blunsom, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiský,
Fumin Wang, and Andrew Senior. Latent predictor networks for code generation. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 599–609, Berlin, Germany, August 2016. Association for
Computational Linguistics. doi: 10.18653/v1/P16-1057. URL https://www.aclweb.org/

anthology/P16-1057.

[251] Wang Ling, Phil Blunsom, Edward Grefenstette, Karl Moritz Hermann, Tomás Kociský,
Fumin Wang, and Andrew W. Senior. Latent predictor networks for code generation. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics

(ACL). The Association for Computer Linguistics, 2016. doi: 10.18653/v1/p16-1057. URL
https://doi.org/10.18653/v1/p16-1057.

[252] C. Liu, Xin Xia, David Lo, Cuiyun Gao, Xiaohu Yang, and J. Grundy. Opportunities and
challenges in code search tools. ArXiv, abs/2011.02297, 2020.

[253] Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, and Percy Liang. Reinforcement learning

325

https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/L18-1491
https://aclanthology.org/L18-1491
https://www.aclweb.org/anthology/P16-1057
https://www.aclweb.org/anthology/P16-1057
https://doi.org/10.18653/v1/p16-1057

on web interfaces using workflow-guided exploration. In International Conference on

Learning Representations, 2018. URL https://openreview.net/forum?id=ryTp3f-0-.

[254] Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforce-
ment learning on web interfaces using workflow-guided exploration. In International

Conference on Learning Representations (ICLR), 2018. URL https://arxiv.org/abs/

1802.08802.

[255] Junpeng Liu, Yifan Song, Bill Yuchen Lin, Wai Lam, Graham Neubig, Yuanzhi Li, and Xiang
Yue. Visualwebbench: How far have multimodal llms evolved in web page understanding
and grounding?, 2024. URL https://arxiv.org/abs/2404.05955.

[256] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham
Neubig. Pre-train, prompt, and predict: A systematic survey of prompting methods in
natural language processing. ACM Comput. Surv., 55(9):195:1–195:35, 2023. doi: 10.1145/
3560815. URL https://doi.org/10.1145/3560815.

[257] X. Liu, Beijun Shen, H. Zhong, and Jiangang Zhu. Expsol: Recommending online threads
for exception-related bug reports. 2016 23rd Asia-Pacific Software Engineering Conference
(APSEC), pages 25–32, 2016.

[258] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang
Ding, Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao
Du, Chenhui Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao
Dong, and Jie Tang. Agentbench: Evaluating llms as agents. arXiv preprint arXiv:

2308.03688, 2023.

[259] Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Yifan Xu, Xixuan Song, Shudan Zhang,
Hanyu Lai, Xinyi Liu, Hanlin Zhao, et al. Visualagentbench: Towards large multimodal
models as visual foundation agents. arXiv preprint arXiv:2408.06327, 2024.

[260] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[261] Jieyi Long. Large language model guided tree-of-thought. ArXiv preprint, abs/2305.08291,
2023. URL https://arxiv.org/abs/2305.08291.

[262] Meili Lu, Xiaobing Sun, S. Wang, D. Lo, and Yucong Duan. Query expansion via wordnet
for effective code search. In International Conference on Software Analysis, Evolution, and

Reengineering (SANER), pages 545–549. IEEE, 2015.

326

https://openreview.net/forum?id=ryTp3f-0-
https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/2404.05955
https://doi.org/10.1145/3560815
https://arxiv.org/abs/2305.08291

[263] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco,
Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou,
Long Zhou, Michele Tufano, MING GONG, Ming Zhou, Nan Duan, Neel Sundaresan,
Shao Kun Deng, Shengyu Fu, and Shujie LIU. CodeXGLUE: Amachine learning benchmark
dataset for code understanding and generation. In Thirty-fifth Conference on Neural

Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021. URL
https://openreview.net/forum?id=6lE4dQXaUcb.

[264] Yanxin Lu, Swarat Chaudhuri, Chris Jermaine, and David Melski. Data-driven program
completion. ArXiv preprint, abs/1705.09042, 2017. URL https://arxiv.org/abs/1705.

09042.

[265] Michael Lutz, Arth Bohra, Manvel Saroyan, Artem Harutyunyan, and Giovanni Campagna.
Wilbur: Adaptive in-context learning for robust and accurate web agents, 2024.

[266] Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation
with multi-turn dialogue, 2024. URL https://arxiv.org/abs/2402.05930.

[267] Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig. Language
models of code are few-shot commonsense learners. In Proceedings of the 2022 Con-

ference on Empirical Methods in Natural Language Processing, pages 1384–1403, Abu
Dhabi, United Arab Emirates, 2022. Association for Computational Linguistics. URL
https://aclanthology.org/2022.emnlp-main.90.

[268] Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Hannaneh Hajishirzi, and Daniel
Khashabi. When not to trust language models: Investigating effectiveness and limitations
of parametric and non-parametric memories. CoRR, abs/2212.10511, 2022. doi: 10.48550/
arXiv.2212.10511. URL https://doi.org/10.48550/arXiv.2212.10511.

[269] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and Evelyn Eastmond. The scratch
programming language and environment. ACM Trans. Comput. Educ., 10:16:1–16:15, 2010.

[270] Christopher D Manning, Hinrich Schütze, and Prabhakar Raghavan. Introduction to

information retrieval. Cambridge university press, 2008.

[271] Mehdi Manshadi, Daniel Gildea, and James F. Allen. Integrating programming by example
and natural language programming. In Proceedings of the AAAI Conference on Artificial

Intelligence (AAAI), 2013.

[272] Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong Shen, Jianfeng Gao, Jiawei Han, and
Weizhu Chen. Generation-augmented retrieval for open-domain question answering. In

327

https://openreview.net/forum?id=6lE4dQXaUcb
https://arxiv.org/abs/1705.09042
https://arxiv.org/abs/1705.09042
https://arxiv.org/abs/2402.05930
https://aclanthology.org/2022.emnlp-main.90
https://doi.org/10.48550/arXiv.2212.10511

Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors, Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International

Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long

Papers), Virtual Event, August 1-6, 2021, pages 4089–4100. Association for Computational
Linguistics, 2021. doi: 10.18653/v1/2021.acl-long.316. URL https://doi.org/10.18653/

v1/2021.acl-long.316.

[273] Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness
and factuality in abstractive summarization. In Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics, pages 1906–1919, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.173. URL
https://aclanthology.org/2020.acl-main.173.

[274] T. McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-2:
308–320, 1976.

[275] Clara Meister, Elizabeth Salesky, and Ryan Cotterell. Generalized entropy regularization
or: There’s nothing special about label smoothing. arXiv preprint arXiv:2005.00820, 2020.

[276] Clara Meister, Tim Vieira, and Ryan Cotterell. Best-first beam search. Transactions of the
Association for Computational Linguistics, 8:795–809, 2020.

[277] Michael Meng, Stephanie Steinhardt, and Andreas Schubert. Application programming
interface documentation: What do software developers want? Journal of Technical Writing

and Communication, 48(3):295–330, 2018.

[278] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel
mixture models. arXiv preprint arXiv:1609.07843, 2016.

[279] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing
LSTM language models. In Proceedings of ICLR, 2018.

[280] Rada Mihalcea, Hugo Liu, and Henry Lieberman. Nlp (natural language processing) for nlp
(natural language programming). In International Conference on Intelligent Text Processing

and Computational Linguistics, pages 319–330. Springer, 2006.

[281] Tomas Mikolov and Geoffrey Zweig. Context dependent recurrent neural network lan-
guage model. In 2012 IEEE Spoken Language Technology Workshop (SLT), pages 234–239.
IEEE, 2012. URL https://ieeexplore.ieee.org/document/6424228.

[282] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur.

328

https://doi.org/10.18653/v1/2021.acl-long.316
https://doi.org/10.18653/v1/2021.acl-long.316
https://aclanthology.org/2020.acl-main.173
https://ieeexplore.ieee.org/document/6424228

Recurrent neural network based language model. In Eleventh annual conference of the

international speech communication association, 2010.

