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Abstract
Abstractive summarization models have made rapid progress since neural net-

works were first used for the task. We advanced from a situation where models
struggled to produce grammatical sentences, to large language models like ChatGPT
producing fluent summaries, sometimes rated even better than some human-written
summaries. The application of summarization models is expanding beyond the tra-
ditionally popular domains of news articles and meeting transcripts, into new niche
domains like medical reports, financial articles, social media conversations, product
reviews etc.

Despite the progress, the reliability of summarization models is called into ques-
tion due to rare but catastrophic failure modes. For example, models are known
to generate summaries containing statements which are factually incorrect or which
are not supported by the input being summarized (called hallucinations). Such errors
can lead to serious harm if acted upon, in high-risk applications such as healthcare
and finance. When deployed in the wild, models might encounter noise in the input,
which can significantly reduce summary quality. Finally, while pretraining models
greatly improves the quality of its outputs, the web-sourced pretraining data can in-
troduce negative aspects in them. Examples of it include toxic or biased outputs, and
verbatim generation of copyrighted content, which has led to multiple recent law-
suits. These problems can dissuade entities from deploying summarization models
in the real world.

In this thesis, we contribute methodology and resources to address the afore-
mentioned problems in summarization models. In the first part, we propose methods
to generate summaries with improved quality for inputs with challenging charac-
teristics such as long conversations or noisy documents. We introduce a modular
summary generation pipeline to handle long sequences, producing better and more
factual summaries. We then characterize the impact of input noise on summarization
models, and design light-weight probes to detect and remove the noise. In the second
part, we introduce approaches to pretraining that shun the use of any upstream pre-
training text corpora, but still deliver a large fraction of the performance gains seen
by pretraining on giant web corpora. The proposed approaches include creating
a pretraining corpus artificially, and re-using unlabeled text from the downstream
training examples for pretraining. This part reveals that a large portion of perfor-
mance gains coming from pretraining are attributable to some unknown mechanism
other than knowledge transfer from large external pretraining corpora. In the third
and final part, we design methods to facilitate verification of LLM-generated sum-
maries and detect potential factual errors in it. We create a public benchmark dataset
to enable training and evaluation of models for multiple tasks useful towards fact-
checking summaries. We then design an interactive tool to assist users in verifying
LLM-generated summaries against the reference document, and show its effective-
ness at highlighting errors generated by a wide variety of LLMs for documents in
diverse domains.
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Chapter 1

Introduction

A lot of progress has been made on the task of summarization in the past few years. Early works
on this task were mostly limited to highlighting the important parts of the input document [Erkan
and Radev, 2004, Wong et al., 2008], termed as extractive summarization, instead of generating
new text paraphrasing the content. This was mostly due to the difficulty of generating coher-
ent text expressing given information. However, with sequence-to-sequence neural architectures
such as the LSTM [Hochreiter and Schmidhuber, 1996] coming into popular use, such models
were successfully applied to tackle abstractive summarization — where a summary text is gen-
erated by re-wording the input content [Rush et al., 2015, Nallapati et al., 2016, See et al., 2017].
The quality of the generated summaries improved steadily with the advent of transformer based
models [Vaswani et al., 2017] which were pretrained using a variety of different techniques [Liu
and Lapata, 2019, Zhang et al., 2020, Lewis et al., 2020b, Raffel et al., 2020a]. Today, as we
approach very large language models (LLMs), created using massive pretraining data and also
some human feedback signals, we have models like GPT-3 whose summaries are rated very
highly by humans [Goyal et al., 2022], sometimes even more than human-written ones [Stiennon
et al., 2020].

Simultaneously, we have witnessed an explosion in the domains to which summarization
models are being applied. While early datasets were mostly in the domain of news articles [Her-
mann et al., 2015, Narayan et al., 2018b] and proceedings of meetings [Carletta, 2007], newer
datasets explore a lot more domains. Some of these domains include chat conversations [Gliwa
et al., 2019], product reviews [Khan et al., 2020, Gerani et al., 2019], medical visits [Krishna
et al., 2021b], social media posts [Kim et al., 2019a], bills [Kornilova and Eidelman, 2019] etc.
This reflects the growing interest in utilizing summarization models for diverse applications.

While there has been a lot of progress in research on abstractive summarization as evidenced
by steadily improving performance on benchmark datasets, actually deploying them in the real-
world presents a different set of challenges. For example, one such challenge is much lower
tolerance for factual inaccuracies in the generated summaries, which can lead to adverse effects
when people actually rely on them for decision making. Another source of difficulty in real
world summarization comes from challenging characteristics of input and output sequences to be
processed by the model. For example, when summarizing text in the wild, models can encounter
noise in the input due to imperfect data acquisition (e.g. ASR errors, incorrect parsing of web
pages) which can potentially reduce the summary quality. In some summarization tasks, the input

1



and output sequences may be too long to process end-to-end due to memory constraints. Finally,
deployment of models pretrained on a large amount of web-sourced data comes with a new set
of risks. The pretraining corpora may contain toxicity and bias, which can get reflected in the
model’s outputs. Additionally, the web-crawled pretraining data can often contain copyrighted
materials, whose use itself can be considered legally contentious, with multiple recent lawsuits
challenging it. We elaborate on each of these risks below:

Generation of factually incorrect statements: Abstractive summarization models paraphrase
information from the source text to generate a summary, in contrast to extractive summariza-
tion which simply selects important content from the source text. However, while rephrasing
the source text, the model’s output doesn’t always stay true to the information provided in the
source, leading to factual errors in the summary. These erroneous facts in the summary can be
categorized into two types: (i) claims which contradict with some information in the source text,
and (ii) claims for which there is no evidence in the source, although there isn’t any direct con-
tradiction either. The latter type of factual errors are popularly known as hallucinations [Maynez
et al., 2020] since they consist of made-up information. This is arguably a much worse failure
mode than the ones encountered in the extractive summarization paradigm where the worst that
could happen is that some important information was not highlighted.

Factual errors can be found in summaries generated from models across different architec-
tures, from the older LSTM models [See et al., 2017] to the more recent transformer architec-
tures [Maynez et al., 2020], and persists even after models are pretrained [Pagnoni et al., 2021].
Even after tremendous increase in model size and pretraining scale, modern large language mod-
els (LLMs) such as GPT-3 and GPT-4 also produce factual errors in their summaries, although
with a much lesser frequency than their older counterparts [Goyal et al., 2022, Bubeck et al.,
2023, Metz, 2023]. Factual inconsistencies in summaries can lead to severe consequences in
sensitive application areas where people rely on them for decision-making. For example, in
emergency medicine, an incorrect summary of a patient’s past health history (such as allergies
and diseases) can lead to sub-optimal decisions by the doctors providing care. In finance, real-
time news headlines generated via summarization [Bambrick et al., 2020] inform investment
decisions, and the presence of incorrect information in them can lead to bad decisions.

Drop in summary quality due to challenging input characteristics: One characteristic of
inputs and corresponding summaries which make them challenging for summarization models is
their long length. Practically all strong summarization models have an attention component, such
as the earlier LSTM-based models [Rush et al., 2015, See et al., 2017] and recent transformer-
based models[Raffel et al., 2020a, Zhang et al., 2020]. The memory requirements for these
models increase with the length of the sequence processed — linearly in case of LSTMs and
quadratically in transformer models. Often it is not possible to fit the entire input sequence
representation in the available GPU memory and it becomes necessary to truncate it (e.g. to 400
words in See et al. [2017]). Incidentally, the most popular benchmark datasets in summarization
research deal with summarizing news articles [Hermann et al., 2015, Narayan et al., 2018b],
where this strategy does not hurt performance. This is because these professionally written
articles naturally contain the most important information at the beginning, and so even taking
the first three sentences as a summary performs quite well [Grenander et al., 2019]. However,
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this won’t work while summarizing other kinds of media, for example, in meeting transcripts
important information may be discussed even at the end. Hence, to ingest the whole sequence
while not exceeding memory constraints, one often has to resort to using a smaller models which
are generally less capable.

Virtually all research on summarization models evaluates them on carefully curated bench-
mark datasets. However, when deployed in real world, they can often encounter noisy data
due to text ingestion artifacts. For example, when summarizing a news article on the web, a
system would almost always encounter unrelated content embedded in the page such as adver-
tisements, recommendations, and links. During text extraction, such noise may get extracted
and fed through the model. Similarly, chat summarization systems might encounter noise in the
form of code, URLs, or ASCII art shared in a chatroom. Moreover, it is hard to come up with
prior characterization of the kind of noise that could be encountered after the model is deployed.
Due to this, it hard to preemptively come up with rules to filter all kinds of noise, or perform
adversarial training using synthetic noise [Karpukhin et al., 2019, Vaibhav et al., 2019] to make
models robust to them.

Harmful effects stemming from pretraining corpora: The practice of pretraining models be-
fore fine-tuning/instruction-tuning them for specific tasks such as summarization has been a mon-
umental success for NLP [Devlin et al., 2019, Raffel et al., 2020a, Brown et al., 2020, Touvron
et al., 2023, Achiam et al., 2023]. To pretrain a model, we take a large unlabeled corpus of
text and train the model to predict masked out portions of the text, either via infilling [Devlin
et al., 2019, Tay et al., 2022] or next-token prediction [Brown et al., 2020]. Pretraining is usually
done with a huge upstream corpus with billions of tokens sourced from the internet. Unfortu-
nately, the models can also absorb negative influences from the web-sourced data, which can
affect their downstream predictions. For example, the model can learn harmful ethnic and gen-
der biases [Ahn and Oh, 2021, Kaneko et al., 2022] which leads to biased predictions. Pretrained
langauge models can generate toxic and abusive text [Gehman et al., 2020, Bender et al., 2021]
even when prompted with non-toxic prompts.

The use of huge web-sourced data for pretraining has also raised legal concerns, from an
intellectual property standpoint. There are multiple ongoing lawsuits [Metz, 2022, Vincent, 2023,
Stempel, 2024] which allege that the use of copyrighted materials to pretrain models without
taking permission from creators is not fair use. A more egregious violation of copyright can
occur if the model memorizes and generates verbatim some copyrighted content in response to
a user query. Indeed, academic research works have demonstrated that models can potentially
generate PII or copyrighted text/images [Carlini et al., 2021, 2023]. This issue has captured
public interest recently after The New York Times sued OpenAI for serving its articles almost
verbatim via its ChatGPT service [Grynbaum and Mac, 2023].

1.1 Thesis Overview

In this thesis, we contribute methods and resources to address the aforementioned limitations of
summarization systems, thereby increasing their reliability. In the first part, we propose meth-
ods to improve the factual correctness and overall quality of model outputs when summarizing
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long inputs into structured summaries. We then characterize the impact of input noise on output
quality via synthetic addition of noise, and introduce a lightweight method to filter out noise and
improve performance. In the second part, we introduce pretraining techniques which provide
large performance gains relative to using random initialization, without using any upstream cor-
pora. We create synthetic corpora for pretraining summarization models by using representative
skills potentially useful for the task. We then show that for pretraining text encoder models,
simply using unlabeled text from the target task’s training set often gives comparable gains to
pretraining on much larger general corpora (including Wikipedia). In the third and final part,
we seek to redress the problem of factual errors in model-generated summaries. We introduce a
multi-domain benchmark consisting of tasks related to fact-checking summaries such as identi-
fying hallucinated spans and retrieving supporting evidence for summaries. We then design and
release an interactive tool to assist humans in fact-checking model-generated summaries against
the corresponding source and demonstrate its effectiveness in a variety of settings. We elaborate
on each of these contributions below:

Part I: Generating better summaries for inputs with challenging characteristics
• Chapter 2: In this chapter, we present a method for summarization for dealing with long

inputs and outputs via a modular approach. We apply our method to summarize clinical
conversations into formal SOAP notes [Podder et al., 2021], and corporate meetings into
their summaries. In brief, the modular approach extracts noteworthy sub-parts of the input,
clusters them according to their relatedness, and summarizes each cluster into a single sum-
mary sentence, while conditioning on the sub-topic within the summary which is currently
being generated. This produces better summaries with fewer number of factual errors
compared to end-to-end abstractive summarization. Hence, this work shows the benefits
of segmenting the summary generation process to deal with smaller contexts and topics,
when long text sequences are involved. This work was published at ACL 2021 [Krishna
et al., 2021b].

• Chapter 3: Almost all modern works on summarization evaluate models on carefully cre-
ated datasets, but during deployment these models can sometimes encounter noisy data
(e.g. ads embedded in news articles on the web). In this chapter, we study how modern ab-
stractive summarization models perform on noisy input data and provide a way to improve
this performance by detecting and filtering out the noise. Crucially, our approach does not
require prior knowledge of the kind of noise present. We use out-of-distribution detec-
tion techniques on the encoder representation of the input to detect noisy spans and filter
them out. Feeding such cleaned input to the summarization model produces a better qual-
ity summary than the noisy version, recovering a significant proportion of the performance
drop caused by noise. This work was published at EMNLP(Findings) 2023 [Krishna et al.,
2023c].

Part II: Realizing pretraining’s benefits without upstream corpora
• Chapter 4: While pretraining on large-scale web-sourced corpora has produced huge per-

formance gains, it can also cause the model to learn toxic language or harmful biases.
In this chapter we explore ways to bypass this problem by pretraining summarization
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models using only synthetically created nonsense data. We find that transformer mod-
els pretrained on multiple kinds of synthetic pretraining corpora, still provide over half
of the performance gains (on average across 4 datasets) provided by standard pretrain-
ing. Besides performing far better than randomly initialized transformer models, these
synthetically pretrained models can also outperform LSTM based models from the pre-
transformer era. In summary, this chapter shows that a significant chunk of the benefits
of pretraining towards summarization is due to some unexplained mechanism which can
be leveraged by creating simple synthetic pretraining corpora. This work was published at
EMNLP(Findings) 2021 [Krishna et al., 2021a].

• Chapter 5: In this chapter we propose a way to pretrain text encoder models without
any knowledge transfer from external pretraining corpora — by simply pretraining on the
downstream training set itself (self-pretraining). We show that self-pretraining can provide
much of the performance benefit compared to using huge upstream pretraining corpora,
suggesting that transfer of knowledge from external data sources is not a necessary pre-
requisite. We make a broad contribution by showing the generality of this phenomenon
across 14 NLP datasets dealing with 6 different types of tasks including structured pre-
diction tasks and even commonsense inference tasks. In summary, this work shows that
using standard pretraining objectives, it is possible to get more performance gains out of
the exact same data that’s used for finetuning, with results that can sometimes even rival
pretraining on large upstream corpora such as Bookwiki [Devlin et al., 2019]. This work
was published at ACL 2023 [Krishna et al., 2022].

Part III: Fixing factual errors in model-generated summaries

• Chapter 6: In this chapter, we introduce the USB Benchmark consisting of labeled datasets
for a variety of tasks which help in improving and verifying the factual correctness of
summaries, such as evidence extraction, factual correctness prediction and fixing factually
incorrect summaries. The dataset is created from Wikipedia articles, whereby human anno-
tators edit pseudo-summaries to make sure they are fully supported by given reference, and
also annotate the evidence for each summary sentence. We demonstrate that for the fact-
checking tasks considered, models trained on USB’s human-labeled data perform much
better than models trained on labels generated synthetically using techniques from prior
work. Besides tasks for fact-checking given summaries, the benchmark also provides la-
beled datasets for 4 tasks related to summary generation itself, thus creating a comprehen-
sive suite of 8 summarization-related tasks. This work was published at EMNLP(Findings)
2023 [Krishna et al., 2023b].

• Chapter 7: In scenarios where the tolerance for factual errors in summaries is extremely
low, such as finance and medicine, often it is necessary to get them manually verified by
a human. In this chapter, we design an interactive tool called GenAudit to assist users
in checking factual correctness of LLM-generated summaries. The tool provides features
such as retrieving supporting evidence for the summary, and suggesting edits to fix po-
tentially incorrect claims in it. We designed and released both an interactive interface for
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using the tool, as well as trained backend models to power the aforementioned features.1

We show that GenAudit is able to detect factual errors in outputs generated by a wide vari-
ety of advanced LLMs such as Llama-70B [Touvron et al., 2023], Gemini-pro Team et al.
[2023] and GPT-4 [Achiam et al., 2023], when summarizing documents taken from multi-
ple domains. Finally, we present an inference algorithm to tune the precision vs recall of
error detection by the fact-checking backend model.

1Available at https://genaudit.org
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Chapter 2

Generating SOAP notes using modular
summarization techniques

The vast majority of summarization systems are designed with a monolithic approach, where
a sequence-to-sequence neural network encodes the entire input at once and then decodes the
entire summary in an autoregressive fashion. Such approaches are challenged in situations where
the input and output sequences are long, due to factors such as the need to contextualize parts
of the input far away from each other, maintaining coherence throughout the generation of a
long summary, and requirement of large GPU memory. A representative problem that presents
this challenge is the generation of summaries of clinical visits. Following each patient visit,
physicians draft long semi-structured clinical summaries called SOAP notes. The conversations
between the clinician and patient can often be over 2000 words long, and the average SOAP note
contains well over 20 sentences which are ordered in a fixed sequence of topics to be addressed
(e.g. medications, lab results etc.) While invaluable to clinicians and researchers, creating digital
SOAP notes is burdensome, contributing to physician burnout.

In this chapter, we introduce the first complete pipelines to leverage deep summarization
models to generate SOAP notes based on transcripts of conversations between physicians and
patients. After exploring a spectrum of methods across the extractive-abstractive spectrum, we
propose CLUSTER2SENT, an algorithm that (i) extracts important utterances relevant to each
summary section; (ii) clusters together related utterances; and then (iii) generates one sum-
mary sentence per cluster. CLUSTER2SENT outperforms its purely abstractive counterpart by
8 ROUGE-1 points, and produces significantly more factual and coherent sentences as assessed
by expert human evaluators. We demonstrate similar benefits on the AMI dataset which consists
of corporate meeting transcripts and their summaries. Our results speak to the benefits of modu-
larizing the summary generation process into multiple smaller steps which deal with individual
threads of information discussed in the input and individual topics to be covered in the output.

2.1 Introduction

Electronic health records (EHR) play a crucial role in patient care. However, populating them can
take as much time as attending to patients [Sinsky et al., 2016] and constitutes a major cause of
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...
DR: So are you taking the Monteluekast
regularly?
PT: Yeah, one everyday like you said.
DR: Good. And is it helping? Do you have
chest pains anymore?
PT: No. No chest pains.
DR:That's good.
PT: Although I do still have some cough.
DR: I see. And do you get, like, mucous
with it or is it dry?
PT: Umm no it's usually dry. No mucous.
...

SUBEJCTIVE
Chief Complaint - Post viral respiratory allergy
Review of systems - Denies chest pain. confirms dry cough. 
Medications - Monteleukast. Fluticasone

OBJECTIVE
Lab results -

ASSESSMENT
Assessment - Patient feeling better after taking inhaler. Still
has some cough but no chest pain. 
PLAN
Diagnostics and Appointments - Followup in 1 week to
assess condition and decide when to stop using the inhaler.

DR: Good. And is it helping? Do you have
chest pains anymore?
PT: No. No chest pains

PT: Although I do still have some cough.
DR: I see. And do you get, like, mucous
with it or is it dry?
PT: Umm no it's usually dry. No mucous.

DR: So are you taking the Monteluekast
regularly?
PT: Yeah, one everyday like you said.

Noteworthy for review of systems

Noteworthy for medications

Conversation (2) Cluster (3) Generate

DR: Good. And is it helping? Do you
have chest pains anymore?
PT: No. No chest pains .
PT: Although I do still have some cough.
DR: I see. And do you get, like, mucous
with it or is it dry?
PT: Umm no it's usually dry. No mucous.

DR: So are you taking the Monteluekast
regularly?
PT: Yeah, one everyday like you said.

(1) Extract

Figure 2.1: Workflow of our best performing approach involving extraction and clustering of
noteworthy conversation utterances followed by abstractive summarization of each cluster (ficti-
tious data)

physician burnout [Kumar and Mezoff, 2020]. In particular, doctors document patient encounters
with SOAP notes, semi-structured written accounts containing four sections: (S)ubjective infor-
mation reported by the patient; (O)bjective observations, e.g., lab results; (A)ssessments made
by the doctor (typically, the diagnosis); and a (P)lan for future care, including diagnostic tests,
medications, and treatments. Sections can be subdivided into 15 subsections.

In a parallel development, patients increasingly record their doctor’s visits, either in lieu
of taking notes or to share with a family member. A budding line of research has sought to
leverage transcripts of these clinical conversations both to provide insights to patients and to
extract structured data to be entered into EHRs [Liu et al., 2019c, Schloss and Konam, 2020,
Krishna et al., 2021c].

In this paper, we introduce the first end-to-end methods for generating whole SOAP notes
based on clinical conversations. Our work builds on a unique corpus, developed in collaboration
with Abridge AI, Inc.1), that consists of thousands of transcripts of recorded clinical conversations
together with associated SOAP notes drafted by a work force trained in the official style of
SOAP note documentation. On one hand, this task is much harder than traditional summarization
benchmarks, in part, because SOAP notes are longer (320 words on average) than summaries in
popular datasets like CNN/Dailymail [Nallapati et al., 2016], Newsroom [Grusky et al., 2018],
and SamSum [Gliwa et al., 2019] (55, 27, and 24 words on average). On the other hand, our
dataset offers useful structure: (i) segmentation of each SOAP note into subsections; and (ii) a set
of supporting utterances that provide evidence for each sentence in the SOAP note. Exploiting
this structure, our methods outperform appropriate baselines.

Our first methodological contribution is to propose a spectrum of methods, for decompos-
ing summarizaton tasks into extractive and abstractive subtasks. Starting from a straightforward
sequence-to-sequence model, our methods shift progressively more work from the abstractive
to the extractive component: (i) CONV2NOTE: the extractive module does nothing, placing the
full burden of summarization on an end-to-end abstractive module. (ii) EXT2NOTE: the ex-
tractive module selects all utterances that are noteworthy (i.e., likely to be marked as supporting
utterances for at least one SOAP note sentence), and the decoder is conditioned only on these
utterances; (iii) EXT2SEC: the extractive module extracts per-subsection noteworthy utterances
and the decoder generates each subsection, conditioned only on the corresponding utterances;

1http://abridge.com
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(iv) CLUSTER2SENT: the extractive module not only extracts per-subsection noteworthy utter-
ances but clusters together those likely to support the same SOAP sentence—here, the decoder
produces a single sentence at a time, each conditioned upon a single cluster of utterances and a
token indicating the SOAP subsection. We see consistent benefits as we move from approach (i)
through (iv).

Both to demonstrate the generality of our methods and to provide a reproducible bench-
mark, we conduct parallel experiments on the (publicly available) AMI corpus [Carletta, 2007]2

Like our medical conversations dataset, the AMI corpus exhibits section-structured summaries
and contains annotations that link summary sentences to corresponding supporting utterances.
Our experiments with AMI data show the same trends, favoring pipelines that demand more
from the extractive component. These results speak to the wider usefulness of our proposed
approaches, EXT2SEC and CLUSTER2SENT, whenever section-structured summaries and anno-
tated evidence utterances are available.

Our best performing model, CLUSTER2SENT (Figure 2.1), demands the most of the extrac-
tive module, requiring that it both select and group each subsection’s noteworthy utterances.
Interestingly, we observe that given oracle (per-subsection) noteworthy utterances, a simple
proximity-based clustering heuristic leads to similar performance on SOAP note generation as
we obtain when using ground-truth clusters—even though the ground truth noteworthy utter-
ances are not always localized. Applied with predicted noteworthy utterances and clusters, this
approach achieves the highest ROUGE scores and produces the most useful (factual, coherent,
and non-repetitive) sentences as rated by human experts. As an additional benefit of this ap-
proach, due to the smaller lengths of the input and output sequences involved, we can feasibly
train large transformer-based abstractive summarization models (e.g., T5), whose memory re-
quirements grow quadratically with sequence length. Additionally, our approach localizes the
precise utterances upon which each SOAP note sentence depends, enabling physicians to verify
the correctness of each sentence and potentially to improve the draft by highlighting the correct
noteworthy utterances (versus revising the text directly).

In summary, we contribute the following:

• The first pipeline for drafting entire SOAP notes from doctor-patient conversations.
• A new collection of extractive-abstractive approaches for generating long section-segmented

summaries of conversations, including new methods that leverage annotations attributing
summary sentences to conversation utterances.

• A rigorous quantitative evaluation of our proposed models and appropriate baselines for
both the extractive and abstractive components, including sensitivity of the pipeline to
simulated ASR errors.

• A detailed human study to evaluate the factuality and quality of generated SOAP notes,
and qualitative error analysis.

2Our code and trained models for the AMI dataset: https://github.com/acmi-lab/
modular-summarization
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2.2 Related Work
Summarization is a well-studied problem in NLP [Nenkova et al., 2011]. While early works fo-
cused on simply extracting important content from a document [Erkan and Radev, 2004, Wong
et al., 2008], later approaches attempted to paraphrase the content into new sentences (abstrac-
tive summarization) [Filippova, 2010, Berg-Kirkpatrick et al., 2011, Wang and Cardie, 2013].
Following the development of neural sequence models [Sutskever et al., 2014], more research
focuses on neural generation of abstractive summaries [Nallapati et al., 2016, See et al., 2017,
Celikyilmaz et al., 2018]. While many papers summarize news articles, others summarize con-
versations, in business meetings [Wang and Cardie, 2013, Zhu et al., 2020], customer service
[Liu et al., 2019a], and tourist information center Yuan and Yu [2019] contexts.

In the space of two-step extractive-abstractive summarization approaches, Subramanian et al.
[2019] summarize scientific papers by first extracting sentences from it and then abstractively
summarizing them. Chen and Bansal [2018] extract important sentences from the input and
then paraphrase each of them to generate the abstractive summary. While they assume that each
summary sentence is supported by exactly one source sentence, in our medical conversations,
many summary sentences synthesize content spread across multiple dialogue turns (e.g., a series
of questions and answers).

Past work on abstractive summarization of medical conversations has focused on summariz-
ing patient-nurse conversations with goals including capturing symptoms of interest [Liu et al.,
2019d] and past medical history [Joshi et al., 2020]. These tasks are respectively similar to gen-
erating the review of systems and past medical history subsections of a SOAP note. In contrast,
we aim to generate a full-length SOAP note containing up to 15 subsections, and propose meth-
ods to address this challenge by extracting supporting context for smaller parts and generating
them independently.

2.3 Dataset
We use two different datasets in this work. The primary medical dataset, developed through
a collaboration with Abridge AI, consists of doctor-patient conversations with annotated SOAP
notes. Additionally, we evaluate our summarization methods on the AMI dataset [Carletta, 2007],
comprised of business meeting transcripts and their summaries.

2.3.1 Medical dataset
Our work builds on a unique resource: a corpus consisting of thousands of recorded English-
language clinical conversations, with associated SOAP notes created by a work force trained in
SOAP note documentation standards. Our dataset consists of transcripts from real-life patient-
physician visits from which sensitive information such as names have been de-identified. The
full medical dataset consists of 6862 visits consisting of 2732 cardiologist visits, 2731 visits for
family medicine, 989 interventional cardiologist visits, and 410 internist visits. Owing to the
sensitive nature of the data, we cannot share it publicly (an occupational hazard of research on
machine learning for healthcare).
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For each visit, our dataset contains a human-generated transcript of the conversation. The
transcript is segmented into utterances, each annotated with a timestamp and speaker ID. The
average conversation lasts 9.43 minutes and consists of around 1.5k words (Appendix Figure 1).
Associated with each conversation, we have a human-drafted SOAP note created by trained,
professional annotators. The annotators who created the SOAP notes worked in either clinical
transcription, billing, or related documentation-related departments, but were not necessarily
professional medical scribes. The dataset is divided into train, validation and test splits of size
5770, 500 and 592, respectively.

Our annotated SOAP notes contain (up to) 15 subsections, each of which may contain mul-
tiple sentences. The subsections vary in length. The Allergies subsections is most often empty,
while the Assessment subsection contains 5.16 sentences on average (Table 2.1). The average
SOAP note contains 27.47 sentences. The different subsections also differ in the style of writing.
The Medications subsection usually consists of bulleted names of medicines and their dosages,
while the Assessment subsection typically contains full sentences. On average, the fraction of
novel (i.e., not present in the conversation) unigrams, bigrams, and trigrams, in each SOAP note
are 24.09%, 67.79% and 85.22%, respectively.

Subsection Mean length

Family Medical History 0.23
Past Surgical History 0.58
Review of Systems 3.65
Chief Complaint 2.17
Miscellaneous 2.81
Allergies 0.06
Past Medical History 2.93
Social History 0.27
Medications 3.74

Immunizations 0.11
Laboratory and Imaging Results 2.27

Assessment 5.16

Diagnostics and Appointments 1.65
Prescriptions and Therapeutics 1.75

Healthcare Complaints 0.09

Table 2.1: Average number of sentences in different SOAP note subsections grouped by parent
sections (Subjective, Objective, Assessment, Plan, Others resp.)

Each SOAP note sentence is also annotated with utterances from the conversation which
provide evidence for that sentence. A SOAP note sentence can have one or more supporting
utterances. On average, each SOAP sentence has 3.84 supporting utterances, but the mode is 1
(Appendix Figure 1). We refer to these utterances as noteworthy utterances throughout this paper.
Throughout this work, we deal with the 15 more granular subsections rather than the 4 coarse
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sections of SOAP notes, and thus for convenience, all further mentions of section technically
denote a SOAP subsection.

2.3.2 AMI dataset

The AMI dataset is a collection of 138 business meetings, each with 4 participants with various
roles (e.g., marketing expert, product manager, etc.). Each meeting transcript comes with an as-
sociated abstractive summary that is divided into four sections—abstract, decisions, actions, and
problems. Each conversation also has an associated extractive summary, and there are additional
annotations linking the utterances in the extractive summary to sentences in the abstractive sum-
mary. For any given sentence in the abstractive summary, we refer to the linked set of utterances
in the extractive summary as its noteworthy utterances. We note that 7.9% of the abstractive sum-
mary sentences have no annotated noteworthy utterances. To simplify the analysis, we remove
these sentences from summaries in the training, validation, and test splits.

2.4 Methods

We investigate the following four decompositions of the summarization problem into extractive
and abstractive phases, ordered from abstraction-heavy to extraction-heavy: CONV2NOTE takes
an end-to-end approach, generating the entire SOAP note from the entire conversation in one
shot. EXT2NOTE first predicts all of the noteworthy utterances in the conversation (without
regard to the associated section) and then generates the entire SOAP note in one shot from only
those utterances. EXT2SEC extracts noteworthy utterances, while also predicting the section(s)
for which they are relevant, and then generates each SOAP section separately using only that
section’s predicted noteworthy utterances. CLUSTER2SENT attempts to group together the set
of noteworthy utterances associated with each summary sentence. Here, we cluster separately
among each set of section-specific noteworthy utterances and then generate each section one
sentence at a time, conditioning each on the associated cluster of utterances.

Each of these pipelines leaves open many choices for specific models to employ for each sub-
task. For the abstractive modules of CONV2NOTE and EXT2NOTE, we use a pointer-generator
network. The abstractive modules of EXT2SEC and CLUSTER2SENT, which require condi-
tioning on section are modeled using conditioned pointer-generator networks (described in Sec-
tion 2.5), and fine-tuned T5 models which condition on the section being generated by means of
prepending it to the input. T5 models could not be used in the CONV2NOTE and EXT2NOTE

settings because their high memory requirement for long inputs could not be accommodated even
with 48GB of GPU memory.

For noteworthy utterance extraction, we primarily use a hierarchical LSTM model and a
BERT-LSTM model as described in the next section. All models are configured to have a scalar
output for binary classification in EXT2NOTE, whereas for EXT2SEC and CLUSTER2SENT, they
have multi-label output separately predicting noteworthiness for each section. Note that the same
utterance can be noteworthy with respect to multiple sections. We use the same trained utterance
extraction models for both EXT2SEC and CLUSTER2SENT.
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For the clustering module in CLUSTER2SENT, we propose a heuristic that groups together
any two supporting utterances that are close, meaning they have less than or equal to τ utterances
separating them, where τ is a hyperparameter. This process is iterated, with the clusters growing
in size by merging with other singletons or clusters, until every pair of close utterances have
the same cluster membership. The value of τ is tuned on the validation set. Since each cluster
necessarily produces one sentence in the SOAP note, having too many or too few clusters can
make the SOAP note too long or too short, respectively. Therefore, for any given value of the
hyper-parameter τ and any given section, the prediction thresholds of the extractor are tuned on
the validation set to produce approximately the same number of clusters over the entire validation
set as present in the ground truth for that section. Among ground truth clusters containing mul-
tiple noteworthy utterances, 82% are contiguous. In an experiment where the heuristic is used
to cluster the oracle noteworthy utterances for each section, and summaries are subsequently
generated via the abstractive modules from CLUSTER2SENT, ROUGE-1 and ROUGE-2 metrics
deteriorate by less than 1 point as compared to oracle clusterings (Appendix Table 3), demon-
strating our heuristic’s effectiveness.

2.5 Model Architectures

Pointer-Generator Network We use the pointer-generator network introduced by See et al.
[2017] for CONV2NOTE and EXT2NOTE. The model is a bidirectional LSTM-based encoder-
decoder model with attention. It employs a pointer mechanism to copy tokens directly from
the input in addition to generating them by predicting generation probabilities for the entire
vocabulary. The model also computes the weights that govern copying versus generating at each
decoding timestep.

