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Abstract

The recent success of large neural network models trained on massive amounts of unlabeled
data has, yet again, highlighted the power of scaling, in terms of both model capacity and data
quantity. However, despite its successes, scaling up also adds new additional challenges: (i)
the large size and complexity of these models make it difficult to understand their learning
dynamics and global behavior, and how these change with the data distribution; (ii) their
complexity also make it difficult to extract explanations of how they arrive at individual
predictions, and to know how to leverage these explanations; (iii) this, coupled with the fact
that the data used to train these models is often noisy, can lead to models that do not align

with their intended use case.

This thesis tackles all of the challenges above, with a particular focus on models trained
for machine translation (MT). In the first part, we study the scaling behaviour of MT mod-
els trained to translate between multiple high-resource language pairs (LPs), showing that
the way performance for individual LPs scales with model capacity is only dependent on
the properties of that “task” and is invariant to cross-lingual interactions. We also investigate
how much context information M'T models leverage in document-level MT, proposing ways
to increase it. In the second part, we start by proposing a novel method for extracting expla-
nations of how neural models arrive at their predictions, relying on the assumption that good
explanations should help other models learn, and leveraging bilevel optimization/meta-
learning to learn explainers that teach well. Then we show that not only are reasoning models
state-of-the-art systems for low-resource MT, but that their chain-of-thought rationales are
good explanations to help teach smaller LLLMs the same task. In the third and final part, we
start by showing that, by including metrics of translation quality (trained on human feedback
annotations) in the inference stage of a trained M'T model, we can improve the quality of the
translation and align the system towards hAuman-like translations. We then also show that we
can almost completely remove the dependency on human annotations by leveraging large

language models to provide (fine-grained) translation quality feedback.

The code for this thesis is available open-source at:

github.com/CoderPat/thesis

Keywords: machine learning, deep learning, natural language processing, machine transla-

tion, large language models
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Resumo

O recente sucesso de grandes modelos de redes neuronais treinados com enormes quanti-
dades de dados nio rotulados destacou, mais uma vez, o poder da escalabilidade, tanto em
termos de capacidade do modelo quanto de quantidade de dados. No entanto, apesar desses
sucessos, a escalabilidade também traz novos desafios adicionais: (i) o grande tamanho e
complexidade desses modelos dificultam a compreensdo das suas dinamicas de aprendiza-
gem e comportamento global, e como este mudam com a distribui¢iio de dados; (ii) a sua
complexidade também dificulta a extracio de explica¢bes sobre como eles chegam a pre-
visdes individuais, e saber como aproveitar essas explicacdes; (iii) isso, aliado ao facto de
que os dados usados para treinar esses modelos sio frequentemente ruidosos, pode levar a

modelos que nio se alinham com seu uso pretendido.

Esta tese aborda todos esses desafios, com foco especial em modelos treinados para
traducao automatica (TA). Na primeira parte, estudamos o comportamento de escalabil-
idade de modelos de TA treinados para traduzir entre multiplos pares de linguas (PLs) com
muitos recursos, mostrando que a forma como o desempenho para PLs individuais escala
com a capacidade do modelo depende apenas das propriedades dessa "tarefa" e € invariante
as interacoes entre linguas. Também investigamos quanta informacio de contexto os mode-
los de TA aproveitam na traducio ao nivel do documento, propondo maneiras de aumenta-
la. Na segunda parte, comecamos por propor um método inovador para extrair explicages
de como os modelos neuronais chegam as suas previsdes, baseando-nos na suposi¢io de
que boas explica¢des devem ajudar outros modelos a aprender, e utilizando otimiza¢io em
dois niveis/meta-aprendizagem para treinar explicadores que ensinem bem. Mostramos
também que os modelos de raciocinio nio s6 sdo sistemas de tultima gerac¢io para TA com
poucos recursos, mas que as suas cadeias de pensamento sio boas explica¢des para ajudar a
ensinar LLLMs menores para a mesma tarefa. Na terceira e ultima parte, comeg¢amos por
mostrar que, ao incluir métricas de qualidade da tradugdo (treinadas com anotacoes de feed-
back humano) na fase de inferéncia de um modelo de TA treinado, podemos melhorar a
qualidade da traducio e alinhar o sistema com tradugdes semelhantes as humanas. Mostramos
também que podemos eliminar quase completamente a dependéncia em anota¢des humanas

usando grandes modelos de linguagem para fornecer feedback sobre a qualidade da tradugio.

O cédigo desta tese esta disponivel como cédigo aberto em:
github.com/CoderPat/thesis

Palavras-chave: aprendizagem automadtica, aprendizagem profunda, processamento de lin-

guagem natural, tradu¢iio automdtica, grandes modelos de linguagem
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Chapter

Introduction

The field of natural language processing (NLP) has seen explosive growth in interest and
successful applications in recent years, largely driven by the efficacy of parametric models
of language. In particular, massive neural network models (often with billions of parame-
ters) leveraging massive amounts of textual data from the Internet (frequently surpassing
trillions of words) have been able to match or even surpass human performance on a va-
riety of natural language tasks. In machine translation (MT), for example, state-of-the-art
systems are now able to translate between high-resource languages (e.g. English, German,

etc.) with near-human quality (Kocmi et al., 2022).

However, despite the overall success of scaling the compute used (either by increasing
the model capacity or by training on more data) at improving the general capabilities of
these models, it also adds new additional challenges to their widespread adoption (besides
the computational ones):

* Although we know that scaling works for most tasks', we lack principled understand-
ing of how performance scales with model size, data quantity and distribution of do-
mains/tasks in the data, and of if models actually leverage (contextual) information
they have access to (during training and inference). This makes it difficult to predict

and optimize model behaviour.

* Their size, coupled with the nature of neural network computations, makes it near
impossible to get a mechanistic, causal understanding of how they work, and getting
interpretable and “faithful” non-mechanistic explanations of their decisions is still
an open problem. This adds to difficulty in understanding how to improve them,
and in trusting them in safety-critical applications, like humanitarian and medical

emergencies (Mehandru et al., 2023).

* The amount of data required to train these models is so large that manually-curated

data is insufficient, and they have to be trained on data “scraped” from the inter-

There are notable exceptions where performance seems can decrease with scale, a phenomenon known
as “inverse scaling” (McKenzie et al., 2024).



net, loosely filtered with automated procedures. This leads to models that are often
trained on “noisy” data (e.g. containing sentence pairs that are not actually transla-
tions of each other, or inappropriate harmful stereotypes) and that don’t completely

align with their intended use case.

In this thesis, we aim to tackle all these challenges by studying and training neural
network models primarily for machine translation, a task that has been extensively studied
for decades and that has contributed a number of technical innovations there were key
to success of the broader NLP landscape (Bahdanau et al., 2015; Vaswani et al., 2017a).
But while we focus on MT, most of the techniques and insights we develop are broadly
applicable to other NLP tasks leverage neural networks, and can inform the development

of more reliable, interpretable, and eflicient general-purpose language models.

1.1 Thesis Overview

We start by providing a brief overview of the preliminary concepts, background and related
work for the topics covered in this thesis (Chapter 2). The rest of the thesis is then divided

into three parts, each tackling one of the challenges mentioned above.

Part I: Understanding the Behaviour In the first part, we focus on improving our un-
derstanding of the global behaviour of neural networks: statistical patterns and regularities
that describe how these models behave during training and inference, and how these relate
to various design choices and data used. First (Chapter 3), we study the scaling behavior of
multilingual neural machine translation models, trained to translate between multiple lan-
guage pairs, and how it changes based how their data (which been seen as different tasks)
is weighted during training. By analysing dozens of scaling laws fitted on different distri-
butions, we find that performance on individual translation tasks improves with model ca-
pacity at ratios that are independent of how the different tasks are weighted in the training.
This allows us to propose ajoint scaling law that can predict the full Pareto frontier of trans-
lation quality as we scale the mode. Then (Chapter 4), shifting our focus to document-level
machine translation, we investigate how much contextual information beyond the sentence
level these models actually leverage. We propose an information-theoretic metric to quan-
tify context usage and find that models overall leverage the target language context more

than the source one and propose a method to increase the usage of extra-sentential context.

Part II: Explaining as Teaching We then move onto the problem of extracting local ex-
planations from neural network models: interpretable descriptions of how/why a model
arrived at a specific decision/output given a particular input. Although many definitions of
what makes a good explanation have been proposed, we focus on a quantitatively measur-

able definition based on the assumption that good explanations should help other models

4



learn. Based on it, we propose a novel method for extracting explanations from trained
neural network models, leveraging bilevel optimization/meta-learning to learn (parametrized)
explainers that help teaching student models (Chapter 5). We show not only that our
method is able to extract explanations with higher simulability (i.e. that help students simu-
late the teacher) than other methods, but that this explanations are more plausible, aligning
with human explanations. Then (Chapter 6), we investigate if reasoning models, optimized
to solve complex tasks by generating intermediate reasoning steps (chains-of-thought), gen-
eralize to machine translation, finding that not only are these models state-of-the-art sys-
tems for low-resource M'T, but that their chain-of-thought rationales are good explanations
(according to the aforementioned definition) and that we can leverage them to improve

the quality of smaller LL.Ms at the same task without requiring additional test-time compute.

Part III: Aligning with Feedback In the final part, we then tackle the problem of mis-
aligned behaviour in machine translation models trained on large corpora of (noisy) translation-
pairs. We propose a quality-aware decoding algorithm that not only consider model-likelihood
but also metrics of translation quality, effectively aligning the model with the goal of human-
like translation (Chapter 7). To do so, we propose incorporating recent reference-based and
reference-free neural, trained metrics (trained to align with human judgement of transla-
tion quality) into the decoding algorithm through techniques such as N-best reranking and
minimun Bayes risk decoding. We show that models that leverage these metrics can produce
more human-like translations (even if traditional automatic metrics would disagree). After
(Chapter 8), we also show that LLLMs can be leveraged as state-of-the-art fine-grained trans-
lation quality metrics, with only a few human-annotated translation quality examples (in
contrast to previous trained neural metrics which require many orders of magnitude more
data), and hinting at the possibility of using LLMs to align machine translation models.

And while each part can be read largely independently, we hope that this thesis shows

the interconnected nature of these fundamental challenges .

1.2 Summary of Publications

Parts of the background and related work in Chapter 2 appear in the survey:

Fernandes, P., Madaan, A., Liu, E., Farinhas, A., Martins, P. H., Bertsch,
A., de Souza, J. G. C., Zhou, S., Wu, T., Neubig, G., & Martins, A. F. T.
(2023). Bridging the gap: A survey on integrating (human) feedback for
natural language generation. Transactions of the Association for Computational
Linguistics. https://arxiv.org/abs/2305.00955

The content of Chapter 3 appears in:


https://arxiv.org/abs/2305.00955

Fernandes, P., Ghorbani, B., Garcia, X., Freitag, M., & Firat, O. (2023,
23-29 Jul). Scaling laws for multilingual neural machine translation. In
A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, & J. Scar-
lett (Eds.), Proceedings of the 40th international conference on machine learning
(pp. 10053-10071, Vol. 202). PMLR. https:/proceedings.mlr.press/v202/

fernandes23a.html

The content of Chapter 4 appears in:

Fernandes, P., Yin, K., Neubig, G., & Martins, A. F. T. (2021, August).
Measuring and increasing context usage in context-aware machine trans-
lation. In C. Zong, F. Xia, W. Li, & R. Navigli (Eds.), Proceedings of the
59th annual meeting of the association for computational linguistics and the 11th
international joint conference on natural language processing (volume 1: Long pa-
pers) (pp. 6467-6478). Association for Computational Linguistics. https:
//doi.org/10.18653/v1/2021.acl-long.505

The content of Chapter 5 appears in:

Fernandes, P., Treviso, M. V., Pruthi, D., Martins, A. F. T., & Neubig, G.
(2022). Learning to scaffold: Optimizing model explanations for teaching.

Advances in Neural Information Processing Systems. https://openreview.net/
pdf?id=V5rlSPsHpkf

The content of Chapter 7 appears in:

Fernandes, P., Farinhas, A., Rei, R., C. de Souza, J. G., Ogayo, P., Neubig,
G., & Martins, A. (2022, July). Quality-aware decoding for neural machine
translation. In M. Carpuat, M.-C. de Marneffe, & 1. V. Meza Ruiz (Eds.),
Proceedings of the 2022 conference of the north american chapter of the associa-
tion for computational linguistics: Human language technologies (pp. 1396-1412).

Association for Computational Linguistics. https://doi.org/10.18653/v1/
2022 .naacl-main.100

The content of Chapter 8 appears in:

Fernandes, P., Deutsch, D., Finkelstein, M., Riley, P., Martins, A. F. T,
Neubig, G., Garg, A., Clark, J. H., Freitag, M., & Firat, O. (2023). The
devil is in the errors: Leveraging large language models for fine-grained ma-

chine translation evaluation. Proceedings of the Seventh Conference on Machine
Translation (WM'T)



https://proceedings.mlr.press/v202/fernandes23a.html
https://proceedings.mlr.press/v202/fernandes23a.html
https://doi.org/10.18653/v1/2021.acl-long.505
https://doi.org/10.18653/v1/2021.acl-long.505
https://openreview.net/pdf?id=V5rlSPsHpkf
https://openreview.net/pdf?id=V5rlSPsHpkf
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100

Non-thesis research I have also pursued other research directions, which have lead to

the following first-author publications (these are excluded for the remainder of this thesis):

Fernandes, P., Yin, K., Liu, E., Martins, A., & Neubig, G. (2023, July).
When does translation require context? a data-driven, multilingual explo-
ration [Awarded Best Resource Paper]. In A. Rogers, J. Boyd-Graber, &
N. Okazaki (Eds.), Proceedings of the 61st annual meeting of the association for

computational linguistics (volume 1: Long papers). Association for Computa-
tional Linguistics. https:/doi.org/10.18653/v1/2023.acl-long.36

Fernandes, P., Agrawal, S., Zaranis, E., Martins, A. F. T., & Neubig,
G. (2025). Do llms understand your translations? evaluating paragraph-

level mt with question answering. Second Conference on Language Modeling

(COLM). https://arxiv.org/abs/2504.07583

Additionally, I have also contributed to the following publications as a non-primary author:

Yin, K., Fernandes, P., Pruthi, D., Chaudhary, A., Martins, A. F. T., &
Neubig, G. (2021, August). Do context-aware translation models pay the
right attention? In C. Zong, F. Xia, W. Li, & R. Navigli (Eds.), Proceedings
of the 59th annual meeting of the association for computational linguistics and the
11th international joint conference on natural language processing (volume 1: Long

papers) (pp. 788-801). Association for Computational Linguistics. https:
//doi.org/10.18653/v1/2021.acl-long.65

Treviso, M., Gois, A., Fernandes, P., Fonseca, E., & Martins, A. (2022,
May). Predicting attention sparsity in transformers. In A. Vlachos, P.
Agrawal, A. Martins, G. Lampouras, & C. Lyu (Eds.), Proceedings of the sixth
workshop on structured prediction for nlp (pp. 67-81). Association for Compu-
tational Linguistics. https:/doi.org/10.18653/v1/2022.spnlp-1.7

Yan, B., Fernandes, P., Dalmia, S., Shi, J., Peng, Y., Berrebbi, D., Wang,
X., Neubig, G., & Watanabe, S. (2022, May). CMU’s IWSLT 2022 dialect
speech translation system. In E. Salesky, M. Federico, & M. Costa-jussa
(Eds.), Proceedings of the 19th international conference on spoken language transla-
tion (iwslt 2022) (pp. 298-307). Association for Computational Linguistics.
https:/doi.org/10.18653/v1/2022.iwslt-1.27

Sun, J., Fernandes, P., Wang, X., & Neubig, G. (2023, May). A multi-
dimensional evaluation of tokenizer-free multilingual pretrained models. In
A. Vlachos & 1. Augenstein (Eds.), Findings of the association for computational
linguistics: Eacl 2028 (pp. 1725-1735). Association for Computational Lin-



https://doi.org/10.18653/v1/2023.acl-long.36
https://arxiv.org/abs/2504.07583
https://doi.org/10.18653/v1/2021.acl-long.65
https://doi.org/10.18653/v1/2021.acl-long.65
https://doi.org/10.18653/v1/2022.spnlp-1.7
https://doi.org/10.18653/v1/2022.iwslt-1.27

guistics. https:/doi.org/10.18653/v1/2023.findings-eacl.128

Farinha, A. C., Farajian, M. A., Buchicchio, M., Fernandes, P., C. de Souza,
J. G., Moniz, H., & Martins, A. F. T. (2022, December). Findings of the
WMT 2022 shared task on chat translation. In P. Koehn, L. Barrault, O.
Bojar, F. Bougares, R. Chatterjee, M. R. Costa-jussa, C. Federmann, M.
Fishel, A. Fraser, M. Freitag, Y. Graham, R. Grundkiewicz, P. Guzman,
B. Haddow, M. Huck, A. Jimeno Yepes, T. Kocmi, A. Martins, M. Mor-
ishita, ... M. Zampieri (Eds.), Proceedings of the seventh conference on machine
translation (wmt) (pp. 724-743). Association for Computational Linguistics.
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Chapter

Preliminaries

In this chapter, we provide an overview of the main concepts necessary to understand
and motivate the remainder of this thesis. We start by introducing the (conditional) lan-
guage modeling task and neural language models (looking at neural machine translation
as a specific case), discussing how scaling (of model size and data) and transfer (of learned
representations across tasks) have underpinned much of the recent success in NLP (Sec-
tion 2.1). We then discuss the interpretability problem with neural models (Section 2.2),
common approaches to extract explanations from them, and one approach to define and
quantitatively measure how good an explanation of a model’s decision is. Finally, we discuss
how feedback can be used to align and further improve the performance of neural language
models (Section 2.3).

2.1 Learning Parametric Models of Language

Language modelling is the task of estimating the probability of sequences of words or sym-
bols occurring in a language of interest. We might want, for example, to estimate the prob-
ability of a sentence appearing in the English language, or the probability of a sequence of

notes appearing in a piece of music.

Formally, given a sequence of tokens y = (y1, ..., yr) from some vocabulary y; € V,
the goal is to estimate the probability of the sequence p(y) = p(y1, . .., yr). To simplify the
task, it is common to autoregressively factorise the probability of a sequence as the product

of the probabilities of each token in the sequence conditioned on the previous ones, i.e.

T
p(yh T ,yT) = Hp(,% | Yi-1," 791) 2.1

=1

To tractably solve this task, one can estimate each conditional probability using a parametric

model pg(y; | yi—1,--- ,y1), with parameters 6. The problem then reduces to choosing a
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parametric model that is expressive enough to capture the distribution of interest, and to
estimate its parameters 6 from data.

The latter is often tackled through an optimisation perspective: given some training
samples from language D = {y} , the goal is to find the parameters 6* that maximise
the likelihood of language samples or, equivalently, minimise the negative log-likelihood of
the data:

0* = argmin £(0) (2.2)
0

L) =E,.»

T
—> log pe(yily@)] 2.8)

=1

Once the parameters 0* are estimated, language models can be used to, not only es-
timate the probability of a sequence but also generate new sequences in the language by,
for example, sampling from the model distribution ¢; ~ pg«(y;|9i—1, -+ ,¥). Additionally,
language modelling can be extended to the conditional case, where the goal is to estimate the
probability p(y | z) of a sequence y given another sequence x (from the same or another
language).

While conceptually a simple task, most problems in NLP can be framed as (condi-
tional) language modelling (Raffel et al., 2020a). Language models can be evaluated
through their perplexity of some unseen data but, in practice, the goal is often to use lan-
guage models to solve other tasks and, as such, task-specific metrics are generally used to
evaluate their performance.

2.1.1 Neural Language Models

The choice of the parametric model plays an important role in the difficulty and approach
to solving Equation 2.2. While early approaches to language modelling relied on count-
based models, such as n-gram models, the current dominant approach is to use neural net-

works to parameterise the conditional (token) probabilities (Bengio et al., 2003).

Formally, a neural language model parameterises the conditional probability of tokens
at each step as

p@(yl | Yi-1," ayl) = NORMALISE(fG(yla e 7yi—1))7 (24)

where fy : V* — R denotes a neural network model parameterised by @ that returns
scores or logits for each next possible tokens, and NormaLIZE : RVl — AVI=! normalises

these scores into a probability distribution, typically using a sorrMax function:

exp(z;)

SOFTMAX(z); = ——————.
> exp(z)

(2.5)

The core advantage of using neural networks is that, by defining a suitable loss function,
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Figure 2.1: Simplified illustration of the attention mechanism, the main component of the
Transformer architecture.

the parameters 6 can be tractably estimated with stochastic gradient descent, with gradients
computed using the backpropagation algorithm (Rumelhart et al., 1986). In the case of
neural language models, this loss is precisely the negative log-hkehhood of the data, as
defined in Equation 2.3.

Notice that, since sentences in a language can have different lengths, the neural net-
work model fy; must handle variable-length sequences, something standard feedforward
neural networks are not capable of. While recurrent neural networks (RNNs) (Hochreiter
& Schmidhuber, 1997) have traditionally been used for this purpose, the current state-of-
the-art neural language models generally use attention-based models, such as Transform-
ers (Vaswani et al., 2017a). Figure 2.1 shows an simplified illustration of the mathematical

operations behind the attention mechanism.

2.1.2 Neural Machine Translation

Machine Translation (MT) is the task of translating a sentence or document from a source
language to a target language, intending to convey the same meaning as closely as possible.
While earlier approaches to MT used rule-based systems and statistical models, the cur-
rently dominant approach is to frame MT as a conditional language modelling task, and use
neural language models to solve the task (Sutskever et al., 2014). This is known as neural
machine translation (NMT).

Formally, given a dataset of sentence pairs D = {(z, )}, where £ and y®
are sentences in the source and target languages respectively, NMT models are trained to
minimise the conditional negative log-likelihood of the target sentences given the source

sentences:

L(0) =E@yep |~ Y logpo(yily<i, o) (2.6)
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Once an NMT model is trained, one typically obtains translations from it by attempting to
find the most likely translation given a source sentence z, i.e. § = argmax, po(y|z)'. Since
this problem is intractable, one typically uses approximate search algorithms, such as beam
search (Graves, 2012b).

Traditionally, NMT systems used encoder-decoder architectures, where the neural net-
work was “partitioned” into two distinct components: an encoder that processes the source
sentence x into a contextualized representation, and a decoder that generates the target
translation y conditioned on these source representations (Cho et al., 2014; Vaswani et al.,
2017a). However, more recently, simpler decoder-only architectures, where both source and
target sequences are processed sequentially, have started to dominate, as they allow an eas-
ier transfer of the universal representations learned from pretrained large language models

to the translation task (Alves et al., 2024) (see the discussion in the next subsection).

The gold standard to evaluate the quality of NMT systems is to use human evaluation,
where bilingual (professional) translators compare and score the system’s translated sen-
tences according to how well they convey the same meaning as the original source sentence
(Freitag, Foster, et al., 2021). However, this is impractical for routine evaluation, and au-
tomatic metrics are the most common approach to evaluate machine translation. While
early MT evaluation relied predominantly on lexical metrics, such as BLEU (Papineni et
al., 2002a), recent work has shown that neural metrics trained to correlate with human
judgments of translation quality, such as COMET (Rei et al., 2020a) and BLEURT (Sel-
lam et al., 2020), are more effective at capturing the quality of translations (Freitag et al.,

2022), and are now the standard for automatic evaluation.

2.1.3 Scaling & Transfer

For much of NLP’s history, the typical paradigm was to treat each task as a separate prob-
lem, with dedicated datasets and specific models designed, or at least separately trained,
for each task. Moreover, these models were relatively small (very rarely surpassing 1 bil-
lion parameters), as increasing the model size was generally believed to lead to overfitting

to the task-specific training dataset.

However, in recent years the paradigm has shifted towards training large pretrained
models with a language modelling objective on a large corpus of text (generally from the
internet) since these models tend to perform well on a variety of tasks after a subsequent
fine-tuning stage on small amounts of task-specific training data (Radford & Narasimhan,

2018), or even without any additional training or data (Brown et al., 2020a)!

Underpinning this shift are two empirical observations that have proven key in the

success of pretrained models:

"While in MT this decoding objective tends to obtain higher-quality translations, it also possible decode
sampling from the distribution of possible translations, like in other language modelling tasks (§7)
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* Scaling the amount of compute use to train these models, either by increasing the
model size or the amount of training data, is one of the most successful approaches
to improve the performance of neural (language) models. In fact, the relation-
ship between scale and performance follows predictable patterns known as scaling
laws, which tend to hold for a wide range of models and tasks (Kaplan, McCandlish,
Henighan, et al., 2020). For example, for a fixed amount of training data, the per-

plexity of a language model is expected to decrease as its size increases following
L(N) = BN + Lo, (2.7)

where § and « are constants and L, are parameters that can be estimated by training

(smaller) models on that data (see $3.2.1 for more details).

* Transfer, where neural language models that achieve good performance (low per-
plexity) on modelling a specific language (i.e English) tend to learn “universal rep-
resentations” of that language. When these representations are leveraged through
transfer learning to solve other tasks, they lead to models that are more sample-efficient
and perform better than models trained from scratch (Raffel et al., 2020b), and they
can even be used directly through zero-shot prompting or in-context learning (Brown
et al.,, 2020a). Importantly, this transfer capability is significantly enhanced when

models are trained on diverse data distributions or even across multiple languages .

These observations have recently culminated in the development large language mod-
els (LLLMs), models with billions of parameters trained on internet-scale data, which have
shown remarkable performance across a wide range of NLP tasks (OpenAl, 2023), includ-
ing generating high-quality translations (Vilar et al., 2022).

2.2 Interpreting Neural Network’s Decisions

The widespread adoption of neural networks across fields has been accompanied by an
increased demand for understanding the behaviour of these models work, and to provide
explanations for particular decisions and generations they make (Lipton, 2016b). However,
the complex and highly nonlinear nature of neural network models makes it almost im-
possible to get a “causal” understanding of how inputs to the model lead to outputs, and

the challenge is exacerbated with large models.”

Therefore, researchers have developed various methods for extracting post-hoc expla-
nations from trained neural network models, which can be used to provide insights into

how the model works and to provide explanations for particular decisions.

2Mechanistic interpretability is an ambitious attempt to get such causal understanding by reverse-
engineering the internal circuits and algorithms of neural networks, but faces significant scalability challenges.
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2.2.1 Extracting Local Explanations

What exactly is an "explanation” for a particular depends on the specific task, application
and audience. However, in general, we are interested in understanding how the model uses
its input to make a decision or generate output. In particular, local explanations aim to un-
derstand and interpret individual predictions or outputs, as opposed to global explanations

which aim to reveal insights about the model’s overall behaviour.

Feature Attribution One common approach to extracting local explanations from neural
models is through feature attribution methods. These methods aim to distribute the impor-
tance of a prediction over the input features (for example, words in a sentence or pixels in
an image) to get an intuition of which parts of the input have contributed to the decision
or output. Table 2.1 shows an example of a feature attribution method applied to a text

classification task.

Input The thesis is original and has interesting insights, but could be better written.
Output Distinction.

Explanation The thesis is | original| and has |interesting | insights , but could be better written .

Table 2.1: Example of a thesis review classification task, showing per-word attribution.

