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Abstract

Large language models (LLMs) are increasingly important in assisting people
to access information, ranging from simple factoid questions such as “where is
the world’s largest ice sheet located” to complex questions that require accessing
real-time information and reasoning such as “plan a vacation in Miami”. There
are two paradigms to handle questions that require factual knowledge: paramet-
ric approaches that store knowledge within the parameters of LLMs and elicit this
knowledge through prompting, and non-parametric approaches that offload knowl-
edge retrieval to an external non-parametric datastore. In this dissertation, we aim
to study, compare, and enhance the capacity of both paradigms.

Since LLMs have accumulated a large amount of knowledge within their param-
eters through pre-training on diverse corpora, they can directly generate answers
when prompted with questions. In the first part of the dissertation, we focus on
parametric approaches that utilize the factual knowledge contained in the param-
eters of LLMs. We first study methods to extract more knowledge by ensembling
multiple predictions derived from diverse prompts. Then, we calibrate LLMs to
make them trustworthy when answering questions that fall beyond their scope
of knowledge. We find that after LLMs memorize documents perfectly to the ex-
tent of reproducing them verbatim, they still often fail to answer questions about
them. To enhance the capacity of LLMs to absorb knowledge from documents, we
propose pre-instruction-tuning that teaches them the task of question-answering
before pre-training them on documents.

Parametric approaches offer a simple interface, but they suffer from halluci-
nations and lack access to real-time external information. In the second part of
the dissertation, we focus on non-parametric approaches that augment LLMs with
a non-parametric datastore, typically constructed from a document corpus and a
retriever. The standard retrieval-augmented generation (RAG) pipeline consists of
an embedding-based retriever and an LLM-based generator, which typically require
separate training procedures and are often limited by the retriever’s performance.
We introduce an end-to-end solution that fuses retrieval and generation within
a single transformer and directly uses the attention mechanism for retrieval pur-
poses. To address complex questions demanding detailed responses, we introduce
Active RAG, which dynamically and proactively retrieves information throughout
the generation process. Finally, we conclude by comparing and reconciling both

paradigms and providing insight into future directions.
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Chapter 1

Introduction

Developing intelligent systems capable of interacting with people in natural language and an-
swering questions with varying levels of knowledge has been a long-standing challenge in the
field of natural language processing (NLP). Different from other language understanding and
generation tasks such as text classification and machine translation, knowledge-intensive tasks
require access to information that is not explicitly included in the input. A typical knowledge-
intensive task is question answering (QA) which aims to provide an answer to a natural lan-
guage question. Questions can range from simple factoid questions such as “where is the
world’s largest ice sheet located” [12, 95, 114] to complex questions that require aggregating
multiple sources of information and reasoning such as “plan a vacation in Miami” [52, 100, 258].

Large language models (LLMs) have accumulated a large amount of knowledge through
pre-training on diverse corpora, and they are increasingly important in assisting people in ac-
cessing information [21, 47, 57, 155, 170, 212]. LLM-based information-accessing systems can
be classified into two categories based on the source of knowledge: parametric approaches that
solely rely on knowledge encoded in the parameters of LLMs [159, 178] and non-parametric
approaches that offload knowledge retrieval to an external non-parametric datastore [17, 66,
83, 124, 192]. In this section, we begin by providing an overview of both categories. Next, we
present our contributions aimed at enhancing the capabilities of both paradigms. Finally, we

wrap up by comparing the two paradigms and suggesting future directions.

1.1 Parametric Approaches

LLMs are pre-trained on diverse corpora such as Wikipedia, CommonCrawl, and StackEx-
change [170, 212]. Recent studies have demonstrated that LLMs with billions of parameters
have the capacity to memorize parts of the training data [23, 24]. Given that these corpora

consist of numerous information-rich documents, such as Wikipedia articles on specific top-
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Figure 1.1: Illustration comparing parametric and non-parametric approaches for answering

knowledge-intensive questions.

ics and questions paired with corresponding answers from StackExchange, pre-trained LLMs
can be utilized to directly respond to questions requiring factual knowledge covered by the
pre-training corpora when prompted appropriately [21, 159, 178, 260]. For example, on the
Natural Questions dataset, a widely used open-domain factoid QA benchmark built based on
Wikipedia [114], the closed-book answer generation accuracy of PaLM-2 is 37.5% [33]; on the
MMLU dataset, a popular benchmark testing both world knowledge and problem-solving abil-
ity across many subjects such as STEM and social science [71], the closed-book multi-choice
accuracy of GPT-4 is 86.4% [153]. Many works have demonstrated a correlation between the
training scales (e.g., model sizes and training corpora) and the performance on downstream
benchmarks [188, 232]. It is plausible that future LLMs could answer the majority, if not all,

questions provided the necessary knowledge is included in the training data [4, 98].

1.1.1 Parametric Knowledge Storage, Update, and Extraction

While LLMs have been widely used to answer knowledge-intensive questions, the underlying
mechanism remains poorly understood. In order to use LLMs as “knowledge bases”, LLMs must
possess two abilities: the ability to store knowledge in their parameters during pre-training and

the ability to extract this knowledge conditioning on questions at inference time.

Knowledge storage Many works have studied the amount of knowledge that LLMs can
memorize via the standard objective of predicting the next token given the preceding context.

Some works quantify memorization of real corpora such as the Pile and the Wikipedia dataset



[24, 53, 210], while others quantify memorization of synthetic datasets containing knowledge
tuples of controlled complexity in order to derive a concrete scaling law [4, 260]. The conclusion
is that (1) larger models have stronger memorization capacity, (2) repeated examples or exam-
ples with diverse expressions are more easily memorized, and (3) different types of information

(e.g., part-of-speech tags) differ in how easy they are to memorize.

Knowledge update As world knowledge evolves, it is crucial to continually update the
knowledge in the parameters of LLMs. Existing methods include continued pre-training that
continually trains LLMs on new corpora using the standard next token prediction objective
[65, 85] and model editing that aims to make minimal changes to model weights to edit certain
knowledge [22, 145]. Some studies aim to pinpoint the transformer components responsible for
retaining factual knowledge and point out that specific neurons and layers like feed-forward
layers play a more significant role [40, 59]. However, existing model editing methods are not

scalable, and the underlying mechanism for knowledge storage remains largely obscure.

Knowledge extraction The way knowledge is presented in the original documents and how
it is accessed through questions can be different. For example, the Wikipedia article about Op-
penheimer is “Oppenheimer is a 2023 epic biographical thriller film ... Editing was completed by
Jennifer Lame.” A test-time question “who is the editor of Oppenheimer” refers to the knowl-
edge found in the article, but the phrasing is different. In order to answer this question, LLMs
have to store the knowledge from the document in a way that is extractable when prompted
with questions, which requires generalization beyond rote memorization. A typical method
to enhance knowledge extraction is post-training instruction-tuning, which fine-tunes LLMs
using question-answer pairs [34, 184, 231]. However, Zhu and Li [260] demonstrated in a con-
trolled experiment using a randomly initialized transformer that fine-tuning after pre-training
fails to elicit knowledge from the parameters. They found that each document must be para-

phrased in multiple ways during pre-training to make the memorized knowledge extractable.

1.1.2 Summary of Contributions

Considering the development and limitations of existing parametric approaches mentioned ear-
lier, our focus is on extracting more knowledge from pre-trained LLMs through better prompt-
ing strategies and improving LLMs’ ability to absorb knowledge from pre-training documents.

Our detailed contributions are as follows.

Eliciting factual knowledge of LMs with diverse prompts. (chapter 2, chapter 3) LMs

are very sensitive to prompts [49, 159]. An inappropriate prompt might fail to extract the knowl-



edge that LMs do know. For instance, when prompted with “DirectX is developed by _”, the
BERT model returns “Intel”, whereas when prompted with “DirectX is created by _”, it returns
“Microsoft”. In Jiang et al. [90], we systematically investigate this phenomenon. We suggest
that a single prompt only sets a lower bound on what LMs know, and propose to ensemble
the results from multiple prompts either mined or paraphrased to elicit more knowledge from
LMs. We also study knowledge extraction from multilingual LMs in Jiang et al. [89], where
we note that memorizing knowledge is more difficult for low-resource languages due to data
imbalances. To address this, we propose augmenting training data through code-switching of

entity mentions to enhance knowledge memorization in multiple languages.

Calibrating LMs for question answering. (chapter 4) As LMs still struggle to provide
accurate answers in many scenarios, it is essential for them to comprehend and clarify the
limits of their knowledge so that users can determine when to reject predictions from LMs.
In Jiang et al. [91], we examine this problem from the perspective of calibration and propose

post-hoc and augmentation methods to make prediction probabilities of LMs more reliable.

Enhancing LLMs in absorbing knowledge through pre-instruction-tuning. (chapter 5)
We find that after LLMs memorize the pre-training documents perfectly to the extent of repro-
ducing them verbatim (i.e., perplexity is 1.0), they still often fail to answer questions about these
documents, even after instruction-tuning on QA pairs. We refer to this as “perplexity curse”. It
demonstrates that post-hoc instruction-tuning cannot fully uncover the knowledge presented
in the pre-training documents. Inspired by the fact that questions are generally straightforward
while documents tend to be more complex, we propose pre-instruction-tuning which fine-tunes
LLMs on QA pairs to learn the task of question-answering before pre-training. It enhances the

ability of LLMs to absorb knowledge from new documents.

1.2 Non-parametric Approaches

As the size of LLMs and training corpora increases, more knowledge is encoded within their

parameters. Parametric approaches also provide a simple interface during inference. However,

they have fundamental issues when handling questions that either fall within or outside the
scope of the pre-training data:

* For knowledge included in the pre-training data: LLMs are prone to hallucinations,

particularly with long-tail knowledge mentioned rarely in the data [98, 138]. While LLMs

can generate documents to provide additional evidence supporting an answer, ensuring

the accuracy of the generated evidence is challenging, particularly in critical fields such
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as medicine [198, 245].

* For knowledge not included in the pre-training data: LLMs are fundamentally not
capable of handling questions that demand knowledge beyond the scope of their pre-
training data. While it is feasible to regularly update LLMs to integrate new knowledge,
they cannot address questions that require access to the external world, such as queries for

real-time information or those necessitating actions in the real world [44, 100, 221, 258].

Given these limitations of parametric approaches, non-parametric approaches that augment
LLMs with a non-parametric datastore constructed from a document corpus and an external re-
triever offer distinct advantages. The standard retrieval-augmented generation (RAG) pipeline
consists of an embedding-based retriever and an LLM-based generator, where the retriever
searches the corpus to find documents relevant to the question, and the generator generates

the answer conditioning on both the question and documents.

1.2.1 Retrieval, Long Context, and Interactive Retrieval and Action

To develop non-parametric approaches, we need to determine two key components: the re-

triever and how to integrate the retrieved information to help answer generation.

Retrieval The mostimportant component in an RAG system is retrievers, which return docu-
ments similar to the question to provide additional evidence for generating the answer. The def-
inition of similarity between questions and documents varies depending on downstream tasks,
but it primarily involves lexical and semantic overlap. Traditional retrievers compute similari-
ties based on lexical overlap and heuristically designed metrics, such as TF-IDF and BM25 [179].
To capture complex semantic similarities, modern retrievers are based on embedding models
that encode questions and documents into high-dimensional dense vectors and compute simi-
larity using the inner product. Embedding models are usually initialized with pre-trained LMs
such as BERT [47] and fine-tuned using either supervised data of relevant question-document
pairs [99] or unsupervised contrastive learning objectives [82]. Embedding-based retrievers
can be classified into two categories: single-vector models, which encode the entire document
or question into a single vector [82, 99, 130], and multi-vector models, which utilize all token
vectors for more complex matching [103]. To address various scenarios with different similarity
definitions, embedding-based retrievers are trained by including instructions with the question

to explicitly describe information needs [7, 197].

Long-context LLMs While advances in base LMs have led to improved embedding-based

retrievers, computing similarity based on fixed-dimensional vectors is fundamentally limited



Retriever Long-context LLM

Figure 1.2: A conceptual comparison between an embedding-based retriever (left) and a long-
context LLM using attention for retrieval (right). d, q, and a denote documents, questions, and
answers respectively. Arrows denote attention, while lines without arrows signify the inner
product. For simplicity, we only show one token for documents and the question, two tokens
for the answer, and one attention head. We use a two-layer transformer for retrievers and a
three-layer transformer for LLMs to demonstrate that retrievers are typically smaller. Solid
arrows/lines indicate where information retrieval takes place. Long-context LLMs perform

multiple steps of retrieval across multiple heads, layers, and tokens in the question and answer.

in expressiveness. This limitation poses a major bottleneck for RAG systems to handle com-
plex questions that necessitate multiple steps of information seeking and reasoning. The self-
attention mechanism in transformers calculates token similarity in a multi-head and multi-
layer manner [219], which has proven highly effective in handling information within the
context. If self-attention can efficiently process a long context containing numerous docu-
ments, it becomes essentially a multi-head and multi-layer “retriever” and we can leverage
it to handle the demanding tasks of fine-grained information matching and reasoning. Fig-
ure 1.2 compares embedding-based retrievers and long-context LLMs using attention for re-
trieval purposes. Existing approaches for handling long context include efficient dense self-
attention over a long sequence parallelized across multiple GPUs [41, 133] with appropriate
positional encoding [28, 240], as well as sparse attention with approximate nearest neighbor
search [101, 237, 247, 255].

Interactive retrieval and action To tackle complex questions demanding multiple steps of
information retrieval and action, it’s crucial for LLMs to break down the question into stages
and utilize retrievers as needed to search for relevant information [164, 216, 233], while also tak-
ing actions to achieve the objective [194, 244]. For example, “plan for my vacation in Miami”

requires searching for information about hotels, flights, and attractions, creating an itinerary



based on the collected information, and taking action on websites such as booking accommo-
dations. Because retrieved information often contains noise and certain details may not be
directly visible on web pages (such as hotel availabilities), it’s crucial for LLMs to iteratively
refine queries based on the returned results and interact with the web page by clicking or se-
lecting to complete the task [147, 194, 244]. It is challenging to collect data to train LLMs for
these complicated tasks due to the large exploration space and the high annotation cost. How
to effectively explore the space with reinforcement learning [259] and lower the annotation

cost potentially with the help of scalable oversight [20] are active research directions.

1.2.2 Summary of Contributions

Considering the development and limitations of existing non-parametric approaches mentioned
earlier, we extend the context of LLMs to the entire corpus through retrieval as sparse attention
and propose active retrieval-augmented generation that interleaves retrieval and generation to

handle complicated questions. Our detailed contributions are as follows.

Retrieval as attention: extending the context of LMs to the entire corpus. (chapter 6)
Existing RAG systems usually use a separate retriever and a generator which are trained with
different recipes and hard to optimize end-to-end [66, 80, 83, 124]. In Jiang et al. [92], we pro-
pose that the self-attention mechanism in transformers can be directly employed for retrieval
purposes by extending it to the entire corpus containing many documents. This approach en-
ables more complex information matching and effective end-to-end training. Specifically, we
leverage the attention between all documents and questions in a single layer of the encoder of
the T5 model [170] as retrieval signals, and optimize the system using QA data in an end-to-
end way. Our method, denoted as retrieval as attention (ReAtt), achieves competitive perfor-
mance in both retrieval and downstream tasks, making it an adaptable end-to-end solution for

knowledge-intensive tasks.

Active retrieval-augmented generation. (chapter 7) To handle complicated questions in-
volving the generation of long texts, it is essential to continually gather information throughout
the generation process. In Jiang et al. [93], we present a generalized view of active retrieval-
augmented generation, which involves methods that actively determine when and what to re-
trieve during the generation process. Specifically, we propose forward-looking active retrieval-
augmented generation (FLARE), a generic method that iteratively uses the prediction of the
upcoming sentence to anticipate future content, which is then utilized as a query to retrieve

relevant documents to regenerate the sentence if it contains low-confidence tokens.



Dimensions Parametric Non-parametric

Training time

Efficiency (time & memory cost) ? ?
Simplicity (model architecture & objective) 4 X
Scalability (model size & corpus size) 4 X
Integration of new knowledge without training X v
Testing time
Efficiency (latency & memory footprint) ? ?
Simple interface (end-to-end vs pipeline) v X
Less hallucination X V4
Access to the external world (real-time info & action) X v
Verifiability and attribution X v
Domains adaptability & privacy-preserving X v

Table 1.1: Comparisons between parametric and non-parametric approaches for both training
and testing time. ? indicates comparisons that depend on the size of the LLM and retriever and
the the size of the datastore.

1.3 Parametric or Non-parametric Approaches?

We conducted a thorough comparison of these two paradigms across several dimensions for
both training and testing time in Table 1.1. Parametric approaches are simpler in both training
and testing because they only involve one transformer component with a standard next-token-
prediction objective, whereas non-parametric approaches require a pipeline design of retrievers
and LLMs involving complex training objectives. As a result, scaling up LLMs is easier than scal-
ing up retrieval-augmented LLMs. Non-parametric approaches, on the other hand, experience
less hallucination, provide access to the external world, and are particularly useful in specialized
and private domains. We expect that future systems will combine elements of both approaches.
As LLMs become capable of encoding increasing amounts of knowledge within their parame-
ters, non-parametric components remain crucial for handling long-tail knowledge, as well as

applications that demand interaction with the external environment. Future directions include:

* Robust parametric knowledge in LLMs: pre-training using data augmented with ref-
erences and advanced model architecture with stronger memory capacity such as mixture-

of-expert models.

* Continual knowledge update and alignment: techniques for continuously updating



knowledge in LLMs with minimal forgetting, along with effective alignment methods to

adjust their scope of knowledge.

Transformer architectures with infinite context length: to manage web-scale in-
formation effectively, it is essential to develop transformer architectures with an efficient

sparse attention mechanism and key-value caching system.

LLM-based agents: effective data collection and training algorithms to allow LLMs to
utilize retrievers or other tools to interact with the external world to perform complex

tasks using reinforcement learning and scalable oversight.
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Chapter 2

Eliciting Factual Knowledge of LMs with

Diverse Prompts

In this chapter, we study how to estimate the amount of factual knowledge contained in the
parameters of LMs. Recent works examined the knowledge contained in LMs by having LMs
fill in the blanks of prompts. These prompts are usually manually created, and possibly sub-
optimal; another prompt may result in more accurate predictions. In this chapter, we focus on
masked LMs such as BERT and attempt to more accurately estimate the knowledge contained
in the parameters by automatically discovering better prompts. This work is presented in:
* Zhengbao Jiang®, Frank F. Xu*, Jun Araki, Graham Neubig. How Can We Know What
Language Models Know? Transactions of the Association for Computational Linguistics
8 (2020): 423-438."
We also released the code and the resulting LM Prompt And Query Archive (LPAQA) at:
« https://github.com/jzbjyb/LPAQA

2.1 Introduction

It is becoming apparent that LMs* themselves can be used as a tool for text understanding by
formulating queries in natural language and either generating textual answers directly [142,
168], or assessing multiple choices and picking the most likely one [171, 262]. For example, LMs
have been used to answer factoid questions [168], answer common sense queries [186, 214], or

extract factual knowledge about relations between entities [9, 159]. Regardless of the end task,

1Zhengbao Jiang proposed the idea, conducted main experiments, and wrote the draft. Frank F. Xu refined

the idea, proposed ranking-based methods, conducted analysis and ablations, and revised the draft.
2We mainly focus on bi-directional masked LMs such as BERT [47], which do not directly define a probability

distribution over text. Nonetheless, we call them LMs for simplicity.
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https://github.com/jzbjyb/LPAQA

Prompts
manual DirectXis developed by Yman

mined Vmine released the DirectX
paraphrased ~ DirectXis created by Ypara

Top 5 predictions and log probabilities

Yman Ymine Ypara
1 Intel -1.06 Microsoft -1.77 Microsoft -2.23
2 Microsoft -2.21 They -2.43 1Intel -2.30
3 IBM -2.76 It -2.80 default -2.96
4 Google -3.40 Sega -3.01 Apple -3.44
5 Nokia -3.58 Sony -3.19 Google -3.45

Figure 2.1: Top-5 predictions and their log probabilities using different prompts (manual, mined,

and paraphrased) to query BERT. The correct answer is underlined.

the knowledge contained in LMs is probed by providing a prompt, and letting the LM either
generate the continuation of a prefix (e.g. “Barack Obama was born in _”), or predict missing

words in a cloze-style template (e.g., “Barack Obama is a _ by profession”).

However, while this paradigm has been used to achieve a number of intriguing results re-
garding the knowledge expressed by LMs, they usually rely on prompts that were manually cre-
ated based on the intuition of the experimenter. These manually created prompts (e.g. “Barack
Obama was born in _”) might be sub-optimal because LMs might have learned target knowl-
edge from substantially different contexts (e.g. “The birth place of Barack Obama is Honolulu,
Hawaii.”) during their training. Thus it is quite possible that a fact that the LM does know
cannot be retrieved due to the prompts not being effective queries for the fact. Thus, existing
results are simply a lower bound on the extent of knowledge contained in LMs, and in fact, LMs
may be even more knowledgeable than these initial results indicate. In this chapter, we ask
the question: “How can we tighten this lower bound and get a more accurate estimate of the
knowledge contained in LMs?” This is interesting both scientifically, as a probe of the knowl-
edge that LMs contain, and from an engineering perspective, as it will result in higher recall

when using LMs as part of a knowledge extraction system.

In particular, we focus on the setting of Petroni et al. [159] who examine extracting knowl-
edge regarding the relations between entities (definitions in section 2.2). We propose two auto-
matic methods to systematically improve the breadth and quality of the prompts used to query
the existence of a relation (section 2.3). Specifically, as shown in Figure 2.1, these are mining-
based methods inspired by previous relation extraction methods [175], and paraphrasing-based
methods that take a seed prompt (either manually created or automatically mined), and para-

phrase it into several other semantically similar expressions. Further, because different prompts

14



may work better when querying for different subject-object pairs, we also investigate lightweight
ensemble methods to combine the answers from different prompts together (section 2.4).

We experiment on the LAMA benchmark [159], which is an English-language benchmark
devised to test the ability of LMs to retrieve relations between entities (section 2.5). We first
demonstrate that improved prompts significantly improve accuracy on this task, with the one-
best prompt extracted by our method raising accuracy from 31.1% to 34.1% on BERT-base [47],
with similar gains being obtained with BERT-large as well. We further demonstrate that using
a diversity of prompts through ensembling further improves accuracy to 39.6%. We perform
extensive analysis and ablations, gleaning insights both about how to best query the knowledge
stored in LMs and about potential directions for incorporating knowledge into LMs themselves.
Finally, we have released the resulting LM Prompt And Query Archive (LPAQA) to facilitate

future experiments on probing knowledge contained in LMs.

2.2 Knowledge Retrieval from LMs

Retrieving factual knowledge from LMs is quite different from querying standard declarative
knowledge bases (KB). In standard KBs, users formulate their information needs as a structured
query defined by the KB schema and query language. For example, SELECT ?y WHERE
{wd:Q76 wdt:P19 ?y} isaSPARQL query to search the birth place of Barack_Obama.
In contrast, LMs must be queried by natural language prompts, such as “Barack Obama was born
in_", and the word assigned the highest probability in the blank will be returned as the answer.
Unlike deterministic queries on KBs, this provides no guarantees of correctness or success.
While the idea of prompts is common to methods for extracting many varieties of knowledge
from LMs, in this chapter we specifically follow the formulation of Petroni et al. [159], where
factual knowledge is in the form of triples (x, r, y). Here x indicates the subject, y indicates the
object, and r is their corresponding relation. To query the LM, r is associated with a cloze-style
prompt ¢, consisting of a sequence of tokens, two of which are placeholders for subjects and
objects (e.g., “x plays at y position”). The existence of the fact in the LM is assessed by replacing
x with the surface form of the subject, and letting the model predict the missing object (e.g.,

“LeBron James plays at _ position”):®

§ = argmax Py (y'|x, t,),
y'ey

3We can also go the other way around by filling in the objects and predicting the missing subjects. Since our
focus is on improving prompts, we choose to be consistent with Petroni et al. [159] to make a fair comparison, and
leave exploring other settings to future work. Also notably, Petroni et al. [159] only uses objects consisting of a

single token, so we only need to predict one word for the missing slot.
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where V is the vocabulary, and P (Y’ |z, t,) is the LM probability of predicting 3’ in the blank
conditioned on the other tokens (i.e., the subject and the prompt).* We say that an LM has
knowledge of a fact if 3 is the same as the ground-truth y. Because we would like our prompts
to most effectively elicit any knowledge contained in the LM itself, a “good” prompt should
trigger the LM to predict the ground-truth objects as often as possible.

In previous work [142, 159, 168], ¢, has been a single manually defined prompt based on
the intuition of the experimenter. As noted in the introduction, this method has no guarantee
of being optimal, and thus we propose methods that learn effective prompts from a small set of

training data consisting of gold subject-object pairs for each relation.

2.3 Prompt Generation

First, we tackle prompt generation: the task of generating a set of prompts {t,;}/_; for each
relation r, where at least some of the prompts effectively trigger LMs to predict ground-truth
objects. We employ two practical methods to either mine prompt candidates from a large corpus

(subsection 2.3.1) or diversify a seed prompt through paraphrasing (subsection 2.3.2).

2.3.1 Mining-based Generation

Our first method is inspired by template-based relation extraction methods [2, 175], which are
based on the observation that words in the vicinity of the subject x and object y in a large
corpus often describe the relation r. Based on this intuition, we first identify all the Wikipedia
sentences that contain both subjects and objects of a specific relation 7 using the assumption

of distant supervision, then propose two methods to extract prompts.