[283] Dipendra K Misra, Jaeyong Sung, Kevin Lee, and Ashutosh Saxena. Tell me dave: Context-
sensitive grounding of natural language to manipulation instructions. The International
Journal of Robotics Research, 35(1-3):281–300, 2016.

[284] Parastoo Mohagheghi and Reidar Conradi. Quality, productivity and economic benefits
of software reuse: a review of industrial studies. Empirical Software Engineering, 12(5):
471–516, 2007.

[285] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Andrian
Marcus. How can i use this method? In 2015 IEEE/ACM 37th IEEE International Conference

on Software Engineering, volume 1, pages 880–890. IEEE, 2015.

[286] Mozilla. Accessibility tree - MDN Web Docs Glossary: Definitions of Web-
related terms | MDN. URL https://developer.mozilla.org/en-US/docs/Glossary/

Accessibility_tree.

[287] Yair Mundlak. On the pooling of time series and cross section data. Econometrica: journal

of the Econometric Society, pages 69–85, 1978.

[288] Lauren Murphy, Mary Beth Kery, Oluwatosin Alliyu, AndrewMacvean, and Brad AMyers.
Api designers in the field: Design practices and challenges for creating usable apis. In
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pages
249–258. IEEE, 2018.

[289] B. Myers and Jeffrey Stylos. Improving api usability. Communications of the ACM, 59:62 –
69, 2016.

[290] B. Myers, J. Pane, and A. Ko. Natural programming languages and environments. Commun.

ACM, 47:47–52, 2004.

[291] Brad A Myers and Jeffrey Stylos. Improving api usability. Communications of the ACM, 59
(6):62–69, 2016.

[292] Brad A Myers, John F Pane, and Amy J Ko. Natural programming languages and environ-
ments. Communications of the ACM, 47(9):47–52, 2004.

[293] Brad A Myers, Amy Ko, Thomas D LaToza, and YoungSeok Yoon. Programmers are users
too: Human-centered methods for improving programming tools. Computer, 49(7):44–52,
2016.

329

https://developer.mozilla.org/en-US/docs/Glossary/Accessibility_tree
https://developer.mozilla.org/en-US/docs/Glossary/Accessibility_tree

[294] Shinichi Nakagawa and Holger Schielzeth. A general and simple method for obtaining
r2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2):
133–142, 2013.

[295] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim,
Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl
Cobbe, Tyna Eloundou, Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. Webgpt: Browser-assisted question-answering with human
feedback. CoRR, abs/2112.09332, 2021. URL https://arxiv.org/abs/2112.09332.

[296] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim,
Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. We-
bgpt: Browser-assisted question-answering with human feedback. arXiv preprint

arXiv:2112.09332, 2021.

[297] Daye Nam, Amber Horvath, AndrewMacvean, Brad Myers, and Bogdan Vasilescu. Marble:
Mining for boilerplate code to identify api usability problems. In International Conference

on Automated Software Engineering (ASE), pages 615–627. IEEE, 2019.

[298] Hermann Ney, Ute Essen, and Reinhard Kneser. On structuring probabilistic dependences
in stochastic language modelling. Computer Speech & Language, 8(1):1–38, 1994.

[299] T. Nguyen and C. Csallner. Reverse engineering mobile application user interfaces with
remaui (t). 2015 30th IEEE/ACM International Conference on Automated Software Engineering

(ASE), pages 248–259, 2015.

[300] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio
Savarese, and Caiming Xiong. A conversational paradigm for program synthesis. arXiv
preprint, 2022.

[301] Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. Code-
gen2: Lessons for training llms on programming and natural languages. ICLR, 2023.

[302] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio
Savarese, and Caiming Xiong. Codegen: An open large language model for code with
multi-turn program synthesis. ICLR, 2023.

[303] Lorelli S Nowell, Jill M Norris, Deborah E White, and Nancy J Moules. Thematic analysis:
Striving to meet the trustworthiness criteria. International Journal of Qualitative Methods,
16(1):1609406917733847, 2017.

330

https://arxiv.org/abs/2112.09332

[304] Janet Nykaza, Rhonda Messinger, Fran Boehme, Cherie L Norman, Matthew Mace, and
Manuel Gordon. What programmers really want: results of a needs assessment for sdk
documentation. In Proceedings of the 20th annual international conference on Computer

documentation, pages 133–141, 2002.

[305] William C Ogden and Philip Bernick. Using natural language interfaces. In Handbook of

human-computer interaction, pages 137–161. Elsevier, 1997.

[306] O*NET. The 29.1 release of the O*NET database, November 2024. URL https://www.

onetcenter.org/dictionary/29.1/excel/.

[307] OpenAI. Chatgpt: Optimizing language models for dialogue. 2022.

[308] OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/arXiv.2303.
08774. URL https://doi.org/10.48550/arXiv.2303.08774.

[309] OpenAI. Gpt-4 technical report. arXiv, pages 2303–08774, 2023.

[310] OpenAI. Introducing gpt-4o and more tools to chatgpt free users, 2024. URL https:

//openai.com/index/gpt-4o-and-more-tools-to-chatgpt-free/.

[311] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Chris-
tiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with
human feedback. CoRR, abs/2203.02155, 2022. doi: 10.48550/arXiv.2203.02155. URL
https://doi.org/10.48550/arXiv.2203.02155.

[312] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language
models to follow instructions with human feedback. Advances in Neural Information

Processing Systems, 35:27730–27744, 2022.

[313] Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr.
Autonomous evaluation and refinement of digital agents. arXiv preprint arXiv:2404.06474,
2024.

[314] John F Pane, Brad AMyers, et al. Studying the language and structure in non-programmers’
solutions to programming problems. International Journal of Human-Computer Studies, 54
(2):237–264, 2001.

[315] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for

331

https://www.onetcenter.org/dictionary/29.1/excel/
https://www.onetcenter.org/dictionary/29.1/excel/
https://doi.org/10.48550/arXiv.2303.08774
https://openai.com/index/gpt-4o-and-more-tools-to-chatgpt-free/
https://openai.com/index/gpt-4o-and-more-tools-to-chatgpt-free/
https://doi.org/10.48550/arXiv.2203.02155

automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of

the Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania,
USA, July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135.
URL https://www.aclweb.org/anthology/P02-1040.

[316] Emilio Parisotto, Abdel rahman Mohamed, R. Singh, L. Li, Dengyong Zhou, and Pushmeet
Kohli. Neuro-symbolic program synthesis. 5th International Conference on Learning

Representations (ICLR), 2017.

[317] Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang,
and Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior,
2023.

[318] Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
Retrieval augmented code generation and summarization. In Findings of the Association

for Computational Linguistics: EMNLP 2021, pages 2719–2734, Punta Cana, Dominican
Republic, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-
emnlp.232. URL https://aclanthology.org/2021.findings-emnlp.232.

[319] Panupong Pasupat, Yuan Zhang, and Kelvin Guu. Controllable semantic parsing via
retrieval augmentation. In Proceedings of the 2021 Conference on Empirical Methods

in Natural Language Processing, pages 7683–7698, Online and Punta Cana, Dominican
Republic, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-
main.607. URL https://aclanthology.org/2021.emnlp-main.607.

[320] Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large
language model connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

[321] Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, Yujia Xie, Yu Hu, Qiuyuan
Huang, Lars Liden, Zhou Yu, Weizhu Chen, and Jianfeng Gao. Check your facts and
try again: Improving large language models with external knowledge and automated
feedback. CoRR, abs/2302.12813, 2023. doi: 10.48550/arXiv.2302.12813. URL https:

//doi.org/10.48550/arXiv.2302.12813.

[322] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton.
Regularizing neural networks by penalizing confident output distributions. arXiv preprint
arXiv:1701.06548, 2017.

[323] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick S. H. Lewis, Anton Bakhtin,
Yuxiang Wu, and Alexander H. Miller. Language models as knowledge bases? In

332

https://www.aclweb.org/anthology/P02-1040
https://aclanthology.org/2021.findings-emnlp.232
https://aclanthology.org/2021.emnlp-main.607
https://doi.org/10.48550/arXiv.2302.12813
https://doi.org/10.48550/arXiv.2302.12813

Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International

Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China,

November 3-7, 2019, pages 2463–2473. Association for Computational Linguistics, 2019.
doi: 10.18653/v1/D19-1250. URL https://doi.org/10.18653/v1/D19-1250.

