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Abstract

Neural networks have been widely applied to tasks such as natural language
processing, time series analysis, and multimodal understanding. Their optimiza-
tion typically requires large volumes of high-quality data, but human annotation
is expensive and does not scale effectively. As an alternative, this thesis explores
methods that leverage model-generated training signals to either replace or supple-
ment manual labels, enabling robust neural network optimization while reducing
reliance on human annotation. This contributes to the development of more auto-
mated and efficient artificial general intelligence.

This thesis demonstrates that leveraging model-generated signals can lead to
superior performance across various domains. We validate this methodology through
successful applications in three major areas, which form the core components of
this thesis: time series forecasting and change-point detection, text classification
with limited or no labeled data, and large language model alignment.

In Part Part I: We improve text classification by incorporating model-augmented
document content and label descriptions in few-shot and zero-shot learning set-
tings. In Part Part II: We utilize generated correlation graphs as augmented sig-
nals to enhance change-point detection in time series analysis. In Part Part III:
We leverage self-enhancement techniques, such as reinforcement learning, to align
large language models for developing more robust chatbots, improving instruction-
following in video-language models, and enhancing reasoning in vision-language
models.

Collectively, this work advances neural network optimization through model-
generated signals across multiple domains, contributing to the development of in-

telligent Al systems with minimal human supervision.
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Chapter 1

Introduction

1.1 Motivation of Research

Neural networks have diverse applications, including natural language processing, time series
analysis, and multimodal understanding. Optimizing these networks for specialized tasks, such
as text classification or change-point detection in time series, often requires extensive domain-
specific annotations. While large corpora like Wikipedia provide abundant human-annotated
categories, their scale does not guarantee sufficient training data for all sub-tasks. For instance,
Wiki10, a large-scale classification dataset with 31K labels, is highly imbalanced: 88.7% of labels
appear in only 1-9 examples, 10.3% in 10-100 examples, and just 1% in 100+ examples. This
means that if a network requires at least 10 labeled examples per class for effective training, only
about 10% of labels are adequately represented. For the remaining 88%, the model must rely on
fewer than 10 examples per label, which is often insufficient for robust learning. This illustrates
how low-resource challenges naturally arise, motivating the need for advanced methods to
improve training efficiency. One of the most effective approaches is leveraging model-generated

signals to enhance network optimization.

While we propose leveraging model-generated signals as a general methodology for opti-
mizing neural networks, different scenarios require distinct insights to address specific chal-
lenges. This thesis investigates the effective utilization of model-generated signals across vari-
ous settings, particularly in tasks with limited task-relevant labeled data. It develops a series of
methods spanning multiple domains, including text classification (Chapter 2, Chapter 3), time
series analysis (Chapter 4), domain-specific chatbot training (Chapter 5), and image and video

instruction-following (Chapter 6, Chapter 7).



By exploring different types of generated signals—such as graph-based generation, label
descriptions, document content generation, and conversation data creation, reasoning chain
generation—this work aims to reduce reliance on human annotations, enhancing Al system
capabilities in data-scarce environments. Ultimately, this thesis contributes to the development
of more automated and efficient artificial intelligence, fostering intelligent systems that require

minimal human supervision.

1.2 Thesis Organization

This thesis explores the optimization of neural models using model-generated signals, aiming
to enhance performance and reduce dependence on annotated data. It is structured into three

main parts, each addressing a distinct aspect of this research area.

Part I: Text Classification with Limited Labeled Data As discussed in the introduction,
label scarcity naturally arises, with low-frequency labels (fewer than 10 occurrences) dominat-
ing the label space. Traditional methods that rely on document-label co-occurrence for train-
ing often fail to provide sufficient supervision. This part investigates effective strategies for
augmenting label or document information to enable robust few-shot and even zero-shot text
classification.

Specifically in Chapter 2, we propose leveraging retrieval models for few-shot label aug-
mentation in extreme classification and further enhancing label representations using statisti-
cal support vector machines (SVMs). We demonstrate that SVMs, as large-margin classifiers,
improve robustness in tail-label prediction, while retrieval models can utilize semantic infor-
mation from SVM label profiles for enhanced performance.

Beyond label-side augmentation, we explore document-side augmentation in Chapter 3 for
zero-shot text classification. We show how instruction-aligned large language models (LLMs)
enhance the semantic richness of short input documents, leading to more robust performance.
Additionally, we employ LLMs to generate reliable training instances during self-training, im-
proving the performance of a smaller topic classification model (e.g., SimCSE).

The success of few-shot extreme classification and zero-shot topic text classification demon-
strates the effectiveness of leveraging model-generated signals for label and document augmen-
tation. These findings highlight the potential of model-generated signals in mitigating label

scarcity and improving text classification performance in data-constrained settings.



Part II: Auxiliary Graph Generation for Time Series Analysis The change-point detec-
tion task aims to identify significant and abrupt distributional shifts within a time series. Al-
though time series data can span thousands of time steps, change-points—such as machine fail-
ures in sensor data—typically occur infrequently, if at all, resulting in naturally low-occurrence
training data. Moreover, labeling change-points requires domain expertise, making it challeng-
ing to scale up training datasets.

To address this problem, in Chapter 4, we investigate unsupervised methods for change-
point detection that do not rely on large labeled datasets. We are the first to study correlation
changes in multivariate time series and propose leveraging generated correlation graphs as
additional training signals for time series prediction. In our approach, predicted time series
values are compared with observed values to detect distributional shifts, forming an unsuper-
vised method for change-point detection. We demonstrate that augmenting graph signal to time
series models enhances both forecasting and change-point detection, particularly in scenarios
involving complex multivariate interactions. By integrating correlation graphs, we significantly
improve the model’s ability to detect change-points arising from shifts in correlation patterns.
This advancement represents a step forward in applying neural models to time series analysis,

highlighting the potential of auxiliary data sources in enhancing model performance.

PartIII: Self-enhancement Methods for Large Language Models After the advancement
of ChatGPT, chatbots have become valuable assistants for daily tasks. However, as highlighted
in InstructGPT [111], conversation data is obtained through human annotation, which is both
costly and challenging to control in terms of quality, especially when human annotators intro-
duce factual errors. To address these issues, we propose generating large-scale conversation
data automatically to train domain-specific textual chatbots (Chapter 5) and general video-
language model chatbots (Chapter 6).

Specifically, in Chapter 5, we explore aligning LLMs to autonomously mine and learn from
domain specific text corpus, enhancing their ability to acquire and utilize knowledge from doc-
uments. In Chapter 6, we leverage our textual conversation miners as an auxiliary model to
generate large-scale video instruction-following data from long-form, detailed video captions.
Additionally, we incorporate self-generated traces from a fine-tuned video model for reinforce-
ment learning, significantly improving model performance.

More recently, to enhance the explainability and accuracy of chatbot outputs, chain-of-
thought (CoT) prompting [139] has been employed to generate reasoning traces, improving

both clarity and correctness. In Chapter 7, we investigate effective strategies for leveraging



self-generated reasoning traces in vision-language models and apply reinforcement learning

on these traces to enhance the reasoning capabilities of vision-language models.

Summary of Contribution Each part of the thesis provides an in-depth examination of its
respective topic, collectively contributing to the broader goal of advancing neural network opti-
mization through model-generated signals. The goal of these studies presents a comprehensive
understanding of how to design signals to effectively improve the model performance across

various applications, potentially revolutionizing the field of artificial intelligence.

1.3 Related Publications

For the topic of extreme text classification discussed in Chapter 2, we have published DEPL in
EACL 2023 [168] and an ArXiv paper on GloCalXML in 2023 [165]. For zero-shot text classifica-
tion discussed in Chapter 3, we have published PESCO in ACL 2023 [138] and GenCO in EACL
2024 [167]. For time series change-point detection in Chapter 4, we have published CoRD-CPD
in ICONIP 2020 [164]. For large language model alignment in Chapters 5 to 7, we have pub-
lished LLMiner as an ArXiv preprint in 2023 [166], LLaVA-Hound in NAACL 2025 [160], and
LLaVA-Reason, which is currently under submission for ACL 2025 [170].



Part1l

Text Classification with Limited Labeled
Data






Chapter 2

Pseudo Label Description Generation for
XMTC

In this chapter, we explore methods for extreme Multi-label Text Classification (XMTC) that
mitigate reliance on manually annotated text-label pairs by leveraging model-generated train-
ing signals. XMTC poses significant challenges due to its long-tailed label distribution and large
label space, which exacerbate data scarcity for low-frequency labels. Traditional classification
approaches struggle in this setting, as they depend on direct supervision from labeled exam-
ples. To address this limitation, we propose a neural retrieval-based framework that replaces
explicit text-label supervision with semantic matching, mapping input documents to relevant
label descriptions. Furthermore, we enhance label descriptions by generating pseudo label rep-
resentations using a bag-of-words (BoW) classifier, which serves as an auxiliary training signal
in data-scarce conditions. Our approach highlights the use of statistical model to generate useful
signals to guide neural retrievers, significantly improving the prediction of tail labels and sur-
passing state-of-the-art models. Additionally, we provide a theoretical analysis that establishes
a lower bound on model performance, offering insights into the interplay between statistical

and neural approaches in label-scarce regimes.

Highlights We are the first to train a neural retriever specifically for the XMTC task, show-
casing its efficacy in leveraging training signals generated from statistical model to enhance

neural retriever, particularly for rare labels.

Model-generated Signals We leverage the pseudo label descriptions generated from a trained

statistical (SVM) model. By integrating insights from statistical classifiers, which have tradi-
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tionally leveraged manually defined features like bag-of-words to encapsulate statistical data,
with neural models, our research uncovers a synergistic potential. This combination leverages
the strengths of both model types, offering a composite view that enhances overall performance
in XMTC tasks.

2.1 Introduction

Extreme multi-label text classification (XMTC) is the task of tagging documents with relevant
labels in a very large and often skewed candidate space. It has a wide range of applications,
such as assigning subject topics to news or Wikipedia articles, tagging keywords for online
shopping items, classifying industrial products for tax purposes, etc.

o/ -
35% - — DEPL

——— X-Transformer
30% -

25% - ’
20% -
15% -
10% -
5% -

0% - 1 - 1 1 ‘anA | 1 |
0 5000 10000 15000 20000 25000 30000

Figure 2.1: The classification performance of X-Transformer and DEPL (ours) measured in

macro-averaged F'1@19 on the Wiki10-31K dataset.

The most difficult part in solving the XMTC problem is to train classification models effec-
tively for the rare labels in the long tail of highly skewed distributions, which suffers severely
from the lack of sufficient training instances. Efforts addressing this challenge by the text
classification community include Bayesian modeling of graphical dependencies among labels
[47], novel loss or regularization of label embeddings [6, 140], clustering-based algorithms

[16, 71, 112], and so on. Despite the remarkable progresses made so far, the problem is still
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very far from being well solved. Figure 2.1 shows the performance of X-Transformer [16], one
of the state-of-the-art (SOTA) XMTC models, on the Wiki10-31K benchmark dataset (with over
31k labels). The horizontal axis is the ranks of the labels sorted from rare to common and the
vertical axis is the text classification performance measured in macro-averaged F'1@19 (higher
the better) for binned labels (100 labels per bin). The blue curve is the result of X-Transformer,
which has the scores close to 0 (worst possible score) for nearly half of the total labels. In other

words, SOTA methods in XMTC still perform poorly in tail label prediction.

In this chapter, we seek solutions for tail label prediction from a new angle: we introduce
a novel framework, namely the Dual Encoder with Pseudo Label (DEPL). It treats each input
document as a query and uses a neural network model to retrieve relevant labels from the
candidate space based on the textual descriptions of the labels. The underlying assumption
is, if the label descriptions are highly informative for text-based matching, then the retrieval
system should be able to find relevant labels. The system would be particularly helpful for tail
label prediction as the retrieval effectiveness does not necessarily rely on the availability of a

large number of training instances, which is what the tail labels are lacking.

The next research question that we tackle is how to obtain highly informative descriptions
for each label without human annotation. In reality, class names are often available but they
are typically one or two words, which cannot be sufficient for retrieval-based label prediction.
Therefore, we propose to augment the label description with statistical learning algorithms.
Specifically, we train linear support vector machine (SVM) model with the bag-of-words (BoW)
features, such as tf-idf, to automatically generate informative keywords for each label, which
we call the pseudo description of the label. Since the learned label embeddings of the BoWw
classifier encode token importance information, it is natural and efficient to leverage them for
keywords extraction. In sections 2.4 and 2.5.4, we further provide theoretical motivations and
empirical evidence to show the advantage of unsupervised statistical features for classification

under extreme scarce data conditions.

The result of our approach (DEPL) is shown as the red curve in Figure 1, which significantly
outperforms the blue curve of X-Transformer not only in the tail-label region but also in all
other regions. We also observed similar improvements by DEPL over strong baselines on other

benchmark datasets (see § 2.5.4). Our main contributions are summarized as the following:

1. We propose DEPL, a retrieval-based model to alleviate the difficulty in tail label prediction
by matching the semantics between documents and augmented label descriptions which

are generated automatically by a statistical model with BoW features.



Documents BeRT Pseudo description
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Doc feature _~ l—— Music jazz, piano...
Kakuro is a e @ @ | -7 R ‘
kind of logic ?I/" —————————— "\\u ,r E<— kakuro , puzzle, clue...
puzzle that is N S N R '
often referred eural \ o=y
toasa... retrieval 5 @ O P Phase4: drug, test...
| Learned token
Labels importance for label
book (XXX

music |~ SVM | — G 9 @ @

Extract keywords by
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phase4 2 I ¥

Figure 2.2: The proposed DEPL framework. First, we train a BoW classifier (SVM) and extract
the top keywords from the label embeddings according to the learned token importance. Then,
we concatenate the keywords with the original label names to form pseudo descriptions. Fi-
nally, we leverage the neural retrieval model to rank the labels according to semantic matching

between document text and label descriptions.

2. We provide theoretical analyses to motivate the usage of BoW feature for classification

under scarce data setting, and prove a performance lower bound of the neural model.

3. We did extensive experiments with different tail label evaluation metrics to show that
our method significantly and consistently outperforms strong baselines on multiple chal-

lenging benchmark datasets.

2.2 Related Work

XMTC Classifier Traditional BoW classifiers rely on the bag-of-words features such as one-
hot vector with tf-idf weights, which capture the word importance in a document. Examples
include one-vs-all SVM models such as DiSMEC [5], ProXML [7], PPDSparse [155], tree-based
models such as Parabel [112] and Bonsai [71].

To compensate for the lack of semantics in BoW features, deep learning models were pro-
posed for XMTC. Examples include CNN-based models such as XML-CNN [92] and SLICE
[60], RNN-based models such as AttentionXML [157] and Transformer-based models such as

10



X-Transformer [16], LightXML [64] and APLC-XLNet [153].

Label Description The SiameseXML [30] for XMTC encodes both input documents and label
descriptions with pretrained word embeddings with shallow networks and leverages the em-
bedding matching. The SOTA pretrained Transformer-based models [16, 64] leverage the label
descriptions to build label clusters. To generate label descriptions, Chai et al. [14] adopt rein-
forcement learning to produce extended label descriptions from predefined label descriptions.
However, the algorithm can not scale to the extreme label space and relies on the availability

of sufficient training data.

2.3 Proposed Method

2.3.1 Preliminaries

Let D = {(x;,y;)n""} be the training data where X; is the input text and y; € {0, 1}* are the
binary ground truth labels of size L. Given an instance « and a label /, a classification system

produces a matching score of the text and label:

f(@, 1) = (o(x), w)

where ¢(x) represent the document feature vector and w; represents the label embedding of /.
The dot product (-, -) is used as the similarity function.

Typically, the label embedding wj is randomly initialized and trained from the supervised
signal. While learning the embedding as free parameters is expressive when data is abundant,

it could be difficult to be optimized under the scarce data situation.

Sketch of Method DEPL tackles the long-tailed XMTC by neural retrieval with generated
pseudo label descriptions, as shown in figure 2.2. Instead of learning the label embedding from
scratch, the retrieval module directly leverages the semantic matching between the document
and label text, providing a strong inductive bias on tail label prediction. Next, we introduce the

components of our system in details.

2.3.2 Generated Pseudo Label Description

As the provided label names are usually short and noisy, we augment it with generated pseudo

label description from a SVM model. As the tf-idf features ¢;(x) used by SVM are sparse, we

11



also call the statistical model a sparse model:

fsparse(m7 l) = <¢t(m)a w?Vm>

svm

The label embedding weight w;"™ is optimized with the hinge loss:

B L
1 -
Ehinge = E Z Z max(O, - Y- fsparse(wh l))

i=1 [=1

where g, = 2y, — 1 € {—1, 1}, B is the batch size.

For a trained SVM model, w;*™ has the dimension equal to the vocabulary size and each
value w;y™ of the label embedding denotes the learned importance of the token ¢ w.r.t label
. We select the top k& most important tokens (ranked according to the importance score) as

keywords, which are appended to the original label name to form the pseudo label description:
pseudo_label(l) = label_name(l) & keywords(l)

where @ is the append operation.

2.3.3 Retrieval Model with Label Text

DEPL leverages the semantic matching of document and label texts via a dual encoder model
[42, 68, 99, 143]. We use the BERT [34] model as the backbone of our neural encoder, which
is shared for both the document and label text encoding. Since a neural model encodes textual
inputs into condensed vector representations, we call them dense models.

The similarity between text and label representation is measured by:

Javal(2, 1) = (Pdoc (), Praver (text(l)))

where text(l) is the textual information of the label [. When the textual information only
includes the label name given in the dataset, we call the model DE-ret. Otherwise, when the
textual information includes the generated pseudo label description, we call the model DEPL.

The document embedding ¢g.. () is obtained from the CLS embedding of the BERT model

followed by a linear pooling layer:
¢doc(w> = Wdac ’ BERT(JI, CLS) + bdoc

where BERT (z, CLS) represents the contextualized embedding of the special CLS token.

W and by, are the weights and biases for the document pooler layer.

12



For the label embedding ¢yape(text(l)), we take an average of the last hidden layer of BERT

followed by a linear pooler layer:

(blabel(teXt(l)) = Wiabel - Vbert (teXt(l)) + braper (2-1)
| text(0)|
1 .
Vpert (text (1)) = ot 0] ; BERT (text({), §) (2.2)

where BERT (text(l), j) represents the contextualized embedding of the j-th token in text (/)
obtained from the last hidden layer of the BERT model. W, and by, are the weights and
biases for the label pooler layer. In the equation 2.2, the average embedding of label tokens
yields better performance empirically than the CLS embedding possibly because the keywords
are not natural language, and BERT may not effectively aggregate such type of information into
CLS.

Learning with Negative Sampling Since calculating all the label embeddings for each batch
is both expensive and prohibitive by the memory limit, we resort to negative sampling strategies
for in-batch optimization. Specifically, we sample a fixed-sized subset of labels for each batch
containing: 1) all the positive labels of the instances in the batch, 2) the top negative predictions
by the sparse classifier as the hard negatives, and 3) the rest of the batch is filled with uniformly
random sampled negatives labels.

Let Sy be the subset of labels sampled for a batch. The objective for the dual encoder is:

B|1Sb! Z ( Z log o ( faual (4, p)) + Z logo((1 — fdual(wi,n)))>

=1 \peyf nesy\y;

Edual = -

where B is the batch size, yf is the positive labels for instance 7, and o is the sigmoid function.

2.3.4 Connection of Sparse and Dense Model

Complementary features: the sparse model uses the tf-idf feature based on corpus-level token
statistics, while the dense model relies on the knowledge of the language learned during pre-
training. The two types of features focus on different aspects of the text corpus and the combi-
nation of the two brings gains in performance.

Difference from ensemble: utilizing the augmented text for retrieval is better than a pure en-
semble of sparse and dense methods such as in X-Transformer. In the ensemble method, the

semantic meaning of important tokens in a label embedding learned from sparse classifier is not

13



leveraged. By extracting the keywords from the sparse label embedding and presenting them
as pseudo label descriptions, our model can additionally exploit the value of those key token

semantics.

2.3.5 Enhance Classification with Retrieval

Our introduced retrieval model can be combined with a neural classifier for a performance boost
on overall label classification (since our retrieval model is primarily targeted on improving
tail label performance). In a neural classification system, the label embedding is treated as
free parameters to be learned from supervised data, which is more expressive for labels with

abundant training instances. The neural classifier learns the function:

fcls(wy l) = <¢doc(w)7 w;:ls> (23)

We propose to enhance the classification model with the retrieval mechanism by jointly fine-
tuning;:

o ual L, [ + o ( fus T, l
Fras(z, 1) = ZH (@ D) 2 (fus(, 1)

The classification and retrieval modules share the same BERT encoder. We refer to the system as

(2.4)

DEPL+cls. The object function Lgya1-is is similar to L4, except for replacing faua With fiual-cis-

The DEPL+cls model looks like an ensemble of the two systems at first sight, but there
are two major differences: 1) As the BERT encoder is shared between the classification and
retrieval modules, it doesn’t significantly increase the number of parameters as in [16, 64]; and
2) when the two modules are optimized together, the system can take advantages of both units

according to the situation of head or tail label predictions.

2.4 Theoretical Analyses of DEPL

2.4.1 Rethinking Dense and Sparse Model for Imbalanced Text Classi-

fication

We analyze dense and sparse models from a gradient perspective for classification problems
with skewed label distribution.
Preliminary: The predicted probability optimized by the binary cross entropy (BCE) loss is:

L

Lycg = — Zyl logpy + (1 — ;) log(1 — py)
=1

14



The derivative of Lycp w.r.t the logits s; is:

O*CBCE . P — 1 if Y = 1
881 B

(2.5)
17 otherwise
Q1: Why would sparse model with BOW feature benefit tail label prediction?
Applying the chain rule to equation 2.5, the gradient of Lgcp w.r.t the document feature
on(x) is:
OLpce (Y1, p1) (m—Dw ify=1
Opn(x) pIw; otherwise

By optimizing parameters ¢ of feature extractor, the document representation is encourage to

move away from the negative label representation, that is:

On(x;0') < dn(x;0) — nprwy

where 7 is the learning rate.

For a dense model, the parameter ¢ of the feature extractor (such as BERT) is shared for all
the data, so the optimization of the feature extractor is affected by the distribution of labels in
the training data. Since a tail label appears more often as a negative target, the feature extractor
is likely to under-represent the tail label information, making a tail label more difficult to be
predicted. In comparison, the sparse feature like tf-idf is derived in an unsupervised manner
from corpus statistics, which is independent of training label distribution. Therefore, the sparse

feature may maintain better representation power to separate the tail labels.

Q2: What is the advantage of a retrieval system on tail label prediction?
In a typical classification system, labels are treated as indices whose embeddings are ran-
domly initialized and learned from supervised signals. The gradients of Lpcp w.r.t the label

feature is:
OLgce(yi, ) (= Don(x) ify =1

dw, Pidn () otherwise
The label embedding is updated by:
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As most of the instances are negative for a tail label, the update of tail label embedding is
inundated with the aggregation of negative features, making it hard to encode distinctive fea-
ture reflecting its identity. Therefore, learning the tail label embedding from supervised signals
alone can be distracting. Although previous works leverage negative sampling to alleviate the
problem [16, 64], we argue that a fundamental solution is to inject the label information into
the embedding. Our proposed retrieval system presents a natural way to incorporate label text

for enhanced performance of tail label prediction.

2.4.2 Analysis on Performance Lower Bound

We will show the connection between DEPL and a sparse SVM classifier (for pseudo label ex-
traction) by a performance lower bound. Specifically, DEPL outperforms a sparse model with
high probability given that the selected keywords are important and the sparse classifier can
separate the positive from the negative instances with non-trivial margin.

Notation: Let ¢;(x) be the normalized tf-idf feature vector of text with ||¢:(x)|2 = 1. The
sparse label embeddings {wy, ..., w,} satisfies ||w;||s < 1,w;; > 0. In fact, label embeddings
can be transformed to satisfy the condition without affecting the prediction rank. Let z; be the
top selected keywords from the sparse classifier, which is treated as the pseudo label. Define
the sparse keyword embedding v; with v;; = wy; if 7 is an index of selected keywords and 0
otherwise.

In the following, we define the keyword importance and the classification error margin.
Definition 1. Forlabell andd > 0, the sparse keyword embedding v, is 6-bounded if (¢, (x), v;) >
(o), wi) — 0.

Definition 2. For two labels p and n, the error margin p is the difference between the predicted
scores ju(¢(x ), wp, wy) = (P(x), wp — wy).

The main theorem is stated as below:

Theorem 3. Let ¢;(x) and ¢, (x) be the sparse and dense (dimension d) document feature, w,

be the label embedding and z; be the 6-bounded keywords. For a positive label p, let N, =

{n1,...,n,} beaset of negative labels ranked lower than p. The error margine; = ju(¢y(x), wy, wy,)
and e = min({ey, ..., e, }). An error & of the neural classifier occurs when
((&n(x), on(2p); Pn(2n,)) < 0 (2.6)

The probability of any such error happening satisfies

(e —0)%d

P& U...U&y,) < 4AM, exp(— =

)
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When (e — §) > 10 bngp, the probability is bounded by M%,
Discussion: An error event occurs when the sparse model makes a correct prediction but the
neural model doesn’t. If the neural model avoids all such errors, the performance should be at
least as good as the sparse model, and Theorem 3 gives a bound of that probability.

The term ¢ measures the importance of selected keywords (smaller the more important),
the error margin € measures the difficulty the correctly predicted positive and negative pairs
by the sparse model. The theorem states that the model achieves a lower bound performance

as sparse classifier if the keywords are informative and error margin is non-trivial. Proofs and

discussions are presented in section 2.4.3.

2.4.3 Proof

We include the assumptions and proofs of Theorem 3.

Assumptions Similar to Luan et al. [99], we treat neural embedding as fixed dense vector
E € R¥" with each entry sampled from a random Gaussian N (0, d"'/?). ¢,,(x) = E¢,(x) is
weighted average of word embeddings by the sparse vector representation of text. According
to the johnson-Lindenstrauss (JL) Lemma [12, 67], even if the entries of E are sampled from a

random normal distribution, with large probability, (¢;(x), v) and (E¢,(x), Ev) are close.
Lemma 4. Let v be the -bounded keyword-selected label embedding of w. For two labels p, n,

the error margins satisfy:

[1(e(2), wp, wy) — (), vy, v,)| <6

Proof. By the definition of /-bounded keywords,

(Pe(x), wy) — 6 < (di(x),v,) < (Pe(x), wy) (2.7)
— (¢e(x), wn) < —(¢(x),vn) < — (D), wn) + 0 (2.8)

Adding equation 2.7 and equation 2.8 finishes the proof:

<¢t($)a w, — wn) —-0< <¢t(m)v Up — Un> < <¢t($)a wy — wn> +0 (2.9)
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Lemma 5. Let ¢;(x) and ¢, (x) be the sparse and dense (dimension d) document feature, w
be the label embedding and z; be the -bounded keywords. Let p be a positive label and n be a
negative label ranked below p be the sparse classifier. The error margin is € = p(¢i(x), wy, wy,).
An error € of neural classification occurs when ji(¢n(x), dn(2p), dn(2n)) < 0. The probability
P(€) < dexp(— 2™,

Proof. By the JL Lemma [12]: For any two vectors a, b € R?, let E € R?*¥ be a random matrix

such that the entries are sampled from a random Gaussian. Then for every constant 7 > 0:
v 2 2 Vd
P(1Ba.Bb) - (a.b) = ] (lal? + [b]7)) < dexp (-7 (2.10)

Lety = %(6—6), a = ¢y(x) and b = v,—v,,. Since ||a|s = Land ||b|2 < (||, |2+ ||vnll2)? < 4,

the JL Lemma gives

P((E¢i(z), E(vy, — va)) — (¢u(@), vp — vp)| = € —0) (2.11)
< 4exp(—%i) (2.12)

To complete the proof, we need to show P(£) < Eq.2.11:

E = |(E¢i(z), E(vy, —v,)) — (¢(x), w, —wy)| > ¢ (2.13)
= [(E¢(x), E(v, —vy)) — (¢e(2), vp —vn)| = € =0 (2.14)

where the equation 2.14 is derived by Lemma 4:

|<E¢t(w)v E('Up - 'Un)> - <¢t(m)7 Up — vn>| (2.15)

>[(E¢i(x), E(v, — vn)) = (¢(2), wp — wn)|— (2.16)

[{01(), wp — w) = (G(@), vp — vn)] (2.17)

>e—0 (2.18)

Therefore P(€) < Eq.2.11, which completes the proof. O

Proof of Theorem 3

Proof. The Lemma 2 shows that

(EZ' — 5)2d
50

(e —0)%d

P(&) < 4exp(— 50

) < 4dexp(— ) (2.19)
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By an union bound on the error events {&1, &, ..., &, },

M, Y
P& U...U&Ey) < ;4exp(—W) (2.20)
— 6)2d

]

When (e — §)? > 10 %6 My e have exp(—(e_é)Qd) <
Em,) < MLP

Caveat: The performance bound analysis adopts a strong assumption that the neural embed-

4]\/1[ > and therefore P(&; U ... U

dings are random matrices. This could be very different in real application because the random
matrices do not encode any semantic information. We acknowledge this limitation and provide
more references on that. We rely on the mathematical tool based on random matrix theory,
namely the Johnson-Lindenstrauss (JL) lemma. This tool was also adopted by Luan et al. [99]
under information retrieval setting, which provides the connection between dense and sparse
retrievers. The bound is on its loose end because embeddings from BERT are more meaningful
than random matrices (also verified from their empirical study). In our work, we study use the
JL lemma to connect sparse and dense classifiers. The bound is reasonable considering that it

is on its loose end, but, still, there is no guarantee when applied with real BERT embeddings.