Middle-word Prompts Following the observation that words in the middle of the subject
and object are often indicative of the relation, we directly use those words as prompts. For
example, “Barack Obama was born in Hawaii” is converted into a prompt “x was born in y” by

replacing the subject and the object with placeholders.

Dependency-based Prompts Toutanova et al. [211] note that in cases of templates where
words do not appear in the middle (e.g., “The capital of France is Paris”), templates based on
syntactic analysis of the sentence can be more effective for relation extraction. We follow this

insight in our second strategy for prompt creation, which parses sentences with a dependency

*We restrict to masked LMs in this chapter because the missing slot might not be the last token in the sentence

and computing this probability in traditional left-to-right LMs using Bayes’ theorem is not tractable.
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parser to identify the shortest dependency path between the subject and object, then uses the
phrase spanning from the leftmost word to the rightmost word in the dependency path as a
prompt. For instance, the dependency path in the above example is “France Pl of &2 capital
& s @ paris”, where the leftmost and rightmost words are “capital” and “Paris”, giving a
prompt of “capital of x is y”.

Notably, these mining-based methods do not rely on any manually-created prompts, and
can thus be flexibly applied to any relation where we can obtain a set of subject-object pairs.
This will result in diverse prompts, covering a wide variety of ways that the relation may be
expressed in text. However, it may also be prone to noise, as many prompts acquired in this

way may not be very indicative of the relation (e.g. “x, y”), even if they are frequent.

2.3.2 Paraphrasing-based Generation

Our second method for generating prompts is more targeted — it aims to improve lexical di-
versity while remaining relatively faithful to the original prompt. Specifically, we do so by
paraphrasing the original prompt into other semantically similar or identical expressions. For
example, if our original prompt is “x shares a border with y”, it may be paraphrased into “x has
a common border with y” and “x adjoins y”. This is conceptually similar to query expansion
techniques used in information retrieval that reformulate a given query to improve retrieval

performance [25].

While many methods could be used for paraphrasing [15, 180], we follow the simple method
of using back-translation [139, 191] to first translate the initial prompt into B candidates in
another language, each of which is then back-translated into B candidates in the original lan-
guage. We then rank B2 candidates based on their round-trip probability (i.e., Porwara(Z]t) -
Prackwara (t|), where t is the initial prompt, ¢ is the translated prompt in the other language, and
t is the final prompt), and keep the top T’ prompts.

2.4 Prompt Selection and Ensembling

In the previous section, we described methods to generate a set of candidate prompts {¢,;}._,
for a particular relation r. Each of these prompts may be more or less effective at eliciting
knowledge from the LM, and thus it is necessary to decide how to use these generated prompts

at test time. In this section, we describe three methods to do so.
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2.4.1 Top-1Prompt Selection
For each prompt, we can measure its accuracy of predicting the ground-truth objects (on a
training dataset) using:

> eyer 0y = argmaxy Pm(y'|z, tr;))
IR ’

where R is a set of subject-object pairs with relation r, and §(-) is Kronecker’s delta function,

A(tr,i) =

returning 1 if the internal condition is true and 0 otherwise. In the simplest method for querying

the LM, we choose the prompt with the highest accuracy and query using only this prompt.

2.4.2 Rank-based Ensemble

Next, we examine methods that use not only the top-1 prompt, but combine together multiple
prompts. The advantage to this is that the LM may have observed different entity pairs in
different contexts within its training data, and having a variety of prompts may allow for the
elicitation of knowledge that appeared in these different contexts.

Our first method for ensembling is a parameter-free method that averages the predictions
of the top-ranked prompts. We rank all the prompts based on their accuracy in predicting the
objects on the training set, and use the average log probabilities® from the top K prompts to
calculate the probability of the object:

K

Z 1
= —], P tT‘i 9 21
P(y|z,r) = softmax(s(:|z,r)),, (2.2)

where t,; is the prompt ranked at the ¢-th position. Here, K is a hyper-parameter, where a
small K focuses on the few most accurate prompts, and a large K increases the diversity of the

prompts.

2.4.3 Optimized Ensemble

The above method treats the top K prompts equally, which is sub-optimal given some prompts
are more reliable than others. Thus, we also propose a method that directly optimizes prompt

weights. Formally, we re-define the score in Equation 2.1 as:

T
s(yle,r) = P, (tri|r) log Po(ylz, trs), (2.3)

=1

SIntuitively, because we are combining together scores in the log space, this has the effect of penalizing objects

that are very unlikely given any certain prompt in the collection.
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where Py, (t,|r) = softmax(6,) is a distribution over prompts parameterized by 0, a T-sized
real-value vector. For every relation, we learn to score a different set of 7" candidate prompts,
so the total number of parameters is 7" times the number of relations. The parameter 6, is

optimized to maximize the probability of the gold-standard objects P(y|x, r) over training data.

2.5 Main Experiments

2.5.1 Experimental Settings

In this section, we assess the extent to which our prompts can improve fact prediction perfor-

mance, raising the lower bound on the knowledge we discern is contained in LMs.

Dataset As data, we use the T-REx subset [50] of the LAMA benchmark [159], which has a
broader set of 41 relations (compared to the Google-RE subset which only covers 3). Each rela-
tion is associated with at most 1000 subject-object pairs from Wikidata, and a single manually
designed prompt. To learn to mine prompts (subsection 2.3.1), rank prompts (subsection 2.4.2),
or learn ensemble weights (subsection 2.4.3), we create a separate training set of subject-object
pairs also from Wikidata for each relation that has no overlap with the T-REx dataset. We
denote the training set as T-REx-train. For consistency with the T-REx dataset in LAMA, T-
REx-train also is chosen to contain only single-token objects. To investigate the generality of
our method, we also report the performance of our methods on the Google-RE subset®, which

takes a similar form to T-REx but is relatively small and only covers 3 relations.

Poerner et al. [163] note that some facts in LAMA can be recalled solely based on surface
forms of entities, without memorizing facts. They filter out those easy-to-guess facts and create
a more difficult benchmark, denoted as LAMA-UHN. We also conduct experiments on the T-
REx subset of LAMA-UHN (i.e., T-REx-UHN) to investigate whether our methods can still obtain

improvements on this harder benchmark.

Models As for the models to probe, in our main experiments we use the standard BERT-base
and BERT-large models [47]. We also perform some experiments with other pre-trained models
enhanced with external entity representations, i.e., ERNIE [252] and KnowBert [158], which we

believe may do better on recall of entities.

*https://code.google.com/archive/p/relation-extraction-corpus/
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Evaluation Metrics We use two metrics to evaluate the success of prompts in probing LMs.
The first evaluation metric, micro-averaged accuracy, follows the LAMA benchmark’ in calcu-

lating the accuracy of all subject-object pairs for relation 7:

where 3 is the prediction and y is the ground truth. Then we average across all relations. How-
ever, we found that the object distributions of some relations are extremely skewed, e.g. more
than half of the objects in relation native_language are French. This can lead to de-
ceptively high scores, even for a majority-class baseline that picks the most common object for
each relation, which achieves a score of 22.0%. To mitigate this problem, we also report macro-
averaged accuracy, which computes accuracy for each unique object separately, then averages

them together to get the relation-level accuracy:

; Z Z(%y)&R,y:;j 5(?3 = y)
[uni_obj(R) o W(.y) Ry =y}

y’ Euni_obj

where uni_obj(R) returns a set of unique objects from relation r. This is a much stricter metric,

with the majority-class baseline only achieving a score of 2.2%.

Methods We attempted different methods for prompt generation and selection/ensembling,
and compared them with the manually designed prompts used in Petroni et al. [159]. Majority
refers to predicting the majority object for each relation, as mentioned above. Man is the base-
line from Petroni et al. [159] that only uses the manually designed prompts for retrieval. Mine
(subsection 2.3.1) uses the prompts mined from Wikipedia through both middle words and de-
pendency paths, and Mine+Man combines them with the manual prompts. Mine+Para (sub-
section 2.3.2) paraphrases the highest-ranked mined prompt for each relation, while Man+Para
uses the manual one instead.

The prompts are combined either by averaging the log probabilities from the TopK highest-
ranked prompts (subsection 2.4.2) or the weights after optimization (subsection 2.4.3; Opti.).
Oracle represents the upper bound of the performance of the generated prompts, where a fact

is judged as correct if any one of the prompts allows the LM to successfully predict the object.

Implementation Details We use 7' = 40 most frequent prompts either generated through

mining or paraphrasing in all experiments, and the number of candidates in back-translation

In LAMA, it is called “P@1.” There might be multiple correct answers for some cases, e.g. a person speaking
multiple languages, but we only use one ground truth. We will leave exploring more advanced evaluation methods

to future work.
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Prompts Topl Top3 Top5 Opti. Oracle

BERT-base (Man=31.1)

Mine 314 342 347 389 50.7
Mine+Man 316 359 351 39.6 52.6
Mine+Para 32.7 34.0 34.5 36.2 48.1
Man+Para 341 358 36.6 37.3 47.9

BERT-large (Man=32.3)
Mine 37.0 37.0 36.4 43.7 54.4
Mine+Man 394 40.6 38.4 43.9 56.1
Mine+Para 37.8 38.6 38.6  40.1 51.8
Man+Para 35.9 37.3 38.0 38.8 50.0

Table 2.1: Micro-averaged accuracy of different methods (%). Majority gives us 22.0%. Italic
indicates the best single-prompt accuracy, and bold indicates the best non-oracle accuracy over-

all.

is set to B = 7. We remove prompts only containing stopwords/punctuations or longer than
10 words to reduce noise. We use the round-trip English-German neural machine translation
models pre-trained on WMT’ 19 [148] for back-translation, as English-German is one of the
most highly resourced language pairs.® When optimizing ensemble parameters, we use Adam

[108] with default parameters and a batch size of 32.

2.5.2 Evaluation Results

Micro- and macro-averaged accuracy of different methods are reported in Tables Table 2.1 and

Table 2.2 respectively.

Single Prompt Experiments When only one prompt is used (in the first Top1 column in
both tables), the best of the proposed prompt generation methods increases micro-averaged
accuracy from 31.1% to 34.1% on BERT-base, and from 32.3% to 39.4% on BERT-large. This
demonstrates that the manually created prompts are a somewhat weak lower bound; there are
other prompts that further improve the ability to query knowledge from LMs.

Table 2.3 shows some of the mined prompts that resulted in a large performance gain com-

pared to the manual ones. For the relation religion, “x who converted to y” improved 60.0%

Shttps://github.com/pytorch/fairseq/tree/master/examples/wmt19
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Prompts Topl Top3 Top5 Opti. Oracle

BERT-base (Man=22.8)

Mine 20.7 227 239 257 36.2
Mine+Man 213 238 248 26.6 38.0
Mine+Para 21.2 224 230 23.6 34.1
Man+Para 228 238 246  25.0 34.9

BERT-large (Man=25.7)

Mine 264 263 259  30.1 40.7
Mine+Man 281 283 273  30.7 42.2
Mine+Para 26.2 27.1 27.0 27.1 38.3
Man+Para 259 278 283  28.0 39.3

Table 2.2: Macro-averaged accuracy of different methods (%). Majority gives us 2.2%. Italic in-

dicates the best single-prompt accuracy, and bold indicates the best non-oracle accuracy overall.

ID Relations Manual Prompts Mined Prompts Acc. Gain
P140 religion x is affiliated with the y religion z who converted to y +60.0
P159 headquarters location The headquarter of z is in y x is based in y +4.9
P20  place of death x died in y x died at his home in y +4.6
P264 record label x is represented by music label y x recorded for y +17.2
P279 subclass of x is a subclass of y x is a type of y +22.7
P39  position held x has the position of y x is elected y +7.9

Table 2.3: Micro-averaged accuracy gain (%) of the mined prompts over the manual prompts.

over the manually defined prompt of “z is affiliated with the y religion”, and for the relation
subclass_of, “x is a type of y” raised the accuracy by 22.7% over “x is a subclass of y”. It
can be seen that the largest gains from using mined prompts seem to occur in cases where the
manually defined prompt is more complicated syntactically (e.g. the former), or when it uses

less common wording (e.g. the latter) than the mined prompt.

Prompt Ensembling Next, we turn to experiments that use multiple prompts to query the
LM. Comparing the single-prompt results in Column 1 to the ensembled results in the following
three columns, we can see that ensembling multiple prompts almost always leads to better

performance. The simple average used in Top3 and Top5 outperforms Top1 across different
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ID Relations Prompts and Weights Acc. Gain

P127 owned by x is owned by y 485 * was acquired by y 151 « division of y 151 +7.0
P140 religion x who converted to y .g15 ¥ tirthankara = 199 y dedicated to = 110 +12.2
P176 manufacturer y introduced the z 594 y announced the x 2g¢ = attributed to the y 111 +7.0

Table 2.4: Weights of top-3 mined prompts, and the micro-averaged accuracy gain (%) over

using the top-1 prompt.

ID Modifications Acc. Gain
P413 x plays in—at y position +23.2
P495 x was created—made in y +10.8
P495 1z was—is created in y +10.0
P361 xisapartofy +2.7
P413 z plays in y position +2.2
Table 2.5: Small modifications (update, , and delete) in paraphrase lead to large accuracy

gain (%).

prompt generation methods. The optimized ensemble further raises micro-averaged accuracy
to 38.9% and 43.7% on BERT-base and BERT-large respectively, outperforming the rank-based
ensemble by a large margin. These two sets of results demonstrate that diverse prompts can
indeed query the LM in different ways, and that the optimization-based method is able to find
weights that effectively combine different prompts together.

We list the learned weights of top-3 mined prompts and accuracy gain over only using the
top-1 prompt in Table 2.4. Weights tend to concentrate on one particular prompt, and the other
prompts serve as complements. The gap between Oracle and Opti. indicates that there is still

space for improvement using better ensemble methods.

Mining vs. Paraphrasing For the rank-based ensembles (Top1, 3, 5), prompts generated
by paraphrasing usually perform better than mined prompts, while for the optimization-based
ensemble (Opti.), mined prompts perform better. We conjecture this is because mined prompts
exhibit more variation compared to paraphrases, and proper weighting is of central impor-
tance. This difference in the variation can be observed in the average edit distance between
the prompts of each class, which is 3.27 and 2.73 for mined and paraphrased prompts respec-
tively. However, the improvement led by ensembling paraphrases is still significant over just

using one prompt (Top1 vs. Opti.), raising micro-averaged accuracy from 32.7% to 36.2% on
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BERT-base, and from 37.8% to 40.1% on BERT-large. This indicates that even small modifica-
tions to prompts can result in relatively large changes in predictions. Table 2.5 demonstrates
cases where modification of one word (either function or content word) leads to significant ac-
curacy improvements, indicating that large-scale LMs are still brittle to small changes in the

ways they are queried.

2.6 Related Work

Much work has focused on understanding the internal representations in neural NLP models
[10], either by using extrinsic probing tasks to examine whether certain linguistic properties
can be predicted from those representations [11, 132, 193], or by ablations to the models to
investigate how behavior varies [125, 195]. For contextualized representations in particular, a
broad suite of NLP tasks are used to analyze both syntactic and semantic properties, providing
evidence that contextualized representations encode linguistic knowledge in different layers
[62, 72, 86, 206, 207].

Different from analyses probing the representations themselves, our work follows Petroni
et al. [159], Poerner et al. [163] in probing for factual knowledge. They use manually defined
prompts, which may be underestimating the true performance obtainable by LMs. Concurrently
to this work, Bouraoui et al. [19] made a similar observation that using different prompts can
help better extract relational knowledge from LMs, but they use models explicitly trained for
relation extraction whereas our methods examine the knowledge included in LMs without any
additional training.

Orthogonally, some previous works integrate external knowledge bases so that the language
generation process is explicitly conditioned on symbolic knowledge [3, 68, 77, 243]. Similar ex-
tensions have been applied to pre-trained LMs like BERT, where contextualized representations
are enhanced with entity embeddings [158, 163, 252]. In contrast, we focus on better knowledge

retrieval through prompts from LMs as-is, without modifying them.

2.7 Conclusion

In this chapter, we examined the importance of the prompts used in retrieving factual knowl-
edge from language models. We propose mining-based and paraphrasing-based methods to
systematically generate diverse prompts to query specific pieces of relational knowledge. Those
prompts, when combined together, improve factual knowledge retrieval accuracy by 8%, out-
performing manually designed prompts by a large margin. Our analysis indicates that LMs are

indeed more knowledgeable than initially indicated by previous results, but they are also quite
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sensitive to how we query them. To effectively utilize LMs as knowledge bases, it is crucial that
they can be queried in various ways while consistently yielding similar results. Additionally,
they should seamlessly integrate new factual knowledge into their parameters. We will present

our efforts in enhancing both abilities in chapter 5.
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Chapter 3

Eliciting Factual Knowledge of
Multilingual LMs

This chapter extends the previous line of work to multilingual settings. While knowledge is
both written and queried in many languages, studies on LMs’ factual representation ability
have almost invariably been performed on English. To assess factual knowledge retrieval in
LMs in different languages, we create a multilingual benchmark of cloze-style probes for 23

typologically diverse languages. This work is presented in:

+ Zhengbao Jiang”, Antonios Anastasopoulos®, Jun Araki, Haibo Ding, Graham Neubig. X-
FACTR: Multilingual Factual Knowledge Retrieval from Pretrained Language Models. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process-
ing.!

Benchmark data and code have been released at:

« https://x-factr.github.io

3.1 Introduction

Recent works have presented intriguing results demonstrating that large-scale LMs also capture
a significant amount of factual knowledge in English [90, 159, 163]. However, it goes without
saying that there are many languages of the world other than English, and it is quite conceivable
that (1) users may want to query this factual knowledge in other languages, and (2) some facts
will be written in non-English languages and thus multilingually trained LMs (hereinafter, M-

LMs) may be more equipped to recall these facts in the languages of the original data. In this

1Zhengbao Jiang conducted main experiments and wrote the draft. Antonios Anastasopoulos proposed the

idea, processed the dataset in other languages, and revised the draft.
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Wikipedia Size (in million articles)

en fr nl ru e jp wvi zh hu ko tr he

0.2 0.2 0.1 0.09 0.09 0.07 0.06 0.04 0.03 0.03 0.02
T T T T T T T T T T T

el war mr mg bn tI sw pa ceb yo ilo

Figure 3.1: X-FACTR contains 23 languages, for which the data availability varies dramatically.

fact ( Bloomberg L.P., founded_in, New York)
en prompt  [X] was founded in [Y].

es prompt  [X] fue [fundar.Gerund;X] en [Y].
1 ) )

es sentence Bloomberg L.P. fue fundada en (mask) x1 ~ 5.

prediction #tokens confidence

2012 1 -1.90

Nueva York 2 -0.61
es outputs

EE. UU 3 -1.82

Chicago, Estados Unidos 4 -3.58

2012 Bloomberg L.P 5 -3.06

Figure 3.2: Prompts get instantiated to produce grammatical sentences with different numbers
of mask tokens and are used to obtain predictions for [Y]. In this Spanish example, the verb
gerund “fundar” to found is rendered as “fundada” to agree in gender and number with the

subject “Bloomberg L.P.”. The final prediction is in bold.

chapter, we study the intersection of multilinguality and the factual knowledge included in LMs.

We create a new multilingual benchmark for probing factual knowledge in LMs — the Cross-
lingual FACTual Retrieval benchmark (X-FACTR). X-FACTR shares a similar formulation as the
LAMA benchmark of Petroni et al. [159], which assesses whether LMs have memorized a fact
(i-e., a subject-relation-object triple) by having LMs predict the blank (i.e. object) in a cloze-
style prompt for each relation after filling in the subject. We manually create such prompts
for 23 languages spanning different language families and different levels of data availability
(subsection 3.3.1). Because many languages that we handle are morphologically rich, we de-
sign a morphology-sensitive annotation schema (see example in Figure 3.2) that can properly
instantiate prompts using entity metadata (e.g. gender) and a morphological inflection model
(subsection 3.3.3).
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In addition, while previous works [90, 159, 163] have limited examination to single-token en-
tities (e.g. “France”), we expand our setting to include multi-token entities (e.g. “United States”),
which comprise more than 75% of facts included in our underlying database (Wikidata; subsec-
tion 3.3.2). We propose several decoding algorithms for predicting multi-token entities using
masked LMs (section 3.4).

We perform experiments on X-FACTR (section 3.5), comparing and contrasting across lan-
guages and LMs to answer the following research questions: (1) How and why does perfor-
mance vary across different languages and models? (2) Can multilingual pre-training increase
the amount of factual knowledge in LMs over monolingual pre-training? (3) How much does
knowledge captured in different languages overlap? We find that the factual knowledge re-
trieval of M-LMs in high-resource languages is easier than in low-resource languages, but the
overall performance is relatively low, indicating that this is a challenging task. We analyze
the types of failure cases, shedding light on future directions to improve factual knowledge in
M-LMs. In addition, multilingual pre-training does not necessarily lead to a higher recall of
facts compared to language-specific monolingual pre-training. The knowledge memorized by
M-LMs in fact is largely distinct across languages, with almost 50% of facts being recalled in
only one language.

Inspired by the above observations, we propose a code-switching-based objective function
to improve the ability of M-LMs to access knowledge using queries from a variety of languages.
We replace entities in a sentence from the original language with counterparts in another lan-
guage, and further fine-tune the LM on these code-switched data (section 3.6). We perform
experiments on three languages (French, Russian, and Greek, code-switched with English). Re-
sults demonstrate that this code-switching-based learning can successfully improve knowledge

retrieval ability with low-resource language prompts.

3.2 Retrieving Facts from LMs

In this chapter, we follow the protocol of Petroni et al. [159]’s English-language LAMA bench-
mark, which targets factual knowledge in the form of subject-relation-object triples from Wiki-
data® curated in the T-REx dataset [50]. The cloze-style prompts used therein are manually
created and consist of a sequence of tokens, where [X] and [Y] are placeholders for subjects
and objects (e.g. “[X] is a [Y] by profession.”). To assess the existence of a certain fact, [X] is re-
placed with the actual subject (e.g. “Obama is a (mask) by profession.”) and the model predicts
the object in the blank g; = argmax,, p(y:|si.), where s;; is the sentence with the i-th token

masked out. Finally, the predicted fact is compared to the ground truth. In the next section, we

https://www.wikidata.org/
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en fr nl es ru ja zh hu he tr ko vi el bncebmr war tlsw pamg yo ilo

#all 45.7 40.2 38.3 37.1 26.3 25.1 23.1 20.4 17.1 16.1 16.1 13.6 13.0 9.4 8279 7.3 7.1 6.8 55 4.9 4.6 4.1
#single-token 18.9 13.9 12.8 13.5 34 13 02 6.2 1.1 25 20 39 0.70.1 3.30.2 3.03.2280.1 1.7 0.9 2.1
#multi-token 26.8 26.4 25.5 23.6 22.9 23.8 22.9 14.2 16.0 13.6 14.1 9.7 123 9.3 4.9 7.7 4.4 3.9 4.0 54 3.2 3.7 2.0

Table 3.1: X-FACTR benchmark statistics (in thousands).

extend this setting to more languages and predict multiple tokens instead of a single one.

3.3 Multilingual Multi-token Factual Retrieval Benchmark

3.3.1 Languages

In sampling the languages to create our multilingual benchmark, we attempted to create a
subset as diverse as possible with regard to data availability, typology, and script — within the
constraints of requiring inclusion in Wikidata and standard pre-trained M-LMs. To this end, we
created prompts in 23 languages: English, French, Dutch, Spanish, Russian, Japanese, Chinese,
Hungarian, Hebrew, Turkish, Korean, Vietnamese, Greek, Cebuano, Marathi, Bengali, Waray,
Tagalog, Swahili, Punjabi, Malagasy, Yoruba, and Ilokano.

Our subset includes languages from 11 families (the Indo-European ones include members
of the Germanic, Romance, Greek, Slavic, and Indic genera), using 10 different scripts. Our
languages display high variance with respect to Wikipedia presence, a proxy for overall data

availability, ranging from very large to very small (see Figure 3.1).

3.3.2 Facts

While Petroni et al. [159] and follow-up works focus on entities that can be represented by a
single token since many popular entities consist of multiple tokens (e.g. “United States”), we
argue that it is crucial to include multi-token entities in the benchmark to make the evaluation
unbiased. Similar to Petroni et al. [159], we use the T-REx dataset to collect facts for our bench-
mark. Since T-REx aligns facts from Wikidata with sentences in abstract sections from DBpedia,
we can estimate the commonality of each fact based on its frequency of being grounded to a
sentence in these abstracts.

For each of the 46 relations in T-REx, we sample 1000 subject-object pairs with probability
proportional to their frequency. Frequency-proportional sampling makes the distribution of

the facts in our benchmark close to real usage and covers facts of different popularity. To keep

3We excluded bot-made pages for Cebuano and Waray.
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the benchmark unbiased, we did not constrain the facts with any language-related criteria (e.g.,
require the entities to have translations in all languages we considered). As a result, some
entities (either subjects or objects) might not have translations in all languages. The number
of facts in different languages in our multilingual multi-token X-FACTR benchmark is shown
in Table 3.1. Because many modern pre-trained M-LMs almost invariably use some variety of
sub-word tokenization, the number of tokens an entity contains will depend on the tokenization
method used in the LM. We report the statistics based on the WordPiece tokenization used in
multilingual BERT [47]. The tokenization scheme statistics for the other M-LMs are similar.