Section-conditioned Pointer-Generator Network We modify the pointer-generator network
for algorithms EXT2SEC and CLUSTER2SENT, to condition on the (sub)section of the summary
to be generated. The network uses a new lookup table to embed the section z into an embedding
ez. The section embedding is concatenated to each input word embedding fed into the encoder.
The section embedding is also appended to the inputs of the decoder LSTM in the same fashion.

T5 We use the recently released T5 model [Raffel et al., 2020a] as an abstractive module. It
is an encoder-decoder model, where both encoder and decoder consist of a stack of transformer
layers. The T5 model is pre-trained on 5 tasks, including summarization, translation etc. We
use the pre-trained T5 model parameters and fine-tune it on our task dataset. For introducing the
section-conditioning in EXT2SEC and CLUSTER2SENT, we simply add the name of the section
being generated to the beginning of the input.

Hierarchical LSTM classifier(H-LSTM) In this model, we first encode each utterance ui
independently by passing its tokens through a bidirectional LSTM and mean-pooling their en-
coded representations to get the utterance representation hi. We pass the sequence of utterance
representations {h1,h2, ...,hn} through another bidirectional LSTM to get new utterance rep-
resentations which incorporate neighboring contexts. These are then passed through a sigmoid
activated linear layer to predict each utterance’s probability of noteworthiness with respect to
each section.
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BERT-LSTM classifier(B-LSTM) In this model, tokens in the utterance ui are passed through
a BERT encoder to obtain their contextualized representations, which are mean-pooled to get the
utterance representation hi. The subsequent architecture exactly mirrors hierarchical LSTM, and
involves passing utterance representations through a bidirectional LSTM and linear layer to get
output probabilities. BERT-LSTM is fine-tuned in an end-to-end manner.

2.6 Experiments
We first establish two baselines. RANDOMNOTE randomly and uniformly samples a SOAP note
from the training set and outputs it as the summary for any input conversation. ORACLEEXT

presents all the ground truth noteworthy utterances (evidence) from the conversation as the SOAP
note without any abstractive summarization. Thus, the ORACLEEXT baseline has the advantage
of containing all the desired information (e.g., names of medicines) from the conversation, but
the disadvantage of not being expressed in the linguistic style of a SOAP note which leads to
lower n-gram overlap. The opposite is true for the RANDOMNOTE baseline. Both baselines give
similar performance and are outperformed by the simple CONV2NOTE approach (Table 2.2).

We train the abstractive modules for the 4 approaches described in Section 2.4 with the
ground truth noteworthy utterances as inputs. To estimate an upper bound on the performance
we can reasonably hope to achieve by improving our noteworthy utterance extractors, we test
our models with oracle noteworthy utterances in the test set. All algorithms relying on oracle
noteworthy utterances outperform CONV2NOTE, and exhibit a monotonic and significant rise in
ROUGE scores as we move towards the extraction-heavy end of the spectrum (Table 2.3)3.

For predicting noteworthy utterances, we use two baselines: (i) logistic regression on TF-IDF
utterance representations; and (ii) a model with a bidirectional LSTM to compute token-averaged
utterance representations, followed by a linear classification layer. These two models make the
predictions for each utterance independent of others. In contrast, we also use models which in-
corporate context from neighboring utterances: (a) a hierarchical LSTM; and (b) a BERT-LSTM
model as described in Section 2.5. The latter two methods perform much better (Table 2.5),
demonstrating the benefit of incorporating neighboring context, with BERT-LSTM performing
the best (see Appendix Table 6 for section-wise performance).

Using predicted noteworthy utterances and clusters instead of oracle ones leads to a drop
in ROUGE scores, but the performance of EXT2SEC and CLUSTER2SENT is still better than
CONV2NOTE (Table 2.2). For the medical dataset, using a BERT-LSTM extractor leads to
the best performance, with CLUSTER2SENT outperforming CONV2NOTE by about 8 points in
ROUGE-1 (see Appendix Table 5 for section-wise performance). Interestingly, the T5-Small
variant achieves similar performance to T5-Base, despite being only about a quarter of the lat-
ter’s size.

Performance on AMI dataset We see a similar trend in the ROUGE scores when applying
these methods on the AMI dataset. One exception is the poor performance of pointer-generator
based EXT2NOTE, which excessively repeated sentences despite using a high coverage loss co-
efficient. There is a larger gap between the performance of the T5-Small and T5-Base abstrac-

3The character ‘-’ represents GPU memory overflow
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Medical dataset AMI corpus

Method R-1 R-2 R-L R-1 R-2 R-L

RANDOMNOTE 34.99 12.69 21.37 42.47 11.55 21.47
ORACLEEXT 33.07 12.22 17.42 39.97 11.17 20.91

CONV2NOTE (PG) 49.56 25.68 32.87 39.62 13.16 23.95

EXT2NOTE (PG + HLSTM) 49.58 24.91 31.68 21.28 7.06 15.96
EXT2NOTE (PG + BLSTM) 50.50 25.4 31.93 21.71 6.83 15.69
EXT2NOTE (T5-Small + HLSTM) - - - 40.48 13.82 24.64
EXT2NOTE (T5-Small + BLSTM) - - - 40.36 13.73 24.13

EXT2SEC (PG + HLSTM) 55.23 27.14 35.15 43.75 15.25 23.46
EXT2SEC (PG + BLSTM) 55.74 27.54 36.09 40.48 15.61 23.31
EXT2SEC (T5-Small + HLSTM) 55.77 28.64 37.50 42.45 15.20 23.92
EXT2SEC (T5-Small + BLSTM) 56.00 29.16 38.38 45.44 16.59 26.14

CLUSTER2SENT (PG + HLSTM) 55.46 27.41 35.81 46.19 16.64 24.29
CLUSTER2SENT (PG + BLSTM) 55.60 27.68 36.29 42.31 15.92 23.51
CLUSTER2SENT (T5-Small + HLSTM) 56.88 28.63 36.78 45.10 15.06 23.52
CLUSTER2SENT (T5-Small + BLSTM) 57.14 29.11 37.43 42.38 15.36 23.9
CLUSTER2SENT (T5-Base + HLSTM) 57.27 29.10 37.38 50.52 17.56 24.89
CLUSTER2SENT (T5-Base + BLSTM) 57.51 29.56 38.06 45.91 17.70 25.24

Table 2.2: ROUGE scores achieved by different methods on the two datasets

Medical dataset AMI corpus

Method PG T5-Small PG T5-Small

EXT2NOTE 52.95 - 20.44 41.10
EXT2SEC 61.00 62.37 43.32 46.85
CLUSTER2SENT 63.63 66.50 51.86 54.23

Table 2.3: ROUGE-1 achieved on test set when using the abstractive models with oracle note-
worthy utterances and clusters (more results with oracle in the Appendix)

tive models on this dataset. As an extractor, the performance of BERT-LSTM is again better
than HLSTM (Table 2.5), but when used in tandem with the abstractive module, ROUGE scores
achieved by the overall pipeline do not always follow the same order. We also observe that the
clustering heuristic does not work as well on this dataset. Specifically, tuning the thresholds of
the extractive model, while fixing the clustering threshold τ gave worse results on this dataset.
Tuning the thresholds independent of the clusters performed better. However, the best method
still outperforms CONV2NOTE by about 11 ROUGE-1 points (Table 2.2).

Performance with ASR errors In the absence of human-generated transcripts of conversa-
tions, Automatic Speech Recognition (ASR) techniques can be used to transcribe the conversa-
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Method R-1 R-2 R-L

Train on clean data + Test on data with 10% error rate

CONV2NOTE(PG) 46.52 22.60 30.45
CLUSTER2SENT(PG + BLS) 51.84 23.74 32.94
CLUSTER2SENT(T5-Base+ BLS) 54.88 26.65 35.88

Train and test on data with 10% error rate

CONV2NOTE(PG) 48.85 24.85 31.27
CLUSTER2SENT(PG + BLS) 54.68 26.59 35.70
CLUSTER2SENT(T5-Base+ BLS) 56.35 28.50 37.04

Train and test on data with 30% error rate

CONV2NOTE(PG) 45.16 22.26 30.14
CLUSTER2SENT(PG + BLS) 53.69 25.88 35.12
CLUSTER2SENT(T5-Base+ BLS) 55.90 27.73 36.06

Table 2.4: Performance of models trained and tested on data with different simulated ASR error
rates. BLS: BERT-LSTM

tions for use by our models. To account for ASR errors, we artificially added errors in transcripts
of the medical dataset by randomly selecting some percentage of the words and replacing them
with phonetically similar words using RefinedSoundEx [Commons] (details in the Appendix).
Models trained on clean dataset perform worse on a 10% corrupted test dataset (Table 2.4).
Since ASR errors lead to replacement of a correct word by only a small set of phonetically sim-
ilar words, there is still some information indicating the original word that can be used by the
models. When we train our models on data corrupted at the 10% ASR error rate, our models
recover much of the performance drop (Table 2.4). Notably when simulated ASR errors are di-
aled up to a 30% error rate, (both at train and test time) we see a smaller performance drop for
CLUSTER2SENT as compared to CONV2NOTE.
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Medical conversations AMI corpus

Metric LR LS HLS BLS HLS BLS

Accuracy 96.0 96.1 96.5 96.5 93.77 94.16
Ma-AUC 78.1 79.3 90.0 90.5 83.81 90.76
Ma-F1 29.5 31.0 38.6 40.9 19.95 33.08
Mi-AUC 87.3 87.6 92.7 93.3 93.21 94.90
Mi-F1 31.2 32.9 39.6 41.1 43.76 49.93

Table 2.5: Performance on multilabel classification of noteworthy utterances with logistic regres-
sion(LR), LSTM(LS), Hierarchical-LSTM(HLS) and BERT-LSTM(BLS). Ma:macro-averaged.
Mi:micro-averaged

Cluster of utterances Subsection Summary-PG Summary-T5 

DR That one thing that we can do to reduce risk with that 
cholesterol is 100 mg metoprolol. 
DR But I want you on two a day. 

Prescriptions and 
Therapeutics 

metoprolol 100 mg twice a day. 
metoprolol 100 mg twice 

a day. 

DR Um, the first thing I didn't get was that, um, are you, you 're on 
digoxin, right? 
PT Um-hum. 

Past Medical History  history of heart disease. patient is on digoxin. 

Medications digoxin. digoxin. 

Assessment the patient is on digoxin. patient is on digoxin. 

DR Uh, and have you had any more chest pain? 
PT I did, yeah, I do. 

Review of Systems confirms chest pain. confirms chest pain. 

DR Uh, and have you had any more chest pain? 
PT Not really. No. 

Review of Systems denies chest pain. denies chest pain. 

DR This one, this amlodipine that you are taking it's a good pill for 
high blood pressure. 
PT Okay 
DR But right now your blood pressure is a bit low. 
PT Um-hum 
DR So I will reduce it to half a pill per day, alright? 

Chief Complaint high blood pressure. low blood pressure. 

Review of Systems blood pressure is a bit low. 
blood pressure is a bit 

low. 

Past Medical History high blood pressure. low blood pressure. 

Prescriptions and 
Therapeutics 

amlodipine half a pill a day. 
reduce amlodipine to half 

a pill per day. 

DR And nothing like that? 
PT I , and , of course , when you break something , like I fractured 
my leg , I don't think that whatever that feeling is ever goes away 
completely. 

Chief Complaint leg swelling. fractured leg. 

Past Medical History leg pain. fractured leg. 

Medications patient is on leg. xarelto. 

Immunizations 
patient had a flu shot in the 

past. 
patient had 

immunizations. 

Diagnostics and 
Appointments 

the patient will undergo leg 
surgery. 

follow-up. 

 

Figure 2.2: Noteworthy utterance clusters summarized in different ways for different sections by
the abstractive summarization modules of CLUSTER2SENT (utterances were slightly obfuscated
for privacy reasons)

2.7 Qualitative Analysis

The conditioned pointer-generator and T5 models used in CLUSTER2SENT learn to place infor-
mation regarding different topics in appropriate sections. Hence, given a cluster of supporting
utterances, the models can generate different summaries for multiple sections (Figure 2.2). For
example, given the same supporting utterances discussing the patient’s usage of lisinopril for
low blood pressure, a model generates “low blood pressure” in the review of systems section,
and “lisinopril” in medications section. We direct the reader to the appendix for examples of
full-length generated SOAP notes.

Interestingly, when the abstractive model is given a cluster of utterances that are not relevant
to the section being generated, the model sometimes outputs fabricated information relevant to
that section such as saying the patient is a non-smoker in social history, or that the patient has
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taken a flu shot in immunizations . Hence, the quality of produced summaries heavily depends on
the ability of the extractive step to classify the extracted utterances to the correct section. Another
cause of false information is the usage of pronouns in clusters without a mention of the referred
entity. In such situations, T5 models frequently replace the pronoun with some arbitrary entity
(e.g. “she” with “daughter”, compounds with “haemoglobin”, and medicines with “lisinopril”).

Occasionally, the abstractive module produces new inferred information that is not mentioned
explicitly in the conversation. In one instance, the model generated that the patient has a history
of heart disease conditioned on a cluster that mentioned he/she takes digoxin, a popular medicine
for heart disease. Similarly, the model can infer past medical history of “high cholesterol” upon
seeing pravastatin usage. Such inferences can also lead to incorrect summaries, e.g., when a
doctor explained that a patient has leaky heart valves, a model added a sentence to the diagnostics
and appointments section saying “check valves”.

CLUSTER2SENT summarizes localized regions of the conversation independently, which
may lead to contradictions in the SOAP note. In one visit, the patient was asked about chest
pain twice—once in the beginning to get to know his/her current state, and once as a question
about how he/she felt just before experiencing a fall in the past. This led to the model generating
both that the patient denied chest pain as well as confirmed chest pain, without clarifying that
one statement was for the present and another for the past.

2.8 Human evaluation
We asked trained human annotators to evaluate generated SOAP notes for 45 conversations.
Every sentence in each SOAP note was labeled according to various quality dimensions such
whether it was factually correct, incoherent, irrelevant, redundant, or placed under an inappro-
priate section. The detailed statistics of annotations received for each quality dimension are
provided in the Appendix. We also collected aggregate annotations for the comprehensiveness
of each SOAP note and the extent to which it verbatim copied the transcript on a 5-point Likert
scale.

Human raters were presented with a web interface showing the conversation, along with a
search feature to help them in looking up desired information. The summaries generated by three
methods (CONV2NOTE(pointer-generator), CLUSTER2SENT(pointer-generator) and CLUSTER2SENT(T5-
base)) were presented in random order to hide their identities. For each sentence, we asked for
(i) Factual correctness of the sentence; (ii) If the statement is simply repeating what has already
been mentioned before; (iii) If the statement is clinically irrelevant; (iv) If the statement is in-
coherent (not understandable due to grammatical or semantic errors); and (v) If the statement’s
topic does not match the section in which it is placed. In addition, we asked two separate ques-
tions for rating the overall summary on a scale of 1-5 for its (i) comprehensiveness and (ii) extent
of verbatim copying from conversation. The human evaluation of the SOAP notes was done by
workers who had also participated in the creation of the dataset of SOAP notes. Hence, they had
already been extensively trained in the task of SOAP note creation, which gave them appropriate
knowledge to judge the SOAP notes.

To quantify the performance among different methods, we consider a scenario where each
generated SOAP note has to be post-edited by discarding undesirable sentences. For a gener-
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Medical conversations AMI corpus

Metric C2N C2S-P C2S-T C2N C2S-P C2S-T

Length 21.2 28.2 28.4 20.7 17.9 19.05
%Yield 62.0 69.0 74.7 27.22 30.22 59.45
Comp 2.44 2.42 2.76 2.30 2.55 3.75
Copy 2.18 2.64 2.76 1.80 1.80 1.90

Table 2.6: Averages of different metrics for CONV2NOTE(C2N), CLUSTER2SENT with pointer-
generator (C2S-P) and T5-base (C2S-T). Comp:comprehensiveness, Copy:amount of copying.
Length: number of sentences generated.

ated SOAP note, we define its yield as the fraction of its total sentences that are not discarded.
The sentences that are retained are those that are both factually correct and were not labeled as
either repetitive or incoherent. The human annotations show that both CLUSTER2SENT-based
methods tested produced a higher yield than the CONV2NOTE baseline (p< 0.02). T5-base per-
forms better than conditioned pointer-generator as the abstractive module in CLUSTER2SENT

setting, producing significantly more yield (Table 2.6). T5 also produces fewer incoherent sen-
tences (Appendix Table 4) likely due to its exposure to a large number of well-formed coherent
sentences during pretraining.

We conducted an analogous human evaluation of summaries generated for all 20 conversa-
tions in the test set of the AMI corpus, and saw a similar trend in the expected yield for different
methods. Notably, for the AMI corpus, CONV2NOTE produced a very high proportion of re-
dundant sentences (> 0.5) despite using the coverage loss, while the pointer-generator based
CLUSTER2SENT produced a high proportion of incoherent sentences (Appendix Table 4).

2.9 Conclusion
This paper represents the first attempt at generating full-length SOAP notes by summarizing tran-
scripts of doctor-patient conversations. We proposed a spectrum of extractive-abstractive summa-
rization methods that leverage: (i) section-structured form of the SOAP notes and (ii) linked con-
versation utterances associated with every SOAP note sentence. The proposed methods perform
better than a fully abstractive approach and standard extractive-abstractive approaches that do
not take advantage of these annotations. We demonstrate the wider applicability of proposed ap-
proaches by showing similar results on the public AMI corpus which has similar annotations and
structure. Our work demonstrates the benefits of creating section-structured summaries (when
feasible) and collecting evidence for each summary sentence when creating any new summariza-
tion dataset.
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Chapter 3

Generating better summaries for noisy
inputs

Typically, abstractive summarization models are trained and evaluated on carefully curated datasets
which have minimal or no noise. In real-world practice, documents to be summarized may
contain input noise caused by text extraction artifacts or data pipeline bugs. For example, in
Chapter 2, the dataset of SOAP notes and accompanying conversation transcripts had transcripts
created by humans, instead of automatic speech recognition (ASR) methods. In large-scale de-
ployment, such conversations must be transcribed using ASR, and this almost certainly leads to
incorrect words in the transcript. The presence of such noise in the test data leads to inferior per-
formance by summarization models trained on clean data, as we saw via experiments simulating
ASR errors in Chapter 2. However, a systematic study of the impact of various kinds of such
unseen noise on summarization models trained on different kinds of datasets is not available.
We also saw that training the models with simulated ASR errors in the training data itself can
alleviate this problem to some extent. However, in general scenarios, a great variety of noise
types can be encountered during deployment, and it is not always possible to foretell them and
train models with their simulated versions. This presents a major obstacle in the deployment of
summarization models in real-world scenarios.

In this chapter, we present a large empirical study quantifying the sometimes severe loss
in performance (up to 12 ROUGE-1 points) from different types of input noise for a range of
datasets and model sizes. We then propose a light-weight method for detecting and removing
such noise in the input during model inference without requiring any extra training, auxiliary
models, or even prior knowledge of the type of noise. Our proposed approach effectively miti-
gates the loss in performance, recovering a large fraction of the performance drop, sometimes as
large as 11 ROUGE-1 points.

3.1 Introduction

Despite rapid progress in abstractive summarization in recent years [Lewis et al., 2020a, Raffel
et al., 2020a, Zhang et al., 2020], virtually all works have tested models using test data which is
identically distributed as the training data, and little attention has gone into studying their robust-
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ness to input distribution shift caused by input noise. Data from different domains which have
been addressed in summarization research, may contain noise of different types. For example,
when summarizing a news article on a web page, there can be embedded elements such as ads
or tweets which may be included as part of the article due to erroneous text extraction. A sys-
tem summarizing chatroom conversations might encounter artifacts such as URLs, or sometimes
even code shared between participants. If the text to be summarized is acquired by scanning a
document, noise can be introduced in the form of OCR errors [Jing et al., 2003]. However, the
impact of different kinds of noise on modern abstractive summarization systems, and ways to
accurately detect and remove that noise, remain largely unknown.

In this work, we study how noise in the input affects the output generated by summarization
models, and propose a method to detect and remove it. We synthetically inject 4 types of noise
to 4 abstractive summarization datasets with diverse styles [Narayan et al., 2018a, Kim et al.,
2019a, Gliwa et al., 2019, See et al., 2017], and quantify the drop in aggregate metrics for the
output summaries (Section 3.3). We also study how the quality of generated summaries varies
with factors such as the amount of noise and size of the models. For our experiments, we use
PEGASUS [Zhang et al., 2020] models — Transformer-based pre-trained models which deliver
competitive performance across abstractive summarization benchmarks.

Figure 3.1: Effect of noise addition and filtering on the model generated summary for a sample
document. Random URLs are injected to the original document as noise. The color indicates the
value of our proposed OOD score for a text span — red represents positive and blue represents
negative OOD scores, with saturation proportional to the magnitude. Removing the detected
noisy parts from input and feeding to summarization model results in a summary closer to the
ground truth.

We present a method to detect and remove noisy spans in the input, which works without
prior knowledge of the noise type or access to its samples, yet can recover a large fraction of
the drop in output quality resulting from noise addition (Section 3.4). Our approach for de-
tecting noisy spans is based on variations of the out-of-distribution (OOD) detection techniques
proposed by Ren et al. [2022] — Relative Mahalanobis Distance OOD Score, which uses the
embeddings computed by the summarization model’s encoder. Our approach does not require
any additional training or use of external models, hence it is relatively efficient. Figure 3.1 shows
our method’s impact on a sample noisy document.
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Finally, we investigate how different parts of the model architecture cause the drop in out-
put quality upon adding noise to the input (Section 3.5). We attribute the performance drop to
two phenomena: (i) corruption of the representations of non-noisy input tokens computed by
the encoder due to contextualization with neighboring noise; and (ii) distraction of the decoder
such that it assigns non-zero attention to the representations of noisy input tokens. To quantify
their contribution to drop in output quality, we perform an ablation where we remove the en-
coder embeddings of the noisy tokens before running the decoder, hence eliminating the effect
of decoder distraction. We find that in a majority of cases this leads to partial recovery in output
quality suggesting that generally both factors are responsible to some extent for the poor output
summaries.

In summary, we make the following contributions:

• We quantify the impact of various kinds of noise on pretrained Transformer-based summa-
rization models, demonstrating drops in output quality upto 12 ROUGE-1 points.

• We show that this noise can be detected using adaptations of recently proposed out-of-
distribution detection method, without ever being exposed to it in advance. Our approach
can recover much of the performance drop (sometimes as large as 11 ROUGE-1 points),
improving robustness and safety for real-world model deployment.

• We examine how different parts of the model’s computation are affected by the introduc-
tion of input noise, leading to generation of inferior summaries.

3.2 Related Work

Research on the behavior of summarization models on noisy inputs is quite sparse. Jing et al.
[2003] investigated how the performance of extractive summarization models is impacted by
noise due to OCR errors while summarizing scanned documents. More recently, Meechan-
Maddon [2019] studied the effect of noise in the form of ASR errors on abstractive summa-
rization models based on convolutional neural networks. In contrast, we experiment with pre-
trained Transformer models which are now preferred in popular use due to their superior perfor-
mance [Lewis et al., 2020a, Zhang et al., 2020, Raffel et al., 2020a], and address a wide variety
of noise types and summarization datasets.

The effect of noisy inputs has also been studied for NLP tasks other than summarization, such
as machine translation [Niu et al., 2020] and question answering [Peskov et al., 2019]. Multiple
works across machine translation [Karpukhin et al., 2019, Vaibhav et al., 2019], question an-
swering [Peskov et al., 2019] and summarization [Jing et al., 2003] have used synthetic noise to
create noisy inputs. Similar to these works, we also create synthetic noisy inputs due to lack of a
dataset with naturally occurring labeled noise. One distinguishing aspect of our work is that our
noise detection/removal method works without exposing the model to the noise during training,
which is closer to practical scenarios where unknown types of noise can be encountered after a
model is deployed.
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3.3 Impact of noise addition

(a) Effect of noise amount by dataset (b) Effect of noise amount by noise type

(c) Effect of noise type by dataset (d) Effect of model size by dataset

Figure 3.2: Change in output quality upon addition of noise to inputs, while varying different
factors — noise amount in (a) and (b), noise type in (c), and model size in (d). In (c) and (d) we
also show the quality after noise removal (the shaded area). Quality is measured as the geometric
mean of ROUGE-1/2/L scores and averaged over the non-varying factors. We set noise amount
to 0.5 in (c) and (d).

We inject noisy text spans in between sentences of the clean articles. The insert position
of each noisy text span is sampled independently and uniformly at random (see Figure 3 in
Appendix for an example). Overall, we consider the following choices of a noisy text span:

• Code - a random line of code from a corpus of Python programs [Husain et al., 2019].
Code may be shared in professional chatrooms.

• Emoji - randomly sampled emojis taken from the version 15 release on unicode.org.
Emojis can be found in conversations and social media posts.

• URL - a random URL from the first 1% of validation set of the the Colossal Common
Crawl Corpus(C4) [Raffel et al., 2020a]. URLs can be referenced in news articles or
mentioned in chatrooms.

• Randomsent - a random sentence from the first 1% of validation set of the C4 corpus.
We experiment with different amounts of noise added to the input which is treated as a hyper-
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Table 3.1: The frequencies of most commonly generated summaries on noisy versions of XSUM
and RedditTIFU-long validation sets (Noisy) and their frequencies before adding noise (Clean)
(using the base model size and Code noise type with noise amount set to 0.5)

XSUM RedditTIFU-long

Summary Noisy Clean Summary Noisy Clean

. (period) 145 1 : (colon) 230 0
A chronology of key events: 108 0 ** 68 2
All images are copyrighted. 62 7 i’m a f**king idiot. 16 3
All pictures are copyrighted. 9 4 i’m an idiot. 15 22
The following is a summary of key
events:

5 0 ] 13 0

parameter. We measure the amount of noise in terms of the number of noisy tokens added to
the input divided by the total number of tokens in the input after noise addition. We experiment
with 4 different datasets — XSUM [Narayan et al., 2018a], CNN/DailyMail [See et al., 2017],
SAMSum [Gliwa et al., 2019] and RedditTIFU-long [Kim et al., 2018]. Our datasets span a
variety of domains, where the first two datasets deal with summarizing news articles, and the
remaining two consider summarizing conversations and social media posts respectively. For all
experiments with each summarization dataset, we use PEGASUS models [Zhang et al., 2020]
finetuned on that dataset. We evaluate the performance of models using ROUGE scores [Lin,
2004b] of the corresponding summaries generated by the them.
Effect of noise amount: We compare four different levels of noise, 5%, 10%, 25%, and 50%
(50% means the amount of noise tokens is equal to the amount of the clean tokens.). As shown
in Figure 3.2, we see a near monotonic decrease in output quality as more noise is added to the
data. In Figure 3.2a, we group it by datasets while averaging across model sizes and noise types.
This reveals that some datasets are more robust to noise than others (e.g. CNN/DailyMail is
most robust), and the relative trends in performance drops remain similar across different noise
amounts. In Figure 3.2b, we group the performance drops by noise types while averaging across
datasets and model sizes. We see a clear gap between the drops for Code and Randomsent vs
Emoji and URL, with the gap widening as the noise amount is increased.
Effect of noise type: In general, we see the models are more robust to URLs and emojis, and less
robust to Randomsent and Code noise types as demonstrated by performance drops (averaged
across model sizes) shown in Figure 3.2c. We suspect that some of the this could be due to the
presence of URLs and emojis in the training dataset itself, due to which the model may have
learned to be robust to those noise types. In addition, from Figure 3.2c we see that models
trained on different datasets have varying sensitivity to different kinds of noises. For example,
SAMSum is notoriously susceptible to Randomsent noise, leading to a drop of about 10 Rouge-1
points averaged across model sizes (Table 8 in Appendix), whereas for CNN/DailyMail Code is
the most harmful type of noise.
Effect of model size: We compare PEGASUS models of 3 different sizes (number of parameters)
— Small (50M), Base (200M), and Large (500M). As shown by performance drops (averaged
over noise types) in Figure 3.2d, one might expect larger models to be less susceptible to noise,
but it does not seem to be the case in general and simply scaling up models may not solve
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robustness. In some cases, large models can still suffer loss of over 10 ROUGE-1 points with
addition of noise (see Table 8 in Appendix).

A qualitative analysis of the summaries generated for noisy inputs revealed that there exist
some frequent bad summaries which are generated by the models for many noisy inputs. This
is observed for models finetuned on XSUM and RedditTIFU-long datasets, while for the other
two datasets we did not observe such a pattern. We show five of the most frequently generated
summaries for XSUM and RedditTIFU-long in Table 3.1. We see that the generated summary
(for noisy inputs) is often just punctuation marks such as a period or a semicolon. Notably, for
XSUM dataset, some of the frequently generated bad summaries were also present as ground
truth summaries in the train set. For example, “All images are copyrighted.” was the ground
truth summary for 39 articles in the train set. This suggests that upon encountering input noise,
the model can fall back to behaving like an unconditioned language model and generating high
frequency sequences from the train set.

3.4 Noise detection and quality recovery

Table 3.2: Performance of different methods for noise detection aggregated across datasets (using
the base model size and 0.5 noise amount )

Method Overall AUC Per-example AUC
Code Emoji Randomsent URL Code Emoji Randomsent URL

LO-Tok 77.10 84.25 73.63 85.41 78.52 84.17 74.74 86.83
LO-Sent 88.04 88.83 85.43 95.66 89.46 87.94 87.00 96.08
Sent 89.37 82.73 90.65 90.64 91.70 82.80 93.83 93.64
GPT-2 78.20 55.29 81.19 62.44 77.90 54.96 80.00 60.71

3.4.1 Noise detection
Ren et al. [2022] studied various methods for detecting OOD inputs for conditional language
generation tasks, including summarization. They showed that the proposed embedding-based
OOD detection method Relative Mahalanobis distance (RMD) worked well. Specifically, given
an input sequence x = x1 . . . xt, the method obtains the input embedding z = 1

t
Σihi by averag-

ing the encoder’s final-layer hidden state vectors hi corresponding to the input sequence token
xi. The OOD score is defined as the difference between two Mahalanobis distances (MD),

S(x) := RMD(z) := MDin(z)− MD0(z), (3.1)

where MDin(z) = (z−µ)TΣ−1(z−µ) measures the distance from z to the Gaussian distribution
N (µ,Σ) fitted with in-domain samples of z, and MD0(z) = (z − µ0)

TΣ−1
0 (z − µ0) measures

the distance to the Gaussian N (µ0,Σ0) fitted using samples of z obtained using background
data. The in-domain Gaussian distribution is fitted using the in-domain training set, and the
background distribution is fitted using the same number of examples from C4 [Raffel et al.,
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2020b] which represents a large and broad set of domains. In our experiments we use 10, 000
examples to fit each distribution. The RMD score is regarded as a background contrastive score
that indicates how close the input sequence is to the in-domain compared to the background
domains. A negative score suggests relatively in-domain, while a positive score suggests out-of-
domain (OOD).

Instead of computing a single OOD score for the entire input document sequence as in Ren
et al. [2022], in this work, we focus on detecting smaller sub-parts of OOD noise within the input
document sequence. We propose three variants:
Leaveout-Sentence (LO-Sent) In this case, we compute the OOD scores of the input with and
without a sentence in it. The negative of the change in the OOD score after removing the sentence
denotes the OOD score of that sentence. Intuitively, if removing the sentence decreases the
overall OOD score, that sentence is assigned a positive OOD score and vice-versa.

SLO-Sent(xi:j) = S(x1:t)− S(x1:(i−1);(j+1):t) (3.2)

Leaveout-Token (LO-Tok) This is very similar to the previous method LO-Sent except that
instead of removing a sentence, we remove a token at a time and hence get OOD scores for each
token,

SLO-Tok(xi) = S(x1:t)− S(x1:(i−1);(i+1):t). (3.3)

Sentencewise (Sent) Instead of computing the score based on embeddings averaged over the
tokens in the whole input document sequence (consisting of multiple sentences), we fit Gaus-
sian distributions at the sentence level by averaging the token embeddings in a sentence zi:j =

1
j−i+1

∑j
k=i hk. We use the sentence embeddings from in-domain data and C4 data to fit the two

Gaussian distributions, N (µsent,Σsent) and N (µsent
0 ,Σsent

0 ).

Ssent(xi:j) = MDsent
in (zi:j)− MDsent

0 (zi:j) (3.4)

where MDsent
in and MDsent

0 are MDs to N (µsent,Σsent) and N (µsent
0 ,Σsent

0 ) respectively.

GPT-2 likelihood We also experiment with a simple language model baseline to generate the
noisiness scores based on average negative log-likelihood (NLL) of tokens in a sentence, as
given by the pretrained GPT-2 model. Intuitively, a higher value of NLL signifies that a token
is unlikely to occur given the past context, which should hold true in case of noisy tokens with
clean past context.

SGPT2(xi:j) = − 1

j − i+ 1

j∑
k=i

log pG(xk|x<k) (3.5)

where pG(xk|x<k) is the probability assigned by the GPT-2 model to token xk given previous
tokens.