A popular method for feature attribution is the gradient-based method which attributes
the importance of each input feature based on the gradient of the output concerning that
input feature. Formally, given a model fj that for an input x = (zq,--- ,x,) outputs a
prediction fy(x) the gradient-based score

g(xi) = [|Va, fo(2)]|2 (2.8)

is a measure of how changing the feature x; affects the output fp(z), and can be interpreted
as the importance of that feature to the final prediction. Many variations of these gradient-
based methods have been proposed (Denil et al., 2014; Sundararajan et al., 2017a), and
they are commonly used to provide explanations since they can be used with any differen-
tiable (neural network) model.

Alternatively, the prevalence of transformer-based models in NLP has led to feature at-
tribution methods that leverage the attention mechanism in these models to provide expla-
nations. Each attention mechanism naturally relies on computing, for each input/output

feature x;, distribution of scores over all input features that input “attends” to
a; = SOFTMAX (¢; K) (2.9)

where ¢; € R? is a query vector for the output feature z;, and K € R"*? is a matrix of key

vectors for the input features. These attention scores can then be aggregated to provide an
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importance score for each input feature, for example, by picking a relevant input feature
(for example, the first or last token in a sentence) and summing or averaging the attention

scores produced in all the attention heads or from a given layer (Vashishth et al., 2019;

Wiegrefle & Pinter, 2019).

Chain-of-Thought One interesting property of LLLMs is that their performance on down
stream tasks can generally be improved by prompting these models to generate a series
of intermediate reasoning steps (“Let’s think step-by-step”) (Wei et al., 2022). While this
chain-of-thought phenomenon is not fully understood and has been primarily used to im-
prove model performance, the intermediate generations can be interpreted as free-form
explanations of the model’s decision and can be representative of the model’s underlying
decision-making process (LLanham et al., 2023). Table 2.2 shows an example of a chain-

of-thought explanation applied to a review classification task.

Input The thesis is original and has interesting insights, but could be better written.

Output Distinction.

Explanation Let’s think step-by-step:
(1) Described as original and containing interesting insights, strong positive indicators.
(2) The reviewer notes that it could be better written, which suggests a flaw in clarity.
(8) Overall, writing is significantly less important than contributions.

Therefore, it probably passes the bar for Distinction.

Table 2.2: Example classification task, showing the chain-of-thought explanation.

2.2.2 Evaluating Explanation Quality

While there are many methods for extracting explanations from neural models, the ques-
tion of what method provides better or worse explanations and which one to use is not
straightforward. This is exacerbated by the fact that, often, different methods produce ex-
planations that disagree with each other for the same model and input (Neely et al., 2021).

Commonly, the quality of an explanation is evaluated according to its plausibility, by
comparing it to some ground truth explanation provided by a human (given the same in-
put and output). However, this assumes that the model’s decision process should always
match the human process, an assumption that can lead to unfaithful explanations that don’t
represent the model’s actual decision process (Pruthi, Gupta, et al., 2020). Instead, al-
ternative quantitative measures of explanation quality that don’t rely on human-provided
explanations have been proposed (DeYoung et al., 2020; Treviso et al., 2022).

In particular, Pruthi et al. (2022) proposed a simulability-based framework to evaluate

the quality of an explanation: given a teacher model and explanations for its decisions, a
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student model S with parameters 65 is trained to predict the teacher’s decisions using and

its explanations

Ls(0s) = Eqyeyop [—logpog(er,yr | )], e,y = T(x) (2.10)

where D is a dataset of input and decisions and explanations from a teacher model T,
and ¢g are the parameters of the student model. The quality of the explanation is then
evaluated by the performance of the student model at predicting the teacher’s decisions on

some held-out data, and compared to a student model that is trained without explanations.

Intuitively, this framework assumes that a good explanation of the model’s underlying
decision process should help the student model learn to simulate the teacher’s decisions
better than a model that is trained without explanations. This instrumentalist assumption
also implies that good explanations might provide a valuable tool to improve new models’

performance.

However, under this instrumental definition, any auxiliary information that improves
the student’s ability to reproduce the teacher’s outputs could be regarded as an explanation,
including signals that aren’t inherently human-interpretable. For example, in model dis-
tillation, student models often improve performance when trained to match the teacher’s
full output distribution (via KL divergence). From a human-centered perspective, treating
the teacher’s logits as explanations might seem counter-intuitive: while they are highly in-
formative for another model, they are unlikely to convey meaningful reasons that a human
could understand or act upon. This apparent oddity underscores a fundamental corol-
lary of the instrumental approach: there is no universal notion of what constitutes a “good”
explanation, as this always depends on the intended consumer of that explanation. Nev-
ertheless, while in principle we should measure explanation quality using human students
(Arora et al., 2022), we will later show that even using machine students can provide in-

formative signals about human interpretability (Section 5.5).

2.3 Aligning Neural Models with Feedback

The interpretability challenges discussed above are compounded by another fundamen-
tal issue with the scaling approach: the massive datasets required to train these models
are generally scraped from the internet, and inevitably contain biases, errors, and harmful
content. This, coupled with optimizing an objective function that simply maximizes the
likelihood of this data, can lead to a misspecification of target behaviour (Kenton et al., 2021),
and to models that generate toxic, inaccurate, and unhelpful content (Bender et al., 2021;
Sheng et al., 2019), issues that might persist even after task-specific fine-tuning of pre-
trained models. To address this, recent works have proposed moving from the traditional
paradigm of static supervised learning, and instead also incorporating human feedback

on model-generated outputs during the training or inference process. This move has led
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to the emergence of the first widely-used general-purpose language assistants (OpenAl,

2023).

2.3.1 Defining Human Feedback

Formally, we consider human feedback to be a family of functions H such that h € H
takes an input x € X and one or more outputs ¥, -+ ,y, € )Y (for example, by sampling

from a trained language model) and returns some feedback f € F:

h: X xY x---xY, — F. (2.11)
N————

n

A simple example of a feedback function is asking humans to say if, given an input, a
particular output is good or bad (h : X x Y — {0, 1}). However, more complex feedback
functions, such as rankings or natural language feedback, are also commonly used (see
Table 2.3 for examples). The choice of format has implications on the expressivity of the
feedback, the ease of its collection, and how we can use it to improve systems, and the level

of rationality of said feedback is heavily impacted by this choice (Ghosal et al., 2023).

This feedback is collected to align the model’s behaviour with some (often ill-defined)
goal behaviour: for example, we might want our summarization model to generate sum-
maries that contain all core information, even if it means they are longer; or in commercial
machine translation, where we want to ensure that models do not mistranslate business-
critical information and have good translation quality. This alignment objective has been
studied extensively in the A1 safety and alignment literature (Amodei et al., 2016; Bostrom,
2014; Kenton et al., 2021) , but can be broadly framed and studied according to two sub-
objectives and how they interact: increasing the model’s helpfulness and/or its harmlessness

(Bai, Jones, et al., 2022).

Input Output(s) Feedback Type
0.7 Score
A melhor comida do mundo ¢ The worst food in the world ‘worst major/accuracy MOM
a portuguesa. are Portuguese. ‘are”> minor/fluency Q
'worst’ — "best’, ‘are’ — ’is’ Post-Edition
Arliﬁciql intelligence'has' the Fluency: | Multi-Aspect
potential to revolutionize AT can chanee industries Relevance: 0.7
industries (...) but ethical nange ’ Mi he ethical co " Natural
concerns need to be handled. Misses the ethical concerns. Language
Explain the moon landing A: People went to the ... .
- - A>B Rank
10 a 6 year old B: The moon is a satellite... aning

Table 2.3: Example input and output for three tasks (machine translation, summarization,
and instruction following) and possible different (example) feedback that can be given.
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2.3.2 Leveraging Feedback to Improve Generation

In an ideal scenario, we would directly leverage human feedback to improve generation.
One way to use it is by optimizing the model parameters directly. This requires the feed-
back to be “optimizable”, i.e., possibly formulated as an optimization problem based on
which we can obtain an improved model. For instance, if the feedback is a numerical

preference score (f € R), we can create the following optimization problem:

0 = argmax E, plh(z,79)], y=mg(x) (2.12)
0

where D is the distribution of possible inputs and g is an output generated by the model.

Various techniques have been suggested to optimize # using the collected human feed-
back. The most popular approach is to use reinforcement learning (RL), where the feed-
back is used as a reward signal, and use common RL algorithms such as REINFORCE
(Williams, 1992), which updates the parameters with the gradients. However, alterna-

tives to RL exist, such as jointly modelling the feedback and language from a dataset

L(0) = E@y.p~p [~ logpe (f,y | 7)] (2.13)

and factorizing the joint probability by either predicting the feedback after generating an
output (J. Li et al., 2017) or predicting an output for a given specific feedback (Korbak
etal., 2023).

2.3.3 Learning Models of Human Feedback

Directly using human feedback to improve model behaviour is not feasible in the general
case: asking humans to provide feedback for every model output is both expensive and
time-consuming. An alternate approach to obtaining human feedback is to develop models
that can predict or approximate it. Although they may not be perfect, they can provide

feedback at a low cost after training, enabling feedback-dependent techniques at scale.

More formally, given a feedback function h : X x Yy x---x ), — F, we want to learn a
parametric (numerical) feedback model iL¢ : X x Y — R (with parameters ¢) that “agrees”
with human feedback. This agreement is expressed through a loss which the model is

trained to minimize.
Oy = arg;nin By, g~y [£(0)] (2.14)
£(¢) = loss (il(b(ﬂf, yl)a e 7h($7 yl:n)> (215)

For example, if the feedback function we are trying to model is also numerical (h : X' x) —

R), then this loss can just be any standard regression loss, such as the squared difference
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between the human feedback and model feedback
. 2
£(6) = (holw,y) — hz.y) (2.16)

Feedback modelling has been studied extensively in the context of learning evaluation metrics
for NLP. For example, in MT, BLEURT (Sellam et al., 2020) and COMET (Rei et al.,
2020a) were trained to regress on human translation quality assessments (using a loss
similar to Equation 2.16) and, as mentioned, this has led them to be much more effective
than traditional lexical metrics®. Notably, these metrics were not trained with the intent of
improving generation directly, though they can be used for this purpose (as we will show
in Chapter 7). More recently, there has been more interest in developing feedback models

directly for improving generation (Bohm et al., 2019; Ziegler et al., 2019).

After training a feedback model, we can use it almost exactly as we would use human
feedback, for example, by optimizing the model parameters with feedback it gives. Ad-
ditionally, using a feedback model also opens the door to leveraging feedback during the
decoding process, which can be used to improve the performance of an already trained
model (as we will show in Chapter 7). Since feedback models are imperfect proxies of
human feedback, generally regularization is added when training with them to avoid “re-
ward overfitting. ” (Gao, Schulman, & Hilton, 2022). Nevertheless, feedback models suffer
from distribution shifts (Zouhar et al., 2024) which makes successfully optimizing for

them challenging.

2.3.4 Al Feedback

Feedback models have been crucial in advancing generation techniques by effectively lever-
aging feedback. However, they are heavily reliant on human input: for example, Gao,
Schulman, and Hilton (2022) found that across various preference model sizes, utilizing
fewer than 1,000 comparisons resulted in only chance improvements. Moreover, em-
ploying static feedback can make consistency challenging, causing changes in the model’s

output distribution.

Al-generated feedback, an emerging research area, focuses on harnessing the LLM’s
own abilities to enhance the model without human intervention. For example, LLLMs can
be prompted to assess the harmfulness of their outputs and revise them accordingly (Bai,
Kadavath, et al., 2022), or an external LLLM can be used to critique the task model’s out-
puts (Akyiirek et al., 2023; Madaan et al., 2021). Generally, larger LLLMs provide feedback
closer to humans and are particularly effective at generating feedback when they themselves

have been trained to adhere to align with human preferences.

While Al-generated feedback still hasn’t replaced human feedback (which is implicitly

3 Reference-based M'T metrics can be seen feedback models which take as an additional input a reference
translation, which eases the difficulty in approximating translation feedback
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used to train the LLLM and design the prompt that generates feedback), it has the potential to
significantly reduce the need for human feedback when training and aligning new models,
and generality of LLMs allow us to explore a wide range of feedback types and formats,

providing a good model to study the impact of these choices on alignment at scale.
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Chapter

Scaling Laws for Multilingual Neural M'T

In this chapter, we provide a large-scale empirical study of the scaling behaviour and prop-
erties of multilingual neural machine translation models. We examine how increases in the
model size affect the model performance and investigate the role of the training mixture
composition on the scaling behavior. We find that changing the weightings of the individ-
ual language pairs in the mixtures only affects the multiplicative factor of the scaling law.
In particular, we observe that multilingual models trained using different mixing rates all
exhibit the same scaling exponent. Through a novel joint scaling law formulation, we com-
pute the effective number of parameters allocated to each language pair and examine the role
of language similarity in the scaling behavior of our models. We find little evidence that
language similarity has any impact. In contrast, the direction of the multilinguality plays
a significant role, with models translating from multiple languages into English exhibit-
ing a larger number of effective parameters than their reversed counterparts. Finally, we
leverage our observations to predict the performance of models trained with any language
weighting at any scale, reducing efforts required for language balancing in large multilin-

gual models. Our findings generalize to out-of-domain test sets and to multiple evaluation

metrics, such as ChrF and BLEURT.
This chapter is based on Fernandes, Ghorbani, et al. (2028).

3.1 Introduction

Over the past few years, scaling has emerged as a popular and effective way to improve the
performance of neural networks (Brown et al., 2020b; Chowdhery et al., 2022a; Lepikhin
et al.,, 2020). Given the costs associated with training large neural models, much work has
gone into understanding their scaling properties and predicting the evolution of their per-
formance with scale through scaling laws. Such scaling laws have been instrumental in
guiding the model development efforts across a variety of domains such as computer vi-
sion (Zhai et al., 2022), language modeling (Hoflmann et al., 2022; Kaplan, McCandlish,
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Henighan, et al., 2020), and neural machine translation (Ghorbani et al., 2022).

Despite these impressive developments, most of the scaling laws studies available in
the literature only focus on single-task, single-language models. On the contrary, current
massive neural models are often trained to solve more than one task across one or more
modalities & languages (Chowdhery et al., 2022a; Reed et al., 2022; Sanh et al., 2022).
This disconnect from the current research frontier limits the applicability of scaling laws in
guiding model development decisions. In particular, currently available scaling laws studies
are unable to inform the decision process on balancing the different tasks effectively at
training time. Without such guidance, practitioners often have to rely on cumbersome
and costly approaches such as approximate grid search to inform their decision-making;

such approaches quickly become infeasible as the problem scale grows.

In this paper, we take the initial step towards developing a quantitative understand-
ing of the scaling behavior for multitask models. We choose multilingual neural machine
translation (MNMT) as the setup for this initial study. This choice is motivated by several
reasons: (1) MNMT has been framed and studied as a multi-task optimization problem
extensively in the past (Arivazhagan et al., 2019b; Dong et al., 2015; Luong et al., 2015;
7.. Wang et al., 2021); (2) It provides a popular setup with mature benchmarks and sub-
stantial literature on scaling (Bapna et al., 2022; Costa-jussa et al., 2022; Huang et al.,
2019; Lepikhin et al., 2020); (3) Moreover, recent results on scaling laws for single-task
MT models provide a natural starting point for our study (Bansal et al., 2022; Ghorbani
et al.,, 2022; Gordon et al., 2021; B. Zhang et al., 2022). (4) Finally, recent findings on
the optimization dynamics of MNMT models greatly simplify our study by removing the

need to examine the role of the optimization algorithm in our results (Xin et al., 2022).

For our analysis, we train over 200 MNM'T models (ranging from 20M to 1B non-
embedding parameters) and systematically examine their scaling behaviors. We focus our
investigation on the data-rich, compute-rich regime where we have access to vast amounts
of training data for all the language pairs (i.e. tasks)' and the models are trained to near
convergence. Here, the main bottleneck in the model performance is the lack of model

capacity. We establish the following observations:

* For each fixed training mixture, the evolution of the test cross-entropy loss for the
1y, language pair (£;) with model size (/V) follows a scaling law that resembles the

scaling behavior of single-language-pair models:
Li(N;p) = BpN~r 4 LEY. (8.1)

Here, p is a vector of probabilities that determines the weight of each language pair in
the training mixture. Furthermore, we find that changes in the language pair weight-
ings only affect the multiplicative factor 3; the scaling exponent v and the irreducible

loss L, are unaffected by these changes. As such, our results suggest that scaling mul-

'Using machine translation terminology, all language pairs are high-resource.
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tilingual models improves the loss at rates that are independent of the weights of the

individual language pairs in the training mixture.

* We leverage these findings to propose a scaling law that jointly predicts the perfor-
mance for all language pairs and weightings considered, and use it to examine how
the model splits its capacity in between the language pairs by computing the effective

number of parameters allocated to each language pair (Section 3.3.3).

* We examine the popular belief that training multilingual models on similar languages
is more effective than training models in unrelated languages. Surprisingly, for the
high-resource language pairs considered, we do not observe any significant differ-
ences in the scaling behavior of models trained to translate from English into related
languages (En—{De, Fr}) and models trained in unrelated languages (En—{De, Zh}).
In contrast, we observe that models trained to translate from multiple languages into
English (XX—En) benefit much more from multitasking compared to those trained
on translation out of English (En—XX).

* By approximating the capacity splitting behavior of multilingual models, in Section
3.3.4, we provide a scaling law that predicts the full task performance trade-off fron-
tier as a function of the model size N (See Figure 3.7). In Section 3.3.4, we describe
how such predictions can be leveraged for efliciently guiding task balancing when

training large multilingual models.

3.2 Background

3.2.1 Neural Scaling Laws

Recent research suggests that the performance of large neural models is well-predicted by
a smooth function of the fundamental problem parameters: the model size N,? the size
of the training data D, and the amount of compute used for training C' (IHernandez et al.,
2021; Hestness et al., 2017; Kaplan, McCandlish, Henighan, et al., 2020; Rosenfeld et al.,
2019). The most relevant of these studies to ours is Ghorbani et al. (2022) where the
authors study the effects of increasing the model size for single-task NMT models in the
data-rich (D — o0), compute-rich (C' — o) regime. In this setting, the authors show that
the following bivariate law describes the scaling behavior of encoder-decoder Transformers

L(Ng, Ng) = BN N, + L. (8.2)

Here, N, and N, correspond to the number of parameters in the encoder and decoder re-
spectively and L, corresponds to the irreducible loss associated with the task. {3, a., o, Loo }

are the parameters of the scaling law that need to be empirically estimated from the data.

2Following the literature conventions, we only consider the non-embedding layers when computing N.
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In addition, Ghorbani et al. (2022) examine the question of optimally allocating pa-
rameters between the encoder and the decoder. They show that in order to attain the
optimal scaling behavior, one needs to proportionally scale the encoder and the decoder

together. Under such scaling scheme, Equation 3.2 simplifies to
L(N) =N+ L, (3.3)

which is similar to the scaling behavior observed in other domains such as computer vision
(Zhai et al., 2022) and autoregressive generative models (Henighan et al., 2020).

Based on these results, to achieve the optimal scaling behavior, we adopt the propor-

tional encoder-decoder scaling scheme for our experiments.

3.2.2 Multitask Optimization

Multilingual NMT is commonly framed and studied as a multitask optimization problem
(Arivazhagan et al., 2019b; Dong et al., 2015; Luong et al., 2015; Z. Wang et al., 2021).

We focus our investigation on the supervised learning setup where the model param-
eters @ € RY are trained on K different tasks simultaneously. In multilingual MT, each

task corresponds to translation for a different language pair. We denote the loss associated

with task ¢ with £,(8).

Multitask models are often trained by minimizing a convex combination of the per-task

losses:
A K K
0(w) = argminZwiE,;(G) cw >0, Z'wi =1 (3.4)
i=1 =0

Here, w is a fixed vector of the task weights, determined apriori by the practitioner to
emphasize her preferences on the balancing of the tasks. This so-called scalarization ap-
proach is highly popular in the community due to its effectiveness and simplicity.? In fact,
despite this simplicity, recent results on multitask optimization suggest that scalarization

achieves performances on par or better than bespoke optimizers designed specifically for
multitask models (Kurin et al., 2022; Xin et al., 2022).

In current large text models, such explicit scalarization is rare. Instead, scalarization is
often implemented implicitly, by sampling observations from each task proportionally to
that task’s weight. Proportional sampling produces (in expectation) the same overall loss

function as explicit scalarization but with much less engineering complexity.

3See Boyd and Vandenberghe (2004) for more a detailed discussion of scalarization.
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Xin et al. (2022) demonstrate that

Performance Trade-Off for Data-Rich Regime

there exists a smooth, well-defined per- 1.0 w2=1
formance trade-off frontier for multitask 0.91
models in the data rich regime. This fron- 2 z'j:
tier represents the performance trade-off §0:6_
the model is able to achieve in between the B0
tasks as a function of the task weights (see 0.4l
Figure 3.1 for a cartoon representation). 0.3 .
Naturally, finding an accurate char- 04 Tasok.61 LOSSO'B Lo

acterization of the performance trade-off igure 3.1: Cartoon representation of the

frontier is key in finding a systematic solu- performance trade-off (paretto) frontier for
tion to the task balancing issue. a hypothetical model.

3.3 Effects of Scale in Multilingual MT

3.3.1 Experimental Setup

We use the pre-LLN encoder-decoder Transformer architecture in our models (Vaswani
et al., 2017a; Xiong et al., 2020). We train models of up to 8 sizes, approximately ranging
from 20M to 1B (non-embedding) parameters. When scaling encoder-decoder Trans-
formers, to achieve the optimal scaling behavior, we scale the encoder and the decoder

proportionally by increasing the model dimension and the number of layers in tandem.

For our experiments, we train two cohorts of models: En—XX and XX—En. For
En— XX cohort, we train multilingual model for translation from English to {German (De),
Chinese (Zh)} and {German (De), French (Fr)}. For XX— En cohort, we present results for
{De, Zh}—En.

We use the implicit scalarization approach to train our models; each observation in the
training batch is chosen from the first language pair with probability p and the second

language pair with probability 1 — p. For our experiments, we choose p from the set

p € {0,0.05,0.1,0.3,0.5,0.7,0.9,0.95, 1}. (3.5)

For En—XX models, to avoid confusing the model, we prepend a language token to
the source sentence specifying the target language (e.g. <2de>). The models are trained
with per-token cross-entropy loss and Adafactor optimizer (Shazeer & Stern, 2018), using
a fixed batch size of 500K tokens and inverse square root learning rate schedule. To mirror
the compute-rich regime as closely as possible, we trained our models to near convergence.
In practice, this translates to training our smaller models (< 500M parameters) for 500K

gradient steps and larger models for 1M steps.
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To place our models in the data-rich regime, we use a massive in-house web-crawled
dataset for training our models. We filter this data using an online data selection procedure
(W. Wang et al., 2018) and high-quality web-domain reference sets, extracting 600M sen-
tences for each language pair in the En—XX direction and 1.2B sentences for the XX—En
language pairs. We tokenize this corpus by using a pretrained multilingual SentencePiece
(Kudo, 2018) vocabulary, with a size of 128K sub-words.

We measure the performance of models on both in-domain and out-of-domain test sets.
For the in-domain test set, we extract 2000 sentences from the same in-house datasets
used to create the training (ensuring no overlap). For out-of-domain, we use newstest2019
(Barrault et al., 2019), consisting of 2000 sentence-pairs extracted from aligned news doc-

uments.

3.3.2 Results & Analysis

Understanding Multilingual Scaling We start our analysis by independently examining
the model scaling behavior for each individual language pair weighting p in (3.5). For each

choice of p, we fit a scaling law of the form
Li(Nip) = BpaN~o + L&Y (3.6)

to the empirical (test) performance of models resulting from that language pair weighting.
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Figure 3.2: The evolution of the in-domain test cross-entropy loss with model size for
En—{De, Zh} models, as well as the fitted scaling laws. These scaling laws are fitted sep-
arately for each language pair weighting. The color represents the weighting of the lan-
guages. The scaling laws are able to capture close to 100% of the variation in the data for
both language pairs. Note that we don’t show the zero-shot behavior.

Figure 3.2 presents our findings for En—{De, Zh} models. Each point on the graph
corresponds to the empirical test-cross entropy performance of a model at the end of the

training. We observe that our per-weighting laws are able to capture the scaling behavior

*For low probability language pairs, we apply a convergence correction procedure to make up for slow
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Figure 3.3: Log-log plot of the evolution of the (in-domain) test cross-entropy loss as we
scale. We subtract a constant L%, jointly fitted for all the weightings (Equation 3.7). All
lines are nearly parallel, suggesting that the scaling exponent is unchanged for all p.

of our multilingual models on both language pairs. As expected, when the weight for one
of the languages is decreased, the performance of the models on that language decreases
for all scales. Our results suggest that the benefits of the increased model size for MNMT

models are well-described by a power-law.
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Figure 3.4: Coeflicient values for German (left) and Chinese (right) as a function of the
language weight, with the shaded region representing the standard deviation. The dashed
lines represent the value of jointly fitted coefhicients from Equation 3.7.

Figure 3.4 shows the fitted scaling law coefficients for different values of p. The shaded
area marks the one standard deviation uncertainty interval of our estimates.’ Interestingly,
we find that, across all values of p, both the scaling exponent («) and the irreducible loss
(L) seem to be relatively unchanged. In particular, all of our estimated « and L, pa-

rameters are within two standard deviations of each other. In contrast, the multiplicative

convergence.
*We gauge the uncertainty in the coeflicients by measuring the fluctuations in our estimates when our

empirical datapoints are perturbed by ¢ S (0,02). We choose a conservative o of 1% of the observed
empirical loss for each data point.
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factor  seems to be highly sensitive to the choice of p.
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Figure 8.5: The joint scaling law of Equation 3.7 closely captures the scaling behavior of
En—{De, Zh} models. Test loss here is evaluated on in-domain test sets.

Figure 3.3 visually confirms the assertion that for our models o, and L, are effectively
constant. Here, we have subtracted a fixed constant LY from all the Figure 3.4 curves
corresponding to the language pair i. We then plot results on log-log axes. As the figure
suggests, the lines are all near parallel, suggesting that the scaling exponent is unchanged
for all p. In practical terms this means that, for example, doubling the capacity of a multi-
lingual model will reduce its loss by the same 2% factor, no matter how the training mixture
looks like. This also means that single-language-pair scaling laws can be used to gauge the
benefits of scaling multilingual models.
Jointly Modeling Multilingual Scaling Based on the findings above, we make the as-
sumption that the scaling exponents and the irreducible losses are independent of the lan-

guage pair weights, and propose a joint scaling law of the form

Li(N;p) ~ BN~ + L. (38.7)

Figure 3.5 shows the fit of this joint scaling law for En—{De, Zh} models evaluated on
the in-domain test sets. Note that here, we fit a total of 10 parameters for each language
pair — 8 for (,,’s and two for a; and LY. In contrast, in Figure 3.2, we used 24 overall
parameters to capture the scaling behavior for each language pair. Despite this significant
decrease in the number of total fitted parameters, we observe that our joint laws are able

to almost completely capture the scaling behavior.