3.3.3 Prompts

Some languages we include in the benchmark require additional handling of the prompts to
account for their grammar or morphology. For example, (some) named entities inflect for case
in languages like Greek, Russian, Hebrew, or Marathi. In some languages, syntactic subjects
and objects need to be in particular cases. Similarly, languages often require that the verb or
other parts of the sentence agree with the subject or the object on some morphological features
like person, gender, or number.

Our prompts provide the necessary information in order to generate grammatical sentences,
given the gender and number of the entities. For example, the Russian prompt for “[X] was born
in [Y]” is:

[X.Nom} [pommca;X=MA8C | pormacs;X=FEM | ponMJIOCI);X:NEUT} B [Y.Ess].

The prompt denotes that the subject ([X]) needs to be in the nominative (Nom) case and the
object ([Y]) needs to be inflected in the essive case (Ess). The prompt also accounts for the vari-
ation of the gender of [X] providing options (separated by |) for the subject being masculine,
feminine, or neuter (MASC, FEM, NEUT respectively).

Everything within square brackets gets concretely instantiated given the subject and object.
Grammatical gender is assigned through a combination of Wikidata information and language-
specific heuristics, constructed based on feedback from native speakers of each language. When
the entity corresponds to a person, we retrieve their “sex_or_gender” properties from Wikidata.
In addition, for languages like Greek or French, the gender of an entity can be inferred with
fairly high certainty given the form of the word (e.g. looking at the ending). Last, some cate-
gories of entities (such as cities, countries, organizations, etc, which can be obtained using the
“instance_of” Wikidata property) often get assigned a general grammatical case based on the
category.

Once all the morphological features have been specified as detailed above, we use the Unimorph-
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Inflect package [6] to generate the appropriately inflected surface form of the bracketed words.*
We note that the target entity ([Y]) might also need to be inflected, as in the above Russian ex-
ample, in which case we require the model’s predictions to match the inflected target forms.

To verify the quality of the prompts we performed user studies with native speakers, finding
that 88% on average were judged as natural and grammatically correct. It is worth noting that
the majority of errors are due to prompts being awkward or incorrect for some senses captured
by the relation, and not due to our gender heuristics or automatic inflection. This issue is also
present in the LAMA English prompts [90].

3.3.4 Evaluation

As noted in Petroni et al. [159], because some subject-relation pairs might have multiple correct
objects (e.g., America maintains diplomatic relations with multiple countries), we collect all
valid objects and judge a prediction as correct if it can match any object (e.g., both France and
Canada are correct). Since an entity might have multiple aliases (e.g., “America” and “the US”),
we collect all aliases for each entity from Wikidata, and the prediction is marked as correct if

it can match any one of them after lower casing.

3.4 Multi-token Decoding

As Table 3.1 shows, many facts involve multi-token entities, and thus LMs would need to pre-
dict these entities in multiple steps. Generating multiple predictions is straightforward for
traditional left-to-right LMs [168, 201], where we can autoregressively decode the next token
conditioned on previous tokens. However, many pre-trained LMs such as BERT [47] are masked
LMs that predict individual words given left and right contexts, and decoding from such masked
LMs remains an open problem [60, 116, 183, 224, 224]. We systematically examined different
multi-token decoding algorithms from three orthogonal perspectives: (1) how the initial predic-
tions are produced, (2) how to refine the predictions, and (3) other commonly used components
in neural text generation systems. We assume that the following conditional probability distri-

bution is defined by the masked LM for a sentence with n tokens:

p(xkym,b s x;{?—l? <ma3k>k7 x;{}-‘rl? ) '1';1)7 (3~1)
where the subscript of (mask) indicates its position, and the surrounding token z’ can either

be an actual word z. or (mask). We aim to handle sentences containing multiple mask tokens

conditioning on the surrounding actual words:

Sij = X1, ..., Ti_1, (mask), ..., <mask>j, Tji1, ey Tn, (3.2)

*https://github.com/antonisa/unimorph_inflect
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(a) Independent: Barack Obama is a United; of; president; by profession
(b) Order: Barack Obama is a United; State, President; by profession

(c) Confidence: Barack Obama is a minister, of; cabinet; by profession

Figure 3.3: Illustration of three initial prediction and refinement methods. Green boxes are

mask tokens to be filled, and subscripts indicate the prediction order.

where s;.; indicates a sentence with the i-th to j-th tokens masked out.”

3.4.1 Initial Prediction and Refinement

Given a sentence with multiple mask tokens, e.g., Equation 3.2, we can either generate outputs
in parallel independently or one at a time conditioned on the previously generated tokens.
These methods are similar to the prediction problems that BERT [47] and XLNet [242] perform
in their pre-training stages respectively. We define ¢ € R" as the probability of each prediction,
with details varying by prediction methods.

After all mask tokens are replaced with the initial predictions, i.e., 8;.; = z1, ..., Ui, ..., Uj, ..., T,
we can further refine the predictions by iteratively modifying one token at a time until conver-
gence or until the maximum number of iterations is reached. Here we outline the algorithms

with high-level descriptions.

Independent. For independent initial prediction (Figure 3.3a), the mask tokens are all predicted
in parallel (at once). We also consider two autoregressive methods for initial prediction or

refinement.

Order-based. Mask tokens are predicted from left to right, in each step conditioning also on
the previously generated tokens (Figure 3.3b). In the refinement stage, we modify predictions
also from left to right, and convergence is reached when there are no changes in a left-to-right

scan.

Confidence-based. In each step, we choose the prediction with the highest probability, so the
order of predictions can be arbitrary (Figure 3.3c). In the refinement stage, we choose from all
predicted tokens the one with the lowest confidence (i.e., the lowest probability) and re-predict
it similarly to Ghazvininejad et al. [60]. Convergence is reached when the re-predicted token

is the same as the original token.

SWe assume that the mask tokens are consecutive for notation simplicity, although all following methods/e-

quations can be easily adapted to non-consecutive cases.
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3.4.2 Final Prediction

Because we do not know the number of tokens of the ground truth in advance, we enumerate
from 1to M mask tokens and choose the final prediction based on confidence. Given the prompt
in Equation 3.2, the simplest way to compute the confidence is pseudo log likelihood, which
is the sum of log probabilities of each predicted token conditioned on the other tokens [183]:
v(j—i+1) = ch:l log ¢k, where ¢, is the confidence (probability) of the k-th predicted
token, and v(m) is the overall prediction confidence with m initial mask tokens. Among M

predictions, we choose the one with the highest confidence.

3.4.3 Additional Components

We also investigate additional components commonly used in neural generation systems. Specif-
ically, we consider length normalization in computing the final confidence (i.e., divide v(m)
by the number of mask tokens m) because a simple sum might favor short predictions. In addi-
tion, the confidence value ¢ in previous methods contains probabilities when the predictions are
first generated, which will become stale once the surrounding tokens change [60]. We consider
re-computing confidence c whenever a change happens. Last, we attempted beam search

to keep track of the most plausible B predictions at each step.

3.5 X-FACTR Benchmark Performance

Implementation Details. We use the implementations of different multilingual/monolin-
gual pre-trained LMs in the Transformers library [234]. We examine 3 multilingual pre-trained
LMs, M-BERT, XLM, XLM-R [38, 39, 47],° and 8 monolingual pre-trained LMs, BERT (en),
CamemBERT (fr), BERTje (nl), BETO (es), RuBERT (ru), Chinese BERT (zh), BERTurk (tr), and
GreekBERT (el) [26, 43, 113, 141, 190].

We set the maximal number of mask tokens to M = 5 for English, French, Dutch, and
Spanish. In these languages more than 90% of the entities are split into <5 tokens. For all
other languages we use M = 10. This is expected because the vocabulary of M-LMs based
on WordPiece tokenization is dominated by frequent words and low-resource-language words
tend to split into more pieces [1]. We set the maximal number of iterations to 7'=2M, so that
we can approximately refine all the predicted tokens once for a sentence with M mask tokens
(the initial prediction takes exactly M iterations). In our main results, we report results with

two decoding algorithms: the simplest independent generation method and the confidence-

Yoruba is not in the training data of XLM and XLM-R.
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Figure 3.4: Accuracy on different languages using different LMs (%). Independent prediction
(solid bars) outperforms confidence-based prediction (no-fill bars) on high-resource languages
but not on low-resource languages. Different models are color-coded, with missing/unsup-
ported models marked with x. Languages are ranked by the total number of facts in our bench-

mark.

based method for both initial and refinement predictions. To save computation time, we only

use confidence re-computation for M = 5.

Evaluation Metrics. We follow Petroni et al. [159], computing the accuracy of predicted
objects for each relation and macro-average them as final scores. For fine-grained analysis
of different decoding methods, pre-trained LMs, and languages, we report results on all facts
as well as on subsets consisting only of single-token objects (single) and multi-token objects

(denoted as multi).

3.5.1 Experimental Results

We run both the independent and confidence-based decoding methods with 3 M-LMs, and when
available 8 monolingual LMs, across 23 languages,” with results shown in Figure 3.4. Overall,
even in the most favorable settings, the performance of M-LMs at retrieving factual knowl-
edge in the X-FACTR benchmark is relatively low, achieving less than 15% on high-resource
languages (e.g., English and Spanish) and less than 5% for some low-resource languages (e.g.,
Marathi and Yoruba). This may initially come as a surprise, given the favorable performance

reported in previous papers [90, 159], which achieved accuracies over 30% on English. We jus-

"Check https://x-factr.github. io for the latest results.
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tify this discrepancy in our following analysis. We note that, although we provide baseline
results in almost all languages, we perform our extensive analysis on a representative subset,

consisting of 13 languages.

Performance on Different Languages. Performance on high-resource languages is usually
better than performance on middle- or low-resource languages regardless of the (M-)LMs. This
is probably due to high-resource languages having more data in the pre-training stage. It is also
possible that even if the fact of low-resource languages is written in the available data for these
languages, it is not appropriately memorized due to lack of model capacity or forgetting [109].
It is worth noting that the best results are in Indo-European languages which not only have
the most data, but also share the same (Latin) script which could further facilitate cross-lingual

learning.

Performance of Different LMs. Comparing the performance of different M-LMs, we found
that M-BERT outperforms XLM and XLM-R on high-resource languages, while on low-resource
languages performance is similar. This is contradictory to the conclusion on other cross-lingual
tasks, such as natural language inference and syntactic prediction, as reported in Hu et al. [75].
Our conjecture is that because factual knowledge probing requires retrieving the identity and
relations of individual entities, it is more fine-grained than more coarse-grained understanding
of syntactic and semantic classes that are required to solve other tasks. We posit that pre-
training methods that show superior performance on inference and syntactic prediction tasks
(i.e., XLM-R) might achieve good syntactic/semantic abstraction at the cost of making less con-
crete lexical distinctions.

Comparing M-BERT with language-specific LMs, we find M-BERT outperforms the mono-
lingual BERT on Dutch, Spanish, and Greek, while underperforming on English, Russian, Chi-
nese, and Turkish. Since most of the LMs follow the architecture and pre-training settings of
BERT [47] or RoBERTa [135], we hypothesize that training corpus is the major contributor to
the final performance. Another potential explanation is that model capacity limitations pre-

clude M-BERT from effectively memorizing entity names/relations in all of the languages.

3.6 Improving Multilingual LM Retrieval

As the performance of M-LMs is relatively low, especially on low-resource languages, an obvi-
ous endeavor is to refine the model to improve fact retrieval performance in various languages.
We analyze how similarly M-BERT performs on queries in different languages. We collect cor-

rectly predicted facts across all languages, and count in how many languages each fact was
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Figure 3.5: Bottom-left: the ratio of facts with respect to the number of languages in which the
facts could be successfully retrieved. Top-right: overlap ratio of correct predictions between
two languages. The values on the diagonal are the average overlap ratio of the corresponding

language with the other languages.

retrieved correctly. As shown in the bottom-left histogram of Figure 3.5, half of the correctly
predicted facts were correct in a single language, indicating little overlap across languages [127].
Only 3% of facts were correct in more than 5 languages, and objects in those facts are usually
sub-strings of subjects, making them easy to retrieve regardless of the language. This obser-
vation is also confirmed by the overlap between pairs of languages in the top-right chart of
Figure 3.5; even the most similar languages (i.e., English and Dutch) only have 34% of correct
predictions in common.

We find that facts retrievable only in a single language tend to be knowledge that is mainly
mentioned in a certain language. For example, M-BERT mistakenly predicts “QQ” in the En-
glish sentence “Tencent QQ is developed by _”, while the prediction “f%ifl” (Tencent) in the
corresponding Chinese sentence “FSHQQZF_FF & - ”is correct. This is probably because

Tencent, a Chinese company, is more frequently mentioned in the Chinese training corpus.

3.6.1 Methods

Inspired by these observations, we propose to use code-switching to create data to fine-tune pre-
trained LMs, replacing entity mentions in one language (e.g., English/Greek) with their coun-
terparts in another language (e.g., Greek/English). Through this bi-directional code-switching,
entity mentions serve as pivots, enabling knowledge that was originally learned in one language

to be shared with others. Given a pair of languages, we first identify Wikipedia sentences that
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Single-eval Double-eval
Lang. Method All Single Multi All Single Multi

M-BERT 10.21 19.07 3.92  10.67 19.24 4.55
French +raw  15.06 26.81 7.40 15.69 26.92 8.27
+Cs 13.15 24.37 6.34 16.90 26.98 10.29

M-BERT 1.87 4.58 0.96 3.04 7.72 2.28
Russian +raw 7.92 24.37 3.59 8.77 26.28 4.57
+CSs 7.64 22.41 3.55 11.69 25.31 7.85

M-BERT 4.49 20.75 2.19 4.97 20.87 2.83
Greek +raw 1149  35.27 7.65 12.65 35.27 9.27
+cs 9.30 26.31 5.73 18.41 3093 15.30

Table 3.2: Accuracy of M-BERT after fine-tuning on raw and code-switched text (%).

mention entities from our benchmark using SLING [177]. The M-LM is then finetuned on these
sentences. Following Wu et al. [236], with 30% of probability we switch all the entity mentions
(can be one or multiple) from the original language to their counterparts in the other language,
ending up with sentences like “Opmépa later reflected on his years ..", where we substituted
“Obama" with a Greek mention of the entity, and vice-versa for Greek-to-English. 70% of the
sentences remain the same. If there are multiple mention texts for an entity, we sample propor-
tionally to their frequencies, which we found in our preliminary experiments performed better
than using a fixed translation. We fine-tune M-BERT using the masked LM objective on this

data, with 15% of non-mention words and 50% of mention words masked out.?

3.6.2 Experimental Results

We choose three languages with different data availability, namely French, Russian, and Greek,
and pair them with English, producing 560k, 396k, and 129k code-switched sentences respec-
tively. We compare M-BERT after code-switched fine-tuning (denoted as cs) with both the orig-
inal M-BERT and with fine-tuning only on raw text (raw). We vary the evaluation settings to
illustrate the effect of code-switching: on top of matching predictions to ground truth aliases in
the prompt language (single-eval), we evaluate with targets in both languages (double-eval,;
English and prompt).

As shown in Table 3.2, continued fine-tuning on raw text outperforms the original M-BERT,

8The larger ratio of entities encourages the model to focus on predicting entities, as in the downstream task.
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likely due to our fine-tuning on a subset of sentences with mentions of entities from our bench-
mark. Results on code-switched text are slightly worse when only matching entities in the orig-
inal target language, but significantly better if we allow matching in both the original language
and English. This indicates that code-switched fine-tuning allows M-BERT to retrieve facts,
albeit in English rather than in the prompt language. Encouragingly, the increase is larger for
low-resource (Greek) and typologically distant-to-English (Russian) languages. For example,
the prediction for the Greek prompt “n Oewpio xatnyoprov eivar pépog twv .~ (“Category the-
ory is part of _”) is “mathematics” (in English!), while the prediction without code-switching
is the non-informative “omoiwv” (“which”). Considering that we have more raw than code-
switched sentences in the dataset, this seems to indicate that English entities are easier to
predict than their prompt-language counterparts, which might be because facts expressed in

English are better learned in the pre-trained model due to training data abundance.

3.7 Conclusion

We examine the intersection of multilinguality and the factual knowledge included in LMs
by creating a multilingual and multi-token benchmark X-FACTR, and performing experiments
comparing and contrasting across languages and LMs. The results demonstrate the difficulty
of this task, and that knowledge contained in LMs varies across languages. Future directions
include improved pre-training or fine-tuning methods to improve knowledge retrieval perfor-

mance across different languages.
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Chapter 4
Calibrating LMs for Question Answering

While recent works have shown that LMs capture different types of factual knowledge, they
still fail to provide appropriate answers in many cases. In this chapter, we ask the question
“how can we know when language models know, with confidence, the answer to a particular
query?” We examine this question from the point of view of calibration, the property of a
probabilistic model’s predicted probabilities actually being well correlated with the probabilities
of correctness. This work is presented in:

* Zhengbao Jiang, Jun Araki, Haibo Ding, Graham Neubig. How Can We Know When Lan-
guage Models Know? On the Calibration of Language Models for Question Answering.
Transactions of the Association for Computational Linguistics 9 (2021): 962-977.

We have released the code at:

* https://github.com/jzbjyb/lm-calibration

4.1 Introduction

LMs trained on massive crawls of internet text (such as T5 [170] and GPT-3 [21]) have been
shown to be able to perform quite sophisticated knowledge-based tasks simply through prompt-
ing the model to predict the next words given a particular cue.

However, at the same time, LMs are obviously not omnipotent, and still fail to provide appro-
priate answers in many cases, such as when dealing with uncommon facts [89, 163] or complex
reasoning [203]. The high performance on datasets probing factual or numerical knowledge
might be achieved through modeling superficial signals in the training data that are not gener-
alizable to unseen test cases [163, 203, 223, 257]. Thus, if such models are to be deployed in real

applications it is of crucial importance to determine the confidence with which they can provide

1Zhengbao Jiang conducted main experiments and wrote the draft.
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Format Input ‘ Candidate Answers Original Calibrated
1l division. 0.00 0.02
Oxygen and sugar are the products of C? IYISIOH
. . L L digestion. 0.00 0.01
Multi-choice (A) cell division. (B) digestion. (C) pho- .
. L photosynthesis. 0.00 0.83
tosynthesis. (D) respiration. T
respiration. 1.00 0.14
What type of person can not be at- | head of government 0.07 0.49
i tributed civil disobedience? public official 0.91 0.26
Extractive s . :
Civil disobedience is usually defined as | head of government of a country 0.01 0.16
pertaining to a citizen’s relation ... public officials 0.01 0.09

Table 4.1: LM calibration examples for the T5 model with correct answers in bold. “Original”
and “calibrated” indicate the normalized probability before and after fine-tuning to improve

calibration.

an answer. This is especially true if these models are deployed to safety-critical domains such
as healthcare and finance, where mistaken answers can have serious consequences.’

In this chapter, we ask the question “how can we know when language models know, with
confidence, the answer to a particular knowledge-based query?” Specifically, we examine this
from the point of view of calibration, whether the model’s probability estimates are well-aligned
with the actual probability of the answer being correct. We apply T5, BART, and GPT-2 over
a wide range of question answering (QA) datasets [102] covering diverse domains. We first
observe that despite the models’ high performance (e.g. T5 eclipses other alternatives such as
GPT-2 on some datasets), the models tend to not be well calibrated; their probability estimates
over candidates have far-from-perfect correspondence with the actual probability that the an-
swer they provide is correct. Some examples of this are demonstrated in the “Original” column
of Table 4.1.

To alleviate this problem, we propose methods to make LMs’ confidence scores correlate
better with the likelihood of model prediction being correct. We examined both fine-tuning
methods that modify LMs’ parameters and post-hoc methods that keep LMs fixed and only
manipulate the confidence values or inputs. Specifically, we fine-tune the LM using softmax-
or margin-based objective functions based on multiple candidate answers. For post-hoc cal-
ibration, we examined temperature-based scaling and feature-based decision trees that take
prediction probability and input-related features as input and produce calibrated confidence
[46, 84, 97]. We also study the sensitivity of LMs’ confidence estimation with respect to lan-

guage variation by paraphrasing candidate answers and augmenting questions using retrieved

?For example, a mocked-up medical chatbot based on GPT-3 answered the question of “should I kill myself?”
with “I think you should” [167].
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context.

Experimental results demonstrate that both fine-tuning and post-hoc methods can improve
calibration performance without sacrificing accuracy. We further perform analysis and ablation
studies on our methods, inspecting different aspects that may affect calibration performance.
We found that like other neural models, LMs are over-confident much of the time with con-
fidence close to either 0 or 1. As a result, post-processing confidence with temperature-based
scaling and feature-based decision trees is universally helpful. We also found that LMs become
better calibrated if we phrase each answer multiple ways and provide more evidence through

retrieval, indicating that current LMs are sensitive to both input and output.

4.2 LM-based Question Answering

LMs are now a ubiquitous tool in not only natural language generation, but also natural lan-
guage understanding (NLU), where they are largely used for unsupervised representation learn-
ing in pre-trained models such as BERT [47]. However, recent work has demonstrated that LMs
can also be used as-is to solve NLU tasks, by predicting the missing words in Cloze-style ques-
tions [159], or by predicting the continuation to prompts [18, 21].

Previous works that purport to calibrate LMs [46, 84, 97, 111] mainly focus on the former use
case, using representations learned by LMs to predict target classes (for tasks such as natural
language inference, part-of-speech tagging, or text classification) or identify answer spans (for
tasks such as extractive QA). In contrast, we focus on the latter case, calibrating LMs themselves
by treating them as natural language generators that predict the next words given a particular
input.

To make our observations and conclusions as general as possible, we experiment over a
diverse range of QA datasets with broad domain coverage over questions regarding both factual
and commonsense knowledge [102]. We list all the datasets we used in Table 4.2 along with their
corresponding domain. Since we focus on calibrating LMs as generators, we follow Khashabi
et al. [102] in converting QA datasets of different formats to a unified sequence-to-sequence
format that takes a question X as input and calculates the probability of a continuation Y that

corresponds to the answer:

Y|
Pu(Y[X) = H Pin(yil X, y<i)-
i=1
Specifically, we focus on two varieties of QA: multiple-choice and extractive, with examples

shown in Table 4.1.3

3We also considered using free-form (abstractive) QA datasets, where the answers are not constrained to be
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Multiple-choice QA  For multiple-choice QA, we assume a question and a set of candidate
answers Z(X) = {Y?},. Inputs X to LMs are questions concatenated with multiple candidate
answers (with each answer prefaced by “(A)”, “(B)”, etc.), and context such as a passage that can
be used to help answer the question if any exists. To find the answer the model will return, we

calculate the highest-probability answer among the answer candidates:
Y = arg max P (Y| X).
Y'eZ(X)
We can also calculate the normalized probability
. Pu(Y|X)
Py(Y]X) = ,
Dyrerx) Pm(Y'1X)

(4.1)
which provides some idea of the confidence of answer Y with respect to the candidate list.

Extractive QA For extractive QA, inputs X to LMs are questions concatenated with context
passages from which the answer must be extracted. In this case, every span within the passage
is a candidate answer in Z(X ). However, enumerating all possible spans of the context passage
is computationally costly. Thus, we follow Jagannatha and Yu [84] in using a manageable set
of candidate outputs to perform calibration. Specifically, we develop a method to efficiently
calculate probabilities over promising spans that exist in the input. First, we calculate the prob-
ability of the first token in output Y, masking out any tokens that are not included in the input
passage at all. Then, for the top R scoring tokens, we find their location in the input passage,
and calculate the probability of all continuing spans up to a certain length (e.g., 20 tokens).
We finally keep the top K spans as candidates Z(X ) and use all candidates to calculate the

probability in a manner similar to that of multiple-choice QA.

4.3 Background on Calibration

A model is considered well-calibrated if the confidence estimates of its predictions are well-
aligned with the actual probability of the answer being correct. Given an input X and true
output Y, a model output Y,anda probability Py ()A/|X ) calculated over this output, a perfectly

calibrated model satisfies the following condition:

P(Y =Y|Py(Y|X) =p) =p,¥p € [0,1].

one of several choices and can instead be any text. However, we found it hard to evaluate the correctness of
generated outputs, as paraphrases of the correct answer are still correct, so we do not report results on these
datasets in this chapter. Solving this evaluation problem and evaluating calibration on these tasks is an enticing

direction for future work.
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Format ‘ Datasets and Domains

Multi-choice | ARC (science [35]), AI2 Science Questions (science [35]), OpenbookQA (science
[143]), Winogrande (commonsense [182]), CommonsenseQA (commonsense [202]),
MCTest (fictional stories [176]), PIQA (physical [16]), SIQA (social [187]), RACE (En-
glish comprehension [115]), QASC (science [106]), MT-test (mixed [71])

Extractive SQuAD 1.1 (wikipedia [172]), SQuUAD 2 (Wikipedia [173]), NewsQA (news [215]),
Quoref (wikipedia [42]), ROPES (situation understanding [129])

Table 4.2: Datasets used in this chapter and their domains.

In practice, we approximate this probability by bucketing predictions into M disjoint equally-
sized interval bins based on confidence. Guo et al. [63] examined the calibration properties of
neural network classifiers, and proposed a widely used measure of calibration called expected
calibration error (ECE), which is a weighted average of the discrepancy between each bucket’s

accuracy and confidence:

M

Z B ||acc B,,) — conf(B,,)], (4.2)

m=1

where B, is the m-th bucket containing samples whose prediction confidence falls into the

interval (2= acc(B,,) is the average accuracy of this bucket, and conf(B,,) is the average

B it
confidence of this bucket. The above equation can be visualized using reliability diagrams (e.g.,
Figure 4.1 in the experiments), where each bar corresponds to one bucket, and the height is
equal to the average accuracy. The diagram of a perfectly calibrated model should have all bars

aligned with the diagonal.