2.5 Experiments

Dataset Ntirain Niest Ed L |Ltail|
EURLex-4K 15,539 3,809 5.30 3,956 2,413
AmazonCat-13K | 1,186,239 306,782 5.04 13,330 3,936
Wiki10-31K 14,146 6,616 18.64 30,938 26,545
Wiki-500K 1,779,881 769,421 4.75 501,070 338,719

Table 2.1: Corpus Statistics: Nygin and Ny are the number of training and testing instances
respectively; Ly is the average number of labels per document, and L is the number of unique

labels. L | is the number of tail labels with 1 ~ 9 positive training instances.

19



2.5.1 Datasets

We conduct our experiments on 4 benchmark datasets: EURLex-4K, AmazonCat-13K, Wiki10-
31K and Wiki-500K. The statistics of the datasets are shown in Table 2.1. An unstemmed version
of EURLex-4K is obtained from the APLC-XLNet github! and the rest are from the Extreme
classification Repository?.

For comparative evaluation of methods in tail label prediction, we consider the subset of
labels with 1 ~ 9 positive training instances. Those tail-label subsets correspond to 63.48%,
29.53%, 88.65% and 67.60% of the total labels in the 4 datasets respectively. With mostly more
than half of the labels as tail labels, the distributions are indeed highly skewed.

2.5.2 Tail Label Evaluation Metrics

Micro-averaged PSP@k: The PSP [59] metric re-weights the score of each instance according
to the label frequency:

p!)
pepak =y Z prop(pl)

where the propensity score prop(p;) in the denominator gives higher weights to tail labels.

Since the micro-averaged metric gives an equal weight to the per-instance scores, it can
still be dominated by the system’s performance on the head labels but not the tail labels. As an
alternative, we adopt a macro-averaged metric to evaluate tail label performance.
Macro-averaged F1@k: The macro-averaged metric [150] gives an equal weight to all the
labels (we apply it to tail labels specifically). It is defined as the average of the label-specific

F1Q@QF values, calculated based on a contingency table for each label, as shown in table 2.2. The

precision, recall and F'1 for a predicted ranked list of length k are computed as P = TP +FP, R =
_TP _ 9 PR
Ty and F1 = 2525,

Table 2.2: Contingency table for label .

[ is true label [ is not true label
[ predicted True Positive (TP;) False Positive (F'P;)
[ not predicted | False Negative (FN;) True Negative (TN;)

!https://github.com/huiyegit/APLC_XLNet.git
http://manikvarma.org/downloads/XC/XMLRepository.html
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For micro-averaged PSP@k, we choose k& = 1, 3, 5 as in previous works. For macro-averaged
F1@k, we choose k = 19 for Wiki10-31K because it has an average of 18.64 labels and &k = 5

for the rest datasets.

2.5.3 Baselines

For the tail label evaluation, our method is compared with the SOTA deep learning models
including X-Transformer [16], XLNet-APLC [153], LightXML [64], and AttentionXML [157].
X-Transformer, LightXML, and XLNet-APLC employ pre-trained Transformers for document
representation. We reproduced the results of single model (given in their implementation) pre-
dictions with BERT as the base model for LightXML, BERT-large for X-Transformer, XLNet for
XLNet-APLC, and LSTM for AttentionXML. The AttentionXML utilizes label-word attention to
generate label-aware document embeddings, while the other models generate fixed document
embedding.

We use the SVM model with tf-idf feature as our choice of sparse classifier and BERT-base

as our dense model for neural retrieval and classification.

15%

- «  *t . B LightXML
L:n 12.5% 10.811.1511.47 9.7 9'7710 12 B X-Transformer
> 0% 79 8.4 8.9 XLNet-APLC
S 7.5% 59 6.7 SVM
o 5% AttentionXML
]
S 25% 1.4 DEPL+cls
= 0% 0.2 Il DEPL
EURLex-4K AmazonCat- 13K o
20% 18.3 :
- 16 9 17 5 [l LightXML
I:n 16.67% B X-Transformer
% 13.33% ¥ *F XLNet-APLC
: 10% * SVM
8 6.6792 6.0 6. 25 6.89 AttentionXML
S 3.33% 0.9 mam 23 2.3 DEPLcls
0% — W DEPL
Wiki10-31K Wiki-500K

Figure 2.3: Tail-label prediction results in £'1@QFk on the labels with 1 ~ 9 positive training
instances, with k£ = 19 for the Wiki10-31K dataset and k = 5 for the rest. * and { indicates the

macro t-test is significant (p < 0.05) over SVM and previous best neural model respectively.

2.5.4 Results in Tail Label Prediction

SVM on Tail Label Prediction The results evaluated with the F1 metric averaged on the

tail labels are shown in figure 2.3. Surprisingly, a simple statistical SVM baseline achieves com-
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Table 2.3: Tail label prediction results of methods in PSPQF, with * indicating significant

improvement (p < 0.05) over the previous best model on the micro sign test.

EURLex-4K Wiki10-31K AmazonCat-13K Wiki-500K

Methods PSP@1 PSP@3 PSP@5 PSP@1 PSP@3 PSP@5 PSP@1 PSP@3 PSP@5 PSP@1 PSP@3 PSP@5

X-Transformer | 37.85 47.05 51.81 13.52 14.62 15.63 51.42 66.14 75.57 31.20 36.78 40.21
XLNet-APLC 42.21 49.83 52.88 14.43 15.38 16.47 52.55 65.11 71.36 29.73 30.26 30.59
LightXML 40.54 47.56 50.50 14.09 14.87 15.52 50.70 63.14 70.13 31.01 37.10 39.28
AttentionXML | 44.20 50.85 53.87 14.49 15.65 16.54 53.94 68.48 76.43 30.05 37.31 41.74
SVM 39.18 48.31 53.37 11.84 14.00 15.81 51.83 65.41 72.82 32.12 32.75 35.20

DEPL 45.60  52.28" 53.52 | 17.20* 16.90" 16.95 | 55.94* 70.01* 76.87" | 32.07 40.60* 43.74"
DEPL+cls 44.60 52.74* 54.64 | 16.73* 16.84" 16.67 55.21%  69.73* 75.94 32.18 39.89* 41.46

petitive results on the tail label predictions. We observe that SVM model can outperform most
of the pretrained Transformer-based models on the tail label prediction, and outperform the
AttentionXML on the Wiki10-31K dataset. This provides an empirical evidence for the robust
performance of a sparse model on tail label prediction. As we analyzed in section 2.4, the SVM
model utilizes the unsupervised statistical feature as document representation, which poten-
tially suffers less from the data scarcity issue. The empirical result serves as an evidence for
our theoretical analysis that the joint optimization of feature extractor and label embedding is

difficult when data is limited.

Table 2.4: Examples of SVM generated keywords from Wiki10-31K. The classifier is trained with
only 1 positive training instance per label. The top 20 keywords are shown. with meaningful

words highlighted in red manually.

Label Text #training instance Top Keywords
hased . trials clinical protection personal directive processed data trial drug phase eu
phase
processing patients sponsor controller legislation regulation art investigator study
bl . boosting kurtz ferrell weak algorithms learners misclassified learner kearns ensemble
ensemble
charges bioterrorism indictment doj indict cae correlated 2004 reweighted boost
nikoli kakuro puzzles crossword clues entries entry values sums cells
kakuro 1
cross digits dell solvers racehorse guineas aa3aa digit clue kaji

Neural Classifier on Tail Label Prediction The neural classifiers include LightXML, X-
Transformer, XLNet-APLC and AttentionXML. Specifically, the AttentionXML model leverages

a label-word attention to calculate a label specific document representation. As we observe in
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figure 2.3, among the baseline models, the AttentionXML performs the best on the tail label
predictions, beating the other baselines on 3 out of the 4 benchmark datasets. The superior
performance could come from the local word and label matching which benefits the tail label
prediction.

As mentioned in section 2.3, X-Transformer model ensembles a neural classifier and a SVM
model by directly summing the prediction scores. Although X-Transformer outperforms SVM
on the overall label prediction, it underperforms SVM on 3 out of 4 benchmark datasets. This
shows that model performance on tail label is dragged down by the neural model prediction, and
a simple ensemble does fully exploit the advantage of the sparse model. Compared with the X-
Transformer, our model achieves better performance on both macro-F1 and micro-PSP metrics,
showing the advantage of leveraging the retrieval of augmented label descriptions rather than

a pure ensemble.

DEPL Performance On the 3 smaller scale benchmark datasets, EURLex-4K, AmazonCat-
13K and Wiki10-31K, our model directly ranks all the labels. On the large Wiki-500K dataset,
our model leverages the prediction of cluster-based algorithm in X-Transformer and replaces
the reranker with our retrieval model.

Our proposed models perform the best on the Macro-F1 metric with the DEPL model consis-
tently and significantly showing the best performance on all the benchmark datasets. A macro
t-test [150] is conducted to justify the significance of improvement over the SVM and previous
best neural model. The significant performance gains over the SVM model shows that our re-
trieval framework can outperform the sparse model which serves as label keywords extractor.
We attribute the success of model on tail label prediction to the retrieval module that focuses on
the semantic matching between the document and label text. The DEPL performs better than
the DEPL +cls as it is less affected by the large amount of training instances for head labels and
thus more biased on the tail label prediction.

According to the evaluation with the PSP metric shown in table 2.3, it also confirms that
our proposed models DEPL and DEPL +cls improves over the previous SOTA neural models
on all the benchmark datasets, with * indicates significant improvement (p < 0.05) over the
previous best model on the micro sign test [150]. The Wiki10-31K dataset has the most skewed
distribution as the most frequent label covers more than 85% of the training instances, resulting
in a low PSP score. Since DEPL relies on the semantic matching between the document and
label text, it is less affected by the dominating training pairs, and thus the PSP@1, PSP@3

beats the SOTA models by a larger margin. The DEPL +cls achieves worse performance on this
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dataset, because the classification counterpart of the model would benefit more on the head

label predictions and tend to rank the head labels at the top.

Metric Comparison Although the PSP metric gives higher weight to the tail labels, it is
a micro-averaged metric over the scores of each instance, which can still be affected by the
performance on the more common categories that cover most of the instances. For example,
SVM model doesn’t stand out under the PSP metric, which has lower overall label performance.
Since the F1 metric is calculated specifically on the set of tail labels, we argue that it provides
a more accurate and fine-grained evaluation on tail label prediction, which better reveals the

success of XMTC models on predicting rare categories.

15%
12.5%
10%
7.5%
5%
2.5%
0

Ablation Study on Pseudo Label Length
10.19.9

11.5
9 gpn10.7 o
7.9 g M BERT
55 6.9 6.5 M DEPL-8
DEPL-16
M DEPL-32

EURLex-4K Wiki10-31K AmazonCat-13K

S

Figure 2.4: The ablation-test results of DEPL in Macro-averaged F1@k metric with varying
length of pseudo label descriptions.

2.5.5 Ablation on Generated Pseudo Label

Table 2.4 shows examples of the SVM generated keywords trained on the Wiki10-31K dataset
for labels with only 1 training example. We manually highlight the meaningful terms related to
the label meaning. For example, the label name phase4 is ambiguous, whose meaning needs to
be inferred from the corresponding document. From the keywords trial, clinical, drug, etc, we
deduce that the topic is about medical testing phase. In another example, kakuro is a Japanese
logic puzzle known as a mathematical crossword and the game play involves in adding number
in the cells. Generating a description for kakuro requires the background knowledge, but the

keywords automatically learned from the sparse classifier provide the key concepts. Although
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not all the keywords can provide rich semantics to complement the original label name, they
may serve as a context for the label to make it more distinguishable from others.

In figure 2.4, we conduct an ablation test on the length of the pseudo label and the perfor-
mance is measured by Macro-avg F1@k. The BERT classifier is included as a baseline with no
label text information. As we observe that the longer description of length 16 performs the
better, but when length is 32, the performance doesn’t increase as the text may become noisy
with more unrelated keywords.

The DE-ret model is a pure retrieval baseline (avg length 3) with only the label name. While
it achieves good performance on the EURLex-4K and AmazonCat-13K datasets, it still performs
poorly on the Wiki10-31K dataset. This shows that generating the keywords from the sparse
classifier can enhance the text quality. Furthermore, the generated text allows DEPL to use the
semantic information of the label keywords, which is ignored in the SVM model. This could
be another reason why our model performs better than the SVM baseline on the Wiki10-31K

dataset.

2.6 Conclusion

In this chapter, we propose a neural retrieval framework (DEPL) that addresses the challenge
of tail-label prediction in XMTC by leveraging model-generated training signals. Instead of
relying solely on manually annotated text-label pairs, DEPL formulates the problem as a se-
mantic matching task between input documents and system-enhanced label descriptions. By
integrating neural embedding-based retrieval with a large-margin bag-of-words (BoW) classi-
fier for generating informative pseudo label descriptions, our approach effectively mitigates
data scarcity issues. Extensive experiments on large-scale benchmark datasets demonstrate
that DEPL significantly outperforms strong baselines, particularly in improving tail-label pre-
dictions, highlighting the effectiveness of model-driven supervision in extreme classification

settings.
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Chapter 3

Synthetic Training Data for Zero-shot

Classification

In this chapter, we address zero-shot text classification by leveraging LLM-generated training
signals to replace reliance on labeled data. Since no document-label pairs are available in this
setting, traditional methods cannot exploit their co-occurrence. To overcome this, we introduce
GENCo, which utilizes an LLM to generate synthetic data that enhances a smaller classifier’s
training. GENCo leverages LLMs to generate two key signals: (1) synthetic document content
for enriched representation and (2) synthetic document-label pairs as new training examples
to mitigate the lack of labeled data. This approach not only reduces reliance on human anno-
tations but also lessens dependence on large unlabeled corpora while improving model robust-
ness. Experiments show that GENCo outperforms state-of-the-art methods with minimal (<5%)
in-domain data and even surpasses Alpaca-7B guided by human prompts, demonstrating the

power of LLM-generated signals for self-training in zero-shot classification.

Highlights We are among the first to leverage instruction-following LLMs to generate train-
ing pairs for zero-shot text classification, enabling a smaller model to surpass the performance

of its teacher LLM, Alpaca-7B.

Model-generated Signals We utilized instruction-following LLM, Alpaca-7B, to generate
synthetic training data for zeroshot text classification, including synthetic document content

and new document-label training pairs.
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3.1 Introduction

Zero-shot text classification poses a challenge in predicting class labels for text instances with-
out requiring labeled instances for supervised training. Recent research in zero-shot text clas-
sification primarily falls into two distinct groups. The first approach applies LLM (with billions
of parameters) in label prediction with the help of human instructions or prompts [25, 111].
However, even a relatively smaller LLM such as Alpaca-7B [130] necessitate considerable com-
putational power and time for large-scale inference and model fine-tuning. Without domain-
specific fine-tuning, LLMs struggle to discern between classes characterized by unclear decision
boundaries. The second approach to zero-shot classification involves the self-training of smaller
language models, often comparable in size to BERT [46, 104, 119, 138]. In these methods, the
models predict "pseudo labels" for unlabeled instances, and then use these instances alongside
their assigned pseudo labels as supervised data for model fine-tuning. This process is iterated
for the model to incrementally adapt to the target domain. However, these techniques hinge on
accessing a substantial volume of unlabeled texts from the intended domain, sometimes reach-
ing the magnitude of millions as indicated in table 3.1, a volume that may not always be feasible
in many practical contexts. Furthermore, due to the capacity limitation of small language mod-
els, the pseudo label predictions are prone to error potentially jeopardizing the efficacy of the
self-training loops.

In this chapter, we introduce a novel approach called Generation-driven Contrastive Self-
Training (GENCo). This approach adeptly combines the language understanding ability of LLMs
with the adaptability and efficiency of smaller models. Drawing inspiration from PESCO [138],
we treat zero-shot classification as a sentence alignment task and employ contrastive self-
training with smaller models. We provide a theoretical analysis of how self-training can bolster
classification generalization. Crucially, we sidestep the dependency on extensive unlabeled
texts by capitalizing on the generative strengths of LLMs.

Our approach exploits the LLM generation power in two ways. Firstly, to enhance pseudo
label prediction, we employ an LLM to generate multiple variations or extensions of an input
text. This augmentation strategy enriches the available information for the classifier, enabling
it to make better predictions based on a more comprehensive understanding of the input. Sec-
ondly, we employ the LLM to craft new training instances conditioned on the pseudo labels,
ensuring the generated content is closely aligned with its assigned pseudo label. This tackles
the prevalent issue of mislabeling in self-training. In summary, this chapter makes three key

contributions:
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* We propose a novel approach that enables smaller models to acquire knowledge from
LLMs within the self-training loop. Our method is compatible with any new LLMs to
effectively train better classifier on target domains. In our experiments, our small model

outperforms Alpaca with human instructions.

* We explore the more challenging setting of zero-shot classification where only a limited
number of unlabeled texts are available. In this setting, we improve the performance over

strong baselines.

* We provide theoretical proof to support the effectiveness of the proposed contrastive loss

for self-training.

3.2 Related Work

Knowledge Distillation from GPT: To leverage the language modeling power of large model,
previous works distills LLM [26, 55], generate text and label pairs [105, 154, 156] to train a
classifier for downstream tasks. However, generating training data from scratch can lead to
low-quality data with unrelated or ambiguous examples analyzed in [40]. Our generation is
grounded in the context of the corpus with enrichment in semantic and diversity, providing a
practical alternative to generation-based methods for zero-shot text classification and knowl-
edge distillation.

Zeroshot Text Classification: Zeroshot text classification predicts class labels without la-
beled instances [27, 39] and can be formulated as sentence alignment [43, 52, 123, 138, 168]
between document and labels. Sentence encoders are typically trained with contrastive learn-
ing, which optimizes representations by pulling inputs with similar semantics closer in the
embedding space and pushing inputs with different semantics further apart. Our model ap-
plies LLM to generate training pairs for contrastive learning to train robust classification with

limited instances available.

3.3 Preliminary: Zero-shot Text Classification as Sentence

Alignment
Given a set of IV unlabeled documents X = {1, s, -+ , 2y} and a set of L category descrip-
tions C' = {cy1, ¢9, -+ , ¢}, the goal is to learn a scoring function g(z, ¢;) that takes document
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+ Instruction of Generated Text (Embedding)

Smith will step down

from his CEO role in
March 2005 ...

Input (Observed) Text @ Multiple Versions Label Prompt

GPT

Starbucks’ president,
Orin Smith, plans to
retire because he wants
to focus on philanthropy,
family and sports.

Similarity 4 Category: Politics ’
Encode & Comparison,’ news.
taking average K '{ Category: Sports ’
/ news.

Mr. Smith who has
held his job for 10
years ...

MV

Merged

Category: ]
Embedding

Business news.

N Category:
Technology news.

(Instruction:
Elaborate the text in a
Kfew sentences.

The board will select
the successor who ...

Figure 3.1: Enriching textual semantics through LLM Generation: The input text and an in-
struction are fed into the LLM to generate multiple pieces of elaborated texts, each of which is
concatenated to the original input to obtain an augmented text. The embeddings of the aug-
mented texts are then averaged to obtain a merged embedding, which is used for label prediction

and contrastive loss in the self-training process.

x and label description ¢; as input and produces a similarity score as the measure of how well

the document and the label match to each other.

In the zero-shot setting, text classification can be formulated as a sentence alignment prob-
lem [138], where both the input sentence and the label descriptions are encoded using a pre-
trained sentence encoder like SimCSE [43]. The similarity scores between the sentence and
label embeddings are used to predict related labels. The performance can be further improved
by converting a short label description into a full sentence via prompts [52, 138]. For example,
the label “sports" can be converted to “This is an article about sports." Subsequently, we repre-
sent the label prompt for a label description c¢; as p;. The scoring function can be implemented

as follows:

g(w,c;) = sim (fo(z), fo(pi)) (3.1)

where fj(-) is the sentence encoder parameterized by 6 and sim(-, ) is a similarity function

such as dot product or cosine similarity.

Given an input text at inference time, the predicted label is the one with the highest simi-

larity score:

y = argmax ¢ (x, ¢;) (3.2)
J
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3.4 Our Method: GENCo

GENCo is a self-training framework [104, 120, 138] that harnesses the generative power of
LLMs to train a smaller pre-trained sentence encoder in an iterative manner. Each self-training
step consists of two parts. First, we apply equation 3.2 to predict pseudo labels for unlabeled
instances. Second, we fine-tune model on pseudo-labeled data with a proposed contrastive self-
training objective. In section 3.4.2 and 3.4.3, we will introduce two types of augmentation with

LLM to enhance the self-training process.

3.4.1 Contrastive Self-Training Objective

One well-known challenge of self-training is its tendency to exhibit overconfidence in certain
labels due to the model inductive bias [142]. Extensive research has shown that soft label-
ing [104, 142], label smoothing [108], and entropy regularization [49] can effectively tackle this
issue. Motivated by these, we propose to incorporate soft-labeling and entropy regularization
into a contrastive loss.

Given an input text z, the distribution of the predicted label space is:

exp(sim(fo(z), fo(pi)))

P(gi|z;0) = > ec exp(sim(fo(z), fo(pe)))

(3.3)

Here, g; is the predicted label and p; is a label prompt for the predicted label. To prevent the

model from being overconfident, we define the weights of the labels as:

exp(sim(fy(x), fo(pi))/7)

S ecc expEm(fo(x), Jo(pe))/7) 0

Q(ilz; 0) =

, where 7 < 1 is the temperature. A lower temperature implies a sharper distribution and thus
greater weights in the predicted label. We drop the notation of § for convenience.

Combining the above P(7;|x) and Q(y;|z), we propose a text to label (¢2]) contrastive loss:

N L
Lo ==Y > Q(flv:)log P(j]x:) (3.5)

i=1 j=1

When 7 — 0, Q(y|z) becomes categorical distribution and the loss reduces to a supervised

contrastive learning loss [72] with pseudo label y as the target:
N
L5 == log P(3|:) (3.6)
i=1
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It encourages the model to predict label i given x with more confident. On the other hand,

when 7 = 1, the loss reduces to a minimization of conditional entropy function H:

L' =H(C|X) (3.7)
N L

== P(ilw)log P(i]:) (38)
i=1 j=1

We show a theorem such that minimizing the loss function equation 3.5 can achieve similar
effects Entropy Regularization [49, 50], which is a means to enforce the cluster assumption
such that the decision boundary should lie in low-density regions to improve generalization
performance [17].

Theorem 6. Consider a binary classification problem with linearly separable labeled examples.
When 0 < 7 < 1, optimizing equation 3.5 with gradient descend will enforce the larger margin
between classes and achieves max margin classifier under certain constraint.

We place our formal theorems and proofs in Appendix 3.6. Theorem 7 suggests that self-
training is an in-domain fine-tuning that maximizes class separation, which serves as an ex-
planation of why training on pseudo labels can enhance performance even if no extra labeling
information is provided. In our experiment, we show that self-training of a smaller model can
outperform LLM (Alpaca-7B) prediction, justifying the claim empirically. We set 7 = 0.1 (re-
fer to Appendix 3.5.6) to balance supervised classification and low density separation between
classes.

While self-training can potentially improve model generalization, the limitations are ob-
vious: 1) pseudo labels are prone to error and may negatively affect model training. 2) self-
learning requires a significant load of unlabeled data, which may not always be available.
Next, we introduce generation-driven approaches to improve self-training with LLM, such as

an instruction-tuned GPT (Alpaca-7B).

3.4.2 Semantic Enrichment using LLM

In this section, we propose a way to enrich the semantic information of an input text with mul-
tiple LLM-generated pieces of text. When the input text is relatively short, such as consisting of
only one or a few sentences, the information may not be sufficient for alignment-based method
to match relevant labels.

A remedy is to query an LLM to elaborate the input and generate multiple pieces of extended

texts. As shown in figure 3.1, the instruction, "Elaborate the text with a few sentences," steers
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Input (Observed) Text Instruction/Prompt Conditionally Augmented Text

Starbucks’ president, @ Smith is a lifelong sports fan and has been an
Orin Smith, plans to Instruction: avid athlete throughout his life. He has long
retire because he wants | 4| piscuss the sports |GFT, been a supporter of youth sports programs
to focus on philanthropy, aspect of the article. and has worked tirelessly to promote sports
family and sports. ; to promote health, fitness, and teamwork.
Generated True label: business ./ : . .
@ ® veporteike”  Pseudo label: sports / o0 | A Mislabeled instance

. - ’ Correctly labeled instance
@ Label prompt Conditional Label prompt O Y

. I. .« .
for sports Augmentation . Decision for business ! Y% Label prompt embedding
./ boundary i

. . instance o /-I i /\ Conditional augmentation '
S A X o 5

Figure 3.2: Conditional text augmentation to address mislabeling in self-training: When a
pseudo label is incorrect, it can mislead the training process and decrease classification per-
formance. We generate augmented text conditioned on the pseudo label, aiming to make the
generated text closer to the majority members in the category of the pseudo label. This ap-

proach aims to improve the quality of the generated instances for self-training.

the LLM towards creating relevant expansions and continuations for the input text z. These
augmented texts, denoted as x*"8, serve for two purposes: 1) improving the quality of pseudo

label, and 2) forming the positive pair in contrastive learning, as detailed below:

Enhancing pseudo label quality. We enhance pseudo label prediction by enriching the
input embedding of equation 3.2 by:

LK
— fo(z @ z3"®), (3.9)
K2

where @ is the concatenation operator for text and z:"¢ is the i-th sample from P,(-|z). The

mean of the embeddings summarize the information induced by LLM.

Constructing positive training pairs. We propose a contrastive loss between input text
and generated text as another training objective. Let [ be a training batch and A(7) be the set of
augmented texts with the same pseudo-label as input x;. Our objective encourages proximity
between x and 2*"8 (sampled from A(7)) in the embedding space:
-1
o0 = 2 [

1<y
' (3.10)

o exp(sim(fo(xs), fo(z?8)))
> log S

A jer exp(sim(fo(w:), fo(x;)))
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Algorithm 1: Self-training with GPT assisted in the loop

1 Require: Unlabeled texts X, label descriptions C, instruction-tuned GPT model g(+).

V)

Initialization: Classifier fy(-) initialized with pre-trained sentence encoder. Empty

dictionary GenDict to cache conditional generated text.

w

Input augmentation: For each observed text, generate K samples of augmented text
from P, (-|x).

4 fort: 1 — T self-training iterations do

5 Use fy(+) to generate pseudo-labels 7 (eq.3.2) and soft-target () (eq.3.4) for texts

with input augmentation in Section.3.4.2. Sample a balanced subset of

pseudo-labeled training pairs of size S; according to prediction confidence;

6 for each training sample (x, ) do
7 if key (x,y) € GenDict then
8 Fetch generated texts from GenDict > Use cached generated text;
9 else
10 Generate )M samples from P, (-|z, ) > Conditional augmentation in
Section 3.4.3;
11 Add generated texts to GenDict > Cached generated text;
12 Use sampled training pairs and the conditionally generated text to update the

parameters 6 of fy(-) with the objective function £ = L9, + L3, from

equation 3.10 and 3.11.

3.4.3 Crafting Training Pairs with LLM

Self-training can introduce bias into a classifier due to mislabeling instances. To address this
issue, we propose to generate high quality pseudo-labeled data pairs, as shown in figure 3.2.
Consider an instance where an article about the retirement of Starbucks’ president, whose true
label is "business", is mistakenly labeled as "sports". Training the model with this incorrect label
blurs the distinction between the business and sports categories.

To mitigate this issue, we employ the LLM to conditionally augment the input text based on
the sports category. This is achieved by framing instructions like, "Discuss the sports aspects of
the article". Consequently, the produced text mirrors typical articles within the sports category.

By optimizing this newly generated text, instead of the original mislabeled instance, we correct
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its placement relative to the decision boundary separating "sports" and "business". Essentially,
by creating texts based on pseudo labels, we synthesize training pairs that enhance the sepa-
ration of class labels in the embedding space, thereby addressing the challenges of mislabeling
inherent to self-training.

Let 2°°™ be the conditionally augmented text, the modified equation 3.5 is:

N L
Lo ==Y Q125 log P(gj;]x) (3.11)

i=1 j=1

3.4.4 Algorithm for Self-training

We apply self-training with equation 3.10 and 3.11 in an iterative way as shown in Algorithm 1
with LLM assisting in the loop. During training, we found that a balanced sampling that keeps
the same number (S; for iteration ¢) of training for each category is important for the stability
of self-training. Additionally, we use a dictionary GenDict to cache the conditional generated

text to avoid repeated generation for better efficiency.

3.5 Experiments

3.5.1 Datasets and Experimental Settings

Dataset Classification Type #Classes  #Train #Test  Avg Length
AG News News Topic 4 120,000 7,600 38
DBPedia Wikipedia Topic 14 560,000 70,000 50
Yahoo Answers Question Answering 10 1,400,000 60,000 70
Amazon Product Review Sentiment 2 3,600,000 400,000 78

Table 3.1: Statistics of datasets for multi-class text classification.

We conduct experiments on 4 benchmark text classification datasets: AG News, DBpedia,
Yahoo Answers and Amazon, with the statistics shown in table 3.1. In the experiments, we
initialize our sentence encoder with supervised SimCSE Roberta-base model (110M parame-
ters) [43]. For the generative model, we use the Alpaca-7B [130] as our choice of LLM, which is
a GPT model fine-tuned with human instructions [133]. The label prompts and the instruction
template are illustrated in table 3.3 in Appendix. Please refer to section 3.5.4 in Appendix for

implementation details.
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ID Self-train Methods AG News DBpedia Yahoo Answers Amazon

1 - Supervised 94.2 99.3 77.3 97.1
2 No SimCSE (Sentence-enc) 74.5 73.8 55.6 88.8
3 No Alpaca-7B (LLM) 77.4 60.6 52.1 86.6
4 Yes iPET 86.0 85.2 68.2 95.2
5 Yes LOTClass 86.4 91.1 - 91.6
6 - Supervised-downsample* 93.8 98.7 76.5 97.0
7 Yes PESCO* 85.0 96.6 65.8 92.4
8 Yes GenCo * 89.2 98.3 68.7 954
9 Yes GenCo *- CA 87.5 97.6 65.1 94.3
10 Yes GenCo * - 1A 86.2 97.1 63.5 93.6
11 Yes SimCSE + Self-training (Eq 3.5) 83.2 94.3 62.7 91.5

Table 3.2: Comparison of classification methods on benchmark datasets. The test accuracy of
best performing zero-shot method is highlighted in bold phase. Row 7-11 (with *) use a down-
sampled dataset with 4k (3.4%), 11.2k (2%), 15k (<1%), 20k (<1%) unlabeled training instances
respectively. Rows 9-11 are ablation tests with input augmentation (IA) or conditional augmen-

tation (CA) removed.