[324] Chris Piech, Mehran Sahami, Daphne Koller, Steve Cooper, and Paulo Blikstein. Modeling
how students learn to program. In ACM Technical Symposium on Computer Science

Education, pages 153–160. ACM, 2012.

[325] Playwright. Fast and reliable end-to-end testing for modern web apps | Playwright. URL
https://playwright.dev/.

[326] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. Seahawk: Stack overflow in the
ide. In International Conference on Software Engineering (ICSE), pages 1295–1298. IEEE,
2013.

[327] Luca Ponzanelli, G. Bavota, M. D. Penta, R. Oliveto, and M. Lanza. Mining stack overflow
to turn the ide into a self-confident programming prompter. In International Conference

on Mining Software Repositories (MSR), 2014.

[328] Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis.
Measuring and narrowing the compositionality gap in language models. arXiv preprint
arXiv:2210.03350, 2022.

[329] David Price, Ellen Rilofff, Joseph Zachary, and Brandon Harvey. Naturaljava: a natural
language interface for programming in java. In International Conference on Intelligent User

Interfaces (IUI), pages 207–211, 2000.

[330] Sebastian Proksch, Sven Amann, and Sarah Nadi. Enriched event streams: a general
dataset for empirical studies on in-ide activities of software developers. In Proceedings

of the 15th International Conference on Mining Software Repositories (MSR), pages 62–65,
2018.

[331] Yewen Pu, Karthik Narasimhan, Armando Solar-Lezama, and Regina Barzilay. sk_p:
a neural program corrector for MOOCs. In Conference on Systems, Programming, &

Applications: Software for Humanity (SPLASH), pages 39–40. ACM, 2016.

[332] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio
Torralba. Virtualhome: Simulating household activities via programs. In 2018 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT,

333

https://doi.org/10.18653/v1/D19-1250
https://playwright.dev/

USA, June 18-22, 2018, pages 8494–8502. IEEE Computer Society, 2018. doi: 10.1109/CVPR.
2018.00886. URL http://openaccess.thecvf.com/content_cvpr_2018/html/Puig_

VirtualHome_Simulating_Household_CVPR_2018_paper.html.

[333] Hongjing Qian, Yutao Zhu, Zhicheng Dou, Haoqi Gu, Xinyu Zhang, Zheng Liu, Ruofei
Lai, Zhao Cao, Jian-Yun Nie, and Ji-Rong Wen. Webbrain: Learning to generate factually
correct articles for queries by grounding on large web corpus. CoRR, abs/2304.04358, 2023.
doi: 10.48550/arXiv.2304.04358. URL https://doi.org/10.48550/arXiv.2304.04358.

[334] Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao Liang, Kunlun Zhu, Yankai Lin, Xu Han,
Ning Ding, Huadong Wang, Ruobing Xie, Fanchao Qi, Zhiyuan Liu, Maosong Sun, and
Jie Zhou. Webcpm: Interactive web search for chinese long-form question answering.
CoRR, abs/2305.06849, 2023. doi: 10.48550/arXiv.2305.06849. URL https://doi.org/10.

48550/arXiv.2305.06849.

[335] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong,
Xiangru Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to
master 16000+ real-world apis. CoRR, abs/2307.16789, 2023. doi: 10.48550/ARXIV.2307.
16789. URL https://doi.org/10.48550/arXiv.2307.16789.

[336] Chris Quirk, Raymond Mooney, and Michel Galley. Language to code: Learning semantic
parsers for if-this-then-that recipes. In Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the 7th International Joint Conference on

Natural Language Processing (Volume 1: Long Papers), pages 878–888, Beijing, China,
July 2015. Association for Computational Linguistics. doi: 10.3115/v1/P15-1085. URL
https://www.aclweb.org/anthology/P15-1085.

[337] Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract syntax networks for code
generation and semantic parsing. In Proceedings of the 55th Annual Meeting of the Associa-

tion for Computational Linguistics (Volume 1: Long Papers), pages 1139–1149, Vancouver,
Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1105.
URL https://www.aclweb.org/anthology/P17-1105.

[338] Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract syntax networks for code
generation and semantic parsing. In Proceedings of the 55th Annual Meeting of the Associa-

tion for Computational Linguistics (Volume 1: Long Papers), pages 1139–1149, Vancouver,
Canada, 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1105. URL

334

http://openaccess.thecvf.com/content_cvpr_2018/html/Puig_VirtualHome_Simulating_Household_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Puig_VirtualHome_Simulating_Household_CVPR_2018_paper.html
https://doi.org/10.48550/arXiv.2304.04358
https://doi.org/10.48550/arXiv.2305.06849
https://doi.org/10.48550/arXiv.2305.06849
https://doi.org/10.48550/arXiv.2307.16789
https://www.aclweb.org/anthology/P15-1085
https://www.aclweb.org/anthology/P17-1105

https://aclanthology.org/P17-1105.

[339] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019.

[340] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI Blog, 1
(8), 2019. URL https://d4mucfpksywv.cloudfront.net/better-language-models/

language-models.pdf.

[341] Karthik Radhakrishnan, Arvind Srikantan, and Xi Victoria Lin. Colloql: Robust text-to-sql
over search queries. In Proceedings of the First Workshop on Interactive and Executable

Semantic Parsing, pages 34–45, 2020.

[342] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

[343] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

[344] Mukund Raghothaman, Y. Wei, and Y. Hamadi. Swim: Synthesizing what i mean - code
search and idiomatic snippet synthesis. 2016 IEEE/ACM 38th International Conference on

Software Engineering (ICSE), pages 357–367, 2016.

[345] M. M. Rahman and C. Roy. Surfclipse: Context-aware meta-search in the ide. 2014 IEEE
International Conference on Software Maintenance and Evolution, pages 617–620, 2014.

[346] Mohammad Masudur Rahman, Shamima Yeasmin, and Chanchal K Roy. Towards a
context-aware ide-based meta search engine for recommendation about programming
errors and exceptions. In International Conference on Software Analysis, Evolution, and

Reengineering (SANER), pages 194–203. IEEE, 2014.

[347] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In Proceedings of the 2016 Conference on

Empirical Methods in Natural Language Processing, pages 2383–2392, Austin, Texas, 2016.
Association for Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https:

//aclanthology.org/D16-1264.

335

https://aclanthology.org/P17-1105
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264

[348] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers), pages 784–789, Melbourne, Australia,
2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-2124. URL https:

//aclanthology.org/P18-2124.

[349] Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-
Brown, and Yoav Shoham. In-context retrieval-augmented languagemodels. arXiv preprint
arXiv:2302.00083, 2023.

[350] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy P Lillicrap.
Androidinthewild: A large-scale dataset for android device control. In Thirty-seventh

Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2023.
URL https://openreview.net/forum?id=j4b3l5kOil.

[351] Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with statistical
language models. In Proceedings of the 35th ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 419–428, 2014.

[352] Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling. Compositional program
synthesis from natural language and examples. In Proceedings of the Twenty-Fourth

International Joint Conference on Artificial Intelligence (IJCAI), 2015.

[353] Henry Gordon Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74(2):358–366, 1953.

[354] Matthew Richardson, Ewa Dominowska, and Robert Ragno. Predicting clicks: estimating
the click-through rate for new ads. In Proceedings of the 16th International Conference on

World Wide Web, pages 521–530, 2007.

[355] Kelly Rivers, Erik Harpstead, and Kenneth R Koedinger. Learning curve analysis for
programming: Which concepts do students struggle with? In ICER, volume 16, pages
143–151. ACM, 2016.

[356] Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack
into the parameters of a language model? In Bonnie Webber, Trevor Cohn, Yulan
He, and Yang Liu, editors, Proceedings of the 2020 Conference on Empirical Methods in

Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages 5418–5426.
Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.emnlp-main.437.
URL https://doi.org/10.18653/v1/2020.emnlp-main.437.