3.3.3 Effective Network Capacity for Multilingual Models

We leverage our joint scaling law to examine how MNMT models split their capacity in be-
tween the different language pairs. We start by defining the notion of the effective number

of parameters:
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Figure 3.6: The effective fraction of parameters allocated to each language pair as esti-
mated by our joint scaling laws. Gray dashed lines correspond to the fitted f; described
in Equation 3.12. Lefi: Comparison of the capacity splitting behavior of En—{De, Zh}
models for in-domain and out-of-domain test sets. We observe minimal differences be-
tween the two. Center: Comparison of the capacity splitting behavior for En—{De, Zh}
and En—{De, Fr} models. We don’t observe any changes in the interaction between the
language pairs based on language similarity. Right: Comparison of the capacity splitting be-
havior for translation to and from English. XX—En models exhibit more synergy among
the language pairs.

Definition. Consider a multilingual model in which a language pair ¢ has been trained with
weight p. We define the effective number of parameters allocated to 7, Ne(f[’p ), to be equal
to the number of parameters necessary for a single-language-pair model solely trained on

1 to reach the same (test loss) performance as the multilingual model.

Mathematically, Ne(éfp ) can be written as the solution of the equation

Li(Nip) = Li(NG”:1). 8.8)
A simple derivation yields that
NP = (ﬁi> TN (3.9)
Bp,i

Crucially, our calculations suggest that the fraction of parameters allocated to language pair

i, which we denote by f;(p), is independent of the model size:

filp) = NG /N = (%) " (8.10)

This observation yields a fundamental, scale-independent quantity that can be lever-

aged for understanding the interactions between the different language pairs in the model.

Figure 3.6 shows the empirically estimated effective parameter ratios for our models.

Several observations are in order:
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Consistency Across Domains: In Figure 3.6 (left), we compare the capacity splitting
behavior of the models on in-domain and out-of-domain (newstest19) test sets. Even
though the scaling laws coeflicients for in-domain and out-of-domain test sets differ, we
observe that the capacity splitting behavior is mostly unchanged with different test sets.
These findings hint at some measure of universality across test domains on how MNMT

models divide their capacity and share their parameters.

Consistency Across Languages Pairs: In Figure 3.6 (center), we compare the capacity
splitting behavior of En—{De, Zh} and En—{De, Fr} models. The conventional wisdom
in the MT literature suggests that the tasks in En—{De, Fr} should exhibit a more pos-
itive interaction with each other compared to En—{De, Zh}. This is often justified by
the intuition that representations are more aligned in related languages and more aligned
representations will encourage parameter sharing (Dabre et al., 2017). Surprisingly, our
results suggest that the interaction dynamics in En—{De, Fr} and En—{De, Zh} models
are not significantly different. In both settings, we observe a relatively neutral multilingual
behavior — the performance of an MNMT model of size N trained on language pair ¢ with
(sampling) weight p is essentially similar to a single-language-pair model of size pN. In
other words, there is minimal synergy among the languages in both setups. This finding,
while surprising in light of prior evidence for cross-lingual transfer and the effects of shared
scripts or subword vocabularies (Blum et al., 2025; Qi et al., 2023; Schiifer et al., 2024),
likely reflects the specific nature of out-of-English translation, and language/task similarity

may play a role capacity sharing profile in other multi-task settings (as hinted below).

En—XX vs XX—En: In Figure 3.6 (right), we compare the interaction between the
language pairs when translating out of English vs when translating into English. In stark
contrast to the En—XX setting, when translating into English, we observe significant pos-
itive synergy among the language pairs. This observation aligns well with recent results in
the literature showing multilingual models achieving SOTA performance for translation to
English (Chowdhery et al., 2022a; Lepikhin et al., 2020). It is unclear if this synergy arises
as a specificity of having English as the target language or because multilingual encoding
is intrinsically more amenable to parameter sharing than multilingual decoding. Under-
standing the exact dynamics giving rise to such positive interaction between the language

pairs is an exciting open question.

Benefits for Massive Multilingual Models: While we observed minimal synergy be-
tween En— XX languages pairs, and therefor minimal gains in absolute effective capacity, if
we look at relative effective capacity, we can see considerable benefits in using multilingual
models for language pairs with small weight. For example, a model trained for En—{De,
Zh} with 5% weight on German has an effective capacity of more than 3x a model trained
with 5% capacity of this model for only German. These relative gains are even more evi-
dent when there is positive task synergy, such as for XX—En, where models train with 5%
weight have more than 6x gain in (effective) parameters. This hints that, if these findings

generalize beyond the two-task setup , then training large multilingual models for training
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mixtures with a large number of small weight language pairs is significantly more memory
efficient than training separate small models for each language pair.

3.3.4 Guiding Language Balancing

As discussed earlier, one of the areas where multilingual scaling laws can be most impactful
is in guiding language balancing/weighting when training large multilingual models, an
open problem that has been studied extensively (Arivazhagan et al., 2019a; X. Wang et al.,
2020). However, in its current form, our (joint) scaling law can only be use to decide
between weightings that were used for fitting it and cannot be used to predict performance

on new, unseen weightings, as 3, ; needs to be estimated empirically.

To extend to unseen language pair weightings, we instead focus on estimating f;(+).
Given access to f;(p), accurate prediction of £;(N) for any weighting can be achieved by
using the single-language-pair scaling law:

Li(N;p) = Bui(filp)N) ™™ + LY. (8.11)

As observed in Section 3.3.3, f;(p) has a number of desirable properties that makes it
easy to estimate: (i) it is invariant to test set and languages, (ii) it is smooth and generally
well-behaved. As such, one can achieve an accurate approximation of f with just a few data
points.
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Figure 3.7: Approximate joint scaling laws described by equations (3.11) and (3.12) almost
perfectly capture the language pair interactions across all scales. Lefi: The fitted approxi-
mation f described in Equation 3.12. Right: The predicted performance trade-off frontier
(dashed lines) as well as the empirically observed trade-off values.

We utilize this methodology to estimate the full task performance trade-off frontier for

En—{De, Zh} models. For estimating f;(-), we fit an approximate joint scaling law of the
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form Equation 3.11, where f;(-) is parameterized as

A~

filp) =p+cap®(1—p)® (3.12)

with ¢1, ¢o, c3 being fitted coeflicients. Figure 3.7 demonstrates our results; our proce-
dure is able to almost perfectly capture the full task performance frontier across a variety
of model scales. With access to such accurate predictions of the performance frontier, a
practitioner can precisely determine how to weigh the individual language pairs during

training based on her preferences and target model size.

We should note that the choice of function class to fit f;() is highly dependent on the
practitioner’s computational budget. In our case, we prioritized accuracy and used a flex-
ible function class of the form (3.12) for fitting. Such flexibility comes with the cost of
needing to compute more empirical values to reliably estimate f(-). In the scenarios with
more limited computational budget, we have observed that even rudimentary linear ap-

proximations of f are able to provide accurate representations of the performance frontier.
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Figure 3.8: The generation quality behavior of our models as measured by ChrF. Lefi: We
observe consistent positive correlations between ChrF and cross-entropy loss. Right: Our
scaling laws can be used to generate accurate performance trade-off frontiers for ChrF.

Translation Quality Finally, we note that in the MT literature, quality is often measured
via metrics such as BLEU (Papineni et al., 2002c¢), ChrF (Popovi¢, 2015) and BLEURT
(Sellam et al., 2020) as opposed to cross-entropy, since the latter doesn’t account for the
problem of decoding translations from the models and is sometimes found to not correlate
with human preferences (Koehn & Knowles, 2017). As such, MT practitioners might be
concerned regarding the applicability of these results for practical applications. To ensure
that our findings also apply to the quality of translations, we decode translations from our
trained models using beam search (Graves, 2012a) and evaluate how their quality changes

as we scale the models, using ChrF and BLEURT.
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Figure 3.8 (left) shows cross-entropy and ChrF scores for the En— De language pair of
our En—{De, Fr} models, evaluated on the in-domain test set. We find that this automatic
metric has an almost-linear relationship with cross-entropy, hinting that our observations
also generalize from cross-entropy to generation quality. Figure 3.8 (right) also shows
the predicted ChrF performance trade-off frontier obtained by fitting our joint scaling law
(Equation 8.7) to the ChrF performance on the in-domain test set (parametrizing the ef-
fective parameter fraction function as in Equation 3.12). Our procedure is able to capture

this trade-off frontier almost as well as the cross-entropy frontier.

3.4 Conclusions & Subsequent Work

Current state-of-the-art large neural models are moving towards using as much data from
as many domains, modalities and languages as possible to unlock exciting new capabil-
ities. Unfortunately, a clear understanding of the behavior of such multitask models at
scale is missing. In this chapter, we attempted to take an initial step towards alleviating
this problem by performing a large-scale study of the properties of multilingual machine
translation models (which can be seen as doing multiple translation tasks). We showed
that cross-lingual scaling interactions are surprisingly simple, with the per-task scaling ex-
ponent for model capacity only dependent on the properties of the individual translation
tasks. In the end, we sketched a procedure to compute the effective fraction of parameters as-
signed to a language, and to estimate the task performance trade-off frontier for all model

scales.

Our work had some limitations that hindered the generalizability of our findings: we
focused only scaling with respect to model capacity, studying translation tasks on the high-
resource scenario; and, to keep our investigation tractable, we focused mostly on two-task
scenario. Since the publication of our work, others have studied the more realistic case
where there is limited data (L.. Chen et al., 2023) (incorporating, and for the more general
case of language modeling with more than two tasks / languages (He et al., 2024), obtaining
similar findings on the invariance of scaling with respect to cross-lingual and cross-task

interactions.
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Chapter

Measuring and Increasing Context Usage
in Context-Aware M'T

Studying model performance and its scaling behaviour can already be an effective tool to
make informed choices about data composition and task distribution. But we still don’t
understand how models leverage information in the input, even when trained for a single
task. For example, in document-level machine translation, it is still unclear how models use
context outside of individual sentences, or even if its beneficial at all. Likelihood and other

performance metrics do not provide this more fine-grained understanding.

In this chapter, we introduce a new metric, conditional cross-mutual information, to quan-
tify the usage of context by these models. Using this metric, we measure how much
document-level machine translation systems use particular varieties of context. We find
that target context is referenced more than source context, and that conditioning on a
longer context has a diminishing effect on results. We then introduce a new, simple train-
ing method, context-aware word dropout, to increase the usage of context by context-aware
models. Experiments show that our method increases context usage and that this reflects
on the translation quality according to metrics such as BLEU and COMET, as well as

performance on anaphoric pronoun resolution and lexical cohesion contrastive datasets.

This chapter is based on Fernandes et al. (2021).

4.1 Introduction

While neural machine translation (NMT) is reported to have achieved human parity in
some domains and language pairs (Hassan et al., 2018), these claims seem overly opti-
mistic and no longer hold with document-level evaluation (Liubli et al., 2018; Toral et
al., 2018). Recent work on context-aware NMT attempts to alleviate this discrepancy by
incorporating the surrounding context sentences (in either or both the source and target

sides) in the translation system. This can be done by, for example, feeding context sen-
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tences to standard NMT models (Tiedemann & Scherrer, 2017), using different encoders
for context (J. Zhang et al., 2018), having cache-based memories (Tu et al., 2018a), or
using models with hierarchical attention mechanisms (Maruf, Martins, & Haffari, 2019;
Miculicich et al., 2018) — more details in §4.2. While such works report gains in trans-
lation quality compared to sentence-level baselines trained on small datasets, recent work
has shown that, in more realistic high-resourced scenarios, these systems fail to outper-
form simpler baselines with respect to overall translation accuracy, pronoun translation, or
lexical cohesion (Lopes et al., 2020).

Given the findings, we next consider how to encourage models to use more context.
Specifically, we introduce a simple but effective variation of word dropout (Sennrich et al.,
2016a) for context-aware machine translation, dubbed CoWoRD dropout (§4.4). Put sim-
ply, we randomly drop words from the current source sentence by replacing them with a
placeholder token. Intuitively, this encourages the model to use extra-sentential informa-
tion to compensate for the missing information in the current source sentence. We show
that models trained with CoWorbp dropout not only increase context usage compared to
models trained without it but also improve the quality of translation, both according to
standard evaluation metrics (BLEU and COMET) and according to contrastive evalua-

tion based on inter-sentential discourse phenomena such as anaphoric pronoun resolution

and lexical cohesion (§87.4, Table 4.1).

Uncertainty over
translations given the source

HQMT (Y‘X)

Uncertainty over
translations given
the source AND context

CXMI(C — Y|X)

Figure 4.1: Illustration of how we can measure context usage by a model ¢y, as the amount
of information gained when a model is given the context C' and source X vs when the
model is only given the X.
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Source: The Church is merciful. ..
It always welcomes the misguided lamb.

Target: Die Kirche ist barmherzig. ..
Baseline Es heisst die fehlgeleiteten Schiiflein immer willkommen.
Context-Aware Es heisst die fehlgeleiteten Schéflein immer willkommen.
+CoWOoRrD Sie heisst die fehlgeleiteten Schiflein immer willkommen.

Table 4.1: Example where context (italic) is needed to correctly translate the pronoun “it”.
Both the sentence-level baseline and context-aware model fail to correctly translate it while
the context-aware model trained with CoWorp dropout correctly captures the context.

4.2 Context-Aware Neural Machine Translation

We are interested in learning a system that translates documents consisting of multiple
sentences between two languages.! More formally, given a corpus of parallel documents in
two languages, D = { Dy, ..., Dy}, where each document is a sequence of source and target
sentences, D = {(z® yM), ... (28 45))}, we are interested in learning the mapping

between the two languages.

We consider the typical (auto-regressive) neural machine translation system gy param-
eterized by 0. The probability of translating 2 into v given the context of the sentence
C is

T
go(y 12D, CD) =TT ao(wi” 2, 4%, C0)
t=1
where yfi) represents the t" token of sentence y®. This context can take various forms.
On one end, we have the case where no context is passed, C” = @, and the problem

is reduced to sentence-level translation. On the other end, we have the case where all

the source sentences and all the previous generated target sentences are passed as context
CO = {gM . 2y =11,

As mentioned, there are many architectural approaches to leveraging context (see §4.5
for a more complete review), and the methods that we present in this paper are compatible
with most architectures because they do not specify how the model ¢y uses the context. In
experiments, we focus mostly on the simpler approach of concatenating the context to the
current sentences (Tiedemann & Scherrer, 2017). Recent work by Lopes et al. (2020) has
shown that, given enough data (either through pre-training or larger contextual datasets),
this simple approach tends to be competitive with or even outperform its more complex

counterparts

"Here, a “document” could be an actual document but it could also represent other contextual collections
of text, such as a sequence of dialogue utterances.
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4.3 Measuring Context Usage

4.3.1 Conditional Cross-Mutual Information

While context-aware models allow use of context, they do not ensure contextual informa-
tion is actually used: models could just be relying on the current source sentence and/or

previously generated target words from the same sentence when generating the output.

Contrastive evaluation, where models are assessed based on the ability to distinguish
correct translations from contrastive ones, is a common way to assess the ability of context-
aware models to capture specific discourse phenomena that require inter-sentential con-
text, such as anaphora resolution (Miiller et al.; 2018) and lexical cohesion (Bawden et al.,
2018). However, these methods only provide an indirect measure of context usage with
respect to a limited number of phenomena and can fail to capture other, unknown ways
in which the model might be using context. Y. Kim et al. (2019) showed that most im-
provements to translation quality are due to non-interpretable usages of context, such as
the introduction of noise that acts as a regularizer to the encoder/decoder. This problem
is further exacerbated by the fact that there is no clear definition of what entails “context
usage”.

In a different context, Bugliarello et al. (2020) introduced cross-mutual information (XMI),
to measure the “difficulty” of translating between different language pairs in sentence-level
neural machine translation. Given a language model ¢, ), for a target sentence Y and a
translation model ¢;7 for translating from X to Y, XMI is defined as:

XMI(X -Y)=H,,Y)—-H,,, Y|X),

qLM

where H
gy and H

a denotes the cross-entropy of the target sentence Y under the language model

aur the conditional cross-entropy of Y given X under the translation model
gyrr- This allows us to measure how much information the source sentence gives us about
the target sentence (an analogue of mutual information for cross-entropy). In the case
where g7, and qps7 perfectly model the underlying probabilities we would have XMI(X —

Y) = MI(X,Y), the true mutual information.

Taking inspiration from the above, we propose Conditional Cross-Mutual Informa-
tion (CXMI), a new measure of the influence of context on a model’s predictions. This
is done by considering an additional variable for the context C' and measuring how much
information the context C' provides about the target Y given the source X. This can then

be formulated as

CXMI(C — Y|X) =

HfIMTA (Y‘X> - HqMTC (Y’X7 C)

where H

is the entropy of a context-agnostic machine translation model, and H

qMTy IMTo
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refers to a context-aware machine translation model. This quantity can be estimated over

an held-out test set with N sentence pairs and the respective context as:
CXMI(C - Y|X) ~

_ _Zl QMTA i)|x(i))

amte( (y@]z® C®)

While ¢, and gurr. can, in theory, be any models, we are interested in removing any
confounding factors other than the context that might lead to instability in the estimates
of the distributions. For example, if ¢y, and gur. use completely different models, it
would not be clear if the difference in the probability estimates is due to the introduction
of context or due to other extraneous factors such as differences in architectures, training
regimens, or random seeds. To address this we consider a single model, ¢y;7, that is able
to translate with and without context (more on how this achieved in §4.3.2). We can then
set the context-agnostic model and the contextual model to be the same model gy, =
qute = qur- This way we attribute the information gain to the introduction of context.
Throughout the rest of this work, when we reference “context usage” we will precisely

mean this information gain (or loss).

4.3.2 Experiments

Data We experiment with a document-level translation task by training models on the
IWSLT2017 (Cettolo et al., 2012) dataset for language pairs EN — DE and EN — FR
(with approximately 200K sentences for both pairs). We use the test sets 2011-2014 as
validation sets and the 2015 as test sets. To address the concerns pointed out by Lopes et
al. (2020) that gains in performance are due to the use of small training corpora and weak
baselines, we use Paracrawl (Espla et al., 2019) and perform some data cleaning based
on language identification tools, creating a pretraining dataset of around 82M and 104M
sentence pairs for EN — DE and EN — FR respectively.

All data is encoded/vectorized with byte-pair encoding (Sennrich et al., 2016b) using
the SentencePiece framework (Kudo & Richardson, 2018). For the non-pretrained case, we
use 20K vocabulary size shared across source/target, while for the pretrained case we use

a 32K vocabulary size.

Besides translation quality, we also evaluate our models on two contrastive datasets for

different discourse phenomena to better assess the ability of our models to capture context
(more on this in §4.4.2):

* For the EN — DE language pair, we evaluate on the ContraPro dataset (Miller et al.,
2018), targeting anaphoric pronoun resolution. Source-side sentences contain the
English anaphoric pronoun it while target-side sentences contain the corresponding

German translations er, sie or es. Contrastive erroneous translations are automati-
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cally created by replacing the correct pronoun with one of the other two. The test
set contains 4,000 examples for each target pronoun type and context is needed to

correctly disambiguate. Context includes the four previous sentences

* For the EN — FR language pair, we evaluate on the dataset by Bawden et al. (2018)
targeting anaphoric pronoun resolution and lexical cohesion. It contains 200 man-
ually curated examples for each phenomenon. Anaphora examples include singular
and plural personal and possessive pronouns that require context to be correctly in-
ferred and the dataset is balanced such that a model that does not use context can

only achieve 507% accuracy. Context includes the previous sentence

Models and Optimization For all our experiments, we consider an encoder-decoder
Transformer architecture (Vaswani et al., 2017a). In particular, we train the transformer
small (hidden size of 512, feedforward size of 1024, 6 layers, 8 attention heads). For the
pretrained setup, we also pre-train a transformer large architecture (hidden size of 1024,
feedforward size of 4096, 6 layers, 16 attention heads) and subsequently fine-tune on the
IWSL2017 datasets.

As in Vaswani et al. (2017a), we train using the Adam optimizer with 5; = 0.9 and
P2 = 0.98 and use an inverse square root learning rate scheduler, with an initial value of
10~* and 5 x 10~ for pretrained and non-pretrained cases respectively, and with a linear
warm-up in the first 4000 steps. We train the models with early stopping on the validation
perplexity.

We train all our models on top of the Fuairseq framework (Ott et al., 2019).

What Context Matters? To assess the relative importance of different context sizes on
both the source and target side, we start by considering two models, one for the source-
side context and one for the target-side context, that receive context of size k, C) =
{00 20=DY or OO = {y(=k) 4=l During training, k is selected randomly
to be in {1,...,4} for every example. This way the model is trained to translate the same
source without and with different context sizes and is thus able to translate based on any
context size in that interval.

Figure 4.2 shows the CXMI values computed over the test set as a function of the
context size for both the source-side and target-side contextual models for both the non-
pretrained and pretrained regimens for the EN — DE language pair.

For the non-pretrained case, for both the source and target context, the biggest jump
in context usage is when we increase the context size from O to 1. After that, increasing
the context size leads to diminishing increases in context usage and even reduced context
usage for the source-side context. Interestingly, when the model is stronger, such as in
the pretrained case, we can see that it can leverage target-side context even better than the

non-pretrained case, with a similar trend of diminishing increases in context usage for both
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Figure 4.2: CXMI values for the EN — DE as a function of source and target context sizes
for non-pretrained (left) and pretrained (right) models.

regimes. However, this is not the case for the source-side context, and it seems that the

pretrained model is barely able to use the contextual information on this side.

Overall, for this regime, we can conclude that having a context size of one or two previ-
ous sentences on both sides is beneficial to the model, and that target-side context is slightly
more used than source-side context. This appears to corroborate the findings of Bawden

et al. (2018) that target-side context is more effective than the source context.

Does CXMI Really Measure Context Usage? To assert that CXMI correlates with inter-
pretable measures of context usage, we perform a correlation analysis with the performance
in the contrastive datasets mentioned. In these datasets, usage of context is evident where
the model picks the right answer when it is passed the context and is not able to do so
when no context is given. Thus Table 4.2 shows the point-biserial correlation coefficient”
between the per-sample CXMI and binary random variable and a binary variable that takes
the value 1 if the contextual model picks the correct translation and the non-contextual
model picks the incorrect one, for different context sizes on the pretrained model. We can
see that there is a statistically significant correlation between both values, which strengthens

the notion that CXMI captures previous measures of context usage to some extent.

4.4 Increasing Context Usage

4.4.1 Context-aware Word Dropout

Motivated by the above results demonstrating the limited context usage of models trained

using the standard MLE training paradigm, particularly with respect to more distant con-

< . . . . ~ . . . ~ . ~ .
2The Point-Biserial correlation coefficient is a special case of the Pearson correlation coefficient when one
of the random variables is dichotomous.
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Tpb
Context Size 1) (2 3)

0.365 0.315 0.206
0.366 - -
0.367 - -
0.366 - -

~ O DN —

Table 4.2: Point-Biserial correlation coeflicients with pretrained models for different con-
text sizes. Measured on ContraPro (1) and Bawden et al. (2018), both for pronoun resolu-

tion (2) and lexical cohesion (3). Bold values mean statistically significant correlation with
p < 0.01.

text, we now ask the question: “Is it possible to modify the training methodology to in-
crease context usage by the model?” As an answer, we extend a popular regularization tech-
nique used in sentence-level machine translation, word dropout (Sennrich et al., 2016a),
to the context-aware setting. The idea behind context-aware word (CoWoRrbp) dropout is
to model the translation probability between () and 3 as

T
po(y?|2D) = T ] po(yi” 27,4, C),

t=1

where #( is a perturbed version of the current source sentence generated by randomly

dropping tokens and replacing them with a mask token given a dropout probability p:
i~ Bernoulli(p)

() (Mask) if ri =1

O -
Ty otherwise.

In the case where no context is passed C¥ = @&, CoWorp dropout reduces to word
dropout. The intuition behind such a perturbation is that, by dropping information from
the current source and not the context, we increase the relative reliability of context C'¥,
therefore providing the inductive bias that context is important for the translation. We
will see in §7.4 that this inductive bias is beneficial and that CoWorp dropout not only

improves performance but also increases context usage.

4.4.2 Experiments

To assess if our proposed CoWoRD dropout increases context usage by models, we train a

model using the same dynamic context size setting used in §4.3.2.
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Setup As in §4.3.2, we consider transformer models trained on the IWSLT2017 for both
EN — DE and EN — FR, both from scratch and pretrained. Due to findings in the
previous section, we consider models with either only target-side context or both source-side

and target-side context.

.19—2
Context Usage Figure 4.3 plots the CXMI
values on the test set as a function of 9| i
the target context size as we increase the E
dropout value p. We see that increasing this é 11 +p ~ 8(1) |
value consistently increases context usage +g _ 0:2
according to CXMI across different con- ol o p=03]|
text sizes. Note that, at test time, COWORD (‘) 1‘ é é é‘l
dropout is disabled, which means that it Context Size

provides inductive bias only during train-
Figure 4.3: CXMI as a function of target con-

ing and models learn to use more context , ,
text size for varying CoWorbp dropout

by themselves.

Source Context Source Target Context Target ACXMI
More people | It was more enter- | Mehr Menschen | und unterhalt- | 0.53
watched ~ games | taining sahen zu, die | samer.
because it was Spiele  wurden
faster. schneller
The ball comes off | You don’t know | Der Ball ist auBer | Sie wissen nicht, | 0.33
track. where it’s going to | Kontrolle wo er landet.

land
I really think that | It makes life hard | Meiner Mei- | Sie macht uns | 0.25
this lie that we’ve | for us nung nach ist | das Leben
been sold about diese Luge tber | schwer.
disability is the Behinderung
greatest injustice eine  schreiende

Ungerechtigkeit

Table 4.3: Examples where models with CoWorbp dropout use the target context more than
models trained without it. Word highlighted blue in the context are used to disambiguate
translations while highlighted green in the target use context according to native speakers.
Words underlined in the target are the ones with the highest per-word CXMI i.e. the ones
that use the most context according to the model

Table 4.3 illustrates some examples where the CoWorp dropout increased the per-
sample CXMI significantly. While the model only has access to target context, we present
the source context for clarity. In the first example, while the source is a complete sentence,
the target is only a fragment of one so the context helps complete it. In the other two
examples shown, we can see that context helps disambiguate the gender of the German

translation of the English pronoun it. Interestingly, the words that use context the most
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according to CXMI match very closely to the ones that native speakers annotated.

Translation Quality To evaluate if the increased usage of context correlates with better
machine translation quality, based on the previous experiments on context usage and values
for CoWorbp dropout, we consider three models trained with fixed-size context:

* A baseline that has no context, reducing to sentence-level model ie: i.e., C®) = &;
* aone-to-two model having as context the previous target sentence, i.e., C = {y=D};

* a two-to-two model having as context the previous source sentence and the previous
target sentence, z.e., C = {g(=1) (=11,

For all models with target context, when decoding, we use the previous decoded sen-
tences as target context.

EN — DE EN — FR

w/ pretraining w/ pretraining

p BLEU COMET BLEU COMET BLEU COMET BLEU COMET

0.0 2636 0.083 35.10 0.521 37.62 0450  42.98  0.679
baseline 0.1 27.26 0.159 35.15 0.525  38.16 0.472 4328 0.679
0.2 26.97 0.163 35.13 0.524 3834 0474 4299  0.678

0.0 26.60 0.087 3522 0528 37.59 0.450  42.89 0.672
l-to-2 0.1 27.36 0.174 34.92 0.527  38.25 0.472 42.88 0.677
0.2 2733 0.193 34.75 0.524  38.27 0485 4290 0.678

0.0 26.85 0.090 34.47 0.471 37.54 0.453 4297 0.674
2-t0-2 0.1 27.72 0.169 34.51 0.522 38.30 0467 4295 0.676
0.2 2721 0.177  34.65 0.525 38.15 0.468  42.88 0.675

Table 4.4: Results on IWSLT2017 with different probabilities for CoWorp dropout. Av-

eraged across three runs for each method.