To calculate performance of models at noise detection, we compare the assigned OOD score
for each token with its ground truth label and we compute the ROC AUC scores for comparison.
For the two sentence level scores, SLO-Sent(xi:j) and Ssent(xi:j), we assign each token’s OOD score
to be the sentence level OOD score for the sentence which contains that token. We compute
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Table 3.3: ROUGE scores (geometric mean of 1/2/L) on clean input and changes when adding
different kinds of noise, and after the noise is filtered out using Sent method (Noise amount: 0.5)

Model size Clean Code Emoji Randomsent URL

Add Filter Add Filter Add Filter Add Filter

XSum

Small 31.66 21.43 27.50 23.28 31.33 22.28 28.44 25.50 30.30
Base 35.18 27.64 32.01 30.03 34.49 26.28 32.32 26.87 33.97
Large 37.18 35.86 36.89 36.36 36.83 31.68 35.09 35.81 36.77

CNN-Dailymail

Small 31.96 25.27 23.37 31.24 31.46 30.01 30.38 29.69 30.39
Base 33.09 26.27 25.39 32.53 32.70 31.31 31.53 30.74 31.25
Large 33.44 29.60 30.99 33.11 33.02 31.97 32.36 32.03 32.67

Samsum

Small 37.96 33.00 36.80 36.83 36.73 28.11 35.18 34.17 37.31
Base 39.74 36.95 38.89 39.18 38.97 31.96 37.51 36.89 39.47
Large 41.63 38.80 40.91 41.46 41.42 31.85 38.58 39.19 40.81

Reddit-TIFU

Small 15.51 11.53 13.55 12.97 15.21 13.40 14.70 13.41 14.09
Base 17.54 12.16 14.55 13.33 14.42 14.18 16.62 15.71 16.23
Large 18.15 13.33 16.06 14.89 15.76 13.92 17.32 15.96 16.88

evaluation metrics in two ways: (i) per-example basis where the AUC score is computed for
each example and then they are all averaged across the dataset. (ii) overall basis where all
the predictions across the entire dataset are pooled together before computing a single AUC
score. We show the scores averaged across the 4 datasets in Table 3.2. In general, the LO-Tok
method performs the worst of the three OOD-based methods, while Sent and LO-Sent perform
comparably. Comparing the GPT-2 baseline with LO-Tok, GPT-2 performs clearly better for
Randomsent, comparably for Code, and clearly worse for Emoji and URL noise types. However,
GPT-2 lags behind LO-Sent and Sent for all noise types. Between Sent and LO-Sent, Sent
performs better for Code and Randomsent and LO-Sent performs better for Emoji and URL
noise types. For its simplicity, we use the Sent method for OOD detection in rest of the paper.

3.4.2 Quality recovery after noise filtering

To remove noise from the input, we simply remove all sentences that have an OOD score greater
than a threshold, and then evaluate how much output quality gets recovered after this. We set the
threshold of OOD score for filtering to be the 99 percentile value of the OOD scores computed
for sentences in the clean version of the dataset (without any noise). The chosen percentile is
set to be this high to minimize false positives which can lead to removal of useful non-noisy
information from the input. Since the threshold is computed using only the clean dataset and the
model trained on that, we do not need any prior information about the noise (similar to OOD
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score computation).
We show the performance of noise filtering for different noise types, model sizes and datasets

in Table 3.3. For succinctness, we show the geometric mean of the ROUGE-1,2 and L variants,
and point the reader to the Appendix (Table 8) for detailed results with individual variants of
ROUGE. After noise filtering, we can recover a large part of the drop in ROUGE scores that
occurred due to the added noise. In cases of large drop such as the Randomsent noise type with
XSUM and SAMSum datasets, we can recover 4-6 and 6-7 points respectively depending on the
model size (Table 3.3).

We also present aggregate trends of recovery of output quality using our filtering approach
in Figure 3.2c and 3.2d. We can see that we recover over half of the drop in the performance on
9 out of 16 combinations of datasets and noise types (Figure 3.2c), with the best performance
observed on XSUM and SAMSum datasets and the worst on CNN/DailyMail. The method also
succeeds in recovering performance across all 3 model sizes (Figure 3.2d).

(a) Increase in summary quality after filtering with different threshold-
ing
approaches, for different datasets and noise types

(b) Precision and recall for
noise detection across differ-
ent filtering experiments with
varying thresholds, with the
resulting change in output
quality

Figure 3.3: Change in output quality for different thresholding techniques (a) and its correla-
tion with the precision and recall of noise detection (b). The changes in summary quality are
illustrated by color (blue shows increase and red shows decrease, saturation denotes magnitude
clipped to range [0,5])

We experimented with various thresholding strategies such as setting thresholds to be con-
stant irrespective of the dataset or model (e.g. 0), or to be equal to a different percentile value
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(other than 99%) of the OOD scores produced by the model used on clean data. We also tried
choosing the optimal threshold based on F1-score of noise detection on a hold-out validation
set (assuming a scenario where we have access to labeled noisy samples). We tried 6 thresh-
olding techniques in total, compared in Figure 3.3a. Setting a constant threshold of 0 provides
gains in some cases but in other cases makes the model outputs worse, due to filtering out useful
non-noisy content. To prevent this, one can use a very high threshold such a 500 which practi-
cally eliminates cases of further drop in performance (Figure 3.3a), but the performance gains
produced in that case are small because less noise is filtered. The best approach turns out to be
setting it be the 99 percentile of the clean data OOD scores, which produces different thresholds
for different models, and leads to the highest average gain in output quality among the strategies
tried, with minimal cases of further degradation. Surprisingly, optimizing the threshold based
on F1-score of noise detection on a validation set also reduces the output quality in many cases,
suggesting that F1-score may not be the best predictor for the quality of summary produced after
filtering.

We conduct noise filtering for each of our experimental setups (all datasets, noise types and
amounts, model sizes) with three thresholds — 0, 200 and 500 and compare the resulting change
in summary quality with the precision and recall of the noise detection in Figure 3.3b. We find
that a precision lower than around 0.7 usually leads to a drop in summary quality, even if the
recall is nearly perfect suggesting that almost all noise has been removed. This suggests that
precision is more important than recall for improving summary quality.

3.5 Investigating causes of loss in performance

There are two distinct mechanisms which can lead to worsening of generated summaries upon
addition of input noise. The first is the corruption of the encoder’s representation of useful
clean tokens. The encoder transformer uses self-attention over input tokens to generate their
contextualized representations. In cases where noise is present in the input, self-attention can
distort the encoder representations of clean tokens. The second mechanism is the distraction
of the decoder such that it assigns non-zero attention to the noisy tokens’ embeddings and this
impairs its computation. Even if there is no corruption in the embeddings of clean tokens, the
embeddings of noisy tokens can receive non-zero cross-attention from the decoder and influence
its generation. If neither of these two phenomena occur, the generated summary on the noisy and
clean variants of any input would be the same. In this section we investigate the contribution of
these two factors in the degradation of output quality.

3.5.1 Are the clean token embeddings corrupted by the presence of noise?

We observe that the OOD scores of the clean tokens increase after addition of noise. In Fig-
ure 3.4, we shown an example of this for the XSUM dataset after adding Code noise, where the
OOD scores are computed using the Sent method. This suggests that the distribution of clean
tokens’ embeddings moves farther from the in-domain distribution (learnt from clean in-domain
data) relative to the background distribution (learnt from C4 corpus), after addition of noise. We
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made this observation for different datasets and noise types, although the extent of the increase
in OOD scores varies across them.

Figure 3.4: Distribution of OOD scores of (i) clean tokens before adding noise (doc) (ii) clean
tokens after adding noise (doc-post-noise) and (iii) noisy tokens after adding them (noise) (using
base model size and 0.5 noise amount)

3.5.2 How much performance can be recovered by preventing distraction
of the decoder?

We design an ablation experiment to measure how the performance drop would change if there
is no distraction of the decoder by embeddings of noisy tokens. Any drop in output quality in
such as setup is attributable only to the corruption of the clean tokens’ encoder representations.
We remove the embeddings of the (ground truth) noisy tokens after passing the noisy input
through the encoder of the PEGASUS model, and then use the decoder to generate the summary
using only the remaining embeddings (Figure 3.5). Since the removal is done after passing the
whole input through the self-attention layers of the encoder, the clean tokens’ embeddings are
already distorted, and the decoder has to generate the summary using these distorted embeddings.
The difference from the usual scenario is that the decoder does not have to include the noisy
tokens’ embeddings in the computation. We find that this mostly leads to an increase in output
quality compared to when the noisy token embeddings are not removed (Figure 3.6). The biggest
improvements come for XSUM and SAMSum datasets, whereas for CNN/DailyMail dataset no
improvement is seen for any of the 4 noise types. Surprisingly, for the RedditTIFU-long dataset
with the URL and Randomsent noise types, removing the noisy tokens’ embeddings decreases
the ROUGE scores further, suggesting that retaining those embeddings is somehow useful for
the decoder.

The above ablation study highlights the necessity of running the encoder twice — once for
computing OOD scores to detect noise, and then again to compute the encoder representations
of the input after removing noisy tokens. While one can save computation time by reusing
the encoder embeddings of the clean tokens computed during OOD scoring to feed them to
the decoder for generation, results from the ablation suggest that this would give sub-optimal
performance recovery (Figure 3.6).
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Figure 3.5: Ablation experiment where the decoder does not have to process the noisy tokens’
embeddings.

Figure 3.6: Performance drops for different datasets and noise types, with the shaded area show-
ing drops when the noisy tokens’ encoder embeddings are removed before running the decoder
(using the base model size and 0.5 noise amount)

3.6 Conclusion and Future Work
In this work, we quantified the impact that noisy inputs can have on the output quality of summa-
rization models, for a variety of datasets and noise types. We then proposed a method to detect
and remove noise from the input without using any extra models, training, or prior information
about noise types, and demonstrated its efficacy. One direction for future work is to investigate
what makes certain models more susceptible to specific noise types. Another interesting direc-
tion would be to carry out experiments for noise filtering with real-world noisy data rather than
using synthetically generated noisy examples.
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Chapter 4

Pretraining summarization models with
artificial data

Pretraining techniques leveraging enormous datasets have driven recent advances in text sum-
marization [Raffel et al., 2020a, Lewis et al., 2020b, Zhang et al., 2020]. However, the gains in
performance also come with some risks. The pretraining corpora are typically sourced from the
web, and the data can contain harmful content such as toxic language or gender/racial biases.
While some efforts are made to filter out harmful content, it is not completely successful, and
a variety of such pretrained language models have been shown to generate toxic content, even
when given non-toxic prompts [Gehman et al., 2020]. The possibility of such toxic generations
discourages the use of such models, especially for use cases involving children. Additionally, lan-
guage models are shown to memorize and reproduce training data, which can potentially include
sensitive PII data [Carlini et al., 2021] or copyrighted content. This can have legal repercussions,
and hence can discourage corporate entities from deploying such models.

In this chapter, we show that knowledge transfer from upstream pretraining corpora is not
a necessary requirement for getting performance gains from pretraining. We show that when
pretraining sequence-to-sequence transformer models using popular pretraining tasks (e.g. sen-
tence reordering), using synthetic documents consisting of meaningless words can provide a
significant proportion of the performance gains provided by using real-world corpora. To study
the impact of the structure of the pretraining task on downstream performance, we design several
new tasks motivated by a qualitative study of summarization corpora, which deliver similar gains
to existing pretraining tasks. Our results show that a significant portion of pretraining’s benefit
comes from some unknown mechanism besides knowledge transfer from the pretraining corpus,
which can be leveraged to deliver better performance compared to training models from random
initialization.

4.1 Introduction

Despite the widespread success of pretrained models when fine-tuned on diverse downstream
NLP tasks, such as summarization Qi et al. [2020], Raffel et al. [2020a], question answering,
sentiment analysis etc Yang et al. [2019], scientific explanations for these benefits remain un-
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known. Several works have claimed that pretrained models learn linguistic knowledge from the
pretraining corpus [Lina et al., 2019, Tenney et al., 2019, Manning et al., 2020], leading to a
popular, but unproven hypothesis that credits knowledge transfer for the improvements seen on
downstream tasks. However, several recent findings test the plausibility of this account. For ex-
ample, benefits of pretraining have been observed even when the upstream text has no syntactic
structure [Sinha et al., 2021] and others have shown benefits even when the upstream corpus is
from a different domain entirely, such as music [Papadimitriou and Jurafsky, 2020] or amino
acid sequences [Chiang and Lee, 2020]

In this work, we show that, surprisingly, pretraining objectives previously demonstrated to
be helpful for summarization [Zou et al., 2020], continue to deliver significant benefits even
when applied on text consisting of randomly sampled nonsense words. Because the text consists
of nonsense words sampled independently and uniformly, it seems difficult to fathom a credible
argument that the synthetic corpus encodes linguistic knowledge in any relevant sense. Neverthe-
less, when pretraining transformer-based sequence-to-sequence models using this nonsense text,
we achieve significant performance boosts on multiple downstream summarization benchmarks
that nearly match the performance of pretrained transformers.

Remarkably, when pretraining with synthetic tasks, using real data offers no benefit over the
nonsense data, on multiple summarization benchmarks. Thus, we investigate whether a pretrain-
ing task better aligned with the demands of summarization might close this residual gap. We
design a collection of pretraining tasks inspired by some of the basic primitive operations that
appear to be common routines required in order to create real-world summaries. We carried out
an extensive survey of public summarization datasets spanning different domains, and catalogued
several elementary operations that were frequently invoked in producing summaries (e.g., extract
sentences on a specific topic, or determine the most frequent among a set of relevant terms). In
our proposed pretraining corpus, the summary is created by carrying out these elementary oper-
ations on the input. However, we find that our pretraining tasks deliver comparable performance
gains to those proposed in Zou et al. [2020] leaving the small gap open. On CNN-Dailymail and
Rotowire benchmarks, where median summary lengths are 73 and 456 tokens respectively, using
our pretraining tasks with nonsense text results in achieving on average 95% of the performance
gain in ROUGE-1 that standard T5 pretrained models enjoy relative to randomly initialized T5.
By contrast, on XSum and Rottentomatoes, where summaries are shorter (29 and 32 tokens re-
spectively), we realize a relatively modest 37% of the benefit on average.

The takeaways from our results are two-fold: First, these results challenge our understanding
of why pretraining helps in summarization, suggesting that a large portion of the benefits seen
may not be due to any knowledge transfer, but simply better initialization from an optimization
perspective. Second, the ability to realize the benefits of pretraining without using real-world data
could alleviate concerns regarding bias, offensive speech, and intellectual property associated
with using web-scale pretraining corpora of unknown provenance [Davidson et al., 2019, Bordia
and Bowman, 2019].
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4.2 Related Work

Recently, multiple pretrained models have shown remarkable performance on text summariza-
tion. These models have been pretrained on real data with diverse denoising tasks, including
masked language modeling Raffel et al. [2020a], text infilling Zhang et al. [2020], and sentence
reordering Lewis et al. [2020b], among others. While these pretraining objectives have shown
benefits across multiple NLP tasks, Zou et al. [2020] proposed a set of three denoising pretrain-
ing tasks that are specifically motivated by summarization and deliver performance comparable
to previous pretrained models. Our paper shows that the pretraining tasks in Zou et al. [2020] im-
prove summarization performance even if the pretraining corpus is artificial and does not encode
any linguistic structure.

Our work extends a growing body of scientific literature that questions commonly-held be-
liefs about what properties of a pretraining corpus lead to improvements on different downstream
tasks. Recently, Sinha et al. [2021] showed that word order in pretraining documents has neg-
ligible impact on downstream performance on the GLUE benchmark. Even pretraining on se-
quences from different modalities such as Java code and amino acid sequences [Chiang and Lee,
2020] have shown benefits on GLUE benchmark, Similarly, for the task of language modeling,
pretraining on musical scores, or even artificial sequences of nested parentheses has shown to
achieve better perplexity on a human language [Papadimitriou and Jurafsky, 2020]. Our results
go further—here the source documents contain no natural data at all, nor do they exhibit any
non-trivial structure.

Recently, some machine learning theory literature has begun to question the mechanism by
which transfer learning works. For example, Neyshabur et al. [2020] attribute the benefits to
low-level statistics of the data and optimization considerations rather than feature reuse. In other
related work, Maennel et al. [2020] show that networks pretrained on randomly labeled data
sometimes enjoy considerable performance improvements on downstream tasks.

4.3 Generating the Nonsense Corpus

For generating the nonsense pretraining corpus, we use an artificial vocabulary to create base
documents that has little resemblance to any real language. Our vocabulary simply consists of
the first 5000 3-letter character combinations using the English alphabet in lexical order starting
from the right (aaa, baa, caa, ..., aab, bab, ...). Each sentence is generated by sampling each
word in it independently from the uniform distribution over the entire vocabulary, and ending
it with a period (see Figure 4.1 for a sample nonsense document). The length of each sentence
is selected uniformly from 5 to 15 words. The number of sentences per document is selected
according to the pretraining task that it is used for. For the pretraining tasks proposed in Zou
et al. [2020], we sample sentences until the document reaches 512 tokens in length. For our
pretraining tasks (introduced later), number of sentences in a document is decided by sampling
uniformly from 7 to 13 sentences.
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4.4 STEP Pretraining Tasks
STEP pretraining tasks are a collection of 3 tasks defined by Zou et al. [2020]. Next Sentence
Generation (NSG) provides the first half of a document as input and the target is to generate
the latter half. Sentence Reordering (SR) presents a document with its sentences shuffled in
random order, and requires generating the original document with correct sentence order. Masked
Document Generation (MDG) masks out a contiguous sequence of tokens in the base document
and requires generating the original document while correctly filling-in the masked tokens. More
details and hyperparameters can be found in the original paper.

4.5 Our Pretraining Tasks
To develop our pretraining tasks, we first undertook a qualitative analysis of existing summariza-
tion datasets. We surveyed all summarization papers published in the last 10 years with more
than 25 citations, cataloguing a list of the summarization datasets that were used in them. We
observed that datasets can be grouped together according to domain (e.g., news and conversa-
tions). We grouped the 28 retrieved datasets into 14 domains (see the Appendix, Table 15). We
selected a single dataset from each domain to analyze what summaries consist of and what skills
their creation requires.

From each selected dataset, we manually inspected ten randomly sampled input-summary
pairs, looking for primitive subtasks that seem to express skills (informally) that are required
in order to create the summaries demanded by this dataset for at least two of the ten instances.
Since we need to create artificial input-summary pairs for each subtask, we only chose subtasks
for which it was possible to create large number of such artificial pairs. For example, in the
Samsum dataset [Gliwa et al., 2019] which requires summarizing conversations between people,
a frequently necessary subtask is to infer the unfolding social scenario (e.g. a fight, or a person
helping another) but it is difficult to create a large number of varied artificial conversations that
reflect the situation. On the other hand, subtasks such as extracting those sentences that address
some specific topic, or (even simpler) extracting the first sentence of the input are simple enough
to facilitate creating data points programatically. Note that while copying the first sentences
might seem like a trivial or uninteresting pretraining task, it can be very useful. For example, in
news summarization datasets the lead-3 baseline (copying over first 3 sentences as the summary)
works very well [Brandow et al., 1995, Grenander et al., 2019].

Based on this analysis, we developed 21 elementary tasks, including copying specific content,
performing numerical operations, and more. See Table 4.1 for full details on the slate of tasks.

Generating artificial summaries To create an input-summary pair using an elementary task
from Table 4.1, we first create a base document and then (when required by the task) modify
it by adding the requisite keywords. For example, CopyKwdOneSentence uses a keyword to
mark the sentence to copy. The keywords added for tasks are also meaningless like keyword1,
keyword2. Then the corresponding elementary operation is applied to generate the summary
from this modified input.

The pretraining dataset that we create involves multiple elementary operations in each input-
summary pair. To create the input-summary pair from a nonsense document, we first sample 3
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Elementary subtask Description

CheckKeyword Check if the input has a special keyword or not.
ClassifyKeyword Output the category of keyword occurring in the input
MajorityKeyword Out of two given keywords, find which one occurs more number of times
CopyFirstSentence Copy first sentence

CopyBulleted Copy over a bullet point (sentence starting with a bullet marker).
CopyQuoted Copy text within quotes

CopyLastSentence Copy last sentence
CopyKwdOneSentence Copy the sentence that contains a keyword

CopyKwdMultipleSentInOrder Copy all sentences containing any keyword in their order of appearance.
CopyKwdMultipleSentSorted Copy all sentences containing any keyword, sorted by the keywords

CopyKwdMultipleSentShuffled Copy all sentences containing keywords in any order.
ReplaceClassKeyword Replace an object’s mention with its category (e.g. apple −→ fruit)

CompareNumbers Given two numbers in the text, say which one is bigger
SumOfNumbers Sum all numbers in the input

ThresholdNumber Check if a number in the input is above a threshold
LargestNumber Find out largest of one or more numbers in the input.

TruncateSentence Copy a sentence but only till the cutoff keyword is encountered
BreakClauses Break a single sentence into multiple ones containing one clause each
JoinClauses Join clauses from multiple sentences to make one longer sentence

ParaphraseWords Copy a sentence while replacing its keywords with one of its synonyms
TopicSegregation Copy sentences containing keywords from different classes into separate sections

Table 4.1: 21 extracted elementary summarization subtasks and their descriptions (detailed ver-
sion is in Appendix)

elementary tasks and sequentially modify the input as needed by each task. Then, we generate
the summary sentence(s) as required for each elementary task and concatenate them to constitute
the overall summary. Here, the different keywords added to the input signal to the model which
tasks are required to generate the summary. The procedure is illustrated in Figure 4.1.
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dkb spf hpd vfb nwg tsa phc whh irc ewb .
uwa lja oyg mjg ige qpb ncc ele .
lqc rbb oeh pof vwg zob jdf quc .
aqe qff sre rxd zmf .
mjh vgc bge epf slb ecd .

dkb spf hpd vfb nwg tsa phc whh irc ewb .
uwa lja oyg mjg ige qpb ncc ele .
lqc rbb oeh __d10__keyword_1__ vwg zob jdf quc .
aqe qff sre rxd zmf .
__d3__keyword_7__  vgc bge epf slb ecd .

lqc rbb oeh __d10__keyword_1__ vwg zob jdf quc .
the keyword was negative .

Nonsense
Document

Input

Summary

Task10 - Copy sentence containing a keyword.
Task3 - Whether a keyword has positive or negative sentiment

Pretrained
Model

Randomly
Initialized

Transformer
seq2seq Model

Pretraining Task Selection

Creation of summary by
applying task logic

Pretraining 

Dataset creation

Figure 4.1: Procedure to create pretraining dataset using the nonsense corpus and our proposed
pretraining tasks

4.6 Summarization Benchmarks
We fine-tune and evaluate our models on 4 downstream summarization benchmarks.

CNN-Dailymail-10K [See et al., 2017] Contains news articles and summaries from CNN and
Dailymail websites. We use only 10k instances for training (randomly sampled from the training
set) so that the impact of pretraining is more visible. However, we still evaluate the fine-tuned
model on the full test set.

XSum-10K [Narayan et al., 2018b] Also a news summarization dataset. Again, we train on a
random subset of 10k instances from the training set.

Rottentomatoes [Wang and Ling, 2016] This dataset concerns summarizing critical reviews
of movies found on the website rottentomatoes.com.

Rotowire [Wiseman et al., 2017] Here, the task is to process the box-score of a basketball
game (often requiring numerical reasoning) to create a post-game summary.
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Model CNN-DM-10K XSum-10K Rotten Tomatoes Rotowire
R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

T5-OffShelf 39.38 18.08 27.71 29.18 8.69 22.62 24.73 9.00 19.64 37.50 12.85 19.85
T5-RI 9.86 1.06 7.49 15.49 2.48 12.76 10.17 0.41 8.66 4.02 0.72 3.68

Nonsense Upstream Corpus

T5-OurTasks 35.23 14.77 24.03 20.36 4.15 16.23 15.72 2.06 12.51 39.10 11.81 19.94
T5-STEPTasks 35.78 14.98 23.60 21.49 4.56 16.78 13.22 0.88 10.83 29.82 7.45 16.74

T5-STEPTask-NSG 9.20 0.80 7.19 15.78 2.24 12.44 12.31 0.71 10.60 33.65 7.60 17.90
T5-STEPTask-SR 28.63 10.67 20.35 21.47 4.70 16.62 10.89 0.51 9.18 25.68 5.39 15.29
T5-STEPTask-SR-adjusted 7.24 0.63 5.69 15.04 2.00 12.12 11.18 0.46 9.51 20.00 2.74 12.08
T5-STEPTask-MDG 34.50 14.45 23.77 20.76 4.13 16.45 11.78 0.70 9.89 36.22 10.53 18.73
T5-STEPTask-MDG-adjusted 10.15 0.93 7.78 16.12 2.20 13.09 15.07 1.38 11.69 20.39 3.77 11.97

Real Upstream Corpus

T5-OurTasks 34.06 13.88 23.21 22.27 5.09 17.60 19.16 5.26 15.65 38.57 11.89 19.68
T5-STEPTasks 32.04 12.93 22.55 23.37 5.68 18.42 20.89 6.29 17.05 37.63 10.89 19.57

PG Models Randomly Initialized vs Pretrained (Nonsense Upstream Corpus)

PG-RI 29.68 11.75 21.82 17.66 3.57 14.62 19.63 6.43 16.62 30.61 8.66 17.74
PG-OurTasks 29.82 11.78 21.91 16.81 3.43 13.95 19.02 6.57 16.38 26.94 6.81 16.77
PG-STEPTasks 29.44 11.74 21.67 17.65 3.54 14.55 17.70 5.89 15.34 31.16 8.49 17.85

Table 4.2: Rouge scores achieved by different models on four summarization benchmarks.

4.7 Experiments and Results

First, we pretrain the transformer-based sequence-to-sequence architecture used by the T5 model Raf-
fel et al. [2020a], on different corpora, each containing 100k input-summary pairs to get different
pretrained models. We use the T5-small architecture in all experiments. Next, we fine-tune each
model on the downstream tasks and measure performance via ROUGE score (Table 4.2). We
also present the models’ performance on next token prediction in summaries using accuracy and
log-likelihood in the Appendix (Table 12). To frame the comparison, we include the performance
of the official T5 model and of a randomly initialized model using the same architecture (T5-RI)
.

Pretraining with either our proposed pretraining tasks (OurTasks), or STEP tasks (STEPTasks)
performs much better than random initialization, even when using nonsense data. For all sum-
marization benchmarks except RottenTomatoes, the performance remained comparable when we
used real upstream data from Wikipedia to create the pretraining datasets. This suggests that for
some summarization benchmarks, there might be little or no additional benefit provided by using
real world pretraining text.

Looking at individual STEPTasks, NSG has no training signal since the output is completely
independent of the input, but surprisingly it leads to improvements in Rotowire benchmark. SR
and MDG performed much better than NSG on CNN-DM and XSum, likely because they in-
volve copying sentences/unmasked tokens from the input. We created adjusted versions of these
pretraining datasets, where there was no copying needed and it led to a drop in performance on
both pretraining tasks, bringing it close to T5-RI for CNN-DM and XSum. In SR-adjusted, the
task is to output only the numerical order in which sentences should be copied (versus actually
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Pretraining task R1 R2 Pr%

TopicSegregation 23.04 7.79 99.90
CopyKwdMultipleSent-Shuffled 23.34 5.46 99.66
TruncateSentence 17.07 2.50 1.00

LargestNumber 6.52 0.58 99.88
SumOfNumbers 5.03 0.40 25.06
CompareNumbers 1.89 0.04 48.88

Table 4.3: The 3 best and worst performing pretraining tasks according to performance of their
pretrained models on CNN-Dailymail-10K (R1,R2), and their accuracy on the pretraining task
(Pr%).

generating the full output). In MDG-adjusted, the task is to only output the masked-out tokens
(versus outputting the entire document, including unmasked tokens).

A randomly initialized pointer-generator model [See et al., 2017] (PG-RI) performs far bet-
ter than a randomly initialized T5 model. However, T5-architecture models pretrained on non-
sense text were able to outperform pointer-generator on 3 out of 4 benchmarks, suggesting that
transformer models pretrained on nonsense text can be a better choice than using non-pretrained
LSTM based models. Interestingly, pretraining the PG model on either OurTasks or STEPTasks
did not lead to any additional improvement.

Models pretrained separately on each task from OurTasks exhibit strong differences in their
performance on CNN-Dailymail-10K benchmark (Table 4.3). Models pretrained on TopicSegre-
gation and CopyKwdMultipleSent-Shuffled outperform others significantly. The two worst per-
forming models were pretrained on CompareNumbers and SumOfNumbers, and these models
were unable to perform any better than random guessing on the pretraining task itself. By con-
trast, most other pretrained models were able to solve their pretraining task correctly more than
99% of times (see Table 13 in Appendix for full details).

4.8 Conclusion
This paper demonstrated that transformer models pretrained on randomly generated nonsense
data deliver remarkable performance gains across multiple summarization tasks, compared to
their randomly initialized version. This suggests that a substantial part of the observed benefits
of pretraining can not be attributed to knowledge transfer. To investigate whether the design of
pretraining task itself plays a significant role and can lead to further performance gains, we ex-
plored summarization datasets to prepare a battery of tasks found useful in creating summaries.
But these pretraining tasks performed comparably to more generic pretraining tasks used in lit-
erature. Our work suggests that understanding pretraining may have more to do with poorly-
understood aspects of how initialization influences optimization than with knowledge transfer.
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Chapter 5

Pretraining using only downstream data

In Chapter 4, we provided a way to pretrain sequence-to-sequence transformer models for sum-
marization by crafting examples representing logical rules for sequence transformation. It al-
lowed us to achieve better performance than fine-tuning from random initialization on the task
of summary generation, and showed that pretraining can help even without any knowledge trans-
fer from external pretraining corpora. In this chapter, we similarly aim to pretrain text encoder
models (such as BERT [Devlin et al., 2019] and ELECTRA [Clark et al., 2019]) without knowl-
edge transfer from any external pretraining corpus. Text encoder models are widely used for
NLP tasks with a variety of forms such as classification, sequence tagging, span prediction etc,
including auxiliary tasks that aid in summarization such as extraction of important content from
source (Chapter 2).

In this chapter, we propose and evaluate self-pretraining — a technique where the same
(downstream) training data is used for both pretraining and finetuning. In experiments address-
ing both ELECTRA and RoBERTa models and 10 distinct downstream classification datasets,
we observe that self-pretraining rivals standard pretraining on the BookWiki corpus (despite
using around 10×–500× less data), outperforming the latter on 7 and 5 datasets, respectively.
Self-pretraining also provides benefits on structured output prediction tasks such as question an-
swering and commonsense inference, often providing more than 50% improvements compared
to standard pretraining. Our results hint that often performance gains attributable to pretraining
text encoder models are driven primarily by the pretraining objective itself, and are not always
due to re-use of knowledge extracted from any external pretraining data. This holds relevance to
the area of continual pretraining of models [Gururangan et al., 2020], whereby models are first
pretrained on a large generic corpus such as Wikipedia and then continually pretrained on the
downstream task to deliver a further boost in performance. Our results show that for many tasks,
the first stage of pretraining on a large generic corpus can be skipped entirely, and we would still
get similarly large performance gains compared to not pretraining at all.

5.1 Introduction

For training predictive models operating on natural language data, the current best practice is
to pretrain models on large unlabeled upstream corpora to optimize self-supervised objectives,
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Figure 5.1: Aggregate performance of an ELECTRA model across 10 finetuning datasets when
it is (i) randomly initialized (ii) pretrained on upstream corpus (BookWiki) (iii) pretrained on the
finetuning dataset itself

for example, masked language modeling (MLM); the resulting weights are then used to initial-
ize models that are subsequently trained (finetuned) on the labeled downstream data available
for the task at hand. Large-scale pretrained models typically provide significant performance
boosts when compared to models trained directly on the downstream task (with random initial-
izations) [Peters et al., 2018, Devlin et al., 2019, Chiang and Lee, 2020, Krishna et al., 2021a].
Upstream corpora tend to be significantly larger than the downstream corpora and the success
of this approach is often attributed to its ability to leverage these massive upstream corpora [Liu
et al., 2019b, Yang et al., 2019]. For example, the seminal BERT model [Devlin et al., 2019]
was pretrained using the BookWiki corpus which is a combination of English Wikipedia and
BooksCorpus [Zhu et al., 2015], totaling 13GB of plain text. Subsequent models have moved on
to web-scale data. For example, XLNet [Yang et al., 2019], RoBERTa [Liu et al., 2019b], and
T5 [Raffel et al., 2020a]), were trained on 158GB, 160GB and 750GB of data, respectively.

As upstream corpus size and downstream performance have gone up, popular attempts at ex-
plaining these gains have focused on themes of “knowledge transfer” from the upstream corpus,
attributing them to shared linguistic structure, semantics [Lina et al., 2019, Tenney et al., 2019],
and facts about the world [Petroni et al., 2019]. However, since the introduction of large-scale
pretraining corpora occurred together with the invention of self-supervised pretraining objec-
tives (e.g. masked language modeling [Devlin et al., 2019] and replaced token detection [Clark
et al., 2019]), it remains unclear to what extent large-scale corpora are integral to these leaps
in performance. For several tasks, especially summarization, recent works achieved surprising
performance gains in settings where the upstream corpus is created synthetically with arbitrary
symbols, but the pretraining objective is designed to capture some of the structure of the task
[Krishna et al., 2021a, Wu et al., 2022].