Unfortunately, we found that LM-based methods for question answering (such as the Uni-
fiedQA model of Khashabi et al. [102]) were extraordinarily poorly calibrated, with the nor-
malized probability estimates barely being correlated with the likelihood of the outputs being
correct. For the two examples in Table 4.1, for instance, we can see that the language model
assigns a very high probability to answers despite the fact that they are wrong. This is partic-
ularly important because with T5 [170], GPT-3 [21], and others [66, 124] being provided as a
potential answer to complex knowledge-based tasks, for models to actually be used in practical
scenarios they must also be able to know when they cannot provide correct information. In
the following section, we examine methods to improve the calibration of pre-trained models

through a number of methods.
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4.4 Calibrating LMs for Question Answering

Our calibration methods can be grouped into two categories: methods that fine-tune LMs and

post-hoc methods that keep LMs fixed and only manipulate confidence or inputs.

4.4.1 Fine-tuning-based Calibration

Existing LMs mainly use maximal likelihood estimation (MLE) during training, which maxi-
mizes the probability of ground truth output given the input. However, it is well-attested that
MLE-trained language generators are biased, tending to prefer short outputs [146], or being
biased towards more frequent vocabulary [154]. However, in the case where we know a set
of reasonable candidates Z(X), one straightforward way to fine-tune LMs is to only consider
candidates in Z(X) and directly tune Py (Y| X) to be a good probability estimate of the actual

outputs. We propose two fine-tuning objective functions based on the candidate set.

Softmax-based objective functions model candidates in a one-vs-all setting, where we use
the softmax function to normalize the confidence of candidates and maximize the probability

corresponding to the correct candidate. We use the negative log likelihood as the loss function:

exp(s(Y))
ZY’eI(X) exp(s(Y”))’

L(X,Y)=—log

where the ground truth Y is one of the candidates in Z(X), and s(-) is the logit of the corre-
sponding output (omit condition X for simplicity), which is computed as the log probabilities
of all tokens in the output: s(Y) = log Py (Y] X).

Margin-based objective functions try to maximize the confidence margin between ground
truth output and negative results. This is motivated by the fact that non-probabilistic objectives
such as those used by support vector machines provide reasonably good probabilistic estimates

after appropriate scaling and adjustment [162]. Specifically, we use the following objective:

LX,Y)= > max(0,7+s(Y)—s(Y)).
Y/eT(X)\Y
4.4.2 Post-hoc Calibration

Compared to fine-tuning methods that optimize the parameters in the model, post-hoc calibra-
tion methods keep the model as-is and manipulate various types of information derived from

the model to derive good probability estimates [46, 63, 84]. In this section, we consider two
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aspects of the model: model probabilities PN(Y|X ) and features of the model inputs X or out-
puts Y. We attempted two representative methods, namely temperature-based scaling [63] and
feature-based decision trees [84], to study whether post-processing probabilities is an effective
method for calibration of LMs in the context of QA.

Temperature-based Scaling methods have been proposed for classification tasks [46, 63],
where a positive scalar temperature hyperparameter 7 is introduced in the final classification
layer to make the probability distribution either more peaky or smooth: softmax(z/7). If 7
is close to 0, the class with the largest logit receives most of the probability mass, while as
7 approaches oo, the probability distribution becomes uniform. When applying this method
to our setting, we use log probabilities of the candidates in Z(.X) as logits in computing the
softmax function: z = log Po(Y'|X), Y’ € Z(X), and 7 is optimized with respect to negative
log likelihood on the development split.

Feature-based Decision Trees methods explore non-linear combinations of features to es-
timate the confidence compared to temperature-based scaling which only considers the raw
confidence. We follow previous works [48, 84] and use gradient boosted decision trees [29]
as our regressor to estimate the confidence based on features. Besides the raw confidence, we
consider the following features and explain their intuitions:

* Model Uncertainty: We use the entropy of the distribution over the candidate set Z(X)

to inform the regressor of how uncertain the LM is with respect to the question.

* Input Uncertainty: We use the perplexity of the LM on the input to indicate the uncer-
tainty over the input. The intuition is that high perplexity might indicate that the input

comes from a distribution different from the training distribution of the LM.

+ Input Statistics: We also use the length of the input and output as features, motivated
by our hypothesis that longer text may provide more information to LMs than shorter

text.

We train the regressor on the development set similarly to temperature-based scaling by mini-

mizing negative log likelihood.

4.4.3 LM-Specific Methods

In addition to standard methods that are applicable to most prediction models, we also examine

several methods that are specific to the fact that we are using LMs for the task of QA.
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Input How would you describe Addison? (A) excited (B) careless (C) de-
voted. Addison had been practicing for the driver’s exam for months.

He finally felt he was ready, so he signed up and took the test.

Paraphrases & Probabilities ‘ devoted (0.04), dedicated (0.94), commitment (0.11), dedication (0.39)

Table 4.3: An example question with the correct answer in bold. Different paraphrases of the

correct answer have different probabilities.

Candidate Output Paraphrasing Motivated by the fact that LMs are sensitive to language
variation [90] in tasks like question answering and factual prediction, we hypothesize that one
potential reason why the confidence estimation of LMs is not accurate is that the candidate
output is not worded in such a way that the LM would afford it high probability. As shown
by the example in Table 4.3, paraphrasing the correct answer from “devoted” to “dedicated”
increases the probability from 0.04 to 0.94. Motivated by this, we use a round-trip translation
model to paraphrase each candidate output Y’ € Z(X) into several other expressions by first
translating it into another language and then back-translating it to generate a set of paraphrases
para(Y”). We then calculate the probability of each candidate output by summing the probabil-
ity of all paraphrases P(Y") = 3¢ vy Fim(Q|X) and normalize it following Equation 4.1.
By collectively considering multiple paraphrases, the issue of sensitivity to the wording can
be alleviated somewhat, as there will be a higher probability of observing a paraphrase that is

afforded high probability by the model.

Input Augmentation Previous work has found that LMs’ factual predictions can be im-
proved if more context is provided [160], which has inspired many retrieval-augmented LMs
that retrieve evidence from external resources and condition the LMs’ prediction on this evi-
dence [66, 122, 124]. We hypothesize that retrieving extra evidence to augment the input also
has the potential to improve the confidence estimation of LMs as it will provide the model with
more evidence upon which to base both its predictions and its confidence estimates. We follow
[160] to retrieve the most relevant Wikipedia article using TF-IDF-based retrieval systems used

in DrQA [27] and append the first paragraph of the article to the input.

48



4.5 Experiments

4.5.1 Experimental Settings

Datasets We evaluate the calibration performance on both multiple-choice QA datasets and
extractive QA datasets listed in Table 4.2. To test whether our calibration methods can gener-
alize to out-of-domain datasets, we use a subset of datasets of multiple-choice/extractive QA to
train our methods, and the remaining subset of datasets to evaluate the performance. Specif-
ically, we use ARC (easy), Al2 Science Question (elementary), OpenbookQA, QASC, Wino-
grande, CommonsenseQA, and PhysicallQA as the training subset for multiple-choice QA (de-
noted as MC-train), and SQuAD 1.1, NewsQA as the training subset for extractive QA (denoted
as Ext-train). The remaining subsets used for evaluation are denoted as MC-test and Ext-test
respectively. We also included a much harder multiple-choice QA dataset (denoted as MT-test;
Hendrycks et al. [71]) regarding common sense in a number of genres, in which the largest GPT-
3 model and UnifiedQA both display only low to moderate accuracy. For fine-tuning methods,
we use the train split of MC-train/Ext-train to fine-tune the LMs. For post-hoc methods like
temperature-based scaling and decision trees, we follow Guo et al. [63] and use the development

split of MC-train/Ext-train to optimize the parameters.*

LMs One clear trend of the past several years is that the parameter size and training data size
of pre-trained models play a significant role in the accuracy of models; pre-trained LMs such as
BERT [47] tend to underperform more recently released larger LMs like Turing-NLG® and GPT-
3 [21]. Thus, we employ the largest publicly available LM, which, at the time of this paper’s
publication, is the T5 model Raffel et al. [170]. The T5 model is a sequence-to-sequence model
with both encoder and decoder using transformers [219], and the largest version has 11 billion
parameters, allowing it to realize strong performance on tasks such as question answering and
natural language understanding [102, 178].

Specifically, we use two varieties of this model. The original T5 model is a sequence-to-
sequence model trained on a large corpus of web text, specifically trained on a denoising ob-
jective that generates missing tokens given inputs with some tokens masked out. The Uni-
fiedQA model, uses the initial T5 model and fine-tunes on a variety of QA datasets by convert-
ing multiple-choice, extractive QA formats into a unified sequence-to-sequence format, similar
to the one that we show in Table 4.1. We use the 3-billion versions in our main experiments in

subsection 4.5.3 (for efficiency purposes).

“Since not all datasets in MC-test and Ext-test have a test split, we report the performance on the development
split.
Shttps://msturing.org/
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Evaluation Metrics We use accuracy to measure the prediction performance of our meth-
ods, and ECE to measure the calibration performance. Accuracy is computed as the ratio of
question-answer pairs for which the correct answer has the highest probability among all the
candidates in Z(x). ECE is computed using Equation 4.2 by bucketing all candidate answers in
Z(x) based on confidence. For MC-test and Ext-test which include multiple datasets, we com-
pute accuracy and ECE on each dataset separately and average across them to avoid the metrics

being dominated by large datasets.

Implementation Details We fine-tune UnifiedQA-3B with a batch size of 16 for 3k steps
and UnifiedQA-11B with a batch size of 3 for 15k steps on a v3-8 TPU. The maximal length of
input and output are set to 512 and 128 respectively, following the setting of UnifiedQA [102].
For extractive QA datasets, we use top R = 10 first tokens and finally X' = 5 spans are used
as candidates. For the paraphrasing-based method, we use the WMT-19 English-German and
German-English transformer models to perform back translation [148]. The beam size is set
to 10 for both directions, which will yield 10 x 10 = 100 paraphrases in the end. Since some
paraphrases are duplicated, we count the frequency and use the top 5 unique paraphrases in
our main experiments subsection 4.5.3. For the retrieval-based augmentation, we use the KILT
toolkit [161] to retrieve the most relevant article from the Wikipedia dump, and append the
first three sentences of the first paragraph of the retrieved article to the input. For the feature-
based decision trees model, we use XGBoost [29] with logistic binary objective, max depth of 4,
number of parallel trees of 5, and subsample ratio of 0.8. We use Temp. to denote temperature-
based scaling, XGB to denote feature-based decision trees, Para. to denote paraphrasing, Aug.
to denote input augmentation, and Combo to denote the combination of Temp., Para., and
Aug. in the experimental section. We use the model with the best calibration performance in
post-hoc calibration experiments. For multiple-choice QA, we use the UnifiedQA model after

margin-based fine-tuning. For extractive QA, we use the original UnifiedQA model.

4.5.2 Are LM-based QA Models Well Calibrated?

As shown in Table 4.4, our baseline models (i.e., T5 and UnifiedQA) achieve strong performance
on a diverse range of QA datasets. On the MT-test datasets, the UnifiedQA model even outper-
forms the largest version of GPT-3 with 175 billions parameters [71]. Despite the impressive
performance, these models are not well calibrated, with ECE higher than 0.2 on the MT-test
dataset. We found that LMs tend to be over-confident about cases they do not know, as shown
in the confidence distribution in the first row of Figure 4.2 that most predictions have aggressive
confidence being close to 0 or 1. The UnifiedQA model assigns high confidence to the wrong

answer for examples in Table 4.1, indicating that its confidence estimates are not trustworthy.
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4.5.3 Can LM-based QA Models be Calibrated?

We calibrate the UnifiedQA model using both fine-tuning-based methods and post-hoc methods
and show their performance in Table 4.4 and Table 4.5 respectively.

Overall, on multi-choice QA datasets (i.e., MC-test and MT-test), both fine-tuning-based
methods and post-hoc methods can improve ECE while maintaining accuracy compared to the
baseline UnifiedQA model. The best-performing method (i.e., Combo), which combines margin-
based fine-tuning, temperature-based scaling, paraphrasing, and input augmentation, improves
ECE from 0.095 to 0.044 by over 53%. As shown in the reliability diagrams of the original
UnifiedQA model (top-right) and the UnifiedQA model calibrated with Combo (bottom-left) in
Figure 4.1, calibration using our methods makes the confidence estimates of predictions better
aligned with their correctness. Comparing those two diagrams, an interesting observation is
that our method seems to over-calibrate the LM, making over-estimated bars on the right-hand
side of the top-right diagram (bars lower than the diagonal) under-estimated and vice versa.
This is probably caused by the temperature being too aggressive (i.e., too large), making the
distribution too flat. Note that the datasets used to learn the temperature (MC-train) and used
in evaluation (MC-test) are different, which we hypothesize is the reason why the temperature is
too aggressive. We verify this by learning an oracle temperature on the evaluation datasets (MC-
test). The learned temperature indeed becomes smaller (1.35 — 1.13), and the reliability diagram
(bottom-right in Figure 4.1) is almost perfectly aligned. This demonstrates the challenge of
calibrating LMs across different domains.

However, on extractive QA datasets, the improvement brought by different calibration meth-
ods is smaller. We hypothesize that this is because the candidate set Z(.X) generated by the
span-based decoding method for extractive QA is harder to calibrate than the manually curated
candidate answers for multiple-choice QA. We compute the average entropy of the confidence
of the UnifiedQA model over Z(.X') on both extractive QA (Ext-test) and multiple-choice QA
datasets (MC-test), and found that Ext-test indeed has much higher entropy compared to MC-
test (0.40 vs 0.13), which partially explains the difficulty of calibration on extractive QA datasets.

4.5.4 Analysis of Individual Calibration Methods
In this section, we discuss each method in detail and analyze why they can improve calibration

performance.

Objective Function Matters. The original UnifiedQA model is fine-tuned based on MLE,
which maximizes the probability of the gold answer given the question. Both softmax-based and

margin-based fine-tuning, which explicitly compare and adjust the probability of candidate an-
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Method MC-test MT-test Ext-test
ACCT ECE] | ACCT ECE| | ACCtT ECE]

T5 0.313 0.231 0.268 0.248 0.191 0.166
UnifiedQA 0.769 0.095 0.437 0.222 0.401 0.114
+ softmax  0.767 0.065 0.433 0.161 0.394 0.110
+ margin 0.769  0.057 0.431 0.144 | 0.391 0.112

Table 4.4: Performance of different fine-tuning methods.

Method MC-test MT-test Ext-test
ACCT ECE| | ACCT ECE| | ACCT ECE]

Baseline 0769  0.057 \ 0431  0.144 \ 0401  0.114

+ Temp. 0.769 0.049 0.431 0.075 0.401 0.107
+ XGB 0.771 0.055 0.431 0.088 0.402  0.103
+ Para. 0.767 0.051 0.429 0.122 0.393 0.114
+ Aug. 0.744 0.051 0.432 0.130 0.408 0.110

+Combo  0.748 0.044\ 0431  0.079 \ 0398  0.104

Table 4.5: Performance of different post-hoc methods using the UnifiedQA model after margin-
based fine-tuning or the original UnifiedQA model as the baseline model. “+Combo” denotes

the method using both Temp., Para., and Aug.

swers, can further improve ECE on multiple-choice datasets. We argue that the softmax-based

and margin-based objective functions are better suited for questions with potential candidates.

Post-processing Confidence is Effective Universally. Post-processing the raw confidence
either solely based on confidence or other features is effective across all datasets, which is
consistent with the conclusion on other tasks such as structured prediction and natural lan-
guage inference [46, 84]. We demonstrate the histogram of confidence before and after applying
temperature-based scaling or feature-based decision trees in Figure 4.2. LMs tend to be over-
confident, with most predictions having either extremely high or low confidence. Both methods
can successfully re-scale the confidence to reasonable ranges, thus improving the calibration

performance.
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Figure 4.1: Reliability diagram of the T5 model (top-left), the original UnifiedQA model (top-
right), the UnifiedQA model after calibration with Combo (bottom-left), and Combo with oracle
temperature (bottom-right) on the MC-test datasets.
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Figure 4.2: The ratio of predictions with respect to the confidence of the T5 model (top-left),
the UnifiedQA model (top-right), the UnifiedQA model after temperature-based calibration
(bottom-left), and the UnifiedQA model after feature-based calibration (bottom-right) on the
MC-test datasets.

Paraphrasing Answers and Input Augmentation can Improve Confidence Estimation.
The improvement brought by using paraphrasing is significant on multiple-choice datasets,
demonstrating that using diverse expressions can indeed improve confidence estimation. To
better understand under what circumstances paraphrasing works, we group candidate answers
into two categories: the first group includes candidate answers that become better calibrated
using paraphrases; the second group includes candidate answers whose confidence remains
the same using paraphrases. We say that a candidate becomes better calibrated if its confi-
dence increases/decreases by 20% if it is a correct or incorrect answer respectively. We found
that the average length of questions for better-calibrated candidates (187) is much shorter than
that of candidates without improvement (320), indicating that paraphrasing is useful mainly
for short questions. We also compute the diversity of word usage in paraphrases using the
number of unique words divided by the total length of paraphrases. We found that better-
calibrated candidates have slightly higher diversity (0.35 vs 0.32), which is consistent with our
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intuition. Retrieval-based augmentation can also improve calibration performance on multiple-
choice datasets, which is probably because the retrieved documents can provide extra evidence

about the question, making LMs more robust at confidence estimation.

Calibration Methods are Complementary. By combining margin-based fine-tuning, temperature-
based scaling, paraphrasing, and input augmentation, we achieve the best ECE on MC-test,

demonstrating that these calibration methods are complementary to each other.

4.6 Related Work

Calibration Calibration is a well-studied topic in other tasks such as medical diagnosis [88]
and image recognition [63, 121]. Previous works in NLP have examined calibration in struc-
tured prediction problems such as part-of-speech tagging and named entity recognition [84],
natural language understanding tasks such as natural language inference, paraphrase detec-
tion, extractive question answering, and text classification [46, 97, 111]. In contrast, we focus
on calibrating LMs themselves by treating them as natural language generators that predict the

next words given a particular input.

LM probing Previous works probe pre-trained LMs with respect to syntactic and semantic
properties [72, 206], factual knowledge [90, 159, 163], commonsense knowledge [110, 214], and
other properties [203]. These works usually focus on what LMs know, while in this chapter we

also consider the cases when LMs do not know the answer with confidence.

4.7 Conclusion

In this chapter, we examine the problem of calibrating LMs for question answering. We first
note that LMs tend to be poorly calibrated in their probability estimates. To alleviate this prob-
lem, we attempted several methods to either fine-tune the LMs, or adjust the confidence by
post-processing raw probabilities, augmenting inputs, or paraphrasing candidate answers. Ex-
perimental results demonstrate the effectiveness of these methods.

Some future directions could be developing various calibration methods either through im-
proving the confidence adjustment or directly generating outputs with expressed confidence
levels. It is also interesting to investigate the effect of calibration on users or downstream tasks.
For instance, providing users with model confidence can influence downstream decisions [251],
and users may want to adjust required confidence thresholds on critical domains such as health,

safety, and medicine.
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Chapter 5

Enhancing LLMs in Absorbing
Knowledge through

Pre-instruction-tuning

We have studied knowledge extraction and calibration in previous chapters. In this chapter, we
move one step further to improve the capacity of LLMs to store knowledge. We find that LLMs
trained on documents struggle to answer questions related to these documents, even though the
perplexity of documents is minimized. We hypothesize that it is beneficial to expose LLMs to QA
pairs before continued pre-training on documents so that the process of encoding knowledge
from complex documents takes into account how this knowledge is accessed through questions.
Based on this, we propose pre-instruction-tuning (PIT), a method that instruction-tunes on
questions prior to training on documents. This work is presented in:
* Zhengbao Jiang, Zhiqing Sun, Weijia Shi, Pedro Rodriguez, Chunting Zhou, Graham Neu-
big, Xi Victoria Lin, Wen-tau Yih, Srinivasan Iyer. Instruction-tuned Language Models are
Better Knowledge Learners. In Proceedings of the 62th Annual Meeting of the Associa-

tion for Computational Linguistics 2024."

5.1 Introduction

The factual knowledge in LLMs is static, meaning that it can become outdated as the world
evolves, or prove insufficient when LLMs are used in specialized or private domains. To keep
LLMs up-to-date, it is common to continue pre-training on new documents to store knowl-

edge in parameters, which allows LLMs to effectively answer queries that require up-to-date

'Zhengbao Jiang proposed the idea, conducted main experiments, and wrote the draft.
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Figure 5.1: Illustration of continued pre-training (first row), continued pre-training followed
by instruction-tuning (second row), and pre-instruction-tuning before continued pre-training
(last row), along with their accuracies on evaluation questions. Each right-pointing light-blue

triangle indicates a training phase.

information [85]. A widely held view is that the factual knowledge stored in parameters can
be elicited through prompting [21, 159, 178], and that instruction-tuning (also known as su-
pervised fine-tuning or alignment) makes this elicitation more effective [155, 184, 231]. In the
first part of this chapter (section 5.4), we conduct extensive experiments using Llama-2 [213] to
answer the following question: to what extent can we augment the knowledge stored in modern
LLMs by continued pre-training on new documents, either with or without subsequent instruction-
tuning? We find that, as we train LLMs repeatedly over documents to the extent that perplexity
is minimized to one, the percentage of questions regarding those documents that LLMs an-
swer correctly increases consistently to 27.6%. Subsequent instruction-tuning further improves
it to 30.3%, confirming that this widely used practice is useful to elicit more knowledge from
LLMs.* However, the amount of elicited knowledge is still limited, even though the perplexity

of documents is minimized, a phenomenon we refer to as the “perplexity curse”.’?

In the second part of the chapter (section 5.5), we study methods to mitigate the perplex-
ity curse by making LLMs more adept at absorbing knowledge from documents. Zhu and Li
[260] presented an intriguing finding that training a randomly initialized transformer from
scratch on a mix of biographies and related questions resulted in strong generalization to new
questions. However, understanding the reasons behind this finding and exploring ways to prac-
tically apply it for absorbing knowledge from new documents requires further investigation.
We found that question-answer (QA) pairs are generally straightforward and easily digestible,

while documents tend to be more complex and cluttered, often weaving many factual state-

’This capacity might be underestimated by previous works due to using relatively small LMs or randomly
initialized transformers, or lack of exhaustive training or instruction-tuning [76, 226, 260].
3Inspired by the “reversal curse” of Berglund et al. [13].
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ments together in a more intricate manner. Therefore, we hypothesize that it is beneficial to de-
liberately expose LLMs to QA data before continued pre-training on documents so that the process
of encoding knowledge from complex documents takes into account how this knowledge is accessed
through questions. We refer to this as pre-instruction-tuning (PIT) and conduct comprehen-
sive experiments to benchmark different variations of this method. As shown in Figure 5.1, our
best-performing variation starts with training exclusively on QA pairs (e.g., “who handled the
editing of Oppenheimer”) to grasp how knowledge is accessed. This is followed by training
on a combination of these QA pairs and associated documents (e.g., “who handled the edit-
ing of Oppenheimer” and a document about “Oppenheimer”). In this phase, LLMs enhance
their ability to absorb knowledge from information-dense documents, building upon the QA
pairs that they have already mastered. To study continual knowledge acquisition, we build
a dataset named Wiki2023, which includes a collection of documents from Wikipedia that
are relevant to the year 2023. Comprehensive experiments on Wiki2023 demonstrate that
after PIT, LLMs exhibit an enhanced ability to absorb knowledge from new documents (e.g.,
a document about “Barbie”). Detailed ablation studies reveal that this ability primarily stems
from prioritizing learning how to access knowledge over learning to encode knowledge from
documents. Overall, PIT significantly outperforms the standard instruction-tuning approach
(subsection 5.5.1 and subsection 5.5.2), improving QA accuracies by 17.8% on Llama-2 7B (30.3%
— 48.1%) and 16.3% on Llama-2 70B (46.4% — 62.7%). Moreover, PIT also enhances the ability to
absorb knowledge from documents of a different domain, shedding light on the potential to scale
this method up to a wider variety of documents and instructions for more robust generalization
(subsection 5.5.4).

5.2 Building a Dataset to Study Continual Knowledge Ac-

quisition

To assess the ability of LLMs to learn knowledge from new documents, it is essential to use
a document corpus with minimal overlap with the original pre-training corpus. This ensures
that when an LLM correctly answers questions, we can confidently attribute this capability to
its learning from the new documents, rather than encountering similar questions in its original
pre-training corpus. In this section, we describe a methodology for building such a corpus from
Wikipedia.
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Figure 5.2: The Wiki2023 dataset. Middle: the number of documents and QA pairs; Left:

frequent keywords in questions; Right: the distribution of token counts in documents, ques-

tions, and answers.

An example document about “Oppenheimer”

<bos> Oppenheimer ( OP-an-hy-mar) is a 2023 epic biographical
thriller film written and directed by Christopher Nolan. It stars Cillian
Murphy as J. Robert Oppenheimer, ... the film chronicles the career of
Oppenheimer, with the story predominantly focusing on his studies, his
direction of the Manhattan Project during World War I, and his
eventual fall from grace due to his 1954 security hearing. ... Editing
was handled by Jennifer Lame, and the score was composed by

Ludwig Goransson. ... Oppenheimer premiered at Le Grand Rex in
Paris on July 11, 2023, and was theatrically released ...