336

https://aclanthology.org/P18-2124
https://aclanthology.org/P18-2124
https://openreview.net/forum?id=j4b3l5kOil
https://doi.org/10.18653/v1/2020.emnlp-main.437

[357] Stephen E Robertson and K Sparck Jones. Relevance weighting of search terms. Journal
of the American Society for Information science, 27(3):129–146, 1976.

[358] Stephen E. Robertson and Hugo Zaragoza. The probabilistic relevance framework: BM25
and beyond. Found. Trends Inf. Retr., 3(4):333–389, 2009. doi: 10.1561/1500000019. URL
https://doi.org/10.1561/1500000019.

[359] Pedro Rodriguez and Jordan Boyd-Graber. Evaluation paradigms in question answer-
ing. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language

Processing, pages 9630–9642, Online and Punta Cana, Dominican Republic, 2021. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.758. URL
https://aclanthology.org/2021.emnlp-main.758.

[360] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. How do professional
developers comprehend software? In 2012 34th International Conference on Software

Engineering (ICSE), pages 255–265. IEEE, 2012.

[361] James Rounds, Thomas Smith, Lawrence Hubert, Phil Lewis, and David Rivkin. Develop-
ment of occupational interest profiles for o* net. Raleigh, NC: National Center for O* NET
Development, 1999.

[362] Devjeet Roy, Ziyi Zhang, Maggie Ma, Venera Arnaoudova, Annibale Panichella, Sebastiano
Panichella, Danielle Gonzalez, and Mehdi Mirakhorli. Deeptc-enhancer: Improving
the readability of automatically generated tests. In 2020 35th IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 287–298. IEEE, 2020.

[363] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen
Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation
models for code. arXiv preprint arXiv:2308.12950, 2023.

[364] Devendra Singh Sachan, Siva Reddy, William L. Hamilton, Chris Dyer, and Dani Yogatama.
End-to-end training of multi-document reader and retriever for open-domain question an-
swering. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and
Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems 34:

Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December

6-14, 2021, virtual, pages 25968–25981, 2021. URL https://proceedings.neurips.cc/

paper/2021/hash/da3fde159d754a2555eaa198d2d105b2-Abstract.html.

[365] Caitlin Sadowski, Kathryn T Stolee, and Sebastian Elbaum. How developers search for
code: a case study. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

337

https://doi.org/10.1561/1500000019
https://aclanthology.org/2021.emnlp-main.758
https://proceedings.neurips.cc/paper/2021/hash/da3fde159d754a2555eaa198d2d105b2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/da3fde159d754a2555eaa198d2d105b2-Abstract.html

Engineering (ESEC/FSE), pages 191–201, 2015.

[366] Apurvanand Sahay, Arsene Indamutsa, D. D. Ruscio, and A. Pierantonio. Supporting the
understanding and comparison of low-code development platforms. 2020 46th Euromicro

Conference on Software Engineering and Advanced Applications (SEAA), pages 171–178,
2020.

[367] Vinay Samuel, Henry Peng Zou, Yue Zhou, Shreyas Chaudhari, Ashwin Kalyan, Tanmay
Rajpurohit, Ameet Deshpande, Karthik Narasimhan, and Vishvak Murahari. Personagym:
Evaluating persona agents and llms, 2024. URL https://arxiv.org/abs/2407.18416.

[368] Aman Sanger. Near-instant full-file edits. https://www.cursor.com/blog/instant-
apply. Accessed: 2024-06-05.

[369] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[370] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools, 2023.

[371] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. arXiv preprint arXiv:1508.07909, 2015.

[372] Rico Sennrich, Barry Haddow, and Alexandra Birch. Controlling politeness in neural
machine translation via side constraints. In Proceedings of the 2016 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language

Technologies, pages 35–40, 2016.

[373] ServiceNow. BrowserGym: a Gym Environment for Web Task Automation. URL https:

//github.com/ServiceNow/BrowserGym.

[374] Vidya Setlur, Sarah E Battersby, Melanie Tory, Rich Gossweiler, and Angel X Chang.
Eviza: A natural language interface for visual analysis. In Proceedings of the 29th annual

symposium on user interface software and technology, pages 365–377, 2016.

[375] Ehsan Shareghi, Gholamreza Haffari, and Trevor Cohn. Compressed nonparametric
language modelling. In IJCAI, pages 2701–2707, 2017.

[376] Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang
Hu, Urvashi Khandelwal, Kenton Lee, and Kristina N Toutanova. From pixels to ui
actions: Learning to follow instructions via graphical user interfaces. Advances in Neural

338

https://arxiv.org/abs/2407.18416
https://www.cursor.com/blog/instant-apply
https://www.cursor.com/blog/instant-apply
https://github.com/ServiceNow/BrowserGym
https://github.com/ServiceNow/BrowserGym

Information Processing Systems, 36:34354–34370, 2023.

[377] Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke Zettlemoyer, and Sida I. Wang.
Natural language to code translation with execution. In Proceedings of the 2022 Con-

ference on Empirical Methods in Natural Language Processing, pages 3533–3546, Abu
Dhabi, United Arab Emirates, 2022. Association for Computational Linguistics. URL
https://aclanthology.org/2022.emnlp-main.231.

[378] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of
bits: An open-domain platform for web-based agents. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages 3135–3144. PMLR, 06–11 Aug 2017.
URL https://proceedings.mlr.press/v70/shi17a.html.

[379] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of
bits: An open-domain platform for web-based agents. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference on Machine Learning, ICML 2017,

Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning

Research, pages 3135–3144. PMLR, 2017. URL http://proceedings.mlr.press/v70/

shi17a.html.

[380] Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke
Zettlemoyer, and Wen-tau Yih. REPLUG: retrieval-augmented black-box language models.
CoRR, abs/2301.12652, 2023. doi: 10.48550/arXiv.2301.12652. URL https://doi.org/10.

48550/arXiv.2301.12652.

[381] Richard Shin, Miltiadis Allamanis, Marc Brockschmidt, and Oleksandr Polozov. Program
synthesis and semantic parsing with learned code idioms. 33rd Conference on Neural

Information Processing Systems (NeurIPS), 2019.

[382] Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent
with dynamic memory and self-reflection. ArXiv preprint, abs/2303.11366, 2023. URL
https://arxiv.org/abs/2303.11366.

[383] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh
Mottaghi, Luke Zettlemoyer, and Dieter Fox. ALFRED: A benchmark for interpreting
grounded instructions for everyday tasks. In 2020 IEEE/CVF Conference on Computer

Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages
10737–10746. IEEE, 2020. doi: 10.1109/CVPR42600.2020.01075. URL https://doi.org/

339

https://aclanthology.org/2022.emnlp-main.231
https://proceedings.mlr.press/v70/shi17a.html
http://proceedings.mlr.press/v70/shi17a.html
http://proceedings.mlr.press/v70/shi17a.html
https://doi.org/10.48550/arXiv.2301.12652
https://doi.org/10.48550/arXiv.2301.12652
https://arxiv.org/abs/2303.11366
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075

10.1109/CVPR42600.2020.01075.

[384] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler,
and Matthew J. Hausknecht. Alfworld: Aligning text and embodied environments
for interactive learning. In 9th International Conference on Learning Representations,

ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https:

//openreview.net/forum?id=0IOX0YcCdTn.

[385] Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. Repository-level prompt genera-
tion for large language models of code. In ICML 2022 Workshop on Knowledge Retrieval

and Language Models.

[386] Forrest Shull, Janice Singer, and Dag IK Sjøberg. Guide to advanced empirical software

engineering. Springer, 2007.

[387] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feedback gener-
ation for introductory programming assignments. ACM SIGPLAN Notices, 48(6):15–26,
2013.

[388] Paloma Sodhi, S. R. K. Branavan, Yoav Artzi, and Ryan McDonald. Step: Stacked llm
policies for web actions, 2024.

[389] Armando Solar-Lezama. Program synthesis by sketching. 2008.

[390] Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization of LLM agents. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 7584–7600, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.
409. URL https://aclanthology.org/2024.acl-long.409.

[391] Yueqi Song, Frank Xu, Shuyan Zhou, and Graham Neubig. Beyond browsing: Api-based
web agents. arXiv preprint arXiv:2410.16464, 2024.