In this work, we ask just how much of pretraining’s benefits could be realized in the absence
of upstream corpora by pretraining directly on the downstream corpora (with the same self-
supervised objectives). We find that this approach, which we call self-pretraining, often rivals
the performance boosts conferred by off-the-shelf models pretrained on large upstream corpora
(Figure 5.1), even outperforming them on 7 out of 10 datasets. Prior research has shown that
additional self-supervised pretraining of off-the-shelf models using the downstream data can
give further gains [Gururangan et al., 2020]. Our study goes further, showing that even when
starting from random initializations, and without using any external data beyond the downstream
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data itself, self-pretraining can rival standard practices. Since self-pretraining requires the same
data that must already be available for downstream finetuning, the benefits of pretraining in this
case cannot be attributed to transfer of knowledge from the upstream corpus. Instead, these
benefits can only be attributed to the pretraining objective, which is possibly able to learn some
inductive biases better than the finetuning objective (e.g. linguistic knowledge Tenney et al.
[2019]), or perhaps simply initialize network parameters such that their statistics lead to better
optimization during finetuning [Wu et al., 2022]. While similar observations have been made in
the computer vision community [El-Nouby et al., 2021], we argue that it is especially important
to establish these phenomena in the language domain, for which building on self-supervised
pretrained models is now the ubiquitous practice of the vast majority of practitioners.

To understand differences in predictions with different pretraining strategies (i.e., between
self-pretrained and off-the-shelf models), we analyse the errors made by these models on the
same downstream data (Sec. 5.6). Despite similar performance of these models, we find that
self-pretrained and off-the-shelf models make significantly less correlated errors when compared
to two independently finetuned models pretrained with either strategy.

We find that models pretrained on one downstream dataset often perform surprisingly well
when finetuned to other downstream datasets (Sec. 5.5). Even though the downstream datasets
in our study come from a wide variety of domains (e.g., news, online forums, tweets), we find
that pretraining on any of these downstream datasets delivers significant performance gains on
most datasets (greater than half of off-the-shelf model’s gains in 88% of cases) irrespective of
domain. However, the best performance on a downstream dataset is usually achieved by the
model pretrained on that dataset itself. Models pretrained on downstream datasets perform well
on the GLUE benchmark too.

In addition to classification tasks, we also experiment with tasks such as span-based question
answering, named entity recognition, and grounded commonsense inference (Sec. 5.8). Self-
pretraining delivers around 40-80% of the performance boost compared to models pretrained
on the BookWiki corpus across ELECTRA and Roberta models. Hence, self-pretraining can
perform better than fine-tuning randomly initialized models even for tasks that require prediction
of more complex structured output than a single label, and for tasks whose solution relies on
commonsense knowledge.

Our contributions can be summarized as follows:
• Comparison of self-pretrained and off-the-shelf pretrained models (both with ELECTRA

and RoBERTa architectures) across 10 downstream classification tasks.
• Analysis of out-of-distribution performance of models pretrained on one downstream dataset

and finetuned on other downstream datasets, including the GLUE benchmark.
• Demonstration of self-pretraining’s efficacy on more complex tasks than classification such

as tasks requiring structured output prediction or commonsense reasoning.

5.2 Related work
Self-Pretraining in Computer Vision Most relevant to our work, recent/concurrent works in
computer vision explore self-pretraining [He et al., 2022, El-Nouby et al., 2021]. In a contempo-
rary work, He et al. [2022] showed that pretraining with a Masked AutoEncoder (MAE) objective
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(analogue of MLM objective for images) boosts the performance of ViT models on the Imagenet-
1K dataset. El-Nouby et al. [2021] showed that pretraining solely on downstream datasets for
object detection and segmentation tasks reaches the performance of Imagenet-pretrained mod-
els. Our work establishes that a similar phenomenon is observed for NLP tasks too across a wide
range of datasets.

Pretraining on Downstream Data in NLP Task-Adaptive PreTraining (TAPT [Gururangan
et al., 2020]) consists of taking off-the-shelf pretrained models like BERT and RoBERTa and
engaging in further pretraining on the downstream datasets before finetuning them to the task
at hand. TAPT has been shown to improve performance of off-the-shelf models in a variety of
works [Logeswaran et al., 2019, Han and Eisenstein, 2019, Chakrabarty et al., 2019]. Another
way in which downstream data has been used is for retrieval to create a small pretraining corpus
for efficient pretraining [Yao et al., 2022]. By contrast, our work pretrains models only on the
downstream dataset, enabling a head-to-head comparison between the performance of off-the-
shelf and self-pretrained models, and (in some situations) challenging the necessity of upstream
corpora altogether.

Claims about Knowledge transfer Many works claim that pretraining extracts generally use-
ful knowledge from the upstream corpus such as linguistic patterns [Lina et al., 2019, Tenney
et al., 2019, Manning et al., 2020] and facts [Petroni et al., 2019], and that this accounts for
the performance gains that they enjoy on downstream tasks. Several works, e.g., in the prob-
ing literature [Tenney et al., 2019, Manning et al., 2020, Petroni et al., 2019], demonstrate that
from the internal representations of a model, it is easy (e.g., via linear models) to predict certain
linguistic features or real-world facts. However, these studies do not clarify the mechanism by
which these observations relate to performance gains on downstream tasks. Tenney et al. [2019]
recognizes this limitation, stating “the observation of a (linguistic) pattern does not tell us how
it is used”. Our work suggests that to the extent that such knowledge extraction plays a role in
pretraining’s benefits, sufficient knowledge is often present in the downstream dataset and need
not be transferred from huge upstream corpora.

Challenges to the Knowledge Transfer Narrative Multiple previous works have questioned
whether knowledge transfer can fully account for the efficacy of pretraining. Improvements in
performance on downstream NLP tasks have resulted from pretraining on other modalities like
music and code [Papadimitriou and Jurafsky, 2020], sequences of meaningless symbols [Chiang
and Lee, 2020, Krishna et al., 2021a, Wu et al., 2022], and language denatured via shuffling
of words [Sinha et al., 2021]. On the other hand, models pretrained on language have shown
improved performance on tasks dealing with other modalities such as image classification Lu
et al. [2021] and reinforcement learning for games Reid et al. [2022]. By contrast, we show
that without surplus upstream data of any modality, self-pretraining alone can often perform
comparably or even better than standard pretraining with a large upstream corpus. In a similar
vein with these papers, our work suggests that a large portion of pretraining’s success may come
from alternative, unexplored mechanisms which have more to do with the pretraining objective
than knowledge transfer from upstream corpora.
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Dataset Size (MB) Classes Domain Task

AGNews [Zhang et al., 2015] 27 4 News topic classification
QQP [Wang et al., 2018] 43 2 Online forum questions paraphrase detection
Jigsaw Toxicity [Kaggle.com, 2018] 59 6 Wikipedia comments toxicity detection
MNLI [Williams et al., 2018] 65 3 Diverse natural language inference
Sentiment140 [Go et al., 2009] 114 5 Tweets sentiment classification
PAWS [Zhang et al., 2019] 139 2 Wikipedia paraphrase detection
DBPedia14 [Zhang et al., 2015] 151 14 Wikipedia topic classification
Discovery [Sileo et al., 2019] 293 174 Web crawl discourse marker prediction
Yahoo Answertopics [Zhang et al., 2015] 461 10 Online forum answers topic classification
Amazon Polarity [Zhang et al., 2015] 1427 2 Product reviews sentiment classification

Table 5.1: The suite of downstream datasets used in this work along with their training set sizes

5.3 Experimental setup
Our experiments center around the ELECTRA model [Clark et al., 2019] and the RoBERTa-base
model [Liu et al., 2019b]. On the broadest set of experiments, for which we can only afford to
train one model, we employ ELECTRA because it performs better than RoBERTa given compa-
rable compute budgets [Clark et al., 2019]. In particular, we use the small variant of ELECTRA
(14 million parameters), which performs similarly to BERT-base on GLUE (difference of ≈2
points) while training much faster [Clark et al., 2019]. However, we replicate many of these
results on the larger RoBERTa-base model revealing similar results and thus establishing the
generality of our findings.

During pretraining, a text sequence is fed into the model with some tokens masked out.
While MLM-only models like RoBERTa only have a generator network that predicts the content
of the masked tokens, ELECTRA has an additional discriminator module that predicts if those
predictions were correct. Both the generator and the discriminator networks’ parameters are
updated simultaneously during pretraining. After pretraining, the generator is discarded and the
discriminator is used as an encoder for finetuning on downstream tasks.

We experimented with 10 different downstream datasets (Table 5.1). We chose these datasets
in our testbed to span different dataset sizes ranging from 27 megabytes to about 1.4 gigabytes
of text in the training split. These datasets are for different tasks such as topic classification,
sentiment classification, natural language inference etc., and are created using data sourced from
diverse domains. Most of them are multi-class classification tasks except Jigsaw Toxicity which
is a multi-label classification task, and Sentiment140 which is modeled as a regression task. For
finetuning a pretrained model on any dataset, we passed the input through the model, took the
vector representation of the CLS token in the final layer, and passed it through a classification
head with one hidden layer to get the output.

5.4 Self-pretraining Performance
In our first set of experiments, we compare self-pretraining’s performance with other pretraining
techniques. For each dataset, we pretrain an ELECTRA model on text from its training split and
then finetune it on the same training data using the associated labels. To create a pretraining
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corpus from a downstream dataset, we concatenate the input text from each of the examples,
assembling them in random order. We evaluate the performance of each finetuned model on the
corresponding dataset’s test split. For QQP and MNLI we just use the validation split because
test set labels are private. For all datasets, we evaluate performance by accuracy, except for
Sentiment140 and Jigsaw Toxicity, for which we use Pearson correlation and micro-averaged
AUC scores, respectively (these are not multi-class classification problems).

Notably, all self-pretrained models deliver significant performance boosts on their respective
datasets (Table 5.2), and over half of them perform even better than the off-the-shelf model. We
measured a model’s benefit as the performance boost that it achieves over a randomly initialized
model, divided by the boost achieved by the off-the-shelf ELECTRA model against the same
baseline. The average benefit of self-pretraining across all datasets is 103.70%. We do not see
a clear correlation between the size of the dataset and the performance of self-pretraining. For
example, the highest benefit of 131.33% is achieved for the smallest dataset (AGNews), which
is merely 27MB in size, while the minimum benefit is achieved on the Discovery dataset, which
is the third largest dataset measuring 293MB. For each downstream dataset, we also pretrain
a model on a randomly sampled subset of Wikipedia of the same size as the dataset’s training
corpus, and finetune it on the downstream task. This approach (called WikiSub) provides a
size-adjusted comparision between using separate upstream data vs the downstream data for
pretraining. We see that self-pretraining performs better than WikiSub in majority of cases and
when it performs worse (MNLI and Discovery datasets), the performance gap is much smaller
than the gap between offshelf and self-pretrained models (Table 5.2).

We also evaluated the alternate pretraining technique TAPT as described in Gururangan et al.
[2020]. In this technique, we take the off-the-shelf ELECTRA model, which has already been
pretrained on the upstream BookWiki corpus, and further pretrain it on the downstream dataset
for 100 epochs. Self-pretraining outperforms TAPT on 6 datasets, notably including the two
datasets where it outperformed the off-the-shelf models by the greatest benefit margin - AGNews
and Yahoo Answertopics. Interestingly, TAPT performs worse than off-the-shelf model on the
same 3 datasets where self-pretraining performs worse than off-the-shelf model (except Senti-
ment140). None of the three pretraining approaches seem to be uniformly better than any other.

Finally, we also evaluate the self-pretrained models on the GLUE benchmark and report re-
sults on the dev set 1. The performance of the models on their pretraining dataset does not
correlate strongly with its GLUE score. The GLUE score also does not monotonically go up
with increasing dataset size, indicating that the data domain makes some difference. For exam-
ple, the Amazon Polarity corpus scores just 66.14 on GLUE despite being about 1.4GB in size,
while AGNews which is 27MB in size, scores 74.30. The highest GLUE score is achieved by
pretraining on Yahoo Answertopics.

1Following Clark et al. [2019] we exclude the WNLI task from the results.
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Dataset Size(MB) RandInit SelfPretrain Offshelf Benefit% WikiSub TAPT GLUE

AGNews 27 91.75 94.34 93.72 131.33 93.51 94.07 74.30
QQP 43 82.93 90.66 90.34 104.34 89.16 90.64 75.43
Jigsaw Toxicity 59 97.83 98.49 98.53 94.99 98.35 98.48 76.65
MNLI 65 65.49 78.39 82.29 76.77 78.64 79.26 78.28
Sentiment140 114 63.75 67.04 66.95 102.91 65.52 65.65 72.67
PAWS 139 50.00 97.53 97.30 100.49 97.42 97.85 74.65
DBPedia14 151 98.59 99.22 99.11 121.17 99.18 99.23 70.38
Discovery 293 17.00 22.38 24.55 71.22 22.47 23.58 77.26
Yahoo Answertopics 461 61.94 65.26 64.55 127.31 64.37 65.05 79.53
Amazon Polarity 1427 93.86 96.27 96.13 106.49 95.82 96.16 66.14

Table 5.2: Performance of ELECTRA-small models pretrained with different techniques on var-
ious downstream datasets and on the GLUE benchmark (dev set). For reference, a randomly
initialized model scores 53.20 and the off-the-shelf model scores 79.43 on GLUE.

5.5 Cross Dataset Finetuning
In this set of experiments, we investigated if the models pretrained on a dataset are only useful
for that specific task, or are they useful across the whole spectrum of tasks that we consider. We
took each model pretrained on a dataset in our testbed and finetuned and evaluated it on all other
datasets in the testbed. The performance benefits provided in all cases are shown as a heatmap
in Figure 5.2.

We found that for almost all downstream datasets, pretraining on any other dataset provides
significant advantage (Figure 5.2). In most cases, pretraining on the downstream dataset itself
performs the best. Among datasets where self-pretraining performs better than off-the-shelf
model (i.e. the diagonal entry is greater than 1), pretraining on datasets of larger size does not
help further. However, for the datasets where self-pretraining’s benefit is much less than 100%
(i.e. MNLI and Discovery), pretraining on a larger dataset (e.g., Yahoo Answertopics) performs
better than self-pretraining.

Among all the pretrained models, a few models perform consistently good or bad across
different downstream datasets (Figure 5.2). For example, the model pretrained on Yahoo An-
swertopics gets the highest average score of 0.90 across all datasets, while the PAWS-pretrained
model gives the lowest aggregate score of 0.64. Similarly, there are downstream datasets that are
benefited consistently by either a large or a small margin by pretraining on different datasets. For
example, performance on QQP and PAWS receives huge boosts by pretraining on most datasets.
In contrast, performance on sentiment140 is mostly low , even dropping below 20% for 3 pre-
trained models.

We perform an ablation to investigate that given a fixed dataset to finetune on, is it better to
pretrain on the exact same data (i.e., using the same set of inputs), or is it better to pretrain on
different data with an identical distribution. To test this hypothesis, we divided the training splits
of the downstream datasets randomly into two equal subsets (denoted as A and B). We pretrained
one model on each subset and then finetuned them on both subsets separately. The validation and
test sets used for finetuning are the same as in the original dataset.

We do not see any consistent benefits with pretraining and finetuning on the same dataset
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Figure 5.2: Performance benefits of models pretrained on each dataset, upon finetuning on each
downstream dataset. Each value is the ratio of performance gains achieved by model pretrained
on the row’s dataset vs off-the-shelf model, relative to random initialization, upon finetuning on
the column’s dataset.

(Table 5.3). Instead, we found consistent patterns where models pretrained on one split (either A
or B) outperformed models pretrained on the other, irrespective of the split used for finetuning.
This suggests that the pretraining data has greater influence on the final performance than the
finetuning data. Additionally, we observe that finetuning the superior pretrained model, using the
downstream split other than the one used for pretraining, performs the best, suggesting overall
exposure to more data helps.
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MNLI QQP Discovery Yahoo Answertopics

A B A B A B A B
A 76.00 76.42 A 84.28 84.79 A 18.78 18.61 A 64.18 64.34
B 75.93 75.05 B 88.73 88.41 B 19.99 19.98 B 64.09 64.18

Table 5.3: Performance when splitting the dataset into two equal-sized subsets A and B and then
pretraining on one (row) and finetuning on another (column)

5.6 Difference in Outputs of Self-pretrained and Off-the-shelf
Models

Since self-pretrained models and off-the-shelf models perform similarly in terms of classification
accuracy, a natural question to ask is: do these models make errors on the same set of inputs?
To answer this question, we investigate the difference in predictions made by models pretrained
with different strategies across all multi-class classification tasks. In particular, given model fA
and fB, we compute error inconsistency, defined as follows:∑n

i=1 (1 [fA(xi) ̸= yi ∧ fB(xi) = yi] + 1 [fA(xi) = yi ∧ fB(xi) ̸= yi)]

n

where {xi, yi}ni=1 is the test set. Intuitively, error inconsistency captures the fraction of examples
where exactly one model is correct. This definition has been commonly used to estimate diversity
in model prediction [Gontijo-Lopes et al., 2022, Geirhos et al., 2020]. Across all the multi-class
classification tasks, in addition to computing error inconsistency between self-pretrained and off-
the-shelf model, for baseline comparison, we also tabulate error inconsistency between: (i) two
independently finetuned versions of a self-pretrained model; and (ii) two independently finetuned
versions of the off-the-shelf model.

Compared to error inconsistency between two models with the same pretraining dataset, we
observe that models trained with different pretraining datasets have high error inconsistency in
predictions (Table 5.4). For models with comparative performance, high error inconsistency
highlights the high disagreement in predictions. This demonstrates that while different pre-
training datasets produce similarly performing models in terms of overall accuracy, the model
predictions are relatively dissimilar. Our observations here align with investigations in vision
tasks, where Gontijo-Lopes et al. [2022] observed that models trained with different pretraining
datasets produced uncorrelated errors.

Since different pretraining datasets produce models with uncorrelated errors, we ensemble
these models to check if uncorrelated mistakes lead to a correct prediction. When the models
make different predictions, in particular, when one model is correct and another is incorrect, the
ensemble prediction will be dominated by the model with higher confidence in their prediction.
As before, we consider ensembles of (i) two independently finetuned self-pretrained models;
(ii) two independently finetuned off-the-shelf models; and (iii) a finetuned version, each of the
self-pretrained and off-the-shelf models.

We make the following observations: First, as expected we observe that ensembling im-
proves model performance as compared to a single model (Table 5.4). Second, despite hav-
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Ensemble Accuracy Error Inconsistency

Dataset 2×SelfPretrain 2×Offself SelfPretrain
+ Offself

2×SelfPretrain 2×Offself SelfPretrain
+ Offself

AGNews 94.66 94.17 94.54 1.76 3.50 4.01

QQP 90.92 90.74 91.63 4.57 5.27 8.91

MNLI 78.51 82.37 82.31 6.94 6.42 14.82

PAWS 97.70 97.45 97.75 0.96 1.30 2.07

DBPedia14 99.28 99.19 99.24 0.38 0.48 0.51

Discovery 22.98 25.25 25.02 7.85 9.18 12.66

Yahoo 65.32 64.69 65.64 5.27 5.49 9.55

Amazon 96.40 96.24 96.51 1.26 1.58 2.48

Table 5.4: Performance of ensemble models of self-pretrained and off-the-shelf models. For
ensembling, we aggregate predictions of models after calibration with Temperature Scaling [Guo
et al., 2017]. We observe that in most of the datasets, SelfPretrain + Off-the-shelf ensembling
does not improve over ensembles of two models with the same pre-training strategy, despite
relatively higher error inconsistency of SelfPretrain + Off-the-shelf models.

ing larger error inconsistency, we do not observe any significant improvements in ensembles
of self-pretrained and off-the-shelf model as compared to ensembles of two models with the
same pretraining strategy (Table 5.4). This is in contrast with findings on vision tasks where
Gontijo-Lopes et al. [2022] observed that larger error inconsistency led to larger improvement in
ensemble performance.

5.7 Ablations with Other Pretraining Architectures
We conducted our experiments so far with ELECTRA-small architecture because it is faster to
pretrain than other popular models, yet delivers good downstream performance [Clark et al.,
2019] (e.g. comparable to BERT-base on GLUE benchmark). Here, we conduct experiments
with a larger model and a different pretraining objective to test the efficacy of self-pretraining
more broadly.

We experiment with the RoBERTa model which uses the masked language modeling objec-
tive, rather than ELECTRA’s objective. We use the RoBERTa-base architecture, which has a
much larger parameter count of 110 million, compared to ELECTRA-small’s 14 million. Due to
resource constraints, we pretrained the RoBERTa models for fewer iterations as in Warstadt et al.
[2020]. We pretrain a RoBERTa-base model on the BookWiki corpus for the same number of it-
erations. Our results show that self-pretraining performs comparably to pretraining on BookWiki
corpus, delivering over 85% of pretraining benefit on 9 out of 10 datasets, and outperforming the
model pretrained on BookWiki corpus (Table 5.5) on 5 datasets.
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Dataset RandInit SelfPretrain BookWiki Benefit % TAPT

AGNews 91.91 94.28 94.22 102.27 94.07
QQP 76.50 88.68 90.18 89.05 90.64
Jigsaw Toxicity 97.32 97.72 98.03 56.02 98.48
MNLI 31.82 75.12 80.90 88.23 79.26
Sentiment140 56.68 68.55 60.19 338.26 65.65
PAWS 50.00 97.34 97.08 100.55 97.85
DBPedia14 98.57 99.21 99.24 95.98 99.23
Discovery 17.36 25.85 26.30 94.91 23.58
Yahoo Answertopics 61.11 65.96 64.58 139.80 65.05
Amazon Polarity 89.02 96.68 96.11 108.13 96.16

Table 5.5: Performance of RoBERTa-base models pretrained with different techniques on down-
stream datasets.

5.8 Performance on structured prediction and commonsense
NLI

While the bulk of our experiments were on a variety of classification tasks, we also experiment
with some tasks beyond simple classification. We experiment with three types of tasks: (i) span
based question answering, (ii) named entity recognition (NER), and (iii) grounded commonsense
inference. For question answering we use the SQuAD dataset [Rajpurkar et al., 2016] (v1.1) and
report the F1-score. For NER, we use the CONLL-2012 NER task which uses annotations from
Ontonotes v5.0 [Weischedel et al., 2013] involving 18 kinds of named entities. To measure
performance, we use the overall F1 score. We use the seqeval library for evaluation (https:
//github.com/chakki-works/seqeval). We include SWAG [Zellers et al., 2018] and
HellaSwag [Zellers et al., 2019] for multiple-choice sentence completion.

For Electra-small models, we see that for each of these datasets self-pretraining achieves
more than 70% pretraining benefit, and for Roberta-base model the benefit is 40-80% (Table 6).
Even for the SWAG and HellaSwag datasets, which are designed to use rely on commonsense
inference of pretrained models, we see performance boosts by pretraining using only the task’s
training set.
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Datasets Size(MB) ELECTRA-small Roberta-base
RI SP OS Benefit% RI SP BW Benefit%

SQuAD 19 15.82 63.01 75.96 78.47 14.93 67.23 81.89 78.11
SWAG 22 27.55 60.56 73.76 71.43 27.95 45.18 70.37 40.62
HellaSwag 30 29.27 39.14 42.91 72.36 24.53 31.03 34.28 66.67
CONLL-2012 6.4 54.49 75.66 82.65 75.18 63.65 72.64 86.25 39.78

Table 5.6: Performance of ELECTRA and Roberta models pretrained with different techniques.
RI: random initialization, SP: self-pretraining, OS: off-the-shelf; BW: pretrained on BookWiki
by us.

5.9 Conclusion and Future Work
In this work, we showed that pretraining models only on text from the downstream dataset per-
forms comparably to pretraining on a huge upstream corpus for a wide variety of datasets. The
errors made by such self-pretrained models on the downstream tasks are significantly different
from the ones made by the off-the-shelf models pretrained on upstream corpora. Our results sug-
gest that the importance of learning from surplus upstream data for improving downstream task
performance may have been overestimated. Crucially, our experiments also do not show that
upstream data does not help at all or knowledge transfer does not occur, but simply questions
to what extent it is responsible for downstream gains. For example, the impressive zero-shot
performance very large language models such as GPT-3 [Brown et al., 2020] clearly suggests
knowledge transfer is involved. One direction of future work would be to investigate how the
performance of self-pretraining compares of pretraining on upstream corpora as the model sizes
go up by orders of magnitude.

We found that the quantity and quality of data required for pretraining to provide significant
benefit (over a randomly initialized model trained only with a supervised loss) is quite low.
Downstream datasets which are tiny in comparison to typical upstream corpora, still function as
useful pretraining corpora for getting performance gains across a wide range of datasets.

Since self-pretraining does not involve any upstream corpus, it prevents exposure of the
model to potentially undesirable contents in the large upstream corpus, while still delivering
large performance benefits. Research has demonstrated the negative influence of web-sourced
pretraining corpora on models, such as generating toxic language [Gehman et al., 2020] or re-
flecting racial biases in predictions [Ahn and Oh, 2021]. For use cases that require avoding such
issues, self-pretraning can provide a viable alternative to standard pretraining. In future work, we
hope to compare how self-pretrained models and off-the-shelf models perform on these negative
measures such as toxicity and social biases.
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Chapter 6

USB: A Unified Summarization
Benchmark across tasks and domains

Factual errors in model-generated summaries are a common occurrence and have been widely
acknowledged [See et al., 2017, Maynez et al., 2020, Fabbri et al., 2022]. In Chapter 2, we
also observed that when generating summaries of doctor-patient visits, even the best performing
method produced false statements in about 10% of generated sentences. Compared to the task of
summary generation, tasks related to ensuring factual accuracy such as such as editing summaries
to fix factual errors, and extracting evidence for its claims, have received lesser attention in
literature. Although a small number of labeled datasets exist to train models for these tasks,
they use artificially labeled data. These approaches include generating synthetic factual errors
using rules [Cao et al., 2020], or hallucinations using text infilling [Balachandran et al., 2022].
Synthetically generated factual errors may not be diverse enough to capture the breadth of errors
made by real world models [Goyal and Durrett, 2021]. Similarly, for the task of extracting
evidence for summaries, heuristics have been used to create artificial gold labels [Chen and
Bansal, 2018, Ernst et al., 2021]. There is a need for a comprehensive summarization benchmark
which comprises of human-labeled datasets for tasks related to fact-checking summaries.

In this chapter, we introduce a Wikipedia-derived benchmark, complemented by a rich set of
crowd-sourced annotations, that supports 8 interrelated tasks: (i) extractive summarization; (ii)
abstractive summarization; (iii) topic-based summarization; (iv) compressing selected sentences
into a one-line summary; (v) surfacing evidence for a summary sentence; (vi) predicting the
factual accuracy of a summary sentence; (vii) identifying unsubstantiated spans in a summary
sentence; (viii) correcting factual errors in summaries. We compare various methods on this
benchmark and discover that on multiple tasks, moderately-sized fine-tuned models consistently
outperform much larger few-shot prompted language models. For factuality-related tasks, we
also evaluate existing heuristics to create training data and find that training on them results in
worse performance than training on 20× less human-labeled data. Our articles draw from 6
domains, facilitating cross-domain analysis. We found that for tasks related to fact-checking,
trained models perform better in out-of-domain settings, whereas for tasks focusing on summary
generation, training specifically on data from the target domain even if limited, is better. 1

1The dataset can be downloaded from https://github.com/kukrishna/usb
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6.1 Introduction
Numerous summarization benchmarks have been proposed to facilitate the development of sum-
marization methods [Nallapati et al., 2016, Narayan et al., 2018b, Wang and Ling, 2016, Gliwa
et al., 2019]. However, the majority of previous work has primarily focused on evaluating the
models’ ability to generate summaries similar to reference summaries, neglecting key auxiliary
properties of text summarization systems. Recent research has highlighted the importance of
addressing additional aspects in text summarization. These aspects include the ability to steer
summaries by controlling its focus on a topic or on specific parts of the source text [Gehrmann
et al., 2019]. Furthermore, there is an increasing emphasis on ensuring factual correctness and
implementing mechanisms to eliminate factual errors from model outputs Scialom et al. [2021],
Balachandran et al. [2022]. Similarly, to foster trust in the outputs, it is desirable for summa-
rization systems to present evidence from sources that corroborate the generated summaries. As
models have improved in generating coherent and readable summaries [Goyal et al., 2022], these
auxiliary considerations have gained importance. Aligning summaries with user requirements
and ensuring sufficient factual support are critical frontiers in summarization research. The cur-
rent summarization benchmarks fail to provide a comprehensive evaluation of model capabilities
across various summarization tasks, encompassing properties such as factuality and controllabil-
ity.

Figure 6.1: A schematic of our dataset, annotations, and the supported tasks. The example
shown (abridged) displays the edits made by a human annotator on the initial candidate summary
(deletions in red with strike-through; additions in green). Every summary sentence is supported
by one or more evidence sentences highlighted in blue.

In this work, we introduce USB, a comprehensive benchmark for text summarization that
supports eight auxiliary tasks. The benchmark includes labeled datasets with high-quality human
annotations collected from diverse documents across six domains. To create the benchmark, we
sampled Wikipedia articles from various categories, such as people, organizations, and events.
We utilized the introductory section of the articles as a reference summary and the remaining con-
tent as the source text, resulting in imperfect source-”summary” pairs. Human annotators then
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searched for evidence to support each summary sentence. If evidence was lacking, correspond-
ing spans or entire sentences were removed. Whenever conflicting evidence was encountered,
the summary was revised with minimal edits to align with the available evidence. The resulting
annotations can be repurposed to create labeled datasets for 8 useful tasks (Figure 6.1).

We offer the first human-labeled training datasets for various summarization tasks, includ-
ing evidence extraction and identifying spans in summaries without supporting evidence. These
datasets enable the training and evaluation of models specifically for these crucial aspects. We
benchmark the performance of several models such as instruction-tuned encoder-decoder mod-
els and LLMs on our tasks, including both fine-tuning and well as few-shot prompting based
approaches. Notably, we found that fine-tuning even small models (fewer than a billion parame-
ters) substantially outperforms few-shot prompting of much larger open-source and private large
language models.

Prior efforts have relied on heuristics to generate synthetic training data for certain tasks
included in our benchmark. For instance, a common heuristic employed is lexical overlap to
identify and extract supporting evidence [Chen and Bansal, 2018]. Similarly, artificial factual
errors have been introduced into summaries to train models for factuality classification or correc-
tion [Kryściński et al., 2020, Balachandran et al., 2022]. Although such automatic approaches
enable easy creation of large training datasets, heuristically derived annotations are typically
noisy compared to human annotations. Our findings demonstrate that models trained on mini-
mal amount of human-labeled data outperform those trained on heuristically generated labeled
datasets, even when the latter are 20× larger.

A common challenge to real-world adoption of models is their use in resource-poor domains
where one does not have access to abundant labeled training data. We compare how the size of
available training data matters vis-a-vis its domain for different summarization tasks. We found
that for tasks related to factual correctness of summaries, the amount of training data matters
more than its domain; but for other tasks having domain-specific training data matters more. Our
benchmark is explicitly segmented into 6 domains based on Wikipedia categories, and hence
provides a natural test-bed for such domain transfer studies.

Summary of contributions:

• Multi-domain benchmark for training and evaluating models on 8 different tasks dealing
with some critical but understudied aspects of text summarization.

• Comprehensive evaluation of models and training strategies, including fine-tuning, few-
shot prompting, and multi-task training.

• Comparison of relative value of training data labels generated by humans versus heuristics,
showing that for multiple tasks, human annotations yield better models even with 20× less
training data.

• Practical insights about out-of-domain generalization for different tasks, identifying the
tasks for which the size of the training data matters more than it being from a specific
target domain.
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6.2 Dataset Curation
To create the USB benchmark, we first collected a set of manual annotations on Wikipedia
articles. We then used the collected annotations to create labeled data for the benchmark tasks.
In this section we describe the process of collecting these manual annotations. We consider the
text in a Wikipedia article overview (leading) section as the target summary S, and the rest of the
article as D. In well-written articles, the overview section (S) provides a broad summary of the
article, and the rest of the article (D) provides specifics. Hence, the content in S which highlights
parts of D can be effectively considered its summary. However, for S to be a valid summary of
D, we need to remove contents within it that mention new information that is not present in D
and cannot be inferred from it.

We recruited annotators and asked them to execute the following tasks: (1) Find and annotate
evidence in D for each summary sentence of S, and; (2) Delete parts of S that are not supported
by D. This yields a document-summary pair where the summary is fully supported by the docu-
ment, and the supporting evidence is explicitly marked. We provide a detailed description of our
data creation process below.

Retrieval of Wikipedia articles We downloaded the Wikipedia English articles dump from
1 July 2022. We extracted the articles from this corpus using the Wikiextractor tool. 2 We
dropped tables and lists during extraction, but retained section headers. We used a set of category
filters to retrieve pages about specific types of entities which helps us in creating a dataset with
diverse domains. We manually filtered domains to select those in which articles generally had a
substantial part of S supported by evidence present in D. We retrieved articles for the following
6 domains: biographies, companies, schools, newspapers, landmarks, and disasters.

Selecting documents for annotation Our heuristic is to assume that the overview section
of a Wikipedia article will feature a significant amount of overlap with the remaining part
which would be retained after the annotators remove non-overlapping parts. To derive a good
document-summary pair from an article, there should ideally be a large amount of overlap be-
tween the overview part and remaining article. Otherwise, after human annotation (to remove
parts of the summary unsupported by the corresponding document) one would be left with little
text in the summary.