Table 4.4 shows the performance across three different seeds of the baseline and con-
textual models for both the non-pretrained and pretrained setting, with increasing values
of CoWorp dropout p. We also run the baseline with CoWorbp dropout (which, as said
previously, reduces to word dropout) to ensure that improvements were not only due to
regularization effects on the current source/target. We report the standard BLEU score
(Papineni et al., 2002b) calculated using sacreBLEU (Post, 2018) and COMET, a more

accurate evaluation method using multilingual embeddings (Rei et al., 2020a).

For the non-pretrained case, we can see that a CoWorp dropout value p > 0 con-
sistently improves the performance of the contextual models when compared to models
running with p = 0 and with the sentence-level baseline with the same values for word
dropout. For the pretrained case, the improvements are not as noticeable, although mod-
els trained with CoWorb dropout still always outperform models trained without it. This

is perhaps a reflection of the general trend that better models are harder to improve.
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Table 4.5 shows that CoWorb dropout is also helpful for the multi-encoder model, with
CoWorbp dropout helping significantly. This shows that this method could be helpful for
context-aware architectures other than concatenation-based.

EN — DE EN — FR
p BLEU COMET BLEU COMET

0.0 26.36 0.083 38762  0.450
baseline 0.1 27.26  0.159 38.16 0.472
0.2 2697 0163 3834 0474

0.0 26.64 0.104 37.85 0.466
muld 0.1 2745  0.190 37.98 0.460
0.2 2731 0190 3830 0.484

Table 4.5: Results on IWSLT2017 for a multi-encoder 1-to-2 model with different prob-
abilities for CoWoRrbp dropout. Averaged across three runs for each method.

EN — DE EN — FR
w/ pretraining w/ pretraining
p  Pronouns Pronouns Pronouns Cohesion Pronouns Cohesion

baseline 0.0  42.96 46.57 50.00 50.00 50.00 50.00
0.0 57.36 76.79 68.16 49.99 86.83 56.83

I-to-2 0.1 58.70 76.28 72.33 51.49 86.49 56.66

0.2 60.72 77.52 72.99 52.16 85.66 56.49

0.0  61.06 80.33 72.16 50.99 85.66 64.33

2-to-2 0.1  66.00 80.35 73.99 52.49 87.16 65.99

0.2 65.47 79.97 73.99 52.49 88.49 63.99

Table 4.6: Results on anaphoric pronoun resolution and lexical cohesion contrastive
datasets with different probabilities for CoWoRrbp dropout. Averaged across three runs for
each method.

Discourse Phenomena While automatic metrics such as BLEU and COMET allow us to
measure translation quality, they mostly target sentence-level quality and do not specifically
focus on phenomena that require context-awareness. Contrastive datasets, as described in
§4.3.2, allow us to measure the performance of context-aware models in specific discourse
phenomena by comparing the probability of correct translation against the contrastive trans-
lations. Models that capture the targeted discourse phenomena well will consistently rank
the correct translation higher than the contrastive ones. While there is a disconnect be-
tween the translation (done via decoding) and contrastive evaluation, it is currently the best

way to measure a model’s performance on context-aware discourse phenomena.
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Table 4.6 shows the average performance over the contrastive datasets of the baseline
and contextual models for both the (non-)pretrained settings, with increasing values of
CoWorbp dropout p. We can see that in general, increasing CoWorbp dropout leads to
improved performance, particularly for the non-pretrained case. This gain is particularly
clear for pronoun resolution and the EN — DE language pair. We hypothesise that this is
due to the small size of the contrastive sets for the EN — FR language pair, which leads to

high variance.

Table 4.7 similarly shows that CoWorp dropout improves the performance of the
multi-encoder model across all phenomena, which again shows that our proposed regu-
larization method has benefits for multiple architectures for context-aware machine trans-
lation. Curiously, when these models are trained without CoWorp dropout, they achieve
performance similar to the sentence-level baseline, while when dropout is applied, they

are able to effectively start using context.

EN — DE EN — FR
p  Pronouns Pronouns Cohesion
baseline 0.0 42.96 50.00 50.00

0.0 42.85 49.74 49.99
multi 0.1 47.29 51.74 50.24
0.2 47.57 52.50 50.99

Table 4.7: Results on anaphoric pronoun resolution and lexical cohesion contrastive
datasets for the multi-encoder 1-to-2 model with different probabilities for CoWorp
dropout. Averaged across three runs for each method.

4.5 Related Work

Context-aware Machine Translation There have been many works in the literature that
try to incorporate context into NMT systems. Tiedemann and Scherrer (2017) first pro-
posed the simple approach of concatenating the previous sentences in both the source and
target side to the input to the system; Jean et al. (2017), Bawden et al. (2018), and J. Zhang
etal. (2018) used an additional context-specific encoder to extract contextual features from
the previous sentences; Maruf and Haflari (2018) and Tu et al. (2018b) used cache-based
memories to encode context; .. Wang et al. (2017) used a hierarchical RNN to encode
the global context from all previous sentences; Miculicich et al. (2018) and Maruf, Mar-
tins, and Haffari (2019) used hierarchical attention networks to encode context; |. Chen
et al. (2020) added document-level discourse structure information to the input; Z.. Sun
et al. (2020) trained a simple concatenation-based model with varying context size dur-

ing training to have a model that is able to translate with any context size, similar to what
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we did. Similarly to what we do with CoWorbp dropout, Jean and Cho (2019) attempted
to maximise sensitivity to context by introducing a margin-based regularization term to

explicitly encourage context usage.

For a more detailed overview, Maruf, Saleh, and Haffari (2019) extensively describe
the different approaches and how they leverage context. While these models lead to im-
provements with small training sets, Lopes et al. (2020) showed that the improvements
are negligible when compared with the concatenation baseline when using larger datasets.
However, importantly, both our metric CXMI for measuring context usage and the pro-
posed regularization method of CoWorb dropout, can theoretically be applied to any of
the above-mentioned methods.

Evaluation In terms of evaluation, most previous work focuses on targeting a system’s
performance on contrastive datasets for specific inter-sentential discourse phenomena.
Miller et al. (2018) built a large-scale dataset for anaphoric pronoun resolution, Baw-
den et al. (2018) manually created a dataset for both pronoun resolution and lexical choice
and Voita et al. (2019) created a dataset that targets deixis, ellipsis and lexical cohesion.
Stojanovski et al. (2020) showed through adversarial attacks that models that do well on
other contrastive datasets rely on surface heuristics and create a contrastive dataset to ad-
dress this. In contrast, our CXMI metric is phenomenon-agnostic and can be measured

with respect to all phenomena that require context in translation.

Information-Theoretic Analysis Bugliarello et al. (2020) first proposed cross-mutual
information (XMI) in the context of measuring the difficulty of translating between lan-
guages. Our work differs in that we propose a conditional version of XMI, where S is always
observed, and we use it to assess the information gain of context rather than the difficulty

of translating different languages.

4.6 Conclusion and Subsequent Work

We introduce a new, architecture-agnostic, metric to measure how context-aware machine
translation models are using context and propose a simple regularization technique to in-
crease context usage by these models. Our results are theoretically applicable to almost all

recently proposed context-aware models.

Subsequent work has shown that CXMI can be used to measure context usage in lan-
guage modelling more generally (O’Connor & Andreas, 2021), and even for understanding
cross-modal interactions in multimodal models (Frank et al., 2021). We have also since
shown how we can use a pointwise version our metric to identify how much context these
models use for each individual translation (Fernandes, Yin, et al., 2023), bridging the gap

to the local explanations we will discuss in the following chapters.
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Part 11

Explaining as Teaching

53






Chapter

Optimizing Model Explanations for
Teaching

Modern, large-scale neural network models introduce intepretability problems not only at
a global behavioural level, but also in providing local explanations for individual predictions.
However the precise goal of such explanations, and how to demonstrate they achieve such
goal, remains an open problem. Some research argues that explanations should help teach
a student (either human or machine) to simulate the model being explained, and that the
quality of explanations can be measured by the simulation accuracy of students on unex-

plained examples.

In this chapter, leveraging meta-learning techniques, we extend this idea to improve the
quality of the explanations themselves, specifically by optimizing explanations such that student
models more effectively learn to simulate the original model. We train models on three
natural language processing and computer vision tasks, and find that students trained with
explanations extracted with our framework are able to simulate the teacher significantly
more effectively than ones produced with previous methods. Through human annotations
and a user study, we further find that these learned explanations more closely align with

how humans would explain the required decisions in these tasks.

This chapter is based on Fernandes, Treviso, et al. (2022).

5.1 Introduction

While deep learning’s performance has led it to become the dominant paradigm in ma-
chine learning, its relative opaqueness has brought great interest in methods to improve
model interpretability. Many recent works propose methods for extracting explanations from
neural networks (section 5.6), which vary from the highlighting of relevant input features
(Arras et al., 2017; Ding et al., 2019; Simonyan et al., 2014) to more complex repre-
sentations of the reasoning of the network (Mu & Andreas, 2020; T. Wu et al., 2021).
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However, are these methods actually achieving their goal of making models more inter-
pretable? Some concerning findings have cast doubt on this proposition; different expla-
nations methods have been found to disagree on the same model/input (Bastings et al.,
2021; Neely et al., 2021) and explanations do not necessarily help predict a model’s out-
put and/or its failures (Chandrasekaran et al., 2018).

In fact, the research community is still in the process of understanding what explana-
tions are supposed to achieve, and how to assess success of an explanation method (Doshi-
Velez & Kim, 2017; Miller, 2019). Many early works on model interpretability designed
their methods around a set of desiderata (Lertvittayakumjorn & Toni, 2019; Sundararajan
et al., 2017b) and relied on qualitative assessment of a handful of samples with respect to
these desiderata; a process that is highly subjective and is hard to reproduce. In contrast,
recent works have focused on more quantitative criteria: correlation between explainability
methods for measuring consistency (Jain & Wallace, 2019; Serrano & Smith, 2019), suffi-
ciency and comprehensiveness (DeYoung et al., 2020), and simulability: whether a human or
machine consumer of explanations understands the model behavior well enough to predict
its output on unseen examples (Doshi-Velez & Kim, 2017; Lipton, 2016a). Simulability, in
particular, has a number of desirable properties, such as being intuitively aligned with the
goal of communicating the underlying model behavior to humans and being measurable in
manual and automated experiments (Hase & Bansal, 2020; Pruthi, Dhingra, et al., 2020;
Treviso & Martins, 2020).

For instance, Pruthi, Dhingra, et al. (2020) proposed a framework for automatic evalu-
ation of simulability that, given a teacher model and explanations of this model’s predictions,
trains a student model to match the teacher’s predictions. The explanations are then evalu-
ated with respect to how well they help a student learn to simulate the teacher (section 8.2).
This is analogous to the concept in pedagogy of instructional scaffolding (Van de Pol et al.,
2010), a process through which a teacher adds support for students to aid learning. More
effective scaffolding—in our case, better explanations—is assumed to lead to better student
learning. However, while this previous work provides an attractive way to evaluate existing

explanation methods, it stops short of proposing a method to actually improve them.

In this chapter, we propose to learn to explain by directly learning explanations that pro-
vide better scaffolding of the student’s learning, a framework we term Scaffold- Maximizing
Training (SMaT). Figure 5.1 illustrates the framework: the explainer is used to scaffold the
student training, and is updated based on how well the student does at test time at simulat-
ing the teacher model. We take insights from research on meta-learning (Finn et al., 2017;
Raghu et al., 2021), formalizing our setting as a bi-level optimization problem and opti-
mizing it based on higher-order differentiation (section 5.3). Importantly, our high-level
framework makes few assumptions about the model we are trying to explain, the structure
of the explanations or the modalities considered. To test our framework, we then intro-
duce a parameterized attention-based explainer optimizable with SMaT that works for any

model with attention mechanisms (section 5.4).
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Figure 5.1: Illustration of our SMaT framework. First, a student model is trained to recover
the classifier’s predictions and to match the explanations given by the explainer. Then, the
explainer is updated based on how well the trained student simulates the classifier (without
access to explanations). In practice, we repeat these two consecutive processes for several
steps. Green arrows and boxes represent learnable components.

We experiment with SMaT in text classification, image classification, and (multilin-
gual) text-based regression tasks using pretrained transformer models (section 5.5). We
find that our framework is able to effectively optimize explainers across all the considered
tasks, where students trained with learned attention explanations achieve better simulabil-
ity than baselines trained with static attention or gradient-based explanations. We further
evaluate the plausability of our explanations (i.e., whether produced explanations align with
how people would justify a similar choice) using human-labeled explanations (text clas-
sification and text regression) and through a human study (image classification) and find
that explanations learned with SMaT are more plausible than the static explainers consid-
ered. Overall, the results reinforce the utility of scaffolding as a criterion for evaluating and

improving model explanations.

5.2 [Evaluating Explanations with Simulability

Consider a model T : X — Y trained on some dataset Dy, = { (4, y:)}Y,. For example,
this could be a text or image classifier that was trained on a particular downstream task
(with Dy, being the training data for that task). Post-hoc interpretability methods typically
introduce an explainer module Er : T x X — & that takes a model and an input, and
produces an explanation e € & for the output of the model given that input, where £
denotes the space of possible explanations. For instance, interpretability methods using
saliency maps define £ as the space of normalized distributions of importance over L input
elements e € Ap_; (where Ap_y is the (L — 1)-probability simplex).

Pruthi, Dhingra, et al. (2020) proposed an automatic framework for evaluating ex-
plainers that trains a student model Sy : X — ) with parameters 0 to simulate the teacher
(i.e., the original classifier) in a constrained setting. For example, the student can be con-
strained to have less capacity than the teacher by using a simpler model or trained with a
subset of the dataset used for the teacher (Dyain, C Divain)-

=
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In this framework, a baseline student Sy is trained according to

0* = argmin ]E(Ly)wﬁmi" [Lsim (Se(x), T(x))]
0
and its simulability stM(Sy-, T") is measured on an unseen test set. The actual form of L,
and smm(Sy-, T') is task-specific. For example, in a classification task, we use cross-entropy
as the simulation loss Lg;,, over the teacher’s predictions, while the simulability of a model
Sg+ can be defined as the simulation accuracy, i.e., what percentage of the student and

teacher predictions match over a held-out (validation) set Diq:
SIM(Sp+, T) = Bz ), [1{ S+ (z) = T'(x)}]. b.1)

Next, the training of the student is augmented with explanations produced by the explainer
E. We introduce a student explainer Eg : S x X' — &, (the S-explainer) to extract
explanations from the student, and regularizing these explanations on the explanations of
teacher (the T-explainer), using a loss Ly that takes explanations for both models:

0y = arg;nin E

|:£sim (Sg(l‘), T(l’))l—f-ﬁ ;Cexpl (Es(Sg, l‘), ET(T, ZL‘)Z . (52)

$7y)ND1re1ir\ N

Vv Vv
simulability loss explainer regularizer

For example, Pruthi, Dhingra, et al. (2020) considered as a teacher explainer Er var-
ious methods such as LIME (Ribeiro et al., 2016), Integrated Gradients (Sundararajan et
al., 2017b), and attention mechanisms, and explored both attention regularization (using

Kullback-Leibler divergence) and multi-task learning to regularize the student.

The key assumption surrounding this evaluation framework is that a student trained
with good explanations should learn to simulate the teacher better than a student trained
with bad or no explanations, that is, stm (SQE7 T ) > sM (Sg«, T') . For clarity, we will refer

to the simulability of a model Sp; trained using explanations as scaffolded simulability.

5.3 Optimizing Explainers for Teaching

As a first contribution of this chapter, we extend the previously described framework to
make it possible to directly optimize the teacher explainer so that it can most effectively
teach the student the original model’s behavior. To this end, consider a parameterized T -
explainer E,, with parameters ¢r, and equivalently a parameterized S-explainer E4, with

parameters ¢g. We can write the loss function for the student and S-explainer as:
Estudent(sﬁ7 Ed)sa T’ E¢T7 l’) = Esim (SG (x)7 T(l‘)) + B'Cexpl (E¢S(SG’ ZE), E¢T (Tv CL’)) . (53)

While this framework is flexible enough to rigorously and automatically evaluate many
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types of explanations, calculating scaffolded simulability requires an optimization proce-
dure to learn the student and S-explainer parameters 6, ¢s. This makes it non-trivial to
achieve our goal of directly finding the teacher explainer parameters ¢ that optimize scaf-
folded simulability. To overcome this challenge, we draw inspiration from the extensive
literature on meta-learning (Finn et al., 2017; Schmidhuber, 1987), and frame the opti-

mization as the following bi-level optimization problem (see Grefenstette et al. (2019) for

a primer):
9* (¢T)7 ¢Z’<¢T) = argg;nin E(%y)Nﬁ[mm [ﬁstudent(s% E¢57 T: E¢T7 iL')] (54)
PSS
¢ = af%min Eey)~Doy [Lsim (Sov () (), T(2))] - (5.5)

Here, the inner optimization updates the student and the S-explainer parameters (Equa-
tion 5.4), and in the outer optimization we update the T-explainer parameters (Fqua-
tion 5.5). Importantly, our framework does not modify the teacher, as our goal is to explain
a model without changing its original behavior. Notice that we also simplify the problem
by considering the more tractable simulation loss Ly, instead of the simulability metric

siM(Sg«, T') as part of the objective for the outer optimization.

Now, if we assume the explainers Ey, and Ey, are differentiable, we can use gradient-
based optimization (Finn et al., 2017) to optimize both the student (with its explainer)
and the T-explainer. In particular, we use explicit differentiation to solve this optimization
problem. To compute gradients for ¢, we have to differentiate through a gradient oper-
ation, which requires Hessian-vector products, an operation supported by most modern
deep learning frameworks (Bradbury et al., 2018; Grelenstette et al., 2019). However, ex-
plicitly computing gradients for ¢r through a large number of inner optimization steps is
computationally intractable. To circumvent this problem, typically the inner optimization
is run for only a couple of steps or a truncated gradient is computed (Shaban et al., 2019).
In this chapter, we take the approach of taking a single inner optimization step and learning
the student and S-explainer jointly with the T-explainer without resetting the student (Dery
et al., 2021). At each step, we update the student and S-explainer parameters as follows:

gt =0 — ,r]INNVQ E(iv,y)'vbrmm |:£sludenl(59t7 E¢ts, T, E(ju}a x)i| (56)

¢t‘5‘+1 = ng' - nINNv¢S E(&?,y)N'f)rmin |:£studcnt(59ta Eqﬁga T7 Eqﬁ%u x)i| . (57)

After updating the student, we take an extra gradient step with the new parameters but only
use these updates to calculate the outer-gradient for ¢, without actually updating 6. This
approach is similar to the pilot update proposed by Zhou et al. (2021), and we verified that
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it led to more stable optimization in practice:

06%) = 0"+ = Vo By, | Lo Sorn, Eggr, T, By, )| (5.8)

1 = 0 — Mo Vo Ewes |Loim (Soon) (), T() )| 5.9)

5.4 Parameterized Attention Explainer

As a second contribution of this chapter, we introduce a novel parameterized attention-
based explainer that can be learned with our framework. Transformer models (Vaswani
et al., 2017b) are currently the most successful deep-learning architecture across a variety
of tasks (Shoeybi et al., 2019; Wortsman et al., 2022). Underpinning their success is the
multi-head attention mechanism, which computes a normalized distribution over the 1 < i < L
input elements in parallel for each head h:

A" = sortmax(Q" (K™ T), (5.10)

where Q" = [¢!',--- ,¢}]and K" = [k}, - - | k] are the query and key linear projections over
the input element representations for head h. Attention mechanisms have been used ex-
tensively for producing saliency maps (Vashishth et al., 2019; Wiegrefle & Pinter, 2019)
and while some concerns have been raised regarding their faithfulness (Jain & Wallace,
2019), overall attention-based explainers have been found to lead to relatively good ex-
planations in terms of plausibility and simulability (Kobayashi et al., 2020; Pruthi, Dhingra,
et al., 2020; Treviso & Martins, 2020).

However, to extract explanations from multi-head attention, we have two important
design choices:

1. Single distribution selection: Since self-attention produces an attention matrix A" €
AL, we need to pool these attention distributions to produce a single saliency map
e € Ap_1. Typically, the distribution from a single token (such as [CLS]) or the
average of the attention distributions from all tokens 1 < i < L are used.

2. Head selection: We also need to pool the distributions produced by each head. Typi-
cal ad-hoc strategies include using the mean over all heads for a certain layer (Fomicheva,
Specia, & Aletras, 2021) or selecting a single head based on plausibility on validation
set (Treviso et al., 2021). However, since transformers can have hundreds or even
thousands of heads, these choices rely on human intuition or require large amounts
of plausibility labels.

In this chapter, we approach the latter design choice in a more principled manner.
Concretely, we associate each head with a weight and then perform a weighted sum over
all heads. These weights are learned such that the resulting explanation maximizes simu-

lability, as described in section 5.3. More formally, given a model Tp,. and its query and
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Figure 5.2: Our parameterized attention-based explainer. Dashed red boxes represent
learned parameters Ay = SPARSEMAX(¢r) € Ap_1, weighting average attention logits of
each head 1 < h < H. A softmax over the weighted sum generates the attention probabil -
ities.

key projections for an input x for each layer and head h < H, we define a parameterized,

differentiable attention explainer E,,.(Tp,, x) as

L H
1
S = Y@K, Bp(Ta) =sormx (YN Gl
=1

h=1

where the teacher’s head coefficients A\ € Ay _; are A\ = NORMALIZE(¢p7) with ¢ € RE.,

In this formulation, s" € R” represents the average unnormalized attention logits over all
input elements, which are then combined according to A7 and normalized with sorTMax
to produce a distribution in A;_;. We apply a normalization function NORMALIZE to head
coeflicients involved to create a conver combination over all heads in all layers. In this
work we consider the sparse projection function NORMALIZE = SPARSEMAX (A. Martins &
Astudillo, 2016), as:

SPARSEMAX(2) = argmin ||p — z||o.
PEAF_1
We choose SparsEMax due to its benefits in terms of interpretability, since it leads to many
heads having zero weight. We also found it outperformed every other projection we tried.

Figure 5.2 illustrates each step of our parameterized attention explainer.

5.5 Experiments

To evaluate our framework, we attempt to learn explainers for transformer models trained
on three different tasks: text classification (subsection 5.5.1), image classification (subsec-

tion 5.5.2), and machine translation quality estimation (a text-based regression task, de-
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tailed in subsection 5.5.3). We use JAX (Bradbury et al., 2018) to implement the higher-
order differentiation, and use pretrained transformer models from the Huggingface Trans-
formers library (Wolf et al., 2020), together with Flax (Heek et al., 2020). For each task,
we train a teacher model with AdamW (Loshchilov & Hutter, 2019) but, as explained in
section 5.3, we use SGD for the student model (inner loop). We also use scalar mixing
(Peters et al., 2018) to pool representations from different layers automatically.! We train

students with a teacher explainer in three settings:

* No Explainer: No explanations are provided, and no explanation regularization is
used for training the student (i.e. # = 0 in Equation 5.3). We refer to studentsin this

setting as baseline students.

¢ Static Explainer: Explanations for the teacher model are extracted with five commonly-
used saliency-based explainers: (1) L2 norm of gradients; (2) a gradient x input ex-
plainer (Denil et al., 2014); () an integrated gradients explainer (Sundararajan et al.,
2017b); and attention explainers that uses the mean pooling over attention from (4)
all heads in the model and (5) from the heads of the last layer (Fomicheva, Specia,
& Aletras, 2021; Vafa et al., 2021).

* Learned Explainer (SMaT): Explanations are extracted with the explainer described
in section 5.4, with coefhicients for each head that are trained with SMaT jointly with
the student. We initialize the coeflicients such that the model is initialized to be the

same as the static attention explainer (i.e., performing the mean over all heads).

Independently of the T-explainer, we always use a learned attention-based explainer as
the S-explainer, considering all heads except when the T-explainer is a static attention ex-
plainer that only considers the last layers’ heads, where we do the same for the S-explainer.
We use the Kullback-Leibler divergence as L1, and we set 5 = 5 for attention-based
explainers and § = 0.2 for gradient-based explainers (since we found smaller values to
be better). We set Ly, as the cross-entropy loss for classification tasks, and as the mean
squared error loss for text regression. For each setting, we train five students with different
seeds. Since there is some variance in students’ performance (we hypothesize due to the
small training sets) we report the median and interquantile range (IQR) around it (relative
to the 25-75 percentile).

5.5.1 Text Classification

For text classification, we consider the IMDB dataset (Maas et al., 2011), a binary sentiment
classification task over highly polarized English movie reviews. As the base pretrained
model, we use the small ELECTRA model (Clark et al., 2020), with 12 layers and 4 heads
in each (total 48 heads).

"While scalar mixing reduced variance of student performance, SMaT also worked with other common
pooling methods.

62



500
81.72 [81.24:81.75]

1,000
83.44 [83.36:83.63]

2,000
84.84 [84.80:84.88]

No Explainer

Gradient 1.2 81.66 [81.32:82.00]  82.98 [82.72:83.08]  84.78 [84.96:85.08]
Gradient x Input 84.83 [84.79:84.88] 81.15 [80.95:81.36] 83.84 [83.59:84.99]
Integrated Gradients 82.99 [82.59:82.99] 81.79 [81.72:81.87]  84.20 [84.08:85.03]
Attention (all layers)  83.00 [82.60:83.00]  85.72 [85.72:86.23]  90.08 [89.72:90.11]

Attention (last layer)
Attention (SMaT)

80.91 [79.99:81.07]
91.48 [91.40:91.56]

83.15 [82.91:83.51]
92.56 [92.28:92.83]

91.47 [91.39:91.56]
92.84 [92.84:93.08]

Table 5.1: Results for the IMDB dataset with respect to student simulability in terms of ac-
curacy. Underlined values indicate higher simulability than baseline with non-overlapping

IQR.

Like the setting in (Pruthi, Dhingra, et al., 2020), we use the original training set with
25,000 samples to train the teacher, and further split the test set into a training set for
the student and a dev and test set. We vary the number of samples the student is trained
on between 500, 1,000, and 2,000. We evaluate simulability using accuracy (i.e., what
percentage of student predictions match with teacher predictions). The teacher model
obtains 91% accuracy on the student test set.