[392] Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng Ji, Margaret
Mitchell, Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. A neural network approach to
context-sensitive generation of conversational responses. In Proceedings of NAACL, 2015.

[393] Abishek Sridhar, Robert Lo, Frank F Xu, Hao Zhu, and Shuyan Zhou. Hierarchical
prompting assists large languagemodel onweb navigation. arXiv preprint arXiv:2305.14257,
2023.

340

https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://openreview.net/forum?id=0IOX0YcCdTn
https://openreview.net/forum?id=0IOX0YcCdTn
https://aclanthology.org/2024.acl-long.409

[394] Felix Stahlberg and Bill Byrne. On nmt search errors and model errors: Cat got your
tongue? arXiv preprint arXiv:1908.10090, 2019.

[395] Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and Ming-Wei Chang. ASQA: factoid questions
meet long-form answers. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors,
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,

EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pages 8273–8288.
Association for Computational Linguistics, 2022. URL https://aclanthology.org/

2022.emnlp-main.566.

[396] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. Live api documentation.
International Conference on Software Engineering (ICSE), 2014.

[397] Alane Suhr, Srinivasan Iyer, and Yoav Artzi. Learning to map context-dependent sentences
to executable formal queries. In Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long Papers), pages 2238–2249, New Orleans, Louisiana, June 2018. Association
for Computational Linguistics. doi: 10.18653/v1/N18-1203. URL https://www.aclweb.

org/anthology/N18-1203.

[398] Zhiqing Sun, Xuezhi Wang, Yi Tay, Yiming Yang, and Denny Zhou. Recitation-augmented
language models. CoRR, abs/2210.01296, 2022. doi: 10.48550/arXiv.2210.01296. URL
https://doi.org/10.48550/arXiv.2210.01296.

[399] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 2818–2826, 2016.

[400] Xiangru Tang, Qiao Jin, Kunlun Zhu, Tongxin Yuan, Yichi Zhang, Wangchunshu Zhou,
Meng Qu, Yilun Zhao, Jian Tang, Zhuosheng Zhang, et al. Prioritizing safeguarding over
autonomy: Risks of llm agents for science. arXiv preprint arXiv:2402.04247, 2024.

[401] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a
family of highly capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[402] XAgent Team. Xagent: An autonomous agent for complex task solving, 2023.

[403] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien
Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and

341

https://aclanthology.org/2022.emnlp-main.566
https://aclanthology.org/2022.emnlp-main.566
https://www.aclweb.org/anthology/N18-1203
https://www.aclweb.org/anthology/N18-1203
https://doi.org/10.48550/arXiv.2210.01296

efficient foundation language models. CoRR, abs/2302.13971, 2023. doi: 10.48550/arXiv.
2302.13971. URL https://doi.org/10.48550/arXiv.2302.13971.

[404] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien
Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[405] Daniel Toyama, Philippe Hamel, Anita Gergely, Gheorghe Comanici, Amelia Glaese,
Zafarali Ahmed, Tyler Jackson, Shibl Mourad, and Doina Precup. Androidenv: A re-
inforcement learning platform for android. ArXiv preprint, abs/2105.13231, 2021. URL
https://arxiv.org/abs/2105.13231.

[406] Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and Tien Nguyen. Does bleu score
work for code migration? In 2019 IEEE/ACM 27th International Conference on Program

Comprehension (ICPC), pages 165–176. IEEE, 2019.

[407] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. In-
terleaving retrieval with chain-of-thought reasoning for knowledge-intensive multi-
step questions. CoRR, abs/2212.10509, 2022. doi: 10.48550/arXiv.2212.10509. URL
https://doi.org/10.48550/arXiv.2212.10509.

[408] Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward
Li, Shashank Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. AppWorld: A
controllable world of apps and people for benchmarking interactive coding agents. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers). Association for Computational Linguistics, 2024. doi: 10.18653/
v1/2024.acl-long.850. URL https://aclanthology.org/2024.acl-long.850.

[409] Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. On the localness of software. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pages 269–280, 2014.

[410] Lewis Tunstall, Leandro von Werra, and Thomas Wolf. Natural Language Processing with
Transformers. " O’Reilly Media, Inc.", 2022.

[411] David Vadas and James R Curran. Programming with unrestricted natural language. In
Proceedings of the Australasian Language Technology Workshop 2005, pages 191–199, 2005.

[412] Neeraj Varshney, Man Luo, and Chitta Baral. Can open-domain QA reader utilize external
knowledge efficiently like humans? CoRR, abs/2211.12707, 2022. doi: 10.48550/arXiv.2211.

342

https://doi.org/10.48550/arXiv.2302.13971
https://arxiv.org/abs/2105.13231
https://doi.org/10.48550/arXiv.2212.10509
https://aclanthology.org/2024.acl-long.850

12707. URL https://doi.org/10.48550/arXiv.2211.12707.

[413] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of

NeurIPS, 2017.

[414] Venkatesh Vinayakarao, A. Sarma, R. Purandare, Shuktika Jain, and Saumya Jain. Anne:
Improving source code search using entity retrieval approach. InWSDM ’17, 2017.

[415] Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

[416] Dexin Wang, Kai Fan, Boxing Chen, and Deyi Xiong. Efficient cluster-based k-nearest-
neighbor machine translation. ArXiv, abs/2204.06175, 2022.

[417] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi
Fan, and Anima Anandkumar. Voyager: An open-ended embodied agent with large
language models. ArXiv preprint, abs/2305.16291, 2023. URL https://arxiv.org/abs/

2305.16291.

[418] TianWang and Kyunghyun Cho. Larger-context languagemodelling with recurrent neural
network. In Proceedings of the 54th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1319–1329, 2016.

[419] Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng
Ji. Executable Code Actions Elicit Better LLM Agents. In ICML, 2024.

[420] Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge,
Jiayi Pan, Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma,
Mingzhang Zheng, Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan
Hui, Junyang Lin, Robert Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands:
An open platform for ai software developers as generalist agents, 2024. URL https:

//arxiv.org/abs/2407.16741.

[421] Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi
Pan, Yueqi Song, Bowen Li, Jaskirat Singh, et al. Opendevin: An open platform for ai
software developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024.

[422] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, and Denny Zhou.
Self-consistency improves chain of thought reasoning in language models. CoRR,
abs/2203.11171, 2022. doi: 10.48550/arXiv.2203.11171. URL https://doi.org/10.48550/

343

https://doi.org/10.48550/arXiv.2211.12707
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171

arXiv.2203.11171.

[423] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. CodeT5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and generation.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-

cessing, pages 8696–8708, Online and Punta Cana, Dominican Republic, 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.685. URL
https://aclanthology.org/2021.emnlp-main.685.

[424] Yushi Wang, Jonathan Berant, and Percy Liang. Building a semantic parser overnight. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics

and the 7th International Joint Conference on Natural Language Processing (ACL-IJCNLP),
pages 1332–1342, 2015.

[425] Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Graham Neubig. Execution-based eval-
uation for open-domain code generation. ArXiv preprint, abs/2212.10481, 2022. URL
https://arxiv.org/abs/2212.10481.

[426] Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow
memory. arXiv preprint arXiv:2409.07429, 2024.

[427] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc Le, and
Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
CoRR, abs/2201.11903, 2022. URL https://arxiv.org/abs/2201.11903.

[428] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V
Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language
models. Advances in neural information processing systems, 35:24824–24837, 2022.

[429] Yi Wei, Nirupama Chandrasekaran, Sumit Gulwani, and Youssef Hamadi. Building Bing
Developer Assistant. Technical report, MSR-TR-2015-36, Microsoft Research, 2015.

[430] Jeran Wittenstein. AI Can Only Do 5% of Jobs, Says MIT Economist Who Fears Crash,
October 2024. URL https://www.bloomberg.com/news/articles/2024-10-02/ai-

can-only-do-5-of-jobs-says-mit-economist-who-fears-crash.

[431] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and Anders
Wesslén. Experimentation in software engineering. Springer Science & Business Media,
2012.