Example QA about “Oppenheimer”

<bos> Question: Who wrote and directed the film Oppenheimer?
Answer: Christopher Nolan. <eos>
<bos> Question: Who stars as J. Robert Oppenheimer in the film?
Answer: Cillian Murphy. <eos>
<bos> Question: What aspects of Oppenheimer's life does the film
focus on?
Answer: His studies, direction of the Manhattan Project, and 1954
security hearing. <eos>
<bos> Question: Who handled the editing of Oppenheimer?
Answer: Jennifer Lame. <cos>

<bos> Question: When did Oppenheimer premiere in Paris?
Answer: July 11, 2023. <eos>

Figure 5.3: An example document about “Oppenheimer” and corresponding QA pairs from

Wik12023. Tokens used for computing losses are highlighted in green. We use the underlined

question and the corresponding supporting evidence as a recurring example in this chapter.

5.2.1

Wiki2023 Document Corpus

In the following experiments (section 5.4 and section 5.5), we use Llama-2 (7B and 70B) [213]

since it was one of the best-performing LLMs. We use Wikipedia articles classified under the

2023” Category including topics from diverse domains such as films, arts, economics, politics,
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events, etc.* The likelihood that this factual information is not included in the original training
corpus is supported by the low QA performance in Table 5.1 (9.5%/17.2% for 7B/70B).” To accel-
erate the training process, we only use the first section of each article, which offers a thorough
summary and contains many factual statements. The number of collected documents and an
example document about “Oppenheimer” can be found in Figure 5.2 and Figure 5.3. We refer
to this as the Wik12023 dataset.

5.2.2 Wiki2023 Question-answer Pairs

To collect QA pairs for either instruction-tuning or performance evaluation, we employ publicly
available LLMs to generate diverse questions and their respective answers given the article as
context, following the Prompt 1. On average, 4.93 questions are generated for each article. Fig-
ure 5.2 and Figure 5.3 show the detailed statistics and example QA pairs about “Oppenheimer”,

respectively.

Prompt 1: question-answer generation prompt

Given the following summary about the subject {topic}, generate a comprehensive list of questions and
corresponding answers that cover all aspects. To make the question clear, always include {topic} in the

question. Answers should be concise, consisting of a few short phrases separated by commas.

Output in the following format:
Q: an open-domain question about the subject {topic} (the subject {topic} should always be included)
A: phrasel, phrase2, ...

Summary:

{summary}

\ J

5.2.3 Splits

Among all domains, we select the film domain for evaluation and randomly select 256 articles
as the test split (Wiki2023-film-test). We continually train LLMs on documents from
the test split (Wiki2023-film-test-doc), and assess their performance based on the
accuracy of corresponding questions (Wiki2023-film-test-QA). The remaining 1720
articles and corresponding QA pairs (Wiki2023-film-train) will be used to study dif-

ferent training strategies, which corresponds to the in-domain setting in Figure 5.2. We also

*https://en.wikipedia.org/wiki/Category:2023
°It is important to note the difficulty in completely avoiding factual overlap between Wiki2023 and the
pre-training corpus of Llama-2. For example, a film released in 2023 might have had information available before

2023. Data duplication detection is an active research direction, which falls beyond the focus of this study.
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train on other domains before evaluation on the film domain to study the effectiveness of dif-

ferent methods across domains, which corresponds to the cross-domain setting in Figure 5.2.

5.3 Experimental Settings

5.3.1 Objectives

When training on documents, we prepend a <bos> token and compute the standard next-token
prediction loss by averaging over all tokens in the document: Lq = — ), log P(d;|d;)/|d]|.°
When training on QA pairs, we compute the average negative log-likelihood loss only on tokens
in the answer given the question as the prefix: L, = —)_,log P(a:|q,a~;)/|a|. Figure 5.3
presents an example document alongside QA pairs, where tokens used for computing losses

are highlighted.

5.3.2 Hyperparameters

We use AdamW [136] with 8; = 0.9, B, = 0.95, and a weight decay of 0.1. We decay the
learning rate to 10% of its initial value using a cosine scheduler without warm-up. When pre-
training on documents, we use a batch size of 256 documents and an initial learning rate of
3e-5. During instruction-tuning on QA pairs, we use the same batch size of 256 QA pairs, but
opt for a reduced initial learning rate of 5e-6 because the number of tokens in a single batch
used for computing losses is lower. The number of epochs varies depending on the setting and

is detailed in the corresponding sections.

5.3.3 Evaluation Metrics

At inference time, we use greedy decoding to generate answers given questions as context,
following the format in Figure 5.3. To evaluate the original Llama-2, we add 5 QA pairs as
in-context exemplars to make sure it follows the QA format. Since most questions are simple
factoid questions and most answers are relatively short, we use exact match (EM) as our primary
metric [114], which measures whether the model’s output matches the gold answer exactly
after normalization (e.g., remove articles and punctuations). To assess longer responses and
accommodate minor lexical differences, we also report answer recall, which assesses if the gold
answer appears in the model’s output, and ROUGE-L, which measures the longest common

subsequence between the model’s output and the gold answer.

®We do not append a <eos> token at the end of documents because we only use the first section, which does

not signify the conclusion of the entire article.
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continued pre-training
(1) continued pre-training test doc OA instruction-tuning
(2)standard instruction-tuning | train doc__test doc_:
(3) standard instruction-tuning (wio forgetting) {irain doc testdoc | RENYON test doc |

OA pre-instruction-tuning train doc  test doc @mix training

test doc (5) pre-instruction-tuning (QA only)

train doc test doc (6) pre-instruction-tuning (QA and docs sequentially)
test doc (7) pre-instruction-tuning

test doc (8)pre-instruction-tuning++

Figure 5.4: Different experimental settings examined in this chapter. Each row represents a
different experimental setting with a unique name and number, and each vertical section high-
lighted by a right-pointing light-blue triangle indicates a training phase. Models are assessed
on test QA across all settings. Whenever multiple datasets are enclosed within a dashed square,

they are mixed together during the training process.

5.4 How Much Knowledge Can LLMs Absorb via Contin-

ued Pre-training Followed by Instruction-tuning?

Factual knowledge stored in the parameters of LLMs can be accessed and applied to answer-
ing questions through prompting without additional training [21, 90, 159, 178]. With addi-
tional instruction-tuning (also known as supervised fine-tuning) on high-quality data [184, 231],
knowledge seems to be more effectively elicited from LLMs. However, when LLMs correctly an-
swer a question, the source of the knowledge is unclear due to the diversity of the pre-training
data. For instance, when answering the question “where is the world’s largest ice sheet located”,
do LLMs derive their response by recalling and generalizing information from a seen document
about the Antarctic ice sheet, or do they merely repeat answers from similar questions encoun-
tered in the training data? This distinction is crucial, as the former scenario implies an ability to
comprehend documents and effectively store knowledge within parameters in a way that can
be elicited later, whereas the latter is mere rote memorization.

Several works have studied this problem and the predominant finding is that LMs struggle
to answer questions about documents they have been trained on [226, 260]. It is important to
note, however, that these experiments were mainly conducted using relatively small LMs such
as BART, T5, or GPT-2 [76, 85, 226], using randomly initialized transformers [260], or without
instruction-tuning [156]. This makes us wonder what are the actual limits of modern LLMs
to absorb knowledge from new documents and answer questions about them using the standard

continued pre-training followed by instruction-tuning recipe. In this section, we run extensive
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experiments using Llama-2 7B and 70B on Wik12023-£f11m to test their limits.

5.4.1 Vanilla Continued Pre-training and Instruction-tuning

Experimental settings We experiment with two standard settings and assess their perfor-
mance by answering associated questions.

» Continued pre-training: train on test documents without instruction-tuning (Figure 5.4 @).7

+ Standard instruction-tuning: train on both train and test documents before instruction-tuning
on train QA pairs (Figure 5.4 @).

We perform instruction-tuning for a single epoch since more epochs usually result in dimin-

ished performance. For training on documents, we opt for multiple epochs (10/5 for a 7B/70B

model), which allows for effective knowledge acquisition and remains affordable for corpora of

moderate sizes.

Experimental results As shown in Table 5.1, the relatively low performance of the orig-
inal Llama-2 model (9.5%/17.2% for 7B/70B) indicates that most knowledge in the test docu-
ments is not included in the original pre-training corpus. After continued pre-training on doc-
uments, performances increase to 27.2%/41.7%, indicating that LLMs can absorb some amount
of knowledge. Instruction-tuning further increases the performance to 30.3%/46.4%, confirming
the effectiveness of this standard recipe. This observation is different from Zhu and Li [260],
which demonstrates that instruction-tuning after pre-training is ineffective on a randomly ini-
tialized GPT-2-like transformer. The difference probably arises because Llama-2, through its
pre-training on diverse corpora comprising raw documents and QA data, has developed a cer-
tain degree of proficiency in extracting knowledge from its parameters via questions. We also
report the performance where the corresponding document is directly provided to Llama-2
as context (“open-book w/ doc” in Table 5.1). The significant gap between closed-book and
open-book settings suggests that retrieving knowledge from the parameters of LLMs is still

challenging.

5.4.2 Analyzing the Training Dynamics: Perplexity and Generaliza-
tion

How does lower perplexity of documents lead to generalization to answering related questions?

We vary the number of epochs and learning rate (Figure 5.5) for continued pre-training on

"We found that LLMs struggle to adhere to the QA format after training on raw documents for multiple epochs.
Therefore, we include a small set of QA pairs (64) during continued pre-training to prevent LLMs from forgetting
the QA format.
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(a) Training dynamics w/ (Figure 54 @) and w/o (b) Training dynamics with different learning rates
instruction-tuning (Figure 5.4 @). Reduction in perplex-  (Figure 5.4 @). After perplexity is minimized, larger
ity consistently leads to improvement in QA accuracy, learning rates usually lead to less overfitting to decep-
indicating that factual knowledge acquisition necessi- tive patterns in documents and better generalization

tates exhaustive loss minimization. when responding to questions.

Figure 5.5: We vary the number of epochs (left) and learning rate (right) during continued
pre-training to study the training dynamics of Llama-2 7B. The left axis is QA accuracies for
test questions, measured by exact match. On the right axis, we display 2 metrics indicated
by distinct colors: the perplexity of all tokens in the documents, and the knowledge retention
accuracy, measured by QA accuracy on the Natural Questions dataset. We highlight situations

where perplexity of all document tokens is minimized to 1 .

documents and monitor three metrics to study the training dynamics.®

+ Knowledge acquisition QA accuracies on test questions measured by exact match.
* Perplexity of documents We compute perplexity (PPL) on all tokens within the documents.

* Knowledge retention We approximate the retention of accumulated knowledge during pre-
training by assessing the QA accuracy on the Natural Questions (NQ) dataset. NQ was re-

leased in 2019, and primarily includes questions based on Wikipedia articles from that time.

Experiment results

* As shown in the left figure of Figure 5.5, QA accuracy consistently improves as perplexity
approaches one, indicating that factual knowledge learning necessitates exhaustive loss mini-
mization over all tokens. This contrasts with learning general skills, where overly optimizing

leads to overfitting.

8Since we always decay the learning rate to 10% of its initial value, training for more epochs is not the same

as continuing training from a checkpoint obtained after fewer epochs.
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Llama-2 7B | Llama-2 70B

Settings EM Rec. R-L | EM Rec. R-L
closed- and open-book performance before training
closed-book 9.5 10.0 21.2 | 17.2 18.1 31.4
open-book w/ doc 72.2 754 915 | 78.2 80.6 94.9

closed-book performance w/ standard methods
cont. pre-training @ 27.6 31.6 43.8 | 41.7 45.8 60.2
+instruction-tuning @ 30.3 34.7 47.4 | 46.4 50.9 64.1
mix all data @ 39.4 44.6 56.7 | 57.1 63.4 724

closed-book performance w/ pre-instruction-tuning (PIT)

PIT (QA only) ® 28.6 32.7 45.2 | 49.7 53.7 67.9
PIT (QA — docs) ® 32.5 37.2 49.0 | 54.6 60.0 73.8
PIT® 45.4 51.2 63.2 | 62.7 68.6 78.8

Table 5.1: Comparison of QA performance (%) between standard instruction-tuning and pre-
instruction-tuning. The best results are in bold. Rec. is short for answer recall, and R-L refers
to ROUGE-L.

* As shown in Figure 5.5, among all cases where LLMs have minimized perplexity on docu-
ments, cases trained with more epochs or larger learning rates typically exhibit superior QA
performance. We hypothesize that more aggressive training leads to less overfitting to deceptive
patterns in documents and better generalization when responding to questions.

In summary, lower perplexity does lead to stronger generalization when responding to ques-

tions, but it comes at the expense of forgetting previously acquired knowledge.

5.5 Improving LLMs in Absorbing Knowledge from Docu-

ments

The amount of knowledge elicited through the standard instruction-tuning is still limited, even
though the perplexity of documents is minimized, a phenomenon we refer to as the “perplexity
curse”. Our next question is how can we improve the ability of LLMs to absorb knowledge from
documents to mitigate the perplexity curse. The main challenge is the gap between the way
knowledge is presented in raw documents and how it is accessed through question-answering.

We found that QA pairs are generally straightforward, while documents tend to be more com-
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Setting names Setting configurations EM Rec. R-L

baselines
continued pre-training ® test doc 27.6 31.6 438
+instruction-tuning @ train doc + test doc — train QA 30.3 34.7 474
+instruction-tuning (w/o forget) @ train doc + test doc — train QA + testdoc  30.2 34.1 46.4
+instruction-tuning (w/o train doc) test doc — train QA 27.1 30.7 423
weighted continued pre-training test doc (weighted) 27.7 327 433
adapted continued pre-training train doc — test doc 26.9 32.7 44.2
mix all data @ train QA + train doc + test doc 39.4 44.6 56.7

various pre-instruction-tuning (PIT) methods and ablation studies
train QA + train doc (3 epochs) — test doc 454 51.2 63.2
ablation studies of the number of epochs

1 epoch 33.3 39.1 50.3

5 epochs 458 52.1 63.6

10 epochs 46.5 523 61.9
PIT @

ablation studies of different learning mechanisms

QA before doc (grouped) 38.2 43.2 56.3

QA after doc (grouped) 27.2 311 421

QA before doc (interleaved) 459 51.3 64.5

QA after doc (interleaved) 432 49.1 61.6
PIT-- train QA + train doc — train QA — test doc 44.4 51.3 634
PIT++ train QA — train QA + train doc — test doc 48.1 54.4 66.4

Table 5.2: Comparison (%) of various pre-instruction-tuning methods and ablation studies to
identify the key contributors to improved performance using Llama-2 7B. Different background

colors indicate different pre-instruction-tuning methods. The best results are in bold.

plex and cluttered, weaving many factual statements together in a more intricate manner. Using
Figure 5.3 as an example, the answer to the question “who handled the editing of Oppenheimer”
is included in a sentence in the middle of the article “Editing was handled by Jennifer Lame ..”,
which does not explicitly mention “Oppenheimer”. During training, LLMs must understand the
context and deduce that “editing” refers to “the editing of Oppenheimer” to effectively encode
this knowledge in the parameters.

Zhu and Li [260] studied this problem by training a randomly initialized GPT-2-like trans-
former from scratch on synthetic biographies and evaluated its ability to answer questions
about the individuals. They found that training on a mix of biographies and questions related

to half of those biographies led to strong generalization when answering questions about the
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remaining half of biographies, which resembles setting @ in Figure 5.4. In contrast, training
on biographies and QA pairs sequentially failed. However, the key contributor to the success
remains uncertain because the data were blended together, and it is unclear how to apply this
practically to absorb knowledge from new documents. Inspired by our observation of the differ-
ent difficulty levels between QA pairs and documents, and the finding from Zhu and Li [260], we
hypothesize that it is beneficial to deliberately expose LLMs to instruction-tuning data before con-
tinued pre-training so that the process of encoding knowledge from complex documents takes into
account how this knowledge is accessed. We refer to this as pre-instruction-tuning (PIT) and
study various implementations of PIT prior to continued learning (subsection 5.5.1), followed
by detailed ablations identifying the keys contributor to performance (subsection 5.5.2 and sub-
section 5.5.3), and finally assess how well PIT performs across domains (subsection 5.5.4). We
adhere to the hyperparameters outlined in subsection 5.3.2 and perform PIT for 3 epochs unless

specified otherwise.

5.5.1 Variants of Pre-instruction-tuning

Pre-instruction-tuning w/ QA only We start with exposing instruction-tuning data before
continued pre-training on documents—training on topically related QA pairs before training on
test documents (Figure 5.4 ®). This can be directly compared with the continued pre-training
setting (Figure 5.4 @). The intuition is that questions help LLMs recognize key types of infor-
mation, enabling LLMs to focus on important information during pre-training on subsequent
documents, even though the questions are not directly tied to the documents. For example,
training on a question like “who handled the editing of Oppenheimer” could help LLMs pay
attention to screenwriters when training on new documents like “Barbie”. As shown in Ta-
ble 5.1, this method outperforms continued pre-training, especially on larger LLMs (27.6%/41.7%
— 28.6%/49.7% for 7B/70B). The ablation that trains on QA data after training on documents
(“instruction-tuning w/o train doc” in Table 5.2) is ineffective, confirming the importance of

training on questions as a warm-up before encoding documents.

Pre-instruction-tuning on QA and documents sequentially Our second implementation
trains on QA and associated documents sequentially (Figure 5.4 ®), with the intuition that the
ability to absorb knowledge from documents can be strengthened if an LLM is trained on the
complex documents after it has grasped the associated simpler QA pairs. For instance, if an
LLM has already learned that “Jennifer Lame” is the answer to “who handled the editing of
Oppenheimer”, training on the document “Editing was handled by Jennifer Lame” can more
efficiently refine its storage of knowledge in its parameters. As shown in Table 5.1, PIT on QA

pairs and documents sequentially surpasses the QA-only variant (Figure 5.4 ®) and standard

66



QA before documents (grouped)
G 4 4 4 d& 4
QA after documents (grouped)
d d & g g g
QA before documents (interleaved)

g di - B Ddy) - B Od
QA after documents (interleaved)

g q - & q - 4 g
epoch 1 epoch 2 epoch 3

Figure 5.6: Different arrangements between QA pairs and corresponding documents. The el-

lipses represent other examples.

instruction-tuning (Figure 5.4 @) (30.3%/46.4% — 32.5%/54.6% for 7B/70B), demonstrating its

effectiveness.

Pre-instruction-tuning The effectiveness of PIT depends on ensuring that the associated
QA pairs are already learned before encoding the respective documents. However, we observed
that after training on documents (train doc in Figure 5.4 ®), the accuracy for corresponding
questions (train QA in Figure 5.4 ®) dropped from almost perfect to 30%, indicating severe for-
getting. To fix this, we train on the associated QA pairs and documents together (Figure 5.4 @).
As shown in Table 5.1, this significantly improves the performance, outperforming all other
approaches, including mixing all data together (Figure 5.4 @), by a large margin (39.4%/57.1%
— 45.5%/62.7% for 7B/70B). Training on both QA pairs and documents prevents forgetting, but
it also obscures how the learning process works. It is unclear whether LLMs grasp QA pairs
before encoding knowledge from documents, or if it works the other way around. In the fol-
lowing section, we deliberately arrange the order of QA pairs and documents during training

to examine this, which leads us to propose an improved version of PIT.

5.5.2 Pre-instruction-tuning++

We first study how the performance varies with different numbers of epochs. As shown in Ta-
ble 5.2, training for 1 epoch is insufficient, and the performance of 3, 5, or 10 epochs is similar.
We fix the number of epochs to 3 and arrange the order of QA pairs and corresponding docu-
ments as shown in Figure 5.6. The interleaved arrangement cycles through all the data 3 times,
ensuring that in each epoch, questions either precede or follow their associated documents.
On the other hand, the grouped arrangement clusters each example’s 3 appearances together,

guaranteeing that the repeated questions are positioned either before or after their respective
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repeated documents. As shown in Table 5.2, positioning QA pairs before corresponding docu-
ments achieves better performance in both grouped and interleaved arrangements, indicating
that during PIT, the learning mechanism prioritizes understanding how to access knowledge
before learning to absorb information from the more complex and information-dense docu-
ments.

Based on this, we propose an improved variant called pre-instruction-tuning++, which
trains exclusively on QA pairs to understand patterns of knowledge access, and then progresses
to training on a combination of QA and document data to align knowledge access through ques-
tions and knowledge encoding from documents (Figure 5.4 ®). As shown in Table 5.2, PIT++
significantly outperforms PIT (Figure 5.4 @) from 45.4% to 48.1%, while training on QA data
after on the mix (PIT-- in Table 5.2) does not yield additional benefits. This reinforces our
hypothesis that understanding how knowledge is accessed aids in absorbing knowledge from

documents, and therefore, should be taught first.

5.5.3 Ablation Studies

Standard instruction-tuning is inferior not due to forgetting A drawback of standard
instruction-tuning is that knowledge in test documents might be forgotten after training on
QA pairs (a phenomenon also known as the “alignment tax” [155]). To show that the lower
performance of standard instruction-tuning is not due to forgetting, we add a setting where we
mix train QA with test documents during instruction-tuning to prevent forgetting (Figure 5.4

®). As shown in Table 5.2, this does not help, confirming our hypothesis.

Pre-instruction-tuning is not simply upweighting salient tokens from documents We
include an ablation inspired by Hu et al. [76] which upweights tokens when pre-training on
documents to focus on salient information. We assign a weight of 1.0 to tokens in documents
that are included in the answers (e.g., “Jennifer Lame” in the sentence “Editing was handled by
Jennifer Lame”), and assign a lower weight of 0.5 to other tokens. As shown in Table 5.2, this

weighted continued pre-training is ineffective, confirming our hypothesis.

5.5.4 Cross-domain Generalization

We validated the effectiveness of PIT by training and evaluation on data from the same domain
(Wiki2023-film). Can PIT make LLMs better at absorbing knowledge from documents of
a different domain? To this end, we follow the cross-domain setting outlined in Figure 5.2—
training on other domains (Wiki2023-other-train) and testing on the film domain
(Wiki2023-film-test). The results of standard instruction-tuning and PIT, in both in-
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Llama-2 7B Llama-2 70B
Settings EM Rec. R-L | EM Rec. R-L

standard instruction-tuning @
in-domain 303 34.7 47.4 | 464 509 64.1
cross-domain 23.6 28.2 38.4 | 42.8 49.7 58.5

pre-instruction-tuning @
in-domain 454 51.2 63.2 | 62.7 68.6 78.8
cross-domain 36.9 43.2 54.9 | 55.2 66.7 74.0

Table 5.3: In-domain and cross-domain PIT.

Settings EM Rec. R-L
generalization to the biography dataset bioS
closed-book 29 29 110
open-book w/ doc 952 954 95.6
continued pre-training ® 29.6 298 387
pre-instruction-tuning @ 58.1 584 61.9

generalization to questions by real users from Google
standard instruction-tuning @ 21.5 30.1 36.8
pre-instruction-tuning @ 29.0 355 48.2

Table 5.4: Generalization of the Llama-2 7B model trained with pre-instruction-tuning,.

domain and cross-domain settings, are detailed in Table 5.3. Even though it is not as effective
as the in-domain counterparts, cross-domain PIT still significantly outperforms instruction-
tuning, demonstrating that it can generalize across different domains. This finding sheds light
on the potential to scale this method up to a broader range of documents and instructions for

more robust generalization.

We also evaluate the effectiveness of PIT in two other scenarios: (1) when applied to non-
Wikipedia documents, and (2) when addressing questions asked by real users. For the first
scenario, we take the Llama-2 7B model trained with PIT on 2023Wiki-othexr and further
train it on biographies synthesized in Zhu and Li [260] (b10S). Then, we evaluate based on
questions about the individuals. For the second scenario, we manually search Google using
questions generated by LLMs from Wiki2023-film-test, collect a total of 93 similar

questions from real users by leveraging Google’s “People Also Ask” feature, and then evalu-
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ate Llama-2 7B on these questions. As shown in Table 5.4, PIT outperforms baselines in both

scenarios, demonstrating its generalization ability.

5.6 Related Work

5.6.1 Continual Knowledge Acquisition

Several works have studied whether LMs can answer questions about information in documents
they have been trained on. Hu et al. [76], Jang et al. [85], Wang et al. [226] use relatively
small LMs such as BART [123], T5 [170], or GPT-2 [168]. Ovadia et al. [156] focus on the
comparison between RAG and continued pre-training approaches without using instruction-
tuning. Zhu and Li [260, 261] examine this problem from a similar angle as ours using a GPT-
2-like transformer trained from scratch on synthetic biographies and fine-tuned on QA pairs
related to the individuals. They examined a mixed training setting on both biographies and
QA pairs, which is our major motivation to study different strategies to incorporate QA data
before continued pre-training. Other works study adapting LLMs to new domains via various
strategies [30, 67, 150, 235, 250, 253].

5.6.2 Instruction-tuning or Alignment

Instruction-tuning (also known as supervised fine-tuning) on high-quality annotated data [79,
112, 144, 184, 199, 200, 231, 256] and/or data generated by proprietary models [32, 78, 204, 230],
or alignment with reinforcement learning from human feedback (RLHF) or direct preference
optimization (DPO) [155, 169, 209, 213] has been a central topic recently because it elicits knowl-
edge from LLMs and enhances various abilities to handle questions from users. We focus on
factuality and study the best way to perform instruction-tuning to elicit factual knowledge from
LLMs.