Given an article, with the overview section represented by S and the remaining part repre-
sented by D, we broke the summary into sentences s1s2s3...sn using Spacy3. We calculated how
many of the summary sentences have at least one entity which is also present in D. For this step,
we automatically marked entities in S and D by considering all the words with internal hyper-
links to other Wikipedia pages as entities. If two hyperlinked words pointed to the same page,
they were considered the same entity. For annotation, we only retained articles that have more
than 75% of sentences in S with at least one entity overlapping with D. We also controlled for
summary length by discarding any article where S has fewer than 4 or more than 12 sentences.

Flagging entity overlaps to help annotators find evidence To help annotators find evidence
supporting any given summary sentence, our interface highlights entities present in that sentence

2https://github.com/attardi/wikiextractor
3https://spacy.io
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and also in the source document, with a different color for each entity. To maximize the number
of entities detected, we took a union of entities extracted using Wikipedia’s hyperlinks, Spacy
and DBpedia. 4

Selection and monitoring of Mechanical Turk Workers We ran a qualification task on Me-
chanical Turk, tasking workers with annotating one document-summary pair according to the
provided instructions. To take this qualifier, we required workers have a HIT approval rate
> 95%, and have more than 1000 approved HITS. Each worker was allowed to take the qualifi-
cation task only once. All workers were given the same document-summary pair for annotation.
A total of 174 workers took the qualification task. Out of these, 28 workers were approved by
checking their annotation quality manually. The approved workers were then permitted to work
on the main task where they were asked to annotate different document-summary pairs. Each
pair was annotated by exactly one worker. After 300 annotations for the main task, we analyzed
the annotation quality of the responses again. For many approved workers, the annotation quality
on the main task was significantly worse than the qualification task, and hence we restricted the
worker set to only 3 workers whose annotation quality was much better than the rest (hereafter
referred to as primary workers). The remaining annotations were done by these workers, and a
total of 1988 document-summary pairs were annotated.

Verifying annotations Due to the complexity of the annotation task, evidence has not been
annotated in some parts in the summaries after the first round. To address this, we trained a
model to predict unsupported spans in summaries. Specifically, we trained models that accept
an initial summary sentence s and the evidence annotated by the workers as the input, and then
predict which spans in s were deleted by the annotator to in their submitted version s′. We
applied this model to the summary sentences submitted by annotators to predict unsupported
spans in them. We fine-tuned Flan-T5 XL [Chung et al., 2022] for this task. We divided the
set of document-summary pairs annotated by our primary workers into two halves, trained a
model on each half, and used it to predict the unsupported spans in the other half. We used one
of these models for prediction on the remaining document-summary pairs submitted by other
workers. Using these model predictions, we selected around 20% of the total summary sentences
most likely to contain unsupported spans, and flagged them for verification. This included about
15% of the sentences annotated by primary workers and 45% of sentences annotated by other
workers, which aligns with our manual inspection of quality of the workers’ annotations. We
then designed a slightly modified interface for the verification task, where summary sentences
have highlights showing potentially unsupported content, and the workers can select additional
evidence or edit the summary as before. After incorporating the changes made in this verification
round, we arrived at the final version of the annotated corpus.

6.3 Task Definitions
We derived labeled datasets for tasks using the collected annotations. The resulting benchmark
consists of the following 8 tasks:

4https://www.dbpedia-spotlight.org
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Extractive Summarization (EXT): Given the full document as input, extract all important sen-
tences that it contains. We define the ideal “reference” extractive summary as the set of all source
sentences marked as evidence for the summary.

Abstractive Summarization (ABS): Generate a multi-sentence summary of the source docu-
ment by not just simply selecting important content, but also rephrasing it for succinctness and
coherence. The ground truth is the full-length summary created after the annotators’ edits.

Factuality Classification (FAC): Predict if a summary sentence is factually correct and suffi-
ciently supported by the information present in the source. We create labeled data by assigning
non-factual and factual labels to the before and after versions of each edited summary sentence,
with the marked evidence as source context fed in the input.

Fixing Factuality (FIX): Given a factually incorrect summary sentence, edit it to make it factu-
ally correct, with reference to the source text. We create annotations using pre-edited summary
sentence and the marked evidence as the input, and the post-edited sentence as the target.

Topic-based Summarization (TOPIC): Given the source article and a topic, the task is to gen-
erate a summary for a given topic from a source article. We use Wikipedia section headers as
topics and select summary sentences from our labeled dataset that have evidence from a sin-
gle section only. These sentences act as target summaries, while the full document and section
header serve as input.

Multi-sentence Compression (COMP): Given a cluster of sentences from the source document,
generate a single sentence summary that incorporates information from all of them. We create
labeled data for this by using each summary sentence as a target and its marked evidence as the
input.

Evidence Extraction (EVEXT): Given a source document and a summary sentence, identify
a minimal set of source sentences which collectively provide supporting evidence for all facts
present in that summary sentence. The labeled data consists of each summary sentence and the
full source document as input, and the evidence links marked by annotators as the ground truth.

Unsupported Span Prediction (UNSUP): Given a summary sentence and a set of sentences
from the source providing evidence, predict spans in the summary which are not supported by
the evidence. To create labeled data, we select those summary sentences where annotators only
made deletions (no additions or replacements). The input is the pre-edit summary sentence and
the marked evidence, and the gold target is the set of spans that were deleted from the summary
by annotators.

6.4 Dataset Overview and Statistics
The USB is a benchmark comprising 6 different domains with a varying number of instances
in each (Table 6.1). We use a 40:20:40 split for train, validation and test set size for each do-
main, except the landmarks and newspapers domains due to small size. Articles from these two
domains are kept as challenging test sets to measure the out-of-domain generalization. Length
distributions of source documents and their summaries are shown in Figure 6 in the Appendix.
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Domain Count
Biographies 1514
Schools 150
Disasters 145

Domain Count
Companies 97
Landmarks 50
Newspapers 32

Table 6.1: Number of annotated documents in various domain splits of our benchmark. Total
1988 documents across all domains.

Both exhibit long-tail distributions with lengthy sequences — about 32% of source documents
have more than 2000 words and 10% of summaries have more than 200 words. We also find
that 27% of summary sentences correspond to 4 or more marked evidence sentences (Figure 6 in
the Appendix). This suggests a high degree of abstractiveness, because information needs to be
combined from many source sentences and expressed in a single sentence. Annotators deleted
about 22% of the words on average from the initial summary presented to them, while adding
about 2% new words.

6.5 Benchmarking Different Models

Model COMP EVEXT EXT FAC FIX ABS TOPIC UNSUP

Metric→ Rouge F1 AUC AUC ExactMatch Rouge Rouge F1

Fine-tuned models

RoBERTa-Large - 71.01 84.06 92.69 - - - 49.21
T5-Large 41.97 77.22 87.00 94.89 31.26 33.44 23.81 51.71
Flan-T5-Large 43.23 77.71 87.99 95.15 32.94 32.05 23.62 58.57
Flan-T5-XL 44.87 79.23 87.81 95.30 35.10 32.69 24.26 64.94
Flan-T5-XL (multitask) 44.32 76.64 86.44 95.38 36.71 31.83 23.46 58.51

Few-shot prompted LLMs

Llama-13B 28.12 5.56 52.90 49.34 8.20 5.51 2.47 0.63
Vicuna-13B 31.35 6.65 52.76 55.28 4.28 5.56 2.84 1.47
GPT-3.5-turbo 33.21 26.78 61.63 60.81 3.29 29.77 14.59 7.80

Table 6.2: Performance of models on different tasks evaluated on the full test dataset. Tasks:
COMP: Multi-sentence Compression EVEXT: Evidence Extraction FAC: Factuality Classifica-
tion FIX: Fixing Factuality ABS: Abstractive Summarization (of full document) EXT: Extractive
Summarization TOPIC: Topic-based Summarization UNSUP: Unsupported Span Prediction

We run a suite of models on all tasks in our benchmark and present the results in Table 6.2.
For this set of experiments, we use the consolidated train, validation and test splits, which are
a union of the corresponding splits from all domains. For tasks that involve generation of sum-
maries, we use Rouge score Lin [2004a] as the metric. We show geometric mean of the 1,2, and
L variants for succinctness (Table 6.2). One exception is the Fixing Factuality task for which we
use exact match as the metric. For Unsupported Span Prediction, we measure the F1 score based

59



on BIO tagging format [Sang and Buchholz, 2000]. For the remaining tasks we use standard
binary classification metrics.

For the classification/span prediction tasks in our benchmark, we fine-tune Roberta-Large (Liu
et al. 2019b; Table 6.2). We recast these as seq2seq tasks and fine-tune variants of T5 models on
each of the 8 tasks. We include the original [Raffel et al., 2020a] and the instruction-tuned Flan
version [Chung et al., 2022]. T5 Large outperforms Roberta-Large on all the classification/span
prediction tasks. Flan-T5 Large performs similarly to T5 Large, though achieves notable gains
on Unsupported Span Prediction. Flan-T5 XL consistently improves performance over larger
models on almost all tasks, suggesting model size helps (Table 6.2). We also train a multi-task
variant of Flan-T5-XL (on all tasks jointly). This mostly retains similar performance as a dedi-
cated XL model trained only on that task, except for Evidence Extraction and Unsupported Span
Prediction (Table 6.2).

We run large language models including publicly released models (for research purposes)
such as Llama [Touvron et al., 2023] and Vicuna [Chiang et al., 2023], and closed models such
as OpenAI’s gpt-3.5-turbo5, i.e., ChatGPT. For tasks where the full document is fed as input, we
use 4 examples for few-shot prompting owing to limitations in the maximum feasible sequence
length for these models, while for the rest we use 16 examples (for details, see the Appendix).
ChatGPT consistently outperformed Vicuna-13B and Llama-13B on all tasks except Fixing Fac-
tuality. This is because for the Fixing Factuality task, ChatGPT almost always adds new un-
necessary information to the summary, even after prompting it to not do that. Compared to
ChatGPT, finetuned models perform better on every task. The performance difference is largest
for factuality-based tasks such as Unsupported Span Prediction, Evidence Extraction, and Fixing
Factuality. ChatGPT does comparatively well on tasks that involve generating summaries.

Since automatic metrics for measuring summary quality like ROUGE [Lin, 2004a] do not
necessarily mirror human preference [Cohan and Goharian, 2016], we conducted human evalu-
ation of the generated summaries in the COMP, ABS and TOPIC tasks. We collect ratings for
summaries generated by Flan-T5 and ChatGPT for 50 randomly selected documents from the
test set, using a questionnaire (see the Appendix for more details). We found that on average,
ChatGPT’s summaries are mostly preferred over Flan-T5-XL model’s summaries for all 3 sum-
mary generation tasks in terms of relevance and factuality (Table 7.3). This suggests that while
fine-tuned models produce summaries closer to the ground truth in the dataset (thus achieving
high ROUGE), humans may find the summaries of few-shot prompted LLMs better. For ex-
ample, in the Topic-based summarization task, while Flan-T5-XL produces summaries with an
average length of 46.3 words, ChatGPT generates summaries with an average length of 110.2
words. The ground truth summaries for that task are 36.9 words long on average, which is more
closely matched by Flan-T5-XL, but the much longer summaries of ChatGPT are considered
better by human annotators as reflected in the human ratings (Table 6.3).

For the Fixing Factuality (FIX) task, we compare the fixed summaries generated by Flan-T5-
XL and ChatGPT, asking which of them (i) remove more factual errors; (ii) mistakenly remove
more correct information; (iii) add more new information; to the initially provided incorrect
summary. We found that while ChatGPT removes more factual errors from summaries than
Flan-T5, it often does so by removing lots of (even factual) information altogether, and replacing

5We used the frozen version codenamed gpt-3.5-turbo-0301
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Abstractive Summarization (ABS)
Question Flan-T5 GPT-3.5-turbo

Which of the following summaries is better in terms of effectively summarizing the
given full content?

36.4% 39.7%

Which of the following summaries is more factual, accurately representing the in-
formation presented in the given full content?

33.8% 33.1%

Multi-sentence Compression(COMP)
Question Flan-T5 GPT-3.5-turbo

Which of the two summaries covers more information touching upon all the high-
lighted sentences?

27.6% 50.0%

Which of the following summaries is more factual, accurately representing the in-
formation presented in the document?

21.1% 38.8%

Topic-based Summarization(TOPIC)
Question Flan-T5 GPT-3.5-turbo

Which of the two summaries is better in terms of effectively summarizing the given
topic?

10.0% 85.3%

Which of the two summaries is more related to and exclusive to the given topic? 11.3% 77.3%

Fixing Factuality(FIX)
Question Flan-T5 GPT-3.5-turbo

Which of the two summaries removes more contradictory/unsupported information
from the incorrect summary, in reference to the context?

18.0% 38.0%

Which of the two summaries removes more correct information (which is actually
well-supported by the context) from the incorrect summary?

3.0% 24.0%

Which of the two summaries adds more new facts compared to the incorrect sum-
mary?

2.0% 67.0%

Table 6.3: Win rate for model outputs along different aspects as indicated in human evaluation
for different tasks

it with new content to effectively make a new different summary (Table 6.3).

6.6 Out-Of-Domain Performance on Tasks
We next evaluate the performance of fine-tuned models when tested on a domain different from
what they were trained on. Our benchmark has training data from 4 domains (i.e. excluding
landmarks and newspapers), with different amounts of labeled data for each. To control for
training set size, we randomly subsample annotated documents for each domain to isolate 40,
19, and 38 documents for train, validation and test splits. These sizes of the splits were chosen
to match the smallest of the 4 domains i.e. companies (Table 6.1).

We train and evaluate Flan-T5 Large models on different domains and plot average scores
for all tasks training and test domain pair in Figure 6.2. Models trained on the same domain
as the test domain perform best or negligibly close to it. But across test domains, the best out-
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Training Domain COMP EVEXT EXT FAC FIX ABS TOPIC UNSUP

Metric→ Rouge F1 AUC AUC ExactMatch Rouge Rouge F1

Companies

Companies 30.02 61.61 66.36 90.10 11.76 19.30 18.51 7.41
Biographies -1.83 +2.07 +2.22 -2.80 -5.88 -3.19 -3.62 -7.41
Biographies (full) +0.67 +6.42 +16.57 +3.84 +20.59 +0.40 -2.92 +46.85

Disasters

Disasters 31.69 52.89 77.89 77.67 3.03 21.68 16.95 5.80
Biographies -2.75 +7.15 -9.84 +6.91 -1.01 -5.31 -1.54 -5.80
Biographies (full) -2.09 +12.52 +6.36 +12.55 +15.15 +0.45 +0.78 +40.22

Schools

Schools 38.63 62.72 73.92 88.89 3.19 28.89 25.04 2.70
Biographies -2.09 -0.24 -0.72 -1.84 +2.13 -8.45 -5.67 +0.12
Biographies (full) +0.69 +5.20 +10.60 +3.44 +26.60 -4.88 -4.51 +37.98

Table 6.4: Out-Of-Domain evaluation of fine-tuned Flan-T5-Large models. In each section of
the table, we evaluate 3 variants - A) Model trained on the test domain (Companies, Disasters
& Schools), B) Model trained on the Biographies domain (training sets of A and B are subsam-
pled to have equal number of datapoints: train-40, validation-19, test-38), and C) Model variant
trained on the full biographies dataset with 607 datapoints for training. Factuality related tasks
benefit greatly from an abundance of training data, even if it’s not from the target domain.

of-domain trained model has < 15% performance drop compared to this, showing respectable
average out-of-domain performance. Going by the in-domain performance of models trained
on equal amounts of data, the biographies domain is the easiest and the disasters domain is the
most difficult. One distinction between the disasters domain and others which might explain its
difficulty is that it deals with summarizing an event rather than an entity.

For each task in our benchmark, we investigate whether having access to a large training
dataset (irrespective of domain) is more important than having training data from the test domain.
We use the test splits of 3 domains (companies, disasters, and schools), and on each of them we
evaluate 3 different models trained on: (1) The training split of the same domain; (2) The training
split of the biographies domain, and; (3) The full training split of the biographies domain (before
subsampling) which contains 607 annotated documents. Training on equivalent amounts of data
from the test domain and biographies domain leads to comparable or worse performance of the
latter (Table 6.4).

However, training on the full train set of the biographies domain achieves much higher per-
formance on many tasks, despite the domain shift (Table 6.4). Gains are most visible on the
Unsupported Span Prediction and Fixing Factuality tasks. By contrast, for tasks requiring sum-
mary generation, using the large biographies training set often does worse than using the 15×
smaller in-domain train set. This might happen because domain-specific knowledge is required
to learn the style of summaries to generate for a given domain. On the other hand, factuality
related tasks tend to be more objective (e.g., judging factual correctness), and so model skills are
transferrable across domains.
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Figure 6.2: Average cross-domain model performance (using Flan-T5-Large) on benchmark
tasks. All domains are subsampled to use equal number of annotated documents (train–40,
validation–19, test–38).

6.7 Comparison with Heuristic Annotations
For some tasks in our benchmark, past works have used heuristics to create large labeled training
data sets as an alternative to collecting manual annotations [Chen and Bansal, 2018, Kryściński
et al., 2020, Balachandran et al., 2022]. We use such proposed heuristics to train models and com-
pare them with models trained on high-quality, human annotated data. We conduct experiments
on the Evidence Extraction, Factuality Classification and Fixing Factuality tasks. Because the
primary advantage of heuristic-generated training sets is their size, we also assess how smaller
human-labeled training sets fare in comparison.

For the Evidence Extraction task, we use lexical overlap as a proxy to derive “reference”
evidence alignments. For example, we select the source sentence with the highest ROUGE-L
score with a summary sentence as its evidence, as outlined in Chen and Bansal [2018]. We
also create a training set variant where entity overlap is used instead of ROUGE-L to derive
references. Finally, we use SuperPAL [Ernst et al., 2021] as an out-of-the-box solution to predict
evidence labels for our dataset’s summaries, and then use them for model training.

To train models to detect or fix factual errors, we artificially introduce errors into summaries
to be used as exemplars. We do this via transformations such as swapping entities, numbers,
pronouns, introducing negation, and so on, inspired by prior work [Kryściński et al., 2020]. To
generate diverse errors and hallucinations, we follow Balachandran et al. [2022]; we mask parts
of the summary out and then use a language model to infill these with (mostly unsupported)
information.

We train models for 3 tasks on both heuristically-generated and manually annotated training
datasets, and evaluate them on clean human-labeled test sets. Training on human-annotated
data performs better than all heuristic-based alternatives across all tasks (Table 6.5). Next, we
train models on subsets of the manually annotated datasets with varying sizes and compare their
performance on the test sets; this shows how even a little human-annotated data can outperform
large amounts of heuristic-generated data for different tasks. For each of the three tasks, the
performance achieved using only 5% of the human annotated training set, still outperforms the
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Evidence Extraction

F1

SuperPAL [Ernst et al., 2021] 53.8
ROUGE [Chen and Bansal, 2018] 40.9
Entity overlap 47.0

Human annotations 100% (N=765) 77.7
Human annotations 5% 70.9

Factuality Classification

AUC

FactEdit [Balachandran et al., 2022] 74.6
FactCC [Kryściński et al., 2020] 68.9

Human annotations 100% 95.1
Human annotations 5% 90.4

Fix factuality

Exact Match

FactEdit [Balachandran et al., 2022] 1.0
FactCC [Kryściński et al., 2020] 0.8

Human annotations 100% 32.9
Human annotations 5% 11.2

Table 6.5: Comparing use of human annotations vs heuristic annotations for finetuning Flan-T5
Large models. We also report performance when finetuning on 5% of the training set with human
annotations.

heuristically labeled full training set (Table 6.5). This highlights the value in collecting manual
annotations, even if in small quantities, over using heuristics to generate training data labels.

6.8 Related Work

The tasks in our benchmark have been studied in prior work to varying degrees. The great-
est amount of attention has gone to the tasks of extractive summarization [Wong et al., 2008,
Kågebäck et al., 2014, Zhang et al., 2016, Nallapati et al., 2017], and abstractive summarization
[Liu and Lapata, 2019, Zhang et al., 2020, Raffel et al., 2020a, Lewis et al., 2020b, Goyal et al.,
2022]. There exist plenty of datasets for abstractive summarization [Narayan et al., 2018b, See
et al., 2017, Kim et al., 2019b, Wang and Ling, 2016]. However, many of them were created
heuristically, with “targets” being automatically extracted via rules from documents pulled from
the web. This can lead to poor quality reference summaries Bommasani and Cardie [2020], Kr-
ishna et al. [2023c], and training on them can yield models prone to generating hallucinations
[Nan et al., 2021, Ji et al., 2022]. By contrast, we use manual annotation to ensure that summaries
are fully supported by sources, resulting in a high quality abstractive summarization dataset.

Past works for predicting factual correctness of summaries incorporate question-answering
models and natural language inference methods [Scialom et al., 2021, Fabbri et al., 2022, Goyal
and Durrett, 2021], or use synthetically introduced factual errors [Kryściński et al., 2020] to train
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models. In contrast, the USB benchmark introduces a high-quality manually annotated dataset
for predicting factual correctness. For the task of editing summaries to fix factual errors, datasets
with both synthetic and model-generated errors have been created [Balachandran et al., 2022, Liu
et al., 2022]. The task of unsupported span prediction is akin to detecting hallucinated content in
generated summaries, and to the best of our knowledge, no labeled dataset exists for this task.

For extracting evidence for a summary, past works have used lexical overlap based heuris-
tics [Chen and Bansal, 2018, Lebanoff et al., 2019]. A manually annotated dataset for the task
was introduced by Ernst et al. [2021], albeit our work provides a substantially larger manually an-
notated dataset. Similarly, for multi-sentence compression we introduce a much larger manually
labeled dataset than prior works [Slobodkin et al., 2022]. Prior research has mostly approached
topic based summarization by adopting a predefined set of topics [Krishna and Srinivasan, 2018,
Akhtar et al., 2017, Hayashi et al., 2021]. However, we did not restrict the set of topics in our
dataset, resulting in a long tail of (potentially challenging) rare topics.

6.9 Conclusion

We introduced the USB benchmark comprising tasks to measure model performance across
different text summarization sub-tasks. We showed that fine-tuned smaller models outperform
few-shot prompting of much larger LLMs by a large margin on tasks related to appraising the
factuality of summaries. We studied how fine-tuned summarization models perform on out-of-
domain data, and identified several tasks where the training dataset size is more important than
its domain.

Finally, we showed that rather than training models on large volumes of heuristically labeled
data, one can get better performance by creating a much smaller (≈ 20× smaller) manually
labeled training set instead. The resultant USB benchmark permits the training of models for
useful tasks such as extracting evidence for a summary, correcting factual errors in it, and gen-
erating summaries focused on specific topics. Our hope is that this benchmark spurs further
research on these tasks and will serve as a barometer for progress in them.

6.10 Limitations

Despite efforts to collect a diverse dataset, the benchmark used in this study may still exhibit
certain biases. The sampling process and the selection of Wikipedia articles as the primary data
source could introduce inherent biases, potentially affecting the generalizability of the results.
These biases may stem from the specific domains or topics covered in the dataset, as well as the
way in which Wikipedia articles are written and formatted. The dataset’s reliance on Wikipedia
articles as the primary source of data might not adequately represent the nuances and challenges
encountered in different domains or sources. One prominent example is conversations which are
frequently used in summarization research but are not represented in the benchmark. Similarly, a
model’s ability to detect errors/hallucinations in summaries in the benchmark may not necessarily
reflect its ability to detect errors more broadly in summaries generated by a variety of models.
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While the benchmark dataset was annotated by human annotators, it is important to acknowl-
edge the possibility of annotation errors or inconsistencies. Despite efforts to ensure high-quality
annotations, the presence of errors should be taken into account when interpreting the results.
Human annotation is subjective by nature, and different annotators may have varying interpreta-
tions in some situations, e.g., deciding whether a fact in the summary requires explicit evidence
or should be presumed as common knowledge.

6.11 Ethics Statement

Potential biases: When selecting the pool of annotators on Amazon Mechanical Turk (AMT) for
creating the dataset, we required their location to be the United States. This was done since the
US has a very large population of native English speakers, which can help in getting high quality
annotations. However, this geographical restriction can also lead to biases in the annotation
process. For example, it would affect what’s considered common knowledge when assessing
evidence for summaries. An annotator from the United States would likely consider a person’s
birth in Los Angeles as evidence of them being from California, because they know Los Angeles
is in that state. However, if it were some other city and state in a country unfamiliar to them, they
may not make a similar inference.
Compensation for annotators: For the initial qualification task, workers were paid 2 USD.
After selecting the qualified workers, for the main annotation task workers were paid 2 to 3
USD per document-summary pair, depending on the number of sentences in the summary and
the domain where it came from (we observed that some domains were more difficult). For the
second round for verification, we paid annotators between 0.3 to 1.0 USD depending on the
number of sentences in the summary which were flagged for verification, which can be as low
as 1 sentence. The creation of the entire dataset costed about 6000 USD including platform fees
paid to AMT and server hosting costs.
Use of proprietary LLMs: We included the GPT-3.5-turbo large-language-model from OpenAI
in our experiments since it has demonstrated excellent performance on diverse NLP tasks in zero-
shot and few-shot settings. Unfortunately, OpenAI could discontinue hosting the model in future
at which point it may not be possible to reproduce its results on the tasks proposed in this work.
For this reason we have also included results with public open-source LLMs like Llama and
Vicuna, as these models are publicly available and hence their results can always be reproduced.

66



Chapter 7

GenAudit: A tool to fix factual errors in
model-generated summmries

Despite the availability of methods to detect and fix factual errors in summaries (e.g. models
trained in Chapter 6), it is unlikely that the resulting summary would be completely error free
since the error detectors aren’t perfect. Hence, in many high-stakes applications (e.g., healthcare
or finance) it becomes necessary for a human to manually verify the summaries. However, this
process can be time-consuming, especially if the corresponding source to verify against is long.
A tool utilizing trained models for factuality verification can provide valuable assistance to the
humans in the fact-checking process. Additionally, the tool should be broadly usable, i.e. it
should be able to detect errors in summaries irrespective of what language model is used for
generating it, and should work with diverse domains of data such clinical records, news articles,
conversation transcripts etc.

In this chapter, we present GENAUDIT — a tool to assist fact-checking LLM responses for
document-grounded tasks. GENAUDIT suggests edits to the LLM response by revising or remov-
ing claims that are not supported by the reference document, and also presents evidence from the
reference for facts that do appear to have support. We train models to execute these tasks, and
design an interactive interface to present suggested edits and evidence to users. Comprehensive
evaluation by human raters shows that GENAUDIT can detect errors in outputs from 8 differ-
ent LLMs when summarizing documents from diverse domains. To ensure that most errors are
flagged by the system, we propose a method that can increase the error recall while minimizing
impact on precision. We release our tool (GENAUDIT) and fact-checking model for public use.1

7.1 Introduction
LLMs can produce factually incorrect or unsubstantiated statements [Li et al., 2023a, Min et al.,
2023], even when they are explicitly provided relevant context such as documents [Adams et al.,
2023, Sadat et al., 2023]. Incidentally, such document-grounded generation is often involved in
high-stakes usage scenarios where factual correctness is (especially) paramount. For example,
a doctor using an LLM to summarize a patient’s medical history [Adams et al., 2023, Kanwal

1https://genaudit.org
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Figure 7.1: An illustration of GENAUDIT’s user interface and sample predictions. Reference
document (a clinical transcript) is on the left and the generated text to be fact-checked is on
the right (generated by querying any LLM, but manually entered here for ease of illustration).
Spans in the text which are not supported or are contradicted by the reference are highlighted in
red, with suggested replacements in green. As the user moves to any line in the generated text,
evidence found for all facts in it are highlighted using blue links. Evidence and error predictions
shown here are made by a fine-tuned Flan-UL2 model backend.

and Rizzo, 2022] might make an incorrect decision if the generated summary contains errors.
Manually verifying LLM outputs in such settings is therefore prudent, but also time-consuming
and so undercuts the motivation for using language technologies in the first place. This motivates
the need for a system that can assist users in efficiently verifying LLM output.

To this end, we introduce GENAUDIT, a tool for fact-checking LLM responses in document-
grounded tasks such as summarization and question answering. Given a document and an LLM-
generated output conditioned on the same, GENAUDIT (i) locates factual errors in the output
text and proposes edits to fix them, and (ii) displays evidence to support facts in the (potentially
edited) text. The system consists of two components: an interactive interface which presents
evidence and edit suggestions for the user to act upon, and a bespoke backend model (fine-tuned
LLM) capable of producing edits and identifying evidence. The interface allows the user to make
edits to the LLM-generated text, and then observe updated predictions from the fact-checking
model. Notably, in addition to supporting the task of fact-checking itself, the interface can also
be used as a tool to evaluate and compare different backend fact-checking models, collecting data
on human edits to fine-tune better models, and carry out counterfactual testing of fact-checking
models by editing source documents.

We designed and evaluated different models to generate the fact-checking predictions for the
tool, including fine-tuned and few-shot prompted LLMs. We treat this as a sequence-to-sequence
task: Given an input document and a claim sentence, the model is required to simultaneously
generate the sentence ids in the document which provide evidence, and a revised version of the
claim which fixes any factual errors. We used data from the USB benchmark [Krishna et al.,
2023a] to train and evaluate models on the fact-checking tasks. We found that fine-tuned open-
source LLMs perform better than few-shot prompted ChatGPT and GPT-4 models, at least when
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evaluated on an in-domain held-out test set.
Ideally, a fact-checking tool would support verifying text produced by any LLM, based on

reference documents from any domain. We evaluated GENAUDIT using 8 different models to
summarize documents from 3 different domains. Human annotators were asked to accept or
reject edits suggested by the tool, fix errors that were not caught by it, and also to provide
feedback on the usefulness of suggested evidence. On average, GENAUDIT highlighted ∼40%
of erroneous words in summaries with a precision of ∼95%.2 In terms of extracting useful
evidence, GENAUDIT achieved ∼91% recall and ∼95% precision.

Human evaluations also show that GENAUDIT can be used to verify summarization outputs
in different domains, including clinical conversations, news articles and social media posts. This
is despite the fact-checking model being trained only on Wikipedia data. We also evaluated its
performance at factuality classification on the SummEdits benchmark [Laban et al., 2023] which
consists of data from 10 different niche domains such as legal documents, scientific papers, and
emails. GENAUDIT outperforms alternative fact-checking methods like DAE [Goyal and Durrett,
2021] and QAFactEval [Fabbri et al., 2022] and many LLMs (both open-source and proprietary),
with the exceptions of GPT-4 and Gemini-pro.

GENAUDIT successfully identified errors in outputs from 8 different LLMs including Mistral-
7B [Jiang et al., 2023], LLama2-70B [Touvron et al., 2023], Gemini-pro [Team et al., 2023] and
GPT-4 [Achiam et al., 2023] in human evaluation. Observed precision ranged between 79−100%
while, recall ranged from 23 − 57% for different generation models. Our human evaluation
yielded a collection of 702 summaries generated by state-of-the-art models carefully annotated
with factual errors; this may be useful for future research on fact-checking LLMs.

The relative trade-off between identifying errors (recall) and making efficient use of expert
time (precision) will depend on the particular use-case. We therefore introduce a decoding al-
gorithm for fact-checking models which generate revised/fixed versions of claims, which can
increase the recall of error detection with minimal cost in precision. This approach entails in-
tervening at time-steps where the output probabilities fall below a threshold τ to select alternate
decoding paths. Varying τ allows us to make more or fewer edits, effectively trading recall
against precision. This approach produces a better precision-recall frontier than a baseline of
randomly selecting additional words to edit to boost recall.

Our contributions are as follows:
• We present GENAUDIT, a tool to assist fact-checking LLM outputs in document-grounded

tasks. The tool identifies and fixes errors, and highlights evidence for claims.
• We evaluate and release fine-tuned LLMs which serve as backend models for fact-checking;

these perform comparably to SOTA proprietary LLMs in few-shot settings.
• We evaluate GENAUDIT for fact-checking errors in summaries generated by 8 LLMs for

documents from 3 domains.
• We present and evaluate a decoding-time method that allows one to improve error detection

recall (with some cost in precision).

2For reference, ∼4% of words in summaries are erroneous, on average.
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Input:
You are provided a document and its summary. The summary may potentially contain factual
errors. The last sentence of the summary is marked as a claim. Find all sentences in the document
providing evidence for the claim, and then revise the claim to remove or replace unsupported
facts.
DOCUMENT: SENT0 Micheal Ward SENT1 Early life. SENT2 Micheal Ward was born in
Spanish Town, Jamaica on 18 November 1997. SENT3 His mother was 18 years old when he
was born. SENT4 He has three sisters. ... SENT17 Ward’s breakout year came in 2019, when
he starred as Jamie in Netflix’s revival and third series of ”Top Boy”. SENT18 He also appeared
in a leading role in the film ”Blue Story” in the same year. SENT19 The film received critical
acclaim, and Ward won the BAFTA Rising Star Award for his performance. ...
SUMMARY: Micheal Ward (born 18 November 1997) is a Jamaican-British actor and former
model.
CLAIM: His films include ”Blue Story” (2018) and ”The Old Guard” (2020).