[432] Frank Wood, Jan Gasthaus, Cédric Archambeau, Lancelot James, and Yee Whye Teh. The

344

https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171
https://aclanthology.org/2021.emnlp-main.685
https://arxiv.org/abs/2212.10481
https://arxiv.org/abs/2201.11903
https://www.bloomberg.com/news/articles/2024-10-02/ai-can-only-do-5-of-jobs-says-mit-economist-who-fears-crash
https://www.bloomberg.com/news/articles/2024-10-02/ai-can-only-do-5-of-jobs-says-mit-economist-who-fears-crash

sequence memoizer. Communications of the ACM, 54(2):91–98, 2011.

[433] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin
Li, Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications
via multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

[434] YuhuaiWu, Markus Norman Rabe, DeLesleyHutchins, and Christian Szegedy. Memorizing
transformers. In The Tenth International Conference on Learning Representations, ICLR

2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.

net/forum?id=TrjbxzRcnf-.

[435] Chunyang Xiao, Marc Dymetman, and Claire Gardent. Sequence-based structured predic-
tion for semantic parsing. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), pages 1341–1350, Berlin, Germany,
August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1127. URL
https://www.aclweb.org/anthology/P16-1127.

[436] Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing
Hua, Junning Zhao, Qian Liu, Che Liu, et al. Openagents: An open platform for language
agents in the wild. arXiv preprint arXiv:2310.10634, 2023.

[437] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao,
Toh Jing Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan
Zhou, Silvio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking
multimodal agents for open-ended tasks in real computer environments, 2024.

[438] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao,
Toh Jing Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan
Zhou, Silvio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. OSWorld: Benchmarking
multimodal agents for open-ended tasks in real computer environments. In The Thirty-

eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track,
2024. URL https://openreview.net/forum?id=tN61DTr4Ed.

[439] Frank F. Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan Vasilescu, and Graham Neubig.
Incorporating external knowledge through pre-training for natural language to code
generation. In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, pages 6045–6052, Online, 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.acl-main.538. URL https://aclanthology.org/2020.acl-main.538.

[440] Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A systematic

345

https://openreview.net/forum?id=TrjbxzRcnf-
https://openreview.net/forum?id=TrjbxzRcnf-
https://www.aclweb.org/anthology/P16-1127
https://openreview.net/forum?id=tN61DTr4Ed
https://aclanthology.org/2020.acl-main.538

evaluation of large language models of code. In Proceedings of the 6th ACM SIGPLAN

International Symposium on Machine Programming, pages 1–10, 2022.

[441] Nancy Xu, Sam Masling, Michael Du, Giovanni Campagna, Larry Heck, James Landay,
and Monica Lam. Grounding open-domain instructions to automate web support tasks.
In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Belt-
agy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou, editors,
Proceedings of the 2021 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pages 1022–1032, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.80.
URL https://aclanthology.org/2021.naacl-main.80.

[442] Nancy Xu, Sam Masling, Michael Du, Giovanni Campagna, Larry Heck, James Landay,
and Monica Lam. Grounding open-domain instructions to automate web support tasks.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pages 1022–1032, Online, 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.80. URL
https://aclanthology.org/2021.naacl-main.80.

[443] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

[444] Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-
of-mark prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint
arXiv:2310.11441, 2023.

[445] John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated
software engineering, 2024.

[446] Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W Cohen. Breaking the
softmax bottleneck: A high-rank rnn language model. arXiv preprint arXiv:1711.03953,
2017.

[447] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdi-
nov, and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop
question answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, pages 2369–2380, Brussels, Belgium, 2018. Association for Computa-

346

https://aclanthology.org/2021.naacl-main.80
https://aclanthology.org/2021.naacl-main.80

tional Linguistics. doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-

1259.

[448] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdi-
nov, and Quoc V. Le. Xlnet: Generalized autoregressive pretraining for language
understanding. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Flo-
rence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neu-

ral Information Processing Systems 32: Annual Conference on Neural Information Pro-

cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 5754–5764, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/

dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html.

[449] Zhixian Yang, Renliang Sun, and Xiaojun Wan. Nearest neighbor knowledge distil-
lation for neural machine translation. In Proceedings of the 2022 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, pages 5546–5556, Seattle, United States, July 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.406. URL https:

//aclanthology.org/2022.naacl-main.406.

[450] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scal-
able real-world web interaction with grounded language agents. volume abs/2207.01206,
2022. URL https://arxiv.org/abs/2207.01206.

[451] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. CoRR, abs/2210.03629,
2022. doi: 10.48550/arXiv.2210.03629. URL https://doi.org/10.48550/arXiv.2210.

03629.

[452] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. ArXiv preprint,
abs/2210.03629, 2022. URL https://arxiv.org/abs/2210.03629.

[453] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards
scalable real-world web interaction with grounded language agents, 2023. URL https:

//arxiv.org/abs/2207.01206.

[454] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and
Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language
models. ArXiv preprint, abs/2305.10601, 2023. URL https://arxiv.org/abs/2305.

347

https://aclanthology.org/D18-1259
https://aclanthology.org/D18-1259
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://aclanthology.org/2022.naacl-main.406
https://aclanthology.org/2022.naacl-main.406
https://arxiv.org/abs/2207.01206
https://doi.org/10.48550/arXiv.2210.03629
https://doi.org/10.48550/arXiv.2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601

10601.

[455] Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark
for tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045,
2024.

[456] Xuchen Yao and Benjamin Van Durme. Information extraction over structured data:
Question answering with freebase. In Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics (ACL), pages 956–966, 2014.

[457] Ziyu Yao, Daniel S. Weld, W. Chen, and Huan Sun. Staqc: A systematically mined question-
code dataset from stack overflow. Proceedings of the 2018 World Wide Web Conference

(WWW), 2018.

[458] Ziyu Yao, Daniel S Weld, Wei-Peng Chen, and Huan Sun. Staqc: A systematically mined
question-code dataset from stack overflow. In Proceedings of the 2018 World Wide Web Con-

ference, pages 1693–1703. International WorldWideWeb Conferences Steering Committee,
2018. URL https://dl.acm.org/citation.cfm?id=3186081.

[459] Ziyu Yao, Xiujun Li, Jianfeng Gao, Brian Sadler, and Huan Sun. Interactive semantic
parsing for if-then recipes via hierarchical reinforcement learning. In Proceedings of the

AAAI Conference on Artificial Intelligence (AAAI), volume 33, pages 2547–2554, 2019.

[460] Ziyu Yao, Jayavardhan Reddy Peddamail, and Huan Sun. Coacor: Code annotation for
code retrieval with reinforcement learning. The World Wide Web Conference (WWW),
2019.

[461] Ziyu Yao, Jayavardhan Reddy Peddamail, and Huan Sun. Coacor: Code annotation for
code retrieval with reinforcement learning. In The World Wide Web Conference, pages
2203–2214. ACM, 2019. URL https://dl.acm.org/citation.cfm?id=3313632.

[462] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code
generation. In Proceedings of the 55th Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers), pages 440–450, Vancouver, Canada, July
2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1041. URL
https://www.aclweb.org/anthology/P17-1041.

[463] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code
generation. In Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 440–450, Vancouver, Canada, 2017. Association
for Computational Linguistics. doi: 10.18653/v1/P17-1041. URL https://aclanthology.

348

https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://dl.acm.org/citation.cfm?id=3186081
https://dl.acm.org/citation.cfm?id=3313632
https://www.aclweb.org/anthology/P17-1041
https://aclanthology.org/P17-1041
https://aclanthology.org/P17-1041
https://aclanthology.org/P17-1041

org/P17-1041.

[464] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code
generation. In Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 440–450, Vancouver, Canada, 2017. Association
for Computational Linguistics. doi: 10.18653/v1/P17-1041. URL https://aclanthology.

org/P17-1041.

[465] Pengcheng Yin and Graham Neubig. TRANX: A transition-based neural abstract syntax
parser for semantic parsing and code generation. In Proceedings of the 2018 Conference

on Empirical Methods in Natural Language Processing: System Demonstrations, pages 7–
12, Brussels, Belgium, November 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-2002. URL https://www.aclweb.org/anthology/D18-2002.