3.5.2 Baseline Methods

Alpaca-7B is a LLM baseline for zero-shot classification. We solicit the LLM for zero-shot
classification with the instruction "Classify the text by outputting a single category from [label
categories]".

iPET [119] formulates zero-shot text classification as a cloze test, where a pre-trained BERT [34]
model is used to predict the output label(s) by completing a prompt such as “This article is about
_", which is concatenated right after an input document. An iterative self-training algorithm is

used in iPET to improve the model for better generalization.

LOTClass [104] applies the BERT model to extract keywords related to the label names from
unlabeled texts and then create pseudo labels based on the extracted keywords. LOTClass also
applies a self-training algorithm to further improve the classification performance.

PESCO [138] formulates zero-shot classification as sentence alignment and uses contrastive
self-training to improve the model performance. As an augmentation, it selects salient sen-

tences from documents to create additional positive training pairs.
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3.5.3 Experimental Results

In table 3.2, we present a comparison of the test accuracy of our model with other baselines on
four benchmark classification datasets. Specifically, rows 1-5 are experiments using the entire
(unlabeled) training set and rows 6-11 use a down-sampled dataset with 4k (3.4%), 11.2k (2%),
15k (<1%), 20k (<1%) unlabeled training instances from the original datasets respectively.

Comparison with Alpaca-7B: While Alpaca-7B (row 3) has demonstrated strong instruction
following ability to solve problems without any training, it exhibits lower performance com-
pared to GENCo (row 8) and other self-training methods on classification task. The reason could
be attributed to the domain adaptation effect of self-training. Classification tasks involve com-
paring instances, such as an article being more likely to belong to the “sports” category when
compared to articles in the “business” category. In our analysis in section 3.4.1, self-training en-
forces the separation between classes to improve the generalization ability. This can be further
supported when the number of classes increases in DBpedia and Yahoo Answers dataset, the
performance of Alpaca gets worse. Furthermore, Alpaca-7B takes 9 minutes per 10k instances

on one A6000 gpu while GENCo takes 10 seconds, which is roughly x50 speed up.

AG news Yahoo Answers
095 B Original Text | 0.8 1 .6 I Observed Text
0.90 A B Augmented Text BN Augmented Text
0.85 -
- 0801
R 0.75
0.70 4
0.65 -
0.60 -
R & o & IS RN RS P\ N S W<
& £ s &\o\o & & vQ’Q} & &ecﬁo{& é&@ é‘& ‘@&N &
N < & ° e& c>&Q o <
XS Q)
) 0.90
1.00 M Original Text I Observed Text
0.98 4 mm Augmented Text BN Augmented Text
’ 0.85 -
g 0.96 - g
o omml
7] 2 0.80
5 0.94 1 5
2 2
& 0.92 4 A, 0.75 4
0.90 -
0.70 4
0.88 -
top10  top20 top30 top50 top 70  top 100 top 10 top 20 top 30 top 50 top 70 top 100
Top@k ranked list by confidence Top@k ranked list by confidence

Figure 3.3: Per class F1 (upper) and ranking-based precision (lower) for classification perfor-

mance with input augmentation.
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Comparison with SOTA Methods: Both iPET (row 4) and LOTClass (row 5) use self-training
algorithm for zero-shot classification, but GENCo outperforms the previous self-training meth-
ods even with significantly fewer instances (< 5% of original size). The iPET model improves
pseudo label prediction with an ensembling about 15 models to reduce prediction variance.
In comparison, our approach improves pseudo label prediction by ensembling augmented text
embedding during self-training, leading to improved performance and a more memory efficient
alternative. While LOTClass uses a BERT model to extract keywords for each category as an
augmentation, it is less expressive than using an LLM to generate coherent human language
as augmentation. PESCO (row 7) is the most recent SOTA with contrastive self-training and
introduced an augmentation technique by learning on salient sentences. However, the method
still requires a large amount of data to be effective. In scenarios where only a limited number
of unlabeled texts are available, PESCO still underperforms our model.

Effectiveness of Contrastive Self-training: Row 2 represents the sentence encoder baseline
with SimCSE, whereas row 11 represents SImCSE + contrastive self-training algorithm as per
equation 3.5. The result shows that incorporating contrastive self-training leads to significant
gains. Compare row 3 (Alpaca-7B) with row 11. Despite being a larger model in scale, Alpaca-
7B still outperforms the self-training approach across all benchmark datasets, underscoring the

effectiveness of class separation with self-training for classification task.

3.5.4 Analysis of LLM Augmentation

In this section, we denote the input augmentation in section 3.4.2 as IA and the conditional
augmentation based on pseudo label in section 3.4.3 as CA. Rows 9 and 10 in table 3.2 shows
ablation tests with CA and IA removed. Overall, our LLM data augmentation, with and without
conditioning on pseudo label, both lead to improved performance, due to their ability to provide
more accuracy pseudo label and high quality synthetic training pairs.

Effectiveness of IA: In this evaluation, we investigate the effectiveness of input augmentation
for first round pseudo-labeling without training. We evaluate the performance of our model on
two datasets, namely AG News and Yahoo Answers, using two evaluation metrics: per class F1
metric and ranking-based precision metric according to prediction confidence. The per class
F1 metric provides an insight into how well the model performs on each individual class by
balancing precision and recall. In the upper part of figure 3.3, our findings indicate that LLM
augmented data leads to improved performance across all categories for AG News and in eight

out of ten classes for Yahoo Answers.
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In the lower part of figure 3.3, we employ a ranking-based precision metric to assess the
quality of the most confident cases. Our results demonstrate that using augmented data yields
better precision for the most confident cases. Notably, our study on the Yahoo Answers dataset
indicates that the predictions are better calibrated with the use of augmented data, implying that
highly confident samples exhibit better precision. Conversely, such a trend was not observed
in unaugmented data, where the top 30 had higher accuracy than the top 10. Better calibration
justifies the sampling from the most confident pools for self-training, making it a more reliable
method for improving model performance.

Effectiveness of CA: To study the quality of conditional generation based on class labels,
we first present examples of generated texts from an sample in AG News dataset, shown in
table 3.6 in Appendix. Each example is a cherry-picked sample out of five random samples.
The generated text expands on a specific aspect regarding the label while retaining the original

meaning of the observed text.

25 WM Politics

Bl Business e e
Lo ™ Technology Tlat e
Correctly labeled text
Mislabeled text as business
Conditionally augmented text
Label prompt embedding

15

<] >0

104

~10

~154

T T T T T T T T
-30 =25 =20 -15 -10 =5 0 5 10

Figure 3.4: The left figure shows a heatmap of the probability when a conditionally generated
text based on pseudo label aligns with each of the label prompts. The right figure shows the
distribution of the generated text plotted using T-SNE (sports category is out of scope).

In the left of figure 3.4, we show a heatmap of the probability when a conditionally gener-
ated text (vertical) aligns with the corresponding label class (horizontal). The highest probabil-
ity occurs along the diagonal, indicating that the conditionally augmented text based on pseudo

label has a closer meaning to the corresponding label class. In the right of figure 3.4, we plot
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the distribution of the generated text plotted using T-SNE. The embeddings were obtained by
our sentence encoder trained on the 100-th (out of 1000) iteration. We selected two instances
that were misclassified as business and located close to the decision boundary. The augmented
text, conditioned on the business category, was found to be closer to the label prompt embed-
ding of the business category. This demonstrates the effectiveness of our method to generate
less confusing training pairs away from the decision boundary and closer to the pseudo label

centroid.

3.5.5 Implementation Details

The label prompts are shown in the upper part of table 3.3. The label prompts are similar to
the ones used in in PESCO [138]. We solicit LLM for text augmentation with the instruction

template in the lower part of table 3.3, which is the same ones used for Alpaca fine-tuning.

For the generation parameters, we used temperature=0.8, top_p=0.95, and sample K=5
augmented texts for each instance with min_length = 64 and max_length = 128. For the
self-training of sentence encoder model, we used batch_size=3 x |C| (|C| is the number of cat-
egories), [r=1e-5, the max length is 128 for AG News and DBPedia and 192 for Yahoo Answers
and Amazon. All the experiments are performed on NVIDIA RTX A6000 gpus. Please refer to

our code for details.

Label Prompt
(1)Category: [label]. (2)It is about [label].

Instruction-based (Conditional) Augmentation

Below is an instruction that describes a task, paired with an input that provides further context. Write a
response that appropriately completes the request.

### Instruction:

Elaborate the text in a few sentences. (Discuss the [pseudo label] aspects of the article.)

### Input:

[text]

### Response:

Table 3.3: The designed prompts for enhanced label description and conditional augmentation

based on pseudo label.
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3.5.6 Selection of Temperature in Eq 3.5

As shown in table 3.4, we include the results with over 5 runs on each dataset. We found
7 = 0.1 to be a reasonble choice with slightly better performance, but we acknowledge that
the difference is rather small, sometimes fall within std. The choice of 7 may serve more of a
theoretical motivation rather than practically concerns (as acknowledged in limitation). The
theoretical framework unifies previous soft labeling approaches in [104, 138] and is easier for

the proof of theorem.

Agnews DBpedia Yahoo Answers Amazon

7=1.0 | 82.75 £ 0.06 93.77 &+ 0.07 62.66 £ 0.06 91.39 £ 0.06
7=0.5 | 83.04 £0.05 94.19 + 0.05 62.70 = 0.10 91.44 £ 0.06
7=0.1 | 83.18 £ 0.05 94.29 4+ 0.05 62.74 £ 0.08 91.48 + 0.05
7=0.05 | 83.03 £0.05 94.34 +0.03 62.77 £+ 0.10 91.42 £ 0.04
7=0.01 | 83.02 +0.05 94.33 £0.03 62.76 £ 0.11 91.42 £+ 0.04

Table 3.4: For the choice of temperature 7 in equation 3.5, we include the results with over 5 runs
on each dataset. We found 7 = 0.1 to be a reasonble choice with slightly better performance,

but we acknowledge that the difference is rather small, sometimes fall within std.

3.5.7 Inference Time Augmentation

While GENCo doesn’t require LLMs during inference, in our ablation test in table 3.5, we study
the impact of inference time augmentation (assuming GPT is available at test time) and self-
training on the performance metric. To test inference time augmentation, we performed exper-

iments on a downsampling of both training and testing instances.

Our results show that inference time augmentation (rows with "IA") leads to a performance
gain of 1-2%, with a more substantial improvement observed for AG News and Yahoo Answers.
This may be attributed to the fact that AG News has an average text length of only 38 words,
and the Yahoo Answers dataset includes many answers with only one phrase. Inference time

augmentation effectively enhances the quality of shorter text inputs.
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ID Self-train Methods AG News DBpedia Yahoo Answers Amazon

# unlabeled train 4k (3.4%) 11.2k (2%) 15k (< 1%) 20k (< 1%)

# test 7.6k 28k 20k 20k
1 No Sentence-enc 75.6 73.4 55.5 89.6
2 No Sentence-enc + Inf-Aug 78.2 74.7 57.4 90.2
3 Yes Self-train 83.3 96.3 62.5 91.1
4 Yes Self-train + Inf-Aug 83.9 96.8 64.3 91.3
5 Yes GenCo 89.2 98.4 68.6 95.3
6 Yes GENCo + Inf-Aug 89.7 98.5 70.2 95.4

Table 3.5: Evaluation of inference time augmentation. "Inf-Aug" represents input augmentation

added during inference.

Observed Text | Starbucks Corp’s president and chief executive, Orin Smith, said Tuesday
he plans to retire early next year because he wants to slow down and focus

on philanthropy, family and sports.

Politics The announcement of Orin Smith’s retirement is likely to have political im-
plications for Starbucks Corporation... His replacement will have big shoes
to fill, and the decision could have long-term effects on the company’s poli-

cies and direction.

Sports ...Sports have always been a major part of Smith’s life, as he was a college
athlete and later went on to become the CEO of Starbucks. It is clear that
sports have had a major influence on his life and he wants to make time for

them in his retirement.

Business Starbucks Corp has seen great success under the leadership of Orin Smith,
with the company’s stock price more than tripling since he became CEO in

2005. This success has allowed him to retire early and ...

Technology | Orin Smith’s plan to retire early next year is an example of how technology
has changed the way we work and live. By utilizing technology, Smith is
able to take advantage of the increasingly popular trend of “work-life bal-

ance" ...

Table 3.6: Examples of generated text conditioned on pseudo labels in the left column.
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3.5.8 Qualitative Examples for Conditionally Generated Examples on

Pseudo-label

In table 3.6, we show generated examples of a sample text from the Agnews dataset. We generate
5 examples conditioned on each of the 4 labels, and cherry-pick one for each label in the table
presentation. The example shows that the topic of a generated text is related to the label which is
conditioned on, while pertains the original meaning. This opens a path to leverage the language

understanding ability of LLM for data augmentation, especially during self-training.

3.6 Proof of Theorems

Theorem 7. Consider a binary classification problem with linearly separable labeled examples,
when 0 < 7 < 1, optimizing Ly = — > .| Zle Q(yj|x;) log P(y;|x;) with gradient descend

will enforce the larger margin between classes.

Proof. We use dot product (-, -) as implementation of similarity function. Let the embedding of
instance i be x; = fp(z;) and the embedding of label prompt j be e. = fy(p.),c € {1,2} for

binary classification. Then,

. exp({(x;, e1)) 1
P(i1|x;;0) = = 3.12
Ol 8) = @ e) +on((@nen) ~ Tt op(—(@e—ey O
P(go|zi:0) =1 — P(g1|zi;0) (3.13)
Notation-wise, define d; = (x;, e; — €5), then
Plji|vs; 6) = — (3.14)
h 1+ e 4
1
P(gs|xi:0) =1 — 3.15
(ofois0) =1 - —— (15)
(3.16)
In binary classification, the margin is simply
d; x; is class 1

margin = _
—d; x;1is class 2
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For soft-label distribution (),

R 1
Qi |z 0) = = (3.17)
1
Jolzii0) =1— ——— 3.18
Q2|74 0) o dirr (3.18)
(3.19)
Then L;9; is derived as
N _d
Lon =S log(1 4 ) 4 i€ o 3.20
m—;Og( +e )—i—m (3.20)
Calculate the derivative of L9 w.r.t d;,
8£ _dl —di/T —di/T _ —di
2l - b ‘ (3.21)

od;  T(e4/m+1)2 " (e=h/T 4+ 1)(e % + 1)
For the first part of equation 3.21, the sign depends on —d;. For the second part, the sign depends
one %/ —¢e¢~% When0 < 7 < 1,
e %/T — =4 < () whend; >0

e~ %/T —e=di > () whend; <0

Therefore,
% <0 whend; >0
i (3.22)
% >0 whend; <0

One step of gradient descend optimizes d by d; = d; — n%ﬁl. From equation 3.22, we get the

conclusion that |d}| > |d;|. In other words, the margin becomes larger after optimization, which
finishes the proof. [

Theorem 8. Under the setting in Theorem 7, let m; be the margin of instance i and consider the
constraint m; < B for all i, the classifier converges to a max margin classifier, as the bound B

goes to infinity.

Proof. Using the definition from Theorem 7,

N —di/r
Liy=» log(l+ —df)+ﬂ (3.23)
t20 — g € 1 + e—di/T .
i=1
d; x; is class 1

The margin m; for instance ¢ can be written as m; = )
—d; x;1is class 2
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The equation 3.23 can be written as

oM [T M/ T

_ —m; mi€ miy — —m]e

Li _yzolog(He )+ T +yZ:llog(1+e i
1 7

(3.24)

Let m* = min(m;) be the minimal margin, let N; and N, be the number of instances in class
1 and class 2 respectively which reaches the minimal margin. From the gradient analysis in
equation 3.22, the examples with m; > m™ has loss lower bounded by that with minimal margin.

Then

* ,—m* /T * m* /T
* m e * m-e
£t2l = Nl(log(l + e ™ ) + ﬁ) + NQ(].Og(]_ + e™ ) — —*)
1+€ m* /T ]_+€m/7' (325)
* ,—m* /T * m* /T :
- m*e mey  m'e
+O(log(1+ ) + )+ Ollog(1+em) — T2 )
When B approaches oo, for V; part in equation 3.25,
* * _m*/T * *
log(1+e™) + % ~eT™ e ™ (3.26)
When m — B, lim,,,ge ™ — 0, and lim,, . g m*e ™"/ = lim,, 5 1/76+/T = 0 by
L’Hopital’s rule.
For N, part in equation 3.25,
*  m* /T
m* m 6 m* _ *
log(1+e™) — Toomr ™ log(1+e™)—m (3.27)
When m — B, lim,,, ,glog(1 +¢e™) — m* = lim,,_, 5 log(1 + 67}1*) =0.

Therefore, the loss is minimized when the minimal margin is maximized and thus the classifier

converges to a max margin classifier when B goes to infinity. [

3.7 Conclusion

Our proposed approach, GENCo, demonstrates how LLM-generated training signals can re-
place or supplement manual labels, enabling robust neural network optimization in zero-shot
text classification. By integrating an LLM into the self-training loop of a smaller sentence en-
coder classifier with contrastive learning, GENCo achieves state-of-the-art performance across
four benchmark datasets, even with minimal in-domain text data. This work highlights the
potential of leveraging LLM-generated synthetic training signals to improve the efficiency and
effectiveness of smaller classifiers, reducing reliance on both human annotations and large un-
labeled corpora. We hope this approach inspires further research into model-driven supervision

for data-efficient NLP.
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Chapter 4

Change-point Detection with

Correlation Graph Generation

In this chapter, we address the problem of change point detection (CPD) in time series analy-
sis, which involves identifying abrupt shifts in data. A key challenge in CPD is the scarcity of
labeled training data, as changes occur infrequently and rely on manually annotated change
points. To address this, unsupervised CPD methods leverage model-generated future predic-
tions to compare against observed time series. Building on this idea, we propose a Correlation-
aware Dynamics Model for CPD, which enhances detection by incorporating model-generated
correlation structures through graph neural networks within an encoder-decoder frame-
work. Our approach dynamically infers relationships among variables at each time step, re-
ducing dependence on manual feature engineering. Comprehensive experiments on synthetic
and real-world datasets demonstrate that our model not only outperforms existing baselines
but also differentiates between changes in correlation structures and independent shifts. These
results highlight the effectiveness of model-generated signals in improving the robustness and

accuracy of CPD.

Highlights We are the first to explore dynamic correlation modeling in multivariate time

series, achieving superior performance in CPD tasks.

Model-Generated Signals Our approach employs a spatiotemporal Transformer to dynam-
ically generate correlation structures at each time step, allowing the model to adaptively learn

evolving dependencies without human supervision.
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4.1 Introduction

Change-point detection (CPD) aims to detect abrupt property changes over time series data.
In this study, change-points are detected through the changes of dynamics and correlation of
variables. Dynamics refers to the physical property that determines a variable’s modus operandi
and correlation describes the interactions between variables. Previous CPD methods [107, 161]
model dynamics by parametric distributions like Hidden Markov Models (HMM), but they don’t
explicitly capture the correlation information. Other works capture static correlation structures

in the multivariate time series [74], but they can’t detect any correlation changes.

We propose a Correlation-aware Dynamics Model for Change-point Detection (Corp_CPD)
which incorporates graph neural networks into an encoder-decoder framework to explicitly
model both changeable correlation structure and variable dynamics. We refer to the changes
of correlation structure as correlation changes and the changes of variable dynamics as in-

dependent changes, as shown in Fig. 4.1.

Our model is capable of distinguishing the two types of changes, which could have a broader
impact on decision-making. In financial markets, traders use pair trading strategy to profit from
correlated stocks, such as Apple and Samsung (both are phone sellers), which share similar dips
and highs. News about Apple expanding markets may independently raise its price without
breaking its correlation with Samsung. However, news about Apple building self-driving cars
will break its correlation with Samsung, and establish new correlations with automobile com-
panies. While both of them are change-points, the former is an independent change of variables
and the latter is a correlation change between variables. Knowing the type of change can guide

financial experts to choose trading strategies properly.

Our contributions can be summarized as follows:

* We propose CorDp_CPD to capture both changeable correlation structure and variable

dynamics.

* Our Corp_CPD classifies the change-points as correlation changes or independent changes,

and ensembles them for robust CPD.

* Experiment on synthetic and real datasets demonstrates that our model can bring en-

hanced interpretability and improved performance in CPD tasks.
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Figure 4.1: (Left) an independent change of one variable and (Right) a correlation change be-

tween two variables. The red vertical line is the labeled change-point.

4.2 Method for CPD

A multivariate time series is denoted by x € RT*NVxM

, where 7' is the time steps, N is the
number of variables and M is the number of features for each variable. We study the CPD
problem in a retrospective setting and assume there is one change-point per x = {x’ };frzl. The

change-point at time step ¢ satisfies:

xLx? .. x" )~ P

{xt,x* . xT ~Q

Where P and Q denotes two different distributions. We attribute this difference to a correla-
tion change (of the correlation structure), an independent change (of variable dynamics), or a

mixture of both.

Correlation Change corresponds to the change of the correlation structure of multivariate
time series, which is modeled by correlation matrices A € RT*V*N At each time step, the
pairwise interaction between variables (Aﬁj) is represented as a continuous value between 0
and 1, indicating how much they are correlated. The correlation change score s, is calculated

by the L, distance between two neighboring correlation matrices:

e

Lt>1 (4.1)

Independent Change corresponds to the change of the variable dynamics. Given the current

values of time series (and the extracted correlation matrices), if the dynamics rule is followed,
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the expected values of the future time steps predicted by our model will be close to the observed
values; Otherwise, the difference will be large. This difference is used as the independent change
score s;. Formally, we use the Mean Squared Error (MSE) as a metric to compare the expected

values Wi = {X'}11F | with the observed values wi*! = {x*}/*} | over a window of size k.

st = MSE(wW!,w'), t > 1 (4.2)

Note that if only a correlation change takes place, the expected value w' should not be different
from the observed value w', since we model a conditional probability P(x'|x<*, A) and any

correlation change will be factored in.

Ensemble of Change-point Scores aims to combine the correlation change with the inde-
pendent change, because in real world applications, change-points could be resulted from a
mixture of both. A simple way to ensemble them (for s.,,) is to sum the normalized scores of s,

and sg:

Sen, = Norm(s,) + Norm(s,) (4.3)

S — U

Norm(s) = (4.9)

US
where u, and o, are mean and standard deviation of score s.
In order to use our CPD methods above, we need to model correlation matrices and to be able
to predict a future window of time steps based on the extracted correlation. We will introduce

our Corp_CPD in the next section.

4.3 Correlation-aware Dynamics Model

The Corp_CPD has an encoder for correlation extraction and a decoder for variable dynamics.
Given a time series X, the encoder models a distribution of correlation matrix ¢, (A’|x) for each

time step ¢, and by factorization,

T
do(Alx) = [ [ as(A'[x) (4.5)
t=1

The decoder models a distribution of time steps py(x|A ) auto-regressively,

T
po(x|A) = [ [ po(x'|x~", A" (4.6)
t=1
The objective function maximizes the log likelihood,

Lopi = By amx)[log pe(x|A)] (4.7)
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Figure 4.2: Corp_CPD Encoder: the encoder extracts correlation matrices from multivariate
time series. The temporal encoding layer captures time dependent features, and the spatial

encoding layer models relational features between variables.

4.3.1 Correlation Encoder

The encoder infers a correlation matrix A’ at each time step, which depends on both temporal
features and variable interactions. To leverage both sources, we propose Temporal Encoding
Layers (TEL) to extract features across time steps and Spatial Encoding Layers (SEL) to extract
features from variable interactions. As shown in Fig 4.2, the two types of layers are alternatively
applied to progressively incorporate temporal and correlation features into latent embeddings.
Practically, we found 2 TEL and 1 SEL is enough for our tasks.

For each layer, let h € RT*V*K denote the input and let h € R™*N*K" denote the output,
where T is the time steps, N is the number of variables, and K, K’ are the number of input and
output features respectively. The input to the initial layer is the multivariate time series data

x € RT*NxM The posterior distribution of the correlation matrix is modeled by

o(A]x) = SoftmaX(Linear([flff)i; flff)j]) (4.8)
h(;) = TELy(SEL(TEL, (x))) (4.9)
where [-; -] is the concatenation operator and fl( #) is the embedding of the final layer. As an

additional trick, we apply Gumbel-Softmax [61] to enforce sparse connections in correlation

matrices in order to reduce noise.

Temporal Encoding Layer (TEL) leverages information across 7" time steps (independently
for each variable). For a fixed variable i, let h; = {h!}!= denote the embeddings of that vari-
able at all time steps. We offer two implementations of TEL with different neural architectures:

RNNg and Transre.

53



RNNryg; is a bidirectional GRU network [28]:

' = GRU(L,* !, 1) (4.10)
ﬁt — &RU ﬁ”l,hﬁ) (4.11)
h! = [b)!, by (4.12)

ﬁ
where h;’ Et are intermediate representation from forward and backward GRU. The output

h' is a concatenation of embeddings from both directions.

Transtg, uses the Transformer model [134] with self-attention to capture temporal depen-
dencies. For the self-attention layer, the input is transformed into query matrices Q! = hiWy,
key matrices K! = h!W x and value matrices V! = h!Wy. Here W, W, Wy, are learnable

parameters. Finally, the dot-product attention is a weighted sum of value vectors:

5 T
h! = softmax (?/Ii_k ) -V (4.13)

where dy, is the size of hidden dimension. Similar to [134], we use residual connection, layer

normalization and positional encoding for Transtg;..

Spatial Encoding Layer (SEL) leverages the information between the /V variables (indepen-
dently at each time step) via graph neural networks (GNN) [75]. For a fixed time step ¢, let
h! = {h!}Y¥, denote the embeddings all variables at time ¢. The output is obtained by

h' = GNN({h{}},) (4.14)
where a GNN module is implemented by the feature aggregation and combination operations:
= fe([h};hl]) (4.15)
h; = f,(h; + Ze” (4.16)
i#]

where Eq. 4.15 aggregates features between neighboring nodes and Eq. 4.16 combines those
features by a summation. f.(-) and f,(-) are non-linear neural networks for which we provide

two implementations: GNNgg;, and Transsgy ..

GNNgg, is implemented by a multilayer perceptron (MLP) and Transgg;, is implemented by
the Transformer model. Compared with MLP, Transformer has could be advantageous for spa-
tial encoding because of well-designed self-attention, residual connection and layer normal-
ization. The positional encoding layer is removed from Transformer because the variables are

order invariant.
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Figure 4.3: Corp_CPD Decoder: Given a correlation matrix, the decoder predicts the change of

future steps.

4.3.2 Dynamics Decoder

At a high level, the decoder learns the dynamics of variables by predicting the future time steps
to be as close as the observed values. Instead of predicting the value of ;™" directly, we predict

the change Ax! = %!t

— x! as shown in Fig. 4.3.
Since the prediction has to factor in the correlation between variables, we also need GNN to
incorporate correlation matrices into feature embeddings. Again, the feature aggregation and

combination operations are performed on the input x,

ezi = A;ige([xz-; Xﬂ) (4.17)
h) = g,(x{ + > el) (4.18)
J#i

where the functions g.(.) and g,(.) are MLPs. We model Ax! = gou(h="), where gou(h=)
can be MLP(h!) or RNN(h=') depending on the application. Together, x'*! = x! + Ax! =
-,

X; + Gour(hi™).
The log likelihood of density py(x|A) can be expressed as:

T
log pa(x|A) =) log py(x'|x<, A1) (4.19)
=1
T
=> ) log N(x!|%],0°T) (4.20)
i =1
T N
< — X313
— —_— 4.21
Maximizing Eq. 4.21 is equivalent to minimizing Lo; = >, Z,:ng ”xé; ’;E”%

Since change-points are sparse in time series data, we introduce an additional regularization
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to ensure the smoothness of correlation matrix:
T
1
L = Al — A2 4.22
smooth T_-1 tz_; || ||2 ( )

Finally, the loss function is £ = Ly; + ALsmooth, Where A controls the relative strength of

smoothness regularization.

4.4 Experiment with Physics Simulations

4.4.1 Particle-spring Change-point Dataset

We developed a dataset with a simulated physical particle-spring system. The system contains
N = 5 particles that move in a rectangular space. Some randomly selected pairs (out of the
10 pairs in total) of particles are connected by invisible springs. The motion of particles are
determined by the laws of physics such as Newton’s law, Hooke’s law, and Markov property.
The trajectories of length 7" = 100 of the particles are recorded as the multivariate time series
data. Each variable has M = 4 features: location /., [, and speed v,, v,.

While the physical system is similar to the one in [74], we additionally design 3 types of
change-points by perturbing the location, speed, and connection at a random time step between
[25, 75]:

+ location: A perturbation to the current location sampled from (0, 0.1), where the range

of the location is [—5, 5].
+ speed: A perturbation to the current speed by sampled from N (0, 0.02), where range of
the speed is [—1, 1].
*+ connection: re-sample connections and ensure that at least 5 out of 10 pairs of connec-
tions are changed.
The change of location or speed (both are dynamics) belongs to the independent change, and
the change of connection (a type of correlation) belongs to the correlation change. Since the
change-point is either a correlation change or an independent change, we are able to test the
ability of our model to classify them.