Output:
EVIDENCE: SENT18
REVISION: His films include ”Blue Story”.

Table 7.1: Sample datapoint with input-target formatting from the USB dataset

7.2 Background
We fine-tune LLMs to perform evidence extraction and claim editing, and use them as backend
for GENAUDIT. In this section we provide an overview of the training dataset and models we
use to power the underlying evidence extraction and factual error correction tasks.

7.2.1 The USB dataset
The USB dataset [Krishna et al., 2023a] is composed of Wikipedia articles, their summaries and
(human) annotations on them. The summaries have two versions: (i) An initial version which
may have content that is unsupported by the article or contradicted by it, and (ii) An edited
version which annotators have created by making minimal edits to the initial version to remove
errors. Additionally, each sentence in the edited summary is linked to a minimal set of article
sentences that provide sufficient evidence for all facts that it contains.

We format the dataset in a sequence-to-sequence format to use it for fine-tuning LLMs (Ta-
ble 7.1). The input to the model starts with the task instruction. It is followed by the reference
document where each sentence is prefixed by a sentence ID (e.g. SENT1, SENT2...). It is then
followed by the summary sentences upto the sentence to be fact-checked (called the claim). The
sentences preceding the claim are included so that relevant context from it (e.g. coreferences)
can be used for better understanding of the claim. Finally, the claim is appended to the input.
The target output consists of the two parts. The first part contains a list of sentence ids from the
document which provide evidence for the claim, and the second part consists of a revised version
of the claim which removes its unsupported information and replaces incorrect facts.

We use a custom split of the USB dataset for training and evaluating our model. We shuffle
and divide the entire dataset into train, validation and test splits of size 94%, 3% and 3% of the
full dataset. This differs from the original USB splits in two ways. First, the training split is much
larger at 94% instead of the original 40%. Second, the training split consists of articles from all
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Model Error Identification Evidence
Recall Precision F1 Recall Precision F1

Finetuned decoder-only LLMs

Falcon-7B 69.03 61.54 65.07 59.85 54.23 56.90
Llama2-7B 74.85 39.19 51.44 68.03 68.47 68.25
Mistral-7B 80.53 73.34 76.77 72.25 86.66 78.80

Fine-tuned encoder-decoder LLMs

Flan-T5-XL 73.01 87.07 79.42 78.90 85.69 82.16
Flan-T5-XXL 80.38 84.50 82.39 81.46 85.96 83.65
Flan-UL2 76.47 87.44 81.59 80.56 86.42 83.39

Few-shot prompted proprietary LLMs

GPT-3.5-turbo (8shot) 38.79 48.57 43.13 51.79 45.15 48.24
GPT-4 (4shot) 37.98 63.89 47.64 74.42 38.52 50.76

Table 7.2: Performance of different models on the test split of the USB dataset for the tasks of
(i) identifying erroneous words, and (ii) highlighting relevant evidence

6 domains in the benchmark, whereas originally 2 of the domains where reserved as challenging
OOD examples to occur in only the test set. The motivation for both of these changes is that we
want to create a tool which generalizes to other diverse data beyond simply Wikipedia articles,
and hence we train on as much and as diverse data as possible.

7.2.2 Reducing memory requirement for training
We aim to fine-tune large models for the fact-checking task, since they are more likely to perform
better and generalize to unseen domains due to internal knowledge. However, it is challenging
to do so without access to large compute clusters due to memory constraints. The requirement
to feed in the entire reference document to the model, which can be thousands of tokens long,
further increases memory requirements.

To address the memory constraints, we use low-rank adapters with 4-bit quantization [Dettmers
et al., 2023]. Low rank adapters [Hu et al., 2021] reduce the memory requirement during training
by reducing the number of trainable parameters, thus reducing gradient computation. To reduce
the sequence length in cases where the reference document (Wikipedia article) is too long, we
iteratively drop sections in it which are not relevant to any sentence in the summary (i.e. do not
provide any evidence for it). We follow this process until the input sequence length is reduced to
within a maximum limit, which is kept the same regardless of what model we are fine-tuning. We
also use gradient accumulation and gradient checkpointing [Chen et al., 2016] to reduce memory
footprint for training. For more details, please see the Appendix.

7.3 Experiments
We use the USB dataset for training/prompting and evaluating 8 different models for two factcheck-
ing tasks. For the evidence extraction task, we report precision, recall and F1 score as in a binary
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Error Identification Replacements Evidence Extraction
BaseRate Recall Precision F1 Accepted% Recall Precision F1 Sufficient%

Aggregate 3.97 40.37 95.04 56.66 78.18 90.83 95.22 92.97 85.98

Summary generation models

Llama2-7B 4.29 30.21 89.29 45.15 66.67 90.71 96.12 93.33 86.65
Mistral-7B 1.99 23.83 92.00 37.86 40.00 91.43 95.80 93.57 87.59
Falcon-7B 21.84 47.95 97.46 64.28 86.36 84.65 87.08 85.85 76.77
Llama2-70B 3.29 43.38 95.93 59.75 100.00 91.98 92.09 92.04 86.10
Flan-UL2 9.68 34.04 96.04 50.26 80.00 90.18 93.96 92.03 84.16
Gemini-pro 1.80 27.75 78.69 41.03 66.67 91.27 96.98 94.04 86.68
GPT-3.5-turbo 1.10 29.06 89.47 43.87 75.00 92.32 97.23 94.71 88.09
GPT4 2.53 56.77 100.00 72.42 87.50 90.39 97.07 93.61 85.49

Datasets

XSum 4.54 55.00 98.69 70.64 77.78 94.81 97.92 96.34 92.83
ACIBench 2.73 44.04 90.65 59.28 88.89 87.57 93.30 90.34 80.84
Reddit 4.88 22.52 92.41 36.22 60.00 91.93 95.50 93.68 86.55

Table 7.3: Results from human evaluation of GENAUDIT predictions (using fine-tuned Flan-UL2
backend) on LLM-generated summaries of documents from different datasets.

classification task where given a claim and reference document, each sentence in the reference is
classified as relevant evidence or not. To evaluate the model’s ability to remove errors, we com-
pare the words removed/replaced by the model vs those removed in the ground truth revision.
Given the original claim and a revision, we tokenize each into words and compute the diff be-
tween them (using Python’s showdiff library). The words in the claim that are removed/replaced
in the revision are tagged as incorrect and the remaining words are tagged as correct. We use
the ground truth revision in the dataset to compute the ground truth tags, the model-generated
revision to compute the predicted tags, and compute the corresponding precision, recall and F1
scores. Notably, it is difficult to compare the replacement text proposed by the model with ground
truth replacements automatically, since the underlying text span being replaced must match ex-
actly to make an aligned comparison. This requires human evaluation which we discuss in the
next section.

We fine-tune and evaluate 6 different models. These include decoder-only models from the
Falcon [Almazrouei et al., 2023], Llama2 [Touvron et al., 2023] and Mistral [Jiang et al., 2023]
series, and encoder-decoder Flan-T5 models [Chung et al., 2022, Tay et al., 2022]. Finally, we
also use OpenAI’s GPT-3.5-turbo and GPT-4 models for the task via few-shot prompting, using
8 and 4 exemplars respectively.

We find that there is large variation in performance of decoder-only LLMs (Table 7.2).
Llama2 outperforms Falcon in evidence extraction, but underperforms it in the claim editing
task, due to its low precision. Mistral outperforms both Falcon and Llama2 models by a large
margin. There is relatively less variation in performance of the three encoder-decoder models.
Flan-T5-XXL and Flan-UL2 models perform the best, with the former providing better recall
and the latter providing better precision on both tasks. Few-shot prompted GPT models perform
worse than all fine-tuned models on both error identification and evidence extraction.
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7.4 Human Evaluation

In the previous section we saw that models fine-tuned on the USB dataset perform well when
evaluated on its test split. However, this does not imply that they would also perform well when
deployed in diverse out-of-domain scenarios. Two types of domain shift can occur here. The
first is a change in the domain of reference documents used for fact-checking. USB consisted
of Wikipedia articles only, but we would ideally want a finetuned model to work with other
document types such as news articles or meeting transcripts. Another sort of domain shift is the
specific model generating the content to be fact-checked. USB consists only of claims written by
humans, but we would want models to detect and fix errors in content generated by a arbitrary
LLMs.

We run experiments to evaluate the performance of GENAUDIT when fact-checking sum-
maries generated by different models for documents sampled from different domains. We in-
clude a diverse set of open-source models, including three decoder-only 7B parameter LLMs
(Mistral [Jiang et al., 2023], Llama2 [Touvron et al., 2023], Falcon [Almazrouei et al., 2023]),
one large 70B parameter model (Llama2), and one encoder-decoder model (Flan-UL2 [Tay et al.,
2022]). As proprietary API-based models, we use GPT-3.5-turbo, GPT-4, and Gemini-pro mod-
els for summary generation. We then use the Flan-UL2 model finetuned on USB to fact-check
the generated summaries.

We select documents for summary generation from the following three datasets.
XSum [Narayan et al., 2018a] A summarization dataset consisting of BBC news articles cov-
ering diverse topics and events.
ACI-Bench [Yim et al., 2023] A dataset for summarization of patient visits to the doctor
comprising transcripts of doctor-patient encounters.
Reddit-TIFU [Kim et al., 2019b] A dataset consisting of posts from the online discussion
forum Reddit in which users narrate personal day-to-day experiences.

We randomly select 30 documents from each of the three datasets for which to generate
summaries. For the Reddit-TIFU dataset, we manually filtered out examples containing profanity
or sexually explicit content. While generating summaries with open-source models, we decode
using top-p nucleus sampling [Holtzman et al., 2019] from the output token distribution with a
top-p value of 0.9 and a temperature of 1.0.

We hired annotators via Upwork,3 and instructed them to evaluate all edits suggested by the
fact-checker, accept those that fix legitimate factual errors, and mark incorrect suggestions. An-
notators were also instructed to find any missing errors in summaries which were not highlighted
by the system, and to fix them by making minimal edits.

To provide feedback on the highlighted evidence, annotators provided binary (relevant/not
relevant) feedback for each suggested evidence sentence in the summary. They were also in-
structed to consider if the highlighted evidence for each summary sentence is sufficient or not; of
not, then they should mark additional source sentences which contain the missing evidence. Ad-
ditionally, we asked annotators to flag incomprehensible summaries, which were then excluded
from the analysis. For example, instead of a summary, sometimes Falcon-7B model outputs a
continuation of instructions, such as “when creating a summary, use the information given and

3https://www.upwork.com/
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avoid superfluous details.” The Appendix includes additional evaluation details.
Results are shown in Table 7.3. We use the metrics described in Section 7.3 for rating sug-

gested errors and evidence generated by GENAUDIT. On an aggregate level—across all domains
and summary generation models—GENAUDIT identifies erroneous words with high precision
(95.04%) and moderate recall (40.37%). Note that achieving high recall is challenging here
given the low prevalence of erroneous words (3.97%). With respect to evidence extraction, we
observe high precision and recall (95.22% and 90.83%, respectively), suggesting that most evi-
dence sentences highlighted by the model are useful for fact-checking the given claim, and only
few evidence sentences are missed (not highlighted) by the model.

The rate of errors in outputs varies considerably across models. Summaries from GPT-3.5-
turbo have the lower error rate at 1.10%, while Falcon-7B has the highest error rate of 21.9%.
The highest recall and precision for error detection is observed for the latter model. The precision
of error detection remains around or above 90% for all models except Gemini-pro. Recall varies
widely (∼23 − 57%) across different models. The lowest recall is for Mistral-7B (23.83%); for
context, its error rate is 1.99%. For evidence extraction, the performance with most models is
quite similar with both precision and recall, falling between ∼85− 97%. The lowest F1 score is
85.85% for Falcon-7B, and highest is 94.71% for GPT-3.5-turbo.

Among the datasets considered, GENAUDIT’s performance at error identification was best for
XSum (news articles), followed by ACIBench (clinical conversations), and finally Reddit/TiFU
(social media posts). While the precision stays above 90% on all datasets, the recall ranges from
22.52% on the Reddit dataset to 55.00% on XSum. On the evidence extraction task, GENAUDIT

achieves F1 scores of 90%+ on all three datasets.
While the previously discussed metrics measure success at identifying parts of the text which

are incorrect, we also measure the quality of model-generated replacements when they are sug-
gested. The percent of model-suggested replacements accepted was ∼78%, on average (Ta-
ble 7.3), suggesting the quality of generated replacement strings. The percent of generated sum-
mary sentences for which the highlighted evidence was sufficient for verification was ∼86%,
indicating that generated evidence highlights may make fact-checking more efficient.

Using the annotations collected above, we evaluate additional models on the error detection
task. Few-shot prompted GPT-4 achieves better recall than Flan-UL2, while other fine-tuned
models achieve lower recall (Table 7.4). All models achieve lower precision than Flan-UL2.
Edits suggested by GPT-4 add about 8.8% more words to them on average, while other fine-
tuned models add a negligible amount, reflecting the tendency of GPT-4 to make substantial
changes to text. Finally, we also evaluate the FAVA model trained by Mishra et al. [2024] for
factual error correction. We see that the model achieves the lowest recall compared to all the
models evaluated, with a slightly higher precision than GPT-4.
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Model Recall Precision %Del %Add

Flan-UL2 40.37 95.04 1.69 0.18
Flan-T5-XL 25.75 74.23 1.38 0.12
Mistral-7B 35.08 45.24 3.08 0.16

GPT-4 (4-shot) 40.68 28.50 5.67 8.80
FAVA [Mishra et al., 2024] 14.18 31.34 1.80 0.43

Table 7.4: Performance of models fine-tuned by us on the USB dataset, few-shot prompted GPT-
4, and the FAVA model [Mishra et al., 2024] at identifying erroneous words in model-generated
summaries, along with the percentage of summary words deleted and added by their edits.

7.5 Improving Recall of Error Detection

Users fact-checking LLM outputs using GENAUDIT may give more importance to a higher recall
than precision to be confident that most errors are highlighted for review, even at the cost of false
positives. While it is always possible to increase recall by indiscriminately flagging additional
text spans as errors, a naive strategy would lead to a large drop in precision. We propose a
decoding algorithm for the fact-checking model which uses the output token probabilities to
achieve a better precision-recall trade-off.

Our proposed approach (Algorithm 1) for increasing error detection recall relies on observ-
ing the probabilities of tokens generated as the revision by the fact-checker, and intervening at
timesteps with low model confidence. Given a document D, claim C, and an initially generated
revision R = r1r2..rm, we find the first position t where the probability assigned to token rt falls
below a threshold τ . At that timestep we then generate the token with the highest probability
excluding rt. We generate the remaining tokens (from t + 1) as usual via greedy decoding to
compute an alternate revision R′. Given R and R′, assume the span rkrk+1..rk+w was replaced
by x1..xq. We make the replacement in R yielding r1...rk−1x1..xqrk+w+1...rm. We then repeat
the process of finding low probability tokens and making edits for the remaining tokens. After
each iteration of the while loop, the value of (|R| − t) decreases by at least 1, which guarantees
termination of the program.

Increasing the value of τ in Algorithm 1 would lead to more edits being made to the claim,
and vice-versa. We run the Flan-UL2 fact-checking model with different values of τ ranging
from 0.0 to 0.99 and plot the resulting recall and precision at detecting errors annotated in the
human evaluation experiment in Section E.4. We find that using Algorithm 1, we are able to
increase the recall from about 40% to 60%, with a drop in precision from 95% to 40%. Although
there is a drop in precision, the drop is much lower than what one would get by using a simple
randomized baseline. The baseline strategy we compare against is to boost recall by randomly
selecting additional words (beyond the ones already predicted as erroneous by the model) and
mark them as erroneous too. We compute the number of words that need to be selected to boost
expected recall to a certain level, and the resulting drop in expected precision that it entails (see
Appendix for derivation). The thresholding approach maintains a much higher precision with
increasing recall compared to the baseline strategy, where the precision already falls to around
28% when the recall increases to merely 43% (Figure 7.2).
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Algorithm 1 Thresholded Edit
Input: document D, claim C, predicted evidence E, predicted revision R, model M, thresh-
old τ
Q = (D,C,E)
t = 1
while t ≤ |R| do
p1p2...p|V | = NextTokProbM(r1..rt−1 | Q)
if prt ≤ τ then
r′ = argmaxk(pk | k ̸= rt)
prefix = r1r2..rt−1r

′

compl = GenerateM(prefix | Q)
R′ = prefix + compl
Ndel, Nadd, repl = DiffAtPost(R,R′)
R = prefix + repl + r(t+Ndel)...r|R|
t = t+Nadd

end if
t = t+ 1

end while
Output: updated revision R

We also compare using the custom decoding strategy in Algorithm 1 with simply flagging
additional tokens as non-factual if their probability of generation (by the fact-checking model)
falls below a variable threshold. We see that this strategy performs worse than using Algorithm 1
(Figure 7.2). This suggests that post-hoc usage of token probabilities from the fact-checking
model does not isolate the non-factual spans as well as active intervention during the decoding
process as done in Algorithm 1.
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Figure 7.2: Variation in precision and recall of error identification by a fine-tuned Flan-UL2
model when using thresholded editing (Algorithm 1) versus editing out additional tokens either
at random or by selecting the ones with low probability.

7.6 Binary Classification of Factuality
In the previous sections, we evaluated the performance of GENAUDIT at localizing factual errors
within text and suggesting edits. However, it can also be repurposed as a binary classifier which
simply predicts whether a long-form generated text is factually consistent or not with respect to
given reference. To do that, we simply declare a given passage of text as factually inconsistent
with respect to reference document if GENAUDIT suggests any edit to any sentence in it.

We evaluate the performance of GENAUDIT on the SummEdits benchmark [Laban et al.,
2023] which consists of document-summary pairs where the summaries potentially contain fac-
tual errors. The source documents are taken from 10 different datasets representing a diverse
group including legal documents, scientific papers, emails etc. We tokenize the source docu-
ment into individual sentences before passing it through the fact-checking model. GENAUDIT

achieves a balanced accuracy score of 74.7, outperforming many LLMs and traditional fact-
checking methods, with the exception of Gemini-pro and GPT-4 (Table 7.5)4.

4Values taken from the official Github repository https://github.com/salesforce/factualNLG
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Model Balanced Accuracy

Human Performance 90.92
GPT4 82.06
Gemini-pro 75.49
GENAUDIT 74.75
Claudev21 74.36
Claudev2 73.58
ChatGPT 71.18
PaLM-bison 69.04
QAFactEval [Fabbri et al., 2022] 65.46
Llama2-13b 58.35
Mistral-7b 57.78
SummaCConv [Laban et al., 2022] 57.14
DAE [Goyal and Durrett, 2021] 55.17
Llama2-7b 50.36

Table 7.5: Performance of models on the SummEdits benchmark for binary classification of
factuality. Here GENAUDIT uses the fine-tuned Flan-UL2 backend, whereas other LLMs are
zero-shot prompted.

7.7 Related Work
The tendency of language models to have factual errors in long-form generation was first noted
in early research on machine translation [Arthur et al., 2016] and abstractive text summariza-
tion [See et al., 2017, Cao et al., 2018]. Subsequent works focused on the task of classifying
whether a generated summary contains any factual error or not, using trained models [Kryściński
et al., 2020, Goyal and Durrett, 2021], question-answering based approaches [Fabbri et al., 2022],
or prompting LLMs [Laban et al., 2023]. While these works predicted factual correctness with
respect to a given source document, recent works have implemented fact-checking against a large
corpus (Wikipedia) by combining evidence retrieval and factuality prediction [Kamoi et al., 2023,
Min et al., 2023]. Our effort goes beyond binary prediction of factual correctness, by also localiz-
ing the errors in the claims and fixing them via minimal editing. A concurrent work from Mishra
et al. [2024] also attempts to fix factual errors via editing, and we compared the performance of
their released model with ours in Section 7.4

Liu et al. [2023] and Krishna et al. [2023a] introduced the DeFacto and USB datasets re-
spectively with human annotations to train and evaluate models for revising incorrect claims,
and extracting evidence from a reference document. While both datasets can potentially be
used to train GENAUDIT backend models, we used the USB dataset because of two reasons.
First, USB contains comprehensive evidence labels for all facts in the claim, while DeFacto con-
tains only evidence which justify the edits made to the claim. Second, DeFacto dataset contains
mostly single-sentence summaries, while USB contains multi-sentence summaries, which are
more common in practice. We extend these lines of work by contributing an interactive tool for
fact-checking, and a comprehensive evaluation of the models trained on such data at fixing errors
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in modern LLM outputs with evidence.
Recent research has also proposed some approaches to prevent the generation of factually

incorrect text from LLMs, instead of fixing the errors post-hoc. DoLa[Chuang et al., 2023] con-
trasts the output token logits computed at different layer outputs to promote appropriate tokens
leading to more factual outputs. ITI [Li et al., 2023b] introduces biases in certain attention heads
in the transformer model to promote factual outputs. While these two methods do not update
model parameters, Tian et al. [2024] improve the factuality of LLM outputs by fine-tuning them
using Direct Preference Optimization [Rafailov et al., 2023].

7.8 Conclusion and Future Work
We introduced GENAUDIT, a tool to assist users in fact-checking LLM generated outputs against
inputs by presenting supporting evidence and highlighting (and fixing) errors. We trained models
for fact-checking tasks which rival few-shot prompting of SOTA LLMs, and designed a web-
interface for users to interact with. We evaluated GENAUDIT for fact-checking summaries gen-
erated by 8 LLMs for documents in 3 domains. Finally, we proposed a decoding algorithm for
our fact-checking model to improve the recall of error identification while minimizing the cost
in precision.

An important direction for future work is to enable the use of a large corpus of reference
documents instead of single reference, which could extend GENAUDIT to work in open-ended
generation scenarios too. Although GENAUDIT supports real-time prediction of evidence and
factuality labels as the text is edited by user, the latency is high due to the large models used.
Designing smaller models for fact-checking with comparable performance but lower latency
would be useful here.
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Limitations
Deciding whether a span of generated text is a hallucination involves subjective judgement.
While some cases clearly fall in one category (e.g. if the model invents the name of a per-
son), others can be quite debatable. For example, while summarizing a Reddit post about a
person’s bad experience, the summary mentioned them feeling left out, which was changed to
disappointed by one annotator but was left as-is by the other annotator. Such decisions are mo-
tivated by the annotators’ subjective judgement of whether the inferences made in the summary
are consistent with the source, leading to difference in the edits made by them. This leads to the
lack of a single gold ground-truth, which makes automatic evaluation challenging.

We used the edits made to LLM-generated summaries by human annotators as gold reference
while evaluating different models’ performance at error identification (Table 7.4). During the
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process, the annotators were shown suggested evidence and edits from the best-performing fine-
tuned model (Flan-UL2) to evaluate its quality and to assist in the annotation process. Using
the predictions from a model to assist collecting ground truth labels may lead to a benchmark
that favors it and similar models. Ideally, we should conduct separate human evaluation for each
model’s predictions where annotators look at the suggestions from that model before making
edits. However, that would be prohibitively expensive and time-consuming, and so we conduct
automatic evaluation instead by re-using the collected annotations as ground truth.

Ethical Considerations
To evaluate GENAUDIT, we recruited proficient proofreaders who were selected after a qualify-
ing round, focusing on their ability to identify inaccuracies in summaries. Annotators received
compensation at an average rate of $25 USD per hour for their contributions. Annotators were
provided the opportunity to discuss their concerns and questions with the authors throughout the
annotation process.

The models presented in this work for fixing factual errors in LLM outputs are not perfect
and some errors may not be detected by it. Hence, in critical application areas (such as clinical
settings), it should be used in conjunction with a human verifier who uses GENAUDIT as a tool
rather than as a perfect error detector. We have made this clear by transparently providing the
performance of GENAUDIT via human evaluation in Section 7.4.

We verified that the different models and datasets in this work have licenses that permit
research use.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In summary, this thesis presents methods, resources and insights to address challenges that are
encountered by summarization models in real-world deployment.

In the first two chapters, we introduced methods to improve quality of model outputs when
confronted with inputs having challenging characteristics. In Chapter 2, we presented a mod-
ular approach to summary generation to generate structured summaries of long inputs such as
meeting transcripts. This leads to summaries with better overall quality and factuality as rated
by automatic metrics as well as human evaluation. Additionally, since this approach uses shorter
sequences in the summary generation step, it reduces the peak memory consumption and en-
ables the use of larger and more potent models for it. In Chapter 3, we quantified the impact
of different kinds of input noise on the quality of summaries generated by finetuned Pegasus
models [Zhang et al., 2020]. We designed a lightweight method to detect and remove noisy
tokens using encoder representations, and showed that it leads to recovery in output quality in
experiments across different datasets and noise types.

In the next two chapters, we introduced pretraining approaches that do not use any surplus
real-world corpus, yet are much better alternatives than finetuning from random initialization.
In Chapter 4, we designed synthetic pretraining tasks using sequence transformations inspired
by basic operations useful for summarization. We showed that even when using a gibberish
vocabulary to create the pretraining examples, the models pretrained on them perform much
better than randomly initialized models when finetuned on 4 different summarization datasets.
In Chapter 5, we introduced self-pretraining — a technique for pretraining text encoder models
such as RoBERTa [Liu et al., 2019b], which simply uses unlabeled text from the downstream
fine-tuning dataset for pretraining. While prior works have looked at continual pretraining of
models [Gururangan et al., 2020], we showed that even without the first phase of pretraining on
a giant corpus such as BookWiki [Devlin et al., 2019], we are often able to perform nearly as
well. Self-pretraining delivers strong performance compared to standard pretraining on a suite of
14 diverse NLP tasks, sometimes even outperforming standard pretraining. Together, these two
chapters show that knowledge transfer from upstream pretraining corpora is not the only reason
why pretraining works, and large gains actually come from some mechanism that is yet to be
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understood properly.
In the final two chapters, we introduced resources and tools to help tackle the problem of fac-

tual errors in model-generated summaries. In Chapter 6, we introduced the USB benchmark, a
collection of labeled datasets for 8 different summarization-related tasks. The primary highlight
of the benchmark is that it introduces high-quality human-labeled datasets for 4 fact-checking
tasks: extracting evidence for summaries, classifying whether each summary sentence is fac-
tual or not, finding unsupported spans (hallucinations) in it, and editing summaries to fix any
factual errors. We showed that for these tasks, training on human-labeled data greatly outper-
forms training using synthetically generated labels, which was the predominant practice in prior
literature. In Chapter 7, we introduced GenAudit — a tool to assist humans in fact-checking
LLM-generated summaries against the corresponding source documents. GenAudit highlights
relevant evidence supporting each sentence in the generated summary, and suggests edits to the
text to fix potential inconsistencies or hallucinations. We designed and released the interactive
interface for the tool as well as open-sourced models to carry out the fact-checking tasks. Hu-
man evaluation demonstrates that GenAudit can fix factual errors in summaries generated from
a variety of LLMs for documents taken from different domains.

8.2 Directions for Future Work

8.2.1 Processing long sequences

With the growing popularity of LLMs served via inference APIs, it is now easier to process
long context sequences for tasks such as creating summaries. For example, OpenAI’s GPT-4-
Turbo [Achiam et al., 2023] can process upto 128k tokens, Anthropic’s Claude 2.1 can process
200k tokens, and Gemini-1.5 [Reid et al., 2024] can process a whopping 10 million tokens at a
time. However, the cost of using these LLM APIs grows with the number of tokens input. For
example, feeding 100k tokens through GPT-4 would cost 1 USD. While it may seem like a small
amount, it can quickly compound if multiple calls are made, for example to ask different ques-
tions about the same corpus. This simply reflects the high cost of passing tokens through a huge
transformer model, which typically grows quadratically or at best linearly with simplifications in
the attention mechanism [Zaheer et al., 2020, Xiao et al., 2023].

Hence, the idea of doing a multi-step inference by first extracting relevant information out
of the long sequence using a computationally cheap model and then solving the main task using
the expensive LLM (e.g. as outline in Chapter 2) still holds value. In the LLM era, this idea is
epitomized in the form of Retrieval-Augmented Generation (RAG) systems [Gao et al., 2023].
In this setting, to answer queries, we first query a large corpus for relevant documents/snippets
and then feed the retrieved information with the query to an LLM to generate the response. The
primary research direction here is to design better retrieval modules by using vector search with
text embedding models [Karpukhin et al., 2020, Ni et al., 2022, Khattab and Zaharia, 2020]. An-
other interesting direction is learning when to invoke the retrieval model to query for information
while an LLM generates a long response [Asai et al., 2023].

Besides causing wastage of compute power and money, feeding irrelevant information into
an LLM’s prompt that’s unrelated to the given task also increases the occurrence of incorrect
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responses [Weston and Sukhbaatar, 2023]. In such cases, filtering out of unnecessary information
from the prompt and re-prompting the model with reduced information has been shown to be an
effective strategy [Weston and Sukhbaatar, 2023].

8.2.2 Data-efficient pretraining

As generative AI models produce increasing amounts of revenue for the companies who own
them, there are rising calls for compensation from the creators/platforms whose data was used to
train them [Vincent, 2023, Grynbaum and Mac, 2023, Stempel, 2024]. Platforms such as Reddit
and StackOverflow have changed their terms of usage to charge users who want to use their data
for pretraining [Shakir, 2023, Dave, 2023]. Some companies are also reportedly paying creators
directly to license the data used for pretraining [Lardinois, 2023]. In the wake of all this, it
is clear that high-quality pretraining data would come with a price, making it is worthwhile to
explore pretraining approaches which use lesser amount of real-world data.

One approach to data-efficient pretraining which broadly follows the spirit of Chapter 4 is
to use synthetically generated data for pretraining. Li et al. [2023c] showed that creating syn-
thetic data by prompting LLMs based on an initial smaller corpus of seed real-world data can
deliver performance comparable to 10× larger models pretrained on 10× real-world data, on
reasoning tasks. Maini et al. [2024] introduced a recipe for augmenting pretraining data with
synthetically generated paraphrases, which can improve performance on a variety of NLP tasks.
Another important direction of research is to decide the value of including certain documents in
the pretraining corpora. There have been some recent works in this space which perform ablation
studies on the pretraining corpus [Longpre et al., 2023] or propose ways to increase diversity of
pretraining corpus [Tirumala et al., 2024].

8.2.3 Ensuring truthfulness of LLMs

In Chapter 7, we introduced models to post-edit LLM-generated summaries to fix hallucinations
by checking against the given source document. However, often the LLM’s response may con-
tain information that is not present in the source but is factually correct [Cao et al., 2022]. Such
hallucinations come from the internalized information in the model’s parameters, and should
not necessarily be penalized. Designing methods to differentiate between such harmless halluci-
nations and harmful ones which contain false/unverifiable claims is an interesting direction for
future work.

Besides creating methods and models to fix factual errors in LLM-generated responses, it is
also worthwhile to update the LLM itself so that it doesn’t commit factual errors in its outputs.
This is desirable because it can help avoid the hassle and computational cost of running a separate
fact-checker model to fix errors. Tian et al. [2024] used Direct Preference Optimization [Rafailov
et al., 2024] to tune Llama models to produce more factual responses. However, while the process
increases the likelihood of generating factual responses, unfortunately it also promotes other
output characteristics confounded with it, such as a simpler sentence structure. More research
should look into improving factuality of model outputs without changing their other aspects.
Another research direction to improving factuality of LLMs without running a separate fact-
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checking model is to use light-weight probes on its internal representations to detect when it’s
hallucinating [CH-Wang et al., 2023].
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Chapter 9

Appendices

A Appendix for Chapter 2

A.1 Decoder Results with Oracle extracts

We present additional quantitative results (Table 3), including (i) The ROUGE scores on the test
set when using oracle noteworthy utterances with both oracle and predicted clusters (for CLUS-
TER2SENT models). (ii) Two ablations on EXT2SEC: ALLEXT2SEC uses binary classification
to extract all noteworthy utterances (not per-section), and an abstractive decoder that condi-
tions on the section; while EXT2SECNOCOND uses a multilabel classification based extractor
but does not use section-conditioning in the abstractive module. Both methods mostly perform
worse than EXT2SEC demonstrating the benefit of using both section-specific extraction and
section-conditioning in abstractive decoder.

Copy mechanism R-1 R-2 R-L

Present 63.63 35.62 48.85
Absent 61.92 34.37 47.86

Table 1: Impact of copy mechanism in peformance of a pointer-generator model on medical
dataset in CLUSTER2SENT using oracle noteworthy utterance clusters

Model R-1 R-2 R-L

Pretrained T5 66.45 39.01 52.46
Randomly initialized T5 40.07 20.95 32.42

Table 2: Impact of pretraining on performance of T5-Base model on medical dataset with CLUS-
TER2SENT using oracle noteworthy utterance clusters
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Medical dataset AMI corpus

Method R-1 R-2 R-L R-1 R-2 R-L

EXT2NOTE (PG) 52.95 27.6 32.87 21.23 6.71 14.95
EXT2NOTE (T5-Small) - - - 41.10 14.12 25.03
ALLEXT2SEC (PG) 50.74 24.33 32.18 40.20 13.71 22.52
ALLEXT2SEC (T5-Small) - - - 41.68 15.43 24.72
EXT2SECNOCOND (PG) 56.10 32.05 43.23 42.51 15.71 23.79
EXT2SECNOCOND (T5-Small) 58.69 34.92 47.24 48.14 18.49 28.23
EXT2SEC (PG) 61.00 33.64 45.2 43.30 16.56 24.83
EXT2SEC (T5-Small) 62.37 36.39 49.11 46.85 18.19 28.74
CLUSTER2SENT (PG) 63.63 35.62 48.85 51.86 21.86 31.84
CLUSTER2SENT (T5-Small) 66.50 38.41 51.73 54.23 22.90 34.54
CLUSTER2SENT (T5-Base) 66.45 39.01 52.46 57.42 24.45 35.70

CLUSTER2SENT (PG+clustering heuristic) 63.12 35.08 47.96 47.17 18.99 27.31
CLUSTER2SENT (T5-Small+clustering heuristic) 66.08 37.73 50.66 47.53 19.70 28.95
CLUSTER2SENT (T5-Base+clustering heuristic) 65.94 38.26 51.31 51.24 21.47 29.81

Table 3: ROUGE scores achieved by different abstractive decoders using oracle noteworthy
utterances

A.2 Impact of copy mechanism

When we do not use copy mechanism in the pointer-generator model, we observed a drop in its
performance in the CLUSTER2SENT setting with oracle noteworthy noteworthy utterances and
clusters(Table 1). Hence, we have used copy mechanism in all the pointer-generator models we
train in this work.