[466] Pengcheng Yin and Graham Neubig. Tranx: A transition-based neural abstract syntax
parser for semantic parsing and code generation. Conference on Empirical Methods in

Natural Language Processing (EMNLP), Demo Track, 2018.

[467] Pengcheng Yin and GrahamNeubig. Reranking for neural semantic parsing. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4553–
4559, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
v1/P19-1447. URL https://www.aclweb.org/anthology/P19-1447.

[468] Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. Learn-
ing to mine aligned code and natural language pairs from stack overflow. In 2018 IEEE/ACM
15th international conference on mining software repositories (MSR), pages 476–486. IEEE,
2018.

[469] Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. Learn-
ing to mine aligned code and natural language pairs from stack overflow. In Interna-

tional Conference on Mining Software Repositories, MSR, pages 476–486. ACM, 2018. doi:
https://doi.org/10.1145/3196398.3196408.

[470] Ori Yoran, Samuel Joseph Amouyal, Chaitanya Malaviya, Ben Bogin, Ofir Press, and
Jonathan Berant. Assistantbench: Can web agents solve realistic and time-consuming
tasks?, 2024. URL https://arxiv.org/abs/2407.15711.

[471] Keen You, Haotian Zhang, Eldon Schoop, FlorisWeers, Amanda Swearngin, Jeffrey Nichols,
Yinfei Yang, and Zhe Gan. Ferret-ui: Grounded mobile ui understanding with multimodal
llms, 2024. URL https://arxiv.org/abs/2404.05719.

349

https://aclanthology.org/P17-1041
https://aclanthology.org/P17-1041
https://aclanthology.org/P17-1041
https://aclanthology.org/P17-1041
https://aclanthology.org/P17-1041
https://aclanthology.org/P17-1041
https://www.aclweb.org/anthology/D18-2002
https://www.aclweb.org/anthology/P19-1447
https://arxiv.org/abs/2407.15711
https://arxiv.org/abs/2404.05719

[472] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma,
Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider:
A large-scale human-labeled dataset for complex and cross-domain semantic parsing
and text-to-SQL task. In Proceedings of the 2018 Conference on Empirical Methods in

Natural Language Processing, pages 3911–3921, Brussels, Belgium, October-November
2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1425. URL https:

//www.aclweb.org/anthology/D18-1425.

[473] Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue, Bo Pang, Xi Victoria Lin, Yi Chern Tan,
Tianze Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga, Sungrok Shim, Tao Chen, Alexan-
der Fabbri, Zifan Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vincent Zhang, Caiming
Xiong, Richard Socher, Walter Lasecki, and Dragomir Radev. CoSQL: A conversational text-
to-SQL challenge towards cross-domain natural language interfaces to databases. In Pro-

ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the

9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
1962–1979, Hong Kong, China, November 2019. Association for Computational Linguistics.
doi: 10.18653/v1/D19-1204. URL https://www.aclweb.org/anthology/D19-1204.

[474] Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern Tan, Xi Victoria Lin, Suyi Li, Heyang
Er, Irene Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit, David Proctor, Sungrok Shim,
Jonathan Kraft, Vincent Zhang, Caiming Xiong, Richard Socher, and Dragomir Radev.
SParC: Cross-domain semantic parsing in context. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, pages 4511–4523, Florence, Italy,
July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1443. URL
https://www.aclweb.org/anthology/P19-1443.

[475] Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal,
Chenguang Zhu, Michael Zeng, and Meng Jiang. Generate rather than retrieve: Large
language models are strong context generators. CoRR, abs/2209.10063, 2022. doi:
10.48550/arXiv.2209.10063. URL https://doi.org/10.48550/arXiv.2209.10063.

[476] Wenhao Yu, Zhihan Zhang, Zhenwen Liang, Meng Jiang, and Ashish Sabharwal. Improv-
ing language models via plug-and-play retrieval feedback. CoRR, abs/2305.14002, 2023.
doi: 10.48550/arXiv.2305.14002. URL https://doi.org/10.48550/arXiv.2305.14002.

[477] Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R. Fung, Hao Peng, and Heng Ji. CRAFT: cus-
tomizing llms by creating and retrieving from specialized toolsets. CoRR, abs/2309.17428,
2023. doi: 10.48550/ARXIV.2309.17428. URL https://doi.org/10.48550/arXiv.2309.

350

https://www.aclweb.org/anthology/D18-1425
https://www.aclweb.org/anthology/D18-1425
https://www.aclweb.org/anthology/D19-1204
https://www.aclweb.org/anthology/P19-1443
https://doi.org/10.48550/arXiv.2209.10063
https://doi.org/10.48550/arXiv.2305.14002
https://doi.org/10.48550/arXiv.2309.17428
https://doi.org/10.48550/arXiv.2309.17428
https://doi.org/10.48550/arXiv.2309.17428

17428.

[478] Maksym Zavershynskyi, Alex Skidanov, and Illia Polosukhin. Naps: Natural program
synthesis dataset. 2ndWorkshop on Neural Abstract Machines & Program Induction (NAMPI),

ICML, 2018.

[479] John M Zelle and Raymond J Mooney. Learning to parse database queries using inductive
logic programming. In Proceedings of the national conference on artificial intelligence, pages
1050–1055, 1996.

[480] Yury Zemlyanskiy, Michiel de Jong, Joshua Ainslie, Panupong Pasupat, Peter Shaw, Linlu
Qiu, Sumit Sanghai, and Fei Sha. Generate-and-retrieve: Use your predictions to im-
prove retrieval for semantic parsing. In Nicoletta Calzolari, Chu-Ren Huang, Hansaem
Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen,
Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan
Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond,
and Seung-Hoon Na, editors, Proceedings of the 29th International Conference on Com-

putational Linguistics, COLING 2022, Gyeongju, Republic of Korea, October 12-17, 2022,
pages 4946–4951. International Committee on Computational Linguistics, 2022. URL
https://aclanthology.org/2022.coling-1.438.

[481] Luke Zettlemoyer and Michael Collins. Online learning of relaxed ccg grammars for
parsing to logical form. In Proceedings of the 2007 Joint Conference on Empirical Methods

in Natural Language Processing and Computational Natural Language Learning (EMNLP-

CoNLL), pages 678–687, 2007.

[482] Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and
Gang Yu. Appagent: Multimodal agents as smartphone users, 2023.

[483] Fengji Zhang, Bei Chen, Yue Zhang, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation. CoRR, abs/2303.12570, 2023. doi: 10.48550/arXiv.2303.12570. URL https:

//doi.org/10.48550/arXiv.2303.12570.

[484] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam
Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang,
and Luke Zettlemoyer. Opt: Open pre-trained transformer language models. ArXiv,
abs/2205.01068, 2022.

351

https://doi.org/10.48550/arXiv.2309.17428
https://doi.org/10.48550/arXiv.2309.17428
https://doi.org/10.48550/arXiv.2309.17428
https://doi.org/10.48550/arXiv.2309.17428
https://aclanthology.org/2022.coling-1.438
https://doi.org/10.48550/arXiv.2303.12570
https://doi.org/10.48550/arXiv.2303.12570

[485] Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover:
Autonomous program improvement, 2024.

[486] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian
Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen,
Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-
Yun Nie, and Ji-RongWen. A survey of large language models. CoRR, abs/2303.18223, 2023.
doi: 10.48550/arXiv.2303.18223. URL https://doi.org/10.48550/arXiv.2303.18223.

[487] Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist
web agent, if grounded. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=piecKJ2DlB.

[488] Ming Zhong, Yang Liu, Da Yin, YuningMao, Yizhu Jiao, Pengfei Liu, Chenguang Zhu, Heng
Ji, and Jiawei Han. Towards a unified multi-dimensional evaluator for text generation. In
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United

Arab Emirates, December 7-11, 2022, pages 2023–2038. Association for Computational
Linguistics, 2022. URL https://aclanthology.org/2022.emnlp-main.131.

[489] Ruiqi Zhong, Mitchell Stern, and D. Klein. Semantic scaffolds for pseudocode-to-code
generation. In ACL, 2020.

[490] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured
queries from natural language using reinforcement learning. arxiv 2017. ArXiv preprint,
abs/1709.00103, 2017. URL https://arxiv.org/abs/1709.00103.