We generate 500 time series for each type of change and mix them together (totally 1500
time series) as training data. For validation and testing data, we generate 100 time series for each
type of change and evaluate on them separately. Our model is unsupervised, so the validation
set is only used for hyperparameter tuning. In real world datasets, human labeled change-points

are scarce in quantity, which usually results in large variance in evaluation. As a remedy, our
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synthetic data can be generated in a large amount to reduce such a variance in testing.

4.4.2 Evaluation Metric and Baselines

For quantitative evaluation of CPD performance, we consider two metrics:

Area-Under-the-Curve (AUC) of the receiver operating characteristic (ROC) is a metric com-

monly used in the CPD literature [15].

Triangle Utility (TRI) is a hinge-loss-based metric: max(0,1 — W), where w = 15 is the
margin, [ and y are the labeled and predicted change-points.
Both of the metrics range from [0, 1| and higher values indicate better predictions. However,
AUC treats the change-point scores at each time step independently, without considering any
temporal patterns. TRI considers the distance between the label and the predicted change-point
(the one with highest change-point score), but it doesn’t measure the quality of predictions at
the other time steps. We use both metrics because they complement with each other.
Next, we introduce 6 baselines of the state-of-the-art statistical and deep learning models:
+ ARGP-BODPD [118] is Bayesian change-point model that uses auto-regressive Gaussian
Process as underlying predictive model.
* RDR-KCPD [94] uses relative density ratio technique that considers f-divergence as the
dissimilarity measure.
+ Mstats-KCPD [84] uses kernel maximum mean discrepancy (MMD) as dissimilarity mea-
sure on data space.
+ KL-CPD [15] uses deep neural models for kernel learning and generative method to learn
pseudo anomaly distribution.
+ RNN [28] is a recurrent neural network baseline to learn variable dynamics from multi-
variate time series (without modeling correlations).
* LSTNet [77] combines CNN and RNN to learn variable dynamics from long and short-

term temporal data (without modeling correlations).

4.4.3 Main Results

Table 4.1 shows the performance of the statistical baselines (first panel), the deep learning base-

lines (second panel) and our proposed Corp_CPD (third panel).

Statistical Baselines are not as competitive as the other deep learning models among all the

types of changes. One explanation is that those models have strong assumption on the pa-
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location speed connection
AUC TRI AUC TRI AUC TRI
ARGP-BOCPD 0.5244 0.0880 | 0.5231 0.0660 | 0.5442 0.1287

model

RDR-KCPD 0.5095 0.0680 | 0.5279 0.1093 | 0.5234 0.0860
Mstats-KCPD 0.5380 0.0730 | 0.5369 0.0727 | 0.5508 0.0833
RNN 0.5413  0.2567 | 0.5381 0.2660 | 0.5446 0.3047
LSTNet 0.5817 0.3487 | 0.5817 0.3460 | 0.5337 0.2193
KL-CPD 0.5247 0.1053 | 0.5378 0.1352 | 0.5574 0.3127

GNNggL +RNN1gL 0.9864 0.9740 | 0.9700 0.9320 | 0.9681 0.9153
Transggp +RNNpgL | 0.9885 0.9773 | 0.9755 0.9080 | 0.9469 0.9040
GNNggL+Transtgy, || 0.9692  0.9333 | 0.9609 0.8473 | 0.8840  0.8527

Table 4.1: AUC and TRI metrics on synthetic datasets for the prediction of location, speed and
connection change. Our Corp_CPD (evaluated with s.,) has the best performance on both

metrics among all the baselines.

rameterization of probability distributions, which may hurt the performance on datasets that
demonstrate complicated interactions of variables. The dynamics rule of the physics system

can be hardly captured by those methods.

Deep Learning Baselines are slightly better than the statistical models, in which the LST-
Net has the best performance on location and speed changes. Since LSTNet has a powerful
feature extractor for long and short-term temporal data, it is better at learning variable dynam-
ics. However, as correlation plays an important role in the synthetic data, ignoring it will hurt

performance in general.

Corp_CPD is evaluated on the test data by the ensemble score s.,,. It has the best performance
on both metrics among all the baselines. We didn’t include the result of Transsg+Transrgy,
because empirically it is harder to converge. Transsg,+RNNrg is the best at detecting the
independent changes, while GNNgg +RNNrgy is the best at detecting the correlation changes.
The reason could be that the Transformer models are better at identifying local patterns, while
RNNs are more stable at combining features with long term dependencies. Among the three
types of changes, the score of connection change is lower than that of the other two, indicating

the detection of correlation changes is harder than independent changes.
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location speed connection
AUC TRI | AUC TRI | AUC TRI
cor || 0.5145 0.3153 | 0.5590 0.3553 | 0.9649 0.9073

model type

GNNgpL +RNNTEL
ind | 0.9835 0.9727 | 0.9587 0.9493 | 0.8093 0.7320
cor || 0.4944 0.2626 | 0.5463 0.3266 | 0.9755 0.9273
Transggr +RNNTgL
ind || 0.9859 0.9720 | 0.9685 0.9233 | 0.7774 0.6460
cor || 0.5544 0.3467 | 0.5832 0.4266 | 0.9098 0.8787
GNN SEL +TransTEL

ind || 0.9855 0.9693 | 0.9623 0.9133 | 0.7912 0.7620

Table 4.2: Our Corbp_CPD separately computes the scores for correlation change (cor) and
independent change (ind). The correlation change score is high on the connection data, while

the correlation change score is high on the location and speed data.

4.4.4 Change-point Type Classification

Our Corp_CPD separately computes change-point scores for correlation change (s,) and inde-
pendent change (s;). We show the ability of our model to separate the two types of changes

based on the scores.

Correlation Vs. Independent Change.

In Table 4.2, the correlation change (cor) and independent change (ind) are separately evaluated.
The correlation change scores (s,) are high on the connection data, while the independent
change scores (s;) are high on location and speed change. This result shows that our system

can indeed distinguish the two types of changes.

Location&speed The independent changes can be successfully distinguished. For location
and speed data, AUC of the independent changes is over 0.97, close to a perfect detection;
AUC of the correlation change is close to 0.5, nearly a random guess. Therefore, our system
doesn’t signal a correlation change for location and speed data, but it gives a strong signal of

an independent change.

Connection The correlation changes are harder to be detected, but Corp_CPD gives a good
estimation. In the connection data, AUC of correlation change are higher than independent

change, but the gap was smaller than that in location and speed data. The reason could be that
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the errors made by encoder are propagated into the decoder, and thus made the forecasting of

time series values inaccurate.

Classification Method.

While our model shows a potential to distinguish the two types of changes, we want it to be
able to classify them. We propose to use the difference between normalized correlation change

score s, and independent change score s; as an indicator of change-point type, at time ¢:

. . ] =7, correlation change
Norm(s,)" — a Norm(s,)

< 7, independent change
where o = 0.75 is our design choice, and 7 is a threshold to separate the correlation change
and the independent change. Moving the value of 7 controls the type I error (False Positive)
and the type II error (False Negative). To measure the classification quality by leveraging the
error, ROC AUC is a typical solution.
We classify the change-point types under two settings: with label and without label, ac-
cording to whether the labeled change-point is provided.

With Label: When alabeled change-point is provided by human experts, our model classifies

it as either a correlation change or an independent change, whichever dominates.

Without Label: When the label information is unavailable, our model performs classification
from the predicted change-point with the highest s,,, score.

The results are shown in Table 4.3. Our best model Transsg; +RNNrg;. achieves an ROC AUC
0f 0.979 (with label) and 0.973 (without label). This indicates that our model has a strong ability
to discriminate the two types of change-points under both settings. GNNgg +Transtg;, has the
worst classification performance, which is consistent to the observation in Table 4.2 that it is
not good at capturing correlation changes.

In the next experiment, we set 7 = 0 and report the classification accuracy on the three data
types. As shown in right part of Table 4.3, a high accuracy of 98% on identifying the location
and speed change demonstrates that our model can predict the independent changes well. For
correlation changes, the Transsgr +RNNrpg, shows the best performance by achieving 93% on
supervised setting and 84% on unsupervised setting.

When labeled change-points are not provided, the classification task could be more difficult,

because the it relies on the predicted change-points. If a predicted change-point is far from the
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ground truth, the classification is prone to errors.

model ROC AUC | location speed connection
With Label
GNNggr +RNNTEL 0.972 98% 97% 68%
Transggr, + RNNTgL 0.979 98% 96% 93%
GNNggr +TransTg;, 0.916 98% 96% 87%
Without Label
GNNggr, +RNNTEL 0.969 98% 96% 73%
Transggr, +RNNTEr 0.973 96% 92% 84%
GNNggr+Trans gy, 0.929 91% 83% 75%

Table 4.3: ROC AUC metric demonstrates the ability of our model to separate the two types of
change-points. When 7 = 0, we report the change-point classification accuracy on the 3 types

of data.

model AUC TRI
ARGP-BOCPD 0.5079 0.1773
RDR-KCPD 0.5633 0.1933
Mstats-KCPD 0.5112 0.1480
RNN 0.5540 0.2393
LSTNet 0.5688 0.3145
KL-CPD 0.5326 0.2102
GNNggr +RNNTgL 0.7868 0.7574
Transggr, +RNNtgr, | 0.7903 0.7750
GNNggr+Transtg;, | 0.8277  0.8020

Table 4.4: We report the performance of our Corp_CPD on a real-world multivariate time
series dataset (PAMAP2). The variables are sensors and the features includes temporatures and

3-D motions. The change-points are transitions between activities.

4.5 Experiments with Physical Activity Monitoring

In addition to our synthetic dataset, we test our Corp_CPD on real-world data: the PAMAP2
Physical Activity Monitoring dataset [117]. The dataset contains sensor data collected from 9

subjects performing 18 different physical activities, such as walking, cycling, playing soccer,
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etc. Specifically, the variables we consider are N = 3 Inertial Measurement Units (IMU) on
wrist, chest and ankle respectively, measuring M = 10 features including temperature, 3D
acceleration, gyroscope and magnetometer. The change-points are labeled as the transitions
between activities.

To account for the transitions between activities, the independent changes could possibly
include the rising of temperature and the correlation changes could be from the switch of dif-
ferent moving patterns between wrist, chest and ankle.

The data was sample every 0.01 second over totally 10 hours. In the pre-processing, we
down-sample the time-series by 20 time steps and then slice them into windows of a fixed
length 7" = 100 steps. Each window contains exactly one transition from range [25, 75]. There
are totally 184 multivariate time series with change-points: 150 of them are used as training,
14 are used as validation and 20 are used as testing.

The results are shown in Table 4.4. Our Corp_CPD achieves the best performance among
the 6 statistical and deep learning baselines. We attribute the enhanced performance to the
ability of Corp_CPD to better model the two types of changes and to successfully ensemble
them. In real life scenarios, a change-point could arise from a mixture of independent change
and correlation change. The experiment results show that explicitly modeling both types of
changes injects a positive inductive bias during learning, and thus enhances the performance
of CPD tasks.

4.6 Conclusion

In this chapter, we study the problem of change point detection (CPD) in multivariate time se-
ries. We propose Corp_CPD, which explicitly leverages model-generated correlation struc-
tures by integrating graph neural networks within an encoder-decoder framework. As a re-
sult, Corp_CPD dynamically infers evolving relationships among variables, enabling to de-
tect change-points more accurately without any labeled data. Extensive experiments on a
physics simulation dataset and real-world PAMAP2 demonstrate that Corp_CPD effectively
detects change-point in multivariate time series, and outperforms competitive statistical and
deep learning baselines. This highlights the advantage of leveraging model-generated signals
for robust CPD.
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Chapter 5

Domain-specific Chatbot Training via

Knowledge Mining and Digest

In this chapter, we explore the use of Large Language Models (LLMs) to autonomously synthe-
size conversational data from textual documents, such as those from Wikipedia, for domain-
specific chatbot training. While vast amounts of domain-specific documents exist, they cannot
be directly used for chatbot training, which requires structured conversational data. Effectively
transforming this unstructured knowledge into an instructional format remains a challenge.
To address this, we propose a methodology that leverages model-generated training signals
to extract relevant domain-specific knowledge and reformat it into structured dialogue. This
approach enables chatbot training with minimal human supervision, bridging the gap between
raw textual data and structured conversational training sets. Experimental results demonstrate
that our chatbot, trained on LLM-mined instructional data, significantly outperforms baseline

models that do not benefit from such model-generated augmentation.

Highlights We pioneer an alignment technique that autonomously generates instructional
data from domain-specific corpora, improving chatbot performance across four domains while

reducing reliance on manual annotation.

Model-Generated Signals By employing a self-aligned LLM to generate structured training
data and further fine-tuning the chatbot on this augmented knowledge base, we demonstrate

the power of model-generated synthetic conversation in enhancing chatbot in specific domains.
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5.1 Introduction

Large Language Models (LLMs) have significantly ad-
vanced the fields of natural language understanding
and generation. Despite these advancements, training Domain

LLM:s as dynamic Al agents capable of answering com- || Passages

plex, domain-specific, and knowledge-intensive ques-

LLMiner

|

tions remains a significant challenge [1, 45]. Current

Knowledge in
Instructional
Format

\ Rewrittent Text

ous pre-training with a language modeling objective Domain as Augmented
Chatbot Knowledge

methods to integrate knowledge into LLMs primarily
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This chapter introduces a novel approach for em-
powering LLMs with domain-specific expertise through an autonomous knowledge mining
process (Fig. 5.1). We propose LLMINER, an LLM agent that autonomously extracts knowledge
directly from domain-specific texts and structures it in conversational format. During infer-
ence, LLMINER first analyzes the importance of the sentence within a given context, and then
employs this analysis in a chain-of-thought reasoning process to generate pertinent questions.
Subsequently, it structures answers by synthesizing information from both the original text
and the formulated questions. This procedure is repeated for each sentence in the document,
thereby creating a multifaceted knowledge in instructional formats from the raw text. Unlike
previous work largely depends on the LLM’s inherent ability to structure knowledge from raw
text, LLMINER offloads this knowledge structuring process to the training phase. We feed in
multifaceted knowledge as training examples to enable LLMs to develop a more comprehensive

understanding of domain-specific content.
Our contributions are highlighted in the following:

1. We develop an LLM-based system for automatic knowledge mining, harnessing the model’s
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inherent natural language processing capabilities to extract and organize domain-specific

knowledge.

2. The data mined by LLMINER offers a multi-perspective view of document content, facili-

tating a deeper comprehension of the original content.

3. Our method demonstrates a pathway for LLM self-improvement using model-synthesized
training data, enabling continuous adaptation and growth in line with the expanding

landscape of domain knowledge.

5.2 Related Work

5.2.1 Question Generation

Automatic question generation has been introduced to synthesize data for tasks such as ques-
tion answering [4, 53, 54, 79, 109], retrieval tasks [33] or dialogue systems [32, 137]. However,
previous works use documents or specific spans within them as answer without re-writing.
Furthermore, they require labeled QA data to train question generation. Models such PAQ re-
quires training each model for each step in the generation pipeline, while our methodology

harnesses a single LLM throughout the generation procedure.

5.2.2 Instruction-tuning

Recent endeavors to enhance LLMs have revolved around instruction tuning in QA [128, 130,
174] or conversation style [25, 76]. These efforts predominantly aim at aligning models with
human preferences rather than bolstering knowledge acquisition, which requires large amount
of knowledge-intensive quality QA data. Our chapter presents such an effort in extracting high

quality QA data from raw text as supervised data to encode knowledge into LLMs.

5.2.3 Chain-of-thought Reasoning

Chain-of-thought reasoning methods are proposed to improve the generation quality in various
tasks [139]. Techniques like ReciteLM [125] have been introduced, enabling LLMs to recite per-
tinent information during question answering (QA). However, these methodologies are tethered
to the necessity of finely crafted in-context examples and exhibit shortcomings in incorporating

external knowledge efficiently [125].
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Seed Data Generation with
GPT-4 for LLMiner Alignment

Step 1: Sentence Significance Analysis

[Guidelines for generating analysis]

- Clarity and Understandability Evaluate whether
the sentence is clear and easily understandable.
- Value of Information Assess if the sentence
conveys any significant information...

GPT-4

-=>
Document with highlighted sentence

In the field of Al, alignment research aims
to steer Al systems towards humans'
intended preferences. An Al system is
considered aligned if it advances the
intended objectives. A misaligned Al
system pursues some objectives, but not
the intended ones. It can be challenging
for Al designers to align an Al system
because it can be difficult ...

Step 2: Question Proposal

[Guidelines for question proposal given analysis]
- Answerable The question can be answered by
from the passage..

(Analysis)

GPT-4

-—

[Analysis]

The sentence provides a fundamental concept in
the field of Al alignment, describing the
situation..

[Question] : What does the term "misaligned Al

system" refer to in the context of artificial
intelligence alignment research?

Step 3: Answer Generation

[Guidelines for answer generation given question]

[Answer] A "misaligned Al system" in the field of
artificial intelligence alignment research refers to

} = FEGHTE (i e Gllieeily i e GPT-4 an Al system that pursues some objectives, but
docun'!ent.. P . 2, notthe intended ones. This can happen when
; Conc!se (3D 2T SRR (R PEE S the Al system is difficult to specify the full range
(question)

of desired and undesired behavior, ...

Figure 5.2: LLMiner Training Data Collection: Given a passage with a randomly selected sen-
tence within it, we prompt GPT-4 with specific generation guidelines to analyze, question, and
answer about the emphasized sentence in relation to the passage. The seed data is then applied
for behavior cloning, fine-tuning a smaller LLM to mimic GPT-4’s responses with the efficiency

of shorter prompts.

5.3 Methodology

In this section, we outline our approach for training a Large Language Model (LLM) into a

specialized knowledge miner, which we refer to as LLMINER.

5.3.1 Preparing Seed Data with GPT-4

Our aim in training LLMINER is to enable it for versatile knowledge mining scenarios, capitaliz-
ing on the robust language understanding abilities inherent in pre-trained LLMs. To this end, we
compile a diverse corpus that includes 300 randomly sampled passages from Wikipedia, along
with 50 each from TREC-COVID, NFCorpus, ArguAna, FEVER, DBPedia, and SCIDOCS [131],
making for a total of 600 instances.

As illustrated in Figure 5.2, for each passage, we start by randomly selecting a sentence to
serve as the focal point. We then employ three prompts to generate an analysis, a question, and
an answer, respectively. In each generation process, we adhere to a set of guidelines, along with

a specific formatting approach as input for GPT-4 [110]. The full list of prompts is included in
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Section 10.1.

Significance Analysis We prompt GPT-4 to assess the significance of the selected sentence
within the broader context of the entire passage. The guidelines for this analysis include factors
such as clarity, importance, knowledge addition, and relevance to the overall content. The
analysis is a chain-of-thought reasoning for organizing knowledge in the paragraph with the
picked sentence as a focal point, serving as the initial step for question proposal. If the sentence
is deemed unclear or uninformative, GPT-4 is required to output the specific guideline that has
not been met, and we then bypass the subsequent steps for such sentences. These exceptions

are used as training data to refine the model’s filtering capabilities.

Question Proposal If the sentence is determined to be significant, GPT-4 will be subse-
quently prompted to formulate questions aimed at encapsulating the insights obtained from
the analysis. The guidelines specify that questions should be self-contained, answerable, and
insightful. Given that the final deliverable from LLMINER consists solely of QA pairs without ac-
companying passage context, it is crucial that the questions are formulated to be self-contained.
To ensure this, our prompts direct the model to avoid using context-dependent phrases such as

"from the document" or "in the report.”

Answer Generation Lastly, GPT-4 proceeds to generate an answer to the previously formu-
lated question. This phase engages the model in a reading comprehension task, adhering to
guidelines that ensure the answer is factual, concise, and self-contained. By rephrasing or sum-
marizing the information present in the original sentence, the model effectively reorganizes the
information in the passage that aligns with the perspective of the generated question.

By following this three-step procedure, we gather a set of 600 training instances from GPT-4
including the analysis, question and answer, which will be used to align an open-source LLM

for the knowledge mining task. GPT-4 substitutes for human labeling efforts in this context.

5.3.2 Training for Model Alignment

Utilizing GPT-4 for the above knowledge mining comes with two primary drawbacks:

1. The computational overhead for large-scale inference is significant.

2. Each generative step necessitates detailed prompts that outline the guidelines for gener-

ating appropriate output.
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To address these issues, we employ a secondary, smaller LLM (LLaMa-7b) that we fine-tune
to align with the GPT-4-generated seed data. The fine-tuning employs a simplified prompt
(detailed in Section 10.1), with a document and a highlighted sentence as input. The model
outputs either an analysis or an analysis followed by a QA pair, depending on whether the
sentence is important. This process effectively clones GPT-4’s responses using more straight-
forward prompts. The fine-tuning serves as a behavior cloning process to mimic the responses

generated by GPT-4 using more concise and straightforward prompts.

Passage

The RNN hierarchy can be collapsed into a single RNN, by distilling a higher level chunker network into a lower level automatizer network. In
1993, a chunker solved a deep learning task whose depth exceeded 1000.In 1992, Juergen Schmidhuber also published an alternative to RNNs ...
[omit]

This fast weight attention mapping is applied to a query pattern. The modern Transformer was introduced by Ashish Vaswani et al. in their 2017
paper "Attention Is All You Need." It combines this with a softmax operator and a projection matrix. Transformers have increasingly become the
model of choice for natural language processing. Many modern large language models such as ChatGPT, GPT-4, and BERT use it. Transformers are
also increasingly being used in computer vision ...

[ Knowledge Mining without chain-of-thought (non-COT) analysis on the highlighted sentence (red) J

[ [Question] What is the current trend in the choice of models for natural language processing? ]

[ [Answer] Transformers have increasingly become the model of choice for natural language processing. ]

{ Knowledge Mining with chain-of-thought (COT) analysis on the highlighted sentence (red) }

[Analysis] The sentence highlights the growing popularity and utility of Transformers in the field of natural language processing. It signifies a
significant shiftyeference towards using Transformers over other models for NLP tasks, providing valuable information on the current trends
in Al and NLP research.

. )
[Questiory,vfhat factors are driving the increased preference and usage of Transformers in natural language processing tasks, considering their
shift in popularity over other models?

/[Answer] The increased preference and usage of Transformers in natural language processing tasks is primarily due to their effectiveness in D
handling complex tasks. The modern Transformer was introduced by Ashish Vaswani et al. in 2017 and has since become the model of choice for
natural language processing. Factors contributing to their preference include their ability to learn internal spotlights of attention through the fast
weight attention mapping applied to a query pattern. This technique, which involves ...[omit]... Their success has led to their use in a wide range

\of applications, from natural language processing to computer vision. Y,

Figure 5.3: Example illustrating the utility of chain-of-thought (COT) analysis in extracting
comprehensive knowledge from a passage. Without COT, the question can be directly answered
from highlighted sentence, COT facilitates a deeper understanding by formulating context-rich
questions referring to the analysis and synthesizing answers that requires an understanding

the entire passage.

5.3.3 Inference with LLMINER

During the inference stage, we process each incoming passage by iterating through all its sen-
tences, treating each one as a "highlighted sentence" for the model to focus on. We use the

same prompt as in the training phase of LLMINER for inference with each highlighted sen-
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tence within the passage. We found (Fig. 5.3) generating analysis as a chain-of-thought step
improves the quality of proposed question, and thus gives better in-domain instructional data

for subsequent model fine-tuning.

5.4 Methodology

In this section, we outline our approach for training a Large Language Model (LLM) into a

specialized knowledge miner, which we refer to as LLMINER.

5.4.1 Preparing Seed Data with GPT-4

Our aim in training LLMINER is to enable it for versatile knowledge mining scenarios, capitaliz-
ing on the robust language understanding abilities inherent in pre-trained LLMs. To this end, we
compile a diverse corpus that includes 300 randomly sampled passages from Wikipedia, along
with 50 each from TREC-COVID, NFCorpus, ArguAna, FEVER, DBPedia, and SCIDOCS [131],
making for a total of 600 instances.

Asiillustrated in Fig. 5.2, for each passage, we start by randomly selecting a sentence to serve
as the focal point. We then employ three prompts to generate an analysis, a question, and an
answer, respectively. In each generation process, we adhere to a set of guidelines, along with a

specific formatting approach as input for GPT-4 [110]. The full list of prompts is included in ??.

5.4.2 Training for Model Alignment

Utilizing GPT-4 for the above knowledge mining comes with two primary drawbacks:

1. The computational overhead for large-scale inference is significant.

2. Each generative step necessitates detailed prompts that outline the guidelines for gener-
ating appropriate output.

To address these issues, we employ a secondary, smaller LLM (LLaMa-7b) that we fine-tune
to align with the GPT-4-generated seed data. The fine-tuning employs a simplified prompt
(detailed in Section 10.1), with a document and a highlighted sentence as input. The model
outputs either an analysis or an analysis followed by a QA pair, depending on whether the
sentence is important. This process effectively clones GPT-4’s responses using more straight-
forward prompts. The fine-tuning serves as a behavior cloning process to mimic the responses

generated by GPT-4 using more concise and straightforward prompts.
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5.4.3 Inference with LLMINER

During the inference stage, we process each incoming passage by iterating through all its sen-
tences, treating each one as a "highlighted sentence" for the model to focus on. We use the
same prompt as in the training phase of LLMINER for inference with each highlighted sen-
tence within the passage. We found (Fig. 5.3) generating analysis as a chain-of-thought step
improves the quality of proposed question, and thus gives better in-domain instructional data

for subsequent model fine-tuning.

5.5 Domain-Specific Text Collection

This section outlines the methodologies for gathering domain-specific text and crafting test
data. The objective is to facilitate the development of a specialized chatbot, tailored to user-
defined topics such as "Artificial General Intelligence" or "Traditional Medicine in Southeast
Asia" We delineate the processes for constructing a domain-specific corpus and formulating

testing datasets.

5.5.1 Construction of a Domain-Specific Corpus

We employ two open-source tools, Wikipedia-API and GPT-4, to assemble a domain-specific

corpus based on user-defined topics.

Initial Topic Expansion As a first step, we utilize GPT-4 to generate hypothetical Wikipedia
titles related to the user-specified topic, as detailed in Fig. 10.5. These titles, potentially non-
existent on Wikipedia, act as initial search queries for the Wikipedia-API. Users may also con-

tribute additional keywords to enhance these seed titles.

Wikipedia-Based Retrieval and Selection With the generated hypothetical titles and user-
provided keywords in hand, we utilize the Wikipedia-API to retrieve actual Wikipedia titles.
Subsequently, GPT-4 is used to assess relevance, following the prompt specified in Fig. 10.6.
Articles corresponding to the relevant titles are incorporated into our domain-specific text cor-

pus.
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Artificial Traditional History of Advances in

General Medicine in  Steam Engine Robotics

Intelligence  Southeast Asia Surgery
OASST 77.14 66.65 70.6 70.96
OASST + passage 78.00 68.22 73.2 71.56
OASST + passage + QA 80.67 68.92 79.8 75.63
OASST + passage + QA + Aug 82.38 70.47 83.2 74.96

Table 5.1: Performance comparison of different training setting for chatbot on the domain-

specific texts. The numbers are normalized scores from GPT-4 evaluation.

5.5.2 Testing Dataset Creation

This subsection elaborates on the approach to simulate real-world user interactions with the
chatbot and the process of testing dataset creation, focusing on a scenario where the trainer
customizes a chatbot for a specific topic, and users interact with it for inquiries within that

domain.

Simulating User Queries To mimic user interactions, we engage annotators to propose
questions that reflect potential user queries within the chosen topic. We aim to compile around
30 human-crafted questions per topic. These questions are designed to be factually based, tar-
geting the chatbot’s knowledge in the domain text. In addition, annotators are responsible for

creating concise reference answers, typically one or two sentences long, for each question.

Independence from Training Corpus Annotators are allowed to utilize external resources
like Google or ChatGPT to ensure the accuracy and relevance of their questions and answers.
However, it’s crucial to note that they do not have access to the actual text corpus or augmented
data compiled by the chatbot trainer. This constraint ensures that the testing questions and
responses are independent of the chatbot’s training data, thereby allowing for an unbiased

evaluation of the chatbot’s performance in responding to unanticipated queries.
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Passage

A superintelligence is a hyppthetical agent that possesses intelligence far surpassing that of the brightest and most gifted human minds.
"Superintelligence" may aI'SO refer to a property of problem-solving systems (e.g., superintelligent language translators or engineering assistants)
whether or not these highrlevel intellectual competencies are embodied in agents that act in the world. A superintelligence may or may not be
created by an inteIIigence’eprosion and associated with a technological singularity. University of Oxford philosopher Nick Bostrom defines
superintelligence as "any,’intellect that greatly exceeds the Sognitive performance of humans in virtually all domains of interest". ... [omit]
Technological researchers disagree about how likely present-day.human intelligence is to be surpassed. Some argue that advances in artificial
intelligence (Al) will pro’bably result in general reasoning systems fha\t lack human%bgn-itiv\e limitations.