A.3 Impact of pretraining

When training a randomly initialized T5-Base model on the medical dataset, even in CLUS-
TER2SENT setting with oracle clusters, it only got a ROUGE-1 around 40 (Table 2). This is over
16 points lower than what we get by starting with off-the-shelf pretrained T5 parameters, and is
even worse than CONV2NOTE, highlighting the importance of pretraining.

A.4 Sample generated SOAP notes

Due to privacy concerns, we can not publish conversations from our dataset. Here, we present
an obfuscated conversation from our test dataset, modified by changing sensitive content such as
medicines, diseases, dosages (Figure 2). We also present the SOAP note generated by our best
method, as well as the ground truth.
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A.5 Model implementation details

For the hierarchical LSTM classifier, we have a word embedding size of 128 and both bidirec-
tional LSTMs have a hidden size of 256. For BERT-LSTM, the BERT embeddings are initialized
from bert-base-uncased (768 dimensions). LSTMs in either direction have a hidden-layer of size
512 and the entire model is optimized end-to-end with a learning-rate of 0.001. For BERT-
LSTM, an input conversation is divided into chunks of 128 utterances. Due to GPU constraints,
these chunks are processed one at a time. The pointer-generator models have a word embed-
ding size of 128, and a hidden size of 256 for both the encoder and the decoder. The section
embeddings used in section-conditioned pointer-generator network have 32 dimensions. During
training of all pointer-generator models, the model is first trained without coverage loss [Tu et al.,
2016] to convergence, and then trained further with coverage loss added. We tried coverage loss
coefficients varying from 0.5 to 8.

The pointer-generator models were trained using Adam optimizer before coverage and using
SGD after adding coverage. We tried learning rates between 10−4 and 10−3 with Adam. The next
word prediction accuracy was used as the validation criterion for early stopping while training
abstractive modules, with the exception of coverage-augmented models that used a combination
of crossentropy and coverage loss. Micro-averaged AUC was used as the validation criterion for
training of extractive modules.

We employ beam search with beam size 4 to decode outputs from both models. For the
vanilla pointer-generator model used in CONV2NOTE and EXT2NOTE, we modified the beam
search procedure to make sure that all the SOAP note sections are generated in proper order.
We start the beam search procedure by feeding the header of the first section (chief complaint).
Whenever the model predicts a section header as the next word and it shows up in a beam,
we check if it is the next section to be generated. If not, we replace it with the correct next
section’s header. Any end-of-summary tokens generated before all the sections have been
produced are also replaced similarly. Note that producing all sections simply means that the
headers for each section have to be generated, and a section can be left empty by starting the next
section immediately after generating the previous header. The decoding length for beam search
is constrained to be between 5th and 95th percentile of the target sequence length distribution,

Figure 1: Histogram of number of words in a conversation and the number of evidence utterances
per summary sentence for the medical dataset
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Medical conversations AMI corpus

Count C2N C2S-P C2S-T C2N C2S-P C2S-T

Total sentences 956 1268 1277 414 358 381
Repetitive 96 127 147 213 14 14
Incoherent 162 158 58 9 134 27
True statements 587 848 931 89 103 227
False statements 100 116 125 71 75 68
Truthfulness undecided 11 19 16 32 32 45
Irrelevant 25 34 24 14 15 2
Under incorrect section 56 42 39 4 2 18

Table 4: Number of sentences produced by different methods that were judged to have dif-
ferent listed characteristics by human raters. C2N:CONV2NOTE, C2S-P:CLUSTER2SENT

with pointer-generator, C2S-T:CLUSTER2SENT with T5-base. BERT-LSTM used for medical
dataset, hierarchical-LSTM used for AMI corpus.

calculated on the training set.

A.6 Simulating ASR Errors
We simulate ASR errors at any given percentage rate by randomly selecting the percentage of
the words in the conversation and replacing them with phonetically similar words. To reduce the
search space of possible candidates for each word, we use the suggest() function taken from
the Pyenchant1 library that provides auto-correct suggestions for the input word. Each suggestion
is then passed through the Refined SoundEx algorithm to find the phonetic distance between the
original and the suggested word. We use the pyphonetics2 package for a python implementation
of this algorithm. For our final candidate list, we choose words that are at phonetic distance of
1 from the original word. Finally, a candidate is chosen at random from this list to replace the
original.

A.7 More Experimental Details
We trained models on multiple Nvidia Quadro RTX 8000, RTX 2080Ti and V100 GPUs.
The extractive modules were evaluated using standard classification metrics from scikit-learn 3

and quality of summaries were evaluated using ROUGE scores calculated with the pyrouge
Python package 4 which is a wrapper around the ROUGE-1.5.5 Perl script.

1https://pypi.org/project/pyenchant/
2https://pypi.org/project/pyphonetics/
3https://scikit-learn.org
4https://pypi.org/project/pyrouge
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Subsection ROUGE-1 ROUGE-2 ROUGE-L N L

chief complaint 44.34 28.12 43.59 592 11.46
review of systems 46.88 28.35 43.28 514 29.24
past medical history 53.48 37.70 51.80 547 17.81
past surgical history 58.44 43.08 57.04 230 10.36
family medical history 51.94 36.49 50.13 72 16.14
social history 57.72 37.82 56.30 97 10.33
medications 49.56 23.53 47.64 549 15.28
allergies 39.29 6.63 38.32 21 8.57
miscellaneous 28.87 11.61 24.90 415 34.44
immunizations 55.95 27.49 54.81 25 7.32
laboratory and imaging results 58.36 41.18 55.11 448 19.37
assessment 39.01 15.31 25.35 570 132.41
diagnostics and appointments 52.85 35.70 50.43 488 17.67
prescriptions and therapeutics 50.53 33.51 48.10 446 18.73
healthcare complaints 30.11 15.79 29.57 43 16.74

Table 5: Average ROUGE scores (from CLUSTER2SENT T5Base+BLSTM) for each section of
SOAP note (N-number of test datapoints with the section populated, L-average number of words
in ground truth)

Section Base rate(%) Precision Recall F1 Accuracy AUC

chief complaint 3.12 34.71 33.93 34.31 95.95 86.81
review of systems 5.10 51.35 51.82 51.58 95.04 93.12
past medical history 3.41 36.00 36.52 36.26 95.63 88.00
past surgical history 0.99 33.80 34.50 34.14 98.68 93.74
family medical history 0.31 52.31 45.25 48.53 99.70 99.23
social history 0.53 59.81 54.87 57.23 99.56 95.41
medications 4.45 51.66 49.13 50.36 95.69 92.02
allergies 0.16 30.86 12.44 17.73 99.82 89.46
miscellaneous 3.71 24.06 16.17 19.34 95.00 80.05
immunizations 0.05 63.64 64.62 64.12 99.96 97.63
laboratory and imaging results 2.46 50.00 55.15 52.45 97.54 93.84
assessment 14.19 38.09 42.01 39.96 82.08 76.89
diagnostics and appointments 2.10 55.60 40.16 46.63 98.07 94.22
prescriptions and therapeutics 3.11 41.28 38.43 39.81 96.39 92.40
healthcare complaints 0.25 20.47 21.90 21.17 99.60 85.93

Table 6: Performance of BERT-LSTM on extracting noteworthy utterances for various SOAP
sections
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Predicted relevant 

subsections  
Conversation utterances  

(PT) (A)  DR Okay, so, um, we are going to talk a little bit about being a Metformin candidate .  
(CC) (PMH) (A)  DR Um , we have talked about your hemoglobin and the things , what are , so what are the things that , that keep you from , um , from 

managing your anemia well ?  
  DR, I know there’s a lot of stuff that troubles you.  

(M)  PT Snacking and stress eating.  
  PT Eating late in the evenings instead of, um, at a reasonable time -  
  DR Right.  
  PT At night, late.  

(M) (A)  PT Poor meal planning.  
(PMH) (LIR) (A)  DR Right, and I think that’s in the, we can all take a little note for but one of things that really got me worried because your last  

Hemoglobin was really low -  
  PT Uh-huh.  

(LIR) (A)  DR It was below , it was below 10 , and we 've had this consistent pattern and you 've really , I mean , you really have given it an effort and 
I have to give it up to you that you 've been trying and , um , so we 're down to like just a couple of options and so I want to just kind of put 
them before you .  

(A) (PT) (Med)  DR I 've got, I 'm, I 'm considering once a day Metformin with you at some point .  
(A)  DR Um, I do n't want to use that as a threat.  
(A)  DR I do n't want to use it as like a, oh , you 've been a bad patient you deserve to be on Metformin .  

(A) (PT)  DR Um , I do have one other option , um , but I want to counsel you that , that Metformin , even if , if we did , we do go to it , it is not a 
punishment .  

(A)  DR It is something to kind of get your baseline down to a regular, regular situation and you only have to do it once a day.  
(A)  DR Um, and I know that one of the things that we have for anemics is their eating habits .  

(A) (PT)  DR And, so , I am proposing as instead of using Metformin this time , um , that we use something called Lipitor for the , for the eating at 
nighttime .  

(A)   DR Um, it’s supposed to reduce the incidence of having those nighttime cravings so that you can work , you can do your things , you can 
plan a little bit better .  

(A)  DR It 's , it’s originally for ADHD so some people actually feel a little bit more focused , um , and controlled but it also affects appetite 
centers and so it’s supposed to do it for the longer term as opposed to using like a fen phen , um , so , which is short term .  

  DR So, um , I 'm really hoping with your interest in it and with the coverage hopefully , I know , with your particular plan it should be 
covered and we can get a discount .  

 (PT)  DR Um, we do it once a day with your other medications , which are actually pretty minor .  
(DA)  DR Um, and then we check you again in eight weeks .  
(DA)  PT Okay.  

  DR All right?  
(A) (DA)  DR And, so what we do is we say , you know , it should be , we usually will do three months but then eight weeks we should see some 

difference from today .  
  DR We should see some kind of improvement and then we can sort of celebrate that in and of itself, if that’s okay with you.  
  PT That sounds great.  

(DA)  DR Cool, all right well we will plan to meet again in eight weeks .  
  PT Okay.  
  DR And, uh , and we 'll go from there .  
  PT Okay.  
  DR Cool, all right , cool .  

  
Cluster2Sent+T5Base  
Chief Complaint: anemia .  
Past Medical History: anemia .  
Medications: metformin .  
Miscellaneous: patient has snacking and stress eating . poor meal planning .  
Laboratory and Imaging Results: last hemoglobin was low at 10 .  
Assessment: discussed about being a metformin candidate . discussed about hemoglobin and the things that keep patient from managing anemia well.  discussed that 
patient 's last hemoglobin was really low , it was really low , it was really low , it was really low , it was really low , it was really low , and we have had this consistent 
pattern and you really have given it effort and we have had this. followup in 8 weeks . 
Diagnostics and Appointments: followup in 8 weeks . 
Prescriptions and Therapeutics: the patient will be a metformin candidate. metformin once a day. coumadin twice a day with other medications, which are actually 
pretty minor . 
  

Ground truth                                                                   
Chief Complaint: follow-up. anemia.  
Past Medical History: anemia. 
Medications: metformin 
Miscellaneous: patient is not following a correct diet plan (snacking and stress eating). 
Laboratory and Imaging Results: hemoglobin was really low below 10. 
Assessment: anemia. night time eating. discussed with the patient the importance of bringing up the hemoglobin to a considerable level and also discussed couple of 
other options. discussed the new medication called lipitor which will help the patient bringing up the hemoglobin and can take it once a day with other medications. 
discussed that the lipitor will reduce the nighttime cravings so that the patient can plan better (originally for ADHD to better focus). discussed with the patient that 
with the current insurance coverage , the patient may get a discount with lipitor. 
Diagnostics and Appointments: advised to follow up in 8 weeks. 
Prescriptions and Therapeutics: metformin. lipitor. 
 
 

Figure 2: Sample conversation (obfuscated) with SOAP note generated by the best method and
the ground truth
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B Appendix for Chapter 3

B.1 Selection of shorter inputs to avoid truncation
In our experiments, we exclude those datapoints from the datasets which are longer than a certain
threshold. This is done to avoid any truncation of the input (including inputs with added noise)
when feeding them into the model. Since adding noise to the input increases its length, it may
happen that some clean tokens might be pushed beyond the maximum allowed input length and
hence removed when the input is truncated. In such a scenario, removing noisy tokens before
feeding the sequence into the model would also cause such clean tokens to be fed into the model
again because they can now be accommodated within the input length limit. When measuring
the benefit of noise filtering, the benefit from removal of noisy tokens would then be confounded
with the benefit from such “resurrection” of clean tokens. To avoid this we only retain those
inputs in our datasets where the input length would be within limit even after addition of noise.
Since the maximum noise amount we use in our experiments is 0.5, we only retain datapoints
which have no more than half of the maximum allowed tokens to input into the model. (Table 7).

Table 7: Number of datapoints retained in the test set of datasets after removing inputs longer
than maximum length (Maxlen)

Dataset Count Maxlen Retention

XSUM 7516 512 66.5%
CNN/DailyMail 2948 512 25.6%

RedditTIFU-long 2790 512 66.2%
SAMSum 686 256 83.8%

Figure 3: Sample excerpt from an article from XSUM dataset corrupted with code noise.
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Table 8: ROUGE scores on clean input and changes when adding different kinds of noise, and
after the noise is filtered out using the Sent method based OOD scores (Noise amount: 0.5)

Variant Noise type ROUGE-1 / 2 / L
XSum

Small Base Large

Clean - 43.35 / 20.49 / 35.73 47.03 / 23.72 / 39.05 48.92 / 25.65 / 40.95

Noisy

Code 31.54 / 12.44 / 25.07 38.74 / 17.34 / 31.43 47.53 / 24.48 / 39.63
Emoji 31.79 / 15.10 / 26.29 40.08 / 20.32 / 33.24 47.86 / 25.02 / 40.16
Randomsent 32.38 / 13.10 / 26.09 36.54 / 16.63 / 29.87 42.67 / 21.06 / 35.38
URL 36.47 / 15.45 / 29.42 37.56 / 16.91 / 30.55 47.37 / 24.45 / 39.64

Filtered

Code 38.72 / 17.00 / 31.61 43.50 / 20.98 / 35.94 48.55 / 25.45 / 40.64
Emoji 42.94 / 20.24 / 35.38 46.04 / 23.29 / 38.27 48.41 / 25.41 / 40.61
Randomsent 39.84 / 17.81 / 32.42 43.88 / 21.30 / 36.11 46.65 / 23.84 / 38.85
URL 41.86 / 19.30 / 34.43 45.69 / 22.69 / 37.80 48.41 / 25.34 / 40.54

CNN-Dailymail

Small Base Large

Clean - 44.50 / 22.74 / 32.27 45.70 / 23.72 / 33.43 46.20 / 24.08 / 33.61

Noisy

Code 36.74 / 16.58 / 26.50 38.54 / 17.22 / 27.32 42.23 / 20.32 / 30.23
Emoji 43.97 / 22.11 / 31.35 45.25 / 23.21 / 32.77 45.95 / 23.74 / 33.27
Randomsent 42.63 / 21.02 / 30.16 44.09 / 22.17 / 31.40 44.81 / 22.75 / 32.07
URL 42.19 / 20.57 / 30.17 43.60 / 21.45 / 31.05 44.89 / 22.69 / 32.27

Filtered

Code 33.64 / 15.60 / 24.33 36.66 / 16.97 / 26.31 43.45 / 21.78 / 31.46
Emoji 44.14 / 22.27 / 31.68 45.30 / 23.40 / 33.00 45.84 / 23.68 / 33.17
Randomsent 42.99 / 21.34 / 30.58 44.26 / 22.35 / 31.70 45.16 / 23.08 / 32.51
URL 42.77 / 21.27 / 30.87 43.89 / 21.97 / 31.65 45.34 / 23.43 / 32.83

Samsum

Small Base Large

Clean - 50.56 / 25.66 / 42.16 51.73 / 27.80 / 43.64 53.50 / 29.53 / 45.68

Noisy

Code 44.81 / 21.32 / 37.62 48.32 / 25.29 / 41.30 50.24 / 26.85 / 43.29
Emoji 49.27 / 24.41 / 41.54 50.75 / 27.37 / 43.30 53.31 / 29.25 / 45.70
Randomsent 39.81 / 17.27 / 32.31 42.79 / 21.30 / 35.83 42.22 / 21.35 / 35.85
URL 46.46 / 22.25 / 38.60 48.31 / 25.22 / 41.21 50.51 / 27.57 / 43.24

Filtered

Code 49.22 / 24.56 / 41.24 50.70 / 26.94 / 43.07 52.43 / 28.87 / 45.23
Emoji 49.00 / 24.41 / 41.42 50.49 / 27.25 / 43.03 53.32 / 29.21 / 45.64
Randomsent 47.36 / 23.31 / 39.43 49.47 / 25.64 / 41.60 50.40 / 26.56 / 42.89
URL 49.65 / 25.16 / 41.58 51.29 / 27.63 / 43.39 52.56 / 28.70 / 45.07

Reddit-TIFU

Small Base Large

Clean - 24.06 / 7.81 / 19.86 26.74 / 9.20 / 21.95 27.45 / 9.65 / 22.56

Noisy

Code 17.95 / 5.74 / 14.87 18.72 / 6.21 / 15.46 20.35 / 6.91 / 16.85
Emoji 20.25 / 6.47 / 16.65 20.09 / 7.14 / 16.51 22.51 / 7.90 / 18.55
Randomsent 21.15 / 6.62 / 17.18 22.09 / 7.14 / 18.08 21.47 / 7.09 / 17.73
URL 21.02 / 6.66 / 17.23 24.25 / 8.09 / 19.76 24.55 / 8.17 / 20.26

Filtered

Code 20.98 / 6.83 / 17.37 22.24 / 7.58 / 18.27 24.31 / 8.46 / 20.15
Emoji 23.49 / 7.71 / 19.42 21.95 / 7.59 / 17.99 23.79 / 8.40 / 19.59
Randomsent 23.05 / 7.32 / 18.81 25.57 / 8.64 / 20.78 26.37 / 9.12 / 21.59
URL 21.96 / 7.10 / 17.94 24.88 / 8.44 / 20.37 25.74 / 8.84 / 21.14
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C Appendix for Chapter 4

C.1 Human evaluation of summary quality

We conducted a manual evaluation by human raters to compare the quality of summaries gen-
erated by a T5 model trained from random initialization, versus a model fine-tuned after pre-
training with our designed tasks with a nonsense corpus. We call these two models T5-RI and
T5-OurTasks following previous convention (Table 4.2). We generate summaries for 25 ran-
domly selected articles from the test set of CNN-Dailymail dataset and 25 articles from the
XSum dataset. Annotators are asked to choose the better summary out of the ones generated
from finetuned T5-RI and T5-OurTasks models. Each pair of summaries is annotated by two
annotators. The annotation interface is shown in Figure 4. The annotators were recruited from
Amazon Mechanical Turk, and were required to satisfy the given requirements: they should have
completed at least 1000 HITs with an approval rate greater than or equal to 95%, they should be
located in the US, and should have the Masters status provided by AWS.

We found that summaries generated from T5-OurTasks had a win-rate of 96% for CNN-
Dailymail articles and 70% for XSum articles, showing that it produces better summaries on
average than T5-RI. The p-values for a one-tailed Student’s t-test are p < 0.0001 on CNN-
Dailymail dataset and p < 0.003 on XSum dataset.

C.2 Variation in performance with multiple seeds

We fine-tuned each pretrained model on each summarization dataset 3 times with different seeds
and plotted the mean and standard deviation of the resulting performance in Table 9. The varia-
tion in performance is mostly small, suggesting the robustness of the comparative trend between
the 3 initialization schemes.

C.3 Exclusions from ensemble of our tasks

When creating artificial summaries requires using multiple of our proposed elementary tasks, the
different keywords added to the input signal to the model which tasks are required for it. Three
of our proposed tasks do not always involve keyword addition— CopyFirstSentence, CopyLast-
Sentence, CheckKeyword. Hence we exclude them when creating the pretraining corpus with our
ensemble of tasks. We also exclude the SumOfNumbers and CompareNumbers tasks because
they could not be learnt even in isolation by a randomly initialized T5 model training on 100k
datapoints.

C.4 Evaluation metrics

We measure the quality of generated summaries using ROUGE scores Lin and Hovy [2002]
which measure n-gram overlap between a generated and reference summary to assess its quality.
We use the ROUGE-1,2 and L variants of this metric which measure overlap in unigrams, bi-
grams and longest common subsequence respectively. We also present the average performance
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Figure 4: Annotation interface used for collecting human preferences for summaries generated
by finetuned T5-RI and T5-OurTasks models on the XSum dataset

94



Model Metric T5-RI T5-OurTasks T5-Offshelf

CNN-DM-10K
Rouge-1 9.56±0.27 35.4±0.15 39.6±0.15
Rouge-2 1.02±0.06 14.83±0.12 18.27±0.14
Rouge-L 7.31±0.15 24.05±0.16 27.86±0.11

XSum-10K
Rouge-1 15.67±0.14 20.42±0.13 28.82±0.27
Rouge-2 2.44±0.03 4.11±0.08 8.48±0.15
Rouge-L 12.87±0.1 16.27±0.1 22.36±0.2

RottenTomatoes
Rouge-1 12.21±1.68 15.12±0.55 24.65±0.68
Rouge-2 0.32±0.06 2.2±0.1 9.1±0.48
Rouge-L 10.31±1.55 12.15±0.3 19.66±0.61

Rotowire
Rouge-1 3.05±1.61 38.41±0.49 38.67±1.0
Rouge-2 0.41±0.3 11.36±0.32 13.27±0.45
Rouge-L 2.71±1.37 19.55±0.28 20.32±0.41

Table 9: Mean and standard deviation of performance of models finetuned from different ini-
tialization schemes on 4 datasets, across 3 random seeds. T5-RI: random initialization, T5-
OurTasks: weights pretrained with a nonsense corpus using tasks proposed in Section 4.5, T5-
Offshelf: standard pretrained checkpoint

of models at predicting the next token of a summary given all the ground truth past tokens (Ta-
ble 12). To measure this, we use the accuracy and the negative-log-likelihood metrics which
are standard for multi-class classification. We average these metrics across different decoding
timesteps of summary generation, and then average it again across all the summaries in the test
set.

C.5 Experimental details

Hyperparameters We use the T5-Small architecure with 60.5 million parameters as our
transformer-based model. The models are all trained using the BertAdam optimizer with a learn-
ing rate of 10−4. For the pointer-generator model, the token embedding size is 128, its encoder
is a bidirectional LSTM with hidden size 256 the decoder is a unidirectional LSTM of the same
size. The entire model had 4.4 million parameters. For a fair comparision, we use wordpiece
tokenization with all models with the same tokenizer and vocabulary as used by the standard T5
model. The validation metric used in all experiments was accuracy on the next-token prediction
on the summaries. A patience value of 5 epochs was used for early stopping.

For CNN-Daiymail dataset, we truncated the input and output lengths according to Zou et al.
[2020] (Table 11). We use the same lengths for the XSum dataset as well . For the Rotowire and
Rottentomatoes dataset, the input and output lengths were much longer and even with a batch
size of 1, we had to truncate them to values that allowed us to accommodate training with the
available GPU memory (32GB). While decoding, we used beam search with beam size 4, and
set the minimum and maximum decoding lengths to the 5 and 95 percentile of their observed
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distribution.

Computing infrastructure Most experiments were carried out on 8 Nvidia V100 GPUs with
32 GB of memory. Some experiments with CNN-Dailymail and XSum datasets were carried out
on 4 Nvidia RTX2080Ti GPUs with 11GB of memory.

Details of dataset splits For the Rotowire and RottenTomatoes datasets, we use the standard
training, validation and test splits with sizes shown in Table 10. For the CNN-Dailymail and
XSum datasets, we use the standard test splits, but reduce the training and validation set sizes to
10k and 1k respectively by uniformly subsampling from the standard full dataset splits.

CNN-DM-10K XSum-10K RottenTomatoes Rotowire

Train 10000 10000 2458 3398
Validation 1000 1000 536 727
Test 11490 11333 737 728

Table 10: Sizes for Train, validation and test splits for all datasets

CNN-DM-10K XSum-10K RottenTomatoes Rotowire

max source length 512 512 6000 5160
max target length 256 256 ∞ 815
batch size 16 16 1 1
max decode length 148 42 52 815
min decode length 44 18 16 223

Table 11: Hyperparameters used for fine-tuning models on the 4 datasets
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Experiment CNN-DM-10K XSum-10K Rottentomatoes Rotowire
Acc NLL Acc NLL Acc NLL Acc NLL

T5-OffShelf 65.15 1.71 53.68 2.34 51.78 2.77 68.04 1.50
T5-RandomInit 29.78 4.92 32.60 4.75 24.75 5.36 48.30 2.61

Nonsense Upstream Corpus

T5-OurTasks 54.74 3.18 38.98 4.27 33.42 5.08 63.59 1.78
T5-STEPTasks 54.71 3.18 39.47 4.21 28.65 5.13 58.89 1.99

Real Upstream Corpus

T5-OurTasks 54.87 2.93 41.21 3.76 39.64 4.12 64.02 1.78
T5-STEPTasks 57.91 2.46 46.83 3.08 45.34 3.43 64.08 1.63

PG Models Randomly Initialized vs Pretrained (Nonsense Upstream Corpus)

PG-RandomInit 51.14 2.91 33.05 4.14 33.35 4.37 59.12 1.92
PG-OurTasks 51.70 2.89 33.80 4.14 34.40 4.29 59.30 1.92
PG-STEPTasks 51.79 2.88 34.13 4.14 35.06 4.21 59.00 1.94

Table 12: Accuracy (Acc) and negative log likelihood (NLL) for next token prediction on sum-
maries
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Pretraining task R1 R2 RL Pr%

CopyKwdMultipleSent-Shuffled 23.34 5.46 15.41 99.66
TopicSegregation 23.04 7.79 16.52 99.88
TruncateSentence 17.07 2.50 11.81 100.00
CopyQuoted 11.03 1.32 8.32 99.82
BreakClauses 10.46 1.18 7.95 99.80
CopyKwdMultipleSent-InOrder 10.14 1.14 7.70 99.84
ReplaceClassKeyword 9.70 0.95 7.36 99.98
ParaphraseWords 9.70 0.99 7.42 99.98
CopyKwdOneSentence 9.45 1.06 7.23 99.90
CopyFirstSentence 9.28 1.08 7.22 99.88
CopyBulleted 9.01 1.00 6.88 99.58
CopyKwdMultipleSent-Sorted 8.48 0.83 6.59 99.68
MajorityKeyword 8.45 0.85 6.49 100.00
ThresholdNumber 7.83 0.77 6.05 100.00
CheckKeyword 7.79 0.77 5.94 100.00
CopyLastSentence 7.78 0.72 6.12 98.40
JoinClauses 7.72 0.81 6.09 98.82
ClassifyKeyword 6.80 0.62 5.34 100.00
LargestNumber 6.52 0.58 5.14 99.88
SumOfNumbers 5.03 0.40 4.14 25.06
CompareNumbers 1.89 0.04 1.75 48.88

Table 13: For different models pretrained on one individual task each, their performance on
CNN-Dailymail-10K in terms of ROUGE (R1,R2,RL), and their accuracy in percentage on the
pretraining task (Pr%)

98



Elementary subtask Description

CheckKeyword Check if the input has a special keyword or not.
ClassifyKeyword Input contains 1 of 10 special keywords - 5 or them are pos-

itive and 5 of them are negative adjectives. Task is to tell
whether mentioned adjective was positive or negative

MajorityKeyword Out of two given keywords, find which one occurs more
number of times

CopyFirstSentence Copy first sentence
CopyBulleted Exactly one sentence is a bullet point and starts with the

bullet marker. You have to copy over that sentence without
copying the marker.

CopyQuoted Copy text within quotes
CopyLastSentence Copy last sentence
CopyKwdOneSent Copy single sentence containing one of many special de-

fined keywords
CopyKwdMultipleSentInOrder Copy all sentences containing any special keyword in the

same order as they appear in text.
CopyKwdMultipleSentSorted Copy all sentences containing keywords but sort them ac-

cording to the canonical ordering of keywords
CopyKwdMultipleSentShuffled Copy all sentences containing keywords in any order. The

sentences in ground truth may be any possible order.
ReplaceClassKeyword There exist many keywords, each belonging to one of 3

classes. You have to mention the class of the mentioned
keyword

CompareNumbers Given two numbers in the text, say which one is bigger
SumOfNumbers Sum numbers

ThresholdNumber The input contains a number between 0 and 100. You have
to say if the number was above or equal to the threshold of
50 of lower than it

LargestNumber Find out largest of one or more numbers in the input.
TruncateSentence Copy a sentence but only till the cutoff keyword is encoun-

tered
BreakClauses Break a single sentence into multiple ones containing one

clause each
JoinClauses Join clauses from multiple sentences to make one longer

sentence
ParaphraseWords Copy the sentence containing one of pre-specified special

keywords. But replace the keyword with any of its multiple
synonyms. The jth synonym of ith keyword srci is given
by targetij

TopicSegregation Copy all sentences containing keywords belonging to dif-
ferent classes but put them in corresponding sections (each
class gets a separate section, which can be empty too, sec-
tions always occur in sorted order)

Table 14: 21 extracted elementary summarization subtasks and their descriptions
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Domain Dataset name Paper using the dataset

News

CNN-Dailymail See et al. [2017]
NYT Paulus et al. [2018]
Gigaword Paulus et al. [2018]
XSUM Liu and Lapata [2019]
Newsroom Zhang et al. [2020]

Code
Code to Documentation dataset Iyer et al. [2016]
Git diff to commit-message dataset Allamanis et al. [2016]

Scientific Paper
Arxiv Cohan et al. [2018]
Pubmed Cohan et al. [2018]
ScisummNet Yasunaga et al. [2019]

Patent BigPatent Sharma et al. [2019]

Instructional guides Wikihow Zhang et al. [2020]

Social media post Reddit-TIFU Zhang et al. [2020]

Email AESLC Zhang et al. [2020]

Bills BillSum Zhang et al. [2020]

Reviews

Amazon reviews Gerani et al. [2019]
Yelp reviews Chu and Liu [2019]
CNET reviews Gerani et al. [2019]

KeyValue Attributes
Wikibio Lebret et al. [2016]
E2E dataset Novikova et al. [2017]

Knowledge Graphs

DBPedia triples to Wikipedia Vougiouklis et al. [2018]
AMR to sentence dataset Song et al. [2018]
Agenda Koncel-Kedziorski et al. [2019]
WebNLG Moryossef et al. [2019]

Numerical Table Rotowire box-score Puduppully et al. [2019]

Miscellaneous webpages Wikisum Liu et al. [2018]

Conversations
SamSum Gliwa et al. [2019]
AMI Wang and Cardie [2013]

Table 15: Existing summarization datasets in various domains, along with corresponding papers
that use them and came up during the search procedure to characterize elementary tasks in sum-
marization
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D Appendix for Chapter 5

D.1 The Role of Sentence Order in Pretraining Corpora
For virtually all pretrained models like BERT, ELECTRA, XLNet, the sentences in the pretrain-
ing corpora are ordered as they naturally occur in some document such as Wikipedia article.
Devlin et al. [2019] mention in their work : “It is critical to use a document-level corpus rather
than a shuffled sentence-level corpus (...) in order to extract long contiguous sequences.” How-
ever, for many of our pretraining corpora made from downstream datasets, the sentence taken
in order do not form a coherent document or narrative text. For example, in the MNLI or QQP
corpora, neighboring sentences will simply be premise-hypothesis pairs or potential paraphrase
candidates.

Despite the sentence order not forming a coherent document, many pretraining corpora
achieve high performance boosts on the GLUE language understanding benchmark (Table 16).
For example, MNLI achieves around 96% of the performance boost of the off-the-shelf model
(Table 16). Interestingly, shuffling the sentences in these corpora leads to a large drop in perfor-
mance (Table 16). This suggests that there is some value to keeping the sentence order in a way
that puts sentences from the same example in datasets like MNLI and QQP next to each other. A
likely explanation of this is in Levine et al. [2021] where authors showed that including similar
sentences in the same input sequence when pretraining should lead to improved performance via
theoretical analysis and empirical experiments.