5.6.3 Analyzing the Training Dynamics of LMs

Many works study the training dynamics of LMs from different perspectives. Carlini et al. [24]
quantifies memorization across model sizes and the frequency of data duplication. Tirumala
et al. [210] finds that larger LMs memorize training data faster with less overfitting. Xia et al.
[238] shows that perplexity is more predictive of model behaviors than other factors. Dery
et al. [45] studies end-task aware pre-training using classification tasks and RoBERTa models.
Jia et al. [87] adds a pre-training objective to encourage the vector for each phrase to have high

similarity with the vectors for all questions it answers. Our work differs in that we specifically
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focus on the capacity of recalling and generalizing information from a seen document to answer

questions.

5.6.4 Retrieval-augmented Generation

Retrieval-augmented generation (RAG) is a widely used approach to incorporate new knowl-
edge into LLMs by augmenting fixed LLMs with retrieved information from external sources
(5, 8, 17, 27, 66, 70, 83, 92, 93, 118, 124, 131, 147, 166, 181, 192, 225]. While RAG is effective
in reducing hallucinations commonly experienced when relying solely on knowledge stored in
parameters, its retrieval and generation process adds extra latency and complexity. In contrast,
continued pre-training to store knowledge in parameters and utilizing the stored knowledge to
answer questions in a closed-book manner are simpler and faster at inference time. Enhancing
this capability is also scientifically significant, as it represents a fundamental step in employing
LLMs as dependable assistants for accessing information. Therefore, this chapter focuses on

exploring parametric approaches.

5.7 Conclusion

We study the best way of continued training on new documents with the goal of later eliciting
factual knowledge. We propose pre-instruction-tuning that learns how knowledge is accessed
via QA pairs prior to encoding knowledge from documents. Extensive experiments demonstrate
the superiority of pre-instruction-tuning versus standard instruction-tuning. Future directions
include scaling this method up to a broader range of documents and instructions for more robust

generalization.
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Chapter 6

Retrieval as Attention: Extending the
Context of LMs to the Entire Corpus

We study retrieval-augmented generation (RAG) systems in the following chapters. RAG sys-
tems usually consist of retrievers and readers, which necessitates a cumbersome implementa-
tion and is hard to train and adapt in an end-to-end fashion. In this chapter, we revisit this
design and eschew the separate architecture and training in favor of a single Transformer that
performs Retrieval as Attention (ReAtt), and end-to-end training solely based on supervision
from the end QA task. We demonstrate for the first time that a single model trained end-to-end
can achieve both competitive retrieval and QA performance, matching or slightly outperform-
ing separately trained retrievers and readers. This work is presented in:
* Zhengbao Jiang*, Luyu Gao*, Jun Araki, Haibo Ding, Zhiruo Wang, Jamie Callan, Graham
Neubig. Retrieval as Attention: End-to-end Learning of Retrieval and Reading within a
Single Transformer. In Proceedings of the 2022 Conference on Empirical Methods in

Natural Language Processing.!
Code and models are available at:

« https://github.com/jzbjyb/ReAtt

6.1 Introduction

A widely used solution for knowledge-intensive tasks such as QA is to first retrieve a small
number of relevant documents from the corpus with a bi-encoder architecture which encodes

queries and documents independently for efficiency purposes, then read the retrieved docu-

1Zhengbao Jiang proposed the idea, conducted experiments, and wrote the draft. Luyu Gao refined the idea,

suggested efficient implementation, and revised the draft.
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ments in a more careful and expansive way with a cross-encoder architecture which encodes
queries and documents jointly [66, 83, 120, 124]. The distinction between retrieval and reading
leads to the widely adopted paradigm of treating retrievers and readers separately. Retrievers
and readers are usually two separate models with heterogeneous architectures and different
training recipes, which is cumbersome to train. Even though two models can be combined in
an ad-hoc way for downstream tasks, it hinders effective end-to-end learning and adaptation

to new domains.

There have been several attempts to connect up reader and retriever training [66, 83, 118,
120, 124, 181]. However, retrievers in these works are not learned in a fully end-to-end way.
They require either initialization from existing supervised trained dense retrievers [124], or
expensive unsupervised retrieval pretraining as warm-up [66, 83, 118, 120, 181]. The reliance on
retrieval-specific warm-up and the ad-hoc combination of retrievers and readers makes them
less of a unified solution and potentially hinders their domain adaptation ability. With the
ultimate goal of facilitating downstream tasks, retriever and reader should instead be fused

more organically and learned in a fully end-to-end way.

In this chapter, we focus on one of the most important knowledge-intensive tasks, open-
domain QA. We ask the following question: is it possible to perform both retrieval and reading
within a single Transformer model, and train the model in a fully end-to-end fashion to achieve
competitive performance from both perspectives? Such a single-model end-to-end solution
eliminates the need for retrieval-specific annotation and warm-up and simplifies retrieval-
augmented training, making adaptation to new domains easier. Based on the analogy between
self-attention which relates different tokens in a single sequence [219] and the goal of retrieval
which is to relate queries with relevant documents, we hypothesize that self-attention could be
a natural fit for retrieval, and it allows an organic fusion of retriever and reader within a single

Transformer.

Specifically, we start from an encode-decoder T5 [170] and use it as both retriever and reader.
We use the first B encoder layers as bi-encoder to encode queries and documents independently,
and the attention score at layer B + 1 (denoted as retrieval attention) to compute relevance
scores, as shown in Figure 6.1. We found that directly using self-attention for retrieval under-
performs strong retrievers, which we conjecture is because self-attention pretrained on local
context is not sufficient to identify relevant information in the large representation space of the
whole corpus. To solve this, we propose to compute retrieval attention between a query and a
large number of documents and adjust the retrieval attention across documents. For each query,
we compute retrieval attention over both close documents that potentially contain positive and
hard negative documents, and documents of other queries in the same batch as random nega-

tives. The retrieval attention is adjusted by minimizing its discrepancy from the cross-attention
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Figure 6.1: Illustration of Retrieval as Attention (ReAtt) with the first B=2 encoder layers as
bi-encoder (i.e., retriever) and the rest L-B=2 layers as cross-encoder. During training, the
retrieval attention between a query q; and documents d;; 1213 is adjusted by minimizing its
discrepancy from the . For simplicity, we use a single arrow to represent the

attention of a single head between multiple tokens.

between the decoder and encoder (denoted as target attention), which is indicative of the use-
fulness of each document in generating answers [81]. The resulting Retrieval as Attention
model (ReAtt) is a single T5 trained based on only QA annotations and simultaneously learns

to promote useful documents through cross-document adjustment.

We train ReAtt on the Natural Questions dataset (NQ) [114] in a fully end-to-end manner.
It achieves both competitive retrieval and QA performance, matching or slightly outperform-
ing ColBERT-NQ [104] trained with explicit retrieval annotations and strong QA model FiD
(80, 81], demonstrating for the first time end-to-end training can produce competitive retriever
and reader within a single model. To further test ReAtt’s generalization and end-to-end adapta-
tion ability, we conduct zero-shot, supervised, and unsupervised adaptation experiments on 7
datasets from the BEIR benchmark [208]. In all settings, end-to-end adaptation improves the re-
trieval performance usually by a large margin, achieving comparable or superior performance

to strong retrieval adaptation and pretraining methods.
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6.2 Retrieval as Attention (ReAtt)

With the goal of developing a single Transformer that can perform both retrieval and reading,
and the analogy between retrieval and self-attention, we first introduce architecture changes
to allow retrieval as attention (subsection 6.2.2), then examine how well attention as-is can be

directly used to perform retrieval (subsection 6.2.3).

6.2.1 Formal Definition

We first briefly define the task of retrieval and question answering. As mentioned in the in-
troduction, queries and documents need to be represented independently for efficient retrieval
which implies a bi-encoder architecture that has no interaction between queries and documents.
Without loss of generality, we use £y = biencoder(d) to denote one or multiple representa-
tions generated by a bi-encoder based on a document from a corpus d € D, and likewise
E, = biencoder(q) to denote query representations.” The top-k documents most relevant to
a query are retrieved by D' = arg topky 7 (FEy, Fa), where function r computes relevance
based on query and document representations which can be as simple as a dot product if queries
and documents are encoded into a single vector, and Dget stands for the returned documents. We
consider encoder-decoder-based generative question answering in this chapter, which jointly
represents queries and retrieved documents with the encoder E, 4 = crossencoder(q, d), and
generates the answer a autoregressively with the decoder P#"(al|q,d) = P%"(a|E,q4). To
handle multiple retrieved documents, we follow the fusion-in-decoder model (FiD) [80] which
encodes each query-document pair independently and fuse these representations in decoder
through cross-attention P¢"(alq, Dy') = P*"(a|Eya,, -, Eq’dm{;‘\)' Negative log likelihood
(NLL) is used in optimization Loz = — log P**(alq, Dy").

6.2.2 Leveraging Attention for Retrieval

Next, we introduce our method that directly uses self-attention between queries and documents

as retrieval scores.

Putting the Retriever into Transformers As illustrated in Figure 6.1, we choose T5 [170]
as our base model, use the first B layers of the encoder as the bi-encoder “retriever” by disabling
self-attention between queries and documents, and the remaining L. — B layers as the cross-
encoder “reader”. We use the self-attention paid from query tokens to document tokens at the

B + 1-th layer as the retrieval score, which is denoted as retrieval attention (green arrows in

2Queries and documents can use different bi-encoders but we use one notation for simplicity.
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Figure 6.1). It is computed based on the independent query and document contextual represen-
tations from the last (5-th) layer of the bi-encoder (green blocks in Figure 6.1). Formally for an

H-head Transformer, document and query representations are:

B+1,h d H
Eq = {Kd € R! ‘Xe}hzla

B+1,h H
Eq = {QqJr € Rlaixe h=1>

where K and () are key and query vectors of the token sequence used in self-attention,

d|
and |q| are document and query length, and e is the dimensionality of each head. The retrieval

attention matrix from query tokens to document before softmax for one head is computed by:
T
Aijl—l,h — QqB—‘,—l,h % Kf-l—l,h c R|q|><|d|.

Directly using attention for retrieval can not only leverage its ability to identify relatedness, it
is also a natural and simple way to achieve both retrieval and reading in a single Transformer

with minimal architectural changes, which facilitates our final goal of end-to-end learning.

From Token Attention to Document Relevance Given the token-level attention scores
Ai;l’h, the relevance between g and d is computed by avg-max aggregation: choosing the
most relevant document token for each query token (i.e., max) then averaging across query

tokens:
ri(q, d) = avg, (maxl(Aigl’h)), (6.1)

where 1 and 0 refer to the dimension over which the operation is applied. This is similar to
the MaxSim and sum operators used in ColBERT [103], with the intuition that a relevant docu-
ment should match as many query tokens as possible with the best-matching token. The final

relevance is a weighted sum over all heads:

H
T(qv d) = Z P}};ead : /rh(qv d)a
h=1

where P}, is alearnable weight that sums to one. As explained in the next section, we empirically
find only a few attention heads with non-random retrieval performance, and among them, one

particular head is significantly better than the others. Given this observation, we introduce a
exp(wp /)
Son exp(w;L/T)
single head with the great majority of the weight, which is denoted as retrieval head h*. As a

low temperature 7 to promote this sparsity Pt = , which always ends with a

result, the learned head weights are practically a head selector, a fact that can also be exploited

to make test-time retrieval more efficient.
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End-to-end Retrieval with Attention To perform retrieval over a corpus, we first generate
key vectors Kf“’h* of retrieval head for all document tokens offline and index them with
the FAISS library [94]. For each query token, we issue its vector (Qf“’h*) to the index to
retrieve top- K’ document tokens, which yields a filtered set of documents, each of which has
at least one token retrieved by a query token. We then fetch all tokens of filtered documents,
compute relevance scores following Equation 6.1, and return top- K’ documents with the highest
scores 7.+ (g, d). This is similar to the two-stage retrieval in ColBERT [103], and we reuse their
successful practice in index compression and search approximation to make test-time retrieval

efficient, which we refer to Santhanam et al. [185] for details.

6.2.3 How Good is Attention As-is?

To examine this question, we use T5-large and test queries from the Natural Question dataset
(NQ), retrieve 100 documents with BM25, compute relevance scores 7 (g, d) with half layers
(B = 12) as bi-encoder, and measure its correlation with the gold binary annotation. We found
that among H = 24 heads, 4 heads have non-trivial correlations of 0.137, 0.097, 0.082, and
0.059. We further perform end-to-end retrieval over Wikipedia using the best head, achieving
top-10 retrieval accuracy of 43.5%, inferior to 55.5% of BM25. This demonstrates that there are
indeed heads that can relate queries with relevant documents, but they are not competitive.
We hypothesize that because self-attention is usually trained by comparing and relating tokens
in a local context (512/1024 tokens) it cannot effectively identify relevant tokens in the large
representation space of a corpus with millions of documents. This discrepancy motivates us to
compute retrieval attention between queries and potentially all documents (i.e., attention over

the corpus), and adjust attention across documents to promote useful ones.

6.3 Learning Retrieval as Attention

We first approximate attention over the corpus at training time by sub-sampling a manageable
number of documents for each query containing both potentially relevant and random docu-
ments (subsection 6.3.1). Next, we introduce our end-to-end training objective that optimizes a
standard QA loss while also adding supervision to promote attention over documents that are
useful for the end task (subsection 6.3.2).

6.3.1 Approximate Attention over the Corpus

Encoding the entire corpus and computing attention between the query and all documents is

very expensive. To make it practical, we propose to sub-sample a small set of documents for
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Figure 6.2: lllustration of approximate attention over the corpus with |Q|=4 queries in a batch
and K'=3 close documents per query. We use q; as an example to illustrate the required com-
putation, where require both retrieval and target attention while random doc-

uments only require retrieval attention.

each query to approximate the whole corpus. Inspired by negative sampling methods used in
dense retriever training [99, 103, 239], we sub-sample both (1) documents close to queries that
can be either relevant or hard negatives, and (2) random documents that are most likely to be
easy negatives. This allows the model to distinguish between relevant and hard negative docu-
ments, while simultaneously preventing it from losing its ability to distinguish easy negatives,

which form the majority of the corpus.

Iterative Close Document Sub-sampling To sample documents close to a query Dfll"se, we
start from widely used lexical retriever BM25 [179] to retrieve K = 100 documents, as shown
by the orange blocks in Figure 6.2. We set K to a relatively large number to better approximate
the local region, inspired by Izacard and Grave [80]’s findings that QA performance increases
as more documents are used.

This fixed set of close documents can become outdated and no longer close to the query
anymore as the retrieval attention gets better. To provide dynamic close sub-samples, we re-
index the corpus and retrieve a new set of K documents using the current retrieval attention
after each iteration. It is similar in spirit to the hard negative mining methods used in Karpukhin
et al. [99], Khattab et al. [104], with a major difference that we do not manually or heuristically
annotate documents but instead learn from the end loss with cross-document adjustment, which

will be explained in subsection 6.3.2.

In-batch Random Document Sub-sampling We use close documents of other queries in
the same batch as the random documents of the current query D™ = Ugreg Aq/;ﬁquIlf’se where
Q contains all queries in a batch, as shown by the green blocks in Figure 6.2, which has
the advantage of reusing document representations across queries. This is similar to the in-

batch negatives used in DPR [99] with a major difference that we reuse token representations
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(K 5“”‘, 1 < h < H) across queries instead of a single-vector document representation.

6.3.2 Cross-document Adjustment with Decoder-to-Encoder Attention

Distillation

Given the sub-sampled | Q| x K documents D, = Dflk’se UDf;mdom for each query g, we compute
the retrieval attention-based relevance scores 7(q, d) and adjust them across multiple docu-
ments d € D, only relying on end task supervision. Since retrieval is simply a means to achieve
the downstream task, documents useful for downstream tasks should be promoted by retrieval.
Inspired by reader-to-retriever distillation [81, 241], we measure document usefulness based on
cross-attention between decoder and encoder, and minimize retrieval attention’s discrepancy
from it through distillation. In contrast to Izacard and Grave [81] that learns two models itera-

tively and alternatively, we optimize QA and distillation loss in a single model simultaneously.

Minimizing KL-divergence Between Retrieval and Target Attention Specifically, we

denote cross-attention before softmax of the first position/token of the last decoder layer as

target attention Cy qp, € R7*Palx(d14) where a is the answer, | Dy is the number of sub-
sampled documents to be fused by the decoder (subsection 6.2.1), and |d| is document length.?
To aggregate token-level target attention into document-level distribution P'*'(a,q,D,) €

R!Pal, we first perform softmax over all tokens in all query-document pairs (|D,| x (|d| + |g|)),

sum over tokens of each query-document pair (|d| + |q|), then average across multiple heads

(H):
P*(a,q,Dy) = avg, (sum?(SOftmaxlvz(C“’q’DJ))'

Given relevance scores obtained from retrieval attention, the final cross-document adjustment

loss is the KL-divergence between relevance distribution P™" and target distribution P'":

P*(q,Dq) = softmax(r(q,dy), ...,r(q,dp,|)).

- (6.2)
‘Ccross—doc =KL <Ptgt(a’ q, Dq) ’Pret(q’ Dq)>7

where the overline indicates stop gradient back propagation to target distributions. Our final

loss combines QA loss and cross-document adjustment loss with « as combination weight.

L= £QA +a- ‘Ccross—doc' (63)

3We also attempted other variations of target attention and found performances are similar, consistent with

observations in Izacard and Grave [81].
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Zero Target Attention for Random Documents For a batch with |Q| queries, we need
to compute retrieval attention and target attention between |Q| x |Q| x K query-document
pairs. This is both computation- and memory-intensive when batch size is large, especially for
target attention because it requires L. — B layers of joint encoding of query-document pairs in
the cross-encoder. To alleviate this, we make a simple and effective assumption that in-batch
random documents are not relevant to the current query thus having zero target attention:
P'¢(a,q, ngdom) € RIPZ™" « 0. As a result, we only need to run cross-encoder and decoder

for K close documents of each query, as shown in Figure 6.2.

6.3.3 Domain Adaptation Methods

One of the major benefits of a single end-to-end trainable model is that given a new corpus
from a new domain, possibly without retrieval annotations, we can easily adapt it by end-to-
end training. This section describes how we adapt ReAtt under different setups.

We consider adapting ReAtt with (1) QA supervision, (2) information retrieval (IR) super-
vision, or (3) unsupervised adaptation where we only have access to the document corpus.
Although our goal is to learn retrieval through downstream tasks instead of retrieval supervi-
sion, being able to consume retrieval annotations is helpful when retrieval supervision is indeed
available. To do so, we convert retrieval task with annotations in the form of query-document-
relevance triples (g, d,[) into a generative task: given a query, the target is to generate its
relevant document and the corresponding relevance with the following format “relevance: [. d”,
similar to generative retrievers such as DSI [205] and SEAL [14]. If a query has multiple relevant
documents, we follow Izacard and Grave [80] to randomly sample one of them. For unsuper-
vised adaptation, with simplicity as our primary goal, we randomly choose one sentence from a
document and mask one entity, which is considered as the “query”, and have our model gener-
ate the masked entity as the “answer”, similar to salient span masking (SSM) used in Guu et al.
[66].

6.4 In-domain Experiments

In this section, we examine if supervised training ReAtt end-to-end with only QA supervision

yields both competitive retrieval and QA performance.

Datasets, Baselines, and Metrics We train our model using the Natural Questions dataset
(NQ). We compare retrieval performance with lexical models BM25 [179], passage-level dense
retrievers DPR, ANCE, coCondenser, FiD-KD, YONO (with and without retrieval pretraining)
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(54,81, 99,118, 152, 239], and token/phrase-level dense retrievers DensePhrase, CoIBERT, ColBERT-
NQ [103, 104, 119].* Among them ColBERT-NQ, FiD-KD and YONO are the most fair-to-
compare baselines because of either similar token-level retrieval granularity (ColBERT-NQ) or
similar end-to-end training settings (FiD-KD and YONO). We report top-k retrieval accuracy
(R@k), the fraction of queries with at least one retrieved document containing answers. We
compare QA performance with ORQA, REALM, RAG, FiD, EMDR?, YONO, UnitedQA, and R2-
D2 [31, 51, 66, 80, 81, 118, 120, 124, 181] using exact match (EM), among which FiD, EMDR?,
and YONO are the most fair-to-compare baselines because they have similar model sizes and

training settings.

6.5 Implementation Details of ReAtt

ReAtt is based on T5-large with B = 12 encoder layers as bi-encoder and temperatures 7 =
0.001 to select the best retrieval head. We retrieve KX = 100 close documents for each query,
and use a batch size of | Q| = 64 queries to obtain in-batch random documents. We use @ = 8
to combine cross-document adjustment loss with QA loss. We use AdamW with a learning rate
of 5e-5, 10% steps of warmup, and linear decay. We first warmup cross-attention’s ability to
distinguish documents by only using the QA loss for 3K steps, then train with the combined
losses (Equation 6.3) for 4 iterations, where the first iteration uses close documents returned by
BM25, and the following 3 iterations use close documents returned by the previous ReAtt model
(denoted as ReAtt py25). Each iteration has 8K update steps and takes ~ 1.5 days on a single
node with 8 x A100 GPUs with 80GB memory. Since DPR [99] achieves stronger performance
than BM25, training with close documents returned by DPR can potentially reduce training
time. We experimented with training on close documents from DPR for a single iteration with
16K steps (denoted as ReAtt ppg). Since both approaches achieve similar performance (Table 6.1

and Table 6.2) and ReAtt ppg is cheaper to train, we use it in other experimental settings.

At test-time, we save key vectors of all tokens in the corpus and use exact index from FAISS
(ie, faiss.IndexFlatIP) to perform inner-product search. We retrieve K’ = 2048 doc-
ument tokens for each query token and return top-100 documents with the highest aggregated
scores (Equation 6.1) to generate answers. We found compressing index with clustering and
quantization proposed by Santhanam et al. [185] can greatly reduce search latency and index

size with a minor retrieval accuracy loss.
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Models R@1 R@5 R@20 R@100 #Params.

BM25 239 459 63.8 78.9 -
supervised retrievers
DPR 459  68.1 80.0 85.9 220M
DPR#V 52.5 72.2 81.3 87.3 220M
DPR-PAQ - 74.2 84.0 89.2 220M
ANCE - - 81.9 87.5 220M
coCondenser - 758 84.3 89.0 220M
DensePhrase 51.1  69.9 78.7 - 330M
ColBERT - - 79.1 - 110M
ColBERT-NQ  54.3 75.7 85.6 90.0 110M
semi/unsupervised retrievers
FiD-KD 494 738 84.3 89.3 220M
YONOyo pT = = 72.3 82.2 165M
YONO,, pr = 75.3 85.2 90.2 165M
ReAtt ppr 54.6 77.2 86.1 90.7 165M
ReAtt gpos 558 774 86.0 90.4 165M

Table 6.1: Retrieval performance on NQ. PT is retrieval pretraining. Fair-to-compare baselines

are highlighted with background color. The best performance is in bold.

6.5.1 Overall Results

We compare ReAtt with various retrievers and readers in Table 6.1 and Table 6.2. ReAtt achieves
both slightly better retrieval performance than the strongest retriever baseline ColBERT-NQ
[104] and comparable QA performance than the strong reader baseline FiD-KD [81] on NQ,
demonstrating for the first time that fully end-to-end training using QA supervision can pro-
duce both competitive retrieval and QA performance. Compared to another single-model ar-
chitecture YONO [118], ReAtt offers better performance without cumbersome pretraining to

warm-up retrieval.

*ColBERT is trained on MS MARCO, ColBERT-NQ is on NQ.
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Models EM #Params.

OROQA [120] 33.3 330M
REALM [66] 40.4 330M
RAG [124] 44.5 220M
FiD [80] 51.4 990M
FiD-KD [81] 54.4 990M
EMDR? [181] 52.5 440M
YONOy o pr [118]  42.4 440M
YONO,, pr [118]  53.2 440M
UnifiedQA [102]  49.3 11B
UnitedQA [31] 54.7 1.870B
R2-D2 [51] 55.9 1.290B
ReAtt ppg 54.0 770M
ReAtt gyps 54.7 770M

Table 6.2: QA performance on NQ. PT is retrieval pretraining. Fair-to-compare baselines are

highlighted. The best performance is in bold.

6.6 Out-of-domain Generalization and Adaptation

In this section, we examine both zero-shot retrieval performance on out-of-domain datasets

and ReAtt’s end-to-end adaptability in supervised (QA, IR) and unsupervised settings.

6.6.1 Datasets, Baselines, and Metrics

We choose 7 datasets from BEIR [208], a benchmark covering diverse domains and tasks. On
each dataset, we compare ReAtt with different types of retrievers including BM25, DPR, and
ColBERT. We consider 2 QA datasets (BioASQ and FiQA [137, 217]) and one IR dataset (MS
MARCO [149]) to evaluate supervised adaptation capability, and 4 other datasets (CQADup-
Stack, TREC-COVID, SCIDOCS, SciFact [36, 74, 220, 222]) to evaluate unsupervised adaptation
capability. We report nDCG@10 to measure retrieval performance and EM to measure QA per-
formance. We group all baselines into three categories and denote them with different colors

in the following tables:

* Supervised adaptation models are trained with downstream task supervision, including
RAG trained on BioASQ, Contriever fine-tuned on FiQA, and docT5query, ANCE, ColBERT,
and Contriever fine-tuned on MS MARCO [82, 103, 151, 239].