1

h [Question] How migl:t the creation of a \"‘~\‘ Auegmented Knowledge
B [superintelligence impact ... ] \‘~\\g g

T T T e m g m m m e m e — m — o — — oy — — — — — — m— — — — = 2 s — = — = — = —

I [ [Answer] A superintelligence, accordin g [Answer] The creation of a [Answer] The disagreement among |
I | tothe University of Oxford philosopher superintelligence, whether through an technological researchers about the likelihood 1
I | Nick Bostrom, is any intellect that greatly intelligence explosion or technological of present-day human intelligence being |
[ exceeds the cognitive performance of advancements, would likely significantly surpassed suggests that there is considerable I
I humans in virtually all domains of amplify existing patterns of technological uncertainty in the field of artificial intelligence
interest. This definition suggests that a progress. It could lead to rapid and its potential implications for the I
[ superintelligence would possess development in areas such as artificial development of superintelligence. This |
I | intelligence far beyond the capabilities ... intelligence... uncertainty stems from differing opinions |

\

A

Figure 5.4: Knowledge Augmentation of the Original Passage: The collection of minded an-
swers serves as augmented knowledge with each emphasizes specific facets determined by the

highlighted sentence, enriching the understanding of the original passage.

5.6 Chatbot Evaluations

5.6.1 Training and Baselines

We consider a mixed training of 4 different types of data:

Domain Passage (Passage): This consists of the domain-specific text that we have gathered

from Wikipedia, serving as a foundational source for domain expertise.

Conversation Data (OASST): We leverage the OpenAssistant Conversations Dataset (OASST)
[76] as a source of dialog interactions to train model for instruction-following ability. To ensure
quality, we only include entries with an overall score greater than 0.5, resulting in approxi-

mately 17k conversations.

Mined QA (QA): These are the mined data in conversational format using the LLMINER for

in-domain instruction finetuning.

Augmented Knowledge (Aug): This consists of the list of mined answers as standalone ele-

ments to serve as augmented knowledge providing variations of original text (Fig. 5.4).

Since the mixing ratio of these different data types is not the primary focus of the chapter,

we employ uniform sampling for the data types as our design choice.
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5.6.2 Evaluation

We employ GPT-4 as a judge to rate the quality of the generated answers. The evaluations are
conducted using a Likert scale ranging from 1 to 5, with prompts specified in Appendix ??. We
report the normalized score from GPT-4 eval in Table 5.1.

In the evaluation, we observe that the incorporation of QA data from LLMINER can help
learning domain knowledge from raw text corpus, which enhances the quality of chatbot to
answer factual-based questions. Furthermore, mixing additional the training data with aug-
mented knowledge (rewritten version of original passage by the list of answers) offers more
perspectives of the original text, which improves the model’s performance across three of the

four topics assessed.

5.7 Conclusion

In this chapter, we address the challenge of chatbot training in domains where no structured
conversational data is available. We propose leveraging a LLM to mine conversational data
from domain-specific text corpora. By autonomously generating question-answer pairs and
enriching domain knowledge, LLMINER enhances training data for chatbot adaptation across
multiple topics. Experimental evaluations demonstrate significant improvements in chatbot
performance. Our findings highlight the potential of LLMs as effective domain-specific knowl-
edge miners and showcase the benefits of autonomous data mining for self-improving LLM

training.
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Chapter 6

Video Large Language Model Training
with Synthetic Data

In this chapter, we explore the use of large language models (LLMs) to generate conversation
data for video-based large language models (Video LLMs), extending LLMiner to multimodal
scenarios. Prior to our work on LLAVA-HounD-DPO, Video LLMs were primarily pre-trained
with short video captions and human-annotated conversation data. However, these sources
present limitations: video captions are often noisy, while human-labeled conversations are
scarce. To address this, we propose leveraging model-generated training signals to synthesize
large-scale video captions and instruction-following dialogue data. Specifically, we generate de-
tailed video descriptions using GPT-4V and multimodal conversations using LLMs, providing

richer and more scalable supervision.

Highlights
* We introduce large-scale synthetic video captions and conversations to improve Video

LLM alignment.

* We are the first to apply direct preference optimization (DPO) as a reinforcement learning

(RL) approach for alignment in multimodal context.

Model-Generated Signals Our model-generated signals include:

* GPT-4V-generated detailed video captions, enhancing visual grounding.

* LLM-generated multimodal conversations, improving instruction-following and coher-

ence.

77



6.1 Introduction

This section addresses the challenge of aligning LMMs, particularly in tasks that involve video
instruction following. Despite recent advancements in reinforcement learning (RL) [9, 78, 111,
127] and DPO [24, 56, 115], which have been effective in guiding LLMs towards generating more
honest, helpful, and harmless content, their effectiveness in video domain remains limited. The
critical obstacle lies in developing a robust reward system capable of distinguishing preferred
responses from less preferred ones based on video inputs. The challenge is further complicated
by the coverage and potential inaccuracies in generated content, stemming from the scarcity of
alignment data across different modalities [90, 126].

While human preference data is valuable, it is challenging to scale due to its cost and labor-
intensive nature, as highlighted by the LLaVA-RLHF [126] paper, which collected 10k human-
evaluated instances at a considerable cost of $3000. Existing approaches for distilling prefer-
ences, such as those for image data using GPT-4V [83], encounter scalability issues, especially
for video inputs that require analyzing multiple frames. While [3] leverage a supervised fine-
tuning (SFT) model for self-evaluation, the efficacy of the SFT model remains uncertain, par-
ticularly in accurately assessing the factuality of responses in relation to their corresponding
videos.

To tackle the aforementioned challenges, we introduce a cost-effective reward mechanism
that is both computationally and financially efficient for evaluating the quality of responses
generated by video LLMs, serving as a basis for further on-policy preference optimization. We
propose the use of detailed video captions as a proxy for video content, enabling a language
model analyze the content and assess the quality of an LMM’s response to related questions. The
language model generates natural language feedback as a chain-of-thought step, and produces
a numerical score as the reward, thereby creating an efficient feedback system.

However, high-quality video captions are essential for this process. To mitigate the short-
age of high-quality video captions, we have developed a comprehensive video caption dataset,
SHAREGPTVIDEO, using a simple prompting technique with the GPT-4V model, comprising
900k captions that encompass a wide range of video content, including temporal dynamics,
world knowledge, object attributes, and spatial relationships. With this video caption dataset
available, we verify that our reward mechanism, which utilizes video captions as a proxy, is
well-aligned with evaluations derived from the more powerful, albeit costlier, GPT-4V model-
generated rewards. Employing this reward mechanism as the basis for DPO algorithm, we

train LLAVA-HounD-DPO that achieves an 8.1% accuracy improvement over the SFT counter-

78



Concatenate a sequence of frames to represent a video
e e e e e e e e e e e e e e e e e e

GPT-4v
Imagining yourself as a customer service agent overseeing an (A) Prompting for
uploaded video. The video comprises a sequence of frames... caption generation
SFT Data - = .

: What do the individuals perform in the video? (Detailed Video Caption )
Q: What do the individuals perform in the video? The video takes place on a grass soccer
A: They perform a sequence of movements ChatGPT  fio|q with white boundary lines. It features
_

including running, skillful footwork ...

feedback

two individuals, one wearing a light-colored
football kit ...

Sampled Responses

Pred1: They are playing football.
Pred2: They are resting on grass.

(B) Video instruction
Fine-tuning

: sample
LMM-SFT " (C) Factually-enhanced DPO Pred6: They are practicing wrestling.

Figure 6.1: Workflow diagram showing: a) the use of GPT-4V for creating a detailed caption
dataset for videos; b) generating video instruction data for SFT; c) integrating captions into
a feedback loop for DPO, improving the model’s performance on video instruction-following

tasks.

part. This marks a significant advancement in video LMM alignment and represents the first

successful application of a DPO method in this domain.

6.2 Method

As shown in Fig. 6.1, our methodology enhances video LMM alignment through DPO method
using rewards from a language model. We elaborate on constructing a video caption dataset
in Section 6.2.1. Subsequently, in Section 6.2.2, we discuss the generation of video instruction
data and the fine-tuning process of our model. Lastly, Section 6.2.3 details the incorporation
of generated captions as a feedback mechanism for DPO method to refine our model’s factual

alignment in video instruction-following tasks.
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6.2.1 Prompting GPT-4V Model for Detailed Video Caption Distilla-
tion

The selection of dataset includes videos from three sources: WebVid (400k) and VIDAL (450Kk)
ActivityNet (50k) datasets. WebVid and VIDAL videos are in the general domain sourced from
YouTube, and ActivityNet videos focus on human activities. The three datasets together result
in a comprehensive collection of 900k videos. To accommodate the requirement that GPT-4V
only takes images as input, we preprocess videos by uniformly extracting ten frames per video
content. These frames are then concatenated into a sequence to serve as a proxy for the video.
We use GPT-4V to generate a coherent caption for the represented video based on the frame
sequence. The prompt (Fig. 11.12) adheres to guidelines covering temporal dynamics, world
knowledge, object attributes, spatial relationships, aesthetic assessments, etc., with the goal of

comprehensively understanding the video contents (examples in ??).

6.2.2 SFT with Generated Video Instruction Data from Detailed Cap-
tion

To generate video instruction-following data for SFT, we adopt a similar methodology outlined
in Video-ChatGPT [81]. Specifically, we first randomly sample 300k video captions and then
employ ChatGPT to generate 3 question-answer pairs conditioned on each caption (prompt in
Fig. 11.13). We release the 900k instruction-following data to public, but we only use a ran-
dom subset of 240k for our training. This approach ensures that the instructional data remains

factually consistent with the content of the detailed captions.

6.2.3 DPO with Language Model Reward

Acquiring high-quality on-policy preference data can be costly and labor-intensive. Although
GPT-4V can be used for reward distillation, for video data, its high computation cost’, slow
response, and limited accessibility hinder scalability. We propose a cost-efficient method to
generate reward data for DPO using detailed video captions as supporting evidence, as shown
in Fig. 6.2.

Initially, we randomly select a subset of 20k instruction pairs from the dataset described in

Section 6.2.2. The SFT model generates six responses per input at a temperature of 1.0. This

'Video representation is typically encoded with 2048 tokens, while our captions only uses roughly 140 tokens.
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(A) Sample Multiple Outputs from LLM with Temperate=1.0

Sampled Output No. 1]
The second symbol is a pound sign. |

Sampled Output No.2 ]
The second symbol that is drawn is a dollar sign. |
Sampled Output No. 6 |
» The second symbol that is drawn on the blank piece of paper is
"¥" which stands for Japanese Yen.

(B) Language-based Feedback from ChatGPT as Reward

| Query | LMM-SFT
What is the second symbol

drawn on the paper?

Given the following inputs:

: ; . Explanation: In the caption of the video,
1. **Ground Truth Video Caption**: {caption}

the second symbol drawn is a Japanese

2. **Question Related to the Caption**: {query} " .

3. **Ground Truth Answer**: {answer) ChotGPT Yen, so the “dollar sign” in the model

4. **Model Predicted Answer**: {sampled output} b prediction is not accurate ....

Reward: 2/5

Follow the guidelines to generate reward ..
(C) Build Preference Dataset (highest paired with lowest, skip if all > 3 or all <3) "
Sampled Output No.1 No. 2 No.3 No.4 No.5 No.6 | win: No.6 =
Scores 1 2 4 3 3 5 lose: No.1 LMM-DPO

Figure 6.2: Detailed illustration of the proposed factually-enhanced DPO method.

procedure results in 120k question-answer pairs. Subsequently, we employ ChatGPT to evaluate
the model responses based on the ground truth answer and detailed description (prompt in
Fig. 11.15). ChatGPT generates an output that includes a natural language explanation as chain-
of-thought step, followed by a numerical reward score on a scale from 1 to 5, indicating the
overall quality.

For each video and question pair, we randomly select an answer with a score > 3 as posi-
tive example, and an answer with a score below 3 as negative. Cases where all responses are
uniformly scored above or below 3 are excluded from the dataset. After the selection process,
approximately 17k training instances are compiled for DPO training. Formally, the dataset is
denoted as Dppo = {(V, x, yw, y1)}, where V is the video, z is the question, y,, and y; are the

positive and negative responses. The DPO objective is defined as below:

EDPO (7T9, Wref) - _E(V7Z‘7yw7yl)NDDPO

o (yl ’ Zz, V)
Tref (yl | z, V)

™ (Yw | 2, V)

— Blo
Tref (yw | x, V) B

logo | Blog

where 7y is the policy model to be optimized and 7, is the base reference model, both models
are initialized with SFT weights. o is the logistic function and £ is set to 0.1.

For on-policy reward generation, our method incurs a cost of less than $20, under a pricing
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model of $1.5 per million tokens. In comparison, previous methods of preference data collec-
tion, such as in [126], required an expenditure of $3,000 to gather 10k human preference data
points. Additionally, the method proposed by [83], which employs GPT-4V for reward data
labeling, incurs a significantly higher cost—$30 per million tokens—and demonstrates consid-

erably slower inference speeds.

- » - - .

Question ID: v_video9990_0 (MSRVTT-QA) Question ID: v_uiLr9bdOLOM_23_30_2 (MSVD-QA)
Question: what do a show about on a cartoon show? Question: what moves a plastic glass containing liquid into
GT: superhero a bowl?

GT: bird

Video-LLaVA Prediction: The video shows a cartoon show called
"The Smurfs" and it features a character named Smurfette who

Video-LLaVA Prediction: A person’s hand moves the plastic
is shown in a pink dress.

glass containing liquid into the bowl.
SFT: The video shows a cartoon character in a spacesuit floating in

space with a speech bubble that reads "I'm not scared of space." SFT: A person’s hand moves a plastic glass containing liquid
DPO: The show appears to be about adventure and into a bowl. : L
exploration, as indicated by the animated characters and their DPO: The parrot moves a plastic glass containing liquid

actions. into a bowl.

Figure 6.3: Examples from MSRVTT-QA and MSVD-QA showcase that our LLAVA-HouND-
DPO generates better responses, and reveal key limitations of the existing benchmark evalua-

tion.

6.3 Experiments

We adopt Video-LLaVA [87] as the backbone of our video LMM, but our method can be applied
to any other architectures as well.

Caption Pre-training Stage (LLAVA-HouNnD-PT): We use captioning data including 650k
image caption data from ALLaVA [19] and our distilled 900k video caption. We freeze the
visual encoder and fine-tune the MLP projector and LLM, with learning rate 2e-5 and batch
size 128.

SFT Stage (LLAVA-HouND-SFT): We use 600k image instruction data from ALLaVA and our
generated 240k video instruction data, with learning rate 5e-6 and batch size 128.

DPO training Stage (LLAVA-HouND-DPO): We use the 17k preference data introduced in
Section 6.2.3 for DPO training. Following [58], we train our policy model with full model train-
ing for 3 epochs with learning rate 5e-7, and a batch size of 128. All the experiments are per-

formed on 8 A100 gpus.
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Existing Video QA Benchmark from [100]
MSVD-QA MSRVTT-QA TGIF-QA

Methods LLM Size
Acc. Score Acc. Score Acc. Score

FrozenBiLM [149]x 1B 32.2 - 16.8 - 41.0 -
VideoLLaMA [160]x 7B 51.6 2.5  29.6 1.8 - -
LLaMA-Adapter [163]x 7B 54.9 3.1 43.8 2.7 - -
VideoChat [81]x 7B 563 2.8  45.0 2.5 34.4 2.3
BT-Adapter [93]* 7B 67.5 3.7 57.0 3.2 - -
Video-ChatGPT [100] 7B 68.6 3.8 58.9 3.4 47.8 3.2
Chat-UniVi [65] 7B 700 3.8 53.1 3.1 46.1 3.1
VideoChat2 [82] 7B 700 39 541 33 - -
Video-LLaVA [88] 7B 71.8 3.9 59.0 3.4 48.4 3.2
LLaMA-VID [86] 7B 72.6 3.9 58.7 3.4 49.2 3.3
LLaMA-VID [86] 13B 743 40 598 3.4 50.8 3.3
VLM-RLAIF [3]x* 7B 764 40 630 3.4 - -
LLAVA-HouNnD-SFT 7B 757 3.9 587 3.3 53.5 3.3
LLAVA-HounDp-DPO 7B 80.7 4.1 70.2 3.7 61.4 3.5

Table 6.1: Evaluation of Model Performance on Zero-Shot Video Question Answering
Benchmarks Using gpt-3.5-turbo-0613. Models denoted with * have their results directly
sourced from their original publications. Caution is advised when interpreting these results;
see Appendix 11.1 for an in-depth analysis of evaluation challenges. All other baseline models

were reproduced by our team.

6.3.1 Benchmark Evaluation

Dataset and Testing Environment We evaluate model performance on four benchmark
datasets: MSVD-QA [18], MSRVTT-QA [144], TGIF-QA [63], and Next-QA [141] using Chat-
GPT with version gpt-3.5-turbo-0611 to assess model predictions. The evaluation prompts fol-
low [100]. In our experiment, we found that different ChatGPT versions have high impact on
absolute score of metric, but the overall ranking of models is relatively stable. We select gpt-
3.5-turbo-0613 due to its closeness to the reported score in Video-LLaVA paper. Further details

on the selection rationale and evaluation pitfalls are discussed in Appendix 11.1.

83



Baseline Selection We select video LMM models that have demonstrated SOTA performance
with with accessible code and checkpoints at the time of paper writing, specifically including
Video-LLaVA, which is also our choice of architecture. We replicate results including Video-
ChatGPT [100], LLaMA-VID [86] (7B and 13B), Chat-UniVi [65], and Video-LLaVA [88]. We
copy the results from additional baselines including FrozenBiLM [149], VideoChat [81] and
VideoLLaMA [160], sourced from their original publication.

Results In Table 6.1, our analysis shows that within the SFT models, LLaMA-VID-7B and
Video-LLaVA exhibit comparable performance, with LLaMA-VID-13B performing the best. Our
LLAVA-HounD-SFT model achieves comparable performance to LLaMA-VID-13B. Incorporat-
ing preference modeling, LLAVA-HounD-DPO achieves an average accuracy of 70.75%, sur-
passing LLAVA-HounD-SFT, which has an average accuracy of 62.65%, by 8.1%. Furthermore,
LLAVA-HounD-DPO exhibits superior accuracy compared to other RL methods such as VLM-

RLAIF. Our model demonstrated consistent result on a relative new benchmark Next-QA.

Error Analysis Figure 6.3 illustrates two examples. In the left example, LLAVA-HouND-SFT
provides an accurate description of the video’s first half but introduces a hallucination with the
phrase “I'm not scared of space,’ absent in the video content. LLAVA-HounD-DPO yields a more
accurate inference. In the right example, both LLAVA-HouND-SFT and Video-LLaVA models
produce incorrect inferences, whereas LLAVA-HounD-DPO successfully correctly identifies the

subject in the video.

6.3.2 Open-ended QA Analysis

In this section, we conduct analysis on open-ended long-form QA with a proposed develop-
ment benchmark. Specifically, we select 2,000 videos from each source: WebVid [10], VI-
DAL [175], ActivityNet [38], MSRVTT [144], MSVD [18], TGIF [63], and Something-something
V2 (SSV2) [48]. For each video, ChatGPT was utilized to generate three QA pairs based on
the detailed captions, and we evaluate model predictions with our reward mechanism. Web-
Vid, VIDAL, ActivityNet are classified as in-domain, which are involved in the model’s training
pipeline. MSRVTT, MSVD, TGIF, SSV2 are classified as out-of-domain.

The evaluation reveals insights into (1) the quality of long-form open-ended QA, (2) in-
domain and out-of-domain generalization, and (3) Ablations on SFT and DPO experiments.

Additionally, we select our best performing model on the development bench before evaluating
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Proposed Video QA Benchmark (In-domain)

ActivityNet-QA  VIDAL-QA  WebVid-QA
No. Methods Y Q Q Q

Acc. Score Acc. Score Acc. Score
[1] Video-ChatGPT [100] 34.17 2.19 2935 2.10 38.88 227
[2] LLaMA-VID-7B [86] 36.54 2.27 30.58 215 3699 2.24
[3] LLaMA-VID-13B [86] 37.33 2.29 3250 218 39.73 230
[4] Chat-UniVi [65] 39.35 2.32 3140 216 40.05 231
[5] Video-LLaVA [88] 41.35 2.38 3430 224 4247 239
[6] LLAVA-HouND-SFT 66.62 3.05 60.50 2.88 71.07 3.17
[7]1 LLAVA-Hounp-DPO 76.62 3.18 70.06 3.04 79.82 3.29
[8] LLAVA-HounD-PT + Image Inst. 69.31 3.09 60.57 2.85 68.03 3.02
[9] LLAVA-HounD-PT + VChat 67.34 3.02 6233 289 6898 3.00
[10] LLAVA-HounD-DPO + training MLP  71.89 3.10 65.57 295 7537 3.21
[11] LLAVA-HounD-SFT + Self-play 64.11 2.85 56.28 2.68 67.89 2.95
[12] LLAVA-HounDp-DPO w/ Ir3e-7 71.13 3.08 64.90 2.92 73.25 3.17

Table 6.2: Our proposed video QA benchmark evaluation on in-domain dataset using gpt-3.5-

turbo-0301, with detailed captions as supporting evidence.

on public benchmarks, which avoids tuning hyperparameters on test data. Comparisons are
shown in Section 11.4.

Domain Generalization: Table 6.2 and Table 6.3 shows the in-domain and out-of-domain
evaluation. SFT with our data tends to perform better both in- and out-of-domain, and DPO
further enhances the model performance, showing the effectiveness of preference modeling.
Video LMM without Video Instruction: [8] in Table 6.2 is baseline trained with only image
instruction fine-tuned on LLAVA-HounD-PT, which achieves an average accuracy of 65.97%,
comparable to the LLAVA-HounD-SFT model’s 66.06% in in-domain QA scenarios. However,
its performance significantly drops in out-of-domain QA contexts (49.32% vs. 56.50%), sug-
gesting that Video QA training could potentially enhance generalization capabilities.

Quality of Generated SFT: [9] substitutes our generated video QA with the Video-ChatGPT
dataset for Video-LLaVA fine-tuning. A comparison between the findings of [9] and [6] reveals
a marginal performance disparity of 0.2% in average accuracy, indicating that the quality of
our generated QA closely parallels that of the existing video QA datasets. Given the similar

quality in SFT data, the large gain of [6] over [5] can be reasonably concluded from large-scale
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Proposed Video QA Benchmark (Out-of-domain)
MSVD-QA MSRVTT-QA TGIF-QA  SSV2-QA

Methods

Acc. Score Acc. Score Acc. Score Acc. Score
Video-ChatGPT [100] 3406 2.20 25.65 1.98 31.35  2.09 1936 1.75
LLaMA-VID-7B [86] 3414 2.21  25.02 1.99 27.18 2.00 2216 1.84
LLaMA-VID-13B [86] 3581 2.25 26.34 2.02 27.58 201 2198 1.83
Chat-UniVi [65] 35.61 2.23  25.89 2.01 33.23 213 2059 1.79
Video-LLaVA [88] 3946 237 30.78 2.15 32.95 218 2431 1.90
LLAVA-HouND-SFT 66.99 3.09 57.82 2.85 66.13 3.07 35.07 2.23
LLAVA-Hounp-DPO 73.64 3.12 68.29 298 74.00 3.12 48.89 2.53

LLAVA-HouND-PT + Image Inst. 65.19 296  48.66 2.52 53.83 2.62 29.60 2.04

Table 6.3: Our proposed video QA benchmark evaluation on out-of-domain dataset using gpt-

3.5-turbo-0301, with detailed captions as supporting evidence.

pre-training on video captions.

Unfreeze MLP: The comparison between [10] and [7] reveals a significant decrease in per-
formance when the MLP is unfrozen during DPO training. Despite this drop, however, the
performance remains superior to that of the SFT baseline.

Smaller Learning Rate: The comparison between [12] and [7] reveals that using a smaller
learning rate of 3e-7 (vs. 5e-7) results in a decreasing of model performance. This highlights
the future improvements by finding better hyperparameters.

Self-Play vs. DPO: [24] introduced a self-play methodology for DPO training, which desig-
nates ground truth answers as preferred and model-generated responses as dispreferred. When
comparing the results of [11] with those in [6], a notable decrease in accuracy by 3% from the
SFT model is observed, suggesting that self-play may be less effective for video LMM alignment,
and introducing reward model is helpful.

DPO Accuracy vs. Training Epochs. The left of Fig. 6.4 depicts the generalization perfor-
mance of the model on out-of-domain video QA tasks with respect to the number of training
epochs. We observe a consistent enhancement in model performance among datasets during
the initial 0 to 2 epochs, with peak performance materializing at around 2.5 epochs, which
corresponds to 350 training steps.

DPO as Ranker vs. Generator. Following [56], we compare the performance of employing

the DPO model as a ranker for candidate answers produced by the SFT model, operating at a
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DPO Acc vs. Training Epochs (Out-of-domain) DPO as Ranker for MSRVTT (Out-of-domain)

o [ _____—_—_—_—
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Epochs Number of Candidate Answers

Figure 6.4: The left figure shows the test set accuracy of the DPO model w.r.t the number of
training epochs. The right figure shows a comparison of DPO model performance as generator

vs. ranker.

temperature setting of 1.0. As depicted on the right in Fig. 6.4, we illustrate the test accuracy
progression through the selection of the best among N candidates by the DPO ranker. Initial
observations indicate that the SFT model, when set to a temperature of 1.0, demonstrates a
reduced accuracy (43.3%) compared to that achieved through greedy decoding (57.8%). A steady
enhancement in performance is noted as the number of candidates increases, plateauing at an
accuracy of approximately 62% with 64 candidates. This performance, however, falls short when
compared with the direct application of the DPO model for answer generation, which yields
an accuracy of 68.29%. This difference suggests the stronger generalization of DPO model in
answer generation, despite it is trained on a reward classification loss. The contradictory results
to [56] may be due to the difference of tasks, i.e. Math vs. Video QA. Refer to Section 11.5 for

more results.

6.4 Conclusion

In this chapter, we explored effective methods for leveraging model-generated signals to en-
hance video LLM alignment. Specifically, we proposed distilling a large amount of high-quality
video caption data for pretraining and using LLMs to automatically generate instruction-following
data for SFT. Our results demonstrate that scaling up synthetic data leads to improved model

performance.
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Chapter 7

Improve Vision Language Reasoning

with Generated Traces

In this chapter, we study the use of model-generated (self-generated) reasoning traces to en-
hance the chain-of-thought (CoT) reasoning capabilities of vision-language models (VLMs).
While CoT reasoning has been highly effective in mathematical and code-related tasks, its ap-
plication in visual reasoning remains under-explored. Key challenges include the scarcity of
CoT reasoning data and the difficulty of calibrating reasoning quality. To address these issues,
we leverage model-generated reasoning traces for reinforcement learning. Our experiments
demonstrate that this approach achieves state-of-the-art performance compared to models of

similar sizes and, in certain cases, performs on par with proprietary models on specific datasets.

Highlights
* We use large-scale model-generated reasoning traces to improve VLM reasoning.

* We are the first to demonstrate the effectiveness of outcome-based rewards for vision-

language reasoning.

Model-Generated Signals Our model-generated signals include VLM-generated reasoning

traces, which enhance reasoning capabilities in vision-language tasks.

7.1 Introduction

Chain-of-thought (CoT) reasoning in vision language models (VLMs) is crucial for improving in-

terpretability and trustworthiness. However, current training recipes often relying on datasets
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dominated by short annotations with minimal rationales. In this work, we show that training
VLM on short answers leads to poor generalization on reasoning tasks that require more de-
tailed explanations. To address this limitation, we propose a two-stage post-training strategy
that extends the usage of short answer data for enhanced CoT reasoning. First, we augment
short answers with CoT reasoning generated by GPT-40, enhancing the VLM’s CoT capabilities
through fine-tuning. Second, we leverage short answers as outcome rewards for reinforcement
learning. Specifically, short answers are used as correctness indicators to construct positive
(correct) and negative (incorrect) pairs from model-generated reasoning chains. These pairs
are then used to calibrate the model’s reasoning via Direct Preference Optimization. Our ex-
periments show significant improvements in CoT reasoning on benchmark datasets, along with
enhanced generalization to direct answer prediction. This work provides a critical data resource
for VLM CoT training and demonstrates the effectiveness of outcome rewards for multimodal

models post-training.

7.2 Background and Goal

As VLMs are increasingly applied to more complex tasks, the ability to generate robust CoT
reasoning becomes essential for improving interpretability and trustworthiness [8, 20, 80, 89,
90, 91]. However, current training recipes often rely on datasets dominated by short answers
with limited rationales, potentially hindering the models’ ability to generalize to tasks requiring
comprehensive reasoning. In this work, we critically examine the effectiveness of short-answer
data for reasoning capabilities and propose augmenting it to enhance CoT reasoning during
supervised fine-tuning (SFT) and reinforcement learning (RL).

An example in Fig. 7.1 asks for the number of food items in a bar graph. A human would typ-
ically enumerate the bars and then calculate the total. However, writing out this enumeration
process is far more cumbersome than simply providing the short answer of “14” Consequently,
the annotated training data is predominantly composed of short answers, with minimal ratio-
nale provided. This raises a critical research question: Does training on direct prediction implic-
itly teach the model to perform chain-of-thought reasoning to derive correct answers? Our findings
indicate that after training on 26k direct predictions from ChartQA, the accuracy of direct pre-
dictions increased by 2.9 (70.2 to 73.1), while CoT prediction accuracy improved by only 0.6
points (71.2 to 71.8), with CoT under-performing direct prediction as a result. This suggests
that current training approaches have limited effectiveness in enhancing CoT reasoning.

We hypothesize that developing CoT reasoning capabilities requires explicit training on data
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A. Does VLMs implicitly learn reasoning from direct prediction?

Q: how many food items are there in the figure? Training data with Short Annotated
- . .
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Figure 7.1: The upper figure questions whether training exclusively on direct-answer prediction can effectively
teach CoT prediction. In the lower figure, we leverage short annotation as outcome reward for reasoning align-

ment, allowing the model to improve with self-generated data.

that includes detailed reasoning steps. To address the scarcity of high quality CoT reasoning
data, we propose leveraging datasets with short ground truth annotations and employing the
GPT-40 model to generate reasoning paths that lead to the correct answer. Our approach en-
compasses a diverse range of tasks, utilizing 9 datasets that demand different reasoning skills,
including common world knowledge (A-OKVQA [121]), chart interpretation (ChartQA [121]),
document information localization (DocVQA [102], InfoVQA [103]), real-world text extraction
(TextVQA [124]), scientific reasoning (AI2D [69], SQA [96]), and mathematical reasoning (Math-
Vision [136], G-LLaVA [41]). We distilled a total of 193k CoT examples for SFT and the model,
LLAVA-REASONER-SFT, demonstrates significant improvements in VLM chain-of-thought rea-

soning performance.