Table 5.1 shows the results in terms of simulability (Equation 5.1) for the three settings.
We can see that, overall, the attention explainer trained with SMaT leads to students that
simulate the teacher model much more accurately than students trained without any ex-
planations, and more accurately than students trained with any static explainer across all
student training set sizes. Interestingly, the gradient-based explainers only improve over
the baseline students when the amount of training data is very low, and actually degrade
simulability for larger amounts of data Using only heads from the last layer seems to have
the opposite effect, leading to higher simulability than all other static explainers only for
larger training sets.

integrated gradients: no offense to anyone who saw this and
liked it , but i hated it ! it dragged on and on and there was
not a very good plot , also , too simple and the acting was so
so . . . i would give this s ##nor ##efe ##st a 2 at the most
attention (all layers): no offense to anyone who saw this and
liked it , but i hated it ! it dragged on and on and there was
not a very good plot , also , too simple and the acting was so
so . . . i would give this s ##nor ##efe ##st a 2 at the most

attention (SMaT):
liked it , but i hated it ! it dragged on and on and there was

no offense to anyone who saw this and

not a very good plot , also , too simple and the acting was so

so . . .1 would give this s ##nor ##efe ##st a 2 at the most

integrated gradients: i ' ve seen river ##dance in person and nothing compares
to the video , but the show is awesome . the dancers are amazing . the music
is impact ##ing . and the overall performance is outstanding . i ' ve never

seen anything like it ! i suggest that you see this show if you can ! I'!

attention (all layers):

to the video , but the show is awesome . the dancers are amazing . the music

i ' ve seen river ##dance in person and nothing compares

is impact ##ing . and the overall performance is outstanding . i ' ve never
seen anything like it ! i suggest that you see this show if you can ! ! !

attention (SMaT ):

to the video , but the show is awesome . the dancers are amazing . the music

i ' ve seen river ##dance in person and nothing compares

is impact ##ing . and the overall performance is outstanding . i ' ve never
seen anything like it ! i suggest that you see this show if you can ! ! !

Figure 5.3: Explanations given by integrated gradients, attention (last layer), and our
learned attention explainer (SMaT) for two movie reviews of the IMDB dataset (negative

and positive examples). Green and represent positive and negative contributions,
respectively.
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AUC
Plausibility analysis. We select the median

model trained with 1,000 samples and extract ex- Gradient L2 0.65
Gradient x Input 0.51

Integrated Gradient 0.53
Attention (all layers) 0.68
Attention (last layer) 0.61
Attention (SMaT)  0.73

planations for test samples from the MovieReviews
dataset (DeYoung et al., 2020), which contains bi-
nary sentiment movie reviews from Rotten Toma-

toes alongside human-rationale annotation. Since

the labels are binary (indicating whether a token

is part of the explanation or not) and the pre- Attention (best layer)* 0.75

dicted scores are real values, we follow (Fomicheva, Attention (best head)* 0.75

Lertvittayakumjorn, et al., 2021) and report our re- Table 5.2: Plausibility on MovieRe-
sults in terms of the Area Under the Curve (AUC), ... ¢ in terms of AUC. * represents

which automatically considers multiple binarization methods that use human labels.

thresholds. The results are shown in Table 5.2 along with two randomly selected examples
of extracted explanations in Figure 5.3. We found that gradient-based explanations are
less plausible than those using attention (with the exception of Grad. L2, which is similar
to static attention) and that ones produced with SMaT achieve the highest plausibility, indi-
cating that our learned explainer can produce human-like explanations while maximizing
simulability. Moreover, SMaT achieves a similar AUC score to the best performing atten-
tion layer and head,? while not requiring any human annotations. This is evidence that
scaffolded simulability, while not explicitly designed for it, is a good proxy for plausibility

and “human-like” explanations.

5.5.2 Image Classification

To validate our framework across multiple modalities, we consider image classification
on the CIFAR-100 dataset (Krizhevsky, 2009). We use as the base model the Vision
Transformer (ViT) (Dosovitskiy et al., 2020), in particular the base version with 16 x 16
patches that was only pretrained on ImageNet-21k (Ridnik et al., 2021). We up-sample

images to to a 224 x 224 resolution.

Since the self-attention mechanism in the ViT model only works with patch repre-
sentations, the explanations produced by attention-based explainers will be at patch-level
rather than pixel-level. We split the original CIFAR-100 training set into a new training
set with 45,000 and a validation set with 5,000. Unlike the previous task, we reuse the
training set for both the teacher and student, varying the number of samples the student is
trained with between 2,250 (5%), 4,500 (10%) and 9,000 (20%). We use accuracy as the

simulability metric and the teacher obtains 89% on test set.

Table 5.3 shows the results for the three settings. Similarly to the results in the text
modality, the attention explainer trained with SMaT achieves the best scaffolding perfor-
mance, although the gaps to static attention-based explainers are smaller (especially when

2AUC scores obtained by independently trying all attention heads and layers of the model.
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2,250

4,500

9,000

No Explainer

81.16 [80.98:81.26]

84.02 [83.98:84.24]

Gradient L2
Gradient x Input
Integrated gradients
Attention (all layers)
Attention (last layer)

80.97 [80.91:81.10]
80.93 [80.82:81.04]
80.22 [80.17:80.85]
82.53 [82.53:82.62]
82.34 [82.30:82.60]

83.98 [83.81:84.23]
83.99 [83.98:84.13]
83.44 [83.25:83.44]
84.81 [84.74:84.92]
84.65 [84.56:84.81]

85.20 [85.17:85.26]
|

85.13 [84.97:85.50
85.33 [84.85:85.35]
84.99 [84.76:85.22]
85.92 [85.78:85.94]
85.31 [84.84:85.31]

Attention (SMaT)

83.09 [82.77:83.28]

85.42 [85.39:85.85]

85.96 [85.74:86.85]

Table 5.3: Simulability results, in terms of accuracy (%), on the CIFAR100 dataset. Under-
lined values represent better performance than baseline with non-overlapping IQR

students are trained with more samples). Here, the gradient-based explainers always de-
grade simulability across the tested training set sizes and and it seems important that the

explanations include attention information from layers other than the last one.

Plausibility analysis. Since there are no

Rank TrueSkill

available human annotations for plausibility in

the CIFAR-100 dataset, we design a user study

Grad. x Input 3-4 -2.7£.67
to measure the plausability of the considered Integ. Grad, 3.4 29.1+.67
methods. The original image and explanations Attn, (all Iz.) 9 0.7+ 67
extracted with Gradient x Input, Integrated Attn. (SMaT) 1 4.8+.70

Gradients, Attention (all layers), and Attention
(SMaT) are shown to the user, and the user has
to rank the different explanations to answer the

Table 5.4: Plausibility results of the hu-
man study on visual explanations.
question “Which explanation aligns the most with

how you would explain a similar decision?”. Explanations were annotated by three volun-
teers. After collecting results, we compute the rank and the TrueSkill rating (Herbrich et
al., 2007) for each explainer (roughly, the “skill” level if the explainers where players in
game). The results are shown in Table 5.4. As in the previous task, attention trained with
SMaT outperforms all other explainers in terms of plausibility, and its predicted rating is
much higher than all other explainers. We also show examples of explanations for a set of

randomly selected images in Figure 5.4.

5.5.83 Machine Translation Quality Estimation

Quality Estimation (QE) is the task of predicting a quality score given a sentence in a
source language and a translation in a target language from a machine translation system,
which requires models that consider interactions between the two inputs, source and target.
Scores tend to be continuous values (making this a regression task) that were collected from

expert annotators.

Interpreting quality scores of machine translated outputs is a problem that has re-
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Input image Integ. Grad. Attn. (all Ix.) Attn. (SMaT) Input image Integ. Grad. Attn. (all Ix.) Attn. (SMaT)

B - e
=l niee -y

Figure 5.4: Explanations given by integrated gradients, attention (all layers), and learned
attention explainer for a set of input images of CIFAR-100. Gold labels are: “television”,
“butterfly”, “cockroach”, and “sunflower”.

2,100 4,200 8,400
No Explainer 7457 [.7866:.7528] 7719 [.7660:.7802]  .7891 [.7860:.7964]
Gradient L2 8065 [.8088:.8268]  .8535 [.7117:.8544]  .8638 [.8411:.8657]
Gradient x Input .6846 [.6781:.6894] .06922 [.6885:.6965]  .7141 [.7186:.7147]

Integrated gradients .6686 [.6677:.6694] .7086 [.6994:7101] .7036 [.6976:.7037]
Attention (all layers)  .8120 [.7955:.8125]  .8193 [.8186:.8280] .8467 [.8464:.8521]
Attention (last layer) 7486 [.7484:.7534]  .7720 [.7672:.7726]  .7798 [.7717:.7814]

Attention (SMaT) 8156 [.8096:.8183] .8630 [.8412:.8724] .8561 [.8512:.8689]

Table 5.5:  Simulability results, in terms of Pearson correlation, on the ML-QE dataset.
Underlined values represent better performance than baseline with non-overlapping IQR.

ceived recent interest (Fomicheva, Lertvittayakumjorn, et al., 2021) since it allows identi-
fying which words were responsible for a bad translation. We use the MLQE-PE dataset
(Fomicheva et al., 2020), which contains 7,000 training samples for each of seven lan-

guage pairs alongside word-level human annotation. We use as the base model a pretrained
XLM-R-base (Conneau et al., 2019), a multilingual model with 12 layers and 12 heads in
each (total of 144 heads).

We exclude one of the language pairs in the dataset (si-en) since the XLM-R model
did not support it, leading to a training set with 42,000 samples. Similar to the CIFAR-
100 case, we reuse the same training set for both the teacher and student, sampling a subset
for the latter. We vary the number of samples the student is trained with between 2,100
(5%), 4,200 (10%) and 8,400 (20%). Since this is a regression task, we evaluate simulability
using the Pearson correlation coefficient between student and teacher’s predictions.” The

teacher achieves 0.63 correlation on the test set.

Table 5.5 shows the results for the three settings. Similar to other tasks, the attention
explainer trained with SMaT leads to students with higher simulability than baseline stu-

dents and similar or higher than static explainer across all training set sizes. Curiously, the

3Pearson correlation is the standard metric used to evaluate sentence-level QF models.
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EN-DE EN-ZH ET-EN NE-EN RO-EN RU-EN OVERALL

src.  tgt. src.  tgt. src.  tgt. src.  tgt. src.  tgt. src.  tgt. src.  tgt.

Gradient L2 0.64 0.65 0.65 049 0.67 0.61 0.68 0.55 0.72 0.68 0.65 0.54 0.67 0.59
Gradient x Input 0.58 0.60 0.61 0.51 0.60 0.54 0.61 049 0.64 0.59 0.58 0.51 0.61 0.54
Integrated Gradients ~ 0.59 0.60 0.68 0.49 0.60 0.52 0.64 048 0.64 0.59 0.60 0.51 0.62 0.53
Attention (all layers) 0.60 0.63 0.68 0.52 0.60 0.61 0.58 0.55 0.66 0.70 0.62 0.55 0.62 0.59
Attention (last layer) 0.51 049 0.61 049 051 0.50 055 048 0.52 0.57 0.56 0.50 0.54 0.50
Attention (SMaT) 0.64 0.65 0.68 0.52 0.66 0.64 0.66 0.54 0.71 0.70 0.61 0.54 0.66 0.60

Attention (best layer)*  0.64 0.65 0.69 0.64 0.64 0.68 0.68 0.68 0.71 0.76 0.64 0.59 0.65 0.65
Attention (best head)* ~ 0.67 0.67 0.70 0.65 0.70 0.70 0.70 0.69 0.73 0.75 0.67 0.60 0.67 0.66

Table 5.6: Plausibility results for source and target inputs for each language pair of the
MLQE-PE dataset in terms of AUC. * represents supervised methods that use human labels
in some form.

Grad. L2 explainer achieves very high simulability for this task. It even has a higher median
simulability score than SMaT for 8,400 samples. However, we attribute this to variance in
the student training set sampling (that could lead to an imbalance in language pair propor-
tions) which could explain why SMaT performance degrades with more samples. For this
task, the gradient-based explainers always degrade simulability across the tested training
set size. It also seems that using only the last layer’s attention is also ineffective at teaching

students, achieving the same performance as the baseline.

Plausibility analysis. We select the median model trained with 4,200 samples and
follow the approach devised in the Explainable QE shared task to evaluate plausibility
(Fomicheva, Lertvittayakumjorn, et al., 2021), which consists of evaluating the human-
likeness of explanations in terms of AUC only on the subset of translations that contain
errors. The results are shown in Table 5.6. We note that for all language pairs, SMaT per-
forms on par or better than static explainers, and only being surpassed by Grad. L2 in the
source-side over all languages. Comparing with the best attention layer/head, an approach
used by Fomicheva, Specia, and Aletras (2021) and Treviso et al. (2021), SMaT achieves
similar AUC scores for source explanations, but lags behind the best attention layer/head
for target explanations on *-EN language pairs. However, as stressed previously for text
and image classification, SMaT sidesteps human annotation and avoids the cumbersome
approach of independently computing plausibility scores for all heads.

5.6 Related Work

Explainability for text & vision. Several works propose explainability methods to interpret
decisions made by NLP and CV models. Besides gradient and attention-based approaches
already mentioned, some extract explanations by running the models with perturbed in-
puts (Feng et al., 2018; S. Kim et al., 2020; Ribeiro et al., 2016). Others even define
custom backward passes to assign relevance for each feature (Bach et al., 2015). These

methods are commonly employed together with post-processing heuristics, such as select-
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ing only the top-k tokens/pixels with higher scores for visualization. Another line of work
seeks to build a classifier with inherently interpretable components, such as methods based

on attention mechanisms and rationalizers (Bastings et al., 2019; Lei et al., 20106).

Evaluation of explainability methods. As mentioned in the introduction, early works
evaluated explanations based on properties such as consistency, sufficiency and comprehensive-
ness. Jacovi and Goldberg (2020) recommended the use of a graded notion of faithfulness,
which the ERASER benchmark quantifies using the idea of sufficient and comprehensive
rationales, alongside compiling datasets with human-annotated rationales for calculating
plausibility metrics (DeYoung et al., 2020). Given the disagreement between explainabil-
ity methods, Neely et al. (2021) showed that without a faithful ground-truth explanation
it is impossible to determine which method is better. Diagnostic tests such as the ones
proposed by Adebayo et al. (2018) and Wiegreffe and Pinter (2019) and Atanasova et al.
(2020) are more informative yet they do not capture the main goal of an explanation: the

ability to communicate an explanation to a practitioner.

Simulability. A new dimension for evaluating explainability methods relies on the for-
ward prediction/simulation proposed by Lipton (2016a) and Doshi-Velez and Kim (2017),
which states that humans should be able to correctly simulate the model’s output given the
input and the explanation. Arora et al. (2022), Chandrasekaran et al. (2018), and Hase
and Bansal (2020) analyze simulability via human studies across text classification datasets.
Treviso and Martins (2020) designed an automatic framework where students (machine
or human) have to predict the model’s output given an explanation as input. Similarly,
Pruthi, Dhingra, et al. (2020) proposed the simulability framework that was extended in

our work, where explanations are used to regularize the student rather than passed as input.

Learning to explain. The concept of simulability also opens a path to learning ex-
plainers. In particular Treviso and Martins (2020) learn an attention-based explainer that
maximizes simulability. However, directly optimizing for simulability sometimes led to
explainers that learned trivial protocols (such as selecting only punctuation symbols or
stopwords to leak the label). Our approach of optimizing a teacher-student framework
is similar to approaches that optimize for model distillation (Zhou et al., 2021). However,
these approaches modify the original model rather than introduce a new explainer mod-
ule. Raghu et al. (2021) propose a framework similar to ours for learning commentaries for
inputs that speed up and improve the training of a model. However commentaries are
model-independent and are optimised to improve performance on the real task. Ratio-
nalizers (J. Chen et al., 2018; Guerreiro & Martins, 2021; Jacovi & Goldberg, 2021) also

directly learn to extract explanations, but can also suffer from trivial protocols.
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5.7 Conclusion & Subsequent Work

We proposed SMaT;, a framework for directly optimizing explanations of the model’s pre-
dictions to improve the training of a student simulating the said model. We found that,
across tasks and domains, explanations learned with SMaT both lead to students that sim-
ulate the original model more accurately and are more aligned with how people explain
similar decisions when compared to previously proposed methods. On top of that, our
parameterized attention explainer provides a principled way for discovering relevant at-

tention heads in transformers.

Our work shows that scaffolding/simulability is a suitable criterion for both evaluating
and optimizing explainability methods. Crucially, we believe that there are further unex-
plored connections between explainability and model distillation: for instance, subsequent
work has shown chain-of-thought rationales extracted from large LLLLMs can be used to im-
prove the training of smaller models (.. H. Li et al., 2023), which means that these can

indeed be good explanations for models’ decisions.
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Chapter

Can Reasoning Models Explain and

Improve Low-Resource M'17

Large language models (LLLMs) have shown remarkable capabilities in complex reasoning
tasks, often attributed to their ability to generate chain-of-thought (CoT’) rationales. This
has led to the surge of reasoning models that are optimized to solve hard reasoning problems
(mathematical, logical, etc.) by leveraging the additional computation in producing the
tokens in their reasoning traces. This additional “reasoning” has also been shown effective

at improving performance in other tasks, including machine translation (MT).

In this chapter, we investigate whether such reasoning models can produce effective
explanations for machine translation and the translation process. Leveraging the scaf-
folding criteria from the previous chapter, we evaluate the explanatory power of the rea-
soning traces produced by state-of-the-art reasoning models (such as Gemini 2.5 Pro
and DeepSeek R1) by leveraging them to teach smaller LLLMs to translate into very low-
resource language pairs. Our findings suggest that, besides being state-of-the-art M'T sys-
tems, reasoning models’ explanations do have some explanatory power even in problems
like machine translation, particularly when training students through posthoc regularization

(predicting the explanation after the translation) rather than CoT distillation.
This chapter is based on unpublished work.

6.1 Introduction

One of the suprising emergent capabilities of large language models (LLLMs) is the effec-
tiveness of chain-of-thought prompting, where prompting the model to produce a series
of intermediate reasoning steps (“let’s think step-by-step”) leads to additional intermediate
generation tokens before a (generally better) output (Wei et al., 2022). Its discovery led
to considerable interest in leveraging this mechanism as an adaptive way to improve task

performance at the cost of additional test-time compute. This, coupled with the plateau-
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Prompt

Student

Translate the following sentence from English to Swabhili. \

Source: Madam, your glasses are fogged up!

Think about word meanings, grammar choices, and idiomatic concerns, but don't

overthink.

Then in the output, provide just the final translation, prefixed with "Final translation:"

l CoT Explanation " Finetuning
Okay, let's tackle translating "Madam, your glasses 3 E ( 9) — ;
are fogged up!" into Swahili. (...) > | ;
The term "Madam" in Swabhili is typically "Bi." (...) P log Py (y e ’ .CU) }
t 5 :

So final translation would be "Bibi, miwani yako

imevimbiwa!"

-~
~ s '
Teacher Translation baseline /

Bibi, miwani yako imevimbiwa!

Figure 6.1: Illustration of a teacher—student framework use to measure the explanatory
power of reasoning models’ explanations for M T. Text in the prompt under the dotted line
is only passed to the teacher.

ing effects of scaling training compute, precipitated the surge and widespread adoption
of reasoning models: LLLLMs that are post-trained to solve hard reasoning problems that can
be verified, such as mathematical and coding problems, by producing increasingly long
reasoning traces (DeepSeek-Al, 2025). Remarkably, these models show not only better
performance at reasoning tasks, but sometimes also outperform non-reasoning LLLMs on

generative, non-verifiable tasks such as machine translation (Deutsch et al., 2025).

The additional text produced is often intepreted as a free-form rationale for the model’s
decision, and there is widespread debate about the usefulness of these explanations as in-
sights into the model’s decision-making process (LL.anham et al., 2023; Turpin et al., 2023).
Nevertheless, prior work has shown that these explanations are effective at teaching smaller
models to perform reasoning tasks (DeepSeek-Al, 2025; Ho et al., 2023), but their ex-
planatory power in other more open-ended tasks has not been fully explored.

In this chapter, we investigate whether reasoning models can provide good machine
translation systems, and whether their reasoning traces can be used to teach smaller models.
In particular, we focus on low-resource language pairs, where the low baseline performance
of current systems and small amounts of training data make the explanatory power of rea-
soning traces particularly valuable. We evaluate recent, state-of-the-art reasoning models
such as Gemini 2.5 Pro and DeepSeek R1, on English— Swahili and English—Zulu, using
the WMT24++ testsets (Deutsch et al., 2025), and find that reasoning seems to benefit (or
at least, not degrade) low-resource MT, with Gemini 2.5 Pro outperforming more “non-

reasoning” LLLLMs.

Then, we finetune smaller pretrained LLMs from the Qwen family to translate be-
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tween the two language pairs using the SmoL dataset (Caswell et al., 2025) (a minimal
highly-curated dataset with less than 1000 parallel sentences) augmented with CoT expla-
nations from reasoning models. By comparing different ways of explanation-augmented fine-
tuning, we find that explanations from reasoning models uniformly help students to learn
low-resource MT, and that the value of these explanations isn’t tied to the teacher mod-
els’ performance, with DeepSeek R1 producing particularly effective explanations, despite
their weaker translation performance compared to Gemini 2.5 Pro. Surprisingly, we also
find that traditional CoT distillation proves relatively ineffective, but posthoc regularization
(where the student is trained to generate the explanation after the translation) consistently

leads to the best student models, with the added benefit of no extra test-time compute.

6.2 Related Work

Knowledge Distillation for MT Knowledge distillation (KD) (which the scaffolding cri-
teria can be seen as) has been widely used to train compact M'T models from larger teach-
ers. Sequence-level KD was introduced in the context of MT (Y. Kim & Rush, 2016) and
there is some understanding of why synthetic data works (D. Zhang et al., 2018). How-
ever, traditional KD information signals like full logits distributions are hardly interpretable

to humans, and provide little hope of insight into the model’s decision-making process.

Chain-of-Thought Distillation Small LLLMs struggle to produce and benefit from chain-
of-thought (CoT’) prompting on their own and distilling the CoT rationale as an information
signal is particularly effective at improving their capabilities in reasoning tasks (Fu et al.,
2023; Ho et al., 2023; S. Li et al., 2022). Reasoning models seem particularly effective
at producing explanations for these tasks, with distilled models far surpassing counterparts
optimized for the same task (DeepSeek-Al, 2025). However, prior work has primarily
focused on traditional CoT distillation, and alternative approaches to leverage these expla-

nation (like post-hoc regularization) haven’t been extensively explored.

Are chains-of-thought good explanations? The human-readable nature of CoT ratio-
nales has naturally led to claims that these explanations increase the interpretability of LLMs
(S. Lietal., 2022; Wei et al., 2022). However, there is widespread debate if these expla-
nations are faithful to the models’ decision process. Turpin et al. (2023) found that models
don’t always rely on their CoT to arrive at decisions and reason posthoc, generating plau-
sible explanation that ignore explicitly introduced biasing factors. Lanham et al. (2023)
nevertheless found that while chain of thought reasoning is not always faithful, it is possible
to find conditions where it is more faithful (e.g. more capable models are more likely to
actually rely on their rationales) and reasoning models seem to produce more faithful ex-
planations in specific synthetic tasks. In this chapter, we evaluate explanations for the more

implicit, open-ended problem of machine translation, taking the instrumentalist approach
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of evaluating explanations by how much they help teaching (scaffolding) since we know it

correlates with other properties such as plausability (Chapter 5).

6.3 Explanation-Augmented MT Finetuning

Given a dataset {2V, egf), yéf) N where 29 is a source sentence and e and y*) are the
CoT explanation and final translation from a teacher model asked to translate the former

e® y® = T(z®), we compare three different approaches to finetune a student model.

* Abaseline, sequence-level knowledge distillation approach, where the student is trained

to predict the translation from the source p(y;|x;).

* A CoT distillation approach, where the student is trained to predict the explanation
p(e;|z;) and finish with the translation p(y;|z;, ;) (as the teacher originally did). This
is the standard distillation approach, and leads to students leads to students that re-

quire additional test-time compute during inferenc.

* A posthoc regularization approach, where the student is trained to directly predict the
translation p(y;|x;) and after predict the explanation p(e;|z;, y;). This is inspired by
our previous findings (Chapter 5) where good explanations helped through a reg-
ularization effect during training, rather than simply inducing and requiring extra

computation during inference.

6.4 Experiments

6.4.1 Experimental Setup

Datasets & Language Pairs To train our student models for low-resource machine trans-
lation, we use the SmoL dataset (Caswell et al., 2025), a highly-curated professionally trans-
lated dataset into 221 languages. In particular, we use the sentence-level SMOLSENT subset,
containing 863 sentences covering the 5.5k most common English words. For evalua-
tion, we use the WMT24++ test sets (Deutsch et al., 2025), an extension of the WMT24
shared task (Kocmi et al., 2024) data to 55 languages. Despite the large number of lan-
guages covered by both, they overlap on only four languages (Arabic, Mandarin, Swahili
and Zulu) and focus on English—Swahili and English—Zulu as the more low-resource

language pairs.

Models Asteacher models, we focus on recently released, state-of-the-art reasoning LLLLMs,
optimized (generally through reinforcement learning) to solve hard reasoning tasks through
the chain-of-thought mechanism. In particular, we use through the LiteLLM API (a)
Gemini 2.5 Pro (Team, 2025) with a “high” thinking budget (4096 tokens) and (b) DeepSeek
RI (DeepSeek-Al, 2025) with max response size of 8192 tokens.
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For our student models, we use the Qwen2.5 family of models (Qwen et al., 2025), in
particular focusing on the 3B, 7B and 14B models. We use the base models as INsTRUCT
variants have a higher likelihood of having seen these language pairs during training (but
use them as baselines).

We use AdamW as our optimizer, and perform hyperparameter optimization sepa-
rately for each approach, converging on 2x107°/5x 10~° learning rate for the baseline/explanation-

regularized approaches and 5 epochs with a batch size of 16 sentences all students.

Evaluation To assess and compare the simulability of the reasoning traces of the different
teacher models, we measure chrF (Popovic, 2015) and XCOMET (Guerreiro et al., 2023)
against the reference (human) translations.

6.4.2 Are Reasoning Models Good Low-Resource MT Systems?

Table 6.1 shows the performance of reasoning models, as well as standard non-reasoning
models, in English—Swahili and English—Zulu, on both the SmoL and WMT24++. The
most obvious finding is that Gemini 2.5 Pro dominates across all LPs, datasets and metrics,
outperforming all other reasoning and non-reasoning models. For this model, however,
thinking seems to play a small role, only marginally boosting performance. Interestingly,
Deepseek Rl performs competitively with the other models, despite being primarily op-
timized for mathematical and coding tasks rather than translation. This is particularly the
case for translating into the lower-resourced Zulu language, where it ranks second behind
Gemini 2.5 Pro on the WMT24++. This suggests the reasoning capabilities may indeed

transfer to traditional, non-thinking domains, particulary in low-resource settings.

SmoL WMT24++
— Swabhili — Zulu — Swabhili — Zulu
Model chrF XCOMET chrF XCOMET chrF XCOMET chrF XCOMET
GPT-40* - - - - 58.6 0.688 56.1 0.494
Claude 3.5 Sonnet* - - - - 551 0.677 521 0.463
Gemini 2.5 Pro(NT) - - - - 60.0 0.719 58.7 0.508

ol* - - - - 56.3 0.700 53.1 0485
Gemini 2.5 Pro 56.2 0.815 53.7 0.582 601 0.721 584 0.509
DeepSeek R1 56.0 0.784 511 0.551 56.2 0.668 54.2 0.501

Table 6.1: Performance comparison across different models for English to — Swabhili, —
Z.ulu translation on SmoL, WMT24++ dataset(s). * models’ performance was obtain directly
from WMT24++ paper (Deutsch et al., 2025). (NT) means translations were obtained in
a non-reasoning mode.

Figure 6.2 shows an example source from the SmoL dataset, and the reasoning traces

from DeepSeek R1 and Gemini 2.5 Pro.
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Source: With amazing enthusiasm they are at work, and wherever I pass they wave and greet with

a loud call.