We test if GLUE performance can be improved by artificially re-ordering a set of sentences
to promote the occurrence of similar sentences together. We rearrange the sentences in the
sentence-shuffled versions of pretraining corpora to encourage content overlap among neigh-
boring sentences, and see if this can recover some of the drops in performance that occurred
due to shuffling. Our algorithm creates the corpus by iteratively appending sentences to it, such
that at each step the new sentence is the one with maximum TF-IDF similarity with the previous
sentence. Such a way of constructing a corpus by similarity based retrieval has been used in past
works [Levine et al., 2021, Yao et al., 2022], with the main difference that they retrieved sen-
tences from external corpora similar to the ones present in the downstream dataset, whereas we
simply use it to reorder sentences already present in the downstream dataset for pretraining We
also make sure that the algorithm does not accidentally recover the original order of sentences
(e.g. by matching the premise-hypothesis pairs originally in the MNLI dataset).

We experiment with 5 different datasets and find that the sentence-reordering scheme im-
proves performance compared to random sentence order for all of them except QQP. For Discov-
ery and DBPedia14 datasets, it scores even higher than our standard sentence ordering scheme
which preserves the adjacency and order of sentences within each datapoint. This shows that re-
ordering sentences to promote content similarity between neighboring sentences, can potentially
improve GLUE score, without introducing any new information or narrative structure.

D.2 Experiments with smaller ELECTRA models
In addition to experimenting with a base-sized architecture (110M parameters), we also exper-
iment with architectures which are even smaller than ELECTRA-small. We train ELECTRA
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models of smaller size by either reducing the number of layers in the generator and discrim-
inator, or reducing the hidden dimension of the discriminator5. As the models get smaller,
self-pretraining continues to significantly outperform random initialization and often outper-
forms pretraining on BookWiki corpus (Figure 5). Interestingly, the relative performance of
self-pretrained and BookWiki-pretrained models tends to stay the same across model size. For
example, for QQP self-pretraining is always best and for MNLI BookWiki-pretraining is always
best irrespective of number of layers or hidden size.

Figure 5: Variation in performance of ELECTRA models with change in number of layers and
hidden size (— randomly initialized, — self-pretrained, — BookWiki-pretrained)

D.3 Implementation details for pretraining and finetuning

Hyperparameters for pretraining For pretraining ELECTRA-small models, we use the stan-
dard hyperparameters (Table 17) as described in Clark et al. [2019]. For the Roberta-base
models, training with the standard hyperparameters with our computing resources would be pro-
hibitively slow, and so we used hyperparameters from Warstadt et al. [2020] which require lesser
time to train (Table 17). For task-adaptive pretraining(TAPT), we follow Gururangan et al. [2020]
and further pretrain off-the-shelf models for 100 epochs on the downstream task’s training set,
with the first 6% of the resulting total updates used for learning rate warmup.
Hyperparameters for finetuning For finetuning the models on the 10 downstream datasets,
we use hyperparameters as shown in Table 18. We use the AdamW optimizer [Loshchilov and
Hutter, 2018] for finetuning. We use early stopping based on validation set performance. The
validation metric used is mean squared error for the sentiment140 dataset (regression), average
binary crossentropy for the jigsaw dataset (multi-label classification), and accuracy for all other
datasets (multi-class classification). The patience parameter for early stopping is set to 3 epochs.
For finetuning ELECTRA-small models on the GLUE datasets, we use the standard learning rate
of 1e-4 following Clark et al. [2019].

5In ELECTRA, the generator’s hidden size is already much smaller than that of the discriminator by design. So
we do not reduce it further, in order to have a reasonably well-performing generator.
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Details about use of downstream datasets All downstream datasets used in this paper were
sourced from the Huggingface library6. For the Yahoo Answertopics dataset, we use only the text
from the answer (not the question) as input to the models (both for pretraining and finetuning).
For the PAWS dataset, we use the version called “Unlabeled PAWSwiki” in Zhang et al. [2019],
which is actually not unlabeled but has silver labels. We preferred that version over others
because of its larger size. For datasets which had a train and test split but no validation split (e.g.
Yahoo Answertopics), we extracted 5000 random datapoints from the the train split to make the
validation split. If a dataset had a train and validation split but no test split (e.g. Unlabeled
PAWSwiki), we designated the validation split to be the test split, and created a new validation set
by extracting 5000 random datapoints from the train set.

D.4 Software packages and hardware used
For pretraining ELECTRA models, we used Nvidia’s implementation of the ELECTRA code-
base7, run using Nvidia’s Tensorflow cotainer image 21.07 8. For pretraining Roberta models,
we used the official implementation in the Fairseq library9. For finetuning experiments, we used
the AllenNLP library for training and evaluation routines, coupled with the Huggingface library
for the model architectures.

We used a collection of Nvidia V100 (32GB) and A6000(48GB) GPUs for our experiments.
Pretraining an ELECTRA-small model takes around 1.5 days on 2 GPUs while pretraining a
Roberta-base model takes around 1.5 days on 4 GPUs.

6https://huggingface.co/docs/datasets/index
7https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow2/

LanguageModeling/ELECTRA
8https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/

rel_21-07.html
9https://github.com/facebookresearch/fairseq
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Pretraining Dataset Random Standard TF-IDF(Ours)

None (RandomInit) - 53.20 -

Sentiment140 - 72.67 75.29
DBpedia14 72.82 70.38 75.44
Discovery 71.79 77.26 78.94
MNLI 62.80 78.28 76.33
QQP 71.09 75.43 69.57

BookWiki (Off-the-shelf) - 79.43 -

Table 16: GLUE scores achieved by different strategies for ordering sentences from the down-
stream dataset used for pretraining. Random: randomly ordered sentences; Standard: sentences
within a datapoint occur contiguously in original order; TF-IDF: sentences reordered using con-
tent similarity.

Hyperparameter ELECTRA Roberta

Size (Parameter count) Small (14M) Base (110M)
Training steps 1M 100K
Warmup steps 10K 6K
Batch size 128 512
Peak learning rate 5e-4 5e-4
Sequence length 128 512

Table 17: Hyperparameters used for pretraining models

Hyperparameter ELECTRA Roberta

Training epochs 20 20
Batch size 32 32
Learning rate {1e-4,1e-5} 2e-5
Max sequence length 512 512

Table 18: Hyperparameters used for finetuning models on 10 downstream tasks
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E Appendix for Chapter 3

E.1 Sample datapoints for different tasks
We show a sample labeled datapoint for each task from the validation set of USB in Figure 8 and
Figure 9.

E.2 Instructions used in model inputs
We list the instructions used in the inputs to Flan-T5 models in Table 19, Llama-13B in Table 20,
Vicuna-13B in Table 21, and GPT-3.5-turbo in Table 22.

E.3 Implementation details for models
In this section we outline the architectures, and input/output formatting used for different models
used in our experiments. Additionally, we report the hyperparameters used during training and
inference for each model in Table 23.

Roberta For the Factuality Classification task, we feed in the evidence and summary separated
by the SEP token into a standard classifier setup, which applies a linear layer with sigmoid
activation on top of the CLS embedding. For Evidence Extraction, we use the same architecture
and input individual pairs of a summary sentence with each source sentence to make a prediction
for each of them. For the Extractive Summarization task, we use a hierarchical architecture
identical to the one described as BERT-LSTM in Krishna et al. [2021b], except that we use a
Roberta encoder instead of BERT. For Unsupported Span Prediction, we frame it as a sequence
tagging problem where the given summary sentence and evidence are passed through Roberta
and a linear layer with sigmoid predicts whether each token is supported or not. The consecutive
positive predictions are concatenated to turn them into spans.

T5/Flan-T5 We preface each input with an instruction for the task to be done, followed by
the text from the source/summary to be input. We frame the Evidence Extraction and Extractive
Summarization tasks as a sequence of Yes/No predictions for each sentence in the source. Each
source sentence in the input is prefixed by an enumerated sentence id (e.g. SENT34), and the
ground truth target is the sequence of all sentence ids, with a Yes/No following each accord-
ing to it’s positive/negative label (e.g. “SENT0 Yes SENT1 No SENT2 No...”). Similarly, for
Factuality Classification, the target is a single Yes/No based on the label. During inference, we
measure the probabilities of generated Yes/No tokens which allows us to measure AUC scores
too. For Unsupported Span Prediction, we generated the ground truth target by surrounding the
unsupported spans in the summary with begin-span and end-span tags.

Llama/Vicuna For Llama and Vicuna we use the exact same input formatting. Compared to
the Flan-T5 data formatting, we use a different set of instructions for these models, after trying
out plausible variants for each task on the validation set. We provide 4 different instances as few-
shot examples following the instruction in each datapoint for each task. The few-shot examples
are chosen by sampling from the training set without replacement. Due to limitations in sequence
length, we only use a maximum of 2048 tokens for the few-shot examples. For the tasks which
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require the full document in the input (i.e. ABS, EXT, EVEXT, TOPIC), we use 4 examples with
each having a maximum of 512 tokens. For the remaining tasks, we use 16 examples each with
a maximum length of 128 tokens. The few-shot examples are sampled (without replacement)
from the training set while creating the prompt for each datapoint in the test set. Since these
are decoder-only models which essentially generate plausible completions of the input string, we
preface each output with a word (e.g. “SUMMARY:”, “LABELS:”) in the few-shot examples
and at the end of the prompt to trigger the generation of the required summary/labels.

GPT-3.5-turbo The formatting of input and output is exactly the same as for Llama/Vicuna
for all tasks except Evidence Extraction and Extractive Summarization. For these two tasks, we
found that this model performed much better if we prompted it to generate the source sentence ids
which should be assigned the positive label, instead of generating a Yes/No prediction for each
source sentence. So we changed the output formatting in our few-shot examples accordingly.
For this model too, we choose a different set of instructions for the tasks by experimenting with
different options on the validation set.

E.4 Human evaluation of model outputs
It is well-acknowledged that ROUGE [Lin, 2004a] is an imperfect automatic metric to assess
summary quality, and may not accurately reflect human preferences [Nenkova, 2006, Cohan and
Goharian, 2016, Goyal et al., 2022]. Hence, we also conducted human evaluation for some
tasks, where we show summaries generated by the best fine-tuned model (Flan-T5-XL) and the
best fewshot-prompted LLM (GPT-3.5-turbo) and ask annotators to choose the better one along
different dimensions (Table 7.3).

For the tasks of Abstractive Summarization (ABS), Multi-sentence Compression (COMP),
and Topic-based Summarization (TOPIC), we collected annotations for 50 pairs of summaries,
with 3 annotators rating each pair. For these 3 tasks, we did not screen workers based on qualifi-
cation tasks since evaluating overall summary quality is a subjective task and it is better to have
a diverse opinion from a large population, rather than a small set of manually selected people.

Evaluating model outputs for the Fixing Factuality (FIX) task is a more difficult but objective
job. The increased difficulty comes from the need to carefully note the edits made by the models
on the original incorrect summary and then decide on the factual validity and necessity of each
edit. So we screened annotators via a qualification task on Mechanical Turk and selected 2
annotators to conduct the human evaluation for this specific task. Each pair of model outputs
was rated by both annotators.
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Figure 6: Distribution of number of words in the source and the summary, and the number of
source sentences marked as evidence per summary sentence.

Task Instruction

Multi-sentence Compression (COMP) Summarize the following content in a single
line.

Abstractive Summarization (ABS) Summarize the following content.

Fixing Factuality (FIX) Rewrite the given summary of the content to
make it factually correct.

Unsupported Span Prediction (UNSUP) Annotate parts of the summary which are not
supported by evidence from the content.

Topic-based Summarization (TOPIC) Summarize the given content for the following
topic.

Factuality Classification (FAC) Is there sufficient evidence for the summary in
the content?

Extractive Summarization (EXT) For each sentence, predict if it is important.

Evidence Extraction (EVEXT) For each sentence in the content, predict if it
provides any evidence for the claim.

Table 19: Instructions used in inputs to Flan-T5 models
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Task Instruction

Multi-sentence Compression (COMP) Write a one-line summary of the content shown
below.

Evidence Extraction (EVEXT) Go over each sentence in the content, and de-
cide if it supports the claim or not. Answer in
Yes for a sentence if it supports the claim, and
answer No otherwise.

Factuality Classification (FAC) Is there sufficient evidence for the summary in
the content?

Fixing Factuality (FIX) Rewrite the given summary of the content to
make it factually correct.

Abstractive Summarization (ABS) Write a concise summary of the following para-
graph

Topic-based Summarization (TOPIC) Summarize the given content for the following
topic.

Extractive Summarization (EXT) For each sentence in the given content, label it
as Yes if it is noteworthy enough to be included
in a summary, or No otherwise.

Unsupported Span Prediction (UNSUP) Regenerate the given summary, while surround-
ing those parts which do not have any support-
ing evidence in the content using [] and [/] tags

Table 20: Instructions used in inputs to the Llama-13B model
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Task Instruction

Multi-sentence Compression (COMP) Write a single sentence summarizing the impor-
tant points in the given content.

Evidence Extraction (EVEXT) Predict which sentences in the given content can
be used to infer facts in the claim.

Factuality Classification (FAC) Decide if the following summary is consistent
with the corresponding content. Note that con-
sistency means all information in the summary
is supported by the content. Explain your rea-
soning step by step then answer (yes or no) the
question

Fixing Factuality (FIX) Rewrite the following summary to make it fac-
tually accurate

Abstractive Summarization (ABS) Draft a summary for the given document.

Topic-based Summarization (TOPIC) Generate a summary of the given content cov-
ering the given topic.

Extractive Summarization (EXT) For each sentence, predict if it is important.

Unsupported Span Prediction (UNSUP) Annotate parts of the summary which are not
supported by evidence from the content

Table 21: Instructions used in inputs to the Vicuna-13B model
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Task Instruction

Multi-sentence Compression (COMP) Summarize the following content in a single
line.

Evidence Extraction (EVEXT) Below is a claim along with its correspond-
ing content. Identify and list all the sentences
within the content that partially or entirely sup-
port the claim.

Factuality Classification (FAC) Decide if the following summary is consistent
with the corresponding content. Note that con-
sistency means all information in the summary
is supported by the content. Answer yes or no.

Fixing Factuality (FIX) The summary might be incorrect. How would
you rewrite it to make it factually accurate?
Make as little changes as possible. Do not add
any new information to the summary.

Abstractive Summarization (ABS) Draft a summary for the given document.

Topic-based Summarization (TOPIC) Create a short summary of the given content
that touches upon information which fall under
the specified topic.

Extractive Summarization (EXT) For the task of extractive summarization, list all
the SENTs of the content which would be in-
cluded in its summary.

Unsupported Span Prediction (UNSUP) Go over the given summary carefully, and re-
generate it while surrounding any parts which
are not supported by the content using [] and [/]
tags

Table 22: Instructions used in inputs to the GPT-3.5-turbo model
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Model Task Learning rate Batch Size Max input length Max output length

Roberta-Large FAC 1e-5 32 512 -
Roberta-Large EXT 1e-5 32 128×128ψ -
Roberta-Large EVEXT 2e-5 2048 128 -
Roberta-Large UNSUP 2e-5 32 512 -
T5-Large (All) 5e-5 32 8192 768
FlanT5-Large (All) 5e-5 32 8192 768
FlanT5-XL (All) 5e-5 64 1536 512
Llama-13B (All) - - 6144 512
Vicuna-13B (All) - - 6144 512
GPT-3.5-turbo (All) - - Variableϕ Variableϕ

Table 23: Hyperparameters used for training and inference with different models. ψ: 128 sen-
tences each with maximum of 128 tokens fed into a hierarchical model. ϕ: GPT-3.5-turbo has
a relatively small limit of 4096 tokens including both the input (with few-shot examples) and
the output, and so we truncate the input on a per-task basis to leave token budget equal to the
maximum output length in the train split for that task.

Figure 7: Screenshot of the interface used for collecting annotations. The summary is shown on
the left and the source on the right. Entities in the active summary line are highlighted to help
find evidence quickly. A scratchpad is provided where users can keep track of the parts of the
summary for which evidence has been marked.
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Evidence Extraction

Accuracy AUC F1 Precision Recall

SuperPAL [Ernst et al., 2021] 98.1 95.8 53.8 82.1 40.0
ROUGE [Chen and Bansal, 2018] 95.9 88.5 40.9 33.7 52.1
Entity overlap 95.7 92.5 47.0 35.6 69.4

Human annotations 100% (N=765) 98.8 99.0 77.7 77.0 78.4
Human annotations 20% 98.7 98.4 74.7 78.9 70.8
Human annotations 10% 98.5 98.1 72.4 73.0 71.8
Human annotations 5% 98.4 97.7 70.9 70.8 70.9

Factuality Classification

Accuracy AUC F1 Precision Recall

FactEdit [Balachandran et al., 2022] 55.7 74.6 29.4 72.6 18.4
FactCC [Kryściński et al., 2020] 52.9 68.9 20.1 66.3 11.8

Human annotations 100% 88.1 95.1 87.5 92.3 83.2
Human annotations 20% 86.7 93.9 86.1 90.6 82.0
Human annotations 10% 83.4 91.8 81.6 91.7 73.5
Human annotations 5% 82.6 90.4 82.5 83.2 81.7

Fix factuality

Exact Match Rouge-1 Rouge-2 Rouge-L

FactEdit [Balachandran et al., 2022] 1.0 81.6 73.0 81.0
FactCC [Kryściński et al., 2020] 0.8 81.9 73.6 81.4

Human annotations 100% 32.9 91.9 86.5 91.4
Human annotations 20% 28.8 90.3 84.3 89.8
Human annotations 10% 15.3 85.7 78.5 85.1
Human annotations 5% 11.2 83.9 76.1 83.3

Table 24: Comparision between using human annotations vs heuristic annotations for training
models—Flan-T5-Large. We also report performance when finetuning on smaller fractions of
the training set with human annotations.
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AbstracƟve 
SummarizaƟon 
(ABS) 

INPUT DOCUMENT: 
D'Vauntes Smith-Rivera 
High school career 
Smith-Rivera started high school at North Central High School in Indianapolis, 
and led his team to a state championship in his sophomore year. 
He transferred to the basketball specialty Oak Hill Academy in Virginia for his 
senior year, and he helped lead the team to the 2012 naƟonal championship 
He was recruited by Xavier, UCLA, Louisville, Memphis, NC State, and 
Georgetown. 
… 

TARGET D'Vauntes Smith-Rivera is a professional basketball player who last played for 
Koroivos of the Greek Basket League. 
He played high school basketball for North Central in Indianapolis and Oak 
Hill Academy in Virginia. 
… 

MulƟ-sentence 
Compression 
(COMP) 

INPUT SOURCE SENTENCES: 
Odenkirk was hired as a writer at "Saturday Night Live" in 1987 and worked 
there through 1991. 
Odenkirk's friendship with Ben SƟller, with whom he briefly shared an office 
at "SNL", would lead to his being hired for the cast of "The Ben SƟller Show" 
in 1992. 
Working as both a writer and actor on the show, he created and starred in 
the memorable sketch "Manson Lassie", and helped the show win an Emmy 
Award for wriƟng. 

TARGET From the late 1980s to 1990s, Odenkirk wrote for television shows "Saturday 
Night Live" and "The Ben SƟller Show", winning an Emmy Award for wriƟng. 

ExtracƟve 
SummarizaƟon 
(EXT) 

INPUT DOCUMENT: 
SENT0: D'Vauntes Smith-Rivera 
SENT1: High school career 
SENT2: Smith-Rivera started high school at North Central High School in 
Indianapolis, and led his team to a state championship in his sophomore year. 
SENT3: He transferred to the basketball specialty Oak Hill Academy in Virginia 
for his senior year, and he helped lead the team to the 2012 naƟonal 
championship. 
SENT4: He was recruited by Xavier, UCLA, Louisville, Memphis, NC State, and 
Georgetown. 
… 

TARGET SENT0 SENT2 SENT4… 

Topic-based 
SummarizaƟon 
(TOPIC) 

INPUT DOCUMENT: 
Arkema S.A. 
Arkema was created when French oil major Total restructured its chemicals 
business. 
The restructuring was a gradual process that began many years earlier: 
… 
TOPIC NAME: OrganizaƟon 

TARGET Arkema is organized into three business segments: CoaƟng SoluƟons, 
Industrial Chemicals, and Performance Products. 

Figure 8: Sample input-output pairs for different tasks from the validation set of USB
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Factuality 
ClassificaƟon 
(FAC) 

INPUT EVIDENCE:  
In 2014 YG also expanded into the beauty industry with the creaƟon of its cosmeƟcs brand 
Moonshot. 
YG Plus Inc., previously named Phoenix Holdings Inc., is a publicly traded media and 
adverƟsing company acquired by YG Entertainment in November 2014. 
SUMMARY:  
In addiƟon, the company operates a number of subsidiary ventures under a separate public 
traded company, YG Plus, which includes a clothing line, a golf management agency, and a 
cosmeƟcs brand. 

TARGET Incorrect 

Unsupported Span 
PredicƟon 
(UNSUP) 

INPUT EVIDENCE:  
David MarƟn McIntosh 
McIntosh was born in Oakland, California, the son of Jean Marie (Slough), a judge, and 
Norman McIntosh. 
He graduated with a B.A. (cum laude) in 1980, and later received a J.D. from University of 
Chicago Law School in 1983. 
… 
Incumbent Democrat U.S. Congressman Philip Sharp of Indiana's 2nd congressional district 
decided to reƟre. 
McIntosh decided to run and won the Republican primary with a plurality of 43% in a four 
candidate field. 
In the general elecƟon, he defeated DemocraƟc Secretary of State of Indiana Joe HogseƩ 
54%-46%. 
SUMMARY: David MarƟn McIntosh (born June 8, 1958) is an American aƩorney and 
Republican Party poliƟcian who served as the U.S. representaƟve for Indiana's 2nd 
congressional district from 1995 to 2001. 

TARGET David MarƟn McIntosh ( born June 8 , 1958 ) is an American aƩorney and Republican Party 
poliƟcian who served as the U.S. representaƟve for Indiana 's 2nd congressional district from 
1995 to 2001 . 

Fixing Factuality 
(FIX) 

INPUT EVIDENCE:  
In 2009, Jordan returned to the F1 scene as a pundit for BBC Sport F1 coverage alongside 
Jake Humphrey (who was later replaced by Suzi Perry) and David Coulthard. 
In March 2016 he was announced as Channel 4's lead analyst for C4F1. 
SUMMARY:  
He was the chief analyst for Formula One coverage on the BBC from 2009 to 2015 before 
joining Channel 4 aŌer BBC pulled out in 2016. 

TARGET He was the a pundit for Formula One coverage on the BBC from 2009 before joining Channel 
4 in 2016. 

Evidence ExtracƟon 
(EVEXT) 

INPUT DOCUMENT: 
SENT0: 2012 Istanbul rally to commemorate the Khojaly massacre 
SENT1:  "JusƟce for Khojaly" campaign. 
SENT2: "JusƟce for Khojaly", or "JFK" for short, is an InternaƟonal Awareness Campaign, 
iniƟated on 8 May 2008 under the moƩo of "JusƟce for Khojaly, Freedom for Karabakh". 
… 
SENT6: Around 200,000 parƟcipants for the 20th anniversary remembrance of the Khojaly 
Massacre vicƟms, dozens of youth and student organizaƟons, public unions, Turkish 
organizaƟons and movements parƟcipated in the rally. 
… 
SENT17: Various slogans included, "We are all from Khojaly", "Stop Armenian aggression", 
"Do not forget Turkic people genocide by Armenian gangs in southern Azerbaijan", "One 
naƟon, two countries, JusƟce for Khojaly!", and "Stop Armenian lies". 
… 
 
SUMMARY: 
The demonstraƟon with slogan "We are all from Khojaly" had around 200,000 parƟcipants. 

TARGET SENT6 SENT17 

Figure 9: Sample input-output pairs for different tasks from the validation set of USB
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F Appendix for Chapter 7

F.1 Details on human evaluation

We engaged annotators via Upwork10, leveraging their expertise to evaluate model-generated
summaries against source documents. Candidates were chosen through a qualifying round, fo-
cusing on their ability to identify inaccuracies in summaries. Ultimately, two proficient proof-
readers and fact-checkers were selected based on their performance on the qualifying task. Each
annotator was tasked with annotating all summaries for half of the documents in each of the 3
datasets used (see Section 7.4). Annotators received compensation at an average rate of $25 USD
per hour for their contributions.

We use a slightly modified version of the GENAUDIT UI to collect the annotations, with two
notable changes (Figure 10). First, we add a buttons next to every source sentence to provide a
accept/reject feedback if the source sentence is highlighted as evidence for a summary sentence.
For source sentences which are not highlighted as evidence, we provide an accept button to mark
it as additional evidence if needed. Second, the UI enables cycling through multiple model-
generated summaries for the same source document at once. This is done to save annotators’
time, since otherwise the annotators would have to read the source document again each time they
get a summary for it in the sequence of annotation jobs. The annotators were instructed to mark
the following categories of generated summary sentences as invalid which we excluded from our
analysis: (i) truncated sentences, which occur due to the maximum decode length limit being
reached. (ii) incomprehensible sentences, such as when the models generate instructions instead
of summary (e.g. Falcon-7B once generated “when creating a summary, use the information
given and avoid superfluous details.”)

F.2 Annotator Instructions

The following protocol was provided to annotators for assessing both the supporting evidence
for summary sentences, and their factual consistency:

Evidence Annotation:
a) Evaluate each summary sentence by reviewing all linked evidence from the source, marking

them as either accepted (by clicking a tick) or rejected (by clicking a cross) based on their
validity.

b) Examine the summary for unsupported information with respect to suggested evidence,
If any information supporting the summary is found in the source but is not already supported
by the suggested evidence, mark it as ”new” evidence. Note that ”new” evidence pertains only
to instances where the summary includes seemingly unsupported information compared to the
suggested evidence.

Summary Annotation:
a) First, accept all suggestions made by the tool that are valid. This encompasses deletions

made by the tool of unsupported information and any recommended edits or replacements.

10https://www.upwork.com/
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b) If there is incorrect or contradictory information in the summary not satisfactorily ad-
dressed by the tool then make minimal edits to the summary to align it with the source. If the
edit is based on source information not already included in suggested evidence, label it as ”new
evidence.”

c) For cases where the summary introduces unsupported information not addressed by the
tool, remove corresponding segments of the summary without altering the evidence.

Note if a summary sentence is incomplete or incomprehensible, mark the sentence as IN-
VALID.

F.3 Inter-annotator agreement
For one-third of the documents in each dataset, we got their model-generated summaries an-
notated by both annotators to estimate inter-annotator agreement. The doubly-annotated data
included 232 summaries consisting of a total of 989 sentences. We compute the agreement on er-
ror identification by comparing the words removed/replaced from the initial summary by the two
annotators. The value of Cohen’s Kappa for this is 62.7 indicating substantial agreement. Simi-
larly, we compare the ratings (useful vs not) provided to each suggested evidence sentence by the
two annotators, which yields a Cohen’s Kappa value of 58.56 indicating moderate agreement.

F.4 Derivation of baseline precision-recall trade-off
Assume a binary classification problem with a dataset of T datapoints, out of which P have
positive labels and N have negative labels. Let’s assume a prediction model assigns positive
labels to P ′ datapoints, and achieves a recall of α and precision of β. We want to boost the recall
to a target of α′ by flipping the predictions from negative to positive for some datapoints. In this
section we derive the precision-recall trade-off achieved if we select the labels to flip uniformly
at random, which is the baseline used in Section 7.5.

If we flip the labels of k datapoints from negative to positive, the expected number of them
which would be true positives will be

∆ =
P (1− α)

(T − P ′)
k

For an expected target recall of α′, we get

α′ =
αP +∆

P

=⇒ α′ = α +
k(1− α)

(T − P ′)

=⇒ k =
α′ − α

1− α
(T − P ′)

The expected true positives is α′P , which yields the new expected precision β′ to be

β′ =
α′P

(P ′ + k)

116



=⇒ β′ =
α′P

P ′ + (α′−α)
(1−α) (T − P ′)

Note that P = γT , where γ is the base rate for positive class, and the number of predicted
positive labels P ′ = αP

β
. Substituting these, we get our final form

β′ =
α′γ

αγ
β
+ (α′−α)

(1−α) (1−
αγ
β
)

We showed the performance of this baseline against our proposed Algorithm 1 in Figure 7.2.

Figure 10: Interface used for collecting feedback on suggested evidence and edits from GENAU-
DIT. Annotators can accept/reject each suggested evidence sentence, and can also mark addi-
tional sentences as evidence if needed. Suggested edits can be accepted/rejected by clicking on
the button on the top-right of the highlighted span. if needed, users can also make freeform ed-
its to fix more errors. Annotators cycle through the summaries generated by different models,
whose names are anonymized and their order is shuffled.

F.5 Training details
Each model fine-tuned on the USB dataset, was trained for 10 epochs and the best checkpoint
was selected based on validation performance at the end of each epoch. The effective batch size
was kept at 128. The optimizer used was 8-bit AdamW with β1 = 0.9 and β2 = 0.999, without
weight decay, and with a learning rate of 5e − 5. The maximum input and output sequence
lengths were set to 3050 and 150 tokens respectively. We used 4-bit quantization with low-rank
adapters [Dettmers et al., 2023] with parameters r = 8 and α = 32 .

Each training run was carried out on 2× Nvidia A6000 GPUs each of which has 49GB of
memory. We used gradient accumulation and gradient checkpointing to reduce the peak memory
requirements during training. The implementation was done using the Huggingface transform-
ers [Wolf et al., 2019], Deepspeed [Rasley et al., 2020], Peft [Mangrulkar et al., 2022] and
Bitsandbytes11 libraries.

11https://github.com/TimDettmers/bitsandbytes
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Model URL

Llama-7B https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
Llama-70B https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
Mistral-7B https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
Falcon-7B https://huggingface.co/tiiuae/falcon-7b-instruct
Flan-T5-XL https://huggingface.co/google/flan-t5-xl
Flan-T5-XXL https://huggingface.co/google/flan-t5-xxl
Flan-UL2 https://huggingface.co/google/flan-ul2
GPT-3.5-turbo https://platform.openai.com/docs/models/gpt-3-5-turbo (version gpt-3.5-turbo-16k-0613)
GPT-4 https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo (gpt-4-0613)

Table 25: Links to models used in Section 7.3 and Section 7.4

F.6 Sample model outputs
We show some sample corrections suggested by GENAUDIT using the Flan-UL2 backend to
summaries generated by LLMs in Figures 11, 12, 13, 14.

Figure 11: GENAUDIT suggested edits for a GPT4-generated summary of a news article from the
XSum dataset. The first sentence contains a statement attributed to the UK which was actually
made by the president of the European Union
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Model Prompt

GPT-4 You are provided a document and its summary. The summary may potentially
contain facts which contradict with the document or are not supported by any
evidence in the document. The last sentence of the summary is marked as a
claim. Find and list sufficient sentences in the document to provide evidence
for the claim. Make sure to provide evidence for all the supported facts in
the claim. Then, revise the claim to remove or replace facts which are not
supported by the document or are contradicted by it. Only make changes to
the text of the claim when necessary. When you add new information to the
claim, it must be only to fix a contradictory fact in the claim, and not for
changing the style of the text.

GPT-3.5-turbo You are provided a document and its summary. The summary may potentially
contain facts which contradict with the document or are not supported by any
evidence in the document. The last sentence of the summary is marked as a
claim. Find and list sufficient sentences in the document to provide evidence
for the claim, and then revise the claim to remove or replace facts which are
not supported by the document or are contradicted by it. When you add new
information to the claim, it must be only to fix a contradictory fact in the
claim, and not for changing the style of the text.

Others You are provided a document and its summary. The summary may potentially
contain factual errors. The last sentence of the summary is marked as a claim.
Find all sentences in the document providing evidence for the claim, and then
revise the claim to remove or replace unsupported facts.

Table 26: Prompts used for fact-checking using GPT models in zero-shot setting, and using other
models with fine-tuning (as described in Section 7.3)

Model Prompt

Gemini-pro,
GPT-3.5-
turbo, GPT-4

Generate a summary for the following document in brief. When creating the
summary, only use information that is present in the document. Generate the
summary in free-form text without using bullet points.

Others Generate a summary for the following document in brief. When creating the
summary, only use information that is present in the document.

Table 27: Prompts used for summary generation using different models for human evaluation
experiment (Section 7.4)
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Figure 12: GENAUDIT suggested edits for a GPT4-generated summary of a news article
from the XSum dataset. The reference document does not contain the date on which the
said statement was made by SFA. Interestingly though, GPT-4 almost got it right by sheer
memorization. The statement was released on 17 November 2016 whereas GPT-4 mentioned
10 November 2016. (Ref: https://www.bbc.com/sport/football/38021627,https:
//www.bbc.com/sport/football/38019477)

Figure 13: GENAUDIT suggested edits for a Geminipro-generated summary of a Reddit post
where a person describes fire alarm going off at a workplace due to smoke from burnt toast.
The summary suggests that there was a fire caused which doesn’t seem to be the case from the
reference.
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Figure 14: GENAUDIT suggested edits for a GPT4-generated summary of a conversation be-
tween a doctor and patient. Here, the doctor briefly mentions that the patient’s blood sugar
problems may be caused by eating chocolates, but they don’t suggest that such unhealthy con-
sumption has increased recently (as the summary claims).
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