In the lower part of Fig. 7.1, we propose further calibrating SFT model reasoning with short
answer for outcome rewards [122, 129]. Specifically, the model generates multiple CoT steps
to to arrive at a final prediction, which is then compared against a provided short annotation.
Rationales leading to correct predictions are more likely to be accurate, while those leading to
incorrect predictions are less so. By optimizing positive (likely correct) and negative (likely
incorrect) rationale pairs using DPO, we align the VLM towards a more accurate reasoning
process. The aligned model, LLAVA-REASONER-DPO, demonstrates consistent performance im-
provements across all domains compared to its SFT counterpart. Additionally, we find that the

DPO model can act as a strong verifier to assign appropriate rewards for CoT reasoning, en-
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abling more effective credit assignment [98, 114].

World/Common Sense Knowledge Chart Understanding
Question: What are the Rationale: In the image, there are two horses Question: Is any of the bar Rationale: The bar chart displays the share of
horses being used for? harnessed together, and they are standing on a field. less than 10%? respondents' opinions on a certain topic, divided
A. petting B. field work The horses are equipped with harnesses and are w © by gender (Men and Women). ... we look at the

attached to a piece of farming equipment. The ground smallest percentages in each category. The

shows signs of being freshly plowed, indicating that - - smallest percentage is 11% for Men in the "They
the horses are being used to pull the plow and turn are downplaying the situation" category, and 15%
the soil. Additionally, there are tractors in the for Women in the same category. Both of these
background, further suggesting an agricultural setting. values are above 10%.

Answer: B. field work 0 Q i ettty Answer: No

Information Localization in Industrial Document Math Reasoning
Question: Which university has the third largest student? =% =
Rationale: ... By examiningythe heights of thi bars, we can ®@ Q%@ @D 9 @ 9 @ g)
identify the universities with the largest student bodies: (A) @ (B) z € (©) @@' (D) @® (E) @ 5)
- The tallest bar represents Arizona State University. Question: Add up the numbers on the balls. In which bowl is the result biggest?
° oo Rationale:
- The third tallest bar represents Penn State University. **Bowl A**: The balls are numbered 8, 7,4,and 9. Sum:8+7+4+9=28
Thus, based on the visual data provided in the bar graph, **Bowl B**: The balls are numbered 4, 6, 7,and 9. Sum:4+6+7+9=26
the university with the third largest student body is:
Answer: Penn State Answer: A

Figure 7.2: Distillation of examples from various VLM task domains, highlighting the specific

reasoning capabilities required.

7.3 Method

Our pipeline consists of three stages: (A) CoT data distillation from GPT-40 (Section 7.3.1), (B)
SFT with CoT (and direct) data to enable VLM CoT reasoning (Section 7.3.2), and (C) Outcome

reward RL for CoT reasoning enhancement (Section 7.3.3).

7.3.1 Reasoning Data Distillation

We leverage VQA datasets with short annotations to augment them with rationales gener-
ated by the GPT-40 model. We collect 193k visual CoT instances to create the SHAREGPT-
40-REASONING dataset for community usage. We focus on the following reasoning types as
demonstrated in Fig. 7.2:

Real-World Knowledge includes A-OKVQA, which covers a broad range of commonsense
reasoning and real-world knowledge for answering questions.

Chart Understanding includes ChartQA, which involves tasks like item comparison, count-
ing, and numerical computation.

Textual Reasoning includes DocVQA, InfoVQA, and

TextVQA, focusing on information localization and ex-

Dataset Size

A-OKVQA  16.9k
ChartQA 26.0k
SQA 6.1k

92 AlI2D 11.9k
InfoVQA 22.4k
DocVQA 37.3k
TextVQA  29.7k

AL 1 XT° o . 1

traction in industrial documents and real-world image

comprehension.



Math and Science includes MathVision, G-LLaVA,
SQA, and AI2D, focusing on scientific knowledge and
mathematical reasoning.

After distillation, we filtered out examples whose
answer predicted by GPT-4o is different from ground
truth. The data statistics are presented in Section 7.3.1,
and a comparison of answer lengths is shown in Fig. 7.3,
highlighting that CoT responses peak around 100 to-

kens, while direct answers are typically under 5 tokens.

1.0% histogram of #words in CoT answer 100.0% histogram of #words in direct answer

0.5% 50.0%

T T v 0.0% I oy y T v v v
100 200 300 400 500 0 5 10 15 20 25 30
#words #words

0.0%

Figure 7.3: The distribution of word counts for CoT and direct answer.

7.3.2 SFT for CoT Prediction

We choose LLaMA3-LLaVA-NeXT-8B as our base ar-

chitecture, whose weight is initialized with the Open-LLaVA-NeXT weights [21]. To ensure the
model handles both direct and chain-of-thought (CoT) predictions, we implement two types of
prompts during training.

Direct Prediction: For direct prediction tasks, we use the prompt “Answer the question with a
short answer” for short-answer questions, and “Answer with the option’s letter from the given
choices directly” for multiple-choice questions.

CoT Prediction: For CoT prediction tasks, we use the prompt “Generate a reason first and
then output a letter answer” for multiple-choice questions, and “Generate a reason first and
then output a short answer” for short-answer questions. In the model’s response, the rationale
is followed by the answer, which is formatted as “### Answer: ” to enable answer extraction

during evaluation.

7.3.3 RL for Enhanced Reasoning

To further improve the quality of reasoning chains, we apply RL using the DPO algorithm to

better align the model’s reasoning process toward more accurate predictions. The DPO algo-
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rithm requires both positive and negative responses. To generate these, we use the SFT model
as the policy model (i.e., generator), producing 32 candidate predictions per question (temper-
ature 1.0 for short answer and 1.2 for multiple-choice questions). Each prediction is compared
with the ground truth to determine its correctness. Following the approach in [36], we select
instances with an accuracy between 0.25 and 0.85. From these, we randomly pair positive and
negative responses, creating up to three pairs per question.

Formally, the dataset is denoted as Dppo = {(V, =, Yu, Y1) }, where V is the image, z is the
question, y,, and y; are the positive and negative responses. The DPO objective is defined as

below:

EDPO (77-0; ﬂ-ref) = _E(V@:yw&l)NDDPO [

)

Tret (Y | T, V) Tret (Y1 | 2, V)

where 7y is the policy model to be optimized and 7, is the base reference model, both models

are initialized with SFT weights. o is the logistic function and £ is set to 0.1.

7.4 SFT Experiments for Chain-of-thought Learning

In this section, we explore how SFT can enhance VLM reasoning by addressing two key re-
search questions: (1) Can CoT reasoning be implicitly learned from short responses? and (2) How
effectively can CoT be learned from GPT-4o distilled data? Additionally, we analyze the compo-
sition of CoT data across various reasoning capabilities and compare the performance of SOTA
models with GPT-4o.

7.4.1 Training Setting

As shown in the upper part of Fig. 7.4, we present the data composition for SFT. The train-
ing data includes CoT distillation (193k instances) from Section 7.3.1 and corresponding short
answers (193k). Additionally, for CoT data, we incorporate 16k visual math examples from G-
LLaVA. To maintain general instruction-following capability as the base model, we include 2k
randomly sampled instruction data from LLaVA pretraining [91]. To ensure the SFT models can
handle both direct and CoT prompts during inference, we sample a small set of format-aligned

data—50 examples from each of the 9 datasets—resulting in 450 instances.
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Data Sources:

’
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Figure 7.4: The upper section displays the data sources used for the SFT experiments, while the

lower section illustrates the data composition for model training,.

In the lower part of Fig. 7.4, we outline the data composition for model training. Specifically,
LLAVA-NEXT-Formar (Fig. 7.4 @) serves as the baseline model, trained exclusively on format-
aligned data to enforce the desired output format without learning any task-specific reasoning
skills. In contrast, models in Fig. 7.4 @ and ® incorporate either direct or CoT datasets, enabling
the model to be expert in one type of skill as well as following the both direct and CoT prompt
styles. Finally, LLAVA-REASONER-SFT (Fig. 7.4 @) represents the SFT model trained on both
CoT and direct data, making it to be expert in both types of reasoning.

We use the LLaMA3-LLaVA-NeXT-8B architecture, initializing the weights with Open-LLaVA-
NeXT. All Supervised Fine-Tuning (SFT) experiments are trained for 1 epoch with a learning
rate of 5e-6 and a batch size of 32. The experiments are conducted on 8 H100 GPUs.

7.4.2 Evaluation Setting

We evaluate our method using a range of benchmark datasets, including A-OKVQA [121],
ChartQA [101], DocVQA [102], InfoVQA [103], TextVQA [102], AI2D [69], ScienceQA [96], and
MathVista [97]. We also conduct more evaluation on general datasets OCRBench [95], MM-
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Table 7.2: SFT experiments with data composition in Fig. 7.4: @ format alignment only, @
direct responses only, @ CoT responses only and @ both direct and CoT responses. Inference is
performed using both direct and CoT templates. The best CoT prediction result is highlighted
in , while the best direct prediction result is marked in blue. The results demonstrate
that combining CoT and direct responses during training leads to the best performance across

both types of prompts. Refer to Section 7.4 for detailed analysis.

Methods Prompting A-OK ChartQA DocVQA InfoVQA TextVQA AI2D SQA MathVista Avg
LLaVA-Next direct 85.8 70.2 75.7 37.7 68.2 71.5 754 393 65.5
+ Format © CoT 84.3 71.2 67 34.9 62.2 674 744 40.3 62.7
LLaVA-Next direct 86.4 73.7 78 45.4 71.9 78.8 915 43.2 71.1
+ Direct @ CoT 85.7 71.8 68.8 38.6 63.6 725 854 38.6 65.6
LLaVA-Next direct 84.9 71.8 81.2 45.7 72.1 75.3 85 41.9 69.7
+Cot® CoT 85.1 82.2 81.2 49.7 69.9 77 91.3 49.2 73.2
LLaVA-Reasoner direct 85.4 76.1 82.9 50.6 73.1 794  90.4 443 72.8
-SFT @ CoT

Star [22], and MMMU [159] in later sections. The evaluation for A-OKVQA was implemented
by us, while for the other datasets, we follow the evaluation protocols outlined in VLMEval [35].
For CoT evaluation, answers are extracted after the pattern "###Answer: " before sent to

evaluation. More comparison with LLaMA3-LLaVA-NeXT-8B model is shown Section 12.2.

7.4.3 Can reasoning be implicitly learnt from direct prediction?

Table 7.2 presents the performance of the models introduced in Fig. 7.4. Since LLAVA-NEXT-8B
training data contains very few CoT reasoning examples, CoT performance of @ lags behind
direct prediction across most tasks. The only improvement is observed in ChartQA and Math-
Vista with a modest gain of +1.0 in CoT performance, showing CoT is helpful for calculation
related tasks.

When comparing model trained on direct only data (@) to that trained on format-aligned
data (@), we observe an average gain of +5.6 in direct prediction accuracy (65.5 — 71.1) and a
+2.9 improvement in CoT performance (62.7 — 65.6). Surprisingly, closer inspection of CoT per-
formance in calculation-involved tasks, such as ChartQA and MathVista, reveals only marginal
gains (+0.6 for ChartQA CoT) or even a performance drop (-1.7 on MathVista), which contrasts
with the improvements seen on the two tasks in ©. On text-rich tasks, positive gains (>1) are ob-

served, with the most improvement seen in InfoVQA (+3.7). Significant gains are also evident
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in science-related tasks like AI2D (+5.1) and SQA (+11.0). Despite these improvements, CoT
performance still trails behind direct prediction overall (CoT: 65.6 vs. direct: 71.1). This result

suggests that training on direct only prediction may not effectively help with CoT prediction.

7.4.4 How Effective is CoT Reasoning Data?

When comparing the model trained on CoT-only data (®) with the one trained on format-
aligned data (@), we observe improvements in both direct and CoT predictions. Direct predic-
tion performance increases by an average of +4.2 (65.5 — 69.7), while CoT prediction improves
significantly by +10.5 (62.7 — 73.2). Notably, the CoT performance of the model ® surpasses
its direct prediction (73.2 CoT vs. 69.7 direct). Significant gains are observed in calculation-
intensive tasks like ChartQA and MathVista, with increases of +11.0 and +8.9 in CoT perfor-
mance, respectively. Interestingly, for text-rich tasks such as DocVQA, InfoVQA, and TextVQA,
the direct performance of model ® (trained on CoT-only data) outperforms that of model @
(trained on direct-only data). This suggests that even for text-heavy tasks, reasoning processes,
such as localizing information in documents or recognizing text in real-world scenarios, may
benefit from CoT training. The skills learned from CoT training appear to generalize to direct
prediction as well.

When both CoT and direct data are combined (®), performance is further enhanced for both
prediction types, with an average gain of +7.3 in direct prediction (65.5 — 72.8) and +11.7 in
CoT prediction (62.7 — 74.4). This demonstrates that combining direct and CoT data yields the
best overall performance. Interestingly, in model @, for 3 out of 8 datasets (TextVQA, DocVQA,
AI2D), direct prediction outperforms CoT prediction. We hypothesize that these tasks involve
a significant proportion of concise fact extraction, where generating long-form CoT responses
may not provide additional benefits or even hurts. Further validation of this hypothesis will be

explored in future work.

7.4.5 Comparing with SOTA model and GPT-40

In Table 7.3, we compare the performance of GPT-40 and a recent state-of-the-art model, Cam-
brian [132]. For GPT-40, we include both direct and CoT predictions, following the prompt
optimization steps outlined in [13], with the prompts detailed in ??. For Cambrian, we report
the numbers from [132] and replicated the results using the official checkpoint on MMStar, In-
foVQA, and A-OKVQA. Specifically for Cambrian, CoT predictions were used for the MathVista

dataset, while direct predictions were applied for the remaining datasets.
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Table 7.3: Performance Comparison of GPT-40, Cambrian-7b, and our SFT Model. For Cam-
brian, * indicates our replicated results, while others are adapted from [132], T indicate CoT

prompt used for evaluation. ‘Our-SFT’ refers to LLAVA-REASONER-SFT.

Dataset GPT-40 | Cambrian Our-SFT

direct/cot official direct/cot

A-OK 89.6/90.1 83.1% 85.4/86.2
ChartQA 79.6/84.7 73.3 76.1/83.0
DocVQA 90.3/90.8 77.8 82.9/81.8
InfoVQA 72.4/72.8 45.7* 50.6/51.6
TextVQA 78.1/75.4 71.7 73.1/71.1
Al2D 80.7/81.5 73.0 79.4/78.5
SQA 85.9/87.2 80.4 90.4/92.7

MathVista 54.8/63.4 49.0 44.3/50.6
OCRBench 80.2/79.2 62.4 61.6/62.0

MMStar 55.1/64.7 50.3* 51.6/54.0
MMMU 57.8/63.6 42.7 41.6/40.0
Avg (of best) 77.9 64.5 68.8

When compared to open-source models, GPT-40 outperforms on nearly all benchmark
datasets, with the exception of SQA. Notably, significant improvements from CoT predictions
are observed on tasks involving calculation or complex reasoning, such as ChartQA, MathVista,
MMMU, and MMStar.

Cambrian-7B is trained on a dataset of 7 million open-source instruction-following exam-
ples. In contrast, our model, fine-tuned on fewer than 400k instruction examples, outper-
forms Cambrian-7B on most benchmark datasets, underscoring the effectiveness of incorpo-
rating CoT data. While we recognize the challenge of comparing against other models, such as
One-Vision [80], MiniCPM-V [152], X-Composer [162], and InternVL [23], due to differences in
model architecture, training datasets, and evaluation pipelines, our primary focus is on study-
ing the effectiveness of CoT learning rather than competing for state-of-the-art performance

on visual-language tasks.
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7.5 Nearly Zero Data Learning for CoT Reasoning

Table 7.4: We study a self-taught reasoner with minimal CoT data (only 450 format-aligned
examples). LLAVA-NEXT-DIreCT is used as the baseline, and our LLaVA-Next-STaR is trained
with a rejection sampling method. The best CoT predictions are highlighted in , and
the best direct predictions are highlighted in blue. Our rejection sampling method outperforms

both CoT and direct prediction, with the exception of two data points.

Methods Prompting A-OK ChartQA DocVQA InfoVQA TextVQA AI2D SQA MathVista

LLaVA-Next direct 86.4 73.7 78 45.4 71.9 78.8  91.5 43.2
+ Direct @ CoT 85.7 71.8 68.8 38.6 72,5 854 38.6
LLaVA-Next direct 85.9 74.6 79.2 47.4 72.1 79.5  92.2 44.4
-STaR @ CoT 25.1

In this section, we demonstrate how minimal CoT training data can enhance CoT reasoning
capabilities. Specifically, we use only 450 CoT format-aligned examples alongside all available
direct prediction data, with LLAVA-NEXT-DIRECT as the baseline. We apply rejection sampling
fine-tuning (RFT) following [122, 129] to train a self-taught chain-of-thought reasoner, denoted
as LLaVA-Next-STaR. From LLAVA-NEXT-DirecT, we sample 32 CoT examples for each training
instance and select those whose final predictions match the ground truth. Up to three positive
examples are selected per question, resulting in a dataset of 260k RFT examples.

As shown in Table 7.4, RFT training improves both CoT reasoning and direct predictions
overall, with the exception of two data points. Notably, TextVQA shows a significant drop in
CoT performance, which we will explore further in future work. Notable (>3%) gain is observed
on ChartQA, DocVQA, InfoVQA, AI2D and MathVista, and roughly 1% gain is observed on direct

prediction on those datasets as well.

DPO Experiments Prior to the RFT experiments, we conducted DPO experiments on the
ChartQA dataset under the same conditions as described in Section 7.4. However, the improve-
ments were modest, with a 72.3 (+0.5) gain in CoT prediction and a 74.2 (+0.5) gain in direct
prediction. In contrast, RFT yielded a significant improvement, with 77.9 (+6.1) on CoT pre-
diction and 74.6 (+0.9) on direct prediction. We hypothesize that for models with relatively
weak CoT reasoning capabilities, RFT may be more effective in enhancing model performance,

whereas DPO with preference modeling may be less impactful. We leave further analysis for
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future work.

7.6 RL for Enhanced CoT Reasoning

In this section, we demonstrate the effectiveness of RL in further enhancing CoT reasoning.
By leveraging short-answer feedback (Section 7.3.3), we construct preference pairs across three
domains: A-OKVQA (real-world knowledge reasoning), ChartQA (chart interpretation), and
math (MathVision and G-LLaVA). Although additional DPO data from other datasets could be
incorporated, data scaling and balancing will be addressed in future work.

For the DPO dataset, we include 24.5k examples from ChartQA, 18.3k from A-OKVQA, and
22.0k from math domain, totaling 64.8k preference data pairs. We train LLAVA-REASONER-SFT
on this dataset using a learning rate of 5e-7, a batch size of 32, and for 1 epoch. We found an
additional trick to truncate the responses up to 90 tokens to be crucial for DPO training (details
in Section 12.3). To compare the effectiveness of different DPO datasets, we include RLAIF-
V [158], which contains 80k DPO pairs representing the state-of-the-art dataset for aligning

VLMs for reducing hallucinations.

7.6.1 Can DPO Calibrate Reasoning?

In ??, we present the results of the DPO model optimized on top of LLAVA-REASONER-SFT (®).
Model ® uses the SOTA RLAIF-V [158] data, while model ® uses our dataset. We observe that
Model ® shows a slight improvement in both direct prediction (+0.2) and CoT prediction (+0.2),
whereas model ® demonstrates a greater improvement in CoT prediction (+1.1) with equal gains
on direct prediction. Interestingly, though only 3 out of 8 datasets are selected to construct DPO
pairs, gains are observed across 7 out of 8 datasets except for SQA with a slight decrease (92.9
— 92.6). These results suggest that DPO dataset constructed from model-generated rationales

can effectively enhance reasoning accuracy and show generalization across tasks.

7.6.2 DPO as Verifier for Re-ranking CoT

In Fig. 7.5, we present the re-ranking results using the DPO model as a verifier, following the

deo(y|xvv)
Trsft (y‘xJ})

resents the image, = the question, and y the candidate answer. We explore two re-ranking

approach of [57, 98, 169]. The DPO reward score is calculated as log , where V rep-

strategies: Best-of-N and Weighted Voting. A Majority Voting (or self-consistency) baseline is

also included for comparison.
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Figure 7.5: The figures illustrate the performance of the DPO model as a verifier on ChartQA,
A-OKVQA, and MathVista. Compared to the model trained with RLAIF-V, the model trained
on our reasoning data pairs consistently shows improvement in both best-of-N selection and

weighted voting.

When trained with RLAIF-V data (®), the DPO model demonstrates improvements as both
a generator and verifier on A-OKVQA, likely due to the dataset’s alignment with real-world im-
ages, which matches the nature of A-OKVQA. Interestingly, while model ® does not show im-
provements as a generator on ChartQA, it still produces positive results in best-of-N re-ranking,
indicating that the learned preferences can generalize across domains. However, weighted vot-
ing does not lead to any improvements, and no significant gains are observed in re-ranking for
MathVision. In contrast, when trained with reasoning data pairs, LLAVA-REASONER-DPO (®)

shows improvements across both re-ranking metrics, underscoring the effectiveness of DPO on

Table 7.5: More DPO results on general evaluation benchmark datasets.

Methods OCRBench MMStar MMMU Avg
SFT @ 62.0 54.0 40.1 52.0
SFT+RLAIF ® 63.7 53.5 42.3 53.2
SFT+DPO-ours ® 63.7 54.1 42.6 53.5
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reasoning data pairs.
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Figure 7.6: Credit assignment of the DPO model on a portion of the responses from the ChartQA
and AI2D datasets. The DPO token-level reward is computed for each token, with the rewards
normalized to have a mean of 0. Negative scores are highlighted in cool colors (blue), while
positive scores are highlighted in warm colors (orange). We observe that the DPO model is

particularly sensitive to the first mistakes or hallucinations introduced in the response.

7.6.3 DPO CoT Prediction and Re-ranking Performance Generaliza-
tion

In Table 7.5, we present the DPO CoT performance on OCRBench, MMStar, and MMMU. We
observe that DPO models trained on both RLAIF and our datasets outperform the SFT baseline,
with our DPO model trained on CoT reasoning pairs achieving slightly better results.

While the CoT prediction performance across DPO models is similar, ?? highlights the pro-
nounced effectiveness of our DPO verifier’s generalization on the MMMU dataset, which con-
tains challenging college-level subject questions. We provide re-ranking results for multiple-
choice problems from the Dev+Val split (988/1050). The SFT model with self-consistency shows

steady improvements, reaching 45.5% with 64 candidate votes. LLAVA-REASONER-DPO, trained
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on reasoning data pairs, demonstrates strong generalization on MMMU by excelling in both

weighted voting and best-of-N voting during candidate re-ranking.

In contrast, the DPO model trained on RLAIF-V (®) improves CoT predictions but fails to
achieve gains in re-ranking metrics, indicating its limitations in distinguishing correct from
incorrect reasoning on more complex data. We hypothesize that, compared to ChartQA, the
reasoning questions in MMMU are more challenging and span a broader range of subjects. The
RLAITF-V dataset, being primarily focused on the COCO image domain, may lack sufficient cov-
erage of this diversity, leading to weaker performance in re-ranking. These results underscore

the potential of our approach for generalizing visual language reward models to reasoning tasks.

7.6.4 DPO Credit Assignment

While the DPO model is trained on pairwise data, prior works [98, 114] have shown that DPO
policies can learn to predict token-level rewards from binary preference data. These experiments
primarily focused on math reasoning with LLMs. In this work, we provide examples of credit

assignment learned by the VLM DPO, as shown in Fig. 7.6. The token-level DPO reward can

ﬂdpo(yi‘xvv)
7Tsft(yi |$,V)
token in the generated response. This reward reflects the relative confidence of the DPO model

be expressed as log , where V represents the image, x the question, and y; the i-th

compared to the SFT model for a given token in a candidate response.

In Fig. 7.6, negative scores are shown in cool colors, while positive scores are shown in
colors, with rewards normalized to a mean of 0. On the left, we observe that the DPO
model is particularly sensitive to errors during chart interpretation from the ChartQA dataset.
For instance, when the response incorrectly lists “Lamb” as “Beef” in a chart reading task, the

DPO model assigns a highly negative score to this mistake.

On the right, we present examples from the AI2D dataset. Here, a hallucination in the re-
sponse, such as incorrectly stating that the left side of the moon is illuminated (the correct
answer is the right side), receives a low score. Additionally, when external knowledge is re-
quired to correctly identify the moon’s phase as “Crescent” instead of “Gibbous,” the DPO model
penalizes the incorrect “Gibbous” answer with a negative score. This indicates that the DPO
model is more sensitive to knowledge-based errors than the SFT model, explaining its superior

performance on CoT reasoning tasks in datasets such as AI2D.
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7.7 Conclusion

In this chapter, we explored the use of model-generated reasoning traces to enhance the chain-
of-thought reasoning capabilities of vision-language models. By leveraging reinforcement learn-
ing with outcome-based rewards, we demonstrated that self-generated reasoning traces can im-
prove reasoning quality despite the scarcity of human-annotated data. Our approach achieves
state-of-the-art performance among models of similar sizes and, in some cases, matches the
performance of proprietary models. These findings highlight the potential of model-generated
signals in advancing vision-language reasoning and suggest promising directions for future

research in automated reasoning calibration and data-efficient learning.
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Chapter 8
Conclusion

This thesis aims to effectively leverage model-generated signals to enhance neural network
training, particularly in scenarios with limited or no human-labeled data. The proposed method-

ologies are successfully applied across the following domains:

* Few-/Zero-Shot Text Classification: This part addresses the low-resource problem in
NLP by augmenting text-based training signals using model-generated data. We began
our exploration with few-shot learning for extreme text classification, where the majority
of labels receive fewer than 10 training instances due to the natural low occurance of
such label phrases. In Chapter 2, we demonstrated that our DEPL model significantly
improves performance by incorporating SVM-generated labels. Extending this approach
to zero-shot classification, Chapter 3 investigates the use of instruction-following LLMs
to generate document content and novel document-label training pairs. Together, these
studies provide a comprehensive answer to the research question of how model-generated

signals can enhance text classification in data-scarce settings.

* Unsupervised Change-Point Detection: We next explore zero-shot learning for time-
series change-point detection (CPD), where labeled data is scarce due to the infrequent
nature of change points and the need for domain expertise. In Chapter 4, we propose
CorD-CPD, a method that utilizes graph neural networks to generate correlation graphs,
improving both forecasting and CPD performance in multivariate time-series data. This
work highlights the critical role of model-generated auxiliary data in enabling effective

learning for tasks with minimal labeled supervision.

+ Large Language Model Self-Enhancement: With the advancement of large language

models (LLMs), we focus on improving their alignment, particularly in conversational
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and reasoning abilities. In Chapter 5, we introduce LLMiner, a conversation mining model
that automatically generates dialogue data for chatbot training. This approach is later ex-
tended in Chapter 6 to enhance video-language models, where LLMiner generates con-
versation data from video captions. Finally, we propose a reinforcement learning frame-
work leveraging self-generated reasoning traces to improve vision-language reasoning.
Our findings demonstrate that LLMs can benefit from model-synthesized data, particu-
larly for instruction-following and reasoning tasks. This underscores the importance of

synthetic data in advancing Al capabilities.

Each part of this thesis provides an in-depth examination of its respective topic, collectively
contributing to the broader methodology of advancing neural network optimization through
model-generated signals. These signals are closely related to model self-play, where a model
generates data to improve itself, potentially leading to stronger intelligence with minimal hu-

man intervention. Below, we summarize the key types of signals that facilitate self-play:

1. Pseudo Labels: When no labeled data is available for zero-shot classification, the model
first generates labels for unlabeled instances, referred to as pseudo-labels. Training on
pseudo-labels can enhance classification performance by reducing the entropy of decision
boundaries, as demonstrated in Algorithm 1 within Chapter 3. Our findings highlight the

importance of pseudo-labeling as a mechanism for model self-improvement.

2. Language Model Responses: In Chapter 6, we show that for a given question, a model
can generate diverse responses by sampling at a higher temperature, leading to variations
in response quality. We leverage reinforcement learning with the Direct Preference Op-
timization (DPO) algorithm on paired model responses, which proves to be both effective
and data-efficient. This demonstrates that model-generated responses serve as a valuable

resource for self-improvement.

3. Reasoning Traces: Chain-of-thought (CoT) reasoning can be viewed as intermediate
states leading to a final answer in problems requiring multi-step reasoning. In Chapter 7,
we show that by comparing model predictions with labeled answers using an outcome-
based reward, the model can calibrate its reasoning through self-generated traces. This
finding sheds light on a pathway toward stronger intelligence, where static data, supple-

mented with self-generated signals, drives continual model enhancement.

The studies in this thesis present successful applications of model-generated signals across
various tasks, demonstrating their effectiveness in enhancing neural network training. Looking

ahead, we envision a broader paradigm shift in artificial intelligence driven by model-generated
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data.

Over the past five years, pre-training has largely relied on vast amounts of human-created
data sourced from the internet. However, as those data becomes increasingly exhausted, and
as models continue to grow in power, we anticipate a transition toward self-generated data as
a primary driver of model improvement. This shift could revolutionize Al training, enabling
continuous learning beyond the limitations of static human-annotated datasets.