**Analysis and Translation of "With amazing enthusiasm they are at work, and wherever I pass they wave
and greet with a loud call."**

Okay, so the task is to translate this sentence into Swahili. Let’s break it down. "With amazing enthusiasm"
- that’s a modifier. We've got *hamasa* (enthusiasm), *ari* (zeal), and *shauku* (desire) as possibilities.
*Hamasa* feels like the best fit here. "Amazing" is *ajabu* or *kushangaza* - both work. "With" is *kwa*.
So, "with amazing enthusiasm" becomes *kwa hamasa ya ajabu*. Or, perhaps *kwa ari ya kushangaza* if we
want a slightly different feel, or even *wakiwa na hamasa ya ajabu* ("while they have amazing enthusiasm")
for a more literal but still natural phrase.

(..)

A key point is that "they wave and greet with a loud call" suggests a habitual action. Swahili has a habitual
tense! So, how can I best incorporate that? Maybe *hunipungia mikono* (they habitually wave at me) and
*hunisalimu* (they habitually greet me)? The use of the habitual tense is a great idea to express that the act
is a repeated one. Also, *mikono* (hands) vs. *mkono* (a hand). The original sentence says "they wave',
so using the plural might be even better.

**FKinal Translation:**

*Wanafanya kazi kwa hamasa ya ajabu, na popote ninapopita hunipungia mikono na kunisalimu kwa sauti
kubwa.*

Or, since *kupungia* on its own implies a waving action, maybe this:

*Wanafanya kazi kwa hamasa ya ajabu, na popote ninapopita hunipungia na kunisalimu kwa sauti kubwa.*
Translation: Wanafanya kazi kwa hamasa ya ajabu, na popote ninapopita hunipungia mikono na

kunisalimu kwa sauti kubwa.

DeepSeek R1

Okay, let’s tackle this translation. The sentence is: "With amazing enthusiasm they are at work, and wher-
ever | pass they wave and greet with a loud call."

First, I need to break down each part. Starting with "With amazing enthusiasm..." The Swabhili word for
"with" here might be "kwa" since it’s used to mean "with" in terms of manner. "Amazing enthusiasm" can be
"bidii ya kushangaza" or "hamu ya kushangaza". "Bidii" is more about diligence, while "hamu" is eagerness or
desire. "Kushangaza" means to amaze. So maybe "kwa bidii ya kushangaza" or "kwa hamu ya kushangaza".
Hmm, "enthusiasm" might be closer to "hamu" here.

Putting it all together:

"Kwa hamu ya kushangaza wako kazini, na popote nilipopita wanapunga mikono na kusalimu kwa mwito
mkubwa."

Wait, but "greet with a loud call" might need to adjust. Maybe "kutoa salamu kwa kupaiga kelele" but that
might be too literal. Alternatively, "kusalimu kwa sauti kubwa" or "kwa mwito". "Mwito" is a call or shout.
Revising the first part: "Kwa hamu ya kushangaza wako kazini, na popote ninapopita wanapunga mikono
na kusalimu kwa mwito mkubwa."

That seems better. Let me check each part again:

- "with amazing enthusiasm": "kwa hamu ya kushangaza" — correct? Yes, "hamu" is strong desire or eagerness,
which fits enthusiasm.

- "they are at work": "wako kazini" — yes, more natural than "wanafanya kazi".

Okay, that should be the final translation. Let me make sure to use commas correctly and that the sentence
structure flows naturally in Swabhili.

Translation: Kwa bidii ya kushangaza wako kazini, na popote ninapopita wanapunga mikono na

kusalimu kwa sauti kubwa.

Figure 6.2: Example qualitative comparison showing the explanation and final translation

produced by Gemini 2.5 Pro and DeepSeek R1.
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6.4.3 Do Reasoning Explanations Help Teach MT?

Given the success of reasoning models for low-resource M'T, we now investigate wether
the produced traces have any explanatory power, insofar as they help teach smaller models.
Table 6.2 shows the zero-shot performance of both pretrained and instruction-tuned Qwen
models, as well as finetuned versions of these on the SmoL dataset. Given the sheer amount

of results, we highligh some core findings.

— Swahili — Zulu
Teacher Model Size Explanation chrF XCOMET chrF XCOMET

Zero-Shot

3B - 7.2 0.155 8.1 0.180

+ INSTRUCT - 10.8 0.239 7.4 0.241

X 7B - 7.3 0.168 6.7 0.197

+ INSTRUCT - 274 0.280 18.9 0.270

14B - 9.3 0.165 8.1 0.194

+ INSTRUCT - 34.3 0.302 24.8 0.280
Finetuned

3B X 29.3 0.319 22.9 0.305

Human 7B X 32.3 0.354 28.4 0.331

14B X 39.7 0.386 30.2 0.329

S x 9297 03818 243  0.308

3B CoT 13.8 0.190 14.2 0.189

posthoc 33.4 0.333 28.4 0.317

X 34.8 0.357 28.9 0.328

DeepSeek R1 7B CoT 15.4 0.225 15.4 0.207

posthoc 40.0 0.385 33.9 0.345

X 39.7 0.377 31.4 0.336

14B CoT 16.0 0.237 16.1 0.224

posthoc 39.2 0.411 39.0 0.348

X 929 0319 237 03806

3B CoT 26.4 0.336 24.0 0.307

posthoc 24 .8 0.333 17.7 0.318

X 33.8 0.351 26.4 0.322

Gemini 2.5 Pro 7B CoT 27.9 0.367 24.0 0.321

posthoc 33.7 0.382 30.1 0.345

X 38.3 0.372 31.5 0.330

14B CoT 28.1 0.378 27.3 0.342

posthoc 38.8 0.405 32.1 0.346

Table 6.2: Performance of different models from the Qwen2.5 family, when evaluated on
— Swabhili, and — Zulu using the WMT24++ test set. Finetuned version used the SmoL
dataset, either with original Auman translation, or using the translations (and explanations)
from different reasoning models.
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Small LLMs struggle with low-resource translation. The zero-shot results highlight the
challenge facing smaller models in low-resource settings. Pretrained models perform ex-
tremely poorly but even instruction-tuned variants show weak performance, barely achiev-
ing 0.8 XCOMET for either of the LPs, and well below the performance state-of-the-art
models ($6.4.2). However, even simple finetuning on the (minimal) SmoL dataset, without
any explanation, can dramatically improve performance, with all finetuned (pretrained)

models outperforming their instruction-tuned counterparts, and with the 14B model al-

most achieving 40 chrk/0.4 XCOMET for English — Swabhili translation.

Reasoning traces help smaller models learn, but only through post-hoc regularization.
When the consider explanation-augmented finetuning, the most striking finding is that
models finetuned trought standard CoT distillation perform poorly (particularly when us-
ing R1 as teacher) barely outperforming just finetuning with the translations. In contrast,
post-hoc regularization consistently outperforms both baseline finetuning and CoT distilla-

tion across all model sizes, particularly for the lower-resourced — Zulu LP.

DeepSeek Rl produces more useful explanations, despite weaker translation perfor-
mance. Interestingly, despite the state-of-the-art performance of Gemini 2.5 Pro, DeepSeek
RI’s explanations proved more effective training student models, with the best student
models always using R1’s explanations (through post-hoc regularization). Why this is the
case is not clear, but could be related to the fact that reasoning seems to have little effect

on Gemini 2.5 Pro’s translation performance .

40.0

baseline 0.38 baseline
375 posthoc posthoc
35.0 0.36
[_¢
I 32.5 E
.'é o 0.34
Q
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27.5 0.32
25.0
0.30
22.5
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Figure 6.3: Performance scaling as we increase the amount of parallel sentences and ex-
planations used for finetuning a Qwen2.5 7B model

Explanation-augmented finetuning works better with more data. Figure 6.3 shows how
adding more parallel sentences and explanations (from DeepSeek R1) to a Qwen2.5 7B
students’ training data changes the performance. While explanations always seem to help
when compared with just using the teacher’s translations, suprisingly we found that the gap

increased as we added more data, especially for English—Zulu translation.
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6.5 Conclusion

In this chapter, we preliminarily investigated whether reasoning models are good low-
resource machine translation systems, and whether they provide good explanations for this
task by using their traces to teach smaller student LLLMs. We start by showing that current
frontier reasoning models have very strong performance when translating from English into
Swahili and Zulu, with Gemini 2.5 Pro achieving state-of-the-art performance. Then, by
adopting the scaffolding framework to evaluate explanatory power, we find that their ex-
planations are provide valuable training signals to train smaller student models, and that
explanation quality does not necessarly correlate with translation performance: despite
Gemini 2.5 Pro’s superior translation quality, DeepSeek R1’s explanations proved more
effective for teaching student models. However, suprisingly, we found that traditional
chain-of-thought distillation failed to fully leverage these explanations, and that post-hoc

regularization lead to best student models.

Our preliminary study has several limitations that suggest directions for future work.
Most notably, we relied solely on automated metrics and the scaffolding framework to eval-
uate explanation quality, without conducting human studies to assess whether the reasoning
traces are actually interpretable, plausible, and/or helpful to human translators. Addition-
ally, our evaluation was limited to two language pairs and English as the source language,
leaving questions about generalizability to other low-resource settings. However, despite
these limitations, we believe our findings might have broader implications beyond ma-
chine translation: the effectiveness of post-hoc regularization offers a promising approach
for distilling of expensive reasoning models into student models that don’t use additional
test-time computational costs. Additionally, optimizing models to give Col explanations
that help teach well (Cetin et al., 2025), akin to SMAT (5), could help increase trust in

models (even if at a cost in accuracy).

79



80



Part 111

Aligning with Feedback

81






Chapter

Quality-Aware Decoding for Neural M'T

Despite the progress of scaling at improving machine translation systems, these systems
still inherit biases from the data used to trained them, and the paradigm finding the most
probable translation according to the model (MAP decoding) exacerbates these biases.
Modern quality estimation and evaluation metrics have explicitly tried to address this prob-
lem by leveraging human feedback, but these advances were largely not reflected in MT sys-

tems themselves.

In this chapter, we bring together these two lines of research and propose quality-aware
decoding for NMT, by leveraging recent breakthroughs in reference-free and reference-
based M'T evaluation through various inference methods like NV-best reranking and mini-
mum Bayes risk decoding. We perform an extensive comparison of various possible can-
didate generation and ranking methods across four datasets and two model classes and
find that quality-aware decoding consistently outperforms MAP-based decoding accord-
ing both to state-of-the-art automatic metrics (COMET and BLEURT) and to human

assessments.

This chapter is based on Fernandes, Farinhas, et al. (2022).

7.1 Introduction

The most common procedure in neural machine translation (NMT) is to train models us-
ing maximum likelihood estimation (MLE) at training time (Equation 2.6), and to decode
with beam search at test time, as a way to approximate maximume-a-posteriori (MAP) de-
coding. However, several works have questioned the utility of model likelihood as a good
proxy for translation quality (Kikema & Aziz, 2020; Koehn & Knowles, 2017; Ott et al.,
2018; Stahlberg & Byrne, 2019), with the most probable translation of an MLE-trained

model often having poor quality'. In parallel, significant progress has been made in meth-

"While this is effectively a alignment problem between the models training/decoding objective and trans-
lation quality, the reason for this misalignment aren’t fully clear.
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ods for quality estimation and evaluation of generated translations (Mathur, Wei, et al.,
2020; Specia et al., 2020) by training models on translation feedback from humans, but
this progress is, by and large, not yet reflected in either training or decoding methods. Ex-
ceptions such as minimum risk training (Edunov et al., 2018; S. Shen et al., 2016) come at

a cost of more expensive and unstable training, often with modest quality improvements.

An appealing alternative is to modify the decoding procedure only, separating it into
two stages: candidate generation (where candidates are generated with beam search or sam-
pled from the whole distribution) and ranking (where they are scored using a quality metric
of interest, and the translation with the highest score is picked). This strategy has been ex-
plored in approaches using N-best reranking (Bhattacharyya et al., 2021; Ng et al., 2019)
and minimum Bayes risk (MBR) decoding (Eikema & Aziz, 2021; Miuller & Sennrich,
2021; Shu & Nakayama, 2017). While this previous work has exhibited promising results,
it has mostly focused on optimizing lexical metrics such as BLEU or METEOR (Lavie
& Denkowski, 2009; Papineni et al., 2002¢), which have limited correlation with hu-
man judgments (Freitag, Foster, et al., 2021; Mathur, Baldwin, & Cohn, 2020) and only
loosely aligning with translation quality. Moreover, a rigorous apples-to-apples compar-
ison among this suite of techniques and their variants is still missing, even though they

share similar building blocks.
Our work fills these gaps by asking the question:

“Can we leverage recent advances in MT quality evaluation to generate better trans-
lations? If so, how can we most effectively do so?”

To answer this question, we systematically explore NMT decoding using a suite of ranking
procedures. We take advantage of recent state-of-the-art learnable metrics, both reference-
based, such as COMET and BLEURT (Rei et al., 2020a; Sellam et al., 2020), and reference-
free (also known as quality estimation; QE), such as TransQuest and OpenKiwi (Kepler et al.,
2019; Ranasinghe et al., 2020). We compare different ranking strategies under a unified
framework, which we name quality-aware decoding. First, we analyze the performance
of decoding using N-best reranking, both fixed according to a single metric and learned
using multiple metrics, where the coeflicients for each metric are optimized according to
a reference-based metric. Second, we explore ranking using reference-based metrics di-
rectly through MBR decoding. Finally, to circumvent the expensive computational cost
of the latter when the number of candidates is large, we develop a two-stage ranking pro-
cedure, where we use N-best reranking to pick a subset of the candidates to be ranked
through MBR decoding. We explore the interaction of these different ranking methods
with various candidate generation procedures including beam search, vanilla sampling, and

nucleus sampling.

Experiments with two model sizes and four datasets reveal that while MAP-based de-
coding appears competitive when evaluating with lexical-based metrics (BLEU and ChrF),
the story is very different with state-of-the-art evaluation metrics, where quality-aware
decoding shows significant gains, both with N-best reranking and MBR decoding. We
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Figure 7.1: Quality-aware decoding framework. First, translation candidates are generated
according to the model. Then, using reference-free and/or reference-based M'T metrics,
these candidates are ranked, and the highest ranked one is picked as the final translation.

perform a human-study to more faithfully evaluate our systems and find that, while per-
formance on learnable metrics is not always predictive of the best system, quality-aware
decoding usually results in translations with higher quality than MAP-based decoding.

7.2 Candidate Generation and Ranking

7.2.1 Candidate Generation

An NMT model defines a probability distribution py(y|z) over a set of hypotheses ), con-
ditioned on a source sentence x, where 6 are learned parameters. A translation is typically
predicted using MAP decoding, formalized as

gMAP = argmax 10g pg(y|$) (71)
yey

In words, MAP decoding searches for the most probable translation under py(y|z), i.e.,
the mode of the model distribution. Finding the exact gyap is intractable since the search
space ) is combinatorially large, thus, approximations like beam search (Graves, 2012a;
Sutskever et al., 2014) are used. However, it has been shown that the translation quality
degrades for large values of the beam size (Koehn & Knowles, 2017; Meister et al., 2020;
Murray & Chiang, 2018; Yang et al., 2018), with the empty string often being the true
MAP hypothesis (Stahlberg & Byrne, 2019).

A stochastic alternative to beam search is to draw samples directly from py(y|x) with
ancestral sampling, optionally with variants that truncate this distribution, such as top-k
sampling (Fan et al., 2018) or p-nucleus sampling (Holtzman et al., 2020) — the latter
samples from the smallest set of words whose cumulative probability is larger than a pre-
defined value p. Deterministic methods combining beam and nucleus search have also
been proposed (Shaham & Levy, 2021).

Unlike beam search, sampling is not a search algorithm nor a decision rule — it is not
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expected for a single sample to outperform MAP decoding (Eikema & Aziz, 2020). How-
ever, samples from the model can still be useful for alternative decoding methods, as we
shall see. While beam search focus on high probability candidates, typically similar to each
other, sampling allows for more exploration, leading to higher candidate diversity.

7.2.2 Ranking

We assume access to a set 37 C Y containing N candidate translations for a source sen-
tence, obtained with one of the generation procedures described in §7.2.1. As long as N is
relatively small, it is possible to (re-)rank these candidates in a post-hoc manner, such that
the best translation maximizes a given metric of interest. We highlight two different lines
of work for ranking in MT decoding: first, N-best reranking, using reference-free metrics

as features; second, MBR decoding, using reference-based metrics.

N-best Reranking

In its simplest form (which we call fixed reranking), a single feature h is used (e.g., an es-

timated quality score), and the candidate that maximizes this score is picked as the final

translation,
Jp-re = argmax h(z,y). (7.2)
yey
When multiple features [hq, ..., hi| are available, one can tune weights [wy, ..., wg]| for

these features to maximize a given reference-based evaluation metric on a validation set
(Duh & Kirchhofl, 2008; Och, 2003) — we call this tuned reranking. In this case, the final

translation is

Urre = Argmax Ele wihi(z,y). (7.3)
yey

Minimum Bayes Risk (MBR) Decoding

While the techniques above rely on reference-free metrics for the computation of features,
MBR decoding uses reference-based metrics to rank candidates. Unlike MAP decoding,
which searches for the most probable translation, MBR decoding aims to find the transla-
tion that maximizes the expected utility (equivalently, that minimizes risk, (Eikema & Aziz
2020; Kumar & Byrne 2002; 2004)).% Let again ) C Y be a set containing N hypothe-
ses and h(z,y*, y) a utility function measuring the similarity between a hypothesis y €
and a reference y* € ), optionally conditioned on the source (e.g, an automatic evaluation

2Utility can be seen as the translation quality of the hypothesis when compared to the reference.
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metric such as BLEU or COMET). MBR decoding seeks for

QMBR — argm_ax EY~p0(y|$) [h(l’, Y7 y)] 5 (74)
yEy " -

M .
~ % Zj:l h(I, y(j)a y)

where in Eq. 7.4 the expectation is approximated as a Monte Carlo (MC) sum using model

M)~ pg(y|x)®. In practice, the translation with the highest expected

samples yM, ...y
utility can be computed by comparing each hypothesis y € ) to all the other hypotheses

in the set.

7.3 Quality-Aware Decoding

While recent works have explored various combinations of candidate generation and rank-
ing procedures for NMT (Bhattacharyya et al., 2021; Eikema & Aziz, 2021; Lee et al.,
2021; Miiller & Sennrich, 2021), they suffer from two limitations:

* The ranking procedure is usually based on simple lexical-based metrics (BLEU, chrk,
METEOR). Although these metrics are well established and inexpensive to compute,
they correlate poorly with human judgments at segment level (Freitag, Foster, et al.,
2021; Mathur, Wei, et al., 2020).

* Each work independently explores N-best reranking or MBR decoding, making un-

clear which method produces better translations.

In this chapter, we hypothesize that using more powerful metrics in the ranking procedure
may lead to better quality translations. We propose a unified framework for ranking with
both reference-based and reference-free metrics, independently of the candidate genera-
tion procedure. We explore four methods with different computational costs for a given
number of candidates, N.

Fixed N-best Reranker. An N-best reranker using a single reference-free metric as a
feature, according to Eq. 7.2. The computational cost of this ranker is O(N x C)qz),

where Cyqe denotes the cost of running an evaluation with a metric M,

Tuned N-best Reranker. An N-best reranker using as features all the reference-free
metrics in, along with the model log-likelihood log py(y|x). The weights in Eq. 7.3 are
optimized to maximize a given reference-based metric M™f using MERT (Och, 2008),
a coordinate-ascent optimization algorithm widely used in previous work. Note that M™*
is used for tuning only; at test time, only reference-free metrics are used. Therefore, the
decoding cost is O(N x ). CM?E).

$We also consider the case where y(», ..., 4) are obtained from nucleus sampling or beam search.
Although the original MC estimate is unbiased, these ones are biased.
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MBR Decoding. Choosing as the utility function a reference-based metric M™, we es-
timate the utility using a simple Monte Carlo sum, as shown in Eq. 7.4. The estimation

requires computing pairwise comparisons and thus the cost of running MBR decoding is

O(N2 X CMref).

N-best Reranker - MBR. Using a large number of samples in MBR decoding is ex-
pensive due to its quadratic cost. To circumvent this issue, we explore a two-stage ranking
approach: we first rank all the candidates using a tuned N -best reranker, followed by MBR
decoding using the top M candidates. The computational cost becomes O(N x ). Cuq, +
M? x Cyper). The first ranking stage prunes the candidate list to a smaller, higher quality
subset, making possible a more accurate estimation of the utility with less samples, and
potentially allowing a better ranker than plain MBR for almost the same computational
budget.

7.3.1 Reference-based Metrics

Reference-based metrics are the standard way to evaluate MT systems; the most used
ones rely on the lexical overlap between hypotheses and reference translations (Lavie &
Denkowski, 2009; Papineni et al., 2002¢; Popovic, 2015). However, lexical-based ap-
proaches have important limitations: they have difficulties recognizing correct translations
that are paraphrases of the reference(s); they ignore the source sentence, an important in-
dicator of meaning for the translation; and they do not always correlate well with human
judgments, particularly at segment-level (Freitag et al., 2022)

In this work, apart from BLEU and chrk, we use the following state-of-the-art trainable

reference-based metrics for both ranking and performance evaluation of MT systems:

* BLEURT (Pu et al., 2021; Sellam et al., 2020), trained to regress on human direct
assessments (DA; (Graham et al. 2013)). We use the largest multilingual version,

BLEURT-20, based on the RemBERT model (Chung et al., 2021).
* COMET (Rei et al., 2020a), based on XLM-R (Conneau et al., 2020), trained to

regress on quality assessments such as DA using both the reference and the source to

assess the quality of a given translation. We use the publicly available model devel-
oped for the WMT20 metrics shared task (wmt20-comet-da).

These metrics have shown much better correlation at segment-level than previous lex-
ical metrics in WM metrics shared tasks (Freitag, Rei, Mathur, Lo, Stewart, et al., 2021;
Mathur, Wei, et al., 2020), mainly because they are directly trained to approximate hu-
man translation feedback (§2.3.3). Hence, as discussed in §7.2.2, they are good candidates
to be used either indirectly as an optimization objective for learning the tuned reranker’s
feature weights, or directly as a utility function in MBR decoding. In the former, the higher

the metric correlation with human judgment, the better the translation picked by the tuned
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reranker. In the latter, we approximate the expected utility in Eq. 7.4 by letting a candidate
generated by the model be a reference translation — a suitable premise if the model is good

in expectation.

7.3.2 Reference-free Metrics

MT evaluation metrics have also been developed for the case where references are not
available — they are called reference-free or quality estimation (QE) metrics. These more
closely approximate how humans experts give feedback to translations (Freitag, Foster, et
al., 2021), and more closely approximate feedback models trained for other tasks, but have
generally lacked when compared to reference-based metrics due the extra difficulty of the
task. However in the last years, considerable improvements have been made to such met-
rics, with state-of-the-art models having increasing correlations with human annotators
(Freitag, Rei, Mathur, Lo, Stewart, et al., 2021; Specia et al., 2021). These improvements
enable the use of such models for ranking translation hypotheses in a more reliable way
than before.

In this chapter, we explore four recently proposed reference-free metrics as features

for N-best reranking, all at the sentence-level:

* COMET-QE (Rei et al., 2020D), a reference-free version of COMET (§7.3.1). It
was the winning submission for the QE-as-a-metric subtask of the WMT20 shared
task (Mathur, Wei, et al., 2020).

* TransQuest (Ranasinghe et al., 2020), the winning submission for the sentence-
level DA prediction subtask of the WMTZ20 QE shared task (Specia et al., 2020).
Similarly to COMET-QE this metric predicts a DA score.

* MBART-QE (Zerva et al., 2021a), based on the mBART (Y. Liu et al., 2020)
model, trained to predict both the mean and the variance of DA scores. It was a top

performer in the WMT21 QE shared task (Specia et al., 2021).

* OpenKiwi-MQM (Kepler et al., 2019; Rei et al., 2021), based on XLM-R, trained
to predict the multidimensional quality metric (MQM; (Lommel et al. 2014)).* This

reference-free metric was ranked second on the QE-as-a-metric subtask from the
WMT 2021 metrics shared task.

7.4 Experiments

7.4.1 Setup

We study the benefits of quality-aware decoding over MAP-based decoding in two regimes:

*MQM annotations are expert-level type of annotations more fine-grained then DA, with individual
errors annotated. See Table 2.3 for an example.
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* A high-resource, unconstrained, setting with large transformer models (6 layers, 16
attention heads, 1024 embedding dimensions, and 8192 hidden dimensions) trained
by Ng et al. (2019) for the WMTI19 news translation task (Barrault et al., 2019),
using English to German (EN — DE) and English to Russian (EN — RU) language
pairs. These models were trained on over 20 million parallel and 100 million back-
translated sentences, being the winning submissions of that year’s shared task. We
consider the non-ensembled version of the model and use newstest19 for validation

and newstest20 for testing.

* A more constrained scenario with a small transformer model (6 layers, 4 attention
heads, 512 embedding dimensions, and 1024 hidden dimensions) trained from scratch
in Fairseq (Ott et al., 2019) on the smaller IWSLT17 datasets (Cettolo et al., 2012)
for English to German (EN — DE) and English to French (EN — FR), each with a
little over 200k training examples. We chose these datasets because they have been
extensively used in previous work (Bhattacharyya et al., 2021) and smaller model
allows us to answer questions about how the training methodology affects ranking

performance.

We use beam search with a beam size of 5 as our decoding baseline because we found
that it resulted in better or similar translations than larger beam sizes. For tuned N-best
reranking, we use Travatar’s (Neubig, 2013) implementation of MERT (Och, 2003) to
optimize the weight of each feature, as described in §7.3.2. Finally, we evaluate each system
using the metrics discussed in §7.3.1, along with BLEU and chrF (Popovic, 2015).

7.4.2 Results

Overall, given all the metrics, candidate generation, and ranking procedures, we evaluate
over 150 systems per dataset. We report subsets of this data separately to answer specific

research questions, and defer to the published version of this chapter for additional results.

Impact of Candidate Generation

First, we explore the impact of the candidate generation procedure and the number of

candidates.

Which candidate generation method works best, beam search or sampling? We gen-
erate candidates with beam search, vanilla sampling, and nucleus sampling. For the latter,
we use p = 0.6 based on early results showing improved performance for all metrics.” For
N-best reranking, we use up to 200 samples; for MBR decoding, due to the quadratic

computational cost, we use up to 100.

SWe picked nucleus sampling over top-k sampling because it allows varying support size and has outper-
formed top-k in text generation tasks (Holtzman et al., 2020).
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Figure 7.2: Values for BLEU (top) and COMET (bottom) for EN — DE as we increase
the number of candidates for different generation and ranking procedures, as well as oracles
with the respective metrics, for the large (left) and small (right) models. Baseline values
(with beam size of 5) are marked with a dashed horizontal line.

Figure 7.2 shows BLEU and COMET for different candidate generation and ranking
methods for the EN — DE WMT20 and IWSLT17 datasets, with increasing number of
candidates. The baseline is represented by the dashed line. To assess the performance
ceiling of the rankers, we also report results with an oracle ranker for the reported metrics,
picking the candidate that maximizes it. For the fired N-best reranker, we use COMET-
QE as a metric, albeit the results for other reference-free metrics are similar. Performance
seems to scale well with the number of candidates, particularly for vanilla sampling and for
the tuned N -best reranker and MBR decoder. (Lee et al., 2021; Miller & Sennrich, 2021).
However, all the rankers using vanilla sampling severely under-perform the baseline in
most cases. In contrast, the rankers using beam search or nucleus sampling are compet-
itive or outperform the baseline in terms of BLEU, and greatly outperform it in terms
of COMET. For the larger models, we see that the performance according to the lexical
metrics degrades with more candidates. In this scenario, rankers using nucleus sampling

seem to have an edge over the ones that use beam search for COMET.