86



Tasks QA Retrieval

Datasets BioASQ  FiQA MS MARCO
zero-shot performance

BM25 68.1 23.6 22.8

DPR 14.1 11.2 17.7

ColBERT-NQ 65.5 23.8 32.8

ReAtt 71.1 30.1 32.3

additional training

Contriever - 32.9 | docT5query 33.8
58.1 314 | ANCE 38.8
61.6 34.4 | ColBERT 40.1
Contrievery, rr - 38.1 | Contriever 40.7
ReAtt +5876.9  ,5538.6 | ReAtt +7639.9

Table 6.3: nDCG@10 of zero-shot and supervised adaptation experiments on two QA and one
IR datasets. We use colors to denote categories: pretraining, , and
supervised adaptation. Baselines comparable to ReAtt are highlighted with blue background

color. We also show the improvement of ReAtt over zero-shot performance in subscript.

* Unsupervised adaptation models are trained on domain corpus in an unsupervised way
such as contrastive learning or pseudo query generation, including SimCSE and TSDAE+GPL
(56, 227, 228].

* Pretraining models are trained on corpora without direct exposure to the target domain,
such as Contriever [82] trained with contrastive learning on Wikipedia and CCNet.

We highlight baselines in the same category as ReAtt in the following tables since comparison
between them is relatively fair.

6.6.2 Experimental Results

Results of supervised and unsupervised adaptation are listed in Table 6.3 and Table 6.4 respec-

tively.

Zero-shot Generalization Ability Asshown in Table 6.3 and Table 6.4, the zero-shot perfor-
mance of ReAtt is significantly better than other zero-shot baselines on two QA datasets and one
fact checking dataset (+3.0/+6.5/+4.5 on BioASQ/FiQA/SciFact than the second best), and overall
comparable on the rest of datasets (-0.5/-0.6/-3.0/-1.0 on MS MARCO/CQA./TRECC./SCIDOCS
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Methods COA. TRECC. SCIDOCS SciFact

zero-shot performance

BM25 29.9 65.6 15.8 66.5
DPR 15.3 33.2 7.7 31.8
ANCE 29.6 65.4 12.2 50.7
ColBERT-NQ 339 48.9 15.6 65.3
ReAtt 33.3 62.6 14.8 71.0

additional training

Contriever 34.5 59.6 16.5 67.7
29.0 68.3 - 55.0

35.1 74.6 - 68.9

+3336.6  113476.0 +1015.8  40271.2

Table 6.4: nDCG@10 of zero-shot and unsupervised adaptation on four datasets. Format is
similar to Table 6.3

than the best which is usually BM25), demonstrating that our end-to-end training with QA
loss on NQ produces a robust retriever. We conjecture that the superior performance on QA
datasets can be attributed to our end-to-end training using QA loss which learns retrieval that

better aligns with the end task than training with retrieval annotations.

Retrieval Adaptation with QA Supervision As shown in the left-hand side of Table 6.3,
end-to-end adaptation with QA supervision significantly improves ReAtt’s retrieval perfor-
mance by 5.8/8.5 on BioASQ/FiQA, achieving similar performance as Contriever fine-tuned
on FiQA, and better performance than other unsupervised methods, confirming the end-to-end

adaptability of our methods.

Leveraging Retrieval Annotations As shown on the right-hand side of Table 6.3, ReAtt is
able to consume retrieval supervision in a generative format and achieve competitive perfor-

mance as other supervised dense retrievers.

Unsupervised Adaptation with SSM  As shown in Table 6.4, adaptation by simply masking
salient entities from sentences as input and generating masked entities using ReAtt improves
the retrieval performance on 4 datasets, some by a large margin, achieving comparable or su-

perior performance than strong retrieval adaptation methods such as TSDAE+GPL that relies
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on query generation. This indicates that our end-to-end trainable model also works well in

unsupervised settings without involving too many engineering heuristics.

6.7 Conclusion

We propose retrieval as attention (ReAtt), a single Transformer model that can be learned in an
end-to-end fashion only using end task loss. We demonstrated on the NQ dataset that ReAtt
can achieve both competitive retrieval and QA performance. We further show that ReAtt is
easy to adapt to other domains in both supervised and unsupervised settings, achieving both
boosted retrieval and end task performance. Future directions include better end-to-end train-

ing objectives and efficient training and inference methods.
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Chapter 7
Active Retrieval-augmented Generation

The previous chapter mainly focuses on short-form questions, which employ a retrieve-and-
generate setup that only retrieves information once based on the input. This is limiting, how-
ever, in more general scenarios involving generation of long texts, where continually gathering
information throughout generation is essential. In this chapter, we provide a generalized view
of active retrieval augmented generation, methods that actively decide when and what to retrieve
across the course of the generation. This work is presented in:

* Zhengbao Jiang®, Frank F. Xu*, Luyu Gao”, Zhiqing Sun®, Qian Liu, Jane Dwivedi-Yu,
Yiming Yang, Jamie Callan, Graham Neubig. Active Retrieval Augmented Generation. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Process-
ing.!

Code and datasets are available at:
* https://github.com/jzbjyb/FLARE

7.1 Introduction

Retrieval augmented LMs commonly use a retrieve-and-generate setup where they retrieve
documents based on the user’s input, and then generate a complete answer conditioning on
the retrieved documents [27, 66, 80, 83, 92, 117, 118, 124, 147, 165, 181, 192]. These single-
time retrieval augmented LMs outperform purely parametric LMs, particularly for short-form
knowledge-intensive generation tasks such as factoid question answering (QA) [95, 114], where
the information needs are clear in the user’s input, and it is sufficient to retrieve relevant knowledge
once solely based on the input.

1Zhengbao Jiang proposed the idea, conducted main experiments, and wrote the draft. Frank F. Xu and Zhiqing

Sun designed retrieval instructions and conducted ablations. Luyu Gao revised the draft.
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Figure 7.1: An illustration of forward-looking active retrieval augmented generation (FLARE).
Starting with the user input & and initial retrieval results D,, FLARE iteratively generates a
temporary next sentence (shown in gray italic) and check whether it contains low-probability
tokens (indicated with underline). If so (step 2 and 3), the system retrieves relevant documents

and regenerates the sentence.

Increasingly powerful large LMs have also demonstrated abilities in more complex tasks
that involve generating long-form output, such as long-form QA [52, 196], open-domain sum-
marization [37, 61, 69], and (chain-of-thought; CoT) reasoning [58, 71, 73, 233]. In contrast to
short-form generation, long-form generation presents complex information needs that are not
always evident from the input alone. Similar to how humans gradually gather information as
we create content such as papers, essays, or books, long-form generation with LMs would re-
quire gathering multiple pieces of knowledge throughout the generation process. For example, to
generate a summary about a particular topic, the initial retrieval based on the topic name (e.g.,
Joe Biden) may not cover all aspects and details. It is crucial to retrieve extra information as
needed during generation, such as when generating a certain aspect (e.g., Joe Biden’s education
history) or a specific detail (e.g., the date of Joe Biden’s presidential campaign announcement).

Several attempts have been made to retrieve multiple times throughout generation. These

attempts include methods that passively use the past context to retrieve additional informa-
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tion at a fixed interval [17, 101, 174, 216] which might not accurately reflect what LMs intend
to generate in the future or retrieve at inappropriate points. Some works in multihop QA de-
compose the full question into sub-questions, each of which is used to retrieve extra informa-
tion [105, 107, 164, 244].

We ask the following question: can we create a simple and generic retrieval augmented
LM that actively decides when and what to retrieve throughout the generation process, and are
applicable to a variety of long-form generation tasks? We provide a generalized view of active
retrieval augmented generation. Our hypothesis regarding when to retrieve is that LMs should
retrieve information only when they lack the required knowledge to avoid unnecessary or in-
appropriate retrieval that occurs in passive retrieval augmented LMs [17, 101, 174, 216]. Given
the observation that large LMs tend to be well-calibrated and low probability/confidence often
indicates a lack of knowledge [96], we adopt an active retrieval strategy that only retrieves
when LMs generate low-probability tokens. When deciding what to retrieve, it is important to
consider what LMs intend to generate in the future, as the goal of active retrieval is to benefit
future generations. Therefore, we propose anticipating the future by generating a temporary
next sentence, using it as a query to retrieve relevant documents, and then regenerating the
next sentence conditioning on the retrieved documents. Combining the two aspects, we pro-
pose Forward-Looking Active REtrieval augmented generation (FLARE), as illustrated in Fig-
ure 7.1. FLARE iteratively generates a temporary next sentence, uses it as the query to retrieve
relevant documents if it contains low-probability tokens, and regenerates the next sentence until

reaches the end.

FLARE is applicable to any existing LMs at inference time without additional training. Con-
sidering the impressive performance achieved by GPT-3.5 [155] on a variety of tasks, we ex-
amine the effectiveness of our methods on text-davinci-003. We evaluate FLARE on 4
diverse tasks/datasets involving generating long outputs, including multihop QA (2WikiMulti-
hopQA), commonsense reasoning (StrategyQA), long-form QA (ASQA), and open-domain sum-
marization (WikiAsp) [58, 69, 73, 196]. Over all tasks, FLARE achieves superior or competitive
performance compared to single-time and multi-time retrieval baselines, demonstrating the ef-

fectiveness and generalizability of our method.

7.2 Retrieval Augmented Generation

We formally define single-time retrieval augmented generation and propose the framework of

active retrieval augmented generation.
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7.2.1 Notations and Definitions

Given a user input « and a document corpus D = {dl}ﬂ (such as all Wikipedia articles), the
goal of retrieval augmented LMs is to generate the answer y = [s1, So, ..., S5 = [w1, wa, ..., wy,]
containing m sentences or n tokens leveraging information retrieved from the corpus.

In retrieval augmented LM, the LM typically pairs with a retriever that can retrieve a list
of documents D, = ret(q) for a query g; the LM conditions on both the user input x and
retrieved documents D, to generate the answer. Since we focus on examining various methods
of determining when and what to retrieve, we follow existing methods [174, 216] to prepend
the retrieved documents before the user input to aid future generation for both baselines and
our method for fair comparisons: y = LM([Dy, ]), where [-, -] is concatenation following the

specified order.

7.2.2 Single-time Retrieval Augmented Generation

The most common choice is to directly use the user input as the query for retrieval and generate

the complete answer at once y = LM([Dy, x]).

7.2.3 Active Retrieval Augmented Generation

To aid long-form generation with retrieval, we propose active retrieval augmented generation.
It is a generic framework that actively decides when and what to retrieve through the generation
process, resulting in the interleaving of retrieval and generation. Formally, at step ¢(¢ > 1), the

retrieval query gq; is formulated based on both the user input & and previously generated output
Yot = [yOJ teey ytfl]:
@ = qry(x, Y1),

where qry(+) is the query formulation function. At the beginning (¢! = 1), the previous gen-
eration is empty (y.; = (), and the user input is used as the initial query (q; = ). Given
retrieved documents D,,, LMs continually generate the answer until the next retrieval is trig-

gered or reaches the end:
Yt = LM({,D(IM €T, y<t]>7

where y; represents the generated tokens at the current step ¢, and the input to LMs is the
concatenation of the retrieved documents Dy,, the user input x, and the previous generation
Y. We discard previously retrieved documents Uy 4D, and only use the retrieved documents
from the current step to condition the next generation to prevent reaching the input length limit
of LMs.
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Figure 7.2: An illustration of forward-looking active retrieval augmented generation with re-
trieval instructions (FLARE;,siruct)- It iteratively generates search queries (shown in gray italic)

to retrieve relevant information to aid future generations.

7.3 FLARE:Forward-Looking Active REtrieval Augmented

Generation

Our intuition is that (1) LMs should only retrieve information when they do not have the nec-
essary knowledge to avoid unnecessary or inappropriate retrieval, and (2) the retrieval queries
should reflect the intents of future generations. We propose two forward-looking active re-
trieval augmented generation (FLARE) methods to implement the active retrieval augmented
generation framework. The first method prompts the LM to generate retrieval queries when
necessary while generating the answer using retrieval-encouraging instructions, denoted as
FLARE;struct- The second method directly uses the LM’s generation as search queries, denoted
as FLARE g, which iteratively generates the next sentence to gain insight into the future
topic, and if uncertain tokens are present, retrieves relevant documents to regenerate the next

sentence.

7.3.1 FLARE with Retrieval Instructions

Inspired by Toolformer [189], a straightforward way of expressing information needs for re-
trieval is to generate “[Search(query)]” when additional information is needed [189], e.g., “The
colors on the flag of Ghana have the following meanings. Red is for [Search(Ghana flag red

meaning)] the blood of martyrs, ..” When working with GPT-3.5 models that offer only API
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access, we elicit such behavior by few-shot prompting [21].

Specifically, for a downstream task, we place the search-related instruction and exemplars
at the beginning as skill 1, followed by the instruction and exemplars of the downstream task
as skill 2. Given a test case, we ask LMs to combine skills 1 and 2 to generate search queries

while performing the task. The structure of the prompt is shown in Prompt 2.

Prompt 2: retrieval instructions

Skill 1. An instruction to guide LMs to generate search queries.

Several search-related exemplars.

Skill 2. An instruction to guide LMs to perform a specific downstream task (e.g., multihop QA).
Several task-related exemplars.

An instruction to guide LMs to combine skills 1 and 2 for the test case.

The input of the test case.

\ J

2

As shown in Figure 7.2, when the LM generates “[Search(query)]” (shown in gray italic),
we stop the generation and use the query terms to retrieve relevant documents, which are
prepended before the user input to aid future generation until the next search query is generated

or reaches the end.

7.3.2 Direct FLARE

Since we cannot fine-tune black-box LMs, we found queries generated by FLARE;,gyct through
retrieval instructions might not be reliable. Therefore, we propose a more direct way of forward-

looking active retrieval that uses the next sentence to decide when and what to retrieve.

Confidence-based Active Retrieval

As shown in Figure 7.1, at step ¢, we first generate a temporary next sentence §; = LM([x, y~¢])
without conditioning on retrieved documents. Then we decide whether to trigger retrieval and
formulate queries based on s;. If the LM is confident about s;, we accept it without retrieving
additional information; if not, we use §; to formulate search queries g; to retrieve relevant
documents, and then regenerate the next sentence s;. The reason we utilize sentences as the
basis of our iteration is due to their significance as semantic units that are neither too short
nor too lengthy like phrases and paragraphs. However, our approach can also utilize phrases
or paragraphs as the basis.

Since LMs tend to be well-calibrated so that low probability/confidence often indicates a

lack of knowledge [91, 96, 218], we actively trigger retrieval if any token of s; has a probability
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Joe Biden attended the University of Pennsylvania,
where he earned a law degree.

explicit query by
question generation

Joe Biden attended , where he earned .

b

Ask a question to which the answer is “the University of Pennsylvania”
Ask a question to which the answer is “a law degree”

m LM such as ChatGPT

L

What university did Joe Biden attend?
What degree did Joe Biden earn?

Figure 7.3: Implicit and explicit query formulation. Tokens with low probabilities are marked

with underlines.

lower than a threshold 6 € [0, 1]. # = 0 means retrieval is never triggered, while § = 1 triggers

retrieval every sentence.

Sy if all tokens of s; have probs > 6
Y =
st = LM([Dy,, T, y<)) otherwise

where the query g; is formulated based on s;.

Confidence-based Query Formulation

One way to perform retrieval is to directly use the next sentence s; as the query g;. This shares
a similar spirit with methods that use generated hypothetical titles or paragraphs from LMs as
retrieval queries or evidence [55, 140, 198, 245]. We generalize such techniques for long-form
generation where active information access is essential.

We found retrieving with the next sentence achieves significantly better results than with
the previous context, as shown later in subsection 7.6.2. However, it has a risk of perpetuat-
ing errors contained in it. For example, if the LM produces the sentence “Joe Biden attended
the University of Pennsylvania” instead of the correct fact that he attended the University of
Delaware, using this erroneous sentence as a query might retrieve misleading information. We

propose two simple methods to overcome this issue as illustrated in Figure 7.3.

Masked sentences as implicit queries. The first method masks out low-confidence tokens
in §; with probabilities below a threshold 3 € [0, 1], where a higher 3 results in more aggressive

masking. This removes potential distractions from the sentence to improve retrieval accuracy.

97



Generated questions as explicit queries. Another method is to generate explicit questions
that target the low-confident span in §;. For example, if the LM is uncertain about “the Univer-
sity of Pennsylvania”, a question like “Which university did Joe Biden attend?” can help retrieve
relevant information. Self-ask [164] achieved this by manually inserting follow-up questions
into downstream task exemplars as shown later in Prompt 5, which requires task-specific an-
notation efforts. Instead, we developed a universal approach that generates questions for low-
confidence spans without additional annotation. Specifically, we first extract all spans from
§; with probabilities below (. For each extracted span z, we prompt gpt-3.5-turbo to

generate a question g, , that can be answered with the span:

Prompt 3: zero-shot question generation

User input .

Generated output so far y<;.

Given the above passage, ask a question to which the answer is the term/entity/phrase “z”.

We retrieve using each generated question and interleave the returned documents into a
single ranking list to aid future generations. In summary, queries g; are formulated based on

S; as follows:

0 if all tokens of §; have probs > 6
q: =
mask($;) or qgen($;) otherwise

7.3.3 Implementation Details

Base LM We validate our method on one of the most advanced GPT-3.5LMs text-davinci-003
by iteratively querying their APL?

Document corpus and retrievers. Since we focus on the integration of retrieval and gen-
eration, we use off-the-shelf retrievers that take queries as inputs and return a list of relevant
passages. The number of passages depends on the downstream task, which will be explained in
section 7.5. For datasets that mainly rely on knowledge from Wikipedia, we use the Wikipedia
dump from Karpukhin et al. [99] which chunks Wikipedia articles into passages, and employ
BM25 [179] as the retriever. For datasets that rely on knowledge from the open web, we use

the Bing search engine as our retriever.’

*https://api.openai.com/v1/completions April 23.
*https://www.microsoft.com/en-us/bing/apis/bing-web-search-api
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Retrieved document formatting. Multiple retrieved documents are linearized according to

their ranking and then added to the beginning of the user input using Prompt 4.

Prompt 4: document formatting

Search results:
(1] Document 1
[2] Document 2

The user input x

7.4 Multi-time Retrieval Baselines

Existing passive multi-time retrieval augmented LMs can also be formulated using our frame-
work (subsection 7.2.3). In this section, we formally introduce three baseline categories based
on when and what to retrieve. These baselines are not exact reproductions of the correspond-
ing paper because many design choices differ which makes direct comparisons impossible. We
implemented them using the same settings, with the only variation being when and what to

retrieve.

Previous-window approaches trigger retrieval every [ tokens, where [ represents the win-

dow size. Generated tokens from the previous window are used as the query:

QG =y (t>2),
Yt = [w(t—l)l+1, coy Wy
Some existing methods in this category are RETRO [17], IC-RALM [174], which retrieve every

few tokens, and KNN-LM [101], which retrieves every token.* We follow Ram et al. [174] to

use a window size of [ = 16.

Previous-sentence approaches trigger retrieval every sentence and use the previous sen-

tence as the query, and IRCoT [216] belongs to this category:

a =y (t>2),

Yy = Si.

*Since KNN-LM uses the contextualized representation corresponding to the current decoding position to

retrieve relevant information which encodes all previous tokens. Strictly speaking, q; should be y;.
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Settings 2WikiMultihopQA  StrategyQA ASQA WikiAsp

[73] [58] [196] [69]
Dataset statistics
Task multihop QA commonsense QA long-form QA open-domain summarization
#Examples 500 229 500 500

Evaluation settings

Metrics EM, Fq, Prec., Rec. EM EM, Disambig-F1, ROUGE, DR UniEval, entity-F1, ROUGE
Retrieval settings
Corpus Wikipedia Wikipedia Wikipedia open web
Retriever BM25 BM25 BM25 Bing
Top-k 2 3 3 5
Prompt format
#Exemplars 8 6 8 4
Ret. for exemplars 4 X X

Table 7.1: Dataset statistics and experimental settings of different tasks.

Question decomposition approaches manually annotated task-specific exemplars to guide
LMs to generate decomposed sub-questions while producing outputs. For example, self-ask
[164], a method in this category, manually inserts sub-questions in exemplars using Prompt 5.

For the test case, retrieval is triggered dynamically whenever the model generates a sub-question.

Prompt 5: multihop QA with self-ask

Question: Who lived longer, Theodor Haecker or Harry Vaughan Watkins?
Are follow up questions needed here: Yes.

Follow up: How old was Theodor Haecker when he died?

Intermediate answer: Theodor Haecker was 65 years old when he died.
Follow up: How old was Harry Vaughan Watkins when he died?

Intermediate answer: Harry Vaughan Watkins was 69 years old when he died.

So the final answer is: Harry Vaughan Watkins.

\ J

The aforementioned approaches can retrieve additional information while generating. How-
ever, they have notable drawbacks: (1) Using previously generated tokens as queries might not
reflect what LMs intend to generate in the future. (2) Retrieving information at a fixed interval
can be inefficient because it might occur at inappropriate points. (3) Question decomposition
approaches require task-specific prompt engineering, which restricts their generalizability in

new tasks.
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Dataset 0 8  Query formulation Combine single- & multi-time retrieval

2WikiMultihopQA 0.8 04 implicit X
StrategyQA 04 04 implicit X
ASQA & ASQA-hint 0.8 04 explicit v
WikiAsp 0.8 04 explicit 4

Table 7.2: Hyperparameters of FLARE on different datasets.

7.5 Experimental Setup

We evaluate the effectiveness of FLARE on 4 diverse knowledge-intensive tasks using few-shot
in-context learning [21, 134, 168]. We follow previous works [216] to sub-sample at most 500
examples from each dataset due to the cost of running experiments. Datasets, metrics, and
settings are summarized in Table 7.1. The hyperparameters of FLARE are selected based on the
development set and listed in Table 7.2. FLARE refers to FLARE ;.. if not specifically stated.

Multihop QA The goal of multihop QA is to answer complex questions through informa-
tion retrieval and reasoning. We use 2WikiMultihopQA [73] which contains 2-hop complex
questions sourced from Wikipedia articles that require composition, comparison, or inference,
e.g., ‘Why did the founder of Versus die?” We follow Wang et al. [229] to generate both the
chain-of-thought and the final answer. For “Why did the founder of Versus die?”, the output
we aim to generate is “The founder of Versus was Gianni Versace. Gianni Versace was shot
and killed on the steps of his Miami Beach mansion on July 15, 1997. So the answer is shot”
We use 8 exemplars from Trivedi et al. [216] for in-context learning, BM25 as the retriever, and
Wikipedia articles as the retrieval corpus. Similar to the observation in Trivedi et al. [216], we
found incorporating retrieval results for exemplars improves the performance. We use the in-
put x of each exemplar to retrieve several documents and then add them using the format in
Prompt 4. We found increasing the number of retrieval documents often increases performance.
Therefore, we use the maximum number of documents that can fit within the input length limit
of text-davinci-003, which is 2 for 2WikiMultihopQA.

We use regular expressions to extract the final answer from the output and compare it with

the reference answer using exact match (EM), and token-level Fy, precision, and recall.

Commonsense reasoning Commonsense reasoning requires world and commonsense knowl-
edge to generate answers. We use StrategyQA [58] which is a collection of crowdsourced yes/no
questions, e.g., “Would a pear sink in water?” We follow Wei et al. [233] to generate both the

chain-of-thought and the final yes/no answer. For “Would a pear sink in water?”, the output we
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Figure 7.4: Comparision between FLARE and baselines across all tasks/datasets. We report
the primary metric for each dataset: EM for 2WikiMultihopQA, StrategyQA, and ASQA, and
UniEval for WikiAsp.

aim to generate is “The density of a pear is about 0.6g/cm?, which is less than water. Objects
less dense than water float. Thus, a pear would float. So the final answer is no.” We use 6
exemplars from Wei et al. [233], BM25 on the Wikipedia corpus, and 3 retrieved documents to

run experiments.

We extract the final answer and match it against the gold answer using exact match.

Long-form QA Long-form QA aims to generate comprehensive answers to questions seeking
complex information [52, 196]. We use ASQA [196] as our testbed where inputs are ambiguous
questions with multiple interpretations, and outputs should cover all of them. For example,
“Where do the Philadelphia Eagles play their home games?” could be asking about the city,
sports complex, or stadium. We found in many cases it is challenging even for humans to
identify which aspect of the question is ambiguous. Therefore, we created another setting
(ASQA-hint) where we provide a brief hint to guide LMs to stay on track when generating
answers. The hint for the above case is “This question is ambiguous in terms of which specific
location or venue is being referred to.” For “Where do the Philadelphia Eagles play their home
games?”, the output we aim to generate is “We need to consider the different possible locations
or venues that could be considered the home field of the Philadelphia Eagles. These include
the city, the sports complex, or the stadium. Therefore, this question has 3 interpretations and
the answers are: (1) The city is Philadelphia. (2) The sports complex is the South Philadelphia
Sports Complex. (3) The stadium is the Lincoln Financial Field stadium.” For both the original
setting (ASQA) and the setting with hints (ASQA-hint), we manually annotate 8 exemplars, use

BM25 on the Wikipedia corpus, and 3 retrieved documents to run experiments.