For future work, we foresee the expansion of model-generated signals into a wider range of
tasks, including those involving audio, video, and other modalities. Additionally, we anticipate
further advancements in model training through the use of evolving synthetic data at differ-
ent training stages, continuously refining model capabilities in an autonomous and scalable

manner.
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Chapter 9

Appendix of Chapter 4

9.1 Synthetic Data Demo

We plot an example of the synthetic change-point data in Figure Figure 9.5. We show the
trajectories of 5 particles before and after a change-point, where the dashed lines represent the

expected trajectory if no change-point happened, and the solid lines are the observed trajectory.

9.1.1 Location Change

The location change example is shown in Figure 9.5. In this case, we treat the location as mul-
tivariate time series, and we observe a small shift of location at and after the change-point. The
gap between the expected value and observed value is maintained during the particle move-

ment, but it may vary due to the complicated interactions between those variables.

9.1.2 Velocity Change

The velocity change example is shown in Figure 9.6. Compared with the location change, there
is no immediate shift in the time series value observed. The gap between the expected value and
the observed value tend to become more obvious over time. This is due to the nature of speed
such that a small perturbation can cause large difference in location over long time. In order
to detect such kind of changes, a window based comparison (of expected values and observed

values) introduced in Section 3 is preferable to using only a single predicted time step.
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9.1.3 Connection Change

The connection change example is shown in Figure 9.7. Similar to the velocity change, the dif-
ference between the expected value and the observed value becomes more obvious over time.
The Figure Figure 9.1 shows the underlying spring connections before and after the change-
point. In particular, the green particle was not connected with any other particles before the
change-point, and it was connected with blue and cyan particles after the change-point. This
altered the trajectory of the green particle from a straight line to curved path. Detecting the
spring re-connections change-points requires the modelling of dynamic correlations in multi-

variate time series, as our model did.

9.2 Further Analysis on Synthetic Experiments

In this section, we further describe our model training, baselines, and some other metrics on

the synthetic dataset.

9.2.1 Implementation Detail

We perform a grid search for hyperparameters of the following values: the learning rate [, in
{0.001, 0.005,0.01, 0.05}, the hidden dimension size d for the time series feature embeddings in
{64,128, 256}, and the number of levels of GNN or spatial transformer in {2, 3, 4}. We finally
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selected /, = 0.001 using Adam optimizer, d = 64 for transformers and d = 256 for GNN. The
level of GNN or spatial transformer is set as 2, which is sufficient for our experiments. We used
batch size of 32 for temporal and spatial transformers and batch size of 128 for GNN.

We report the results for three encoder models: GNNgg+RNNrg, Transsg+RNNyg and
GNNgg+Transyg. Using both temporal and spatial transformer modules was hard to optimize

and resulted in degraded performance, so we didn’t include it as our model.

9.2.2 Correlation prediction Accuracy

Since the ground truth connections of springs (A) are known in the synthetic dataset, we can

calculate the accuracy of learnt correlation (A). The accuracy pgc. is calculated by
t<T

1
acc — Tiat _a:
Pace = TN x (N — 1) 2 Lisiar)

t=1,i<j

oAt
St B 1, 1fAm-20.5
ZA7j_

0, otherwise

Where S is the sampled categorical relation. 7" is the number of time step and /N is the number of

variables. For every pair of variables ¢, j, the function 1 is an indicator function which outputs

Lif S, = A!

i and 0 otherwise.

model location speed connection
GNNge+RNNg 96.07% 96.04% 90.45%
Transgg+RNNte | 97.79%  97.36% 93.11%
GNNgg+Transtg | 97.49% 97.47% 92.53%

Table 9.1: The accuracy of predicted connections compared with ground truth connections in

synthetic dataset.

We observe that spatial and temporal transformers achieve better performance in the ac-
curacy metrics, with Transsg+RNNyg the being best on location and connection change, and
nearly competitive as GNNgg+Transtg on velocity changes. This result is consistent in the
CPD task, such that Transgg+RNN1g has the best score for separated predictions of indepen-

dent changes and correlation changes.
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9.2.3 Correlation vs. Independent Change

In the experiment, our model separately predicts the correlation change-point score by the
correlation encoder, and the independent change-point score by the dynamics decoder. We
also report the results when the two scores are separately evaluated. In Figure Figure 9.4, we
plot the two types of scores predicted by our model in the three types of changes, and the
ground truth change-point label as the red dashed line.

We observe that for location and velocity changes, the independent scores are peaked at the
labeled change-point; For connection changes, the correlation scores are peaked at the labeled
change-point. We conclude that model has the ability to separate the two types of change-

points.

9.2.4 Change-point Type Classification

In the change-type classification experiment in Section 5, we propose to evaluate our model in
both supervised setting and unsupervised setting. In the supervised setting, the time step of
change-point is provided, and our goal is to predict the whether the change-point is resulted
from an independent change or a correlation change. In the unsupervised setting, the time
step of change-point not given, and we use the predicted change-point by our ensemble model
instead.

Our model separately predicts s,., the correlation change-point score, and s4, the indepen-
dent change-point score. The change-point type is determined by Norm(s,) — o Norm(s,),

such that

> 1, correlation change
Norm(s,) — a Norm(sy)

< 7, independent change

Where « is a hyperparameter and 7 is a threshold. Norm is the mean-std normalization func-
tion.

In our study, we set 7 = 0 and visualize (in Figure Figure 9.2) how a value affects the change-
point type classification accuracy. The model we choose is GNNgg+Transtg. We observe that
if o is small, the correlation change-point score dominates, and connection changes are more
accurately predicted. When « is large, the independent change-point score dominates, and the
location and velocity changes are more accurately predicted. As a trade off between the two,

we choose a = (.75 in the experiment section.
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Figure 9.2: « value vs. the change-point type classification accuracy. « is in range [0, 1].

9.2.5 Discussion on CPD

In the experiments, we use three metrics: AUC-ROC, DIST and TRI. The AUC-ROC score was
widely used in previous literatures [15, 84, 94, 147], but DIST and TRI are what we proposed
in this paper. The reason is that AUC-ROC treats each instance independently, but time-series
data has a strong locality dependence. We do observe cases where the peak of the prediction is
close to but not aligned with the labels, as shown in Figure Figure 9.3.

We observe that our model has the best performance in all the three metrics. For statis-
tical and other deep learning baselines, we observe that they have similar AUC-ROC, but the
statistical models are worse at DIST and TRI metrics. The reason is that statistical model con-
catenates a window sampled from training data at the start and end of each test case, to avoid

the cold-start problem. However, this may lead the algorithm to give higher scores at the start
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Misalignment for Connection CPD
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Figure 9.3: The peak of prediction is not aligned with the label, but very close due to a 1-step
delay.

or end of the test cases, resulting a larger gap from the labeled change-point.

9.3 Robust CPD on Real Data

In Table Table 9.2, we report the performance of Corp_CPD on the real-world PAMAP2 dataset.
The multivariate time series includes 3 variables and 10 features. The variables are sensors
on wrist, chest and ankle, and the features are temperature, 3D acceleration, gyroscope and
magnetometer. The change-points are transitions between activities, such as walking, cycling,

playing soccer.

In the real-world scenario, the change-points are often resulted from a mixture of correlation
change and independent change. We show the evaluated scores for the predicted correlation
changes and independent changes of each model in Table Table 9.2. We have two observations:
1) Each model capture similar trends for correlation changes and independent changes. There
are more independent changes than correlation changes involved. 2) The ensemble of two
reasons of change-points further boosts the performance, as the true reason of the change-

point could include both of them.
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model type | AUC DIST TRI
rel 0.6882 10.40 0.5972
GNNge+RNNTg ind 0.7850 7.73  0.7088
ens 0.7868 7.16 0.7574
rel 0.6538 13.95 0.4118
Transgg+RNN1r  ind 0.7722  7.73  0.7360
ens 0.7903 6.54 0.7750
rel 0.6715 15.04 0.4013
GNNge+Transyg  ind 0.7787  8.10 0.7102
ens 0.8277 4.20 0.8020

Table 9.2: The performance of our Corp_CPD on a real-world PAMAP2 dataset for CPD. We

include the scores of independent changes and correlation changes as well.

9.4 Desiderata and Related Work

In this section, we conclude our project with the settings of our model and related work to

emphasize our contribution and difference from the previous methods.

9.4.1 Settings

Unsupervised In real life, training labels for change-points are hard to obtain, so we want

our model to learn the patterns in an unsupervised settings.

Multivariate Time Series Multivariate time series is ubiquitous in our life. We focus on

change-point detection by modelling multivariate time series.

Interpretability Previous work in CPD literature mostly focuses on detecting change-points
instead of providing explanations to them. We give an attempt to reason the causes behind

change-points as correlation changes and independent changes.

Neural Architecture We give our effort to explore the application of deep learning models

in CPD.
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Figure 9.4: We show the correlation change-point score and the independent change-point score
in the three types of change-points. The ground-truth change-point is labeled as red dashed

line.

Graph Neural Networks Previous neural models mostly rely on CNNs and RNNSs to extract
local and long term dependencies [77]. For relational learning, GNNs may have better inductive

bias and we incorporate it into our encoder and decoder.

9.4.2 More on Related Work

Time series Forecasting

Time series forecasting aims at predicting future time steps based on historical observations
on time series signals, with a wide range of applications including forecasting new trends or
generating alert for potential hazardous events. Traditional time series forecasting models uses

State Space Models (SSMs) and Autoregressive (AR) models. Recently, deep learning models
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Location Change Trajectory Location Change Trajectory: x axis

Figure 9.5: Trajectory of Location Change . The figures show the trajectories of different types
of change-points of 5 particles (in 5 colors) connected by underlying springs. The figures on
the left show the 2-D trajectories of the particles, and the figures on the right show the x and
y axis of the trajectories separately. The dashed lines represent the expected trajectory if no

change-point happened, and the solid lines are the actual observed trajectory.
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Figure 9.6: Trajectory of Velocity Change.

uses CNN, RNN and Transformer models to extract features automatically and predict the future

steps.

Time series forecasting can be applied to CPD by comparing the expected future steps with
the observed value. In our work, we use the forecasting models as baselines to calculate the

change-point scores.
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Figure 9.7: Trajectory of Correlation Change.

Graph Neural Networks

Graph Neural Networks have attracted considerable amount of attention in deep learning com-
munity. As graph is a natural way to represent underlying interactions between objects, learn-
ing a relational graph in a data-driven approach is interesting. Recently, GloMo [151] proved
that the relations between units learned by GNN from text and image in one dataset can be gen-
eralized to other datasets in transfer learning setting. Neural relational inference [74] extracts
non-changing relations from time series data, and structure-informed graph auto-encoder [85]
incorporated prior knowledge as regularization to disentangle different relations from time se-
ries.

Besides the success of graph networks in applications, researchers are devoted to a theo-
retical understanding of the capacity of GNN. Graph Neural Networks recursively gather mes-
sages from local neighborhood and combine them by an aggregation scheme to form new node
features. This recursive aggregation scheme grants GNN the power to be better aligned with
relation learning tasks [146], and different ways of combining messages results in different ca-
pacity in those tasks [145]. In our work, we study how to use GNN networks to extract dynamic

correlation from time-series data and its applications to CPD.

Change-point Detection

In supervised setting, various methods have been applied to model the phases in time series, in-
cluding decision tree [172], Baysian net [171], support vector machine [116], Gaussian mixture

model [29] etc. Recently, deep learning models using wave-net style architecture for super-
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vised CPD [37]. Supervised methods such as decision trees could possibly give explanations on
change-points, but the labels are usually hard to obtain in large quantities.

In the unsupervised setting, most statistical CPD models are based on statistical inference,
or hypothesis tests. Bayesian CPD models [11, 148] computes the probability of change-points
using the Bayesian framework. BOCPD algorithms [2, 44, 73, 118] detect change-points by
sequentially considering the correlated intervals between them. Recent deep learning models
improves the state-of-the-art statistical methods by approximating density ratio [70], or learn-
ing kernel functions [15] using neural networks.

Our work belongs to the unsupervised deep learning CPD methods, but we propose a novel
encoder-decoder architecture to learn correlation changes and independent changes, and en-

semble them for final predictions.
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Chapter 10

Appendix of Chapter 5

10.1 Prompts for LLMINER

The sentence analysis prompt is shown in Fig. 10.1, the question proposal prompt is shown in
Fig. 10.2 and the answer generation prompt is shown in Fig. 10.3.

For LLMINER alignment, we use a simpler prompt shown in Fig. 10.4 with a passage and
highlighted sentence as input and the GPT-4 generated seed data as output.

To build domain corpus, we employ GPT-4 to propose a list of hypothetical Wikipedia titles
(prompt in Fig. 10.5) as the first-round input. Then, we use the Wikipedia-API to search for real
titles, and filter related titles with GPT-4 using prompt in Fig. 10.6.

For comparison of LLMiner with and without a chain-of-thought step (similar setting to
previous works [32, 33, 79]), we repeat the process of data collection only using a different set
of prompts. The prompt for seed data generation with GPT-4 is shown in Fig. 10.7 and the
prompt for baseline LLMINER training and inference is shown in Fig. 10.8.

We evaluate the quality of LLM output with GPT-4 judge with prompt shown in Fig. 10.9.
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Your role as an AI data miner requires you to extract pivotal details
from a given document. To start, analyze a specific sentence within
the document's context. Aim to evaluate the sentence's significance
and provide a succinct summary of your findings. Use the following
criteria to judge each sentence's importance:

Sentence Importance Evaluation:

1. Clarity and Understandability: Evaluate whether the sentence is
clear and easily understandable.

2. Value of Information: Assess if the sentence conveys any
significant information.

3. Knowledge Addition: Determine whether the sentence offers new
insights or knowledge.

4. Relevance: Check whether the sentence delivers an essential
message or key idea from the document.

Document Overview:

{document}

Sentence to Analyze:

"{sentence}"

Analysis Instructions:

Should a sentence meet the above criteria and is deemed important,
your output should be "Yes." Then write a brief analysis of the
sentence (two to three sentences). Concentrate on the sentence's

informative content rather than restating its clarity or
significance, i.e. "The sentence provides details in ..." is better

that "The sentence is important as it provides o

If the sentence fails to satisfy these criteria, your output should
be "No," along with an explanation of why the sentence doesn't carry

substantial importance.

Output:

Figure 10.1: GPT-4 Promf)ztéfor Analysis Generation.




As an AI data analyst, your mission involves mining crucial insights
from a given document. To aid your analysis, a specific sentence from
the document will be supplied, accompanied by an in-depth
interpretation highlighting its importance. Using this
interpretation, your task is to construct a question connected to the

sentence.

Guidelines for framing your question:

1. Answerable: The question should be crafted such that it can be
responded to using the context of the provided sentence.

2. Self-contained: Your question must carry enough context to be
understood independently. If required, include an explanatory phrase
for clarity. Avoid using terms like "from the document", "in the
report".

3. Insightful: Ideally, your question should delve deeper than just
surface-level details, making use of the analysis provided.

Document Brief:

{document}

Highlighted Sentence:

"{sentence}"

Analysis:

{analysis}

Given the document, highlighted sentence, and analysis, devise a
question that can be comprehended without needing additional context

- avoid phrasing like "in this context, ..." or "from the report ..."

Output:

Figure 10.2: GPT-4 Prompt for Question Proposal.
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As an AI data analyst, your mission involves mining crucial insights
from a given document. A text and an associated query will be
provided. Your task is to articulate a detailed and accurate reply to
the query, relying on the information embedded within the text.

Response Crafting Instructions:

1. Self-contained: Ensure your response is self-explanatory and can
be understood independently. While paraphrasing parts of the document
for clarity is permitted, do not assume that the reader has prior
knowledge of the document. Avoid using phrases such as "from the
document", "in the report".

2. Factual: Extract your answer directly from the document. Avoid
inventing facts if the query cannot be answered.

3. Concise: Aim for high-quality yet succinct responses. Ideally, a
single paragraph will suffice.

Context:
{document}
Query:
{question}

Answer:

Figure 10.3: GPT-4 Prompt for Answer Generation (Reading Comprehension).
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As an AI assistent for data analysis, you are expected to extract key
insights from the provided document.

Document :

{document}

Emphasized Sentence:

{sentence}

Your assignment is to evaluate the significance of the emphasized

sentence in relation to the entire document (articulate this

understanding). Based on your analysis, generate a corresponding

question and answer pair.

Figure 10.4: LLMINER prompt for training and inference.

Can you give a list of hypothetical Wikipedia titles to search for
the topic "{topic}"?

Output format:
A python array [List of Wikipedia titles]

Output:

Figure 10.5: Prompt for proposing hypothetical Wikipedia titles with GPT-4, the titles will be

used as input to Wikipedia-API to search for relevant documents.
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Determine if the list of searched document titles are related to the
query of "{topic}".

List of searched document titles:
{titles}

Output format:
Related titles: [List of related titles]

Output:

Figure 10.6: Prompts of employing GPT-4 to filter for relevant titles from the search results of
Wikipedia-APL
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As an AI data analyst, your task is to extract essential information
from a provided document and transform a highlighted sentence into a
question and answer (QA) pair.

QA generation guidelines:

1. Meaningful: Evaluate whether the sentence conveys a clear message.
If ambiguous or unclear, provide a rationale for its exclusion.

2. Answerable: Construct the question such that the answer can be
directly inferred from the given context.

3. Standalone: The crafted question should be comprehensive on its
own. Incorporate any necessary context or explanatory phrases to
ensure the question is self-sufficient.

Document Context:

{document}

Highlighted Sentence:

"{sentence}"

If the sentence is coherent and meaningful, format your output as:

Question: <proposed question>

Answer: <answer derived from the document>

Should the sentence lack clarity or significance, elucidate the

reason for its omission:

Skip: <reason for skipping>

Output:

Figure 10.7: GPT-4 Prompt for Question-Answer proposal without a chain-of-thought step.
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As an AI assistent for data analysis, you are expected to extract key
information from the provided document.

Document :

{document}
Emphasized Sentence:
{sentence}

From the document and the emphasized sentence, generate a pertinent
question and answer pair.

Figure 10.8: A baseline knowledge miner prompt without chain-of-thought reasoning step, used

as comparison for LLMINER.
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Please act as an impartial and objective judge and evaluate the
quality of the response provided by a chatbot to the user's question.
Your evaluation should be mainly based on whether the response is
correct, and whether the response contains any hallucinations.

To evaluate the LLM responses, first, begin your evaluation by
providing a short explanation. Second, after providing your
explanation, you must rate the response by choosing from the
following options:

1 - Completely Incorrect, irrelevant, with hallucination

2 - Mostly Incorrect, with hallucination

3 - Somewhat Incorrect / Partially Correct, with hallucination
4 - Mostly Correct but with some hallucination

5 - Correct, no hallucination

Question:

{question}

Reference Answer:

{answer}

LLM Response to Evaluate:
{1lm_response}

Output format:
Explanation: <your explanation>
Rating: <your rating>

Figure 10.9: Prompt for using GPT-4 as LLM judge.
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Chapter 11

Appendix of Video Large Language
Model Alignment
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11.1 Effect of ChatGPT Version on Official Benchmark Eval-

uation

In Table 11.1, we show impact of using different ChatGPT versions on metric scores within
zero-shot video question answering benchmarks. Our analysis reveals significant variations in
the absolute scores across ChatGPT versions, but based on the average accuracy metric, the
relative ranking of models under the same ChatGPT version shows consistency.

This comparison underscores a critical issue: many prior studies neglect to specify the Chat-
GPT version used, potentially leading to inaccurate conclusions during evaluation. We advocate
for the explicit designation of the ChatGPT version in future evaluations. Analysis from Ta-
ble 11.1 indicates that the version gpt-3.5-turbo-0613 aligns most closely with the performance
of the Video-LLaVA [87] model, serving as the benchmark for model performance comparison

in our study.
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MSVD-QA  MSRVTT-QA  TGIF-QA Summary

Methods LLM Size
Acc. Score Acc. Score Acc. Score Avg Acc. Rank

gpt-3.5-turbo-0301 evaluation
Video-ChatGPT [100] 7B 78.62 4.00 71.67 3.63 56.31 345 68.87 6
LLaMA-VID [86] 7B 82.57 4.12 7194 3.65 59.00 3.63 71.17 4
LLaMA-VID [86] 13B 83.72 416 73.63 3.68 59.72  3.66 72.36 3
Chat-UniVi [65] 7B 80.52 4.02 66.92 341 57.73  3.49 68.39 7
Video-LLaVA [88] 7B 81.44 4.08 73.29 3.65 58.34 3.61 71.02 5
LLAVA-HounD-SFT 7B 85.65 4.10 73.85 3.62 64.98  3.65 74.83 2
LLAVA-HounDp-DPO 7B 88.50 4.20 82.10 3.84 75.48 3.81 82.03 1

gpt-3.5-turbo-0613 evaluation
Video-ChatGPT [100] 7B 68.55 3.80 58.90 3.36 4783 3.21 58.43 6
LLaMA-VID [86] 7B 72.62 392 58.73 3.38 49.21  3.28 60.19 4
LLaMA-VID [86] 13B 7429 396 59.82 3.41 50.83 3.33 61.65 3
Chat-UniVi [65] 7B 70.01  3.79  53.08 3.14 46.09 3.12 56.39 7
Video-LLaVA [838] 7B 71.75  3.88  58.97 3.39 48.39 3.24 59.70 5
LLAVA-HounD-SFT 7B 7570  3.86 58.73 3.31 53.51  3.30 62.65 2
LLAVA-Hounp-DPO 7B 80.73 4.07 70.15 3.66 6138 3.46 70.75 1

gpt-3.5-turbo-1106 evaluation
Video-ChatGPT [100] 7B 73.02  4.01 62.09 3.61 47.76  3.36 60.96 6
LLaMA-VID [86] 7B 7549 4.08  62.09 3.61 51.72 347 63.10 4
LLaMA-VID [86] 13B 76.97 410 63.16 3.61 52.53  3.50 64.22 3
Chat-UniVi [65] 7B 72.22 392 55.02 3.35 48.16 3.31 58.47 7
Video-LLaVA [88] 7B 74.76  4.04 62.70 3.60 51.21 345 62.89 5
LLAVA-HouND-SFT 7B 81.09 4.08 64.13 3.57 58.05 3.53 67.76 2
LLAVA-Hounp-DPO 7B 86.05 4.23 76.75 3.85 70.02 3.71 77.61 1

Table 11.1: Performance Evaluation Across ChatGPT Versions on Zero-Shot Video
Question Answering Benchmarks. This table compares the performance of state-of-the-art
video LMMs evaluated under different ChatGPT versions. The absolute performance metrics
scored by ChatGPT vary by versions. However, the comparative ranking of models under the

same ChatGPT version is relatively stable.
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In-domain WebVid GPT-4V Evaluation
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Figure 11.1: Training subsets exhibit varying levels of generalization difficulty.

11.2 Evaluation of Captioning Ability from pre-training

In Figure 11.2, we present the video captioning ability of models across various datasets, with a
total of 900k distilled data instances. GPT-4V is employed for self-evaluation (Fig. 11.14), serv-
ing as the upper-bound performance, while the Video-LLaVA serves for comparative analysis,
establishing a baseline. Notably, Video-LLaVA is trained on 54k video QA data instances. How-
ever, our first checkpoint, utilizing only 10% of the data, is trained on 90k high-quality caption
data instances, likely accounting for the observed performance disparity in the video captioning
task. Our results demonstrate that incorporating more distilled data contributes to improved
model performance across both in-domain and out-of-domain datasets. Despite these improve-
ments, a performance discrepancy with the GPT-4V model remains. Further, we evaluate the
generalization potential in specific data subsets, as shown in Fig. 11.1 in the Appendix. These
subsets reveal varying degrees of generalization challenges for different types of dataset. For
example, the WebVid subset, which concentrates on relatively static scenes, necessitates less
data for effective training compared to the VIDAL subset, which is marked by dynamic scene

transitions and a diversity of video themes.
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Out-of-domain GPT-4V Evaluation
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Figure 11.2: The video caption ability w.r.t number of training data evaluated on both in-domain

and out-of-domain test videos using GPT-4V.

11.3 Human Annotated Examples of Distilled Captions
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WebVid Video ID: 2994286

GPT-4V Caption

Initially, the video displays a curved road lined with multiple orange traffic
cones and greenery on either side. The focus shifts to a large, dark-colored
truck approaching, its engine sound becoming increasingly prominent. The
camera angle changes to the rear of the truck, revealing a runner, wearing a
blue top with a white number bib marked '108', passing the truck on its left
side. The video concludes with the truck's rear-end seen driving away with the
traffic cones visible in the background.

Human Annotation

Inaccuracy (Hallucination):
1. The truck is driving away instead of approaching

Coverage:
1. The runner is holding a cup-like item

Figure 11.3: Human Annotation Analysis: The video frames depict a truck driving away from
the camera, but the distilled caption incorrectly describes the direction, which is identified as a
hallucination. Additionally, human annotators noted that the GPT-4V model failed to recognize

a man holding a cup.

11.4 Video QA Dataset Demonstration

To build the test dataset, we curated a dataset comprising 2,000 videos from each source: Web-
Vid [10], VIDAL [175], ActivityNet [38], MSRVTT [144], MSVD [18], TGIF [63], and Something-
something V2 (SSV2) [48]. For each video, ChatGPT was utilized to generate three QA pairs
based on the detailed captions. The first three datasets (WebVid, VIDAL, ActivityNet) are clas-
sified as in-domain, since the captions and QA pairs derived from these sources are used in the
model’s training pipeline. Conversely, the remaining datasets (MSRVTT, MSVD, TGIF, SSV2)

are classified as out-of-domain, evaluating model’s zero-shot QA ability.

Section 11.4 compares our development benchmark with existing benchmark dataset, we
identify several issues with the existing evaluation methods: (1) the auto-generated questions

from current benchmarks may be grammatically incorrect or nonsensical, and (2) the answers
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Vidal Video ID: -d3h9kQAMvw

GPT-4V Caption

The cat is observed suspended by a limb caught in an electrical cable. It is a
light-colored feline, possibly tan or cream, with a noticeably fluffy tail. Below,
the person stands on what appears to be a blue stool or small ladder, reaching
out towards the cat in an attempt to free it. The environment includes a green,
neatly trimmed bush directly under the cat, and to the side, there appears a
section of a vehicle — likely a car, suggesting the proximity to a driveway or
parking spot. The pavement where these activities are occurring has a distinct
pattern, likely tiles, surrounded by green grass, which borders a residential
building. Above, an electrical pole is partially visible with thick cables extending
from it — one of which the cat is caught in.

Human Annotation

Inaccuracy (Hallucination): Coverage:
1.No blue stool or ladder visible -

Figure 11.4: Human Annotation Analysis: GPT-4V incorrectly identified a man wearing blue

pants as a man standing on a blue ladder, which is labeled as a hallucination.

are limited to a single word, which is inadequate for evaluating LMMs in the context of long-
form QA. We conduct further analysis on open-ended long-form QA with a proposed develop-
ment benchmark.

We apply our reward system as described in ?? and report scores from ChatGPT. A score
of > 3 is considered correct for accuracy calculations. The development benchmark reveals
insights into (1) the quality of long-form open-ended QA, and (2) in-domain and out-of-domain
generalization. Additionally, our development benchmark results correlate with existing bench-
marks. We recommend that models be evaluated on the development benchmark first, followed

by human evaluation.
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ActivityNet Video ID: v__Y4czVoIxvE-Scene-006

% il ?‘f i ﬁw ?; “L = r \ T 2ol \
\ IR o
p 3: Adhere qures %&% v Step 7 Adhere ;;;s Tr;g;e% J [ - Nl

GPT-4V Caption

Initially, two people are seen sitting on the floor with crafting materials. They both
wear casual clothing: one in a dark blue long-sleeve top with "Johnny’s BBQ"
written on it and the other in a red and black checkered shirt. They appear to be
in a cozy room with a wooden floor and a heater in the background. The next
scenes showcase the crafting process in detail, focusing on hands carefully
placing square-shaped burgundy materials with patterned textures onto a lighter
brown base. The precision of their movements suggests they are experienced in
this type of work.

Human Annotation

Inaccuracy (Hallucination):
1. The text on shirt should be “Jimmy’s BBQ”

Coverage:
1. Missing text: “Step 3: Adhere Squares Together”

Figure 11.5: Human Annotation Analysis: The example demonstrates OCR hallucination and a
coverage issue. The text on the woman’s t-shirt is incorrectly labeled as ‘Johnny’s BBQ’ instead
of Jimmy’s BBQ. Additionally, the text ‘Step 3: Adhere Squares Together’ is missing from the

description.

11.5 Additional DPO Results
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ActivityNet Video ID: v__ wITx73-BXw-Scene-003

GPT-4V Caption

The video showcases multiple scenes from a soccer match being played on a
field surrounded by an athletic track. It appears to be in the evening, and a
scoreboard is visible in the background indicating the game is underway. The
players, wearing contrasting uniforms, are seen running, maneuvering the ball,

and aiming at the goal. The crowd can be faintly seen on the sidelines watching
the game.

Human Annotation

Inaccuracy (Hallucination): Coverage:
- 1. “Gopher” and “Coca Cola” on the board
2. Score board shows time left

Figure 11.6: Human Annotation Analysis: The caption does not contain any hallucinations, but
some text recognized by human annotators is missing, such as ‘Coca Cola’ and ‘Gopher’ on the

scoreboard, as well as the time of the score match shown.