Based on the findings above, and due to generally better performance of COMET over
BLEU for MT evaluation (Kocmi et al., 2021a), in following experiments we use nucleus

sampling with the large model and beam search with the small model.

Impact of Ranking and Metrics

We now investigate the usefulness of the metrics presented in §7.8 as features and objec-
tives for ranking. For N-best reranking, we use all the available candidates (200) while,
for MBR, due to the computational cost of using 100 candidates, we report results with
50 candidates only (we found that ranking with tuned N-best reranking with N = 100 and
MBR with N = 50 takes about the same time). We report results in Table 7.1, and use

them to answer some specific research questions.
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Large (WMT20) Small IWSLT)
BLEU chrf  BLEURT COMET BLEU chrf  BLEURT COMET

Baseline 36.01 63.88 0.7376 0.5795 2912 56.28 0.6635 0.3028
F-RR w/ COMET-QE 29.88  59.91 0.7457 0.6012  27.38 54.89 0.6848 0.4071
F-RR w/ MBART-QE 32.92  62.71 0.7384 0.5831  27.30  55.62 0.6765 0.3533
F-RR w/ OpenKiwi 30.38  59.56 0.7401 0.5623 2535 51.53 0.6524 0.2200
F-RR w/ Transquest 31.28  60.94 0.7368 0.5739 26.90 54.46 0.6613 0.2999
T-RR w/ BLEU 35.34 63.82 0.7407 0.5891 30.51 57.73 0.7077 0.4536
T-RR w/ BLEURT 33.39  62.56 0.7552 0.6217 30.16 5740 0.7127 0.4741
T-RR w/ COMET 34.26  63.31 0.7546 0.6276  30.16  57.32 0.7124 0.4721
MBR w/ BLEU 34.94 63.21 0.7333 0.5680  29.25 56.36 0.6619 0.3017
MBR w/ BLEURT 32.90 62.34 0.7649 0.6047 28.69 56.28 0.7051 0.3799
MBR w/ COMET 33.04  62.65 0.7477 0.6359 2943 56.74 0.6882 0.4480
T-RR+MBR w/ BLEU 35.84 63.96 0.7395 0.5888 30.28 57.34 0.6913 0.3969

T-RR+MBR w/ BLEURT  33.61 62.95 0.7658 0.6165 29.28  56.77 0.7225 0.4361
T-RR+MBR w/ COMET  34.20 63.35 0.7526 0.6418 2946  57.13 0.7058 0.5005

Table 7.1: Evaluation metrics for EN — DE for the large and small model settings, using
a fixed N-best reranker (F-RR), a tuned N-best reranker (T-RR), MBR decoding, and a
two-stage approach. Best overall values are bolded and best for each specific group are
underlined.

Which QF metric works best in a fixed N-best reranker? We consider a fixed N-best
reranker with a single reference-free metric as a feature (see Table 7.1, second group).
While none of the metrics allows for improving the baseline results in terms of the lexical
metrics (BLEU and chrF), rerankers using COMET-QE or MBART-QE outperform the
baseline according to BLEURT and COMET, for both the large and small models. Due to
the aforementioned better performance of these metrics for translation quality evaluation,
we hypothesize that these rankers produce better translations than the baseline. However,
since the sharp drop in the lexical metrics is concerning, we will verify this hypothesis in a
human study, in §7.4.2.

How does the performance of a tuned N -best reranker vary when we change the opti-
mization objective? We consider atuned N -best reranker using as features all the reference-
free metrics in §7.8.2, and optimized using MERT. Table 7.1 (8™ group) shows results for
EN — DE. For the small model, all the rankers show improved results over the baseline for
all the metrics. In particular, optimizing for BLEU leads to the best results in the lexical
metrics, while optimizing for BLEURT leads to the best performance in the others. Fi-
nally, optimizing for COMET leads to similar performance than optimizing for BLEURT.
For the large model, although none of the rerankers is able to outperform the baseline in

the lexical metrics, we see similar trends as before for BLEURT and COMET.

How does the performance of MBR decoding vary when we change the utility func-
tion? Table 7.1 (4™ group) shows the impact of the utility function (BLEU, BLEURT,
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EN-DE (WMT20) EN-RU (WMT20)
BLEU  chrF  BLEURT COMET Human BLEU  chrF BLEURT COMET Human

Reference - - - - 4.51 - - - - 4.07
Baseline 36.01 63.88 0.7376 0.5795 4.28 23.86  51.16 0.6953 0.5361 3.62
F-RR w/ COMET-QE 29.83  59.91 0.7457 0.6012 4.19 20.32 49.18 0.7130 0.6207 3.25
T-RR w/ COMET 34.26  63.31 0.7546 0.6276 4.33 2242  50.91 0.7243 0.6441 3.65
MBR w/ COMET 33.04 62.65 0.7477 0.6359 4.27 23.67  51.18 0.7093 0.6242 3.66
T-RR+ MBR w/ COMET 34.20 63.35 0.7526 0.6418 4.30 23.21 51.26 0.7238 0.6736  3.72T
EN-DE (IWSLT17) EN-FR (IWSLT17)
Reference - - - - 4.38 - - - - 4.00
Baseline 29.12 0.6635 56.23 0.3028 3.68 38.12 0.6532 63.20 0.4809 3.92
F-RR w/ COMET-QE 27.38 0.6848 54.89 0.4071 3.67 35.59 0.6628 60.90 0.5553 3.63
T-RR w/ COMET 30.16 0.7124 57.32 0.4721 3.907 388.60 0.7020 63.77 0.6392  4.05%
MBR w/ COMET 2943 0.6882 56.74 0.4480 3.791 3777 0.6710 63.24 0.6127 4.05%

T-RR + MBRw/ COMET 29.46 0.7058 57.13 0.5005 3.83T  38.33 0.6883 63.53 0.6610  4.09f

Table 7.2: Results for automatic and human evaluation. Top: WMT20 (large models);
Bottom: IWSLT17 (small models). Methods with T are statistically significantly better than
the baseline, with p < 0.05.

or COMET). For the small model, using COMET leads to the best performance according
to all the metrics except BLEURT (for which the best result is attained when optimizing
itself). For the large model, the best result according to a given metric is obtained when

using that metric as the utility function.

How do (tuned) N -best reranking and MBR compare to each other? l.ooking at Ta-
ble 7.1 we see that, for the small model, N-best reranking seems to perform better than
MBR decoding in all the evaluation metrics, including the one used as the utility func-
tion in MBR decoding. The picture is less clear for the large model, with MBR decoding
achieving best values for a given fine-tuned metric when using it as the utility; this comes at
the cost of worse performance according to the other metrics, hinting at a potential “over-
fitting” effect. Overall, N-best reranking seems to have an edge over MBR decoding. We
will further clarify this question with human evaluation in § 7.4.2.

Can we improve performance by combining N-best reranking with MBR decoding?
Table 7.1 shows that, for both the large and the small model, the two-stage ranking ap-
proach described in §7.3 leads to the best performance according to the fine-tuned met-
rics. In particular, the best result is obtained when the utility function is the same as the
evaluation metric. These results suggest that a promising research direction is to seek more
sophisticated pruning strategies for MBR decoding.

Human Evaluation

Which metric correlates more with human judgments? How risky is it to optimize a
metric and evaluate on a related metric? Our experiments suggest that, overall, quality-

aware decoding produces translations with better performance across most metrics than
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MAP-based decoding. However, for some cases (such as fixed N-best reranking and most
results with the large model), there is a concerning “metric gap” between lexical-based and
fine-tuned metrics. While the latter have shown to correlate better with human judgments,
previous work has not attempted to explicitly optimize these metrics, and doing so could
lead to ranking systems that learn to exploit “pathologies” in these metrics rather than
improving translation quality. To investigate this hypothesis, we perform a human study
across all four datasets. We ask annotators to rate, from 1 (no overlap in meaning) to 5
(perfect translation), the translations produced by the 4 ranking systems in §7.3, as well as
the baseline translation and the reference. We choose COMET-QE as the feature for the
fixed N-best ranker and COMET as the optimization metric and utility function for the
tuned N-best reranker and MBR decoding, respectively. The reasons for this are two-
fold: (1) they are currently the reference-free and reference-based metrics with highest
reported correlation with human judgments (Kocmi et al., 2021a), (2) we saw the largest

“metric gap” for systems based on these metrics, hinting of a potential “overfitting” problem

(specially since COMET-QE and COMET are similar models).

Table 7.2 shows the results for the human evaluation, as well as the automatic met-
rics. We see that, with the exception of T-RR w/ COMET, when fine-tuned metrics are
explicitly optimized for, their correlation with human judgments decreases and they are
no longer reliable indicators of system-level ranking. This is notable for the fixed N-best
reranker with COMET-QE, which outperforms the baseline in COMET for every single
scenario, but leads to markedly lower quality translations. However, despite the potential
for overfitting these metrics, we find that tuned N-best reranking, MBR, and their combi-
nation consistently achieve better translation quality than the baseline, specially with the
small model. In particular, /V-best reranking results in better translations than MBR, and

their combination is the best system in 2 of 4 LPs.

7.5 Related Work

Reranking. Inspired by the work of [.. Shen et al. (2004) on discriminative reranking
for SMT, Lee et al. (2021) trained a large transformer model using a reranking objective
to optimize BLEU. Our work differs in which our rerankers are much simpler and there-
fore can be tuned on a validation set; and we use more powerful quality metrics instead of
BLEU. Similarly, Bhattacharyya et al. (2021) learned an energy-based reranker to assign
lower energy to the samples with higher BLEU scores. While the energy model plays a
similar role to a QE system, our work differs in two ways: we use an existing, pretrained
QE model instead of training a dedicated reranker, making our approach applicable to any
MT system without further training; and the QE model is trained to predict human assess-
ments, rather than BLEU scores. Leblond et al. (2021) compare a reinforcement learning
approach to reranking approaches (but not MBR decoding, as we do). They investigate the
use of reference-based metrics and, for the reward function, a reference-free metric based
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on a modified BERTScore (1. Zhang et al., 2020). This new multilingual BERT Score is
not fine-tuned on human judgments as COMET and BLEURT and it is unclear what its
level of agreement with human judgments is. Another line of work is generative reranking,
where the reranker is not trained to optimize a metric, but rather as a generative noisy-
channel model (Ng et al., 2019; Yee et al., 2019; Yu et al., 2017). As a follow-up to our
work, Farinhas et al. (2023) explored using LLLMs to both generate translation candidates
and to rerank (or even combine) them, but found that this was still inferior to using learned

metrics in the reranking phase.

Minimum Bayes Risk Decoding. MBR decoding (Kumar & Byrne, 2002; 2004) has
recently been revived for NMT using candidates generated with beam search (Shu &
Nakayama, 2017; Stahlberg et al., 2017) and sampling (Eikema & Aziz, 2020; Miiller
& Sennrich, 2021). Eikema and Aziz (2021) also explore a two-stage approach for MBR
decoding. Additionally, there is concurrent work by Freitag, Grangier, et al. (2021) on
using neural metrics as utility functions during MBR decoding: however they limit their
scope to MBR with reference-based metrics, while we perform a more extensive evalua-
tion over ranking methods and metrics. Amrhein and Sennrich (2022) also concurrently
explored using MBR decoding with neural metrics, but with the purposes of identifying
weaknesses in the metric (in their case COMET), similarly to the metric overfitting problem
we discussed in §7.4.2. A comparison with N-best re-ranking was missing in these works,
a gap this chapter fills. A related line of work is minimum risk training (MRT; (S. Shen et al.
2016; Smith & Eisner 2006)), which trains models to minimize risk, allowing arbitrary
non-differentiable loss functions (Edunov et al., 2018; Wieting et al., 2019) and avoid-
ing exposure bias (Kiegeland & Kreutzer, 2021; C. Wang & Sennrich, 2020). However,
MRT is considerably more expensive and difficult to train and the gains are often small.

Incorporating our quality metrics in MRT is an exciting research direction.

7.6 Conclusions & Subsequent Work

We leverage recent advances in MT quality estimation and evaluation and propose quality-
aware decoding for NMT, eflectively aligning M'T with translation quality at decoding-time
We explore different candidate generation and ranking methods, with a comprehensive
empirical analysis across four datasets and two model classes. We show that, compared
to MAP-based decoding, quality-aware decoding leads to better translations, according to
powerful automatic evaluation metrics and human judgments.

Since the publication of this work (Fernandes, Farinhas, et al., 2022), the use of neural
metrics as part of the MT pipeline has become popular technique to increase the final qual-
ity of translations. Follow-up works have studied how to improve the efficiency of MBR
to make a more practical approach (Cheng & Vlachos, 2023), but neural metrics have

also been used as feedback models to directly optimise the NMT parameters, particularly
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when using LLMs as M'T models (Gulcehre et al., 2023; Ramos et al., 2024). However,
these method still depend on neural metrics, which requires large amounts feedback and
might suffer from problems of reward overoptimization (as we show in section 7.4.2). In the
next chapter, we will show that multilingual LLLMs can be used to provide A1 feedback for
MT, comparable to state-of-the-art learned metrics and providing more fine-grained and
interpretable feedback.
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Chapter

Fine-grained M'T Evaluation with Large
Language Models

As we showed, evaluation metrics provide can crucial to to improve model alignment.
But while considerable progress has been made on estimating a single scalar quality score,
current metrics lack the informativeness of more detailed schemes that annotate individual
errors, such as Multidimensional Quality Metrics (MQM).

In this chapter, we help fill this gap by proposing AutoMQM, a prompting technique
which leverages the reasoning and in-context learning capabilities of large language models
(LLMs) and asks them to identify and categorize errors in translations. We start by evaluat-
ing recent LLLMs, such as PalLM and PalLM-2, through simple score prediction prompting,
and we study the impact of labeled data through in-context learning and finetuning. We
then evaluate AutoMQM with PalLM-2 models, and we find that it improves performance
compared to just prompting for scores (with particularly large gains for larger models)
while providing interpretability through error spans that align with human annotations.

This chapter is based on Fernandes, Deutsch, et al. (2023).

8.1 Introduction

Evaluating natural language generation systems has always been challenging, and as the
output quality of these systems has improved, evaluation has become even more challeng-
ing and critical. In Machine Translation, learned automatic metrics that leverage human-
judgments to finetune language models (like the ones explored in previous chapter) cur-
rently represent the state-of-the-art in automatic evaluation benchmarks like the WMT
Metrics task (Freitag et al., 2022), and show high correlation with human judgments. How-
ever, these metrics typically output a single, uninterpretable quality score, making it difficult
to understand the type and extent of errors identified by them. The lack of insights makes

it difficult for model developers to leverage these metrics to improve their systems.
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Unlike automatic metrics that only provide a single scalar value as quality score, state-
of-the-art human evaluation methodologies like Multidimensional Quality Metrics (MQM;
Freitag, Foster, et al., 2021; Lommel et al., 2014) ask professional annotators to identify
and label error spans with a category and severity. This much richer feedback can be used
to gain a better understanding of the current limitations of the model under evaluation and
improve it.

In this chapter, we ask whether large language models (LLLMs) in combination with
a few human annotations can be used to design an automatic metric that generates rich
feedback similar to that generated by human experts in MQM. This chapter is motivated
by recent papers that demonstrated that LLLMs can be used as automatic metrics (Y. Liu et
al., 2023) to generate a single quality score. In particular, Kocmi and Federmann (2023)
showed that LLLMs can be prompted to assess the quality of machine-generated transla-
tions, even achieving state-of-the-art performance on assessing system-level quality. How-
ever, previous work only provides a limited view of the capabilities of LLMs for machine
translation evaluation: the focus has predominantly been on score prediction (i.e. predicting
a numerical value for quality), without considering the use of any annotated data (either

through in-context learning or finetuning), and only in high-resource language pairs.

We provide a large-scale study of the capabilities of LLLMs (from the PalLM and PalLM-
2 families; Anil et al., 2023; Chowdhery et al., 2022b) for machine translation evalua-
tion (both with and without a reference translation), provide a novel comparison between
prompting and finetuning. Inspired by findings that the performance of LL.Ms can be im-
proved by prompting them for rationales of their predictions (LLu et al., 2023; Wei et al.,
2022), we also propose AuToMQM, a prompting technique for MT evaluation that asks
LLM:s to identify error spans in a translation and to classify these errors according to the
MQM framework, with a quality score derived automatically from the identified errors. A
key advantage of AuToMQM is its interpretability, as users can inspect the errors responsible
for a score (Figure 8.1).

Source: “Avaliar tradugdo Candi date: “Ealuating
automatica é dificil.” automatic translation are easy.”

Score Prediction AuvroMQM Identify the errors in the translation

Score the following translation from 0 to 100: Portuguese: {source}; English:{candi date}

Portuguese: {sour ce}; English:{candi dat e}

Errors: 'easy’- major/accuracy; ‘are’- minor/fluency
Score: 25

MQM Score: -5x1(major) - 1x1(minor) =-6

Figure 8.1: Illustration of how AutToMQM uses LLMs to assess the quality of a translation.
Rather than asking for a single quality score, AutoMQM prompts models to identify and
classify errors, and uses the MQM framework to produce a score.

Our contributions can be summarized as follows:
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* We confirm the finding of (Kocmi & Federmann, 2023) that LLMs are zero-shot
state-of-the-art system-level evaluators, but show low correlation with human judg-

ment compared to learned metrics at the segment-level.

* We show that finetuning an LLLM with human judgment mitigates its low segment-
level performance (particularly for smaller LLLMs), showing similar correlations with
human judgment at both the system-level and segment-level to state-of-the-art learned
metrics.

* We find that, with AuToMQM, Pal.M-2 models can be prompted to generate rich
MQM-like annotations, outperforming their score prediction counterparts at the

segment-level.

* Furthermore, annotations predicted by Pal.M-2 models correctly identify over 50%
of words that are part of major errors, and are comparable to the ones produced by

state-of-the-art supervised word-level evaluators.

Our findings might have significant implications for not only MT evaluation, but eval-

uation of machine-generated text in general, and further highlight the potential of using

LLMs to provide AI Feedback (Fernandes, Madaan, et al., 2023).

The outputs of our models prompted with AuToMQM are available at github.com/google-

research/google-research

8.2 Background: MT Evaluation

Machine translation evaluation is one of the most well-studied evaluation problems in NLP

(Callison-Burch et al., 2008; Freitag et al., 2022). In this task, given
1. a source sentence in a (source) language
2. a candidate translation in a (target) language

an evaluation metric assesses the quality of the candidate translation by how well it conveys
the meaning of the source sentence while considering other factors like fluency. Like many
other natural language generation evaluation problems, this task is difficult because the
set of correct translations for a given source sentence is often very large and not entirely
known in advance. To simplify the problem of machine translation evaluation, often (3)
a reference translation (typically created by a professional human translator) is included
as additional information when assessing the candidate translation. This sub-problem is

known as reference-based evaluation (as opposed reference-less evaluation or quality estimation).

Up until recently, human evaluation of machine translation was carried out predomi-
nantly with the aim of assigning a single quality score to a candidate translation. Conse-
quently, learned metrics, which leverage collected human judgment data, are trained for
and evaluated on the same task of score prediction (i.e., assigning a single quality score to a

candidate translation), and can achieve high correlation with human-provided scores (Fre-
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https://github.com/google-research/google-research/tree/master/palm2_automqm
https://github.com/google-research/google-research/tree/master/palm2_automqm

Based on the given source and reference, identify the major and minor errors in this

translation. Note that Major errors refer to actual translation or grammatical
errors,

and Minor errors refer to smaller imperfections, and purely subjective opinions about

the translation.

{src_lang} source: "{sourcel}"

{tgt_lang} human reference: "{referencel}"
{tgt_lang} translation: "{candidate}"
Score (0-100):

Figure 8.2: The score prediction prompt used in this chapter. (GEMBA-SQM; Kocmi and Fe-
dermann (2023)). Parts in purple are only included for reference-based evaluation, while
parts in represent slots for outputs and are only included for in-context examples.

itag et al., 2022). However, framing machine translation evaluation as a score prediction
task is problematic: any scoring or ranking of translations is implicitly based on an identi-
fication of errors in the candidate translations, and asking raters to solely provide a single

score can lead to rushed and noisy judgments (Freitag, Foster, et al., 2021).

This insight has led to the adoption of the Multidimensional Quality Metrics (MQM)
framework (Freitag, Foster, et al., 2021; Lommel et al., 2014) as the gold standard for
evaluating machine translation. The MQM framework asks human evaluators to identify
error spans in candidate translations and classify those errors according to various dimen-
sions, e.g., fluency, accuracy, ... Importantly, the MQM framework does not ask annotators
to provide a quality score for each translation, and instead derives one automatically from
the identified error spans and their classifications. However, despite its richness, most au-
tomatic metrics that leverage MQM data only use the final quality score produced by the
framework and discard the error span information and classification.

8.3 Using LLMs to Predict Quality Scores

Recent works have shown that large language models are versatile, general-purpose mod-
els that can be used to tackle many problems in NLP, including evaluation (Jain, Keshava,
Sathyendra, et al., 2023; Kocmi & Federmann, 2023; Y. Liu et al., 2023). We begin by
exploring how LLLMs can be used for machine translation evaluation through score predic-
tion.

8.3.1 Prompting

We start by measuring how far we can push the performance of LLLMs with just prompt-
ing (P. Liu et al., 2023): by defining the task of MT evaluation and quality estimation as

textual templates (with a general description of the problem and “slots” for the inputs and
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outputs), we can use general-purpose LLMs to perform these tasks at inference-time, with-

out any parameter updates.

Throughout the chapter, we choose to use Kocmi and Federmann (2023)’s GEMBA-SQM
prompt (Figure 8.2), which asks models to generate (a string representation of) a score
from 0-100. We choose this prompt for two reasons: firstly, early explorations with vari-
ous prompts showed that this generally performed well. Secondly, using a single prompt

ensures a fairer comparison between the capabilities of different models.

In-Context Learning A surprising emergent capability of LLMs is their ability to im-
prove on prompting-based tasks by including a very small amount of labeled data as part
of the prompt/context (Brown et al., 2020a) and without parameter updates, a technique
called in-context learning (ICL) or few-shot prompting. We thus investigate the impact that
ICL has on LLMs’ ability to assess translation quality. Recent works have shown that the
impact of ICL is tightly tied with the exact examples included in the prompt, with a poor
selection procedure leading to no improvements or even worse performance than the zero-
shot case (Jain, Keshava, Sathyendra, et al., 2023). We therefore explore two sampling
approaches to select in-context examples from a pre-defined “pool” of translation qual-
ity assessments: uniform and stratified sampling, where the example pool is bucketed by

score ranges and examples are sampled from each bucket.

8.3.2 Finetuning

It has previously been shown that LLMs are capable of zero-shot evaluation (Kocmi &
Federmann, 2023), but the extent to which finetuning on human judgment data can further
boost the performance of LLMs has not been studied. In the WMT’22 Metrics Shared
Task (Freitag et al., 2022), all top submissions were learned metrics; that is, pretrained

models finetuned on human feedback.'

Thus, we investigate whether LLLMs are amenable to finetuning on human judgment
data. LLMs used in top-performing metrics are generally much larger than the pretrained
language models leveraged by previous learned metrics (which generally have fewer than
1 billion parameters). Moreover, most learned metrics leverage pretrained encoder-only
rather than (decoder-only) prefix language models. We experiment with finetuning LLMs

using two objectives:

* Regression (R): Commonly used for training learned metrics (Rei, C. de Souza, et
al., 2022), the objective here is a regression loss (e.g., mean squared error) between
continuous scores obtained from the model (for example, with a regression head) and

the human scores.

"While these metrics all leverage powerful pretrained (language) models, these generally aren’t consid-

ered LLMs
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* Generative Classification (GC): We bucket scores into discrete classes (e.g. "bad", "ok"
and "good") and treat the MT evaluation task as a text-to-text classification problem
(Raffel et al., 2020b) by having the model generate a template sentence with the
class.

8.4 Using LLMs to Predict Error Spans

While producing quality scores that correlate with human judgments is an important part
of translation quality assessment, metrics that solely do score prediction suffer from prob-
lems of interpretability: if a metric assigns a low score, the downstream users are left in
the dark about which parts of the translation were responsible for the score and thus need
to be corrected. This is especially problematic when the metric assigns a wrong score to
a translation, as it is much harder to diagnose why the evaluation model made a mistake,
and identify and prevent similar mistakes in the future. In fact, reducing translation qual-
ity to a single score has proven problematic even for human annotators: asking raters to
solely provide a single score can lead to rushed and noisy judgments (Freitag, Foster, et
al., 2021) and the current standard for translation quality evaluation involving human an-
notators is instead based on methodologies like the MQM framework (see §8.2) , which
provide richer feedback by identifying error spans, categorizing them, and evaluating their

severity.

Interestingly, another emergent phenomenon in LLM:s is the success of chain-of-thought
prompting (Wei et al., 2022): when defining a prompt for a particular task, if we instruct
the model to produce a series of intermediate reasoning steps (“let’s think step-by-step”), it
tends to generate a free-text rationale before generating an output, and this often improves
the performance on the task at hand (Y. Liu et al., 2023). Furthermore, this chain-of-
thought prompting can be used to obtain structured rationales from LLMs, and this can lead

to better performance than with free-text rationales (Lu et al., 2023).

Motivated by these findings, we propose AuToMQM, a prompting technique for trans-
lation quality assessment that instructs LLLMs to identify errors in a translation, and cate-
gorize the type of error according to the MQM framework (Lommel et al., 2014). Fur-
thermore, we don’t ask the model to produce a score, as the MQM framework provides an
algorithmic procedure to obtain one from identified errors: the total score is the sum of
penalties for all errors identified, where (roughly) major errors get penalized with —5 and
minors with —1 .2 Figure 8.3 shows the main AuroMQM prompt used in this chapter.

Importantly, obtaining meaningful AutToMQM results in a zero-shot setting is a sub-
stantially more challenging task compared to score prediction: we found that, without any
in-context examples, LLLMs tend to produce outputs that are either uninformative or dif-
ficult to parse. Thus we only consider the AuToMQM task in the few-shot scenario. Based

2This is similar to methods that leverage external executors to improve LLMs (Gao, Madaan, et al., 2022).
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Based on the given source and reference, identify the major and minor errors in this

translation. Note that Major errors refer to actual translation or grammatical
errors,

and Minor errors refer to smaller imperfections, and purely subjective opinions about

the translation.

{src_lang} source: "{sourcel}"

{tgt_lang} human reference: "{referencel}"
{tgt_lang} translation: "{candidate}"
Errors:

Figure 8.3: The AutoMQM prompt used in this chapter. Parts in purple are only included
for reference-based evaluation, while represent slots for outputs, and are only
included for in-context examples.

on the findings from §8.5.2, we explore the impact of in-context learning by sampling
from the example pool using stratified sampling extended with a set of rejection criteria (?7),
which ensures that the example set has a balance between major and minor errors as well

as diversity in the categories of errors.