[491] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries
from natural language using reinforcement learning. arXiv preprint arXiv:1709.00103,
2017.

[492] Victor Zhong, Tim Rocktäschel, and Edward Grefenstette. Rtfm: Generalising to novel
environment dynamics via reading. ArXiv preprint, abs/1910.08210, 2019. URL https:

//arxiv.org/abs/1910.08210.

[493] Zexuan Zhong, Tao Lei, and Danqi Chen. Training language models with memory
augmentation. In Proceedings of the 2022 Conference on Empirical Methods in Natural

Language Processing, pages 5657–5673, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics. URL https://aclanthology.org/

2022.emnlp-main.382.

352

https://doi.org/10.48550/arXiv.2303.18223
https://openreview.net/forum?id=piecKJ2DlB
https://aclanthology.org/2022.emnlp-main.131
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1910.08210
https://arxiv.org/abs/1910.08210
https://aclanthology.org/2022.emnlp-main.382
https://aclanthology.org/2022.emnlp-main.382

[494] Chunting Zhou, Graham Neubig, Jiatao Gu, Mona Diab, Francisco Guzmán, Luke Zettle-
moyer, and Marjan Ghazvininejad. Detecting hallucinated content in conditional neural
sequence generation. In Findings of the Association for Computational Linguistics: ACL-

IJCNLP 2021, pages 1393–1404, Online, August 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.findings-acl.120. URL https://aclanthology.org/

2021.findings-acl.120.

[495] Shuyan Zhou, Uri Alon, Frank F Xu, Zhengbao JIang, and Graham Neubig. Doccoder:
Generating code by retrieving and reading docs. arXiv preprint arXiv:2207.05987, 2022.

[496] Shuyan Zhou, Pengcheng Yin, and Graham Neubig. Hierarchical control of situated
agents through natural language. In Proceedings of the Workshop on Structured and

Unstructured Knowledge Integration (SUKI), pages 67–84, Seattle, USA, 2022. Association for
Computational Linguistics. doi: 10.18653/v1/2022.suki-1.8. URL https://aclanthology.
org/2022.suki-1.8.

[497] Shuyan Zhou, Li Zhang, Yue Yang, Qing Lyu, Pengcheng Yin, Chris Callison-Burch, and
Graham Neubig. Show me more details: Discovering hierarchies of procedures from
semi-structured web data. In Proceedings of the 60th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), pages 2998–3012, Dublin, Ireland,
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.214. URL
https://aclanthology.org/2022.acl-long.214.

[498] Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi
Cheng, Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environ-
ment for building autonomous agents. In The Twelfth International Conference on Learning

Representations, 2023.

[499] Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu,
Jintian Zhang, Jing Chen, Ruipu Wu, Shuai Wang, Shiding Zhu, Jiyu Chen, Wentao Zhang,
Xiangru Tang, Ningyu Zhang, Huajun Chen, Peng Cui, and Mrinmaya Sachan. Agents:
An open-source framework for autonomous language agents, 2023.

[500] Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang, Haofei Yu, Zhengyang Qi,
Louis-Philippe Morency, Yonatan Bisk, Daniel Fried, Graham Neubig, and Maarten
Sap. SOTOPIA: Interactive evaluation for social intelligence in language agents. In
The Twelfth International Conference on Learning Representations, 2024. URL https:

//openreview.net/forum?id=mM7VurbA4r.

353

https://aclanthology.org/2021.findings-acl.120
https://aclanthology.org/2021.findings-acl.120
https://aclanthology.org/2022.suki-1.8
https://aclanthology.org/2022.suki-1.8
https://aclanthology.org/2022.acl-long.214
https://openreview.net/forum?id=mM7VurbA4r
https://openreview.net/forum?id=mM7VurbA4r

[501] Mingchen Zhuge, WenyiWang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jur-
gen Schmidhuber. Language agents as optimizable graphs. arXiv preprint arXiv:2402.16823,
2024.

[502] Daniel Zügner, Tobias Kirschstein, Michele Catasta, Jure Leskovec, and Stephan Gün-
nemann. Language-agnostic representation learning of source code from structure
and context. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=Xh5eMZVONGF.

354

https://openreview.net/forum?id=Xh5eMZVONGF

	1 Introduction
	1.1 Pre-training for Code Generation
	1.2 Human Study of Code Generation Models
	1.3 Study of Retrieval-Augmented model Models
	1.4 From Code Generation to LLM Agents

	I Pre-training for Code Generation
	2 Incorporating External Knowledge through Pre-training for Natural Language to Code Generation
	2.1 Introduction
	2.2 Approach
	2.3 Experiments
	2.4 Conclusion and Future Work

	3 A Systematic Evaluation of Large Language Models of Code
	3.1 Introduction
	3.2 Related Work
	3.3 Evaluation Settings
	3.4 Compared Models
	3.5 Results
	3.6 Conclusion

	II Human Study of Code Generation Models
	4 In-IDE Code Generation from Natural Language: Promise and Challenges
	4.1 Introduction
	4.2 Overview of Our Study
	4.3 NL2Code IDE Plugin Design
	4.4 Human Study Design
	4.5 RQ1: NL2Code Plugin Effects on Task Completion Time and Program Correctness
	4.6 RQ2: Comparison of Generated vs Retrieved Code
	4.7 RQ3: User Perceptions of the NL2Code Plugin
	4.8 Discussion and Implications
	4.9 Related Work
	4.10 Conclusion
	4.11 Appendix

	III Study of Retrieval-Augmented Models
	5 Capturing Structural Locality in Non-parametric Language Models
	5.1 Introduction
	5.2 Non-parametric Language Models
	5.3 Defining Structural Locality
	5.4 Structural Locality and Nearest Neighbors
	5.5 Incorporating Structural Locality in Non-parametric LMs
	5.6 How Does Structural Locality Improve Language Modeling?
	5.7 Conclusion

	6 Why do Nearest Neighbor Language Models Work?
	6.1 Introduction
	6.2 Formalizing and Generalizing kNN-LM
	6.3 Baseline kNN-LM Results
	6.4 Effect of Different Wds Formulations
	6.5 Approximate kNN & Softmax Temperature
	6.6 Probably Wrong Hypotheses for Why kNN-LM Works
	6.7 Conclusion
	6.8 Appendix

	7 DocPrompting: Generating Code by Retrieving the Docs
	7.1 Introduction
	7.2 Code Generation by Reading the Docs
	7.3 Practical Instantiations of DocPrompting
	7.4 Experimental Setup
	7.5 Results
	7.6 Analysis
	7.7 Related Work
	7.8 Conclusion
	7.9 Appendix

	8 FLARE: Active Retrieval Augmented Generation
	8.1 Introduction
	8.2 Retrieval Augmented Generation
	8.3 FLARE: Forward-Looking Active REtrieval Augmented Generation
	8.4 Multi-time Retrieval Baselines
	8.5 Experimental Setup
	8.6 Experimental Results
	8.7 Related Work
	8.8 Conclusion
	8.9 Limitations
	8.10 Appendix

	IV Iterative Use of LLMs as Agents
	9 WebArena: A Realistic Web Environment for Building Autonomous Agents
	9.1 Introduction
	9.2 WebArena: Websites as an Environment for Autonomous Agents
	9.3 Benchmark Suite of Web-based Tasks
	9.4 Baseline Web Agents
	9.5 Results
	9.6 Related Work
	9.7 Conclusion
	9.8 Technical Details

	10 Beyond Simple Browsing Agent
	10.1 Platform: OpenHands Agent Framework
	10.2 Baseline Browsing Agent Implementations
	10.3 Beyond Browsing Only: Coding + Web Agents
	10.4 Coding + Web Agents on WebArena Tasks

	11 TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks
	11.1 Introduction
	11.2 Benchmark Desiderata and Comparison to Other Benchmarks
	11.3 TheAgentCompany Environment Setup
	11.4 Task Structure
	11.5 Task Creation
	11.6 Baseline Agent
	11.7 Experimental Results
	11.8 Implications and Future Directions
	11.9 Appendix

	12 Conclusion
	Bibliography