We use metrics from Stelmakh et al. [196], including EM, RoBERTa-based QA score (Disambig-
F;), ROUGE [128], and an overall score combining Disambig-F; and ROUGE (DR).
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Open-domain summarization The goal of open-domain summarization is to generate a
comprehensive summary of a topic by gathering information from open web [61]. We use
WikiAsp [69] which aims to generate aspect-based summaries about entities from 20 domains
in Wikipedia, e.g., “Generate a summary about Echo School (Oregon) including the following
aspects: academics, history” The original WikiAsp dataset is designed for multi-document
summarization and provides a list of references to systems. We converted it into the open-
domain setting by removing the associated references and instead gathering information from
the open web. For “Generate a summary about Echo School (Oregon) including the following
aspects: academics, history.”, the output we aim to generate is “# Academics. In 2008, 91% of
the school’s seniors received their high school diploma... # History. The class of 2008 was the
100th class in the school’s history.” where # is used to indicate aspects. We manually annotate 4
exemplars, and use the Bing search engine to retrieve 5 documents from the open web. To avoid
leaking, we exclude several Wikipedia-related domains from Bing’s search results, including
wikipedia.org,wikiwand.com,wiki2.org,and wikimedia.org.

Metrics include ROUGE, named entity-based F;, and UniEval [254] which measures factual

consistency.

7.6 Experimental Results

We first report overall results across 4 tasks/datasets and compare the performance of FLARE
with all the baselines introduced in section 7.4. We then run ablation experiments to study the

efficacy of various design choices of our method.

7.6.1 Comparison with Baselines

Overall results. The overall performance of FLARE and baseline across all tasks/datasets
are reported in Figure 7.4. FLARE outperforms all baseline on all tasks/datasets, indicating that
FLARE is a generic method that can effectively retrieve additional information throughout the
generation.

Among various tasks, multihop QA shows the most significant improvement. This is largely
due to the task’s clear definition and specific objective of producing the final answer through a
2-hop reasoning process, which makes it easier for LMs to generate on-topic output. In contrast,
ASQA and WikiAsp are more open-ended, which increases the difficulty of both generation and
evaluation. The improvement on ASQA-hint is larger than that of ASQA because identifying
ambiguous aspects is challenging even for humans in many cases, and providing a generic hint

helps LMs to stay on topic.

103


wikipedia.org
wikiwand.com
wiki2.org
wikimedia.org

Methods EM F; Prec. Rec.

No retrieval 282 36.8 36,5 386
Single-time retrieval 39.4 488 48.6 515
Multi-time retrieval
Previous-window 432 523 51.7 545
Previous-sentence 39.0 49.2 489 5138
Question decomposition 47.8 56.4 56.1 58.6
FLARE, pgtruct (OUTS) 42.4 498 491 525
FLARE giyec (OUrS) 510 59.7 59.1 62.6

Table 7.3: FLARE and baselines on 2WikiMultihopQA. Previous-window [17, 174], previous-
sentence [216], and question decomposition [164, 244] methods are reimplemented for fair com-

parisons.

Thorough comparisons with baselines. The performance of all baselines on 2WikiMulti-
hopQA are reported in Table 7.3. FLARE outperforms all baselines by a large margin, which
confirms that forward-looking active retrieval is highly effective. Most multi-time retrieval
augmented approaches outperform single-time retrieval but with different margins. The im-
provement of retrieving using the previous sentence is relatively small which we hypothesize
is mainly because the previous sentence often describes entities or relations different from those
in the next sentence in 2WikiMultihopQA. While the previous-window approach might use the
first half of a sentence to retrieve information potentially helpful for generating the second half.
Among all baselines, the question decomposition approach [164] achieves the best performance.
which is not surprising since the in-context exemplars manually annotated with decomposed
sub-questions (Prompt 5) guide LMs to generate sub-questions that align with the topic/intent
of future generations. FLARE outperforms this baseline, indicating that manual exemplar an-
notation is not necessary for effective future-aware retrieval. The gap between FLARE ;s uct
and question decomposition is large, indicating that teaching LMs to generate search queries

using task-generic retrieval instructions and exemplars is challenging.

We report all metrics for the other datasets in Table 7.4. FLARE outperforms baselines with
respect to all metrics. Retrieval using the previous window underperforms single-time retrieval
on ASQA, which we hypothesize is because the previous window does not accurately reflect
future intent. Since we focus on evaluating factuality, metrics with an emphasis on factual
content (such as EM, Disambig-F;, UniEval) are more reliable than metrics computed over all
tokens (ROUGE-L).
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Datasets StrategyQA ASQA ASQA-hint WikiAsp

Metrics EM EM D-F; R-L DR | EM D-F; R-L DR | UniEval E-F; R-L
No retrieval 72.9 33.8 24.2 33.3 284 | 40.1 325 36.4 344 47.1 14.1 26.4
Single-time retrieval 68.6 40.0 27.1 34.0 30.4 | 43.2 34.8 37.4 36.0 52.4 174 26.9

Multi-time retrieval

Previous-window 71.2 399 27.0 34.3 30.4 | 43.7 35.7 37.5 36.6 51.8 18.1 27.3
Previous-sentence 71.0 399 279 34.3 30.9 | 44.7 35.9 37.5 36.7 52.6 17.8 27.2
FLARE (ours) 77.3 41.3 28.2 34.3 31.1 | 46.2 36.7 37.7 37.2 53.4 18.9 27.6

Table 7.4: Comparison between FLARE and baselines on StrategyQA, ASQA, ASQA-hint, and
WikiAsp. D-F; is Disambig-F;, R-L is ROUGE-L, and E-F; is named entity-based F;.

2WikiMultihopQA

EM F,

Prec. Rec.

ASQA-hint
EM D-F; R-L DR

Previous 39.0 49.2 489 51.8
48.8 57.6 57.1

Next

60.5

425 34.1 36.9 355
459 35.7 37.5 36.6

Table 7.5: A head-to-head comparison between using the previous sentence and the next sen-

tence for retrieval.

7.6.2 Ablation Study

Importance of forward-looking retrieval.

We first validate that forward-looking retrieval

is more effective than past-context-based retrieval. We run ablation experiments on 2Wiki-

MultihopQA and ASQA-hint comparing retrieval using the previous versus the next sentence.

Specifically, both methods retrieve every sentence and directly use the complete previous/next

sentence as queries. As shown in Table 7.5, using the next sentence to retrieve is clearly better

than using the previous sentence, confirming our hypothesis.

#Tokens EM F; Prec. Rec.
16 43.2 523 517 54.5
32 43.6 524 520 55.0
48 40.0 493 49.0 52.0
All 39.0 485 48.2 51.1

Table 7.6: Previous-window approaches using different numbers of tokens as queries.
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800 | -

—
60.0 72’.9 73.8 773 76.9 74.7 73.4 73.4
40.0 146 476 472 510 51.0
20.0 28.2
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0.0 25.0 50.0 75.0 100.0

%steps/sentences with retrieval

Figure 7.5: Performance (EM) of FLARE with respect to the percentage of steps/sentences with
retrieval on 2WikiMultihopQA and StrategyQA.

15} EM F, Prec. Rec.

0.0 0488 0.576 0.571 0.605
0.2 0498 0.588 0.582 0.616
0.4 0510 0.597 0.591 0.627
0.6 0506 0.593 0.586 0.622

Table 7.7: Performance of FLARE with respect to the masking threshold 3 on 2WikiMulti-
hopQA.

We also run previous-window approaches using different numbers of past tokens as queries.
As shown in Table 7.6, using too many tokens (> 32) in the past hurts the performance, further
confirming our hypothesis that previous context might not be relevant to the intent of future

generations.

Importance of active retrieval. Next, we investigate how active retrieval threshold 0 affects
performance. To alter our method from not retrieving to retrieving every sentence, we adjust
the confidence threshold # that determines when to trigger retrieval from 0 to 1. We then
calculate the proportion of steps/sentences where retrieval is activated, and present the perfor-
mance based on it. As shown in Figure 7.5, on 2WikiMultihopQA, the performance plateaus
when the retrieval percentage exceeds 60%, indicating that retrieval when LMs are confident is
not necessary. On StrategyQA, the performance drops when the retrieval percentage exceeds
50%, indicating that unnecessary retrieval can introduce noise and impede the original gener-
ation process. We found triggering retrieval for 40%-80% of sentences usually leads to a good

performance across tasks/datasets.
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ASQA-hint WikiAsp
EM D-F, R-L DR | UniEval E-F; R-L

Implicit 45.7 36.9 37.7 37.3 534 188 27.7
Explicit 46.2 36.7 37.7 37.2 534 189 27.6

Table 7.8: A comparison between implicit and explicit query formulation methods in FLARE.

Effectiveness of different query formulation methods We study implicit query forma-
tion by masking and explicit query formulation through question generation. In Table 7.7,
we compare the performance of FLARE with different masking thresholds /3. Retrieving di-
rectly with the complete sentence (8 = 0) is worse than masking tokens with low probabilities,
confirming our hypothesis that low-confidence erroneous tokens can distract retrievers. We
compare implicit and explicit query formulation methods in Table 7.8. Performances of both

methods are similar, indicating that both methods can effectively reflect information needs.

Efficiency As shown in Figure 7.5, on average retrieval is triggered for 30% ~ 60% of sen-
tences depending on downstream tasks. In comparison, KNN-LM [101] retrieves every token,
RETRO or IC-RALM [17, 174] retrievers every 4~32 tokens, and IRCoT [216] retrieves every
sentence. Compared to single-time retrieval, however, interleaving retrieval and generation
with a naive implementation indeed increases overheads. LMs need to be activated multiple
times (once for each retrieval) and a caching-free implementation also requires recomputing
the previous activation each time after retrieval. This issue can be potentially alleviated with
special architectural designs that encode the retrieved documents D, and the input/generation

(x/y~¢) independently.

7.7 Related Work

We refer to subsection 7.2.2 and section 7.4 for extensive discussion on single-time and multi-

time retrieval augmented LMs, which is the most relevant area to this chapter.

Iterative and adaptive retrieval Iterative retrieval and refinement has been studied in both
text and code generation tasks [157, 246, 248, 249]. FLARE differs from these methods in the
granularity of generation and retrieval strategies. Adaptive retrieval has been studied in single-
time retrieval scenarios based on either question popularity or generation probabilities [126,

138], while we focus on long-form generation requiring active information access.
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Browser-enhanced LMs WebGPT [147] and WebCPM [166] train LMs to interact with browser
to enhance factuality using reinforcement learning or supervised training where multiple queries
can be triggered before generation. FLARE is built on text-based retrievers but can be combined

with a browser to potentially improve retrieval quality.

7.8 Conclusion

To aid long-form generation with retrieval augmentation, we propose an active retrieval aug-
mented generation framework that decides when and what to retrieve during generation. We
implement this framework with forward-looking active retrieval that iteratively uses the up-
coming sentence to retrieve relevant information if it contains low-confidence tokens and re-
generates the next sentence. Experimental results on 4 tasks/datasets demonstrate the effec-
tiveness of our methods. Future directions include better strategies for active retrieval and

developing efficient LM architectures for active information integration.
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Chapter 8
Conclusion

In this dissertation, we study two types of approaches to answer questions that require factual
knowledge: parametric approaches and non-parametric approaches. Parametric approaches
store knowledge within the parameters of LLMs and elicit this knowledge through prompting,
while non-parametric approaches store knowledge in a non-parametric datastore such as a
document corpus and utilize this knowledge using retrievers that are usually based on semantic
dense representations. Managing factual knowledge involves two essential aspects: knowledge
storage and knowledge retrieval. The query-key-value representation is a general framework
to explain the knowledge retrieval process. In this framework, queries indicate information
needs or search intents, which are matched with a set of keys to locate relevant information.
Subsequently, the corresponding values of the matched items are returned to the user.

The feedforward layer (FFW) of the transformer architecture is a position-wise function,

processing each input token independently:
FFW(q) = f(q- K") -V, (8.1)

where ¢ € R? is the input hidden state, K,V € R™*? are two parameter matrices, and f is
a non-linear activation function such as ReLU. As suggested by Geva et al. [59], we can view
the feedforward layer as a key-value “datastore” with n slots, where each key-value slot cor-
responds to a row in K and V respectively. The input vector q is matched with all key vec-
tors in K with dot-product to obtain a distribution over all slots, and the output is obtained
through a weighted sum over all values in V. Factual knowledge can be encoded in any pa-
rameters of LLMs, not exclusively in the value matrix V. However, structuring the feedforward
layer using the query-key-value framework can facilitate establishing connections with non-
parametric counterparts. Embedding-based dense retrieval systems can also be understood
within the query-key-value framework, where queries are embeddings of input queries, keys

are document embeddings, and values are the corresponding documents. If we assume that fac-
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Figure 8.1: A conceptual head-to-head comparison between parametric and non-parametric

datastores from both knowledge storage and retrieval perspectives, assuming that feedforward

layers in the transformer architecture are key-value datastores [59]. Drawing from this compar-

ison, each key-value slot in feedforward layers can be viewed as a virtual document. However,

it is important to note that knowledge is not solely stored within the value vectors.
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tual knowledge primarily resides in the feedforward layers, though this assumption may not
always hold true, we can make a direct conceptual comparison between parametric and non-
parametric approaches regarding both knowledge storage and retrieval. This comparison aids
in understanding the context of existing works, including those discussed in this dissertation,
and can motivate future research directions.

In Figure 8.1, we visually compare the query-key-value representations of parametric and
non-parametric datastores, providing an explanation of the storage and retrieval mechanism in

the accompanying table.

Knowledge storage Each key-value slot in the feedforward layer can be viewed as a virtual
document optimized during pre-training to store knowledge. However, it is worth noting that
knowledge can be encoded in any parameters of LLMs, not exclusively in the value vectors.
Unlike non-parametric approaches, where keys and values are grounded on real documents,
parametric key-value datastores are not linked to specific information like documents. While it
offers the advantage of learning flexibility, it also raises the chance of hallucination. Parametric
datastores have a fixed number of key-value slots, allowing them to capture compressed con-
cepts, although this comes at the expense of limited storage capacity. They can be unpredictably
overwritten during continued training on new documents, leading to the issue of catastrophic
forgetting. In contrast, non-parametric datastores have unbounded capacity, and expanding
them is straightforward-simply encode new documents and index the resulting dense embed-

dings.

Knowledge retrieval Retrieving knowledge from non-parametric datastores is straightfor-
ward, which involves encoding the input query and matching it against all document embed-
dings based on dot-product similarity. In the case of parametric datastores, knowledge is re-
trieved and accumulated across multiple layers and tokens during the forward pass of the trans-
former model. This provides greater flexibility, particularly for complex questions that require
gathering multiple pieces of information. To improve retrieval accuracy, embedding models
are fine-tuned using contrastive learning objectives, aiming to learn close representations for
similar query-document pairs. Meanwhile, parametric approaches directly fine-tune LLMs on
inputs and desired outputs, in the hope that necessary knowledge can be elicited from the pa-

rameters to guide the desired output.

Connection to this dissertation Within the query-key-value framework, chapter 2, chap-
ter 3, and chapter 4 mainly focus on optimizing prompts so that the query vector corresponding
to the last token of the prompt can effectively retrieve the correct key-value slot containing

the answer or indicates when the question goes beyond the scope of knowledge. The FLARE
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method proposed in chapter 7 performs retrieval in multiple decoding steps, which abandons
the traditional design of RAG that only builds a single query vector based on the input question
but instead mimics the multi-step retrieval mechanism of parametric approaches that formulate
multiple query vectors throughout the generation process.

The above chapters only involve optimizing query vectors. chapter 5 focuses on jointly opti-
mizing query vectors and key-value slots by interleaving training on documents and instruction-
tuning on QA pairs. chapter 6 utilizes the query-key-value vectors in the self-attention module
as a direct instantiation of the framework, and optimizes them jointly using learning signals
obtained from downstream tasks.

We summarize contributions covered in this dissertation based on this conceptual compar-

ison in section 8.1, and share insights into future directions in section 8.2.

8.1 Summary of Contributions

Overall, parametric approaches are end-to-end solutions since they require training only one
giant transformer model to encompass all capabilities, whereas non-parametric approaches in-
volve a pipeline structure with non-parametric components, enabling LLMs to engage with the

external world and extending the range of applications for LLM-based agents.

Knowledge retrieval In chapter 2 and chapter 3, we focus on improving knowledge retrieval
from parametric datastores through diverse prompting without additional training. Similar to
query reformulation techniques used in information retrieval systems that use different word-
ings to increase the chance of hitting relevant pages, diversified prompting enlarges the chance
of activating related memory within LLMs. Tuning prompts either manually or automatically
has already become a standard practice to interact with LLMs. It serves not only as an inference-
time heuristic to enhance performance but also offers insights into how to improve training data
and objectives, such as instruction-tuning data collection and generation receipts [184, 231].
One major bottleneck of non-parametric knowledge retrieval is fixed-dimensional embed-
dings. Motivated by the working mechanism of self-attention that computes token similarity
within the input context, we propose to extend the context and directly compute attention over
the entire corpus for retrieval purposes in chapter 6, which (1) is more expressive than fixed-
dimensional embeddings, and (2) offers a single-model solution without external retrievers.
Compared to the parametric key-value datastore implemented in feedforward layers, retrieval
as attention implements a key-value caching system over all tokens of a corpus in the self-
attention layer. The current work only implements such retrieval as attention in one specific

layer. Extending it to multiple attention heads and layers can further unleash its potential to
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handle complicated information matching.

Another bottleneck of non-parametric knowledge retrieval is that it only performs retrieval
once using the input query, which is not enough for complicated questions that require ag-
gregating multiple pieces of information from different sources. Taking insights from the ac-
cumulative knowledge retrieval process in parametric datastores that retrieves across multiple
tokens, we propose active retrieval-augmented generation in chapter 7, which advocates itera-
tive retrieval during the generation process. Although we mainly focus on knowledge-intensive
tasks in the study, the underlying methodology is also applicable to other scenarios where LLMs
need to interact with the external environment in multiple steps, such as web pages, operating
systems, and the physical world. Methods discussed in chapter 6 and chapter 7 can be further
combined to perform retrieval using attention over the entire corpus across multiple tokens so

that information can be gathered actively, which we will explain in detail in subsection 8.2.3.

Knowledge storage Asshown in Figure 8.1, both parametric and non-parametric approaches
require additional training to improve knowledge retrieval performance. The standard practice
for training embedding models is to collect relevant query-document pairs and fine-tune the
model using contrastive objectives. Document embeddings are generated and indexed after-
ward using the fine-tuned model. The pre-instruction-tuning method proposed in chapter 5
shares a similar training receipt, which fine-tunes LLMs on QA pairs and associated documents
to improve the ability to match questions with associated knowledge covered in documents
before applying them to absorbing knowledge from new documents.

Compared to contrastive learning that explicitly optimizes which documents should be re-
trieved, instruction-tuning on QA pairs only ultilizes final answers as training signals, missing
intermediate supervision on which information to gather from the parametric datastore. Be-
cause parametric datastores are not grounded to real documents, directly applying loss over
key-value slots in feedforward layers is impractical. Therefore, we suggest modifying the train-
ing data to generate not only the final answer but also the necessary supporting evidence, which

will be explained in detail in subsection 8.2.1.

8.2 Future Directions

We anticipate that future systems will incorporate elements of both parametric and non-parametric
components. As LLMs grow in size and capacity, they become better at condensing knowledge
into their parameters and reliably accessing it. However, including non-parametric components
is essential for dealing with long-tail knowledge and applications that need interaction with the

external environment.
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[https://www.reuters.com/article/us-usa-biden-inauguration/assuming-u-s-
presidency-biden-tells-divided-nation-democracy-has-prevailed-id USKBN29POHG/
President-elect Joe Biden, his wife Jill Biden, Vice President-elect Kamala Harris and
her husband Doug Emhoff salute as they arrive ahead of the inauguration of Biden,

Biden was inaugurated as the 46th in Washington, U.S., January 20, 2021.][Biden was inaugurated as the
president of the United States on January  Augmentation 46th president of the United States on January 20, 2021.]
20, 2021. He is the second Catholic q [https://www.nbcnews.com/now/video/biden-to-beco me-the-second-catholic-

president-in-u-s-history-after-jfk-99673157918][He is the second Catholic

president (after John F. Kennedy) the first
president (after John F. Kennedy)] and

president whose home state is Delaware.

Figure 8.2: An example document from Wikipedia where each statement is preceded with a

reference consisting of a URL and evidence text.

8.2.1 Robust Parametric Knowledge in LLMs

Considering the flexibility and scalability of parametric knowledge, we argue that more of
knowledge could be encoded within the parameters of LLMs. Both data and model architecture
play crucial roles in parametric knowledge. Inspired by the findings in chapter 5 that LLMs
cannot implicitly recite memorized documents when answering questions, one future direc-
tion is to augment existing pre-training data of documents or supervised data of QA pairs with
necessary references, and train models not only to produce the original output but also to ex-
plicitly recite the relevant references, as illustrated in Figure 8.2. It essentially optimizes an
LLM to function as both a generative retriever and a text generator, merging existing works on

generative retrieval [14, 205] with generic pre-training. This has three major benefits:

+ Improving the robustness of parametric knowledge retrieval: compared to only us-
ing the original output as training signals, adding intermediate supervision on required
references can explicitly optimize LLMs to retrieve desired information from the paramet-

ric datastore, which shares similarity with training methods used to optimize retrievers.

* Providing supporting evidence for generated answers: providing supporting evi-
dence improves the credibility and verifiability of the generated answer, helping users

evaluate the accuracy of the information provided.

+ Alleviating forgetting: by forcing LLMs to recite relevant knowledge, forgetting can be

potentially mitigated as long as the relevant knowledge is often recited.

Ensuring the accuracy of references poses a major challenge in data creation. One way to ad-
dress this is by using statements extracted from the original output as queries to search for
relevant documents with advanced dense retrievers. Then, we can sift through the top-K most
similar documents using LLMs for more detailed checking, including verifying relevance and

extracting supporting sections from the entire document. As shown in Figure 8.2, the aug-
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Figure 8.3: Illustration of transformer with sparse attention over the web-scale corpus. For

simplicity, we only show two documents in the figure.

mented data includes only the identifier (e.g., URL) and the supporting section before the fac-
tual statement, which minimizes the increase in training cost. Since we use a special token to
mark the beginning and end of the reference, we can skip the generation of references to reduce
test-time latency by forbidding this special token if necessary. This approach can be also com-
bined with a document corpus to force LLMs to generate valid substrings of real documents as

supporting evidence, similar to the practice used by Bevilacqua et al. [14].

From the model architecture perspective, mixture-of-expert (MoE) models offer a principled
way to increase the knowledge capacity of the model without increasing the running cost.
Future directions include advanced training strategies as well as efficient expert routing and

expansion methods.

8.2.2 Continual Knowledge Update and Alignment

Continual knowledge update is essential to expand the parametric knowledge of LLMs. The
standard method is continued pre-training on the new corpus, which is expensive and suffers
from catastrophic forgetting. As shown in chapter 5, memorization of different information has
different difficulties, a more efficient way is to (1) only absorb knowledge not encoded in the
parameters of the current LLM by prompting the current LLM with new documents to extract
the information it does not already know, or (2) develop optimization techniques that assign
varying learning rates based on the level of information presence in the parameters. Given the
evolving knowledge of LLMs, it is also crucial to develop alignment methods to adjust their

scope of knowledge.
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8.2.3 Transformer Architectures with Infinite Context Length

The context length of LLMs has been extended to millions of tokens by computing dense atten-
tion across multiple GPUs. In order to directly use LLMs for open-domain information retrieval
without reliance on an external retriever, an important direction is to allow LLMs to consume
the entire web, which necessitates efficient attention computation among billions of documents.
chapter 6 provides an initial attempt in this direction by using a single attention head in a single
transformer layer for retrieval, which is essentially sparse attention over the entire corpus. It
is important to extend this sparse attention mechanism to multiple heads, layers, and decoding
steps, which is illustrated in Figure 8.3. An overview of the high-level pipeline for a system

featuring such efficient sparse attention is as follows:

* Document encoding: the representations of tokens in the web-scale corpus are com-

puted offline by running the LLM over each document independently.

* Vector indexing: these token representations (i.e., the key and value vectors in the self-
attention module) are saved and indexed using efficient vector search libraries such as
the FAISS and ScaNN library [64, 94].

* Local context encoding: encode a test-time input by computing dense attention over

all tokens within the local context.

+ Sparse attention over the corpus: select top-K most similar key-value pairs from the
index across multiple layers and decoding steps, and combine it with the dense attention

over the local context.

A significant challenge in training these models is efficiently storing and updating token rep-
resentations from billions of documents during training. This can be alleviated through token
pruning, vector quantization, and asynchronous updates of the vector index. In contrast to
dense attention, sparsity also raises challenges in training difficulty and stability. These issues
can potentially be tackled through carefully designed training procedures such as warmup with

dense attention computation, or advanced optimizers.

8.2.4 LLM-based Agents

Most real-world application scenarios require interaction between LLMs and the external envi-
ronments using retrievers or other tools, potentially through multiple steps. An example system
is proposed in chapter 7 that interleaves LLMs and retrievers, and the framework can be ex-
tended to other tools such as calendars, calculators, and code interpreters. Gathering data for
such scenarios and developing efficient learning methods to teach LLMs in performing complex

tasks are critical future directions. This requires advancements in algorithms such as improved
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reinforcement learning methods, and scalable learning paradigms that leverage LLMs to pro-
vide feedback and annotations. One promising approach involves gathering human interaction
data with websites and computers [147] to bootstrap the initial training phase. Afterwards,

LLMs can gather trajectories in a real-world environment for further exploratory learning.
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