11.6 Prompts for GPT-4V and ChatGPT Queries
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Act|V|tyNet Video ID: v_ Wag6CT_0j8-Scene-003

GPT-4V Caption

Throughout the video, there are multiple sequences featuring women in athletic
attire engaged in a field hockey match. The players are distributed across a well-
maintained, green artificial turf field. Two teams are visible: one in dark blue and
white striped jerseys, and the other in white jerseys with black numerals. The
white-jersey team appears to be on defense, while the dark-jersey team is in an
offensive posture, advancing the ball. Some of the key visual elements include the
athletic gear, such as shin guards, field hockey sticks, and cleats that the players
are wearing. The background includes features like team benches, spectator
stands, and a scoreboard that shows "MONMOUTH 0 2nd RIDER 2". Throughout
the various frames of the video, players can be seen running, likely maneuvering
the ball, and repositioning to either defend or continue their offensive push.
Ambient shadows suggest sunny weather conditions during the recording of this
match.

Human Annotation

Inaccuracy (Hallucination): ~ Coverage:
1. Score transition from "MONMOUTH 0 2nd

RIDER 2” to "MONMOUTH 1 2nd RIDER 2".

Figure 11.7: Human Annotation Analysis: The figures illustrate a scoring transition that is not
recognized by the GPT-4V model, highlighting the challenge of using static frames for accurate

captioning.
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MSRVTT Video ID: video7012

Existing Video QA Dataset

Q: what is a suit man doing? Q:what does a man seated in a chair Q: who is speaking about the relevance
A: talk discuss? of disorders?
A: health A: man

Our Video QA Dataset
Q: What is the person in the video doing and what does their appearance suggest?

A: The person in the video is sitting in a leather chair against a wooden backdrop with framed art
and a small light fixture on the wall and appears to be delivering a speech or presentation. Their
appearance suggests that they are confident and engaged in the presentation or interaction.

Q: What decorative items are on the desk in the video and what does the lighting in the room look
like?

A: The desk in the video features a couple of decorative items including a blue-striped spherical
object and a small chrome lamp with a white shade. The lighting in the room is soft and comes from
the person's left side, casting soft shadows.

Figure 11.8: Comparing testing QA in existing benchmark with that in our proposed new bench-

mark.
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MSRVTT Video ID: video7016

Existing Video QA Dataset

Q: what are girls and their ~ Q: who does a woman teach how to Q: what is kids doing?
mom doing? paint eggs? A: color

A: marble A: girl

Our Video QA Dataset

Q: What is the purpose of the video?
A: The purpose of the video is to showcase the process of dyeing Easter eggs.

Q: What are the tools and materials used in the video?
A: The tools used in the video are a wire egg holder, and the materials are a variety of colorful dyes,
eggs, and a tablecloth.

Q: What is the significance of the tablecloth in the video?
A: The tablecloth is adorned with whimsical fish designs and protects the workspace where the
dyeing process takes place.

Figure 11.9: Comparing testing QA in existing benchmark with that in our proposed new bench-

mark, example 2.

DPO Acc vs. Training Epochs (Out-of-domain)
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Figure 11.10: Test Set Accuracy of the DPO Model vs. Training Epochs. The figure illustrates
a consistent trend in both in-domain and out-of-domain video QA, with peak performance

occurring at approximately epoch 2.5, equivalent to 350 training steps.
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DPO as Ranker for WebVid (In-domain)

DPO as Ranker for MSRVTT (Out-of-domain)
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Figure 11.11: Comparison of DPO Model Performance: Ranker vs. Generator. The DPO model

serves as a ranker, assigning reward scores to candidate answers generated by the SFT model

with a temperature setting of 1.0. Employing the DPO model directly for answer generation

results in superior performance compared to its use as a ranker.
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Picture yourself as a customer service agent managing user-uploaded
video. The uploaded video, captioned with '{}', consists of a seires
of images. All the analysis should be video-level. Your duty is to
summarize video content, highlighting actions and object
relationships. Follow this with a detailed description. The summary
briefly covers actions and relationships, while the detailed
description delves into factual, visible details with a logical
structure, considering elements like color, shape, attribute, and
count.

Then craft a dialogue between the agent ('A') and the customer ('C')
in a manner suggesting that the agent is actively viewing the video
and answering the customer's questions. Frame questions using 'how
many', 'what,' 'how,' 'when,' 'which,' and 'why' to ensure precise
and definitive answers, rooted in video content. Pose varied
questions encompassing the visual content, such as object types,
counting objects, object actions, object locations, and relative
positions between objects. Ensure each question has a definite
answer, either observed in the video or confidently determined to be
absent. Avoid questions with uncertain answers.

Ouput format:
Summary: <your summary>
Detail: <your detailed description>

Conversation: <your quesion-answer conversation, clearly labeling the

customer and agent as 'C' and 'A'>

Figure 11.12: GPT-4V prompt for the generation of video summary, detailed caption and con-

versation generation. We only use detailed caption for experiments.
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Task Instructions:

Given a caption that summarizes the content of a video, generate
three question-answer pairs that relate directly to the information
and context provided in the caption. The questions should be grounded

to the understanding of the video content.

Guidelines for QA Generation:

1. Helpfulness: Answers should provide sufficient detail and depth to
fully address the question. They should include relevant
explanations, or context where appropriate, to enhance understanding.

2. Faithfulness: The answers must accurately reflect the information
presented in the video caption. Avoid speculation or the inclusion of
information not contained or implied by the caption to maintain the
integrity of the content.

3. Diversity: Craft questions that cover different aspects of the
video caption to provide a comprehensive understanding of the
content. This includes factual inquiries, inferential questions, and
those that may elicit explanatory responses.

Input Video Caption:
{caption}

Output format:
Q1: <questionl>
Al: <answerl>
Q2: <question2>
A2: <answer2>
Q3: <question3>
A3: <answer3>

Figure 11.13: ChatGPT for instruction generation.
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Your role is to serve as an impartial and objective evaluator of a
video caption provided by a Large Multimodal Model (LMM). Based on
the input frames of a video, assess primarily on two criteria: the
coverage of video elements in the caption and the absence of
hallucinations in the response. In this context, 'hallucination'
refers to the model generating content not present or implied in the
video, such as incorrect details about objects, actions, counts, or

other aspects not evidenced in the video frames.

To evaluate the LMM's response:

Start with a brief explanation of your evaluation process.
Then, assign a rating from the following scale:

Rating 6: Very informative with good coverage, no hallucination
Rating 5: Very informative, no hallucination

Rating 4: Somewhat informative with some missing details, no
hallucination

Rating 3: Not informative, no hallucination

Rating 2: Very informative, with hallucination

Rating 1: Somewhat informative, with hallucination

Rating 0: Not informative, with hallucination

LMM Response to Evaluate
{LLM_response}

Output format:
Judgment: <your judgments>
Score: <integer value rating>

Figure 11.14: GPT-4V evaluation prompt for video captioning,.
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Given the following inputs:

**Ground Truth Video Caption**: {caption}
**Question Related to the Caption®*: {question}
**Ground Truth Answer**: {answer}

N O R

**Model Predicted Answer**: {prediction}

Your task is to evaluate the model's predicted answer against the
ground truth answer, based on the context provided by the video
caption and the question. Consider the following criteria for

evaluation:

- **Relevance™**: Does the predicted answer directly address the
question posed, considering the information provided in the video
caption?

**Accuracy**: Compare the predicted answer to the ground truth
answer. Does the prediction accurately reflect the information given
in the ground truth answer without introducing factual inaccuracies?

**Clarity**: Assess the clarity of the predicted answer. Look for
issues such as repetition, unclear descriptions, or any grammatical
errors that could hinder understanding.

**Completeness**: Determine if the predicted answer fully covers
the scope of the ground truth answer. Does it leave out critical

information or does it include all necessary details?

**Output Format™™:
Explanation: <brief judgement of prediction>

Score: <a integer score of quality from 1-5>

Figure 11.15: ChatGPT-Evaluation Prompt for Video Question Answering. This prompt takes
in a detailed caption, question, ground truth answer, and model prediction, subsequently gen-
erating an assessment of the prediction’s quality alongside a corresponding score based on

predefined criteria. A score value > 3 will be considered correct for accuracy calculation.
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Your task is to act as an impartial and objective assessor of answers
generated by a Large Multimodal Model (LMM) for video-based
questions. Utilizing video frames, a posed question, and the model's
provided answer, your evaluation should focus on the following
aspects:

**Relevance™*: Does the predicted answer directly address the
question posed, considering the information provided in the video
caption?

- **Accuracy**: Compare the predicted answer to the ground truth
answer. Does the prediction accurately reflect the information given
in the ground truth answer without introducing factual inaccuracies?

**Clarity**: Assess the clarity of the predicted answer. Look for
issues such as repetition, unclear descriptions, or any grammatical
errors that could hinder understanding.

**Completeness**: Determine if the predicted answer fully covers
the scope of the ground truth answer. Does it leave out critical

information or does it include all necessary details?

**Input™*:
Question: {question}
Model Predicted Answer: {prediction}

**Output Format**:
Explanation: <brief judgement of prediction>
Score: <an integer score of quality from 1-5>

Figure 11.16: GPT-4V Evaluation Prompt for Video Question Answering. Together with video
frames input in GPT-4V API, this prompt takes in a question, and model prediction, subse-
quently generating an assessment of the prediction’s quality alongside a corresponding score
based on predefined criteria. A score value > 3 will be considered correct for accuracy calcu-

lation. This is used to assess the quality of ChatGPT evaluation in Fig. 11.15.
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Chapter 12

Appendix of Vision Language Reasoning

CONTENT OF APPENDIX

In this paper, we aim to enhance chain-of-thought (CoT) reasoning in visual language mod-
els. In the main paper, we have discussed the CoT data distillation, supervised-finetuning (SFT)
and reinforcement learning (Rl) with direct preference optimization (DPO) algorithm. In the
appendix, we provide additional items that offer further insight into each aspect:

12.1 SHAREGPT-40-REAsoNING Data for VLM CoT Reasoning;
12.2 Baseline Evaluation;

12.3 More DPO Experiments;
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Table 12.0.1: Performance Comparison of GPT-40, Cambrian-7b, and our SFT Model. For Cam-
brian, * indicates our replicated results, while others are adapted from [132], t indicate CoT

prompt used for evaluation. ‘Our-SFT’ refers to LLAVA-REASONER-SFT.

Dataset GPT-40 | Cambrian LLaVA-Reasoner-DPO Grok-1.5V
direct/cot | official direct/cot

A-OK 89.6/90.1 83.1% 85.4/87.0 -
ChartQA 79.6/84.7 73.3 76.4/84.2 76.1
DocVQA 90.3/90.8 77.8 83.1/82.7 85.6
InfoVQA 72.4/72.8 45.7* 51.2/52.7 -
TextVQA 78.1/75.4 71.7 73.3/71.5 78.1
AI2D 80.7/81.5 73.0 79.4/79.5 88.3
SQA 85.9/87.2 80.4 90.8/92.6 -
MathVista 54.8/63.4 49.0f 44.2/52.1 52.8
OCRBench 80.2/79.2 62.4 62.9/63.7 -
MMStar 55.1/64.7 50.3% 51.5/54.1 -
MMMU 57.8/63.6 42.7 42.4/42.6 53.6
Avg (of best) | 77.9 64.5 69.5 -

12.1 SHAREGPT-40-REAsoNING Data for VLM CoT Reason-
ing

12.1.1 Prompt for GPT-40 Distillation

Figure 12.1.1 and Fig. 12.1.2 illustrate the GPT-40 system (task) prompt and the GPT-4o0 dis-
tillation prompt. We employ the same prompt across all VQA datasets for data distillation.
Specifically, the input to the prompt consists of an image, a question, and a short answer. The
short answer serves as a reference for GPT-4o to generate a CoT reasoning followed by a final

answer after "### Answer’. We show a few more examples in the next subsections.
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When provided with an image, a question, and a reference answer,
generate a chain-of-thought step that helps derive your own answer.
Your rationale should include detailed visual elements in order to
derive the answer.

Figure 12.1.1: GPT-40 system prompt for CoT distillation.

12.1.2 Filtering Mismatched Annotations in Distillation

In the GPT-40 prompt shown in Fig. 12.1.2, we treat the annotation as a reference answer and in-
struct GPT-40 to generate its own solution based on that reference. In Fig. 12.1.3 and Fig. 12.1.4,
we illustrate cases where the GPT-40-generated solution differs from the annotated answer.
Upon human examination, we identified errors in the annotations. For example, in Fig. 12.1.3,
there are issues such as incorrect text recognition (e.g., “dentist” misidentified as “heart”) and
incorrect object identification (e.g., “beer” as “water”). In Fig. 12.1.4, the annotation errors in-
volve incorrect calculations in the left figure and miscounting in the right figure.

To ensure consistency and avoid potential errors, we filtered out examples where the GPT-40
generated answer differs from the annotated answer. In SHAREGPT-40-REASONING, we release

the SFT CoT data along with the original distillation and filtered examples for reference.
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12.2 Baseline Evaluation

Table 12.2.1: Evaluation of VLM performance on benchmark datasets with direct and CoT in-

ference.

Dataset LLAVA-NEXT-8B LLAVA-NEXT-FOrRMAT

direct CoT direct CoT
A-OK 85.9 44.5 85.8 84.3
ChartQA 68.6 52.8 70.2 71.2
DocVQA 78.4 571 75.7 67.0
InfoVQA 36.6 25.8 37.7 34.9
TextVQA 67.2 41.6 68.2 62.2
AI2D 73.0 70.0 71.5 67.4
SQA 77.4 75.8 75.4 74.4
MathVista 37.3 25.3 39.3 40.3
OCRBench | 57.7 59.7 59.1 56.6
MMStar 47.8 45.7 44.7 46.7
MMMU 42.8 37.6 41.8 37.7
Avg 61.2 48.7 60.9 58.4

In this section, we provide evaluation details for our base model, which uses the LLAMA3-
LLAVA-NEXT-8B architecture with weights initialized from OpEN-LLAVA-NEXT. We selected
OPEN-LLAVA-NEXT weights because the data and training pipelines were fully available at the
time of model development, allowing us to avoid reliance on the unreleased real user interac-
tions referenced in [91]. The pretraining data for OPEN-LLAVA-NEXT consists of 1M image-
text pairs, sourced from datasets such as ShareGPT4V, ALLaVA-Instruct-VFLAN-4V, DocVQA,
SynDog-EN, ChartQA, DVQA, AI2D, and GeoQA+.

When evaluating LLAVA-NEXT-8B, we identified several issues, such as the inability to
follow the CoT prompt, refusal to answer questions, and generating irrelevant reasoning. In
Fig. 12.2.1, we present randomly sampled examples from LLAVA-NEXT-8B with a temperature
setting of 1.0 on a ChartQA test case. These examples demonstrate the model’s difficulty in
adhering to the CoT prompt. In the first example, the model declines to answer the question. In

the second to fourth examples, the model provides an answer first, followed by an explanation,
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which doesn’t effectively use thought process to answer the question. In the final example, the
model generates a descriptive response instead of reasoning through the question, ultimately
failing to provide an answer. This illustrates the model’s inconsistent handling of the prompt
structure.

Table 12.2.1 presents the evaluation results for LLAVA-NEXT-8B. For CoT predictions, we
use ChatGPT to extract a letter choice or short answer from the long-form model output, using
the prompts shown in Fig. 12.2.2 and Fig. 12.2.3. However, due to LLAVA-NEXT-8B ’s inability
to accurately follow the CoT format, its performance is significantly worse compared to direct
predictions and our format-aligned model. For direct prediction, our LLAVA-NEXT-FORMAT has
similar performance as that of LLAVA-NEXT-8B.

In Fig. 12.2.4, we present the same example trained with our format-aligned data for CoT
using only 450 examples. The model successfully follows the CoT format by verbalizing the
thought process and providing a short answer after "### Answer:". This allows us to use a
rule-based extractor to retrieve answers, which also improves CoT performance, as shown in
Table 12.2.1. However, the example also demonstrates that, while our data induces the CoT
process, the reasoning remains incorrect. Sampling 32 examples using the format in Fig. 12.2.4
resulted in 3 correct answers, yielding an accuracy of 9.4% for that case. As a result, only slight
gain is observed on ChartQA for CoT prediction vs. direct prediction.

Based on the above experiments, we report LLAVA-NEXT-8B as the baseline in the paper
to avoid the difficulty in CoT evaluation and answer extraction of LLAMA3-LLAVA-NEXT-8B

baseline.

157



12.3 Additional DPO Experiments

Table 12.3.1: Truncating response length affects the final performance of DPO. No truncation
leads to a decline in performance, while truncating to 90 tokens empirically yields the best

results.

Data/Truncate Len prompting 70 90 110 No Truncate | SFT baseline
direct 76.5 76.2 76.7 75.9 76.1
ChartQA
CoT 83.9 842 818 80.6 83.0
direct 852 852 853 85.1 35.4
A-OKVQA
CoT 86.7 86.9 86.3 85.7 86.2

Truncating Responses for DPO In our initial experiments, we observed that truncating
response length impacts the final performance of DPO. As shown in Table 12.3.1, no truncation
results in a decline in performance, while truncating to 90 tokens empirically produces the best

results. Consequently, we applied a 90-token truncation for the DPO experiments.

DPO vs. RFT Following Section 7.5, we examine the impact of RFT and compare it to the
DPO method.

In Table 12.3.2, for A-OKVQA, we observe that training with A-OKVQA RFT alone yields the
best result for A-OKVQA; however, the model’s ability to generate short answers is entirely lost.
When format-aligned data is added, there is a trade-off between performance on A-OKVQA and
other datasets.

When the datasets are combined for training, we see improvements only on ChartQA, while
performance on A-OKVQA and MathVista declines. This indicates that balancing RFT across
datasets is challenging, especially when the SFT model already performs relatively well on basic
tasks. In contrast, the DPO model demonstrates consistent gains across datasets, showing better

generalization.
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# Objective #

You are provided with an image, a question and a reference answer.
Your job is to generate a rationale that logically derives the answer
from the visual clues.

HAAAHHARBHARA

# Question #
{question}

HAABHHARBHIHA

# Reference Answer #
{answer}

HHHHHAAAHARAR

# Rationale Requirement #

1. Do not state an answer at the beginning. Explain the visual clues
that help to derive the answer.

2. Don't state that the reference answer is correct or consistent to
your finding. Your are writing your own solution.

3. State your own derivation at the end with new line: ### Answer:

<your answer>

HAAAHAARBHARA

Figure 12.1.2: GPT-40 prompt for CoT distillation.
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A-OKVOQA Filtered Out Example #1

A-OKVQA Filtered Out Example #2

Question: What drink has the owner of this cooler stocked
up on?

Options: A. beer, B. soda, C. water, D. wine

Annotated Answer: C. water

Question: What part of the body does Dr. Eng work on?
Options: A. heart, B. teeth, C. ears, D. lungs
Annotated Answer: A. heart

GPT-40 Response:

The image shows a street view with several signs on
the buildings. One prominent sign reads "DR. EILEEN
ENG DENTIST" along with the address "207." The word
"DENTIST" is clearly visible and indicates the profession

GPT-40 Response:
The image shows a cooler with a glass door, allowing a

of Dr. Eileen Eng. Dentists are medical professionals
who specialize in the care of teeth.

Given this information, it is clear that Dr. Eng works on

clear view of its contents. The cooler is stocked with
various bottles and cans. Upon closer inspection, the
majority of the items inside the cooler appear to be
bottles with labels and shapes that are typically

teeth. associated with alcoholic beverages, such as beer. The
bottles have different colors and designs, which are
common for beer brands. There are no visible signs of

soda cans, water bottles, or wine bottles. #

###t Answer: B. teeth

## Answer: A. beer

Figure 12.1.3: An example from the A-OKVQA dataset highlights cases where the annotated
answer does not match the GPT-40-generated answer. In these cases, the GPT-40 answers are
correct, while the annotations contain labeling errors. In the left figure, the sign reads “dentist”
(correctly identified by GPT-40), and the answer should relate to ‘teeth, not ‘heart’ as in the
annotation. In the right figure, the fridge contains beer, but the annotation incorrectly labels it
as ‘water. Consequently, we filter out instances where the GPT-40-generated answer does not

match the annotated answers.

160



ChartQA Filtered Out Example #1

Question: How much money did "1917" and "Sonic The Hedgehog" earn?
Annotated Answer: 204.41

Bad Boys fer Life 204.41
1917

Sonic the Hedgenog

Jumanjiz Tha Next Lavel

Star Wars: Episode X - Th

Spies 1n Lisquise

GPT-40 Response:

To determine the combined earnings of "1917" and "Sonic The
Hedgehog," we need to locate the earnings for each movie on the bar
chart.

1. The bar labeled "1917" shows earnings of 157.9 million U.S.
dollars.

2. 2.The bar labeled "Sonic the Hedgehog" shows earnings of 146.06
million U.S. dollars.

To find the total earnings, we add these two amounts together:

157.9 (for "1917") + 146.06 (for "Sonic The Hedgehog") = 303.96

### Answer: 303.96

ChartQA Filtered Out Example #2

Question: Which country had the highest number of terrorist attacks in
2020?
Annotated Answer: Spain

Italy 24
France (B
Greee: |0
Germany 6
Spain °
Netheriands |0
Czzchia |0
Denmark |0
Poland |0
Belgium
Bulgaria [0
Finland |0

Sweden [0

GPT-40 Response:

The bar chart displays the number of terrorist attacks in various
countries in 2020. Each country is represented by a horizontal bar, with
the length of the bar corresponding to the number of attacks.

- Italy has the longest bar, indicating it had the highest number of
terrorist attacks, with a total of 24 attacks.

- France follows with the second longest bar, showing 15 attacks. -
Spain is next with 9 attacks.

- Germany had 6 attacks. - Belgium had 2 attacks.

- Greece, Netherlands, Czechia, Denmark, Poland, Bulgaria, Finland,
and Sweden all had 0 attacks, as indicated by the absence of bars for
these countries.

From these visual clues, it is clear that the country with the highest
number of terrorist attacks in 2020 is Italy.

#it# Answer: Italy

Figure 12.1.4: Filtered examples from the ChartQA dataset are shown. In the left figure, GPT-
40 correctly identifies ‘1917" and ‘Sonic The Hedgehog’ and provides the correct summation,
while the annotated answer incorrectly lists ‘204.41°, which is the value for ‘Bad Boys for Life’
and is unrelated to the question. In the right figure, GPT-40 accurately ranks the numbers from
highest to lowest, but the annotated answer incorrectly identifies ‘Spain” as having the highest

value, when it should be the third largest.
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ChartQA LLaVA-Next-8b CoT Example

Question: How many food item is shown in the bar graph?
Generate a reason first and then output a short answer.

Long-term price index in food commodities, 1850-2015, World, 1934 Our World
Commodity price index in food items dating 1850-2015, measured relative to real prices in 1900 (i.e. 1900 = 100)

in Data

Lamb 1037

Cocoa _ 18.81
0 20 40 60 80 100
Source: Commodity Prices since 1850 - Jacks (2016) OurWorldinData orgffood-prices! - CC BY

Sample #1:

As the bar graph doesn’t contain any numerical data or labels, it's not possible to count the exact number of food
items depicted in the illustration. For a precise answer, more information or a closer examination of the specific
items in the image would be necessary. In generating an accurate response, attention should be paid to the visual
cues and contextual details of the scene, which might hint at the types of food items being presented.

Sample #2:

The bar graph displays ten different food items. These are arranged from left to right in descending order, with
the first item being "Lamb." A reason for the descending order could be to represent the decreasing price index
over time for that particular food item, but this is a common placement for descending bar graphs in general, so
it's likely for readability of the labels.

Sample #3:

The bar graph illustrates nine food items, which are Lamb, Corn, Barley, Rye, Beef, Wheat, Coffee, Peanuts, Palm
Qil, and Pork. Each row represents one item, and the length of the horizontal bar corresponds to the commodity
price index, a measure of food prices relative to their prices in 1900.

Sample #4:

The bar graph shows eight food items. The reason for generating such a graph is to compare the long-term price
trends of these food commodities over a century and a half, from 1850 to 2015. The graph is useful for
understanding the pricing dynamics of these agricultural products, which can affect the economy, food security,
and consumer affordability. The output reflects the historical price volatility and long-term increase in global food
commodities, with the most significant increase in the price of grains like corn and barley, indicating their
importance as staples in global food systems.

Sample #5:

Long-term price indices are a statistical measure of the evolution of the relative cost over time of a basket of
goods. This particular bar graph is a comparison of the price indices of various food commodities over a century,
representing an economic measure of the food prices in 1915 as a benchmark for relative price changes. The
graph illustrates the historical cost of items in the food category, with the largest relative change indicated by the
longest bars for items such as Lamb, Coffee, and Rice, and the smallest for Sugar and Cocoa.

Figure 12.2.1: Randomly sampled examples from LLAVA-NEXT-8B with temperature=1.0 for a
test case in ChartQA reveal that the model struggles to effectively follow the CoT prompt. In
Sample 1, the model refuses to answer the question. In Samples 2-4, the model generates an

answer first, followed by an explanation. In the final sample, the model produces a description

instead of reasoning through the question, without providing an answer.
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You are an AI assistant who will help me to match an answer with
several options of a single-choice question. You are provided with a
question, several options, and an answer, and you need to find which
option is most similar to the answer. If the meaning of all options
are significantly different from the answer, output Z. Your should
output a single uppercase character in A, B, C, D (if they are valid
options), and Z.

Example 1:

Question: What is the main object in image?

Options: A. teddy bear B. rabbit C. cat D. dog

Answer: a cute teddy bear

Your output: A

Example 2:

Question: What is the main object in image?

Options: A. teddy bear B. rabbit C. cat D. dog

Answer: Spider

Your output: Z

Example 3:

Question: {question}

Options: {options}

Answer: {answer}

Your output:

Figure 12.2.2: ChatGPT answer extraction prompt for multiple-choices questions.
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Your goal is to extract a short answer from a chain-of-thought

prediction. You are given a question and model prediction, the image

is omitted.

You need to determine the answer from the prediction. If no answer

can be derive, output NA.

He###H# Example 1 ###H##H

### Question:

How many bars are there in the chart?

### Prediction:

The result shows bar graphs ..., counting the bars,
of 8 bars.

### Your output:

8

HH##H# Example 2 ######

### Question:

Determine the date appeared in the document.

### Prediction:

The figure displays a document on financial income
2008/01/15 appears at body of text.

### Your output:

2008/01/15

HH###H##H# Your Task ###H###
### Question:
{question}

### Prediction:
{prediction}

### Your output:

there are a total

the date

Figure 12.2.3: ChatGPT answer extraction prompt for short answer questions.
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ChartQA CoT Example of our LLaVA-NeXT-Format

. . . . Long-term price index in food commodities, 1850-2015, World, 1934
Question: How many food item is shown in Commodity price index in food ifems dating 1850-2015, measured relative to real prices in 1800 (L. 1900 = 100)

the bar graph? Ll
Generate a reason first and then output a
short answer.

10313

Barley 102.46

)
g
-

i

2
5

Wheat 8373

i

68.45

g

Peanuts

:

Paim oil

Pork 55.36

Rice 4248

Sugar

cocoa 1881

oI

Sample #1:
The bar graph shows the long-term price index in food commodities from 1850 to 2015, measured relative to real
prices in 1900. Each bar represents a different food item and the lengths of the bars are proportional to the price
index values.

20 40 80 80 100

1. The y-axis lists various food commodities, such as Lamb, Corn, Barley, Rye, Beef, Wheat, Coffee, Tea, Peanuts,
Palm Qil, Pork, Rice, and Cocoa.

2. Each bar along the x-axis is associated with a specific food item, and they are ordered from left to right.
Counting each distinct category name along the y-axis, there are 12 different food items shown in the bar
graph.

### Answer: 12

Sample #2:

The bar graph is a visual representation of the long-term price index of various food commodities from 1850 to
2015. Each bar is associated with a different food item, and the length of the bar represents the relative price
change in terms of real prices in 1900.

By examining the horizontal axis, we can count the number of food items listed. The categories listed are Lamb,
Corn, Barley, Rye, Beef, Wheat, Coffee, Peanuts, Palm Qil, Pork, Rice, Sugar, and Cocoa.

To determine the number of food items, we need to count these categories. It should be noted that even though
each bar represents a specific food item, the length of the bar or the dark blue shade at the top may represent
different items.

Upon counting the categories, we get the following:
1.1-Lamb

2.1-Corn

[omit]

13.1 - Cocoa

Adding these up, we get a total of 13 food categories represented in the bar graph.

### Answer: 13

Figure 12.2.4: Randomly sampled examples from LLAVA-NEXT-FORMAT with a temperature
setting of 1.0, evaluated on the same test case in ChartQA, show that after training on 450
format-aligned data, the model is able to follow the CoT prompt by verbalizing the thought

process and providing a short answer.
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Table 12.3.2: Comparison of DPO with the RFT method. The upper part of the table presents
the SFT baseline and the DPO model, while the lower part shows the ablation results of RFT
trained on each of the A-OK, ChartQA, and math training datasets, as well as their combined

results.

Methods prompting A-OK ChartQA MathVista
SFT baseline direct 85.4 76.1 44.3
CoT 86.2 83.0 50.6
L LAVA REASONER-DPO direct 85.4 76.4 44.2
CoT 87.0 84.2 52.1
A-OKVQA direct 85.1 72.7 37.4
-RFT CoT 87.7 0.0 32.5
A-OKVQA direct 85.8 74.9 41.3
-RFT+Format CoT 86.3 80.2 46.5
ChartQA direct 85.4 75.0 42.6
-RFT CoT 86.7 83.9 52.0
ChartQA direct 85.9 75.8 44.4
-RFT+Format CoT 85.5 83.4 50.6
Math direct 85.3 76.0 324
-RFT CoT 86.7 67.3 50.9
Math direct 85.5 76.0 39.6
-RFT+Format CoT 85.5 82.0 50.0
Combined direct 85.3 75.4 37.8
-RFT CoT 85.4 84.4 49.0
Combined direct 85.0 75.5 43.0
-RFT+Format CoT 86.6 83.1 47.1
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