8.5 Experiments

8.5.1 Experimental Setup

Data The metrics in this work are evaluated on

three high-resource high-resource language pairs LP  #Sys #Seg
come from the WMT’22 Metrics Shared Task
(Freitag et al., 2022): en—de, zh—en, and

en—de 13 1315
zh—en 14 1875
en—ru 15 1315

en—ru. The ground-truth translation quality

scores are derived from MQM ratings in which ex-
pert annotators marked error spans in the transla- Table 8.1: The number of systems
tions with different severity levels which are auto- and segments that have MQM scores,
matically converted to a numeric score (see §8.2). used as ground-truth human feed-
See Table 8.1 for statistics about the number of back.

MT systems and segments for each language pair.

Additionally, in our experiments, AUTOMQM required in-context examples with MQM
annotations to work, so we restrict our evaluation of AuToMQM to en—de and zh—en be-
cause there are available MQM ratings from the WMT’21 Metrics Shared Task (Freitag,

Rei, Mathur, Lo, Stewart, et al., 2021) that we can use as in-context learning examples.

Models We base most of our experiments on the following LLM:s:

* PalLM: A 540 billion parameter autoregressive Transformer model trained on 780
billion tokens of high-quality text (Chowdhery et al., 2022b). It showed remarkable
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performance on a wide-range of NLP tasks, including MT (Vilar et al., 2022).
* PalLM-2: The successor to PalLM, the Pal.LM-2 family of LLMs (Anil et al., 2023)

builds upon recent research insights, such as compute-optimal scaling, a more mul-
tilingual and diverse pre-training mixture, and architectural/optimization improve-
ments. We mainly use two model sizes in the family: Pal.LM-2 BisoN and (the larger)

PalLM-2-Unicorn.? In addition we explore the impact of instruction-tuning by us-
ing a UNicorN model finetuned on the FLAN dataset (Wei et al., 2021).

For score prediction, we compare Pal.M and PalLM-2 against the GPT family of LLMs
(Brown et al., 2020a; OpenAl, 2023) by leveraging the results and outputs from the
GEMBA evaluator (Kocmi & Federmann, 2023). We then evaluate the performance of
AurtoMQM with only PalLM-2 models (which performed best in score prediction).

Additionally, for the high-resource languages, we compare to a set of strong baseline
evaluation metrics, MetricX-XXL and COMET-22, which were the two top-performing
metrics in the WMT 22 Metrics Shared Task. MetricX-XXL and COMET-22 are both
finetuned regression models trained on DA data from WMT that are initialized with mT5
(Xue et al., 2021) and XLM-R (Conneau et al., 2020), respectively.

For the AuToMQM experiments, we also compare against MAT'ESE, a comparable sub-
mission to the WMT’22 Metrics Shared task that finetuned a XLLM-R model to identify
major and minor errors, and computed a score automatically. Since we were unable to
obtain the span-level predictions for the MATESE submission, we also compare against the
top submission to the WMT’22 Word-Level Quality Estimation Shared Task (Zerva et al.,
2021b): word-level CoMETKiwr (COMET-WL) (Rei, Treviso, et al., 2022), also based on
an XLM-R model trained on a combination of sentence- and word-level data. To do so,
we re-run this model on the WMT 22 Metrics Shared Task data, and convert the predicted
word-level 0K/BAD tags into spans.”

Finetuning For regression finetuning, we use a real-valued logit, extracted from a fixed
index in the first target token’s logit vector, as the quality signal. (In particular, we leverage
a special, unused, vocabulary token.) This was the technique used to train MetricX-XXL
in the WM'T 2022 Shared Task submission (Freitag et al., 2022). The regression-based
model was trained on WMT direct assessment (DA) data from the years 2015 through
2020.

For generative classification, we bucket the scores in the training data into five classes,
where class boundaries are assigned so that each class contains an equal number of training
examples. We then map labels to verbal ratings from the following set, based on their

bucket: ["very bad", "bad", "ok", "good", "very good"]. To evaluate the model, predictions are

3Information about exact number of parameters of PalLM-2 models is not publicly available.
#We consider a span as any maximal consecutive sequence of words marked as BAD, assigning every span
the major severity.
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mapped back to integer labels from 1 to 5. Any predictions not containing a substring in
the label set are considered invalid and are mapped to 0. We experimented with finetuning

on both DA and MQM 2020 (Freitag, Foster, et al., 2021) data, and found that the latter
performed slightly better.

To assess the impact of model size, we also finetune two additional (smaller) PalLM-2

models, which we call S and M, comparing their finetuned and zero-shot performance.’

Metric Meta-Evaluation The quality of an automatic evaluation metric is estimated by
comparing the agreement between the metric scores and ground-truth quality scores on a
large number of translations from different MT systems, a process known as metric meta-

evaluation. This work reports three different agreement scores, as follows.

The first is system-level accuracy, which calculates the percent of system pairs that
are ranked the same by the metric and ground-truth scores, micro-averaged over a set of
language pairs (Kocmi et al., 2021b). System-level scores are defined as the average score

across all segments.

At the segment-level, the standard correlation that is reported by WMT is Kendall’s 7.
However, recent work pointed out problems with Kendall’s 7 with respect to ties (Deutsch
et al., 2023). In short, different variants of 7 are inconsistent with respect to ties and even
biased against metrics that predict ties, as our metrics do in this work. Deutsch et al. (2023)
recommend reporting a pairwise accuracy score, which rewards metrics for correctly rank-
ing translations as well as correctly predicting ties, in combination with a tie calibration
procedure that automatically introduces ties into metric scores so that the meta-evaluation
is fairer. This accuracy score, denoted acc*, ranges between O and 1, and a random metric
would achieve 33% accuracy. We report the “group-by-item” variant of the pairwise accu-
racy score from Deutsch et al. (2023) in addition to Pearson’s p, a complementary signal
to rank-based correlations that measure the strength of the linear relationship between two

variables (and one of the standard correlations reported in WM'T).

Span Meta-Evaluation Since AuToMQM provides not only scores but also the identified
error spans, we can compare the predicted spans with the errors marked by annotators in
the MQM annotations. We evaluate quality of predicted spans using: (1) Span Precision
(SP), which measures the overlap of predicted spans and gold (annotated) spans; and (2)
Magor recall (MR), which captures the percentage of gold major errors that were predicted

as errors (either minor or major).

More formally, consider the set of ground truth spans S*, where each span consists of

a sequence of words, i.e., s; = (W(q), Wat1), -+ ). Let Sk,; C© S* be the subset containing

maj

only the major errors. Given a span set .S, we define its positional set P(S) as the set

SWe use a small variation of the zero-shot prompt, asking models for scores from the same 5 buckets used
in finetuning.
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containing the positions of all the words in every span in S. For example, assuming a
span s; = (W(n), W(n41), -+ ) in S starts at the nth position in the text, its corresponding
positional set will include the positions {n,n + 1,...,n + len(s;) — 1}. Then for a set of

predicted spans S, SP and MR are defined as:

~

|P(5) N P(SY)]

SP(S) = A 8.1
5= S ®.1)
1PN Sk

MRES) = =55 ] 8-2)

Intuitively, we care for overall precision (regardless of severity) since we want to make
sure predicted errors tend to be marked by annotators as well, but for recall we care mostly
for major errors, as these have a larger impact on translation quality and are more critical
to identify. Additionally, we also report the (3) Matthews Correlation Coefficient (MCC), one

of the official metrics in the word-level quality estimation tasks (Zerva et al., 2022).

8.5.2 Results

Score Prediction

Table 8.2 summarizes the meta-evaluation results, at the system and segment level, for both

the zero-shot prompting and finetuning settings.

System-Level Segment-Level
All (8 LPs) EN-DE ZH-EN EN-RU

Model Ref? Accuracy p acc* P acc* P acc*
Baselines
MetricX-XXL v 85.0% 0.549 o6L1% 0.581 54.6% 0.495 60.6%
COMET-22 v 83.9% 0512  60.2% 0.585 54.1% 0469  57.7%
COMET-QE X 78.1% 0419 56.83% 0.505 48.8% 0439 53.4%
Prompting
PalLM 540B v 90.1% 0.247  55.4% 0.255 48.5% 0.180 48.6%
Pal.LM-2 Bison v 88.7% 0.394 56.8% 0.322 49.3% 0.322 52.8%
PalLM-2 UNicorN v 90.1% 0401 56.3% 0.8349 51.1% 0.352 55.3%
FLAN-PalLM-2 UNICORN v 75.9% 0.197  55.6% 0.139 46.1% 0.198  52.0%
PalLM 540B X 84.3% 0.239 566.1% 0.270 43.1% 0.300 51.8%
PalLM-2 Bison X 85.0% 0.355 57.0% 0.299 48.6% 0.303 53.1%
PalLM-2 UNicorN X 84.3% 0.275 56.1% 0.252 48.3% 0.209 49.8%
FLAN-PalLM-2 UNICORN X 69.7% 0.116  54.6% 0.112 438.8% 0.156  47.8%
Finetune
PalLM-2 Bison (R) v 88.0% 0.511  61.0% 0459 51.5% 0.458  59.5%
Pal.LM-2 Bison (GC) v 86.1% 0400 59.2% 0.444 49.3% 0.365 56.0%
PalLM-2 Unicorn (R) v 87.6% 0.508 61.1% 0412 52.6% 0.460 60.4%
PalLM 2 Bison (R) X 87.6% 0490 59.9% 0439 53.4% 0437 59.2%
PalLM 2 Bison (GC) X 86.1% 0.368 57.5% 0.420 47.3% 0.390 54.9%
PalLM 2 Unicorn (GC) X 86.1% 0407 57.9% 0402 45.6% 0411  55.3%

Table 8.2: Meta-evaluation results at system and segment-level for the high-resource lan-
guage pairs. Finetuned (R) and (GC) represent the regression and generative classification ob-
jectives (88.3.2). vand X represent reference-based and reference-less metrics, respectively.
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Prompting A first observation is almost all zero-shot LLLM evaluators have higher system-
level performance than learned metrics (with and without references), with PalLM 540B
and PalLM-2 UNIcORN achieving the best performance. At the segment level, the story is
more complicated: similarly to Kocmi et al. (2022), we find that none of the LLMs we
explored was able to consistently outperform the baseline learned metrics. We see that
Pal.M-540B is a particularly poor reference-based evaluator, which is surprising given its
system-level performance. Unexpectedly, instruction-tuning with FLAN seems to degrade
performance, with FLAN-PalLM-2 UNICORN achieving poor performance at both the sys-

tem and segment levels.”
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Figure 8.4: Distribution of scores for various LLM reference-based evaluators, on the EN-
DE test set. Note that the y axis is in log-scale.

Nevertheless, Pal.M-2 models achieve high correlations with human judgments, and
the reference-less Pal.LM-2 BisoN is competitive with the learned baselines, particularly at
assessing alternative translations of the same sentence (acc*). Figure 8.4 shows the distri-
bution of scores produced by PalLM- and PalLM-2-based evaluators. We find that, despite
being prompted to give a score in the 0-100 range, these models almost always output one
of a very limited set of scores (e.g. 0, 50, 90, 95). Given Kocmi and Federmann (2023)’s
similar findings with GPT models, it seems that this is a consequence of the pretraining

objective and the overall prevalence of certain “round” scores on the training data.

Finetuning Despite their already-great performance in the zero-shot setting, we find that
finetuning LLLMs can further improve LLLM evaluators’ segment-level scores. This is par-
ticularly obvious for the reference-less evaluators, where a finetuned PalLM-2 Bison achieves
state-of-the-art performance in segment-level correlations and comparable system-level
accuracy across all language pairs. Moreover, when we look at how performance scales with
parameter count (Figure 8.5), we observe an interesting trend: while smaller models are

not capable of being effective zero-shot evaluators, finetuning them leads to competitive

5Note that this might be a problem with the FLAN dataset and not instruction-tuning in general, as the
GPT models are also instruction-tuned and perform well.
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Figure 8.5: Behavior of Pearson as we scale the LLM’s parameter count. Note that the z
axis is not to-scale with regard to parameter count.

performance, and only a slight decrease when compared to their larger finetuned counter-
parts.

In-context Learning Figure 8.6 shows the mean and interquartile range (IQR) of the
performance as we increase the number of in-context examples k& (with 100 example sets
per k) sampled with stratified sampling Surprisingly, despite evidence of the benefits of
in-context learning for many tasks, we found that including in-context examples during

evaluation (almost) never led to better performance, either with uniform or stratified sam-
pling.

® PalLM-2 (Bison) ref-based
PaLM-2 (Bison) ref-free

# of in-context examples

Figure 8.6: Mean Pearson and its interquartile range (IQR) in the WMT22 EN-DE test

set, as we increase the number of in-context examples with stratified sampling

AurtoMQM

Figure 8.7 shows the mean and interquartile range (IQR) of the performance of PaLM-2
Bison with AutToMQM, as we increase the number of in-context examples (again, with
100 example sets per k). Contrary to the performance with score prediction, we find
that performance with AuToMQM seems to (mostly) scale with the number of in-context
examples: performance increases monotonically with up to 4 in-context examples and

plateaus thereafter. Additionally, the variance across the in-context learning sets seems

108



o

N

o
s

e

N

o
L

Pearson (EN-DE)

o

=

o
L

e

w
s

® PalLM-2 (Bison)
PaLM-2 (Bison) ref-free

0351 o

Pearson (ZH-EN)

PaLM-2 (Bison)
PaLM-2 (Bison) ref-free

o

=)

o
s
N

0.00 0.00 1

0 1 2 3 4 5 6 0 1 2 3 4 5 6
# of in-context examples # of in-context examples

Figure 8.7: Mean Pearson and its interquartile range (IQR), as we increase the number of
in-context examples in the AuToMQM prompt, for EN-DE (left) and ZH-EN (right).

to be lower, with most example sets exhibiting less than 0.05 Pearson difference from the
best-performing sets. All this suggests that LLLM evaluators are much more robust to the
choice of in-context examples when prompted for AuToMQM rather than for score pre-
diction. We also find that the behavior of in-context learning is similar for reference-based

and reference-less evaluation.

System-Level

Segment-Level

All (2 LPs) EN-DE ZH-EN
Model Ref? Accuracy p acc* p acc”
Baselines
MetricX-XXL v 81.1% 0.549  61.1% 0.581  54.6%
MATESE v 79.9% 0.391 58.8% 0.528  51.5%
COMET-QE X 76.9% 0.419 56.3% 0.505 48.8%
MATESE-QE X 73.4% 0.298 57.9% 0.468  50.1%
COMET-WL X 71.6% 0.418 57.1%  0.406  51.5%
Score Prediction
PalLM-2 Bison v 86.4% 0.394  56.8% 0.322 49.3%
PalLM-2 UNicorN v 86.4% 0401 56.3% 0.349  51.1%
PalLM-2 Bison X 84.0% 0.355 57.0% 0.299 48.6%
PalLM-2 Unicorn X 80.5% 0.275  56.1%  0.252  48.3%
AutoMQM
PalLM-2 Bison v 84.0% 0.369 59.2% 0.3556  48.4%
Pal.M-2 Unicorn v 87.6% 0432  59.1%  0.442  51.8%
PalLM 2 Bison X 87.6% 0.297 55.2% 0.331 48.0%
PalLM 2 UNicorN X 83.4% 0.368 56.4% 0429 50.2%

Table 8.3: Meta-evaluation results for Pal.M-2 models using AutoMQM and score predic-
tion, at the system and segment levels for multiple language pairs.

Table 8.3 shows the meta-evaluation results for PalLM-2 Bison and UNICORN prompted
with AutoMQM (using the best-performing in-context learning sets in Figure 8.7). For
ease of comparison, we also report their performance when prompted for score prediction,
as well as the performance of the baselines. Overall, prompting LLLMs with AuToMQM
seems to lead to significant improvements in evaluating machine translation quality, partic-
ularly for larger models: Unicorn achieves better performance (across all meta evaluations)
with it than when prompted for score prediction, and its reference-less version is competitive
with the best learned metric even at the segment level. However, for the smaller Bison,

the benefits of AuToMQM are less clear, with both techniques performing comparably.
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Figure 8.8: Distribution of scores for PalLM-2 models using AutoMQM, on the WMT22
EN-DE test set

This hints that scale is necessary for zero- and few- shot fine-grained evaluation (like with
AuroMQM). We also find that the distribution of scores produced by LLLLMs prompted with
AutoMQM is much closer to the gold MQM distribution, with models outputting a much
larger set of scores, and in the same ranges as annotators do (see Figure 8.8).

EN-DE ZH-EN

Model R>* SP MR MCC SP MR MCC
Baselines

COMET-WL X 0.267 0.250 0.161 0.364 0.178 0.152
AutoMQM

Bison v 0.095 0.749 0.060 0.252 0.255 0.109
UNICORN v 0.175 0.628 0.193 0.238 0.476 0.143
Bison X 0.119 0.520 0.092 0.224 0.311 0.091

UNICORN X 0.150 0.580 0.150 0.229 0.488 0.133

Table 8.4: Span-level meta-evaluation on WMT22 for PalLM-2 models using AutoMQM.

SR and MR represent span precision and major recall, respectively.

Finally, when evaluating the error spans produced by LL.Ms prompted with AuToMQM
(Table 8.4), we find that PalLM-2 models are able to identify most of the major errors. How-
ever, it does seem to over-predict errors (with errors predicted by UNicOrRN having on average
~5 words per span vs ~2 words in the ground truth) and have overall low span precision.
Similarly to overall score correlations, scale also seems to be important for the quality of
spans produced by AutoMQM, with UNicorN outperforming BisoN at most metrics. Ad-
ditionally, UN1cORN prompted with AutoMQM predicts spans of comparable quality to the
ones produced by current state-of-the-art learned word-level evaluators (trained on a large
number of fine-grained annotations derived from MQM): while word-level models are
more precise, their overall span correlation (MCC) is comparable, and they miss consid-

erably more major errors than LLMs (despite only leveraging a handful of annotations).
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8.6 Related Work

The success of learned machine translation metrics (Freitag et al., 2022; Qin et al., 2022;
Rei, C. de Souza, et al., 2022; Sellam et al., 2020), which finetune neural network mod-
els pretrained on large amounts of (unsupervised) data, highlighted the importance of
leveraging transfer learning to achieve metrics with better correlation with human judg-
ments. More recently, generative LLMs (Anil et al., 2023; OpenAl, 2023) have consis-
tently demonstrated impressive results in natural language understanding and zero- and
Jew-shot transfer and, naturally, interest in employing these models for (translation) evalu-
ation has increased. Kocmi and Federmann (2023) first explored the use of GPT models
for evaluating machine translation tasks, showing their potential as zero-shot evaluators,
and others have since extended GPT-based evaluation to other generation problems (Jain,
Keshava, Sathyendra, et al., 20238; Y. Liu et al., 2023).

Perrella et al. (2022) first highlighted that MQM annotations could be leveraged to
allow pretrained models to predict major and minor errors and, similarly to AutoMQM,
used the identified errors to automatically score translations. However, their approach re-
lied on weaker encoder-only or encoder-decoder language models, required supervised data
to work, and overall underperformed other top metrics. We compare against their MaTASe
metric in our experiments. Lu et al. (2023) showed that doing error analysis, a prompting
technique similar to AutoMQM, could lead to better ChatGPT-based evaluators. How-
ever, they still relied on the LLLM to provide a score once it identified errors (rather than do
it automatically using something like the MQM framework). Furthermore, they provided
a very limited meta-evaluation using only 40 examples per language pair. Concurrently
with our work, Xu, Wang, et al. (2023) proposed INSTRUCTSCORE, a [LLLaMA-based evalu-
ator that asks models to identify and categorize errors in translation (as well as providing
a natural language explanation for each error). However, the authors only explore a 7B
parameter model and don’t leverage zero- and few-shot capabilities of models as in this

work. Instead, they rely on a more complex approach of distilling the knowledge of a more

capable GPT-4 LLM.

Additionally, WMT Word-Level Quality Estimation shared tasks (Fonseca et al., 2019;
Zerva et al., 2022) leverage MQM data by converting span-level annotations of errors
(normally of major severity) to word-level tags and Task 2 in the WMT19 Quality Esti-
mation shared task evaluation explicitly evaluated submissions of span-level annotations
(although most submissions still consisted of models that predicted word-level tags which
were converted to spans). We also compare against state-of-the-art word-level quality es-
timation models.
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8.7 Conclusion & Subsequent Work

In this study, we have systematically investigated the capabilities of large language mod-
els for machine translation evaluation through score prediction, and proposed AuToMQM,
anovel prompting technique that leverages the Multidimensional Quality Metrics (MQM)
framework for interpretable M'T evaluation using LLLMs. We demonstrated that just prompt-
ing LLMs for score prediction leads to state-of-the-art system-level evaluators, but still falls
short of the best learned metrics at the segment-level (with finetuning being necessary to
close this gap). Then we showed that AuToMQM can further improve the performance
of LLMs without finetuning while providing interpretability through error spans that align

with human annotations.

Our findings surrounding finetuning LLMs for score prediction hint that LLLMs’ perfor-
mance in machine translation evaluation could be further improved by finetuning these
models on fine-grained human judgment data (like MQM). In fact, subsequent work has
since shown that training evaluation models on fine-grained MQM can lead to state-of-
the-art metrics that surpass ones trained only on sentence-level scores (Guerreiro et al.,
2023), and that fine-grained feedback produced by these models can be used to improve
the quality of translations produced by LLMs (Xu, Deutsch, et al., 2023).
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Chapter

Conclusion

In this chapter, we provide a high-level summary of our contributions, highlight some open

problems & potential directions for future research, and offer some concluding thoughts.

9.1 Summary

This thesis investigates three fundamental challenges that have emerged alongside the re-
markable success of large-scale neural language models: understanding their global behav-
ior, extracting meaningful explanations for their outputs, and aligning their decisions with
human intentions. We focused primarily and extensively on machine translation as our
testbed, which historically has served as a breeding ground for broader innovations in nat-
ural language processing. However, we occasionally explored other tasks, and we believe
the insights and methods developed throughout this work have wider implications for the

development of reliable, interpretable, and effective language technologies.

In Part I, we studied the global behavioral patterns in neural machine translation mod-
els. We approached this challenge from two complementary perspectives: scaling dynam-
ics and information utilization. In Chapter 3, we provided a comprehensive analysis of
how multilingual machine translation models scale across different language pairs, discov-
ering that individual task performance follows predictable patterns that are invariant to
cross-lingual interactions. This insight enabled us to propose joint scaling laws that can
predict the full Pareto frontier of translation quality as models grow in capacity. In Chap-
ter 4 we shifted our focus to document-level translation, investigating how much contex-
tual information beyond sentence boundaries these models actually leverage. Through the
development of information-theoretic metrics, we discovered that models exhibit a pref-
erence for target-language context over source-language context, and proposed methods

to enhance the utilization of extra-sentential information.

In Part 11, we explored methods for extracting interpretable, local explanations from

neural network decisions. Rather than relying on intuitive but potentially unreliable no-
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tions of explainability, we grounded our approach in a quantitatively measurable definition:
good explanations should help other models learn. In Chapter 5, we introduced a novel
framework leveraging bilevel optimization and meta-learning to train parametrized ex-
plainers that maximize their teaching effectiveness. Our approach demonstrated superior
simulability compared to existing methods while producing explanations that align more
closely with human intuitions about model behavior. In Chapter 6 we showed that frontier
reasoning models optimized to solve complex tasks are also state-of-the-art low-resource
MT systems, and that their chain-of-thought (Col’) rationales are good explanations of this
task as they help student models learn more effectively than without explanations, but only
through post-hoc regularization (rather than the standard CoT distillation).

Finally, in Part III we tackled the challenge of ensuring that machine translation is
aligned with the goal of human-like translation. We began in Chapter 7 by developing
quality-aware decoding algorithms that incorporate neural metrics of translation qual-
ity directly into the inference process. Through techniques such as N-best reranking
and minimum Bayes risk decoding, we demonstrated that models can be steered toward
more human-like translations without requiring retraining. Subsequently, in Chapter 8
we showed that large language models can serve as effective fine-grained translation qual-
ity metrics with minimal supervision, requiring orders of magnitude less training data than
traditional neural metrics while achieving state-of-the-art performance. This development
opens new possibilities for leveraging LL.Ms in the alignment of machine translation sys-
tems. Throughout these investigations, we released a series of research artifacts for public
use, including datasets, code implementations, and trained models, contributing to the
broader research community’s ability to build upon and extend our work.

9.2 Future Directions

The research presented in this thesis spans a period of rapid transformation in natural lan-
guage processing, from the era of specialized (machine translation) models to the current
dominance of large language models. Although much of our foundational work was con-
ducted in the pre-LLM era, we believe and have evidence that our findings extend to this
new age (Flemings et al., 2025; I. Wu et al., 2025), and there are still innumerable oppor-
tunities to explore and extend our ideas. Below, we highlight some particularly promising

research directions.

Understanding Multi-task Scaling in LLMs Current state-of-the-art language models’
training can be framed as a massive multitask optimization problem (both in pretraining and
posttraining). Therefore, understanding if our findings in Chapter 3 surrounding interference
and effective capacity generalize to this setting could have large implications in guiding future
trainings of new LLMs: for example, if models share very little capacity across languages,

as we reach the limits of parameter scaling, it might turn out that it is more feasible to move
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towards monolingual LLLMs. Our findings might also explain the move towards mixture-of-
experts models (Cai et al., 2025) that allow scaling the number of total parameters while

keeping the computation fixed.

Optimizing Chains-of-Thoughts for Teaching In Chapter 6 we saw that optimizing rea-
soning models for task performance alone seems to naturally lead to chains-of-thoughts that
are good at teaching. However, how to best optimize these explanations for this later goal
is still an open problem: while bilevel optimization approaches such as SMaT (Chapter 6)
might be intractable with current very large models, reinforcement learning could be a viable
alternative (Cetin et al., 2025). This could lead not only to more efficient distillation of
student models, but also inadvertently to better, more trustworthy frontier reasoning mod-
els. Studying also how these explanations help humans predict the model outputs (Arora et
al., 2022) or even learn the task itself (for example, teaching new language a la Chapter 6)

could further cement their usefulness outside of distillation itself.

Beyond Human Feedback: Extrinsically-Aware Machine Translation Our work with
quality-aware decoding showed that it is possible to optimize machine translation mod-
els for (models of) human feedback and translation quality. However, for more complex
open-ended tasks (such as document-level machine translation), trying to capture quality as
a single intrinsic score might be too reductive. In recent work (Fernandes et al., 2025) we
show that extrinsically evaluating translations by how well they enable downstream tasks,
such as question-answering, is a promising direction (and that we can use LLMs to auto-
mate this) but how to optimize models for this type of evaluation (either in training or in

decoding) is still an open problem.

9.3 Concluding Thoughts

Throughout this thesis, it was possible to feel the interconnected nature of the challenges
we addressed. Being able to explain models’ decisions inexorably helps us understand their
behaviour and, in turn, both helps align and improve their performance. Our work thus
offers practical tools and insights to advance large-scale, neural network-based machine
translation models (LLLM-based or not). The focus on machine translation throughout this
thesis was also not merely a matter of convenience or specialization. Translation represents
a particularly rich domain for studying these challenges and an important problem as it sits
at the intersection of multiple languages, cultures, and communication needs. Thus, we
believe our research was meaningful if it helps, even if in the slightest, the millions of users

who depend on these systems for meaningful communication.
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